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Abstract
Model reduction techniques seek approximate solutions of a problem with a large number of DOFs within a
subspace of small dimension. Component Mode Synthesis (CMS) methods form a large class of reduction
methods where the subspace is selected a priori. Introducing a posteriori error estimation and iterative cor-
rection significantly extends the range of applications of reduction methods. The paper focuses on possible
uses of reduction methods for coupled Finite Element (FEM) / Boundary Element (BEM) predictions in cases
where the boundary contains a significant number of Degrees Of Freedom (DOFs) and where the coupling
significantly affects the response of the structure. Issues addressed, for the case of a reactor building, are error
evaluations for the coupled responses when using a FEM model reduced a priori and performance evaluations
when using an iterative scheme that guarantees a given level of error.

1. Introduction

Coupled Finite Element (FEM) / Boundary Element
(BEM) models are often considered for fluid or soil
structure interaction problems. In such problems,
the FEM model is typically reduced using methods
related to Component Mode Synthesis (CMS) [1].
The resulting model contains dynamic modes (free,
fixed or loaded boundary conditions) and static re-
sponses to unit displacements or loads applied to all
Degrees Of Freedom (DOFs) of the interface between
the structure and the fluid/soil.

The present study focuses on soil/structure inter-
action problems, where the soil stiffness significantly
affects the response of buildings, and cases where the
soil/structure interface contains a significant number
of DOFs. In such problems, evaluating the dynamic
soil stiffness is obviously expensive, but just manip-
ulating the associated large full complex matrices al-
ready requires significant resources.

The objective of the paper is to validate the use
of generalized interface DOFs as a means to reduce
computational costs. This problem is strongly related
to the interface model reduction in CMS methods [2,
3, 4]. The novelty is to address error estimation and
introduce iterative correction schemes.

Section 2. summarizes theoretical tools (model re-
duction, error estimation and singular value decom-
position) used in the paper to analyze the performance
of various reduction methods. An essential aspect
of the proposed tools is the use of a reference elas-

tic model to build a priori reduction basis, estimate
errors and introduce iterative schemes leading to the
exact solution.

Section 3. tests a number of interface reduction
methods on the case of the soil/structure interaction
of a nuclear reactor building excited by sv, sh (shear)
and p (pressure) waves with different incidences. The
objective of this numerical application is to show the
ingredients that are needed to build methods that work
well in all cases and illustrate the associated rates of
convergence.

2. Model reduction tools

2.1 Reducing a discrete model

One here considers already discretized models, that
can be described by an equation of the form

[Z(s)]N×N {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(1)

where for a standard elastic model Z = Ms2 + K
and for the current application the form is (10).

The idea of a displacement based approximation
(Ritz analysis) is to seek the approximate answer
within the subspace spanned by a projection basis
described by the real matrix [T ] and associated with
generalized DOFs {qR}



{q} = [T ] {qR} (2)

One further assumes that the equilibrium equa-
tions are projected on the basis dual to [T ] which leads
to a model of the form

[
T T Z(s)T

]
NR×NR

{qR} =
[
T T b

]
{u(s)}

{y(s)}NS×1 = [cT ]NS×NR {qR(s)}NR×1

(3)

The quality of the approximation is based on the
fact that all effectively found states of {q} are well
approximated in the span of [T ]. Methods are distin-
guished by the reference problems used to generate
[T ]. Standard CMS approaches [1] take into account

• the frequency content of the applied loads, and
thus keep modes within the frequency range of
interest.

• the spatial content of the applied loads, and thus
keep static responses to a subspace of loads de-
scribing that content.

For problems where the stiffness is frequency de-
pendent, standard CMS methods cannot be applied
directly since computing modes becomes a problem.
The method retained here is to use a single reference
stiffness K0 for energy evaluations and a static re-
sponse operator K−1

d to compute static responses.
K0 must be representative of energy distribution in

the structure. Taking the real part of the complex stiff-
ness at a given frequency is usually efficient but other
approaches can be considered. For soil-structure in-
teraction a model with ground springs is efficient be-
cause there properties can be typically be estimated
without calling the BEM code.

K−1
d normally is the inverse of K0. For free float-

ing structures, this inverse does not exist, so that a
mass shifted matrix or a pseudo-inverse of K0 [5] is
used.

2.2 Error estimation

For a given reduced solution, one can easily
build a residue that is characteristic of the error.
Thus for harmonic responses given by {qR} =[
T TZ(s, p)T

]−1 [
T T b

]
{u(s)}, the residue is the

load

{RL(s, u)} = [Z(s, p)] [T ] {qr} − [b] {u(s)} (4)

To associate an energy with this load, one seeks
the associated static response

{RD(s, u)} =
[
K−1

d

]
{RL} (5)

Note that the use of this particular response could be
justified by the fact that it maximizes the ratio of work
under RL and energy of the considered displacement.

An estimate of the error in the sense of the strain
energy is thus given by

e(s, u) =
{RD(s, u)}T [K0] {RD(s, u)}

{qR(s, u)}T [T T K0T ] {qR(s, u)} (6)

While error estimation is first used to establish
convergence of the approximation, it provides a natu-
ral mechanism [6] to correct the initial reduction basis
by adding displacement residuals to the basis

[Ti+1] = [[Ti] Re [RD(ωk, uk)] Im [RD]] (7)

where a number of strategies can be defined to restrict
the number of frequencies and loading cases (ωk, uk)
used to build the refined basis.

2.3 Principal directions

When defining a reference problem to build a re-
duction basis, it often happens that its dimension is
larger than really needed. Having a simple mecha-
nism to select vectors within a basis is thus funda-
mental. The Singular Value Decomposition (SVD) is
a major mathematical tool allowing the classification
of directions within a subspace. The general form of
the decomposition of a matrix [T ]

[T ]N×NR = [U ]N×N [Σ]N×NR [V ]TNR×NR (8)

where, Σ contains singular values on its diagonal, and
U , V are orthonormal matrices of right left and right
singular vectors.

Classical SVD uses Euclidian norms, but in me-
chanics, it makes more sense to use strain and kinetic
energy norms. Thus, the principal displacements of a
given subspace can be defined as stationary points of

J(q) =
{q}T [K] {q}
{q}T [M ] {q} (9)

where one will recognize Rayleigh’s quotient. Modal
truncation is thus equivalent to a SVD where all unit
kinetic energy displacements are considered equally
probable and the most important directions are asso-
ciated with small strain energies.



This generalization of the SVD (see other details
in Ref. [7]) is important to justify the use of modal
truncation for bases which need not be modal bases
using norms that only need to be representative of the
physics of the problem. Here the M and K0 norms
are used.

3. FEM/BEM applications

3.1 Numerical application

The proposed methodologies will be illustrated on the
case of the seismic response of the building shown in
figure 1.

Figure 1: First fixed interface mode for the model
of a Pressurized Water Reactor Building. The
soil/structure interface is lowered for the plot.

The objective is to validate methodologies that can
be used to approximate the response to incoming sv,
sh (shear) and p (compression) waves with various in-
cidences. In other words, solve a series of problems
of the form[

ZII + ZII,Soil ZIC

ZCI ZCC

] {
qI

qC

}
=

{
FI

0

}
(10)

where, FI describes the seismic loading and has a
significant dependence on frequency, and ZII,Soil

describes the soil impedance (built with the BEM)
which is not negligible when compared to the build-
ing contribution ZII (obtained with the FEM).

For structures with large foundations, the number
of DOFs in the interface is quite high and BEM com-
putational costs increase rapidly with the number of
such DOFs. Thus, there is a strong interest in not only
reducing internal structure DOFs qC (which would be
classical CMS) but also interface DOFs qI .

Here, the soil impedance is obtained from
MISS3D by mean of a BEM for a layered soil [8, 9].
The building model, a Craig-Bampton reduction of
the initial building model, is exported from ASTER
[10, 11]. This model contains 558 interface DOFs,
and 133 fixed interface modes. The loaded modes
used in the following sections are computed within
the basis spanned by the fixed interface modes. This
is clearly an approximation but has a marginal impact
the results shown here. All pre-/post-processing and
computations are performed using the SDT [12].

The reference elastic stiffness K0 is built by com-
bining the elastic model of the building and a layer
of ground springs whose values is found by taking
in each translation direction, the mean of the real
part of the soil impedance at 1 Hz (approximately
2.5e9N/m). K−1

d is taken to be the inverse of K0.

3.2 Selecting dynamic interface modes

In this first section, one seeks to demonstrate the va-
lidity of interface selection methods. To do so, one
compares four cases.

The reduction basis for model FI combines fixed
interface modes and a variable number of modes
of the model condensed on soil/structure interface.
Keeping all the interface modes would be equiva-
lent to using the Craig-Bampton method [13]. Note
that these modes can be approximated by building
a mass matrix defined on the interface only, which
may be more efficient numerically than condensing
the model.

The reduction for basis for model LO keeps
modes of the model associated with the reference
stiffness K0 and thus corresponds to a loaded inter-
face CMS method. The drawback of this method is
that there no longer is a decoupling between internal
and interface deformations. This might be inefficient
for a structure with many internal resonances.

For both model FI and LO, one compares a
base version and a version where the static response
[K0]

−1 [b] to the spatial distribution of loads linked
to the incoming waves computed at the low end of
the frequency range. Keeping the real and imaginary
parts for the three types of waves, leads to adding six
interface modes. Better strategies for building a static



correction are considered in section 3.3.
Figures 2 and 3 show the strain energy error (6).

The value shown is the maximum error for 15 fre-
quencies between 1 and 15 Hz and 3 loading cases:
sv, sh and p with vertical incidences.
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Figure 2: Maximum of energy error (6) as a function
of frequency of last retained mode.

Figure 2 shows that for the standard threshold of
1.5ωmax (generally attributed to Rubin), model FI
with no static correction gives reasonable results (3%
max error). Including the static correction leads to
somewhat better results. For model LO, the inclusion
of a static correction drastically improves results.
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Figure 3: Maximum of energy error (6) as a function
of number of modes with non zero displacement on
interface (model FI has an additional 133 fixed inter-
face modes)

Figure 3 gives a different perspective on the results

by counting the number of interface modes. Starting
values for kept modes are based on keeping all modes
below the maximum frequency of interest. Model FI
now seems to give better answers. This is due to the
fact that the 133 fixed interface modes (modes below
30 Hz) are not counted since they are not used in soil
impedance computations.

It clearly comes out that the best choice will
depend on the relative cost of evaluating the soil
impedance using the BEM method and evaluating the
response. The use of static correction terms, for the
spatial distribution of the inputs, is a very useful safe-
guard and should not be omitted. The use of the
1.5ωmax threshold is safe if such static correction is
included.

Convergence often shows long series of modes
with little variations. Evaluating the error by compar-
ing a nominal model and a somewhat richer (where a
number of additional interface modes have been in-
cluded) can thus give very misleading results. Ar-
eas of slow convergence is a typical property of CMS
methods and only iterations based on error estimation,
illustrated in section 3.4, can change that.

3.3 Selecting input shapes for static
correction

An important specificity of seismic loads is that the
spatial distribution of loads varies with frequency.
Doing a proper static correction, thus requires an ap-
propriate treatment of these variations.

The simple approach, used in section 3.2, is to take
the loads at a restricted number of frequencies

[bI ] = [ReFI(ω1) ImFI(ω1) ... ImFI(ωn)] (11)

and include the static correction K−1
d bI in the inter-

face basis (typically after orthonormalization).
Based on the discussion in section 2.3, a first ex-

tension is to take a fairly large number of frequencies
to build bI , compute the singular value decomposition
of these loads, and keep the vectors associated with
the largest singular values. The SVD can be applied
to bI or to K−1

d bI . Figure 4 shows that SVD slopes
obtained when considering each wave type separately
or simultaneously is almost the same so that this is
an open choice. When considering a large number
of loading cases (3 wave types and 7 incidences),
the global slope of the singular values is obviously
smaller but the number of vectors found for a thresh-
old of 10−2 or 10−3 is still quite small.

One should also note that singular values of
K−1

d bI fall much more rapidly than those of bI this il-



lustrates the smoothing effect of computing the static
response. In terms of convergence for the final model
(shown in figure 5), doing the SVD on either gives
similar results.
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Figure 4: Singular values of the decomposition of [bI ]
(top) and

[
K−1

d

]
[bI ] (bottom) for SV waves at 0o, SH

at 0o, P at 0o, all waves at 0o, all waves at 7 different
incidences

In practice, computing the singular value decom-
position might rapidly become impractical if one is
to compute the response at a large number of fre-
quencies. An iterative method is thus introduced.
An interface load basis is initialized with b

(1)
I =

[Re (FI(ω1)) Im (FI(ω1))]. One then loops on all
loads at all frequencies and keeps those whose dis-
tance to their projection on the span of bnI is above a
given tolerance. Thus, bnI is completed if∥∥∥∥{

b̂
}
− [bn

I ]
[
bnT
I bn

I

]−1
[bn

I ]T
{
b̂
}∥∥∥∥∥∥∥{

b̂
}∥∥∥ ≤ Tol (12)

for
{
b̂
}

= Re (FI(ωk)) or
{
b̂
}

= Im (FI(ωk)).
Again, the algorithm can also be applied on the

static responses to the loads
[
K−1

d

]
[F ] rather that the

loads themselves.
Figure 5 shows a comparison of results obtained

with the proposed static mode selection schemes and
a standard CB model with interface modes up to 15
Hz retained (see section 3.2). It appears that in this
case, introducing static correction is indeed impor-
tant, but even the most basic approach (keeping loads
at the two frequency extremes) is sufficient.
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Figure 5: Evolution of maximum energy error, as
a function of number of modes kept, for of various
static mode selection schemes.

In practice, the iterative method (12) seems a
good speed/accuracy compromise although scanning
through the frequency interval would only be impor-
tant if the medium modeled by the BEM can show
resonant behavior.

3.4 Automated iterative methods

This section analyses results obtained with an iter-
ative method based on the principles given in sec-
tion 2.2. The reduction basis Ti is initialized using
model LO with static correction considered in sec-
tion 3.2. This corresponds to first point of figure 7,
with 62 vectors retained and a maximum energy error
at 2% for 3 wave types and 15 points between 1 and
15 Hz (figure 8 shows that for the sv wave used here
the maximum energy error is below 1%). For enrich-
ing the basis, the tolerance on the strain energy error
is set to 0.1%.



Figures 6 and 7 show two vertical frequency re-
sponse functions at the top and bottom of the building
respectively. The responses computed without basis
enrichment show that a 2% maximum energy error
does not correspond to a very accurate prediction of
the FRF.
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Figure 6: Frequency response at a vertical DOF of the
base for sv wave loading at vertical incidence. Note
that the iterative is so accurate that the amplitude of
the difference is shown.
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Figure 7: Frequency response at a vertical DOF the
top of building for sv wave loading at vertical inci-
dence.

The successive completion of the basis (shown as
vertical dotted lines) lead to an almost exact response
at the base of the building and a major improvement
at the top. Thus with only 8 additional vectors an ex-
tremely accurate prediction of this very complex re-
sponse is obtained.

Figure 8 shows the evolution of the error during
the iterations. The steps are linked to the choice,
which will be motivated later, not to evaluate errors at
all frequencies. The error clearly shows a peak near
the first mode but is otherwise difficult to relate to the
evolution of errors on the FRFs. The iterative method
does however significantly lower the energy error.
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Figure 8: Evolution during iterations of basis size and
energy error (– –) initial error with 62 vectors, (—)
final result.
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Figure 9: Frequency response at a vertical DOF the
top of building for sv wave loading at vertical inci-
dence. Exact and iterative methods with tolerance set
to 10−3 and 10−5

In order to gain a better understanding of the prob-
lems with the FRF at the top, one compared predic-
tions obtained with the tolerance on strain energy er-
ror set at 10−3 and 10−5. The results shown in fig-
ure 9 clearly indicate that better results are obtained



with the lower threshold. The projections on enriched
bases, shown as vertical lines, however clearly induce
breaks in the response. Fine tuning of the exact pro-
cedure used to enrich and compute a final prediction
of the response is thus clearly needed.

Table 1 shows a number of time and memory eval-
uations that were considered to gain an understanding
of the performance of the proposed methods. Times
shown are CPU times on a SGI R10000 processor.
Not all steps were equally optimized so that some
caution should be used when interpreting results.

Table 1: Performance evaluations of full (558 inter-
face DOF, 691 total) and reduced (70 generalized co-
ordinates) approaches. Results shown for 100 fre-
quencies except for time of projection.

Model full reduced
Computing Zsoil, FI 1700 s 300 s
Loading Zsoil, FI 540 s 65 s
Memory for Zsoil 475 MB 7 MB
Computing FRF 1087 s 2 s
Estimating RD – 28 s
Projecting model (per proj.) – 21 s

Full interface computations are significantly dom-
inated by the evaluation of the soil impedance and
loading. If, as here, the coupled response is to be
computed outside the BEM code, even reloading the
soil matrices from a binary file represents a significant
time and memory requirement.

When using reduced interface models, impedance
computations and loading are somewhat faster (a
factor of 20), whereas the cost of FRF computa-
tions becomes marginal. Since FRF computation is
dominated by the inversion of the dynamic stiffness
and full matrices are used, the speed-up should be
of the order of the ratio of the dimensions cubed
(691/70)3 ≈ 1000. The results found are actually
not far from that.

The a posteriori estimation of energy error, which
is necessary to assure the validity of predictions, and
projecting the model when the need for refinement is
detected, now become the dominant aspect of FRF
evaluations. The strategy retained here is to evaluate
the error at a fixed interval and backtrack to the last
acceptable frequency point if an unacceptable level
is detected. This technique was shown in figure 9 to
induce some non-physical jumps in the response so
that adaptations are needed.

4. Conclusion

The study has shown how CMS methods with in-
terface model reduction procedures can be applied
to build numerically efficient algorithms for coupled
FEM/BEM predictions. The retained procedure com-
bines a priori basis selection based on variations of
traditional CMS procedures, and basis enrichment by
an exact evaluation of error at a restricted set of fre-
quencies.

It was found somewhat difficult to relate accuracy
on FRFs and strain energy error thresholds. So fur-
ther work on how to really measure the error is clearly
needed. But a CPU time speedup of 7 and a reduction
of memory requirements of 70 were obtained so that
pursuing the work is clearly worthwhile.

In the last version of the algorithm, BEM com-
putations take most of the time. Building BEM
impedance approximation methods as proposed in
Refs. [14, 15] would clearly be a useful complement
to the present study. Finally, the overall procedure is
also very useful in other applications where there are
parametric variations of a nominal model (see [16] for
example).
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