Contents    Index    PDF 

References

[1]
J. Salençon, Viscoélasticité. Presse des Ponts et Chaussés, Paris, 1983.
[2]
A. Nashif, D. Jones, and J. Henderson, Vibration Damping. John Wiley and Sons, 1985.
[3]
C. Bert, "Material damping: An introductory review of mathematical models, measures, and experimental techniques," Journal of Sound and Vibration, vol. 29, no. 2, pp. 129-153, 1973.
[4]
G. Golub and C. Van Loan, Matrix computations. Johns Hopkins University Press, 1983.
[5]
D. McTavish and P. Hugues, "Finite element modeling of linear viscoelastic structures," ASME Biennal Conference on Mechanical Vibration and Noise, sep 1987.
[6]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," SDM Conference, AIAA paper 93-1550-CP, pp. 2101-2109, 1993.
[7]
E. Bianchini and G. Lesieutre, "Viscoelastic constrained-layer damping - time domain finite element modeling and experimental results," SDM Conference, AIAA paper 94-1652-CP, pp. 2666-2676, 1994.
[8]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," J. Vibration and Acoustics, vol. 117, pp. 424-430, 1995.
[9]
J. D'Azzo and C. Houpis, Linear Control System Analysis and Design. MacGraw Hill Book Company, 1988.
[10]
F. Renaud, J. L. Dion, G. Chevallier, I. Tawfiq, and R. Lemaire, "A new identification method of viscoelastic behavior: Application to the generalized maxwell model," Mechanical Systems and Signal Processing, vol. 25, no. 3, pp. 991-1010, 2011.
[11]
F. Schwartzl Physica, pp. 830-923, 1951.
[12]
A. Lion, "On the thermodynamics of fractional damping elements," Continuum Mech. Thermodyn., vol. 9, pp. 83-96, 1997.
[13]
J. Ferry, Viscoelastic Properties of Polymers. Wiley, 2nd ed., 1970.
[14]
Zilson, D. Kiureghian, and Bayo, "A replacement of the srss method in seismic analysis," Earthquake Engineering and Structural Dynamics, vol. 9, pp. 187-194, 1981.
[15]
G. Kergourlay, Mesure et prédiction de structures viscoélastiques - Application à une enceinte acoustique. PhD thesis, Ecole Centrale de Paris, 2004.
[16]
American Society for Testing and Materials, E756-98 Standard Test Method for Measuring Vibration-Damping Properties of Materials, 1998.
[17]
H. Oberst and K. Frankenfeld, "Über die dämpfung der biegeschwingungen dünner bleche durch festhaftende beläge," Acustica, vol. 2, pp. 181-194, 1952.
[18]
D. Ross, E. Ungar, and E. Kerwin, "Damping of plate flexural vibrations by means of viscoelastic laminates," ASME, vol. 51, 1959.
[19]
E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale Paris, 1997-2012.
[20]
T. Caughey, "Classical normal modes in damped linear dynamic systems," ASME J. of Applied Mechanics, pp. 269-271, 1960.
[21]
J. Rayleigh, The Theory of Sound. Dover Publications, New-York, NY, 1945 (reedition).
[22]
E. Balmes, Modèles analytiques réduits et modèles expérimentaux complets en dynamique des structures. Mémoire d'habilitation à diriger des recherches soutenue à l'Université Pierre et Marie Curie, 1997.
[23]
R.-J. Gibert, Vibrations des Structures. Editions Eyrolles, Paris, 1988.
[24]
E. Balmes, "New results on the identification of normal modes from experimental complex modes," Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229-243, 1997.
[25]
L. Rogers, C. Johnson, and D. Kienholz, "The modal strain energy finite element method and its application to damped laminated beams," Shock and Vibration Bulletin, vol. 51, 1981.
[26]
D. Inman, Engineering Vibration. Prentice-Hall, Englewood Cliffs, N.J., 1994.
[27]
W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven, Belgium, 1997.
[28]
D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY, 1984.
[29]
EDF, RCC-G : Règles de conception et de construction des îlots nucléaires REP. EDF - Direction de l'Equipement Edition, Juillet 1988.
[30]
L. Komzsik, "Implicit computational solutions of generalized quadratic eigenvalue problems," Finite Elements In Analysis and Design, vol. 37, pp. 799-810, 2001.
[31]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," SDM Conference, AIAA paper 93-1550-CP, pp. 2101-2109, 1993.
[32]
D. Golla and P. Hughes, "Dynamics of viscoelastic structures - a time domain finite element formulation," Journal of Applied Mechanics, vol. 52, pp. 897-906, 1985.
[33]
ABAQUS/Standard, User's Manual, vol. 1. Hibbit, Karlsson, Sorhensen, Inc.
[34]
L. Bagley and P. Torvik, "Fractional calculus - a different approach to the analysis of viscoelastically damped structures," AIAA Journal, vol. 21, no. 5, pp. 741-748, 1983.
[35]
E. Balmes, "Modes and regular shapes. how to extend component mode synthesis theory.," Proceedings of the XI DINAME - Ouro Preto - MG - Brazil, March 2005.
[36]
S. Rubin, "Improved component-mode representation for structural dynamic analysis," AIAA Journal, vol. 13, no. 8, pp. 995-1006, 1975.
[37]
R. MacNeal, "A hybrid method of component mode synthesis," Computers and structures, vol. 1, no. 4, pp. 581-601, 1971.
[38]
R. Guyan, "Reduction of mass and stiffness matrices," AIAA Journal, vol. 3, p. 380, 1965.
[39]
R. J. Craig and M. Bampton, "Coupling of substructures for dynamic analyses," AIAA Journal, vol. 6, no. 7, pp. 1313-1319, 1968.
[40]
A. Plouin and E. Balmes, "A test validated model of plates with constrained viscoelastic materials," International Modal Analysis Conference, pp. 194-200, 1999.
[41]
B. Groult, Extension d'une méthode de modification structurale pour la conception de dispositifs dissipatifs intégrant des matériaux viscoélastiques. PhD thesis, École Centrale Paris 2008-14, 2008.
[42]
E. Balmes, "Model reduction for systems with frequency dependent damping properties," International Modal Analysis Conference, pp. 223-229, 1997.
[43]
T. Kant and S. K., "Free vibration of isotropic, orthotropic and multilayer plates based on higher order refined theories," Journal of Sound and Vibration, vol. 241, no. 2, pp. 319-327, 2001.
[44]
E. Balmes and A. Bobillot, "Analysis and design tools for structures damped by viscoelastic materials," International Modal Analysis Conference, February 2002.
[45]
D. Mead and S. Markus, "The forced vibration of a three layer, damped sandwich beam with arbitrary boundary conditions," Journal of Sound and Vibration, vol. 10, no. 2, pp. 163-175, 1969.
[46]
J.-M. Berthelot, Materiaux composites - Comportement mecanique et analyse des structures. Masson, 1992.
[47]
A. K. Pickett, G. Creech, and P. De Luca, "Simplified and advanced simulation methods for prediction of fabric draping," Revue Européenne des Éléments Finis, vol. 14, pp. 677-691, Jan. 2005.
[48]
M. Couet, J.-F. Deü, L. Rouleau, F. Thouverez, and M. . Gruin, "Topology optimization of constrained layer damping on fan blades," in ISMA, Leuven, 2024.
[49]
E. Balmes, "Parametric families of reduced finite element models. theory and applications," Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381-394, 1996.
[50]
H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons 1995, Masson, 1992.
[51]
G. Kergourlay, E. Balmes, and D. Clouteau, "Interface model reduction for efficient fem/bem coupling," International Seminar on Modal Analysis, Leuven, pp. 1167-1174, September 2000.
[52]
B. Van den Nieuwenhof, G. Lielens, and J. Coyette, "Modeling acoustic diffuse fields: Updated sampling procedure and spatial correlation function eliminating grazing incidences," in ISMA, p. 14, 2010.