Contents    Index    PDF 


N. Lieven and D. Ewins, “A proposal for standard notation and terminology in modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 7, no. 2, pp. 151–156, 1992.
K. McConnell, Vibration Testing. Theory and Practice. Wiley Interscience, New-York, 1995.
W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven, Belgium, 1997.
D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY, 1984.
E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale Paris, 1997-2012.
“Vibration and shock - experimental determination of mechanical mobility,” ISO 7626, 1986.
R. J. Craig, A. Kurdila, and H. Kim, “State-space formulation of multi-shaker modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 5, no. 3, 1990.
M. Richardson and D. Formenti, “Global curve fitting of frequency response measurements using the rational fraction polynomial method,” International Modal Analysis Conference, pp. 390–397, 1985.
E. Balmes, “Frequency domain identification of structural dynamics using the pole/residue parametrization,” International Modal Analysis Conference, pp. 540–546, 1996.
E. Balmes, “Integration of existing methods and user knowledge in a mimo identification algorithm for structures with high modal densities,” International Modal Analysis Conference, pp. 613–619, 1993.
P. Guillaume, R. Pintelon, and J. Schoukens, “Parametric identification of multivariable systems in the frequency domain : a survey,” International Seminar on Modal Analysis, Leuven, September, pp. 1069–1080, 1996.
E. Balmes, “New results on the identification of normal modes from experimental complex modes,” Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229–243, 1997.
A. Sestieri and S. Ibrahim, “Analysis of errors and approximations in the use of modal coordinates,” Journal of sound and vibration, vol. 177, no. 2, pp. 145–157, 1994.
D. Kammer, “Effect of model error on sensor placement for on-orbit modal identification of large space structures,” J. Guidance, Control, and Dynamics, vol. 15, no. 2, pp. 334–341, 1992.
E. Balmes, “Review and evaluation of shape expansion methods,” International Modal Analysis Conference, pp. 555–561, 2000.
E. Balmes, “Sensors, degrees of freedom, and generalized modeshape expansion methods,” International Modal Analysis Conference, pp. 628–634, 1999.
A. Chouaki, P. Ladevèze, and L. Proslier, “Updating Structural Dynamic Models with Emphasis on the Damping Properties,” AIAA Journal, vol. 36, pp. 1094–1099, June 1998.
E. Balmes, “Optimal ritz vectors for component mode synthesis using the singular value decomposition,” AIAA Journal, vol. 34, no. 6, pp. 1256–1260, 1996.
D. Kammer, “Test-analysis model development using an exact modal reduction,” International Journal of Analytical and Experimental Modal Analysis, pp. 174–179, 1987.
J. O'Callahan, P. Avitabile, and R. Riemer, “System equivalent reduction expansion process (serep),” IMAC VII, pp. 29–37, 1989.
R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal, vol. 3, p. 380, 1965.
R. Kidder, “Reduction of structural frequency equations,” AIAA Journal, vol. 11, no. 6, 1973.
M. Paz, “Dynamic condensation,” AIAA Journal, vol. 22, no. 5, pp. 724–727, 1984.
M. Levine-West, A. Kissil, and M. Milman, “Evaluation of mode shape expansion techniques on the micro-precision interferometer truss,” International Modal Analysis Conference, pp. 212–218, 1994.
E. Balmes and L. Billet, “Using expansion and interface reduction to enhance structural modification methods,” International Modal Analysis Conference, February 2001.
MSC/NASTRAN, Quick Reference Guide 70.7. MacNeal Shwendler Corp., Los Angeles, CA, February,, 1998.
E. Balmes, “Model reduction for systems with frequency dependent damping properties,” International Modal Analysis Conference, pp. 223–229, 1997.
T. Hasselman, “Modal coupling in lightly damped structures,” AIAA Journal, vol. 14, no. 11, pp. 1627–1628, 1976.
A. Plouin and E. Balmes, “A test validated model of plates with constrained viscoelastic materials,” International Modal Analysis Conference, pp. 194–200, 1999.
E. Balmes and S. Germès, “Tools for viscoelastic damping treatment design. application to an automotive floor panel.,” ISMA, September 2002.
E. Balmes, Viscoelastic vibration toolbox, User Manual. SDTools, 2004-2013.
J.-M. Berthelot, Materiaux composites - Comportement mecanique et analyse des structures. Masson, 1992.
N. Atalla, M. Hamdi, and R. Panneton, “Enhanced weak integral formulation for the mixed (u,p) poroelastic equations,” The Journal of the Acoustical Society of America, vol. 109, pp. 3065–3068, 2001.
J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials. Wiley, 2009.
A. Girard, “Modal effective mass models in structural dynamics,” International Modal Analysis Conference, pp. 45–50, 1991.
R. J. Craig, “A review of time-domain and frequency domain component mode synthesis methods,” Int. J. Anal. and Exp. Modal Analysis, vol. 2, no. 2, pp. 59–72, 1987.
M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics. John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris, 1993.
C. Farhat and M. Géradin, “On the general solution by a direct method of a large-scale singular system of linear equations: Application to the analysis of floating structures,” International Journal for Numerical Methods in Engineering, vol. 41, pp. 675–696, 1998.
R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,” AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.
E. Balmes, “Use of generalized interface degrees of freedom in component mode synthesis,” International Modal Analysis Conference, pp. 204–210, 1996.
E. Balmes, “Parametric families of reduced finite element models. theory and applications,” Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381–394, 1996.
E. Balmes, “Efficient sensitivity analysis based on finite element model reduction,” International Modal Analysis Conference, pp. 1168–1174, 1998.
T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall International, 1987.
H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons 1995, Masson, 1992.
J. Imbert, Analyse des Structures par Eléments Finis. E.N.S.A.E. Cépaques Editions.
J. Batoz, K. Bathe, and L. Ho, “A study of tree-node triangular plate bending elements,” Int. J. Num. Meth. in Eng., vol. 15, pp. 1771–1812, 1980.
R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,” Code_Aster, Version 5.0, R4.06.02-B, pp. 1–34, 1998.
S. Smith and C. Beattie, “Simultaneous expansion and orthogonalization of measured modes for structure identification,” Dynamics Specialist Conference, AIAA-90-1218-CP, pp. 261–270, 1990.
E. Balmes, “Orthogonal maximum sequence sensor placements algorithms
for modal tests, expansion and visibility.,” IMAC, January 2005.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.
C. Johnson, “Discontinuous galerkin finite element methods for second order hyperbolic problems,” Computer methods in Applied Mechanics and Engineering, no. 107, pp. 117–129, 1993.
M. Hulbert and T. Hughes, “Space-time finite element methods for second-order hyperbolic equations,” Computer methods in Applied Mechanics and Engineering, no. 84, pp. 327–348, 1990.
G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2010.
M. Jean, “The non-smooth contact dynamics method,” Computer methods in Applied Mechanics and Engineering, no. 177, pp. 235–257, 1999.
R. J. Craig and M. Blair, “A generalized multiple-input, multiple-ouptut modal parameter estimation algorithm,” AIAA Journal, vol. 23, no. 6, pp. 931–937, 1985.
N. Lieven and D. Ewins, “Spatial correlation of modeshapes, the coordinate modal assurance criterion (comac),” International Modal Analysis Conference, 1988.
D. Hunt, “Application of an enhanced coordinate modal assurance criterion,” International Modal Analysis Conference, pp. 66–71, 1992.
R. Williams, J. Crowley, and H. Vold, “The multivariate mode indicator function in modal analysis,” International Modal Analysis Conference, pp. 66–70, 1985.
E. Balmes, C. Chapelier, P. Lubrina, and P. Fargette, “An evaluation of modal testing results based on the force appropriation method,” International Modal Analysis Conference, pp. 47–53, 1995.
A. W. Phillips, R. J. Allemang, and W. A. Fladung, The Complex Mode Indicator Function (CMIF) as a parameter estimation method. International Modal Analysis Conference, 1998.


©1991-2017 by SDTools
This document was translated from LATEX by HEVEA.