Contents    Index    PDF 

References

[1]
N. Lieven and D. Ewins, “A proposal for standard notation and terminology in modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 7, no. 2, pp. 151–156, 1992.
[2]
K. McConnell, Vibration Testing. Theory and Practice. Wiley Interscience, New-York, 1995.
[3]
W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven, Belgium, 1997.
[4]
D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY, 1984.
[5]
E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale Paris, 1997-2012.
[6]
“Vibration and shock - experimental determination of mechanical mobility,” ISO 7626, 1986.
[7]
R. J. Craig, A. Kurdila, and H. Kim, “State-space formulation of multi-shaker modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 5, no. 3, 1990.
[8]
M. Richardson and D. Formenti, “Global curve fitting of frequency response measurements using the rational fraction polynomial method,” International Modal Analysis Conference, pp. 390–397, 1985.
[9]
E. Balmes, “Frequency domain identification of structural dynamics using the pole/residue parametrization,” International Modal Analysis Conference, pp. 540–546, 1996.
[10]
E. Balmes, “Integration of existing methods and user knowledge in a mimo identification algorithm for structures with high modal densities,” International Modal Analysis Conference, pp. 613–619, 1993.
[11]
P. Guillaume, R. Pintelon, and J. Schoukens, “Parametric identification of multivariable systems in the frequency domain : a survey,” International Seminar on Modal Analysis, Leuven, September, pp. 1069–1080, 1996.
[12]
E. Balmes, “New results on the identification of normal modes from experimental complex modes,” Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229–243, 1997.
[13]
A. Sestieri and S. Ibrahim, “Analysis of errors and approximations in the use of modal coordinates,” Journal of sound and vibration, vol. 177, no. 2, pp. 145–157, 1994.
[14]
D. Kammer, “Effect of model error on sensor placement for on-orbit modal identification of large space structures,” J. Guidance, Control, and Dynamics, vol. 15, no. 2, pp. 334–341, 1992.
[15]
E. Balmes, “Review and evaluation of shape expansion methods,” International Modal Analysis Conference, pp. 555–561, 2000.
[16]
E. Balmes, “Sensors, degrees of freedom, and generalized modeshape expansion methods,” International Modal Analysis Conference, pp. 628–634, 1999.
[17]
A. Chouaki, P. Ladevèze, and L. Proslier, “Updating Structural Dynamic Models with Emphasis on the Damping Properties,” AIAA Journal, vol. 36, pp. 1094–1099, June 1998.
[18]
E. Balmes, “Optimal ritz vectors for component mode synthesis using the singular value decomposition,” AIAA Journal, vol. 34, no. 6, pp. 1256–1260, 1996.
[19]
D. Kammer, “Test-analysis model development using an exact modal reduction,” International Journal of Analytical and Experimental Modal Analysis, pp. 174–179, 1987.
[20]
J. O'Callahan, P. Avitabile, and R. Riemer, “System equivalent reduction expansion process (serep),” IMAC VII, pp. 29–37, 1989.
[21]
R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal, vol. 3, p. 380, 1965.
[22]
R. Kidder, “Reduction of structural frequency equations,” AIAA Journal, vol. 11, no. 6, 1973.
[23]
M. Paz, “Dynamic condensation,” AIAA Journal, vol. 22, no. 5, pp. 724–727, 1984.
[24]
M. Levine-West, A. Kissil, and M. Milman, “Evaluation of mode shape expansion techniques on the micro-precision interferometer truss,” International Modal Analysis Conference, pp. 212–218, 1994.
[25]
E. Balmes and L. Billet, “Using expansion and interface reduction to enhance structural modification methods,” International Modal Analysis Conference, February 2001.
[26]
MSC/NASTRAN, Quick Reference Guide 70.7. MacNeal Shwendler Corp., Los Angeles, CA, February,, 1998.
[27]
E. Balmes, “Model reduction for systems with frequency dependent damping properties,” International Modal Analysis Conference, pp. 223–229, 1997.
[28]
T. Hasselman, “Modal coupling in lightly damped structures,” AIAA Journal, vol. 14, no. 11, pp. 1627–1628, 1976.
[29]
A. Plouin and E. Balmes, “A test validated model of plates with constrained viscoelastic materials,” International Modal Analysis Conference, pp. 194–200, 1999.
[30]
E. Balmes and S. Germès, “Tools for viscoelastic damping treatment design. application to an automotive floor panel.,” ISMA, September 2002.
[31]
E. Balmes, Viscoelastic vibration toolbox, User Manual. SDTools, 2004-2013.
[32]
J.-M. Berthelot, Materiaux composites - Comportement mecanique et analyse des structures. Masson, 1992.
[33]
N. Atalla, M. Hamdi, and R. Panneton, “Enhanced weak integral formulation for the mixed (u,p) poroelastic equations,” The Journal of the Acoustical Society of America, vol. 109, pp. 3065–3068, 2001.
[34]
J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials. Wiley, 2009.
[35]
A. Girard, “Modal effective mass models in structural dynamics,” International Modal Analysis Conference, pp. 45–50, 1991.
[36]
R. J. Craig, “A review of time-domain and frequency domain component mode synthesis methods,” Int. J. Anal. and Exp. Modal Analysis, vol. 2, no. 2, pp. 59–72, 1987.
[37]
M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics. John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris, 1993.
[38]
C. Farhat and M. Géradin, “On the general solution by a direct method of a large-scale singular system of linear equations: Application to the analysis of floating structures,” International Journal for Numerical Methods in Engineering, vol. 41, pp. 675–696, 1998.
[39]
R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,” AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.
[40]
E. Balmes, “Use of generalized interface degrees of freedom in component mode synthesis,” International Modal Analysis Conference, pp. 204–210, 1996.
[41]
E. Balmes, “Parametric families of reduced finite element models. theory and applications,” Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381–394, 1996.
[42]
E. Balmes, “Efficient sensitivity analysis based on finite element model reduction,” International Modal Analysis Conference, pp. 1168–1174, 1998.
[43]
T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall International, 1987.
[44]
H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons 1995, Masson, 1992.
[45]
J. Imbert, Analyse des Structures par Eléments Finis. E.N.S.A.E. Cépaques Editions.
[46]
J. Batoz, K. Bathe, and L. Ho, “A study of tree-node triangular plate bending elements,” Int. J. Num. Meth. in Eng., vol. 15, pp. 1771–1812, 1980.
[47]
R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,” Code_Aster, Version 5.0, R4.06.02-B, pp. 1–34, 1998.
[48]
S. Smith and C. Beattie, “Simultaneous expansion and orthogonalization of measured modes for structure identification,” Dynamics Specialist Conference, AIAA-90-1218-CP, pp. 261–270, 1990.
[49]
E. Balmes, “Orthogonal maximum sequence sensor placements algorithms
for modal tests, expansion and visibility.,” IMAC, January 2005.
[50]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.
[51]
C. Johnson, “Discontinuous galerkin finite element methods for second order hyperbolic problems,” Computer methods in Applied Mechanics and Engineering, no. 107, pp. 117–129, 1993.
[52]
M. Hulbert and T. Hughes, “Space-time finite element methods for second-order hyperbolic equations,” Computer methods in Applied Mechanics and Engineering, no. 84, pp. 327–348, 1990.
[53]
G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2010.
[54]
M. Jean, “The non-smooth contact dynamics method,” Computer methods in Applied Mechanics and Engineering, no. 177, pp. 235–257, 1999.
[55]
R. J. Craig and M. Blair, “A generalized multiple-input, multiple-ouptut modal parameter estimation algorithm,” AIAA Journal, vol. 23, no. 6, pp. 931–937, 1985.
[56]
N. Lieven and D. Ewins, “Spatial correlation of modeshapes, the coordinate modal assurance criterion (comac),” International Modal Analysis Conference, 1988.
[57]
D. Hunt, “Application of an enhanced coordinate modal assurance criterion,” International Modal Analysis Conference, pp. 66–71, 1992.
[58]
R. Williams, J. Crowley, and H. Vold, “The multivariate mode indicator function in modal analysis,” International Modal Analysis Conference, pp. 66–70, 1985.
[59]
E. Balmes, C. Chapelier, P. Lubrina, and P. Fargette, “An evaluation of modal testing results based on the force appropriation method,” International Modal Analysis Conference, pp. 47–53, 1995.
[60]
A. W. Phillips, R. J. Allemang, and W. A. Fladung, The Complex Mode Indicator Function (CMIF) as a parameter estimation method. International Modal Analysis Conference, 1998.

Index


©1991-2017 by SDTools
This document was translated from LATEX by HEVEA.