
Viscoelastic Vibration Toolbox

For Use with MATLAB R©

User’s Guide Etienne Balmes

Version 1.1

How to Contact SDTools

33 +1 44 24 63 71 Phone
SDTools Mail
44 rue Vergniaud
75013 Paris (France)

http://www.sdtools.com Web
http://www.openfem.net An Open-Source Finite Element Toolbox

support@sdtools.com Technical support
suggest@sdtools.com Product enhancement suggestions
info@sdtools.com Sales, pricing, and general information

Viscoelastic Vibration Toolbox on February 16, 2020
c© Copyright 1991-2020 by SDTools

The software described in this document is furnished under a license agreement.

The software may be used or copied only under the terms of the license agreement.

No part of this manual in its paper, PDF and HTML versions may be copied, printed, photocopied or reproduced

in any form without prior written consent from SDTools.

Structural Dynamics Toolbox is a registered trademark of SDTools

OpenFEM is a registered trademark of INRIA and SDTools

MATLAB is a registered trademark of The MathWorks, Inc.

Other products or brand names are trademarks or registered trademarks of their respective holders.

Contents

1 Modeling viscoelastic materials 5

1.1 Introduction . 6

1.2 Representing complex modulus . 6

1.2.1 Non parametric (tabular) representations . 7

1.2.2 Simple rheological models . 9

1.2.3 High order rational models . 12

1.2.4 Fractional derivative models . 13

1.2.5 3D constitutive laws . 14

1.3 Environmental factors . 14

1.3.1 Influence of temperature . 15

1.3.2 Other environment factors . 18

1.4 Determining the complex modulus . 19

1.5 Conclusion . 20

2 Viscoelastic FEM models 23

2.1 Viscous and structural damping . 24

2.1.1 Properties of the damped 1 DOF oscillator 25

2.1.2 Real modes and modal damping . 27

2.1.3 Selection of modal damping coefficients . 30

2.2 Viscoelastic models . 31

2.2.1 Frequency domain representation with variable coefficients 31

2.2.2 State-space representations . 32

2.2.3 Second order models with internal states . 33

2.2.4 Fractional derivatives . 35

2.3 Spectral decomposition and reduced models . 35

2.3.1 Complex modes of analytical models . 36

2.3.2 Complex mode eigenvalue problems with constant matrices 37

2.3.3 Model reduction methods . 39

2.3.4 Equivalent viscous damping . 40

1

2 CONTENTS

2.3.5 Case of viscoelastic models . 42
2.4 Meshing of sandwich models . 42

2.4.1 Mesh convergence and non conformity . 46
2.5 Thermal considerations . 47

2.5.1 Thermal model . 47
2.5.2 Heat source due to viscoelastic behavior . 47
2.5.3 Cantilever plate example . 49
2.5.4 Thermo-elastic damping . 50

3 Toolbox tutorial 53
3.1 Download and installation procedures . 55
3.2 Representing viscoelastic materials . 55

3.2.1 Introducing your own nomograms . 56
3.2.2 Selecting a material for your application . 57
3.2.3 Selective components in constitutive law . 57

3.3 Viscoelastic device meshing tools . 58
3.3.1 Generation of sandwich models . 58
3.3.2 Meshing foam fillings . 59
3.3.3 Exporting submeshes to NASTRAN . 60

3.4 Parametric models, structure reference . 60
3.4.1 Parametric models, zCoef . 60
3.4.2 Parametric models, zCoef . 64
3.4.3 Input definitions . 66
3.4.4 Sensor definitions . 66
3.4.5 MVR Format reference . 67
3.4.6 Response post-processing options . 68

3.5 Sample setup for parametric studies . 68
3.5.1 Performance in modulus/loss plane . 68
3.5.2 Illustration of pole range computations . 70
3.5.3 Model parameterization . 70
3.5.4 Sample parametric study in SDT (full solver, Upcom superelement) 71
3.5.5 Parametric model generated within NASTRAN (fo by set DMAP) 72
3.5.6 Parametric model from NASTRAN element matrices 74

3.6 Fluid/structure coupling . 75
3.6.1 Summary of theory . 75
3.6.2 Acoustic stiffness on a loudspeaker . 76

3.7 Rayleigh integral computations . 77
3.7.1 Summary of theory . 77
3.7.2 Diffuse field and transmission loss . 78

3.8 NASTRAN Generation of the parametric model . 79

CONTENTS 3

3.9 Advanced connection models . 79
3.9.1 Screw models . 79
3.9.2 Physical point with rotations . 80

4 Toolbox Reference 81
fe2xf 82
fevisco 93
m visco, mvisco 3m 101
nasread 108
naswrite 113

Bibliography 119

Index 122

4 CONTENTS

1

Modeling viscoelastic
materials

Contents

1.1 Introduction . 6

1.2 Representing complex modulus . 6

1.2.1 Non parametric (tabular) representations 7

1.2.2 Simple rheological models . 9

1.2.3 High order rational models . 12

1.2.4 Fractional derivative models . 13

1.2.5 3D constitutive laws . 14

1.3 Environmental factors . 14

1.3.1 Influence of temperature . 15

1.3.2 Other environment factors . 18

1.4 Determining the complex modulus . 19

1.5 Conclusion . 20

6 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

1.1 Introduction

Linear viscoelasticity assumes [1] that stress is a function of strain history. This translates into the
existence of a relaxation function h(t) given by

σ(t) =

∫ ∞
0

ε(t− τ)h(τ)dτ (1.1)

Using Laplace transform, one sees that this hypothesis is equivalent to the existence of a complex
modulus Λ(s) (transform of h(t)) such that

σ(s) = Λ(s)ε(s) = (Λ′(s) + iΛ′′(s))ε(s) (1.2)

From a practical point of view, one can solve viscoelasticity problems as elasticity problems with a
complex modulus that depends on frequency. This property is known as the elastic/viscoelastic
equivalence principle [1].

For a strain tensor, the number of independent coefficients in Λ is identical to that in Hookes law
for an elastic material (for the same reasons of material invariance). For homogeneous and isotropic
materials, one thus considers a Young’s modulus and a Poisson coefficient that are complex and
frequency dependent.

The separate measurement of E(ω) et ν(ω) is however a significant experimental challenge [2] that
has no well established solution. Practice is thus to measure a compression E(ω) or a shear modulus
G(ω) and to assume a constant Poisson’s ratio, although this is known to be approximate.

Section 1.2 analyzes the main representations of complex moduli. Section 1.3 lists representations
used to account for the effect of environmental factors (temperature, pre-stress, ...). Domains of
applicability for different models are given at the end of the chapter.

For more details, Ref. [1] a detailed account of viscoelasticity theory. Refs [2, 3] present most
practical representations of viscoelastic behavior.

1.2 Representing complex modulus

Even though, viscoelastic constitutive laws are fully characterized by the measurement of a com-
plex modulus. As will be detailed in the next chapter, numerical solvers are often associated with
specific analytical representations of moduli. This section illustrates the main classes of modulus
representations.

1.2. REPRESENTING COMPLEX MODULUS 7

1.2.1 Non parametric (tabular) representations

At each frequency, the complex modulus describes an elliptical stress/strain relation. For ε =
Re(eiωt), one has σ(t) = Re(Es(1 + iη)eiωt) = Es(cosωt− η sinωt) as shown in figure 1.1. One calls,
storage modulus the real part of the complex modulus Es = Re(E) and loss factor the ratio of
the imaginary and real parts η = Im(E)/Re(E). The loss factor can also be computed as the ratio
of the power dissipated over a cycle, divided by 2π by the maximum strain energy

η(X,T) =
1

2π

∫ T
0 σ(X, t)ε̇(X, t)dt

1
2 maxT0 (σ(X, t)ε(X, t))

(1.3)

This definition in terms of dissipated energy extends the complex modulus definition to cases with
small non linearities. In such cases, the dissipation may be a structural rather than a material effect
and may depend on amplitude or history so that its use as a constitutive parameters may not be
relevant.

Figure 1.1: Elliptical stress/strain cycle

The raw measure of viscoelastic characteristics gives a complex modulus which typically has the
characteristics shown in figure 1.2.

8 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

Figure 1.2: Sample constitutive law for a viscoelastic material

The solution of frequency domain problems (frequency response functions, complex mode extraction)
requires the interpolation of measurements between frequency points (shown as a solid line) and the
extrapolation in unmeasured low and high frequency areas (shown in dotted lines in the figure).

For interpolation, a moving average, weighted for 2 or 3 experimental points, is easily implemented
and fast to compute. For extrapolation at low frequencies, one will assume a real asymptote E(0)
(i.e. η(0) = 0) from basic principles : since the relaxation function is real, its Fourier transform is
even and thus real at 0. For high frequencies, one uses a complex asymptote E∞, η∞. There are
mathematical limitations, on possible values for this asymptote but in practice, there are also other
physical dissipation mechanisms that are not represented by the viscoelastic law so that the real
objective is to avoid numerical pathologies when pushing the model outside its range of validity.

The main advantage of non parametric representations of constitutive laws is to allow fully general
accounting of behavior that are strongly dependent on frequency, temperature, pre-stress, ... More-
over, the direct use of experimental data avoids standard steps of selecting a representation and
identifying the associated parameters. Since good software to perform those steps is not widespread,
avoiding them is really useful.

Disadvantages are very few and really mostly linked to the extraction of complex modes and as
a consequence time response simulations using modal bases. And even these difficulties can be
circumvented.

1.2. REPRESENTING COMPLEX MODULUS 9

1.2.2 Simple rheological models

The classical approach in rheology is to represent the stress/strain relation as a series of springs and
viscous dashpots. Figure 1.3 shows the simplest models [3].

Figure 1.3: Material damping models with 2 or 3 parameters : (a) Maxwell’s model, (b) viscous
damping (Kelvin-Voigt’s model), (c) structural damping, (d) standard viscoelastic solid

Maxwell’s model is composed of a spring and a dashpot in series. Each element carries the same
load while strains are added. The stress / strain relation is, in the frequency domain, written as

ε =

(
1

E
+

1

Cs

)
=

(
Es

s+ E/C

)−1

σ (1.4)

where

τ =
C

E
(1.5)

is a settling time that is characteristic of the model and is associated to a pole at ω = −E/C = −1/τ .

The viscous model, called Kelvin Voigt Model, is composed of a spring and a dashpot in parallel.
Each element undergoes the same elongation but strains add. Damping is then represented by the
addition of strains proportional to deformation and deformation velocity. In the frequency domain
the modulus has the form

E(s) = E0(1 + βs) (1.6)

Structural damping, also called hysteretic damping, is introduced by considering a complex stiffness
that is frequency independent. The complex modulus is thus characterized by constant storage

10 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

moduli and loss factors

E(s) = E0(1 + jη) (1.7)

The standard viscoelastic solid has a constitutive law given by

σ(s) =

(
E0 +

(
1

E1
+

1

C1s

)−1
)
ε =

E0E1 + (E0 + E1)C1s

E1 + C1s
ε = E0

1 + s/z

1 + s/p
ε (1.8)

leading to a time domain representation

E1σ(t) + C1σ̇(t) = E0ε+ E1C1ε̇ (1.9)

Figure 1.4 shows the frequency domain properties of these models. Maxwell’s model is only valid in
the high frequency range since its static stiffness is zero. The viscous damping model is unrealistic
because the loss factor goes to infinity at high frequency (there deformation locking).

Figure 1.4: Complex modulus associated to standard models: (a) Maxwell’s model, (b) viscous
damping (Kelvin-Voigt’s model), (c) structural damping, (d) standard viscoelastic solid

The structural damping model approximates the modulus by a complex constant. Although it does
not represent accurately any viscoelastic material, such as the one shown in figure 1.2, it leads to a
good approximation when the global behavior of the structure is not very sensitive to the evolutions
of the complex modulus with frequency. This model is generally adapted for materials with load
damping (metals, concrete, ...).

The standard viscoelastic model has the main characteristics of real materials : low and high fre-
quency asymptotes, maximum dissipation at the point of highest slope of the real part of the modulus.

1.2. REPRESENTING COMPLEX MODULUS 11

Figure 1.5: Complex modulus associated to standard viscoelastic solid model

This model is characterized a nominal level E0 and two pairs of related quantities: a pole

p = E1/C1 = ωm

(
ηm +

√
1 + η2

m

)
, (1.10)

where the modulus flattens out, and a zero

z = (E0E1)/((E0 + E1)C1) =
ωm

ηm +
√

1 + η2
m

(1.11)

giving the inflexion point where the modulus starts to augment; or the maximum loss factor

ηm =
(p− z)
2
√
pz

=
1

2

E1√
E0(E0 + E1)

(1.12)

and the frequency where this maximum is reached (between the pole and the zero)

ωm =
√
pz =

E1

C1

√
E0

E0 + E1
(1.13)

The maximum loss factor is higher when the pole and zero are well separated and the low and high
frequency moduli differ. This is consistent with the fact that materials that dissipate well also have
storage moduli that are strongly frequency dependent.

Figure 1.6 illustrates problems encountered with three parameter models. The parameters of the
standard viscoelastic model where chosen to match the low and high frequency asymptote and the
frequency of the maximum in the loss factor. One clearly sees that the slope is not accurately
represented and more importantly that the loss factor maximum and evolution in frequency are
incorrect. These limitations have motivated the introduction of more complex models detailed in
the following sections.

12 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

Figure 1.6: E amplitude (—) and loss factor (- - -) of ISD112 (+) overlaid with a 3 parameter model

1.2.3 High order rational models

The first generalization is the introduction of higher order models in the form of rational fractions. All
classical representations of rational fractions have been considered in the literature. Thus, fractions
of high order polynomials, decompositions in products of first order polynomials giving poles and
zeros, sums of low order fractions

E(s) = E0

1 +
n∑
i=1

βi(s)
i

1 +
n∑
i=1

αi(s)i
= E∞

n∏
i=1

(s− zi)

n∏
i=1

(s− λi)
= E0 +

n∑
i=1

Eis

s+ Ei/Ci
(1.14)

are just a few of various equivalent representations.

1.2. REPRESENTING COMPLEX MODULUS 13

Figure 1.7: Examples of generalized damping models (a) Kelvin’s chain, (b) generalized Maxwell
model

Figure 1.7 shows two classical representations. Maxwell generalized model introduces a pole (λj =
Ej/Cj , associated to settling time τj = Cj/Ej) and high frequency stiffness Ej for each spring/dashpot
branch.

The physical meaning of each representation is identical. However, each representation may have
advantages when posing equations for implementation in a numerical solver. For example, sec-
tion 2.2.3 will discuss models using particular representations of the modulus of order 2 (so called
GHM models for Golla, Hughes, McTavish [4, 5]) and order 1 (so called ADF models for Anelastic
Displacement Field [6, 7, 8]). This section will also show how these models correspond to the
formalism of materials with internal states that are commonly used in non linear mechanics.

Rational fractions have a number of well known properties. In particular, the modulus slope at a
given frequency s = iω is directly characterized by the position of poles and zeros in the complex
plane (see Bode diagram building rules in any course in controls [9]). The modulus slopes found in
true materials are generally such that it is necessary to introduce at least one pole per decade to
accurately approximate experimental measurements (see [10] for a discussion of possible identification
strategies). This motivated the use of fractional derivatives described in the next section.

1.2.4 Fractional derivative models

The use of non integer fractions of s allows a frequency domain representation with an arbitrary
slope. A four parameter model is thus proposed in [11]

E(s) = Emax +
Emin − Emax
1 + (s/ω)α

(1.15)

14 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

where the high Emax and low Emin frequency moduli are readily determined and the ω and α
coefficients are used to match the frequency of the maximum loss factor and its value. Properties of
this model are detailed in [2].

One can of course use higher order fractional derivative models. To formulate constant matrix
models one is however bound to use rational exponents (see section 2.2.4).

The main interest of fractional derivative models is to allow fairly good approximations of realistic
material behavior with a low number of parameters. The main difficulty is that their time represen-
tation involves a convolution product. One will find in Ref. [12] an analysis of the thermomechanical
properties of fractional derivative models as well as a fairly complete bibliography.

1.2.5 3D constitutive laws

It is often necessary to split constitutive laws. This is done in fevisco MatSplit. For isotropic
materials the usual law

D =

E(1−ν)
(1+ν)(1−2ν)

 1 ν
1−ν

ν
1−ν

ν
1−ν 1 ν

1−ν
ν

1−ν
ν

1−ν 1

 0

0

 G 0 0
0 G 0
0 0 G

(1.16)

with at nominal G = E/(2(1 + ν)). But in reality the bulk modulus K = E./(3 ∗ (1 − 2ν)) is not
very damped and does not decrease notably with temperature while G is much more sensitive.

D = K

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+G

4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(1.17)

1.3 Environmental factors

For usual damping materials, the complex modulus depends not only of frequency but also of other
environmental factors such as temperature, prestress, etc. The following sections discuss these factors
and the representation in constitutive laws.

1.3. ENVIRONMENTAL FACTORS 15

1.3.1 Influence of temperature

Temperature is the environmental factor that has the most influence on viscoelastic material char-
acteristics [2]. At various temperatures, these materials typically have four different regions shown
in figure 1.8: glassy, transition, rubberlike and fluid. Depending on the considered material, the
operating temperature can be in any of the four regions. For polymer blends, each polymer can be
in a different region.

Figure 1.8: Evolution of complex modulus with temperature at a fixed frequency. Regions : (a)
vitrous, (b) transition, (c) rubberlike, (d) fluid.

In the first region, associated with low temperatures, the material in its glassy state is characterized
by a storage modulus that reaches its maximum value and has low variations with temperature. The
loss factor is very small and diminishes with temperature. Material deformations are then small.

The transition region is characterized by a modulus decreasing with temperature and a loss factor
peaking in the middle of the region. Typically the maximum corresponds to the point of maximum
slope for the storage modulus. The associated temperature is called transition temperature. Note
that this can be confusing since the transition temperature depends on the frequency used to generate
figure 1.8.

In the rubberlike region storage modulus and loss factor are both characterized by relatively small
values and low temperature dependence. The fourth region corresponds to a fluid state. This region

16 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

is rarely considered because of its inherent instability.

For damping applications, one typically uses viscoelastic materials in the transition region. This
choice is motivated by the fact that the loss factors presents a maximum in this area, thus allowing
an efficient use of the material damping properties.

Figure 1.9: Variations of ISD 112 modulus in the frequency / temperature domain

In the frequency / temperature domain, figure 1.9 illustrates the existing inverse relation of the
effects of temperature and frequency. Experimentally, one often finds that by shifting isotherm
curves along the frequency axis by a given factor αT , one often has good superposition.

This property motivates the introduction of the reduced frequency α(T)ω and a description of the
complex modulus under the form

E(ω, T) = Ê(α(T)ω) (1.18)

The validity of this representation is called the frequency temperature superposition principle [2, 13]
and the curve Ê is called a master curve.

Various authors have given thermodynamic justifications to the frequency temperature superposi-
tion principle. These are limited to unique polymers. For polymer blends, which have significant
advantages, it is not justified.

1.3. ENVIRONMENTAL FACTORS 17

Figure 1.10: Reduced frequency nomogram

The superposition principle is used to build a standard representation called nomogram which sim-
plifies the analysis of properties as a function of temperature T and frequency ω. The product ωαT
corresponds to an addition on a logarithmic scale. One thus defines true frequencies on the right
vertical axis, and isotherm lines allowing to read the reduced frequency graphically on the horizontal
axis. For a frequency ωj and a temperature Tk, one reads the nomogram in three step shown in
figure 1.10

• (1) one seeks the intersection P of the horizontal ωj line and the of sloped Tk line,

• (2) the abscissa of point P gives the reduced frequency ωjαT (Tk)),

• (3) the intersection of the vertical line at that reduced frequency with the storage modulus E
and loss factor η master curves gives their respective values at ωj , Tk.

Various parametric expression have been proposed to model the temperature shift factor αT . The

18 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

empirical equation of Williams-Landel-Ferry [14], called WLF equation,

Log(αT) =
−C1(T − T0)

C2 + T − T0
(1.19)

is often used. Various papers state that C1 = 17.4 et C2 = 51.6 are realistic values for many
materials with changing T0 but this claims seems mostly unfounded.

On should also cite the αT model based on Arrhenius equation used in thermodynamics to quantify
the relation between the rate of a chemical reaction and it’s temperature

Log(αT) =
Ea
R

(
1

T
− 1

T0

)
(1.20)

where T is the temperature in degree Kelvin, R = 8.314× 10−3kJmol−1K−1 is constant of perfect
gas and Ea corresponds to the activation energy of the reaction. This relation is less used than the
WLF equation or other models uniquely based on ∆T , but the reason is probably only linked to
easiness in the determination of parameters.

Figure 1.11 shows typical αT curves and their expression as a function of ∆T (difference between T
and a given reference temperature T0). One clearly sees that these curves mostly differ in their low
temperature behavior. In practical applications, one can usually adjust parameters of any law to be
appropriate. The solution preferred here is to simply interpolate between points of an αT table.

1.3.2 Other environment factors

Between the other environmental factors influencing the behavior, one essentially distinguishes non
linear effects (static and dynamic) and history effects (exposition to oil, high temperatures, vacuum,
...).

Non linear dynamic effects are very hard to characterize since high amplitude variations of the
induced strain are typically correlated with significant energy dissipation and thus temperature
changes. The effects of level and temperature changes are then coupled for materials of interest
which are typically in the transition region. Experimentally, such non linear studies are thus limited
to the rubber like region. The effects are similar to those of temperature although of smaller
magnitude.

Non linear static effects, that is effects linked to a static prestress assumed to be constant, are signif-
icant and easier to characterize. It is known to be essential when considering machinery suspensions
or constrained viscoelastic sandwiches where press-forming induced significant pre-stress [15].

History effects are generally associated with extreme solicitation that one seeks to avoid but whose
probability of occurrence is non zero.

1.4. DETERMINING THE COMPLEX MODULUS 19

Figure 1.11: Frequency shift factor αT and reduced frequency

As for temperature, one generally represent the effect of other environmental factors as shift fac-
tors [2], although the superposition hypothesis may not be as well verified [15].

1.4 Determining the complex modulus

A number of methods and a few standards [16], exist for the experimental determination of the
complex modulus. Only the main test categories will be listed here

• traction/compression tests under sinusoidal excitation are used to measure the properties of
materials that are sufficiently stiff to allow testing without combination of the material sample
with metallic components. With significant experimental precautions, this technique has also
been applied to films. Depending on the experimental setup, one will determine the complex
modulus directly on isofrequencies or isotherms.

20 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

• Oberst [17] and sandwich beams are used to determine the properties of a viscoelastic layer
glued onto a metallic beam. Stiff materials work in traction compression in a free layer, while
soft ones work in shear in a metal/visco/metal sandwich. Vibration analysis of the beam gives
resonance frequencies and associated damping ratio. By inverse analysis of analytical [18] or
numerical solutions, one determines the complex modulus at the resonances under the modal
damping assumption (see section 2.1.3). Using changes in the beam/plate dimensions and
temperatures, one can obtain a large number of points on the nomogram.

• shear tests allow the direct determination of the complex modulus of films between two rigid
surfaces. This test is more representative of material solicitation for sandwich structures. It is
the only one applicable to test the effect of pre-stress in sandwich structures.

Building a test rig with no perturbing modes being quite difficult, modulus characterization is always
performed on fairly narrow frequency bands. The frequency-temperature superposition hypothesis
is thus made to create master curves over a wide frequency band. The next possible step is the
determination of the coefficients of an analytical representation. Identification tools developed in
control theory (ARMA models, ...) are suited for rational fraction models. It is however difficult
to enforce a good reproduction of quantities that are typically judged as important : low and
high frequency moduli, maximum loss factor, ... In other case a non linear optimization is readily
implemented using optimization tools available in MATLAB.

1.5 Conclusion

For a given complex modulus, it is difficult to validate the fact that general thermodynamic principles
are verified. Ref. [12] gives an analysis based on the fact that each component of a generalized
maxwell model must verify the second principle of thermodynamics and thus be associated with
positive stiffness and damping coefficients.

In practice, the criteria that are used to judge the quality of a constitutive model are the accurate re-
production of experimental complex modulus measurements within the tested frequency/temperature
range, and the likelihood of extrapolations. Figure 1.12 illustrates the fact that with rational frac-
tions one can fairly easily satisfy the first objective (reproduce the modulus in a narrow band in
bold), but extrapolations can be difficult (thin lines are here of poor quality).

1.5. CONCLUSION 21

Figure 1.12: Complex modulus of the TA viscoelastic (—) and estimation with a 3 pole model (- -
-) whose frequencies are indicated as vertical lines

On the other hand, one should note that the determination of the complex modulus is often difficult
and that the frequency / temperature superposition principle is an hypothesis. It just happens to
be reasonably valid in many cases.

In conclusion, for the material stand-point, accurate representations are either tabulated (our point
of view is that this is actually the most practical representation), rational fractions with a sufficient
degree or fractional derivative models. The following chapters will address difficulties in using these
representations for modeling damped structures.

22 CHAPTER 1. MODELING VISCOELASTIC MATERIALS

2

Viscoelastic FEM models

Contents

2.1 Viscous and structural damping . 24

2.1.1 Properties of the damped 1 DOF oscillator 25

2.1.2 Real modes and modal damping . 27

2.1.3 Selection of modal damping coefficients . 30

2.2 Viscoelastic models . 31

2.2.1 Frequency domain representation with variable coefficients 31

2.2.2 State-space representations . 32

2.2.3 Second order models with internal states . 33

2.2.4 Fractional derivatives . 35

2.3 Spectral decomposition and reduced models 35

2.3.1 Complex modes of analytical models . 36

2.3.2 Complex mode eigenvalue problems with constant matrices 37

2.3.3 Model reduction methods . 39

2.3.4 Equivalent viscous damping . 40

2.3.5 Case of viscoelastic models . 42

2.4 Meshing of sandwich models . 42

2.4.1 Mesh convergence and non conformity . 46

2.5 Thermal considerations . 47

2.5.1 Thermal model . 47

2.5.2 Heat source due to viscoelastic behavior . 47

2.5.3 Cantilever plate example . 49

2.5.4 Thermo-elastic damping . 50

24 CHAPTER 2. VISCOELASTIC FEM MODELS

The design of viscoelastic treatments is typically composed of a series of steps which are outlined in
this section

• definition of dynamic objectives

• potential area localization by combination of technological constraints on placement and sen-
sitivity analysis on treatment potential

•

This chapter analyzes properties of models used to represent damped structures. In the case of linear
viscoelasticity these models have the general form

[Z(s, T)] {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(2.1)

where physical loads [b] {u(s)} are decomposed into vectors b, characterizing spatial localization, and
u(s), characterizing time/frequency responses and vector {y} represents outputs (physical quantities
to be predicted, assumed to depend linearly in DOFs q.

Section 2.1 details the case of models with viscous and structural damping. Although one saw in
the last chapter that these models did not allow a correct representation of material behavior over
a wide frequency band, they are more easily accessible and can be used to illustrate the difference
in needs when modeling vibration damping in a structure and dissipation in a material.

Section 2.2 details strategies that can be used to create models with realistic representation of
viscoelastic materials.

Section 2.3 deals with issues of spectral decompositions and model reduction which are central to
the analysis of the vibratory behavior of damped structures.

The objective of this chapter is to introduce equations used to solve viscoelastic problems. The next
chapter will focus on numerical techniques used for the resolution.

2.1 Viscous and structural damping

In this section one analyses the properties of classical models with viscous and structural damping
of the form

[
Ms2 + Cs+K + iD

]
N×N {q(s)}N×1 = [Z(s)] {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(2.2)

2.1. VISCOUS AND STRUCTURAL DAMPING 25

where matrices are assumed to be constant.

This type of models does not allow a correct representation of the local behavior of damping treat-
ments (constitutive laws detailed in the preceding chapter). At the level of a complete structure,
it is however often possible to represent the effect of various damping mechanisms by a viscous
or structural model. One then uses a global behavior model. It does not necessarily have a local
mechanical meaning, but this does not lower its usefulness.

The main results introduced in this section are

• properties of the damped oscillator;

• the conditions of validity of the modal damping assumption which leads to models where the
response is decomposed in a sum of independent oscillators;

• techniques used to estimate equivalent viscous damping models.

2.1.1 Properties of the damped 1 DOF oscillator

This section illustrates the properties of the single degree of freedom oscillator with a viscoelastic
stiffness shown in figure 2.1.

Figure 2.1: Oscillator with a viscoelastic stiffness

For a viscous damping K(s) = k + cs, the load to displacement transfer is given by

Hvisc(s) =
1

ms2 + cs+ k
=

1/m

(s− λ)(s− λ̄)
(2.3)

whose poles (root of the transfer denominator) λ are

λ = −ζωn ± iωd , ωd = ωn
√

1− ζ2

ωn =
√
k/m , ζ = c

2
√
km

(2.4)

26 CHAPTER 2. VISCOELASTIC FEM MODELS

For structural damping K(s) = k(1 + iη), the load to displacement transfer is given by

Hη(s) =
1

ms2 + k(1 + iη)
= Hvisc −

ikη − cs
(ms2 + cs+ k)(ms2 + k(1 + iη))

(2.5)

its pole with a positive imaginary part is identical to that of the viscous model for

η = 2ζ (2.6)

which leads to a difference Hη − Hvisc that is zero at resonance ωn. The pole with a negative
imaginary part is unstable (positive real part) which is a classical limitation of the structural damping
model.

Damping is also defined by a quality factor which can be measured in a shaking table as the ratio
between the acceleration of the mass at resonance and the acceleration of its base. The value is
approximately

Q =
1

2ζ
(2.7)

Under the assumption that the strain energy is sufficiently uniform to be represented as a spring,
Q−1 the inverse of the quality factor corresponds to a loss factor.

For a damper following the 3 parameter law of a standard viscoelastic solid (1.8), the system has a
pair of complex poles λ, λ̄ and one real pole β

H(s) =
1

ms2 + k 1+s/z
1+s/p

=
1 + s1+2ζω/β

β

m(s2 + 2ζωs+ ω2)(1 + s
β)

(2.8)

and the model characteristics depend on those poles as follows

p =
β

1 + 2ζω
β

z =
β

1 + 2ζβ
ω

k = m
ω2

1 + 2ζω
β

(2.9)

For low damping of the conjugate pair of poles (that is ζ � 1) and β and ω in the same frequency
range, p and z are close which leads to a small maximum loss factor and a response that is very
similar to that of the oscillator with viscous damping (2.3).

Figure 2.2 shows that for viscous, structural and viscoelastic dynamic stiffness models for the oscilla-
tor (c), the dynamic flexibilities (a-b) are almost exactly overlaid. This is linked to the fact that the
real parts of the dynamic stiffness coincide naturally since they are they not (viscous or structural)
or little (viscoelastic) influenced by the damping model and the imaginary parts (d) are equal at
resonance.

This equivalence principle is the basis for the Modal Strain Energy (MSE) method that will be
detailed in section 2.1.3.

2.1. VISCOUS AND STRUCTURAL DAMPING 27

Figure 2.2: Low sensitivity of the dynamic flexibility to the damping model (× viscous, o structural,
+ standard viscoelastic)

2.1.2 Real modes and modal damping

For an elastic model, normal modes are solution of the eigenvalue problem (see ref [19] for more
details)

− [M] {φj}ω2
j + [K]N×N {φj}N×1 = {0}N×1 (2.10)

associated with elastic properties (sometimes called the underlying conservative problem). They
verify two orthogonality conditions in mass

{φj}T [M] [φk] =
[
\µjδjk\

]
(2.11)

and stiffness

{φj}T [M] [φk] =
[
\µjω

2
j δjk\

]
(2.12)

There are different standard scaling for normal modes, and one will assumed that they are scale
so as to obtain µj = 1 which greatly simplifies equation writing. The other standard scaling, often

28 CHAPTER 2. VISCOELASTIC FEM MODELS

used in experimental modal analysis, sets one DOF (node, direction) of φj to unity, µj is then called
the generalized mass at this DOF.

The basis of normal modes is classically used to build reduced model by congruent transforma-
tion (2.55) with {q} = [T] {qr} = [φ1...φNM] {qr}. In the resulting coordinates, called principal
coordinates, the mass and stiffness matrices are diagonal ((2.11)-(2.12) conditions). But this is not
the case for the viscous and hysteretic damping matrices T TCT and T TDT .

The modal damping assumption (also called Basile’s hypothesis in French terminology) consists
in an approximation of the response where the off-diagonal terms of the damping matrices in principal
coordinates are neglected. In practice, one even further restricts the model to viscous damping in
principal coordinates since the result can then be integrated in the time domain. On thus has[

s2 [I] + s
[
\2ζjωj\

]
+
[
\ω2

j \

]]
{p} (s) = [φ]T {F (s)}+ {Fd} (2.13)

where the approximation is linked to the fact of neglecting coupling terms described by

{Fd} =
[
s
[
\2ζjωj\

]
−
[
φT
]

[Cs+D] [φ]
]
{p} (s) (2.14)

Damping is exactly modal (Fd = 0) if the matrices C and/or D are linear combinations of products
of M and K [20]

[C] =
∑

αkl [M]k [K]l (2.15)

Rayleigh damping [21], typically called proportional damping, where

[C] = α [M] + β [K] , (2.16)

is thus often used. This is a behavior model, that can be easily adjust to predict correct damping
levels for two modes since

[ζj] = α
1

2ωj
+ β

ωj
2

(2.17)

Over a wide frequency band, it is however very unrealistic since 1
2ωj

gives high damping ratio for

low frequencies ωj and
ωj
2 for high frequencies. Rayleigh damping is thus really inappropriate to

accurate damping studies.

2.1. VISCOUS AND STRUCTURAL DAMPING 29

When one starts from a local description of dissipation in the materials or interfaces, modal damping
is an approximation whose validity needs to be understood. To do so, one should analyze whether
the coupling force (2.14) can be neglected. To validate the domain of validity of this hypothesis, one
considers a two DOF system [22, 23]

([
1 0
0 1

]
s2 +

[
γ11 γ12

γ21 γ22

]
s+

[
ω2

1 0
0 ω2

2

]){
p1

p2

}
=

[
b1
b2

]
{u(s)} (2.18)

from which one determines an expression of the response of mode 1 given by

p1 = (1 + e1)−1 b1u(
s2 + γ11s+ ω2

1

) + e2 (2.19)

with

e1 =
γ12γ21s

2

(s2 + γ11s+ ω2
1)(s2 + γ22s+ ω2

2)
(2.20)

and

e2 =
γ12sb2u

(s2 + γ11s+ ω2
1)(s2 + γ22s+ ω2

2)
(2.21)

The Γ matrix being positive definite, one has γ12γ21/(γ11γ22) < 1. Thus, the e1 term can be close to
1 and coupling be significant, if and only if both factors in the denominator are small simultaneously,
that is

min(ζ1ω1, ζ2ω2)/|ω1 − ω2| � 1 (2.22)

Similarly, the e2 ter, is only significant in special cases of closely spaced modes or such that b1 � b2.

In practice, the validity of the modal damping assumption is thus linked to the frequency separation
criterion (2.22) which is more easily verified for small damping levels.

In cases where modal damping is not a good approximation (that is criterion (2.22) is not veri-
fied), a generalization of the modal damping model is the use of a viscous damping matrix that is
non diagonal in principal coordinates. One the generally talks of non proportional damping since
condition (2.15) is not verified. The use of non proportionally damped models will be discussed in
section 2.3.4.

For groups of modes that do no verify condition (2.22), one can still use an assumption of modal
damping by block [24] where the off diagonal terms of φjCφk are considered for j and k in the same
group of modes. Between modes of different groups, the reasoning developed above remains valid
and the error induced by neglecting damping coupling terms is small.

30 CHAPTER 2. VISCOELASTIC FEM MODELS

2.1.3 Selection of modal damping coefficients

Modal Strain Energy method

The Modal Strain Energy method (MSE [25]) is a classical approximation base on the choice of
an equivalent viscous damping coefficient chosen by evaluating the loss factor for a cycle of forced
response along a particular real mode shape. As we saw for the particular case of section 2.1.1, this
is an appropriate choice since it leads to a near perfect superposition of the transfer function for an
isolated mode.

A general approach, that can also be considered for a weakly non linear system, is to compute the ra-
tio, called loss factor, of energy dissipated over an enforced motion cycle qj(t) = {φj} cos(ωt)divided
by 2π times the maximum elastic energy associated to that deformation

ηj(ω) =

∫
Ω

∫ 2π/ω
0 σ(qj) : ε̇(qj)dt

π {φj}T [K] {φj}
(2.23)

and to impose at each resonance frequency ωj of the elastic problem, the equality of this loss factor
with that of the model with modal damping (2.13)

ζj =
ηj(ωj)

2
(2.24)

For a model where a viscous and/or structural damping model is associated with each compo-
nent/element (m), the loss factor of mode j is thus obtained as a weighted sum of loss factors in
each component

ηj =

∑
(m) {φj}

T [D](m) {φj}+ ωj {φj}T [C](m) {φj}∑
(m) {φj}

T [K](m) {φj}
(2.25)

For non linearities, there exists classical results of equivalent damping for dry friction [26, 23],
dissipation associated with drag in a viscous fluid [26], a plastic spring [23], or small impacts [23].

While the modal strain energy method is typically associated with the modal damping assumption, it
can be easily extended to account for frequency dependent non diagonal (one says non-proportional)
damping matrices. Thus using {q} = [T] {qr} = [φ1...φNM] {qr}, leads to a model of the form[

s2 [I] + [φ]T [Im(Z(s))] [φ] +
[
\ω2

j \

]]
{p} (s) = [φ]T {F (s)}+ {Fd} (2.26)

This is typically referred to as a modal solution. In NASTRAN for example, you will find modal
complex eigenvalue (SOL110), frequency response (SOL111), transient (SOL112).

2.2. VISCOELASTIC MODELS 31

For more general viscoelastic models, it is always possible to define pseudo normal modes solutions
of [

−ω2
j [M] + Re (K(ωj))

] {
φ̃j
}

= {0} (2.27)

to normalize the using a condition similar to (2.45) and to define an equivalent damping ratio at
resonance by

ζ(ω̃j) =
1

2

{
φ̃j
}T

[Im(K(ωj))]
{
φ̃j
}

{
φ̃j
}T

[Re(K(ω̃j))]
{
φ̃j
} (2.28)

Experimental and design damping ratio

The other classical approach is to use modal damping ratio determined experimentally. Identification
techniques of experimental modal analysis [27, 28] give methods to determine these ratios.

For correlated modes (when a one to one match between test and analysis is established), one thus
uses a damping ratio ζjTest while typically preserving the analysis frequency.

For uncorrelated modes, one uses values determined as design criteria. ζ = 10−3 for a pure metallic
component, 10−2 for an assembled metallic structure, a few percent in the medium frequency range
or a civil engineering structure. Each industry typically has rules for how to set these values (for
example [29] for nuclear plants).

2.2 Viscoelastic models

This section details models of structures used to account more precisely for the constitutive behavior
of various viscoelastic materials.

For frequency response computations, section section 2.2.1 shows how the complex dynamic stiffness
is built as a weighted sum of constant matrices associated with the various materials.

For eigenvalue computations or time responses on the full model, the introduction of state space
models (section 2.2.2) or second order models with internal states (section 2.2.3) allow constant
matrix computations. Such formulations could be used for frequency domain solutions but they
are higher order and the increase in DOF count limits their usefulness. For the case of fractional
derivative models (section 2.2.4), only modeshape computations are accessible.

2.2.1 Frequency domain representation with variable coefficients

32 CHAPTER 2. VISCOELASTIC FEM MODELS

For a structure composed of elastic and viscoelastic materials frequency domain computations only
require the knowledge of the complex modulus Ei(s, T, σ0) for each material. By using the fact that
stiffness matrices depend linearly on the constitutive law coefficients, one can represent the dynamic
stiffness of a viscoelastic model as a linear combination of constant matrices (for independent complex
moduli in the same material their may be more than one matrix associated to a given material)

[Z(Ei, s)] =

[
Ms2 +Ke + iKei + sC +

∑
i

Ei(s, T, σ0)
Kvi(E0)

E0

]
(2.29)

This representation is the basis for the development of solvers adapted for structures with viscoelastic
materials.

For frequency domain computations, it is rather inefficient to reassemble Z at each operating point
Ei, s. Two solutions can be implemented easily. On can store the various M,Ke,Kei, C,Kvi matrices
and evaluate the weighted sum (2.29) at each operating point, or store element matrices and
reassemble with a weighing coefficient associated with the material property of each element.

2.2.2 State-space representations

One discusses here state space representations associated with analytical representations of the
complex modulus discussed in section 1.2.3.

State space models are first order differential equations, assumed here with constant coefficients,
with the standard form

{ẋ (t)} = [A] {x (t)}+ [B] {u (t)}
{y (t)} = [C] {x (t)}+ [D] {u (t)} (2.30)

The matrices are called : A transfer, B input, C observation and D direct feed-trough. The first
equation is the evolution equation while the second is called the observation equation.

The usual technique for time integration of mechanical models is to define a state vector combining
displacements and velocities, leading to a model of the form

{
q̇
q̈

}
=

[
0 I

−M−1K −M−1C

]{
q
q̇

}
+

[
0

M−1b

]
{u(t)}

{y(t)} = [cφ 0]

{
q
q̇

} (2.31)

This model is rarely used as such because M is often singular or, for a consistent mass, leads to
matrices M−1K and M−1C that are full. When using generalized coordinates, one can however

2.2. VISCOELASTIC MODELS 33

impose a unit mass matrix and this easily use the model form. Some authors [30] also prefer this
form to define eigenvalue problems but never build the matrices explicitly so that the full matrices
are not built.

The other standard representation is the generalized state-space model[
C M
M 0

]{
q̇
q̈

}
+

[
K 0
0 −M

]{
q
q̇

}
=

[
b
0

]
{u}

{y} =
[
c 0

]{ q
q̇

} (2.32)

which preserves symmetry and allow the definition of simple orthogonality conditions on complex
modes.

One will now introduced generalized state space models for the case of viscoelastic constitutive laws.
A rational fraction, that does not go to infinity at high frequencies and having distinct poles, can
be represented by a sum of first order rational fractions

E(s) = E∞ −

 n∑
j=1

Ej
s+ ωj

 (2.33)

By introducing the intermediate (relaxation) field qvj = − Ej
(s+ωj)

q, one can rewrite (2.29) as a state-

space model of higher size

M 0 . . . 0
0 M 0
...

. . .
...

0 . . . 0 M

 s+

0 −M 0 0 0
Ke+E∞

∑
Kvi 0 Kv1 . . . Kvn

E1M 0 ω1M . . . 0
. . .
EnM 0 0 . . . ωnM

q
sq
qv1
...
qvn

=

0
F
0
0

(2.34)

One saw in the previous chapter that real constitutive laws could be represented with rational
fractions of relatively high order. This representation is practical only for reduced models (MR =
T TMT , ...) where the strategy for the selection of reduction basis T will be detailed in chapter ??.

2.2.3 Second order models with internal states

34 CHAPTER 2. VISCOELASTIC FEM MODELS

If the state space form is more compact a priori, the operators available in a given FEM code may
make its manipulation more difficult. A classical solution is thus to build a second order model of
the form usual in mechanics and thus easily manipulated with a mechanically oriented code. The
implementation of internal states, however requires the definition of multiple fields at the same node
which is not easily implemented in all software packages.

The Anelastic Displacement field [31]) method considers a modulus representation of the form (2.33),
which leads to a model of the forms2

 M 0 . . .
0 0
...

. . .

+ s

0 0 . . . 0

0 Kv1
E1

...
. . .

...

0 0 . . . Kvn
En

+

Ke−E∞

∑
Kvi Kv1 . . . Kvn

Kv1
ω1
E1
Kv1 . . . 0

...
...

. . . 0
0 0 . . . ωn

En
Kvn

q
qv1
...
qvn

 =

{
F
0

} (2.35)

The absence of a mass associated with internal states qvi can lead to problems with certain solvers.
An alternative is the GHM [32] method which represents the modulus as

E(s) = E∞

1 +
n∑
j=1

αj
s2 + 2ζjωjs+ ω2

j

 (2.36)

and defines internal states by qvj =
αj

s2+2ζjωjs+ω2
j
q. One will note that not all rational fractions can

be represented in the form (2.36).

The introduction of qvi fields in the previous section corresponds to the classical thermodynamics the-
ory of materials with augmented potential including internal states. The first row in equation (2.35)
indeed corresponds to the representation of stress in viscoelastic materials in the form

σ = E∞ε(q) + E∞
∑
i

ε(qvi) (2.37)

In practice, the qv are only non zero for viscoelastic elements. The direct use of matrices assembled
following (2.35) must thus be done with solvers capable of eliminating unused DOFs. When using
reduced models, the problem does not normally occur since reduced basis vectors are typically non
zero over the whole structure and thus lead to none zero internal states.

2.3. SPECTRAL DECOMPOSITION AND REDUCED MODELS 35

In the time domain, this formalism is more easily dealt with because the time evolution of internal
states can easily be computed by time integration of the relation between the qvi and q. For a model
of form (2.33), the evolution of the internal state is thus given by

{q̇vi} = −ωj {qvi} − Ej {q} (2.38)

which can be easily integrated (this approach is used in ABAQUS [33] for example). This formalism
corresponds to the separate treatment of bloc rows in (2.34) or (2.35) which is simple in the time
domain but leads to a non-linear problem in the frequency domain, unless operators are defined
implicitly as in Ref [30].

2.2.4 Fractional derivatives

The internal state formalism can also be used to represent fractional derivative constitutive laws if
one uses non integer but rational derivatives. For a common denominator p, one will use a modulus
of the form

E(s) = Emax −
p∑

k=1

Ek
sk/p + ωk

(2.39)

and build a state space model of the form

{x(s)} s1/p = [A] {x(s)}+ [B] {u(s)} (2.40)

where the state vector will combine fractional derivatives of the displacement sk/pq where k = 1 :
2p− 1 and of the internal state qvk = − Ek

(sk/p+ωk)
q (see [34] for example).

In practice, the number of blocs in the state vector being proportional to p, constant matrix rep-
resentations are thus limited to small values of p. This limits practical uses of fractional derivative
models to frequency domain response and non-linear eigenvalue computations (see section 2.3.1).

2.3 Spectral decomposition and reduced models

For an input [b] {u(s)} characterized by the frequency domain characteristics of u(s) and spatial
content of b, component mode synthesis and substructuring methods provide approximations of the
solution of problems (2.2), (2.34), or (2.35).

For damped problems, one should distinguish

• exact spectral decompositions using complex modes as treated in sections 2.3.1 and 2.3.2;

36 CHAPTER 2. VISCOELASTIC FEM MODELS

• model reduction methods which only seek to approximate the transfer spectrum by projecting
the model on bases built using solutions of problems that are simpler to solve than the complex
eigenvalue problem. These approaches are detailed in sections 2.3.3, 2.3.4 and 2.3.5.

2.3.1 Complex modes of analytical models

All the problems that where introduced earlier can, in the frequency domain, be represented as
frequency response computations of the form

{y(s)} = [H(s)] {u(s)} = [c] {q(s)} = [c] [Z(s)]−1 [b] {u(s)} (2.41)

which involve the inverse of the dynamic stiffness Z(s).

In the very general case where complex moduli are supposed to be analytic functions in the complex
plane (locally regular), the dynamic stiffness Z(s) is also an analytic function. Observation and
input matrices c and b being constant, the poles (i.e. singularities) of H(s) correspond to non zero
solutions of

[Z(λj)] {ψjD} = {0} and {ψjG}T [Z(λj)] = {0} (2.42)

which defines the generalized non linear eigenvalue problem associated with a viscoelastic model.

Near a given pole, analytic functions have a unique Laurent’s development

f(z) =
+∞∑

k=−∞

ak
(s− λ)k

avec ak =
1

2πi

∫
γ
f(s)(s− λ)k+1ds (2.43)

where γ is a arbitrary closed direct contour of the singularity λ.

As a result, near an isolated pole λj one has

[Z(s)]−1 =
{ψjD} {ψjG}T

αj(s− λj)
+O(1) (2.44)

where the normalization coefficient αj depends on the choice of a norm when solving (2.42) and is
determined by

αj = {ψjG}T
[
∂ [Z(s)]

∂s

]
{ψjD} (2.45)

To simplify writing, it is desirable to use αj = 1 which si the usual scaling for constant matrix
eigenvalue problems described in the next section.

Having determined the set of poles in a given frequency band, having normalized the associated
modes so that αj = 1, one obtains a first order development in s

2.3. SPECTRAL DECOMPOSITION AND REDUCED MODELS 37

H(s) = [c] [Z(s)]−1 [b] =
∑
j

s

λj

{cψjD}
{
ψTjGb

}
s− λj

+ [c] [Z(0)]−1 [b] (2.46)

where the [c] [Z(0)]−1 [b] terms correspond to the exact static response to loads associated with
the input shape matrix b. This static correction term is well known in component mode synthesis
applications and is analyzed in section 2.3.3.

It is often useful to consider a representation using residual flexibility

H(s) = [c] [Z(s)]−1 [b] =
2NM∑
j=1

{cψjD}
{
ψTjGb

}
s− λj

+

[c] [Z(0)]−1 [b]−
2NM∑
j=1

cψjDψ
T
jGb

−λj

 (2.47)

2.3.2 Complex mode eigenvalue problems with constant matrices

The solution of the non linear eigenvalue problem (2.42) is difficult (see section 2.3.1). Solution
algorithms are thus greatly simplified by restating the problem as a classical first order eigenvalue
problem with constant matrices.

For models with viscous and structural damping (2.2) or viscoelastic models of form (2.35), on thus
generally solves the eigenvalue problem associated with (2.32), that is([

C M
M 0

]
λj +

[
K 0
0 −M

])
{θj} = {0} (2.48)

Because of the block form of this problem, one can show that

{θj} =

{
ψj
ψjλj

}
(2.49)

and one thus gives the name complex mode both to θj and ψj .

The existence of 2N eigenvectors that diagonalize the matrices of (2.48) is equivalent to the verifi-
cation of two orthonormality conditions

[θ]T
[
C M
M 0

]
[θ] = ψTCψ + ΛψTMψ + ψTMψΛ =

[
\I\
]

2N

[θ]T
[
K 0
0 −M

]
[θ] = ψTKψ − ΛψTMψΛ = −

[
\Λ\

]
2N

(2.50)

38 CHAPTER 2. VISCOELASTIC FEM MODELS

For a model represented in is state space form, such as (2.34), one solves the left and right eigenvalue
problems

([E]λj + [A]) {θjD} = {0} et {θjG}T ([E]λj + [A]) = {0} (2.51)

and uses standard orthonormality conditions

{ψjG} [E] {θkD} = δjk et {ψjG} [A] {θkD} = −λjδjk (2.52)

In the complex plane, one should distinguish complex poles associated with vibration modes and
real poles which can be related with a damping ratio above 1 (supercritical damping that is not
common) or to material relaxation (be linked to poles of the complex modulus). To understand this
distinction one considers the viscoelastic oscillator (2.9). The viscoelastic behavior leads to one real
pole β, whereas supercritical damping corresponds to ζ > 1 and leads to two real poles

λ = −ζω ± ω
√
ζ2 − 1 (2.53)

In a viscoelastic computation where the constitutive law contains real poles the root locus of the
solution is similar to that shown in figure 2.3. One must thus distinguish the classical spectrum of
vibration modes and the real poles associated with material relaxation

Figure 2.3: Poles of a viscoelastic beam in traction

It is important to note that the number of real poles is directly associated with the number of DOFs
in the internal states qv. The number of these poles will the increase with mesh refinement. In
practice, one thus cannot expect to compute the real poles and associated modes in the area of
relaxation poles. This selection of convergence area is the aspect that needs to be accounted for in
the development of partial eigenvalue solvers for damped problems.

A second consequence of the increase in the number of real poles is the potential impossibility to
compute modes with supercritical damping. The author’s experience is that this limitation is mostly
theoretical since in practice modes with supercritical damping are rare.

2.3. SPECTRAL DECOMPOSITION AND REDUCED MODELS 39

The complex modulus, being the Fourier transform of a real valued relaxation function, should be
symmetric in frequency (E(−ω) = Ē(ω)). For a modulus representation that does not verify this
hypothesis, as is the case of structural damping, only poles with positive imaginary parts have a
meaning. For response synthesis, one will thus take the conjugates λ̄j , ψ̄j of modes computed with
positive imaginary parts.

The computation of complex modes can be used to approach transfer functions using the develop-
ments (2.44) and (2.46). Orthogonality conditions given above correspond to the αj = 1 normaliza-
tion.

2.3.3 Model reduction methods

To simulate the dynamic response it is not useful and rarely possible from a numerical cost standpoint
to use the full model (2.2) for direct time simulations (see section ??). Model reduction methods
(modal analysis, substructuring, component mode synthesis, ...) seek an approximate solution within
a restricted subspace. One thus assumes

{q}N×1 = [T]N×NR {qR}NR×1 (2.54)

and seek solution of (2.1) whose projection on the one the dual subspace T T is zero (this congruent
transformation corresponds to a Ritz-Galerkin analysis). Transfer functions are the approximated
by

[H(s)] = [c] (Z(s))−1 [b] ≈ [cT]
[
T TZ(s)T

]−1 [
T T b

]
(2.55)

One can note that for a non-singular transformation T (when {q} = [T] {qR} is bijective) the input
u / output y relation is preserved. One says that the transfer functions are objective quantities (they
are physical quantities that are uniquely defined) while DOFs q are generally not objective.

Classical bases used for model reduction combine modes and static responses to characteristic
loads [35]. One distinguishes

• bases containing free modes and static responses to applied loads {b}

[T] =

[φ1 . . . φNM]

[K]−1 [b]−
NR∑
j=1

[c] {φj} {φj}T [b]

ω2
j

 (2.56)

For component mode synthesis (component model reduction to prior to a coupled system
prediction), free modes have been used by [36], MacNeal [37], and many others.

40 CHAPTER 2. VISCOELASTIC FEM MODELS

• bases containing static displacements associated with displacement enforced on an interface
and fixed interface modes

[T] =

[[
0

φ1:NM,c

] [
I

K−1
cc Kci

]]
(2.57)

For CMS, the use of static terms only is called Guyan condensation [38]. Adding fixed interface
modes leads to the Craig Bampton method [39].

• damped modes can be considered as elastic models with an external damping load. Static
correction for the effects of damping loads can then be incorporated. The first order correction
proposed in [40] (see also [41])

[T] =
[
[T0]

[
[K]−1

0 [Kvi [φ1:NM]]
]]

(2.58)

• multi-model reduction where modal bases for multiple design points are considered. In partic-
ular, the typical approach used by fe2xf Build is to combine low and high modulus compu-
tations.

2.3.4 Equivalent viscous damping

Section 2.1.2 showed that the modal damping assumption was justified under the hypothesis of modal
separation (2.22). When dealing with a real basis, it is often possible to compute an equivalent
viscous damping model approximating the damped response with good accuracy.

To build this equivalence, one distinguishes in reduction bases (2.56), (2.57), or other, blocs Tm
associated with modes whose resonance is within the frequency band of interest and Tr associated
with residual flexibility terms. As shown in figure 2.4, one is interested in the modal contribution of
the first while for the others only the asymptotic contribution counts.

2.3. SPECTRAL DECOMPOSITION AND REDUCED MODELS 41

Figure 2.4: Transfer function decomposition into modal contributions and residual terms

For a real basis reduction, one is thus interested in an approximation of the form

[H(s)] ≈ [cT]

[
T TmZ(s)Tm T TmZ(s)Tr
T Tr Z(s)Tm T Tr Z(s)Tr

]−1 [
T T b

]
(2.59)

The objective in distinguishing Tm and Tr is to guarantee that T Tr Z(s)Tr does not present singular-
ities within the band of interest (it represents residual flexibility not resonances).

To validate this hypotheses, one defines a reference elastic problem characterized by a stiffness K0

(one will use K0 = Re(Z(ω0)) + Mω2
0 avec ω0 with typically better results for a higher frequency

value).

By computing modes in a subspace generated by Tr of the representative elastic problem[
T Tr K0Tr − ω2

jrT
T
r MTr

]
φjr = 0 (2.60)

one can verify this uncoupling: if ω1r is within the band of interest the decoupling is not verified.

One can always choose bases Tm and Tr so as to diagonalize the reference problem. Furthermore,
by writing ∆Z(s) = Z(s)−K − s2M , the transfer function is approximated by

[H(s)] ≈ [cT]

 [\s2 + ωjm\

]
+ T Tm∆Z(s)Tm T TmZ(s)Tr

T Tr Z(s)Tm
[
\s2 + ωjr\

]
+ T Tr ∆Z(s)Tr

−1 [
T T b

]
(2.61)

The Modal Strain Energy method (MSE) with damping ratio given by (2.28), corresponds to the
following approximation

T Tm∆Z(s)Tm ≈ s [Γ] = s
[
\2ζjωj\

]
(2.62)

42 CHAPTER 2. VISCOELASTIC FEM MODELS

One can easily generalize this approximation by building an equivalent viscous damping matrix by
enforcing (

T Tm∆Z(iω)Tm
)
jk

= iωΓjk (2.63)

for a characteristic frequency ωjr for diagonal terms (j = k) (ωjr + ωkr)/2 otherwise. For a viscous
damping model, it is a simple projection (computation of T TmCTm). For a structural damping model,
there is a degree of approximation.

The validity of this approximation is discussed in [42] where it is shown that building the equivalence
in generalized coordinates and using term by term characteristic frequencies is efficient.

For coupling terms T TmZ(s)Tr, damping only has low influence (see the discussion on non proportional
damping in section 2.1.2) and can thus be neglected.

For residual terms T Tr ∆Z(s)Tr damping can be neglected for frequency analyses. For transient
analyses, the presence of high frequency undamped modes (linked to the ωjr) induces non physical
oscillations since these modes are introduced to approximate low frequency contributions and not
high frequency resonances. It is thus good practice to introduce a significant modal damping for
residual modes. For example one uses ζ = 1/

√
(2), which leads to assume

T Tr ∆Z(iω)Tr ≈ s
[
\√2ωjr\

]
(2.64)

2.3.5 Case of viscoelastic models

The reduction is also applicable for viscoelastic models detailed in section 2.2. Indeed all matrices
used in the formulation of the dynamic stiffness (2.29) can be projected. State-space or second order
representations can be generated by replacing each matrix by its reduced version M by T TMT , etc.
This reduction form will be used for eigenvalue solvers discussed in section ?? .

The equivalent viscous damping model building strategy detailed in the previous section cannot be
generalized since the real part of T Tm∆Z(s)Tm undergoes significant variations as the storage modulus
changes with frequency. In other terms, the ωjm associated with K0 differ, possibly significantly, for

frequencies of the non linear eigenvalue problem
[
Re (K(ωj))− ω2

jM
]
{φj} = 0. For modal synthesis

or transient response computations, one will thus prefer representations associated with the spectral
decomposition (2.47) as detailed in section section ??.

2.4 Meshing of sandwich models

2.4. MESHING OF SANDWICH MODELS 43

Two main strategies have been considered to model sandwich structures: building higher order shell
models [43] or connecting multiple elements. The main problem with the higher order element
approach is that developing good shell elements is very difficult so that most developments for
sandwiches will not perform as well as state of the art shell elements. The multiple element strategy
is also the only available for immediate implementation into industrial FEM software.

To properly account for shear effects in the viscoelastic layer, the offsets between the neutral fiber and
the shell surface are most of the time essential. Rather than defining offsets for shell elements [44],
rigid links between the shell nodes and the volume element are used here as shown in figure 2.5.
Although this generates additional nodes (4 node layers for a single constrained layer model), this
strategy accommodates all possible layer configurations. During resolution, the model is smaller
since all viscoelastic volume nodes are constrained.

Figure 2.5: Shell/volume/shell model for sand-
wiches

Figure 2.6: Problems with thickness definitions
in shells with significant curvature

Automated layer mesh generation from a selected area of a nominal shell model is a basic need
(supported by the fevisco MakeSandwich commands). Figure 2.6 illustrates the fact that for curved
shells, the use of flat elements generates a distinction between layer thicknesses along the element
normal hei or along the normal at nodes hni . This distinction is important for relatively coarse meshes
of press formed parts (as the floor panel of figure ??). Advanced options meshing options, let you
preserve thickness either at element center or nodes and possibly control the normal map used as a
meshing support.

For stiff layers, shells are preferred over volumes, because volume element formulations are sensitive
to shear locking when considering high aspect ratio (dimensions of the element large compared to
thickness).

For soft layers, the use of a volume element both necessary, because shell elements will typically
not correctly represent high shear through the thickness, and acceptable, because almost all their
energy is associated with shear so that they will not lock in bending [40]. Note that shear corrections
used in some FEM codes to allow bending representation with volumes may have to be turned off

44 CHAPTER 2. VISCOELASTIC FEM MODELS

to obtain appropriate results. Finally there are doubts on how to properly model the through the
layer compression stiffness of a very thin viscoelastic layer (this can have significant effects on curved
layers).

The demo basic sandwich generates curves for the validation of shell/volume/shell model used to
represent constrained layer treatments as first discussed in [40]. The idea is to vary the properties
of a central volume layer between a very soft modulus and the skin modulus.

For a very soft value, figure 2.7 shows convergence to the asymptotic value of a single skin plate. For
a modulus of the viscoelastic core equal to that of the skins, one should converge to the frequency
of a plate model with thickness equal to the sum of skins + viscoelastic core. Figure 2.7 shows that
the high modulus asymptote is slightly higher for the shell / volume / shell model. This is due to
shear locking in the very thin volume layer (well known and documented problem that low order
volumes cannot represent bending properly). This difficulty can be limited by using volume element
with shear locking protection. The figure also shows that damping is optimal somewhere between
the low and high modulus values.

Figure 2.7: Constrained layer model validity.

Figure 2.8 illustrates the validity of a shell/volume model as compared to a single shell based
on composite shell theory. Figure ?? illustrates that the results are nearly identical, provided that
volume elements with proper shear locking protection are used. For a standard isoparametric volume,
a shell/volume model tends to be be to stiff (shear locking associated with bending).

2.4. MESHING OF SANDWICH MODELS 45

Figure 2.8: Free layer model validity.

The element degree does not seem critical to obtain accurate predictions of the response. The use
of multiple elements through the viscoelastic layers has also been considered by some authors but
the motivation for doing so is not understood.

For press formed sandwiches, there are further unknowns in how the forming process affects the
core thickness and material properties. In particular, most materials used for their high damping
properties are also very sensitive to static pre-stress. For a simple folded plate, figure 2.9 illustrates
how the modal frequencies and energy distribution in the viscoelastic layer are modified if the shear
modulus is multiplied by 10 in the fold. Such behavior was found in tests and motivated the study
in Ref. [15], where the effect of static pre-stress is measured experimentally. Overall, predicting the
effects press forming or folding sandwiches is still a very open issue.

46 CHAPTER 2. VISCOELASTIC FEM MODELS

Figure 2.9: Energy density in the viscoelastic layer of a simple folded sandwich plate. (Top) High
stiffness viscoelastic in the fold. (Bottom) equal stiffness in the fold and elsewhere.

A final difficulty is to deal properly with boundary conditions of the skin layers. Since differential
motion of the skins plays a major role in the effectiveness of the core, the boundary conditions of
each layer has to be considered separately. This is easily illustrated by the generation of cuts in
constraining layers [45, 44] (and cut optim demo).

2.4.1 Mesh convergence and non conformity

As illustrated in figure ?? the dissipation if often localized on a fairly small sub-part of the structure.
It is thus quite important to validate the accuracy of predictions obtained with various mesh refine-
ments. Figure 2.10 illustrates a convergence study where a constrained layer damping treatment is
refined and one compares the strain energy density maps for two levels of refinement. The strain
energy maps, clearly indicate edge effects, which are typical of constrained layer treatments. In such
studies the author’s have usually found, that the distribution of constraints is well predicted and
energy fractions (strain energy in the viscoelastic compared to total strain energy in the model)
predicted with the fine and coarse meshes do not show significant differences.

2.5. THERMAL CONSIDERATIONS 47

Figure 2.10: Zoom on the refined mesh of a constrained layer damping treatment placed on a volume
model. Comparisons of strain energy maps for two levels of refinement.

When considering free placement of damping devices (see section ??), one is rapidly faced with the
problem of incompatible meshes. For discrete connections, where loads are transmitted at isolated
points with at most one point on a given element of the supporting structure, the problem is very
much related to that of the representation of weld spots and strategies that use the underlying shape
functions are most effective (see SDT feutilb MpcFromMatch command).

2.5 Thermal considerations

In this section one addresses models needed to evaluate the steady state temperature field for a
forced harmonic response.

2.5.1 Thermal model

xxx detail xxx

Exchange on free structure interfaces.

Exchange at the internal viscoelastic/metal interfaces.

2.5.2 Heat source due to viscoelastic behavior

48 CHAPTER 2. VISCOELASTIC FEM MODELS

Assuming a forced harmonic response, one has

ε (X, t) = <
(
ε (X,ω) eiωt

)
σ (X, t) = <

(
σ (X,ω) eiωt

)
(2.65)

where stress is related to strain through the complex modulus

σ (X,ω) = Λ (X,ω) ε (X,ω) (2.66)

or in the time domain

σ (X, t) = <
(
Λ (ω) ε (ω) eiωt

)
(2.67)

Integrating the power dissipated over a period of the forced response, one obtains the spatial distri-
bution of dissipated power

p(X,ω) =
∫ 2π
ω

0 σ (X, t) ε̇ (X, t) dt

=
∫ 2π
ω

0 <
(
Λ (ω) ε (ω) eiωt

)T < (iωε (X,ω) eiωt
)

= π
(
=(ε)T=(Λ)=(ε) + <(ε)T=(Λ)<(ε)

) (2.68)

Note that the maximum strain energy during the cycle is given by

e(X,ω) = max
2π
ω

0

(
ε(X, t)T<(Λ)ε(X, t)

)
= =(ε)T<(Λ)=(ε) + <(ε)T<(Λ)<(ε)

(2.69)

which gives a simple way to estimate the loss factor (1.3) associated with the local stress/strain
state.

Despite the local nature of dissipation, one may want to verify that the integral over the volume
of the dissipated energy is equal to the input power. Noting H(ω) the transfer collocated with the
input, the equivalent power input in the structure is given by

p(ω) =
∫ 2π
ω

0 <(F (ω)eiωt)<(iωH(ω)F (ω)eiωt) = −π=(H(ω))

=
∫ 2π
ω

0

(
q(t)T=(K)q(t)

)
= π

(
=(q(ω))T=(K)=(q(ω)) + <(q(ω))T=(K)<(q(ω))

) (2.70)

2.5. THERMAL CONSIDERATIONS 49

In general, there is no direct way to measure the maximum strain energy in a structure and thus no
experimental definition of a global or system loss factor.

For models, the energy can be computed but there is not particular reason for the local energy (2.71)
to reach a maximum value at all points simultaneously. One can thus search for the maximum strain
energy in the system using

e(q(ω)) = max
2π
ω

0

(
q(t)T<(K)q(t)

)
= =(q(ω))T<(K)=(q(ω)) + <(q(ω))T<(K)<(q(ω))

(2.71)

In the case of normal modes, the strain energy is equal to the square of the mode pulsation so that
the MSE methods can be meaningful (see section 2.1.3).

An illustration of global loss factor use for uniform and non-uniform material loss can be found in
in t visco(’ThermoPower’)

2.5.3 Cantilever plate example

To perform coupled thermoelastic modes computation, 3 commands are available in comp12 :

• Thermo1Assemble assembles structure matrices, thermal matrices and coupled thermoelastic
matrices.

• Thermo1Build builds MVR reduced model.

• Thermo1Modes computes associated complex modes.

First a finite element model (mdl must be created, with element associated to structure properties
(m elastic and p solid). Thermal properties (m heat and p heat) must be present in model ma-
terial and element property stack.

Matrices must be assembled as following:
RO=comp12(’Thermo1Assemble’,mdl,RO);

RO is the coupling data structure with fields

• .MatId [Matid struct MatId therm], first is the MatId of the structure material property,
and second the thermal one.

50 CHAPTER 2. VISCOELASTIC FEM MODELS

• .ProId [ProId struct ProId therm TO Matid struct MatId therm]. T0 is the thermal
coupling (C, Inf if no coupling).

Then reduced MVR can be build using:
MVR=comp12(’Thermo1Build-reduce’,mdl,RO); If command option -reduce is given model is re-
duced according to real modeshapes. Then eig options must be given in RO.EigOpt.

Complex coupled thermoelastic modes can then be computed using
def=comp12(’Thermo1Modes’,MVR);

2.5.4 Thermo-elastic damping

To perform coupled thermoelastic modes computation, 3 commands are available in comp12 :

• Thermo1Assemble assembles structure matrices, thermal matrices and coupled thermoelastic
matrices.

• Thermo1Build builds MVR reduced model.

• Thermo1Modes computes associated complex modes.

First a finite element model (mdl must be created, with element associated to structure properties
(m elastic and p solid). Thermal properties (m heat and p heat) must be present in model ma-
terial and element property stack.

Matrices must be assembled as following:
RO=comp12(’Thermo1Assemble’,mdl,RO);

RO is the coupling data structure with fields

• .MatId [Matid struct MatId therm], first is the MatId of the structure material property,
and second the thermal one.

• .ProId [ProId struct ProId therm TO Matid struct MatId therm]. T0 is the thermal
coupling (C, Inf if no coupling).

Then reduced MVR can be build using:
MVR=comp12(’Thermo1Build-reduce’,mdl,RO); If command option -reduce is given model is re-
duced according to real modeshapes. Then eig options must be given in RO.EigOpt.

2.5. THERMAL CONSIDERATIONS 51

Complex coupled thermoelastic modes can then be computed using
def=comp12(’Thermo1Modes’,MVR);

Following full example can be found in comp12(’numeric’). It illustrates the computation of thermo-
elastic damping in a simple rectangular plate example.

T0=20; % coupling temperature

% Build model: - - -

Nz=5;

mdl=femesh(sprintf(’testhexa8 divide 10 10 %i’,Nz));

h=2e-3;

mdl.Node(:,5:7)=mdl.Node(:,5:7)*diag([.304 .192 h]);

mdl.Elt=feutil(’set groupall matid 1’,mdl);

mdl.Elt=feutil(’set groupall proid 1’,mdl);

% define material properties: - - -

mdl.pl=m_elastic(’dbval 1 Aluminum’); % structure

mdl=feutil(’setmat 1 alpha=22e-6 T0=20’,mdl);% XXX alpha at what temperature ?

mdl.pl=m_heat(mdl.pl,’dbval 2 Aluminum’); % therm

% define element properties:

mdl.il=p_solid(’dbval 1 d3 -3’); % structure

mdl.il=p_heat(mdl.il,’dbval 2 d3 -3’); % therm

mdl=feutil(’lin2quad’,mdl);

RO=struct; % build options: - - -

RO.MatId=[1 2]; % structure | therm

RO.ProId=[1 2 T0 1 2]; % structure | therm | Temperature(if coupling, Inf if not) Matid_struct MatId_therm

% Assemble elementary matrices according to coupling defined in RO :

RO=comp12(’Thermo1Assemble’,mdl,RO);

% Build MVR with coupling :

RO.EigOpt=[5 40 1e3];

MVR=comp12(’Thermo1Build-reduce’,mdl,RO);

% Compute associated complex modes:

def=comp12(’Thermo1Modes’,MVR); % compute modes

cf=feplot(mdl); cf.def=def;

52 CHAPTER 2. VISCOELASTIC FEM MODELS

3

Toolbox tutorial

Contents

3.1 Download and installation procedures . 55

3.2 Representing viscoelastic materials . 55

3.2.1 Introducing your own nomograms . 56

3.2.2 Selecting a material for your application . 57

3.2.3 Selective components in constitutive law . 57

3.3 Viscoelastic device meshing tools . 58

3.3.1 Generation of sandwich models . 58

3.3.2 Meshing foam fillings . 59

3.3.3 Exporting submeshes to NASTRAN . 60

3.4 Parametric models, structure reference 60

3.4.1 Parametric models, zCoef . 60

3.4.2 Parametric models, zCoef . 64

3.4.3 Input definitions . 66

3.4.4 Sensor definitions . 66

3.4.5 MVR Format reference . 67

3.4.6 Response post-processing options . 68

3.5 Sample setup for parametric studies . 68

3.5.1 Performance in modulus/loss plane . 68

3.5.2 Illustration of pole range computations . 70

3.5.3 Model parameterization . 70

3.5.4 Sample parametric study in SDT (full solver, Upcom superelement) 71

3.5.5 Parametric model generated within NASTRAN (fo by set DMAP) 72

3.5.6 Parametric model from NASTRAN element matrices 74

3.6 Fluid/structure coupling . 75

3.6.1 Summary of theory . 75

3.6.2 Acoustic stiffness on a loudspeaker . 76

3.7 Rayleigh integral computations . 77

53

3.7.1 Summary of theory . 77

3.7.2 Diffuse field and transmission loss . 78

3.8 NASTRAN Generation of the parametric model 79

3.9 Advanced connection models . 79

3.9.1 Screw models . 79

3.9.2 Physical point with rotations . 80

3.1. DOWNLOAD AND INSTALLATION PROCEDURES 55

The viscoelastic modeling tools provide packaged solutions to address the following problems

• Generation of sandwich structures

• Handling of tabulated and analytical representations of viscoelastic constitutive laws.

• Parameterization of FEM models to allow multiple viscoelastic materials.

• Approximate solutions for the viscoelastic response

• Vibroacoustic response generation

These tools are not distributed with SDT. Please contact SDTools for licensing information.

3.1 Download and installation procedures

• you must first install the latest SDT release. Unless we suggest otherwise, you should use the
pre-release version at http://www.sdtools.com/sdtcur_dis.html).

• You should use a 64 bit MATLAB (it is not realistic to use viscoelastic tools on a 32 bit
application)

• install the viscoelastic tools by patching your SDT.

– download http://www.sdtools.com/distrib/beta/visco_patch_dis.p) into a tempo-
rary directory (not the SDT directory)

– in MATLAB, move to that directory and install the patch simply by using visco patch dis.
Note that you must have write permission to the SDT directory so that if you have in-
stalled SDT in the ”Program files” directory you should run MATLAB as an Adminis-
trator, see http://www.sdtools.com/faq/Release.html#install.

• check that the documentation has been installed using sdtweb(’visctoc’).

• if you intend to use larger model install the SDT/MKL server using sdtcheck(’PatchMkl’).

3.2 Representing viscoelastic materials

http://www.sdtools.com/sdtcur_dis.html
http://www.sdtools.com/distrib/beta/visco_patch_dis.p
http://www.sdtools.com/faq/Release.html#install

56 CHAPTER 3. TOOLBOX TUTORIAL

3.2.1 Introducing your own nomograms

You can introduce your own nomograms in the m visco database. By simply defining an mvisco *.m

file (mvisco 3m.m serves as a prototype. The data structure defines a reference elastic material in
mat.pl, complex modulus and shift factor tables, an finally additional properties stored in mat.nomo

(which will be better documented later).

mat.pl=[1 fe_mat(’m_elastic’,’SI’,1) 1e6*2*1.49 .49 1500 1e6];

mat.name=’ISD112 (1993)’;

mat.type=’m_visco’;

mat.unit=’SI’;

mat.T0=[0];

mat.G=[% Freq, Re(G) Im(G)

1 1.72688e+004 3.51806e+003

10 2.33865e+004 5.35067e+003

100 3.49390e+004 8.25596e+003

1000 5.76323e+004 1.67974e+004

10000 1.03151e+005 5.72383e+004

1e+005 2.10295e+005 1.79910e+005

1e+006 6.59947e+005 6.57567e+005

1e+007 2.06023e+006 1.95406e+006

1e+008 5.83327e+006 3.57017e+006

1e+009 1.48629e+007 5.60247e+006

1e+010 3.25633e+007 7.33290e+006

1e+011 6.16925e+007 5.40189e+006

1e+012 1.01069e+008 2.48077e+006

];

mat.at=[% T, at

-10 1.32885e+007

0 9.16273e+005

10 1.14678e+005

20 2.45660e+004

30 9.00720e+003

40 2.99114e+003

50 1.27940e+003

60 7.10070e+002

70 2.88513e+002

80 1.96644e+002

3.2. REPRESENTING VISCOELASTIC MATERIALS 57

90 1.37261e+002

100 1.03674e+002

110 6.84906e+001

120 4.66815e+001

];

mat.nomo={’w’,[-1 0 12],’Eeta’,[4 9 2],’unit’,’SI’, ...

’www’,’www.3m.com’, ...

’file’,’ISD_112_93.png’,’Rect’,[145 35 538 419], ...

’type’,’G’};

3.2.2 Selecting a material for your application

cf=feplot; m_visco(’database’,cf); % select all materials

m_visco(’info’,cf);

m_visco(’deffreq’,cf) % set frequencies vector for all the material

m_visco(’defT’,cf) % set temperature vector for all the material

cf.Stack{’info’,’Freq’}=logspace(3,log10(15e3),300); % range of interest

cf.Stack{’info’,’Range’}=20; % Temperature of interest

m_visco(’nomo’,cf) % list with all nomograms

Freq=stack_get(cf.mdl,’info’,’Freq’,’getdata’);

T=stack_get(cf.mdl,’info’,’Range’,’getdata’);

Mat=stack_get(cf.mdl,’mat’);

m_visco(’nomo’,cf)

3.2.3 Selective components in constitutive law

General anisotropic elastic materials are described by a constitutive law of the form

{σ} = [Λ] {ε} (3.1)

58 CHAPTER 3. TOOLBOX TUTORIAL

where for orthotropic material the expression of [Λ] is given by:

σx
σy
σz
τyz
τxz
τxy

= [Λ] {ε} =

1−νyzνzy
EyEz∆

νyx+νzxνyz

EyEz∆
νzx+νyxνzy
EyEz∆ 0 0 0

νyx+νzxνyz

EyEz∆
1−νxzνzx
ExEz∆

νyz+νyxνxz

ExEy∆ 0 0 0

νzx+νyxνzy
EyEz∆

νyz+νyxνxz

ExEy∆
1−νxyνyx

ExEy∆ 0 0 0

0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy

εx
εy
εz
γyz
γxz
γxy

(3.2)

with ∆ =
1−νxyνyx−νyzνzy−νzxνxz−2νyxνzyνxz

ExEyEz
. The expression of the flexibility allows easier identifica-

tion of terms:

[Λ]−1 =

1/Ex −νxy/Ex −νzx/Ez 0 0 0
−νyx/Ey 1/Ey −νyz/Ey 0 0 0
−νxz/Ex −νzy/Ez 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gxz 0
0 0 0 0 0 1/Gxy

(3.3)

If one has no particular interest in the engineering constants, the orthotropic constitutive law (3.2)
can also be written:

σ1

σ2

σ3

σ4

σ5

σ6

=

σ11

σ22

σ33

σ23

σ31

σ12

= [Λ] {ε} =

Λ11 Λ12 Λ13 0 0 0
Λ12 Λ22 Λ23 0 0 0
Λ13 Λ23 Λ33 0 0 0
0 0 0 Λ44 0 0
0 0 0 0 Λ55 0
0 0 0 0 0 Λ66

ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε23

ε5 = 2ε31

ε6 = 2ε12

(3.4)

In the fevisco MatSplit command. ortho allows the decomposition in the 9 non-zero terms shown
above, while EG groups C44, C55, C66 as G and other terms as E.

3.3 Viscoelastic device meshing tools

3.3.1 Generation of sandwich models

3.3. VISCOELASTIC DEVICE MESHING TOOLS 59

Starting from an undamped structure without treatment, you often want to generate models for
viscoelastic patches applied to the structure. This is done using fevisco MakeSandwich commands.
Modeling issues associated with this meshing are discussed in section 2.4 .

Sample meshes are listed with fevisco(’Test’).

For example, the generation of a three layer sandwich with the original layer 0.01 thick (leading to
a 0.005 offset), a volume of thickness 0.002, and a second 0.01 thick shell looks like

model=femesh(’testquad4 divide 10 12’);

model.Elt=feutil(’orient 1 n 0 0 1’,model);

sandCom=[’makesandwich shell 0 0 .005 ’ ...

’volume 101 .002 shell 102 -.005 .005’];

treated=’withnode{x>.5 & y>.5}’;
model=fevisco(sandCom,model,treated);

cf=feplot;cf.model=model;fecom(’colordatamat’);

You can also specify normals using a map.

model=femesh(’testquad4 divide 3 4’);

model.Elt=feutil(’orient 1 n 0 0 1’,model);

sandCom=[’makesandwich shell 0 0 .005 volume 101 .2 ’];

% use a normal map that specify the direction of extrusion

MAP=feutil(’getnormal map node’,model); MAP.normal(:,1)=2;

model=fevisco(sandCom,model,’withnode{x>.5 & y>.5}’,MAP);
cf=feplot;cf.model=model;fecom(’;colordatamat;view 1’);

3.3.2 Meshing foam fillings

When meshing foam filling of geometrically complex parts, generating a mesh of the part and foam
can be difficult. The problem is solved through the following steps

1. mesh the part (usually done in a CAD environment then imported into SDT), and mesh
approximate foam volume.

2. defines a foam expansion map giving an expansion direction for external nodes of the approx-
imate foam volume. In this phase, one typically defines the connected surface of the foam
model, defines normals on this surface and possibly corrects these normals. The result is a
vector map structure with field .ID node numbers of connected nodes and .normal giving the
associated directions (see fe case map).

60 CHAPTER 3. TOOLBOX TUTORIAL

3. expand the foam to touch the initial part mesh and generate MPC connections to connect the
foam and the underlying mesh. This is done automatically with the ConnectionStickThenSolid
command.

Example

femesh(’reset’);

model=femesh(’testubeam’);

model=feutil(’objecthexa 101 101’,model, ...

[-.3 -.5 0;.6 0 0;0 .8 0;0 0 2.5],3,3,12);

cf=feplot(2);cf.model=model;fecom(’colordatamat -alpha.1’)

% Build normal MAP for connected foam surface

MAP=feutil(’getnormal node MAP’,model.Node, ...

feutil([’selelt matid==101 &selface& ’ ...

’withnode {y>-.49 & z>0 & z<2.5}’,model));
% Define the facing elements

FacingSurface=’matid 1 & selface & facing >0 0 0 1’;

%

mo2=fevisco(’ConnectionStickThenSolid’,model,’Foam’,MAP,FacingSurface);

cf.model=mo2;fecom(’colordatamat -alpha .3’)

3.3.3 Exporting submeshes to NASTRAN

Once the sandwich model generated it can be exported to NASTRAN. There two typical strategies,
rewriting the whole model (using naswrite(’FileName’,model)) or generating an include file.

The second strategy is more adapted when testing multiple viscoelastic configurations since it is
more robust at preserving all options of the original file. The fevisco WriteInclude command is
meant for that purpose. It lets you select newly meshed viscoelastic parts using any selection (their
MatId for example) and generates the NASTRAN bulk containing the associated nodes, elements,
material and element property cards, RBE2 entries connected to the selected elements.

3.4 Parametric models, structure reference

3.4.1 Parametric models, zCoef

3.4. PARAMETRIC MODELS, STRUCTURE REFERENCE 61

Different major applications use families of structural models. Update problems, where a comparison
with experimental results is used to update the mass and stiffness parameters of some elements
or element groups that were not correctly modeled initially. Structural design problems, where
component properties or shapes are optimized to achieve better performance. Non-linear problems
where the properties of elements change as a function of operating conditions and/or frequency
(viscoelastic behavior, geometrical non-linearity, etc.).

A family of models is defined (see [46] for more details) as a group of models of the general second
order form (??) where the matrices composing the dynamic stiffness depend on a number of design
parameters p

[Z(p, s)] =
[
M(p)s2 + C(p)s+K(p)

]
(3.5)

Moduli, beam section properties, plate thickness, frequency dependent damping, node locations,
or component orientation for articulated systems are typical p parameters. The dependence on p
parameters is often very non-linear. It is thus often desirable to use a model description in terms of
other parameters α (which depend non-linearly on the p) to describe the evolution from the initial
model as a linear combination

[Z(p, s)] =
NB∑
j=1

αj(p) [Zjα(s)] (3.6)

with each [Zjα(s)] having constant mass, damping and stiffness properties.

Plates give a good example of p and α parameters. If p represents the plate thickness, one defines
three α parameters: t for the membrane properties, t3 for the bending properties, and t2 for coupling
effects.

p parameters linked to elastic properties (plate thickness, beam section properties, frequency depen-
dent damping parameters, etc.) usually lead to low numbers of α parameters so that the α should be
used. In other cases (p parameters representing node positions, configuration dependent properties,
etc.) the approach is impractical and p should be used directly.

par

SDT handles parametric models where various areas of the model are associated with a scalar
coefficient weighting the model matrices (stiffness, mass, damping, ...). The first step is to define a
set of parameters, which is used to decompose the full model matrix in a linear combination.

The elements are grouped in non overlapping sets, indexed m, and using the fact that element
stiffness depend linearly on the considered moduli, one can represent the dynamic stiffness matrix
of the parameterized structure as a linear combination of constant matrices

62 CHAPTER 3. TOOLBOX TUTORIAL

[Z(Gm, s)] = s2 [M] +
∑
m

pm [Km] (3.7)

Parameters are case stack entries defined by using fe case par commands (which are identical to
upcom Par commands for an upcom superelement).

A parameter entry defines a element selection and a type of varying matrix. Thus

model=demosdt(’demoubeam’);

model=fe_case(model,’par k 1 .1 10’,’Top’,’withnode {z>1}’);
fecom(’proviewon’);fecom(’curtabCase’,’Top’) % highlight the area

zcoef

The weighting coefficients in (3.7) are defined formally using the
cf.Stack{’info’,’zCoef’} cell array viewed in the figure and detailed below.

The columns of the cell array, which can be modified with the feplot interface, give

3.4. PARAMETRIC MODELS, STRUCTURE REFERENCE 63

• the matrix labels Klab which must coincide with the defined parameters

• the values of coefficients in (3.7) for the nominal mass (typically mCoef=[1 0 0 ...])

• the real valued coefficients zCoef0 in (3.7) for the nominal stiffness K0

• the values or strings zCoefFcn to be evaluated to obtain the coefficients for the dynamic
stiffness (3.7).

Given a model with defined parameters/matrices, model=fe def(’zcoef-default’,model) defines
default parameters.

zcoef=fe def(’zcoef’,model) returns weighting coefficients for a range of values using the fre-
quencies (see Freq) and design point stack entries

Frequencies are stored in the model using a call of the form
model=stack set(model,’info’,’Freq’,w hertz colum). Design points (temperatures, optimiza-
tion points, ...) are stored as rows of the ’info’,’Range’ entry, see fevisco Range for generation.

When computing a response, fe def zCoef starts by putting frequencies in a local variable w (which
by convention is always in rd/s), and the current design point (row of ’info’,’Range’ entry or row of
its .val field if it exists) in a local variable par. zCoef2:end,4 is then evaluated to generate weight-
ing coefficients zCoef giving the weighting needed to assemble the dynamic stiffness matrix (3.7).
For example in a parametric analysis, where the coefficient par(1) stored in the first column of
Range. One defines the ratio of current stiffness to nominal Kvcurrent = par(1) ∗Kv(nominal) as
follows

% external to fexf

zCoef={’Klab’,’mCoef’,’zCoef0’,’zCoefFcn’;
’M’ 1 0 ’-w.^2’;

’Ke’ 0 1 1+i*fe_def(’DefEta’,[]);

’Kv’ 0 1 ’par(1)’};
model=struct(’K’,{cell(1,3)});
model=stack_set(model,’info’,’zCoef’,zCoef);

model=stack_set(model,’info’,’Range’, ...

struct(’val’,[1;2;3],’lab’,{{’par’}}));

%Within fe2xf

w=[1:10]’*2*pi; % frequencies in rad/s

Range=stack_get(model,’info’,’Range’,’getdata’);

for jPar=1:size(Range.val,1)

Range.jPar=jPar;zCoef=fe2xf(’zcoef’,model,w,Range);

disp(zCoef)

64 CHAPTER 3. TOOLBOX TUTORIAL

% some work gets done here ...

end

3.4.2 Parametric models, zCoef

The viscoelastic tools handle parametric models where various areas of the model are associated
with a scalar coefficient weighting the model matrices (stiffness, mass, damping, ...). The first
step is to define a set of parameters, which is used to decompose the full model matrix in a linear
combination. The elements are grouped in non overlapping sets, indexed m, and using the fact that
element stiffness depend linearly on the considered moduli, one can represent the dynamic stiffness
matrix of the parameterized structure as a linear combination of constant matrices

[Z(Gm, s)] = s2 [M] + [Ke] +
∑
m

pm [Kvm] (3.8)

By convention, Ke represents the stiffness of all elements not in any other set. While the architecture
is fully compatible there is no simplified mechanism to parameterize the mass.

The first step of a study is thus to define parameters. For all models this can be done using fe case

par commands (or upcom Par commands for an upcom superelement).

model=demosdt(’demoubeam’);

model=fe_case(model,’par’,’Top’,’withnode {z>1}’);
fecom(’proviewon’);fecom(’curtabCase’,’Top’) % highlight the area

If the parameters correspond to viscoelastic materials, one needs to declare which, of the initially
elastic materials, are really viscoelastic. This is done using fevisco AddMat calls which associate
particular MatId values with viscoelastic materials selected in the m visco database.

Up=fevisco(’testplate upreset’);cf=feplot(Up);Up=cf.mdl;

Up=stack_rm(Up,’mat’);

Up = fevisco(’addmat 101’,Up,’First area’,’ISD112 (1993)’);

Up = fevisco(’addmat 103’,Up,’Second area’,’ISD112 (1993)’);

cf.Stack{’info’,’Range’}=[20];
cf.Stack{’info’,’Freq’}=logspace(1,3,30);
%reset default zCoef Fcn and display

fe2xf(’zCoef-default’,cf);fe2xf(’zCoef’,cf)

Viscoelastic materials are then considered as parameters by fevisco.

3.4. PARAMETRIC MODELS, STRUCTURE REFERENCE 65

The full constant matrices M,Ke,Kvm can be assembled using fevisco MakeModel or with a NAS-
TRAN DMAP fevisco Step12 (for implementations with other software such as ABAQUS, ANSYS
or SAMCEF please contact us).

The normal mode of operation is to display your full model in a feplot figure. Reduced models
can be generated with fe2xf direct commands, or with a NASTRAN DMAP step12, reduced
matrices are stored in the model stack as an ’SE’,’MVR’ entry.

xxx

The problems handled by fe2xf and computations at multiple frequencies and design points. Fre-
quencies are either stored in the model using a call of the form model=stack set(model,’info’,’Freq’,w hertz colum)

or given explicitly as an argument (the unit is then rad/s).

Design points (temperatures, optimization points, ...) are stored as rows of the ’info’,’Range’

entry, see fevisco Range for generation.

When computing a response, fe2xf zCoef starts by putting frequencies in a local variable w (which
by convention is always in rd/s), and the current design point (row of ’info’,’Range’ entry or row of
its .val field if it exists) in a local variable par. zCoef2:end,4 is then evaluated to generate weight-
ing coefficients zCoef giving the weighting needed to assemble the dynamic stiffness matrix (3.7).
For example in a parametric analysis, where the coefficient par(1) stored in the first column of
Range. One defines the ratio of current stiffness to nominal Kvcurrent = par(1) ∗Kv(nominal) as
follows

% external to fexf

zCoef={’Klab’,’mCoef’,’zCoef0’,’zCoefFcn’;
’M’ 1 0 ’-w.^2’;

’Ke’ 0 1 1+i*fe_def(’DefEta’,[]);

’Kv’ 0 1 ’par(1)’};
model=struct(’K’,{cell(1,3)});
model=stack_set(model,’info’,’zCoef’,zCoef);

model=stack_set(model,’info’,’Range’, ...

struct(’val’,[1;2;3],’lab’,{{’par’}}));

%Within fe2xf

w=[1:10]’*2*pi; % frequencies in rad/s

Range=stack_get(model,’info’,’Range’,’getdata’);

for jPar=1:size(Range.val,1)

Range.jPar=jPar;zCoef=fe2xf(’zcoef’,model,w,Range);

disp(zCoef)

% some work gets done here ...

end

66 CHAPTER 3. TOOLBOX TUTORIAL

To use a viscoelastic material, you can simply declare it using an AddMat command and use a ’ visc’

entry in the zCoefFcn column (the stack name for the material and the zCoef matrix name must
match).

cf=fevisco(’testplateLoadMV feplot’);

% define material with a unit conversion

mat=m_visco(’convert INSI’,m_visco(’database Soundcoat-DYAD609’));

% MatId for original, name of parameter

cf.mdl = fevisco(’addmat 101’,cf.mdl,’Constrained 101’,mat);

cf.Stack{’zCoef’}(4,4)={’_visc’};
% Third coefficient will use material with name

cf.Stack{’zCoef’}{4,1}
fe2xf(’zcoef’,cf,500:10:4000,struct(’val’,5,’lab’,{{’T’}}));

At time of computation, the matrix coefficient in (3.7) is found as Gm(s,T,σ0)
Gm0

where the reference
modulus is found in the cf.Stack{’Constraint 101’}.pl entry. The choice of E or G is based
on the existence of a ’type’,’E’ or ’type’,’G’ entry in the mat.nomo field. For such materials
one assumes Poisson’s ratio to be real and the considered viscoelastic material to have its stiffness
dominated by either shear or compression. Based on this assumption, one considers the frequency
dependence of either the shear or Young’s modulus. The error associated to neglecting the true
variation of other moduli is assumed to be negligible (methodologies to treat cases where this is not
true are not addressed here).

3.4.3 Input definitions

Inputs at DOFs are declared as fe case entries.

If you have stored full basis vectors when building a reduced model (MVR.TR field), you may often be
interested in redefining your inputs. To do so, you can use fe case commands to define your loads,
and MVR=fe sens(’br&lab’,MVR,model), to redefine the reduced inputs accordingly.

3.4.4 Sensor definitions

MV=fevisco(’testplate’);

MV=fe_case(MV,’SensDof’,’BasicAtDof’,[1;246]+.03);

% Surface velocity

’xxx’

% NEED TO BE REVISED WITH STRESS CUT 4 strain sensors along a line

%pos=linspace(.5,1,4)’;pos(:,2)=.75; pos(:,3)=.006;

3.4. PARAMETRIC MODELS, STRUCTURE REFERENCE 67

%data=struct(’Node’,pos,’dir’,ones(size(pos,1),1)*[1 0 0]);

%MV=fe_case(MV,’SensStrain’,’ShearInLayer’,data)

Sens=fe_case(MV,’sens’)

If you have stored full basis vectors when building a reduced model (MVR.TR field), you may often
be interested in redefining your sensors. To do so, you can use the fe case commands to set
your sensors, and fe sens(’cr&lab’,cf) to redefine the reduced sensors accordingly (this calls
Sens=fe case(’sens’,model) to generate the data structure combining the observation equations
of all your sensors).

[MV,cf]=fevisco(’TestPlateLoadMVR’);cf.Stack{’MVR’}
% redefine sensors

i1=feutil(’findnode x==0 & z==0 epsl1e-3’,MV);

MV=fe_case(MV,’SensDof’,’Sensors’,i1+.03);

% reset reduced sensor representation

fe_sens(’cr&lab’,cf);cf.Stack{’MVR’}

3.4.5 MVR Format reference

A viscoelastic model (see section 3.5.6 for the typical generation procedure), stores the information
needed to compute (3.7) in a data structure stored as a SE,MVR stack entry. The format corresponds
to a generic type 1 superelement (handled by fe super) but the following fields are specifically of
interest.

.Opt Options characterizing the model matrices. In particular the second row describes
the type of each matrix in model.K (1 for stiffness, 2 for mass, ...)

.K a cell array of matrices giving the constant matrices in (3.7). One normally uses
M,Ke,Kvm, These matrices should be real and only the combination coefficients
should be complex.

.Klab a cell array giving a labels for matrices in the .K field.

.DOF DOF definition vector associated with matrices in .K

.Stack standard model stack where one defines viscoelastic materials (see fevisco AddMat

and m visco database), frequencies, zcoef, reduced model, range (see fevisco

Range) ... as well as the case that contains descriptions for loads, sensors, parameters,
...

Additional fields used in some solutions are

.br input shape matrix for reduced model

.cr input shape matrix for reduced model

.kd optional static preconditioner (nominally equal to ofact(k0)) use to compute static
response based on a known residue. Obsolete and replaced by fe2xf Build calls.

68 CHAPTER 3. TOOLBOX TUTORIAL

3.4.6 Response post-processing options

For a given reduced (or full) model you may want to post-process the computed frequency responses
before saving them. This is in particular important to analyze responses on large sensor sets (panel
velocities, stresses, ...) which would require a lot of storage space if saved at all frequencies.

The list MifDes xxx

3.5 Sample setup for parametric studies

This section provides tutorial studies based on SDT-visc only.

3.5.1 Performance in modulus/loss plane

This tutorial uses the cantilever constrained plate shown in the figure below.

Figure 3.1: Constrained layer model validity.

d visco(’TutoEhPerf-s1’) meshes a cantilever constrained plate.

step 2 builds a reduced model. One starts by defining a viscoelastic material, and then uses an
fe2xf Buil call to build the reduced model by learning a soft and a stiff modulus point.

step 3 generates the standard frequency/damping curves for the first 3 modes.

With EhPerf one obtains the damping level as function of modulus and loss factor map. In
the present case one sees that the best performance is obtained for a modulus around 2 MPa.

3.5. SAMPLE SETUP FOR PARAMETRIC STUDIES 69

The data used for the E, η performance map is a grid which for each mode can be shown in the
frequency damping plane as illustrated below

It may also be interesting to split those maps by mode as shown here.

70 CHAPTER 3. TOOLBOX TUTORIAL

Older demos are basic sandwich which generates curves for the validation of shell/volume/shell
model used to represent constrained layer treatments as first discussed in section 2.4 .

3.5.2 Illustration of pole range computations

d visco(’TutoPoleRange-s1’) uses a beam with viscoelastic rotational spring example.

3.5.3 Model parameterization

fevisco handles parametric models with variable stiffness expressed as linear combinations of con-
stant matrices (3.7). The initial step of all parametric studies is to define the parameter sets.

For example, a selection based on ProId.

model=fe_case(model,’par’,’FrontStruts’,’-k ProId 168’;

’par’,’BackStruts’ ,’-k ProId 304’};
The PREDIT mat model XXX

Figure 3.2: The PREDIT mat model

3.5. SAMPLE SETUP FOR PARAMETRIC STUDIES 71

For example, in the PREDIT mat model, one can define each of the 4 squares of viscoelastic materials
on the pane as a parameter using ProId

cf=feplot(model); MV=cf.mdl; %XXX

One can then visualize each parameter using feplot model properties windows, within the Case tab

3.5.4 Sample parametric study in SDT (full solver, Upcom superelement)

Typically, one starts predictions with the a first order approximation to generate a reduced model
MVR which is then used to approximate the frequency response functions Rred

Up=fevisco(’testplate upreset’);

%Up=fevisco(’testplate up’);

Up=stack_rm(Up,’mat’);

Up = fevisco(’addmat 101’,Up,’Area1’,’ISD112 (1993)’);

Up = fevisco(’addmat 103’,Up,’Area2’,’ISD112 (1993)’);

MV=fevisco(’makemodel matid 101 103’,Up);

cf=feplot(MV);

cf.Stack{’info’,’Range’}=[10;30];
cf.Stack{’info’,’Freq’}=[30:.5:500]’; % Target frequencies Hz

cf.Stack{’info’,’EigOpt’}=[6 40 -(2*pi*30)^2 11];

fe2xf(’directfirst zCoef0’,cf);

ci=iiplot(cf.Stack{’curve’,’RESP’});
iicom(’challDesign point’)

% This is a call to the new strategy for pole tracking as function of temp

RO=struct(’IndMode’,7:20,’Temp’,20:10:100,’Freq’,logspace(1,4,20)’);

Po=fevisco(’poletemp’,cf,{’Area1’;’Area2’},RO);
fe2xf(’plotpolesearch’,Po)

This is a sample direct computation of the viscoelastic response at 3 frequencies.

72 CHAPTER 3. TOOLBOX TUTORIAL

fevisco(’testplate matrix’);cf=feplot;MV=cf.mdl;

cf.Stack{’info’,’Freq’}=[5:5:40]’;
[Rfull,def]=fe2xf(’directfull’,MV);

cf.def=def; % NEED REVISE : iiplot(Rfull);

Given the reduced model MVR you can then track poles through your parametric range using

MVR.Range=[0:10:50]’;

Hist=fe2xf(’frfpolesearch’,MVR);

fe2xf(’plotpolesearch’,Hist) % Generate standard plot of result

3.5.5 Parametric model generated within NASTRAN (fo by set DMAP)

The following gives a simple example of a beam separated in two parts. The step12 calls run
NASTRAN with the fo by set DMAP where an eigenvalue computation is used to generate a
modal basis that is then enriched (so called step 1) before generating a parametric reduced model
(step 2).

The steps of the procedure are the following

• load the initial model into Matlab using a nasread command.

• Generate through naswrite commands, or manual editing, a RootName bulk.bdf file that
contains bulk data information, EIGRL and and possibly PARAM cards.

NOTE elements that will be parameterized should have the loss factor of their
material set to zero.

• Define element groups associated with parameters (see section 3.5.3).

These can be easily checked using feplot (open the Edit:Model properties menu and go to
the Case tab). cf.sel=selection{1,2} commands. Once the job is written, elements sets
will be written in a parameter sets.bdf file (using nas2up WriteSetC commands).

• Sensors using SensDof case entries, see section 3.4.4 .

• Generate the RootName step12.dat file and run the job using

cf=feplot; % the model should be displayed in feplot

cf.mdl=nas2up(’JobOpt’,cf.mdl); % Init NasJobOpt entry to its default

fevisco(’writeStep12 -run’,’RootName’,cf)

fecom(cf,’Save’,’FileName’); % save your model for reload

3.5. SAMPLE SETUP FOR PARAMETRIC STUDIES 73

where the write command edits the nominal job files found in sdtdef(’FEMLink.DmapDir’)).

If you need to edit the bulk file, for job specific aspects of the Case Control Section (defi-
nition of MPC and SPC for example), omit the -run, do your manual edits, then run the job
(for example nas2up(’joball memory=8GB’,’RootName step12.dat’).

You can also pre-specify a series of EditBulk entries so that your job can run automatically.
For example

edits={’insert’, ’SOL 103’ ,’’, ’GEOMCHECK NONE’;

’replace’, ’SPC = 10’,’’, ’SPC = 1’};
model=stack_set(model,’info’,’EditBulk’,edits);

• Once the NASTRAN job done, you should have locally the files RootName mkekvr.op4 (re-
duced matrices), RootName USETT.op2 degree of freedom set and info needed to build Case.T,
RootName TR.op4 basis vectors defined on DOFs that are needed (sensor and input DOFs).

You are now ready to build the reduced parameterized model using

cf=feplot;fecom(cf,’Load’,’FileName’);

MVR=fevisco(’BuildStep12’,’RootName’,model)

If the files are not automatically copied from the NASTRAN server machine, the BuildStep12
-cpfrom makes sure the result file are copied back.

Here is a complete example of this procedure

cd(sdtdef(’tempdir’)); if ~isunix; return;end % Don’t test on windows

wd=sdtdef(’FEMLink.DmapDir-safe’,fullfile(fileparts(which(’nasread’)),’dmap’));

copyfile(fullfile(wd,’fo*.dmp’),’.’)

copyfile(fullfile(wd,’sdt*.dmp’),’.’)

!rm ubeam_step12.MASTER ubeam_step12.DBALL ubeam_*.[0-9]

model=demosdt(’demoubeam’);cf=feplot;

model=fe_case(model,’dofload’,’Input’, ...

struct(’DOF’,[349.01;360.01;241.01;365.03],’def’,[1;-1;1;1],’ID’,100));

model=fe_case(model,’par’,’Top’,’withnode {z>1}’);
model=fe_case(model,’sensdof’,’Sensors’,[360.01]);

cf.Stack{’info’,’EigOpt’}=[5 20 1e3 11];

model=nas2up(’JobOpt’,model); % Init NasJobOpt entry to its default

cf.Stack{’info’,’Freq’}=[20:2:150];
fevisco(’writeStep12 -write -run’,’ubeam’,model);

fecom(’save’,’ubeam_param.mat’); % save before MVR is built

74 CHAPTER 3. TOOLBOX TUTORIAL

% you may sometimes need to quit Matlab here if NASTRAN is long

cf=feplot(’Load’,’ubeam_param.mat’); % reload if you quit matlab

fevisco(’BuildStep12’,’ubeam’,cf)

fecom(’save’,’ubeam_param.mat’); % save after MVR is built

When dealing with a model that would have been treated through a SOL108 (full order direct
frequency response), the parametric model returns a B matrix. This is actually related to the Ke

and Kvi matrices by
B = ηglobKe +

∑
i

ηi,nomKvi (3.9)

where ηglob is defined in NASTRAN using PARAM,G and the loss factors for the viscoelastic parts
using the GE values of the respective components.

For viscoelastic analysis NASTRAN requests a complex curve T (ω) given as two tables. NASTRAN
applies the PARAM,G to all elements (the matrix called K1

dd in NASTRAN lingo is equal to Ke +∑
iKvi) as a result the variable viscoelastic stiffness which are here proportional to G(ω)/Gi,nom =

1 + iηglob + T (ω)ηi,nom hence, given the complex modulus, the table is given by

T =
1

ηi,nom

(
Re(G(ω))

Gi,nom
− 1

)
+ i

(
Im(G(ω))

Gi,nom
− ηglob

)
(3.10)

Generation of variable coefficients to be used in the toolbox from NASTRAN input is obtained with
MVR.zCoefFcn=fevisco(’nastranzCoefv1’,model).

3.5.6 Parametric model from NASTRAN element matrices

An alternative to the step12 procedure Viscoelastic computations are performed on an upcom model
typically imported from NASTRAN after a SOL103 (real eigenvalue) run with PARAM,POST,-4 to
export the element matrices. Thus for a NASTRAN run UpModel.dat which generated UpModel.op2

and where the upcom superelement is saved in UpModel.mat a typical script begins with Up=nasread(’UpModel.dat’,’BuildOrLoad’).

In some cases, one may want to use reduced basis vectors that are generated by an external code
(typically NASTRAN). The problem is then to generate the reduced model MVR without asking
fevisco to generate the appropriate basis. You can simply call the DirectReduced command

Up=fevisco(’testplate upreset’);

Up=stack_rm(Up,’mat’);

Up = fevisco(’addmat 101’,Up,’First area’,’ISD112 (1993)’);

Up = fevisco(’addmat 103’,Up,’Second area’,’ISD112 (1993)’);

3.6. FLUID/STRUCTURE COUPLING 75

def=fe_eig(Up,[6 10 1e3]);

MVR = fevisco(’makemodel matid 101 103’,Up,def);

MVR=stack_set(MVR,’info’,’Freq’,[20:.5:90]’);

RESP=fe2xf(’directreduced’,MVR); % Result in XF(1)

3.6 Fluid/structure coupling

This section illustrates the use of fevisco Fluid commands.

3.6.1 Summary of theory

One considers fluid structure interaction problems of the form [47]

s2

[
M 0
CT Kp

]{
q
p

}
+

[
K(s) −C

0 F

]{
q
p

}
=

{
F ext

0

}
(3.11)

with q the displacements of the structure, p the pressure variations in the fluid and F ext the external
load applied to the structure, where

∫
ΩS
σij(u)εij(δu)dx⇒ δqTKq∫
ΩS
ρSu.δudx⇒ δqTMq

1
ρF

∫
ΩF
∇p∇δpdx⇒ δpTFp

1
ρF c2

∫
ΩF

pδpdx⇒ δpTKpp∫
Σ pδu.ndx⇒ δqTCp

(3.12)

Full order equations for the coupled problem are impractical. One thus considers model reduction for
both the solid and fluid parts of the model. Given a reduction basis Ts for the structure, one builds
a reduction basis containing fluid modes within the bandwidth of interest and static corrections for
the effects of vectors in Ts. Thus the resulting basis for the fluid model is

[Tf] =
[
φf,1:NM [F]−1 [C]T [Ts]

]
(3.13)

Similar equations can of course be developed for applications where the fluid is represented using
boundary elements [48].

76 CHAPTER 3. TOOLBOX TUTORIAL

3.6.2 Acoustic stiffness on a loudspeaker

The procedure is divided in the following steps:

• declare the fluid as a superelement in the structure model. A typical call would take the form

[modelS,modelF]=fevisco(’fluidtest’); % this generates demo models

cf=feplot(fevisco(’fluidmerge’,modelS,modelF));

fecom(’curtabStack’,’SE:fluid’)

cf.sel(1)={’innode {y>=0}& eltname~=SE’,’colordatamat’}
Note that the solid model modelF will often be read from NASTRAN as modeshapes (PARAM,POST,-
2) or upcom superelement (PARAM,POST,-4). If node numbers in the fluid and solid are
coincident, the call automatically shifts fluid node numbers.

• assembly of the fluid/structure coupling and fluid matrices with the FluidMatrix command

fevisco(’fluidmatrix’,cf, ...

’SelElt selface’, ... % Fluid interface (in fluid SE)

’SelElt EltName quad4’); % Solid interface (in structure)

cf.Stack{’fsc’} % see the coupling superelement

Arguments of the command are

– a pointer to the feplot figure containing the solid model and fluid as a superelement

– a series of femesh commands that allows the selection of the fluid interface for which a
fluid structure property is defined. In the example, one selects the fluid (eltname flui)
and keeps its exterior boundary (SelFace).

If the generation of this interface cannot be performed using a single feutil command,
then the element matrix should be provided instead of a selection command.

– a selection for the solid interface. In the example, one retains all elements but in practical
applications, one will often eliminate parts of the model (weld points, stiffeners, ...). You
can again provide the selection as an element matrix.

The result is stored as a fsc superelement. It is obtained by estimating translations at the
fluid interface nodes trough MPCs (see ConnectionSurface) and standard integration of the
fluid/structure coupling elements. Its DOFs combine DOFs of the solid model and pressure
DOFs on the fluid superelement (the MPCs are eliminated).

• The final step is to generate a reduced coupled model. This requires defining, applied loads,
required sensors, and a modal model structure in vacuum (defined trough its modes def as
done here, or a parametric reduced model MVR. You can start by adding additional pressure
sensors then use the call

3.7. RAYLEIGH INTEGRAL COMPUTATIONS 77

cf.Stack{’fluid’}=stack_set(cf.Stack{’fluid’},’Info’,’EigOpt’,[6 10 -1e3]);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Sensors’,[65.01;1.19], ...

’DofLoad’,’Point load’,[65.01]);

dsol=fe_eig(modelS,[6 20 1e3]);

cf.Stack{’info’,’FluidEta’}=.1; % Fluid loss set to 10 %

cf.Stack{’info’,’DefaultZeta’}=.01; % Structure loss set to 2 %

fevisco(’fluidMakeReduced’,cf.mdl,dsol);

Acoustic loads are not yet considered in this procedure.

• Reduced basis computations are then performed using low level fe2xf calls

%continuedoc

[ci,XF]=iiplot

cf.Stack{’info’,’Freq’}=linspace(10,250,1024)’;
ci.Stack={’curve’,’coupled’,fe2xf(’frfzr’,cf)};
cf.Stack{’zCoef’}(4:6,4)={’-w.^2*1e-3’;1e-3;1e-3};
ci.Stack{’curve’,’no fluid’}=fe2xf(’frfzr’,cf);
iicom(’iixonly’,{’coupled’,’no fluid’})

3.7 Rayleigh integral computations

3.7.1 Summary of theory

The Rayleigh integral provides an approximation of the pressure at point M as

p(M) = −ρω
2

2π

∑
g

{ng}T {v(xg)}wgJ
R(x)

ek(ω)R(x) (3.14)

with R(x,M) = |x−M | the distance between emission and target, k = iω/c0 the wave number, ρ0

the fluid density, c0 the fluid celerity.

This integral is implemented in fsc and also in fe2xf frfzr in an optimized form.

78 CHAPTER 3. TOOLBOX TUTORIAL

3.7.2 Diffuse field and transmission loss

Sound transmission loss corresponds to the ratio between incident and radiated power in a panel.

The incident power is associated with acoustic loading assumed to be due to a diffuse field. This
loading is classically estimated using the power spectral density at integration points of the excited
surface

[SF (ω)]A,B = Sref (ω)

[
w(gA)J(gA)w(gB)J(gB)

sin(k ‖A−B‖)
k ‖A−B‖

]
(3.15)

where w(gA)J(gA) is the surface associated with the the integration rule at Gauss point A, k = ω/c

the acoustic wavenumber, γAB = sin(k‖A−B‖)
k‖A−B‖ the spatial correlation of pressures between two points,

Sref (ω) the blocking pressure. [?] also addresses grazing incidences. The function sin(x)
x is also called

sinc in the code.

When using a reduced model, where a kinematic description of motion is of the form {q} = [T] {qR},
it is more efficient to use the projection of the PSD defined in surface nodes onto the generalized
coordinates qR. Thus

[SFR(ω)]A,B = Sref (ω) [T]T
[
w(gA)J(gA)w(gB)J(gB)

sin(k ‖A−B‖)
k ‖A−B‖

]
[T] (3.16)

xxx order of operations xxx

An alternative to the definition of a diffuse field through a spectral density matrix, is the use a
sum of plane waves, each defined by an origin M , a direction {dM} and an amplitude aM (ω). The
pressure applied on any point of structure subjected to this wave is given by

pM (x, ω) = aM (ω)exp

(
− iω
c0
{dM}T {x−M}

)
= a(ω)exp

(
−k(ω) {d}T {x−M}

)
(3.17)

From a series of sources, and a loaded surface described by its Gauss points, the computation of
the pressure load is done as

{pi(ω)} =
∑
M

∑
g

wgJNi(xg)a(M,ω)exp
(
−k(ω) {dM}T {xg −M}

)
(3.18)

In order to compute the radiation response, the next step is to compute the transfer from pressure
forces to responses. xxx

Radiation from a surface into a cavity

3.8. NASTRAN GENERATION OF THE PARAMETRIC MODEL 79

3.8 NASTRAN Generation of the parametric model

The viscoelastic vibration toolbox is distributed with a set of NASTRAN DMAP and sample files
that are used to implement some solutions steps within the NASTRAN environment. The following
parameters are used in those DMAP

ViNset number of sets defining the element selections.
ViOut type of desired output. 0 returns the full matrices of the linear combination. 1

returns a first order reduced model.
ViSet1 ID for the first set. Sets are assumed to be written in sequential order.
ViIOSET ID for set containing the list of nodes that need to be saved for input/output

calculations.
ViShift Frequency shift used to handle cases with rigid body modes. By default the shift

is the complex double precision number 10.

fo by set

The objective of this DMAP (fo by set.dmp associated with sample job file vfirst step12.dat)
and the associated fevisco WriteStep12 and BuildStep12 commands is to generate a first order
reduction of a model where parameters are coefficients on the stiffness matrix of elements within a
given selection (NASTRAN set).

nas sdtserv

This is used to overload basic SDT functionality through NASTRAN calls. You must first set local
preferences

sd_pref(’set’,’SDT’,’ExternalEig’, ... % Callback used by fe_eig method 50

’mode=fevisco(’’nastran eig’’,m,k,model.DOF,opt,model,Case);’);

3.9 Advanced connection models

3.9.1 Screw models

Proper representation of screws is a classical difficulty that can be much alleviated using automated
procedures. The models used here consider the screw as a circular beam with diameter equal to that
of the hole.

80 CHAPTER 3. TOOLBOX TUTORIAL

Rigid screw models use rings of rigid connections. One only takes a few nodes on the screw to be
masters, and big lumps of model nodes are forced to follow the associated rigid body motion.

Flexible screw models assume that the responses of the nodes on the beam are dependent on the
response of a number of other nodes in the model. This dependency is represented as a weighted
sum, which in terms of loads corresponds to a distribution of loads on a number of nodes.

3.9.2 Physical point with rotations

This type of connection finds the element a given node is connected to (see feutilb match) and uses
shape functions of underlying element to estimate motion at the node. Rotations are determined
using local derivatives of the shape functions at the physical point.

4

Toolbox Reference

Contents

fe2xf 82

fevisco 93

m visco, mvisco 3m 101

nasread 108

naswrite 113

fe2xf

Purpose

Direct computation of frequency response functions.

This function is part of the viscoelastic tools.

Syntax

cases = fe2xf(’command’,model,case);

Description

frfzr [-file FileName]

This command supports direct frequency response computations and post-processing for reduced
models. For a given input, the response is fully characterized by the response at DOFs {q} (state
vector in control theory), which dependence on the load is defined by an evolution equation (equation
of dynamics in mechanics)

[Z(ω)]N×N {q(ω)}N×1 = [b]N×NA {u(ω)}NA (4.1)

Unit inputs [b] describe the spatial content of loads (see more details in section 3.4.3). The frequency
content is described at each frequency by specifying an input {u} or the associated covariance matrix
Σuu. Cases with enforced displacements require a few additional manipulations discussed in ?? but
leads to similar equation forms.

Outputs are characterized by a vector {y} that is supposed to be linearly related to DOFs through
an observation equation (see more details in section 3.4.4)

[y(ω)]NS = [c]NS×N {q(ω)}N (4.2)

where the y components can be translations, rotations, normal velocities, strains, ...

The first step of an analysis is to define the input shape matrix b and possibly the inputs u. The
second step is to define the outputs.

fe2xf provides a fairly large set of response processing options for full and reduced models, through
specification of a ’info’,’MifDes ’ entry in the model stack. This entry should contain a cell array,
each row describing a response processing with {post name,copt}. post name is the string identifier
of the post (’frf’, ’svd’, ...) and copt contains the options related to the post (see below). For
example

http://www.sdtools.com/visc

fe2xf

MVR=fevisco(’TestPlateLoadMVR’);

MVR=stack_set(MVR,’info’,’Freq’,[30:1:500]’);

MVR=stack_set(MVR,’info’,’MifDes’,{’frf’,[]});
RESP=fe2xf(horzcat(’frfzr -file’,nas2up(’tempname RESP.mat’)),MVR);

R1=RESP(1);R1.xf=abs(R1.xf);fe_curve(’plot -fig11 ylog xtight’,R1);

These low level commands are used, given a reduced model, to compute FRFs for a frequency/parameter
range. The reduced model uses the standard fields used to describe parametric models (see sec-
tion 3.4.5). It must at least contain the following fields .Range, .cr,.lab out .br,.lab in,
zCoefFcn, .K.

Given a FileName, results are saved every 30 seconds to allow post-processing during the evaluation.

Without output argument, one can specify the identifier of an iiplot or feplot figure (whose stack
will store results of computation) using a -cf i command option.

Accepted post-processing options given in an info,MifDes entry

• frf computes the transfer function for unit inputs

[H(ω)]NS×NA = [c]NS×N [Z]−1
N×N [b]N×NA (4.3)

Possibly select inputs and outputs by their indices with copt.in and copt.out.

• frfu computes the response to specified loads

{y}NS = [H(ω)]NS×NA {u(ω)}NA (4.4)

Possibly select outputs by their indices with copt.out.

• svd computes the singular values of H (the first one is sometimes called the spectral radius)

σk([H(ω)]NS×NA) (4.5)

Possibly select of a subset of singular values with copt.ind.

• svdu computes the singular values of H weighted by the input level given in {u(ω)}

σk([H(ω)]NS×NA

[
\u(ω)\

]
NA×NA

) (4.6)

Possibly select of a subset of singular values with copt.ind. Only vectors {u(ω)} (one load)
are supported at this time.

83

fe2xf

• usvd computes the singular values of {y} = [H] {u(ω)} which corresponds to the quadratic
norm of the response.

σk(
{

[H(ω)]NS×NA {u(ω)}NA
}

) (4.7)

• ener[k, m] computes the strain energy (enerk) or the kinetic energy (enerm) in a selection
of elements after recovering the physical displacement to associated DOFs. The recovery basis
must fit in memory. copt must give a model.

• mean computes the mean quadratic response of one or multiple sensor sets. A sensor set
is defined by a vector of indices in the cell array copt.group which each row has the form
{SetName,Indices}.
Following example computes the mean quadratic response along the node normals of previous
model using the fe2xf function, and correlates it to FRF as an illustration

• Rayleigh computes the Rayleigh integral for a radiating surface.

cf=fevisco(’TestPlateLoadMVR feplot’); MV=cf.mdl;

MAP=feutil(’getnormalnode map’,cf.mdl);

ind=find(ismember(MAP.ID,feutil(’getnode MatId1’,cf.mdl)));

MAP.ID=MAP.ID(ind); MAP.normal=MAP.normal(ind,:);

tdof=[MAP.ID MAP.ID MAP.normal];

cf.mdl=fe_case(cf.mdl,’remove’,’Sensors’,’SensDof’,’Sensors’,tdof);

cf.Stack{’info’,’MifDes’}={ ...

’mean -vel’,struct(’group’,{{’main’,[1:size(tdof,1)]’}}); % mean velocity

’frf -vel’,[]}; % all response

i1=feutil(’findnode x==0 & z==0 epsl1e-3’,MV);

MV=fe_case(MV,’DofLoad’,’Inputs’,i1(1:2)+.03);

fe_sens(’cr&lab’,cf); fe_sens(’br&lab’,cf)

R1=fe2xf(’frfzr’,cf);

% compare mean and frf

r1=squeeze(mean(abs(R1(2).Y).^2,2)); r2=squeeze(R1(1).Y);

if norm(r1./r2-1)>1e-10;error(’Mismatch in mean computation’);end

• impe computes the impedance for an input {u(ω)}.

{u(ω)}T [H(ω)] {u(ω)} (4.8)

Following example computes a set of responses

84

fe2xf

cf=fevisco(’TestPlateLoadMVR feplot’); MV=cf.mdl;

% redefine sensors

i1=feutil(’findnode x==0 & z==0 epsl1e-3’,MV);

MV=fe_case(MV,’SensDof’,’Sensors’,i1+.03);

MV=fe_case(MV,’DofLoad’,’Inputs’,i1(1:2)+.03);

MV=fe_case(MV,’setcurve’,’Inputs’,{’input’;’input’});
% reset reduced sensor representation

fe_sens(’cr&lab’,cf)

fe_sens(’br&lab’,cf)

MV=stack_set(MV,’info’,’Freq’,[30:.5:32]’); % Target frequencies

% define the time-dependent load

data.X{1}=linspace(0,200*1e-4,201);
data.Xlab{1}=fe_curve(’datatypecell’,’freq’);
data.Y=ones(1,length(data.X{1}));
MV=fe_curve(MV,’set’,’input’,data);

% define model selection for energy computation

mo1=feutil(’rmfield’,MV.GetData,’file’,’wd’,’Opt’,’Stack’);

mo1.Elt=feutil(’selelt matid103’,mo1);

% define responses to be computed

MV=stack_set(MV,’info’,’MifDes’,{’frf’,[];
’svd’,struct(’ind’,2);’svdu’,1;’usvd’,[];

’frf -acc’,struct(’out’,1:2); ’frf -vel’,struct(’out’,2);

’frfu’,[];

’enerk’,mo1;’enerm’,mo1;

’mean -vel’,struct(’group’,{{’all’,[1:10]}});
’impe’,[]});

% compute responses

fe2xf(’frfzr’,cf);

The commands fe sens(’br&lab’) and fe sens(’cr&lab’) are used to compute respectively the
reduced load matrix br and the reduced observation matrix cr, and their associated labels. If a
load is time dependent, the associated curve must be linked to it before calling fe sens(’br&lab’).
However there is no need to call again fe sens(’br&lab’) if the curve is changed provided that the
name of the curve stays the same.

direct [Full,First [,zCoef0], Iter, Reduced]

direct commands are used for direct frequency response computations. It is assumed that loads
and sensors are defined using entries in the model case.

[XF,def]=fe2xf(’DirectFull’,model) calls a direct full order complex sparse solver. With no

85

fe2xf

output argument, the FRFs are displayed in iiplot.

model is a structure array that describes the impedance of the model whose response is to be
computed. It is typically generated using the fevisco MakeModel command which describes the
fields used by fe2xf direct commands (see section ??).

DirectFirst builds a reduction basis containing nominal normal modes and a first order correction
for damping effects. DirectFirst zCoef0 generates zCoef0 based on the actual contents of zCoef
rather than the values stored in the info:zCoef stack entry.

DirectReduced assumes the model already contains a reduced model, as illustrated in section 3.5.6
.

These commands are illustrated in section 3.5.4 .

FrfPoleSearch

[xf,po]=fe2xf(’frfpolesearch’,rmodel,w,ind)

This low level command is used, given a reduced model, to track poles in the same range. The
reduced model uses the standard fields used to describe parametric models (see section 3.4.5). It
must at least contain the following fields .Range, .cr,.br, zCoefFcn, .K.

The pole tracking algorithm assumes that the modeshape is well approximated by the reduction
vector with the same index.

PoleEh

Performance map of a single mode in the E,h plane.

PoleTemp

Interpolation based search for dependence of poles on temperature (the FrfPoleSearch is a slower
alternative). xxx example needed xxx

RO=struct(’ind’,1:10, ... % selected modes for output

’Temp’,50:110, ... % temperatures

’Freq’,logspace(log10(1000),log10(20e3),30)’); % target range of frequencies

Po=fe2xf(’poletemp’,MV2,’Visco’,RO);

hist=fe2xf(’PoleRange’,MVR,ind);

fe2xf(’plotpolesearch’,hist);

86

fe2xf

PoleRange ...

This command supports a parametric study on the poles of frequency invariant damped model.
Variable coefficients must be defined by a zCoef stack entry. The mass column in particular should
be filled correctly and matrix types should be found in model.Opt(2,:) so that the stiffness can be
found by setting to zero coefficients of mass matrices in zCoef.

Options can be specified in an option structure RR in the example below or set in the command
string

• Real specifies that real and not complex modes should be computed

• -irange specifies indices of design points to be used in the experiment specified by the
info,Range entry.

• -frac adds energy fraction output for each mode in the history

• .IndMode indices of target modes. rb+(1:10) can be used to skip target modes.

• -EigOptval can be used to specify an eigenvalue solver if non full is to be used.

• -reduce can be used to perform the second reduction layer for complex mode reduction in a
real mode subspace, enhanced with non symmetric stiffness terms.

• -optimi in combination with -reduce to avoid recomputing the subspace at each step, if set
to 1 enhancement is performed from the initial basis at each time step. If set to 2 no operation
is performed on the reduction basis.

• -redFcn"call" in combination with -reduce and -optim2 allows external computation of the
real mode basis, must output mdr, fr, k0.

• d visco(’TutoPoleRange-s2’) performs a basic range computation with result in the Hist

data structure.

• d visco(’TutoPoleRange-s3’) opens an feplot with data tip linking.

PlotPoleSearch

Is the general interface to display pole histories. Accepted options are

• -cf specifies the figure to use.

• -khz uses kHz units.

87

fe2xf

• -nomind i specified design point numbers to be highlighted by a marker.

• -ShowDef displays in feplot, the mode shapes associated with design points in .NomInd in a call
of the form fe2xf(’plotpolesearch -cf1 -nomind 15 -leg E -showdef’,hist,MVR,cf).

• -leg s specifies a legend type. Currently e is accepted for a modulus range legend.

If a hist.faces is defined, these are used to connect points of the parametric study.

For an example, see fe2xf PoleRange.

zCoef

This command is used to generate the weighting coefficients in (3.7), more details are given in sec-
tion 3.4.2 .

model=fe2xf(’zcoef -default’,model); is used to analyze the model and define a default info,zCoef
entry. fe2xf(’zcoef’,model); displays the values. If a parameter range is defined, you can specify
the parameter to use with the -jpar i option and all parameters with -jpar -1.

DefList

When reading shapes for the purpose of generating reduced models, def=fe2xf(’DefList’,’root*.mat’);
reads all files matching root*.mat and combines the shapes in a v handle def.def field. Selection
of diameters and frequency range during the read process is performed using

RO=struct(’Fmax’,8000);

d1=fe_cyclicb(’DefList’,’root*.mat’,RO);

Optional argument RO can have following fields

• .Fmax defines maximal frequency of retained vectors.

• .Fmin defines minimal frequency of retained vectors.

• .First6RB defines upper frequency tolerance of rigid body modes. Then only the first 6
occurrences of rigid bodies are kept and next removed.

Build[,TrEnh,ListR]

Utilities for reduced parametric model (MVR) generation. The parametric model is assumed to be a
pre-assembled parametric model. It consists in a model containing assembled matrices, the assembled

88

fe2xf

matrices can be split into different contributions relative to specific parameters, see fe case par for
parameter definition and for reference on split assemblies.

The multi-model reduction then considers an orthonormalized basis concatenating the real modal
bases of a subset of chosen design points, possibly enhanced with inelastic contributions.

• BuildList,R

Command BuildList packages the input to command Build. It aims at defining the subset
of design points used for the modal basis reduction. The set of design points is in the Range

format (see sdtweb fe range).

The default syntax is [RunOpt,zCoef]=fe2xf(’BuildList’,model,RunOpt)’, with model a
SDT model with pre-defined matrices and resolved Case. RunOpt is a structure providing
options, with at least field .EigOpt that defined the real mode basis computation strategy. By
default, this corresponds to the options vector of fe eig , but it can also be the content of the
Mode tab (sdtroot initMode), or a cell array for callback definition.

The Range data must be defined, either with the direct Range format or as a cell array of pa-
rameters in the fe range Vect format. This data can exist at several places, it is sequentially
searched as

– the .Range field in RunOpt

– the info,Range stack entry in model

– the info,Range0 stack entry in model, this entry usually containing the cell array of
RangeVect parameters.

By default, it is assumed that the provided Range data is the parameter subset so that all
points will be used to generate the reduction list.

Command BuildListRstra, will consider a reduction of a global Range entry by generating
new points based on the parameter variations. The syntax is the same, RunOpt=fe2xf(’BuildListRMinMax’,model,RA)’
and stra is a strategy token to define chosen design points. This is based on fe range BuildR

functionality. Amongst all the generated design points (1+the number of varying parameters)
only the ones with a variation on elastic matrices (types 2, 20 1, 5, see are kept. Command
option -Firsttyp will add to the end of the list a series of first order corrections for the
provided matrix types in ty.

The output is the input structure RunOpt with additional field .list compatible with Build

command. The second output is the zCoef data for the model, see sdtweb zCoef.

• Build

This command generates a multi-model reduction basis, and can generate the associated re-
duced model (MVR).

89

fe2xf

To work with feplot the syntax is fe2xf(’build’,cf,R0)’, with cf is a handle to the feplot
figure that contains the initial model. In such case, the built reduced model is stored in
cf.Stack{’SE’,’MVR’}. If cf is replaced by a standard SDT model, the output is directly
the reduced model: MVR=fe2xf(’build’,model,R0)’.

RO is a data structure with fields defining the options

– .list cell array that defines reduction operations (see below). One can also rebuild MVR
from existing def providing RO.list as a cell array of ’file fname’ strings, or cell array
of def data structures.

– .Range is an alternative way to define the list of reduction operation, see BuildList. As
many mode computations (according to options defined in the RO.EigOpt field) as rows
in RO.Range.val are performed. See fe range BuildR and fevisco Range for how to
define a range data structure (field .val with as many rows as design points and as many
columns as matrices, field .lab is a cell array with string labels for each column).

– .ListR if no .list is present it is possible to call BuilListR on-the-fly by providing
this field. If set to one, the nominal ListR is called, but one can also provide a string
command, in which case a command is generated with [BuildListR RO.ListR].

– .EigOpt defines mode computation options (see fe eig).

– .Save contains 1 if mode computation results are to be saved during the reduction process.
If 2 the MVR is not built and modes are stored for delayed build call. If 0 or absent modes
are not saved.

– .Root is a string that begins the filenames where modes are saved (if RO.Save= 1 or 2).

– .NoT if set to 1, the reduction basis is output, and no model projection is performed. This
allows for further reduction basis handling, such as BuildTrEnh.

Basis building calls in .list, the cell can contain

– eig EigOpt entries in first column and the coefficients to be used to generate the current
stiffness in the second column.

– first entries in first column to generate a first order correction based on the last eigen-
value problem solved and stiffness defined by coefficients given in the second column.

– file fname reads subspace from def.def in fname. This can be used in conjunction with
a first run where data is saved using RO.Root=fullfile(sdtdef(’tempdir’),’tpMVR’);RO.Save=1;

– def precomputed def.

For use with fe reduc use an info,Fe2xfBuild entry.

Following example builds a reduced model using RO.list:

90

fe2xf

model=fevisco(’TestCantilever’); cf=feplot(model);

mat=m_visco(’convert INSI’,m_visco(’database Soundcoat-DYAD609’))

cf.mdl=fevisco(’addmat 101’,cf.mdl,’visco’,mat);

RO=struct(’list’,{{’eig 5 10 0’,[0 1 1];

’eig 5 10 0’,[0 1 .1];

’first’, [0 0 1]}});
fe2xf(’build’,cf,RO);

Another example with a call using a parameter Range:

model=fevisco(’TestCantilever’); cf=feplot(model)

mat=m_visco(’convert INSI’,m_visco(’database Soundcoat-DYAD609’))

cf.mdl=fevisco(’addmat 101’,cf.mdl,’visco’,mat);

Range=struct(’val’,[0 1 1;0 1 .1],’lab’,{{’m’ ’k’ ’visco’}})
RO=struct(’EigOpt’,[5 10 0],’Range’,Range);

fe2xf(’build’,cf,RO);

When starting from a model without pre-defined matrices (cf.mdl.K does not exist), one
assembles mass, stiffness and parameter matrices assemble -matdes 2 1 -1 -se NoT and
removes the nominal parameter matrices from the base stiffness. The nominal model is thus
associated with coefficients 1 for all parameters.

• BuildTrEnh

This command handles reduction basis enhancement adapted to inelastic contributions. Start-
ing from a reduction basis T , one generate the enhanced basis

T1 =
[
TK−1

S Ki1T...K
−1
S KitT

]
Orth

(4.9)

where Kit is the sum of all matrices found of type t (or each matrix with option diffMat, KS is
a symmetric positive definite matrix (usually a shifted stiffness matrix), and orthonormalization
uses a fe norm call with a mass and stiffness matrix.

The syntax is TR=fe2xf(’BuildTrEnh’,TR,model,Case,RO,kd,K)’, with TR a reduction basis
in the format, model a SDT model with pre-defined matrices (see command Build), Case the
resolved case entry associated to the assembled modal, RO if an option structure with field
.enhtyp containing the matrix types to be considered as a line vector, see , kd is a matrix
factor (see ofact) representing K−1

S , and K is a 2x1 cell array containing a mass and stiffness
matrix for normalization.

Entries kd and K can be omitted. In such case, kd will be generated as the shifted elastic
matrix of the model, the shift being used as found in either the info,EigOpt model entry (see
fe eig) or 1000 if undefined. If K is undefined, K1 will be the system mass matrix (types 2 or
20) and K2 will be elastic stiffness matrix (types 1 or 5).

91

fe2xf

Structure RO can contain other optional fields that if undefined can also be passed as command
options,

– .clearKd, if non-null the provided kd factor will be cleared in the procedure.

– .norm, set to 0 by default, the generated basis will not be orthonormalized, set to 1
orthonormalization will be performed sequentially after enhancement of each matrix type,
set to 2 one global orthonormalization will be performed after the total reduction basis
concatenation.

– .diffMat set to 0 by default. Set to 1 consider otrhonormalization for each matrix sepa-
rately instead of summing each type (necessary when handling matrices to interpolate).

– .MVR, to directly generate the reduced model based on model as an output. The reduction
basis is then stored in MVR.TR. e.g. MVR=fe2xf(’BuildTrEnh-MVR-norm’,TR,model,Case,4);.

– .NoT, to output a reduction basis on Case.DOF instead of model.DOF.

See also

fe2ss, fevisco, section 3.4.5

92

fevisco

Purpose

User interface function for support of viscoelastic materials

This function is part of the viscoelastic tools.

Syntax

out = fevisco(’command’,model);

Description

The solid and fluid models typically used for viscoelastic studies are described in section ?? , where
sample applications are treated.

AddMat,Par2Visc

model=fevisco(’addmat MatId’,model,’NameForMatId’,mat); is used to properly append a vis-
coelastic material with the given MatId to the model. During this definition, one sets the reference
elastic material in model.pl, the viscoelastic material definition in model.Stack{’mat’,’NameForMatId’}
and a parameter definition in model.CStack{’par’,’NameForMatId’}.

If mat.pl does not contain a reference material, one is created using a call to m visco RefMat.

The tag NameForMatId will be used for parametric model generation and fe2xf zCoef calls, if you
change material you should just modify the model.Stack{’mat’,’NameForMatId’} data but not
the parameter or the reference material. fevisco(’Par2Visc’,cf) uses the NameForMatId tag to
check the existence of viscoelastic materials associated with matrices and modifies the zCoefFcn

entries accordingly.

cf=fevisco(’testplateLoadMV feplot’);

cf.Stack{’info’,’Freq’}=[500:10:4000]’;
cf.Stack{’info’,’Range’}=[10 20]’;

% define material with a unit conversion

mat=m_visco(’convert INSI’,m_visco(’database Soundcoat-DYAD609’));

% MatId for original, name of parameter

cf.mdl = fevisco(’addmat 101’,cf.mdl,’Constrained 101’,mat);

fevisco(’par2visc’,cf);cf.Stack{’zCoef’}
fe2xf(’zcoef’,cf)

The command can also be used with reduced models, so set a viscoelastic parameter variation (visc

entry in zcoef) for a stiffness parameter that is already existing.

http://www.sdtools.com/visc

fevisco

Fluid [merge,matrix,makereduced, ...]

These commands are meant to allow the generation of a coupled fluid/structure model based on a
reduced model used for viscoelastic structure predictions (result of a fe2xf direct command for
example).

A complete example is treated in section 3.6.2 . The steps are

• add the fluid as a superelement to the solid model
mCP=fevisco(’fluidmerge’,modelS,modelF).

• assembly of the fluid/structure coupling and fluid matrices with the FluidMatrix command
fevisco(’FluidMatrix’,cf, ’FluidInterfaceSel’,’SolidInterfaceSelection’). The fluid
interface selection applies to the elements of the fluid superelement renumbered consistently
for the combined model.

The result is stored in the feplot model stack as two assembled superelements which you can
access with cf.Stack{’fluid’} and cf.Stack{’FSC’}. When built with fevisco one also
has coup.Node,coup.Elt with the fluid interface as fsc elements and the solid interface as
quad4 elements to allow verification of the matching.

Note that the coup matrix can also be imported from an external reference code that of-
ten exists in the automotive industry. fevisco(’FluidMatrix’,cf,coup) with coup.K,

coup.sdof, coup.fdof describing the coupling matrix, solid and fluid DOFs. Solid DOFs
correspond to rows of coup.K, fluid DOFs to columns.

The fevisco(’fluidCheckCon’,cf) can be used to check the connectivity of the coupling
matrix. The distance between each coupled fluid node and structural nodes involved in the
coupling is computed and the associated links are shown for verification.

• compute the fluid modes and generate a reduced coupled model

[mRCoup,dflu]=fevisco(’fluidMakeReduced’,mCP,dsol);

which can then be used for predictions with fe2xf as illustrated in section 3.6.2 .

Feplot

fevisco(’feplotEnerK’,’matid1001’,’matid1 2 3’); displays the strain energy of the viscoelas-
tic part of the structure (first selection here MatId 1001) as one object and the rest of the structure
(element selection in third argument) as a wire-frame.

feplotStress provides stress cuts within volume. Accepted options are

• MatId desired material

94

fevisco

• DefLen max arrow length

• Rule integration rule

• v element direction : 1 for x, 2 y, 3 z,4 normal for z revolution layer.

PA=d_visco(’Script Comp13Cantilever’);

comp13(’solveEFracNom’); % comgui imwrite

cf=feplot(PA.MVR,PA.MVR.TR);

RA=struct(’MatId’,’101’,’DefLen’,.01,’rule’,-1,’v’,3, ...

’Arrow’,’Arrow’);

fevisco(’feplotstress’,PA.MVR,RA)

MakeModel [Matid i]

A parametric model is described by a type 1 superelement as detailed in section 3.4.5 .

The MakeModel command generates this model based on a type 3 superelement where parameters
are set (see upcom Par commands, one then generates a model for parametric studies) or where
viscoelastic materials have been properly declared using fevisco addmat commands (note that
you can start with parameters and use the par2visc command to declare those parameters to
correspond to viscoelastic materials, see section 3.4.2). You can also parameterize elastic materials
using ’MakeModel MatId i’ where the additional elastic materials are given by i. The example
given in section 3.5.6 , uses commands

fevisco(’testplate up’);cf=feplot;Up=cf.mdl;% This is a simple test case

Up=stack_rm(Up,’mat’);

Up = fevisco(’addmat 101’,Up,’First area’,’ISD112 (1993)’);

Up = fevisco(’addmat 103’,Up,’Second area’,’ISD112 (1993)’);

MV = fevisco(’makemodel matid 101 103’,Up);

If you have a reduced basis in def, MVR = fevisco(’makemodel matid 101 103’,Up,def); is used
to generate a reduced model. See section 3.5.6 .

The resulting data structure MV contains all the stack entries needed for viscoelastic response compu-
tations (see section 3.4.5) : parameters defined in the case stack and viscoelastic materials defined
as mat entries and as elastic materials in MV.pl (this is needed to define the reference modulus value,
the selection of a reference E or G is based on the content of mat.nomo.

95

fevisco

[Write,Build] Step12

This command is used to generate parameterized reduced models in one NASTRAN run as detailed
in section 3.8 . From the command line, you can use fevisco(’WriteStep12 -run’,cf.mdl), to
start the job and fevisco(’BuildStep12’,cf.mdl) to build the parametric model.

With the command option -write, writestep12 command writes the bulk model before starting
job.

For in Matlab operation you can use the fe2xf DirectFirst command.

MakeSandwich layers

Tools for the generation of multi-layer sandwich models.

fevisco(’makesandwich (layer generation)’,FEnode,FEel0,treated,MAPN);

For each layer, the makesandwich command specifies

• element nature (shell or volume)

• desired material property for the meshed layer (for the starting layer use 0).

• thickness of volumes, and distances of faces to neutral fiber for shells. For shells, one has two
distances from the bottom layer to the neutral axis and from the neutral axis to the top layer.

The supporting model can be specified by its nodes and elements as shown above or using a model
data structure. Treated is an optional FindNode command that allows generation of a sandwich for
a part of the original model only.

96

fevisco

Figure 4.1: Example of a MakeSandwich command

For example, the generation of a three layer sandwich with the original layer 0.01 thick (leading to
a 0.005 offset), a volume of thickness 0.002, and a second 0.01 thick shell looks like

femesh(’reset’);

femesh(’;testquad4’);FEel0=feutil(’orient 1 n 0 0 1’,FEnode,FEel0);

femesh(’divide’,linspace(0,1,10),linspace(0,1,12));

sandCom=’makesandwich shell 0 0 .005 volume 101 .002 shell 102 -.005 .005’;

treated=’withnode{x>.5 & y>.5}’;
[FEnode,FEelt]=fevisco(sandCom,FEnode,FEel0,treated);

femesh(’plotelt’);fecom(’colordatamat’);

Offsets are handled using rigid links between the shell neutral fiber and upper/lower surfaces. By
default element normals at the center are used to define thickness, you can also use normals at node
by inserting a -node option in the command.

Notes on sandCom format:

The first layer uses 0 material property : it means that the original material property of the first
layer is used. For the volume layer, 101 is used and only the thickness needs to be specified (.002).
The last layer is a shell (property 102) with a thickness of .001 with an offset of .005.

97

fevisco

The command allows more accurate control of normals used for the sandwich generation. Nominally
the normals are generated using the commands

MAPE = feutil(’get normalmap’,node,elt);

MAPN = feutil(’get normalmap node’,node,elt);

where elt is the element selection for the sandwich generation. You can provide your own maps
using with a call of the form fevisco(sandCom,FEnode,FEel0,treated,MAP). It is then expected
that the provided MAP has an MAP.opt field where opt(1)==1 leads to sandwich generation with
offset at element center (element normal map) and opt(1)==2 uses a normal map at nodes.

MatSplit

model=fevisco(’MatSplit MatId -type "val"’,model);

Split material MatId into multiple materials corresponding. Elements are then repeated.

• svd decompose constitutive law into 6 main directions

• ortho use 9 components of orthotropic material, orthu uses unit components so that coeffi-
cients to be used are the physical values

• iso uses a single coefficient for the material. isoe defines the constitutive law divided by E.

• rot split in radial and tangential components

• EG split compression and shear

• KG split bulk and shear modulus (1.17)

• -ParType=1 used to define a type 1 (stiffness) parameter for each constitutive component in
ortho and rot. -ParType=5 for assembly of geometric stiffness (needed for material orientation
handling).

• .Group={
zs’Comp’,[1:3 7:9];’Shear’,4:6}} can be used to group components into a single param-
eter.

• m-ortho is used to define an additional homogeneous material for all elements. The associated
MatId and ProId are assumed equal and should not be used by any initial element.

mo2=d_mesh(’rve1fiber’,struct(’vf’,.5,’mat’,’BerthCarDx’,’y’,3,’ny’,1));

mo2=fe_case(mo2,’remove’,’Matrix’);

mo3=fevisco(’matsplit MatId 1 -partype1 -type ortho’,mo2);

[mo2,C2]=fe_case(mo3,’assemble -matdes -1 -SE -NoT’);mo2

Utilities for energy display are available with MatESplit -MatId i -cut val .

98

fevisco

Thermo

Computation of the power dissipated within a viscoelastic layer for forced response at a selected
number of frequencies.

StrainMap

This is an experimental command to compute membrane strains with an offset to a given shell
surface. This result can be used for placement.

smap = fevisco(’StrainMap OffSet’,model,def,SurfaceSelection)

fevisco(’StrainPlot’,smap,def)

Test

A few test cases are provided with fevisco to allow example documentation.

TestPlate generates the model of a square plate with partial coverage using constrained layer
damping on one side and free layer damping on the other side.

TestCantilever generates the model of a cantilevered constrained layer damping treatment.

WriteInclude

fevisco(’WriteInclude Selection’,model,FileName) is used to generate a NASTRAN bulk
with name FileName containing

• the associated nodes,

• the elements selected by Selection

• the rigid links and other case information connected to the nodes used by these elements

• the material and element property information used by the selected elements

This command is used to write the bulk for sandwich structures generated by MakeSandwich com-
mands. Usually specific MatId are used to identify materials for the sandwich so that the selection is
simply a list of material identifiers (for example ’WriteInclude MatId 1001 1002’). When called
with a selection, an attempt to select the case information associated with the nodes of the selection
is performed.

99

fevisco

As an alternate format fevisco(’WriteInclude’,NewModel,OldModel,FileName) writes elements,
nodes and properties of NewModel that are not in OldModel. Case entries of the NewModel are also
written.

For example

model=fevisco(’testplate’);

model=fe_case(model,’remove’,’Drilling’);

tname=nas2up(’tempname include.dat’);

fevisco(’writeinclude MatId 101 102’,model,tname);

ceig, direct

The ceig command supports advanced complex eigenvalue solutions for constant viscous and/or
hysteretic damping. It is normally called through fe ceig where the solvers are documented.

The direct command supports various direct frequency response solvers. It is normally called
through fe2xf where the solvers are documented.

NASTRAN

Utilities for interfacing with NASTRAN.

MVR.zCoefFcn=fevisco(’nastranzCoefv1’,model,MVR) builds the proper .zCoefFcn to reproduce
jobs that would otherwise run as SOL108 with one viscoelastic material.

fevisco(’nastranEtaGlob’,model) return the global loss factor (known PARAM,G for NASTRAN)
with proper default handling.

NastranEig implements a call to NASTRAN as fe eig method 50. To use this capability, first use
the call fevisco(’NastranEig’) that will set preferences.

See also

fe2xf, m visco, section ??

100

m visco, mvisco 3m

Purpose

Material function for support of viscoelastic materials

This function is part of the viscoelastic tools.

Syntax

out = m_visco(’command’,model);

Description

Viscoelastic materials are described by a structure with fields

.pl Reference elastic properties used for initial model assembly. This should include the
loss factor.

.name Reference name for the material.

.type Always set to m visco since this is the material handling function.

.unit Unit system see fe mat convert.

.T0 Reference temperature.

.G Description of the modulus as a function of frequency. This can be a matrix with
three columns giving frequencies, real and imaginary parts of the modulus, or a
string that will be evaluated to determine the modulus. To sort frequencies use
mat.G=sortrows(mat.G).

.at Description of the frequency shift as a function of temperature. This can be a matrix
with two columns giving temperature and frequency shift αT , or a string that will be
evaluated to determine the shift factor.

.nomo is a cell array containing information need to create the nomogram. See details under
the nomo command.

Accepted commands are

database,default,info,dbval

These commands are used to select materials. Info lists available materials. Default gives the first
material. m visco searches its own database and for mvisco *.m functions in the Matlab search
path. The mvisco 3m function is given to illustrate the contents of a user database file.

To start a selection process use cf=feplot;m visco(’database’,cf). This will give you a list of
materials in the database. In the Mat tab, select materials you want to see, use the delete key (or the

http://www.sdtools.com/visc

m visco, mvisco 3m

Remove material ... context menu) to remove entries. You can also add materials to the stack
manually with

m_visco(’database -unit TM Densil’,cf);

m_visco(’database -unit TM Smactane 50_G’,cf);

By default, the maximum loss factor and associated modulus and frequency are displayed for the
material reference temperature. You can order the list by giving a target InfoTarg freq temp

sort (frequency, temperature, sort by modulus 1 or loss factor 2). Thus

>> m_visco(’info wtarg 30 ttarg=20’)

CorningGlass0010 (G 2.87e+009 Pa e 0.02 3.00e+001 Hz 20 C)

ChicagoVitreous-CV325 (E 1.03e+008 Pa e 0.06 3.00e+001 Hz 20 C)

Soundcoat-DYAD609 (G 6.21e+008 Pa e 0.08 3.00e+001 Hz 20 C)

BarryControl-H-326 (G 5.90e+006 Pa e 0.08 3.00e+001 Hz 20 C)

...

You can also select your material by opening an feplot figure with all materials and selecting
graphically. The InfoTarg command can then be used to select materials in a plots. For example
giving a target frequency and a range of temperatures is achieved with

m_visco(’database’);cf=feplot; % open FEPLOT figure with database

RO=struct(’wtarg’,20,’ttarg’,[-10 5 20 40 60 80]’);

mat=[stack_get(cf.mdl,’mat’,’#ISD’); % Get selected materials

stack_get(cf.mdl,’mat’,’#Smac’)];

cf.mdl.Stack=mat;

% Once you have all desired entries, redraw

m_visco(’info -modmin 1e6 -etamin .2 -cf1’,cf,RO);

Figure 4.2: Material selection diagram.

102

m visco, mvisco 3m

mat=m visco(’database Name’) tries to find an optimal match for Name in the database and returns
the associated material. mat=m visco(’database -unit TM Name’) converts to unit system TM
(see fe mat Convert). Command option -matid can be used to specify a MatId for the material.
Without output argument material is added to the stack of the feplot figure (one can give the cf

pointer as a second input argument). If Name is not given, all materials are returned.

mat=m visco(’dbval’) is used to generate equivalent elastic materials. This is not currently func-
tional.

The 3ParWLF material is a standard viscoelastic model with WLF type temperature dependence. Its
constitutive law is the characterized by

G = G0
1 + iωR/z

1 + iωR/p
and ωR = ωαT = ω10−c1∗(T−T0)/(c2+T−T0) (4.10)

The parameters retained to characterize this model are G0, etamax, wmax, c1, c2, T0.

DispMat

m visco(’dispmat’,mat) is used to generate a text display of a viscoelastic material describe by
the mat data structure.

RefMat

m visco(’refmat’,mat,model) uses data on temperature range and frequency in the model to
create a

nomo

The nomo command generates a standard nomogram plot. The following entries in the cell array
mat.nomo are used. If using a mat.G table that contains raw experimental data that is non smooth,
mat=m visco(’nomo -smooth’,mat) will generate a smooth table.

103

m visco, mvisco 3m

Eeta gives the log10 of Emin,Emax,etamax. Note that for units in Pa, a shift to MPa is
performed in the plot.

w gives the log10 of Wmin,WRmin,WRmax. Increasing Wmin shifts the show isotherms
right.

file gives the name of the bitmap file used to digitize the nomogram. When this file is in
the current directory, the nomogram and the bitmap are overlaid. This allows editing
of tabular values as described under fevisco handnomo.

T is used to specify isotherm positions in the nomogram.

For example

m_visco(’nomo’,’isd112 (1999)’,4)

mat=m_visco(’isd112 (1993)’);

mat=sdsetprop(mat,’nomo’,’w’,[-1 0 12],’Eeta’,[4 8 2],’type’,’G’, ...

’unit’,’SI’,’T’,[-20:20:120]);

m_visco(’nomo’,mat)

Figure 4.3: Nomogram of the ISD112.

at

The at command is used to generate shift factor using calls of the form

at=m_visco(’at’,T,mat)

where mat can be a data structure or a string matched against the m visco database.

104

m visco, mvisco 3m

interp [,-unit SI] [,showrange]

The interp command is used to generate the modulus at arbitrary frequency-temperature design
points using calls of the form G=m mvisco(’interp’,w,T,mat) where mat can be a data structure
or a string matched against the m visco database. Accepted options are

• -unit SI an optional unit conversion code (see fe mat(’convert’) can be given when needed.

• ToE uses the assumption that G = E
E(1+ν) to estimate the Young modulus.

• -rel generates the relative coefficient such that G(ω, T) = coefG0.

• ShowRange generates a standard display giving modulus variations for a given frequency/temperature
range. This allows the user to validate the usefulness of a particular material for the operating
conditions given by this range.

• cf=1 selects the figure for display

• yscale=log,lin selects linear or log scale for display.

The For example

w=logspace(1,3,100); % default : cf.Stack{’info’,’Freq’} in Hz

T=[0:10:50]; % default : cf.Stack{’info’,’Range’}
mat=m_visco(’isd112 (1993)’);

G=m_visco(’interp -unit MM’,w,T(:),mat);

m_visco(’interp ShowRange’,w,T(:),mat);

%m_visco(’interp’,cf,’MatName’) is also acceptable

105

m visco, mvisco 3m

Figure 4.4: Modulus vs. frequency and temperature.

WriteNastran

This utility is meant to help users generate complex modulus tables for use in NASTRAN. The
tables are generated as two TABLED1 bulk entries if only one ID is specified in the command, the real
and imaginary parts are written with sequential numbers. The command specifies the table identifier
(default 1) and file name. Note that this only supports a single temperature, since NASTRAN does
not handle multi dimensional tables.

For more details on writing TABLED1 entries see naswrite WriteCurve.

fname=horzcat(nas2up(’tempname’),’.blk’);

m_visco(horzcat(’WriteNastran 101 201’,fname), ...

10:10:100,10,’isd112 (1993)’);

type(fname)

HandNomo FileName

Displays the bitmap image of a nomogram and guides the user through the process needed to obtain
a tabular version suitable for inclusion in m visco. The main steps of the procedure are as follows

• Rect : define the location of the axis in the bitmap by selecting two of its corners.

• Elim : click on the text of ytick labels on the left of the axis to define the modulus range and
the maximum axis value for the loss factor range.

106

m visco, mvisco 3m

• wlim : click on the text of ytick labels on the right of the axis to define the minimum frequency
displayed on the true frequency axis (left y axis) and the min and max values for the reduced
frequency (x axis).

• at : click on the isotherm that is always generated to enter the isotherm edition mode. You
can then use the following keys to edit the at values. n to add new isotherm values. Left
and right arrows to move the offset of the current isotherm. Up and down arrow to select a
different isotherm.

If the isotherm slope is not correct, check the Elim and wlim values and possibly adjust the
axis rectangle using : uU to move the rectangle along -x or +x; vV to move the rectangle
along -y or +y; xXyY to resize the rectangle.

• eta click on the green line with circle markers. Adjust values with your mouse. Use left and
right arrows to select the points and q to exit.

• G click on the blue line with circle markers. Adjust values with your mouse. Use left and right
arrows to select the points and q to exit.

At any point during the procedure, you can press the i key to generate a screen printout of the
material. This can then be included in m visco or a mvisco *.m database file.

With a material saved in a database, can superpose the original figure and the nomogram using
m visco(’HandNomo MatName’) while having the image file in the current directory.

See also

fe2xf, m visco, section ??

107

nasread

Purpose

Read results from outputs of the MSC/NASTRAN finite element code. This function is part of
FEMLink.

Syntax

out = nasread(’FileName’,’Command’)

Description

nasread reads bulk data deck (NASTRAN input), direct reading of model and result information
in OUTPUT2 and OUTPUT4 files generated using NASTRAN PARAM,POST,-i cards. This is the
most efficient and accurate method to import NASTRAN results for post-processing (visualization
with feplot, normal model handling with nor2ss, ...) or parameterized model handling with upcom.
Results in the .f06 text file (no longer supported).

Available commands are

Bulk file

model=nasread(’FileName’,’bulk’) reads NASTRAN bulk files for nodes (grid points), element
description matrix, material and element properties, and coordinate transformations, MPC, SPC,
DMIG, SETS, ...

Use ’BulkNo’ for a file with no BEGIN BULK card. Unsupported cards are displayed to let you know
what was not read. You can omit the ’bulk’ command when the file name has the .dat or .bdf

extension.

Each row of the bas.bas output argument contains the description of a coordinate system.

The following table gives a partial conversion list. For an up to date table use nas2up(’convlist’)

nasread

NASTRAN SDT
CELAS1, CELAS2, RBAR

celas

RBE2
rigid

RBE3
rbe3 in Case

CONROD
bar1

CBAR, CBEAM, CROD
beam1

CBUSH
cbush

CSHEAR
quad4

CONM1, CONM2
mass2

CHEXA
hexa8, hexa20

CPENTA
penta6, penta15

CTETRA
tetra4, tetra10

CTRIA3, CTRIAR
tria3

CTRIA6
tria6

CQUAD4, CQUADR
quad4

CQUAD8
quadb

Details on properties are given under naswrite WritePLIL. NASTRAN Scalar points are treated
as standard SDT nodes with the scalar DOF being set to DOF .01 (this has been tested for nodes,
DMIG and MPC).

OUTPUT2 binary

model=nasread(’FileName’,’output2’) reads output2 binary output format for tables, matrices
and labels. You can omit the output2 command if the file names end with 2. The output model is a
model data structure described in section ?? . If deformations are present in the binary file, the are
saved OUG(i) entries in the stack (see section ??). With no output argument, the result is shown
in feplot.

Warning: do not use the FORM = FORMATTED in the eventual ASSIGN OUTPUT2 statement.

109

nasread

The optional out argument is a cell array with fields the following fields

.name
Header data block name (table, matrix) or label (label)

.dname
Data block name (table, matrix) or NASTRAN header (label)

.data
cell array with logical records (tables), matrix (matrix), empty (label)

.trl
Trailer (7 integers) followed by record 3 data if any (for table and matrix), date (for
label)

Translation is provided for the following tables

GEOM1 nodes with support for local coordinates and output of nodes in global coordinates
GEOM2 elements with translation to SDT model description matrix (see bulk command).
GEOM4 translates constraints (MPC, OMIT, SPC) and rigid links (RBAR, RBE1, RBE2, RBE3, RROD,

...) to SDT model description matrix
GPDT with use of GPL and CSTM to obtain nodes in global coordinates
KDICT reading of element mass (MDICT, MELM) and stiffness (KDICT, KELM) matrix dictionar-

ies and transformation of a type 3 superelement handled by upcom. This is typi-
cally obtained from NASTRAN with PARAM,POST,-4. To choose the file name use
Up.file=’FileName’;Up=nasread(Up,’Output2.op2’);

MPT material property tables
OUG transformation of shapes (modes, time response, static response, ...) as curve entries

in the stack (possibly multiple if various outputs are requested).
Note : by default deformations are in the SDT global coordinate system (basic in
NASTRAN terminology). You may switch to output in the local (global in NAS-
TRAN terminology) using PARAM,OUGCORD,GLOBAL.
To avoid Out of Memory errors when reading deformations, you can set use a smaller
buffer sdtdef(’OutOfCoreBufferSize’,10) (in MB). When too large, def.def is
left in the file and read as a v handle object that lets you access deformations with
standard indexing commands. Use def.def=def.def(:,:) to load all.
To get the deformation in the stack use calls of the form
def=stack get(model,’curve’,’OUG(1)’,’get’)

OEE tables of element energy
OES tables of element stresses or strains.

This translation allows direct reading/translation of output generated with NASTRAN PARAM,POST

commands simply using out=nasread(’FileName.op2’). For model and modeshapes, use
PARAM,POST,-1. For model and element matrices use PARAM,POST,-4 or PARAM,POST,-5 (see
BuildUp command below).

110

nasread

BuildUp,BuildOrLoad

A standard use of FEMLink is to import a model including element matrices to be used later with
upcom. You must first run NASTRAN SOL103 with PARAM,POST,-4 to generate the appropriate
.op2 file (note that you must include the geometry in the file, that is not use PARAM,OGEOM,NO).
Assuming that you have saved the bulk file and the .op2 result in the same directory with the same
name (different extension), then

Up=nasread(’FileName.blk’,’buildup’)

reads the bulk and .op2 file to generate a superelement saved in FileName.mat.

It is necessary to read the bulk because linear constraints are not saved in the .op2 file during the
NASTRAN run. If you have no such constraints, you can read the .op2 only with Up=upcom(’load

FileName);Up=nasread(Up,’FileName.op2’).

The BuildOrLoad command is used to generate the upcom file on the first run and simply load it if
it already exists.

nasread(’FileName.blk’,’BuildOrLoad’) % result in global variable Up

OUTPUT4 binary

out=nasread(’FileName’,’output4’) reads output4 binary output format for matrices (stiffness,
mass, restitution matrices ...). The result out is a cell array containing matrix names and values
stored as Matlab sparse matrices.

All double precision matrix types are now supported. If you encounter any problem, ask for a patch
which will be provided promptly.

Output4 text files are also supported with less performance and no support for non sequential access
to data with the SDT v handle object.

Supported options

• -full : assumes that the matrix to be read should be stored as full (default sparse).

• -transpose : transpose data while reading.

• -hdf : save data in a hdf file. Reading is performed using buffer
(sdtdef(’OutOfCoreBufferSize’,100) for a 100MB buffer). It is useful to overcome the
2GB limit on 32 bit Matlab: see sdthdf for details about how to build v handle on hdf file.

111

nasread

.f06 output (obsolete)

ASCII reading in .f06 files is slow and often generates round-off errors. You should thus consider
reading binary OUTPUT2 and OUTPUT4 files, which is now the only supported format. You may
try reading matrices with nasread(’FileName’,’matprt’), tables with nasread(’F’,’tabpt’)

and real modes with

[vector,mdof]=nasread(’filename’,’vectortype’)

Supported vectors are displacement (displacement), applied load vector (oload) and grid point
stress (gpstress).

See also

naswrite, FEMLink

112

naswrite

Purpose

Formatted ASCII output to MSC/NASTRAN bulk data deck. This function is part of FEMLink.

Syntax

naswrite(’FileName’,node,elt,pl,il)

naswrite(’FileName’,’command’, ...)

naswrite(’-newFileName’,’command’, ...)

naswrite(fid,’command’, ...)

Description

naswrite appends its output to the file FileName or creates it, if it does not exist. Use option
-newFileName to force deletion of an existing file. You can also provide a handle fid to a file that
you opened with fopen. fid=1 can be used to have a screen output.

EditBulk

Supports bulk file editing. Calls take the form
nas2up(’EditBulk’,InFile,edits,Outfile), where InFile and OutFile are file names and edits

is a cell array with four columns giving command, BeginTag, EndTag, and data. Accepted commands
are

Before inserts data before the BeginTag.
Insert inserts data after the EndTag.
Remove removes a given card. Warning this does not yet handle multiple line cards.
Set used to set parameter and assign values. For example

edits={’Set’,’PARAM’,’POST’,’-2’};
rootname=’my_job’;

f0={’OUTPUT4’,sprintf(’%s_mkekvr.op4’,rootname),’NEW’,40,’DELETE’,
’OUTPUT4’,sprintf(’%s_TR.op4’,rootname),’NEW’,41,’DELETE’};

edits(end+1,1:4)={’set’,’ASSIGN’,’’,f0}

When writing automated solutions, the edits should be stored in a stack entry info,EditBulk.

model

naswrite

naswrite(’FileName’,model) the nominal call, it writes everything possible : nodes, elements,
material properties, case information (boundary conditions, loads, etc.). For example
naswrite(1,femesh(’testquad4’)).

The following information present in model stack is supported

• curves as TABLED1 cards if some curves are declared in the model.Stack see fe curve for the
format).

• Fixed DOFs as SPC1 cards if the model case contains FixDof and/or KeepDof entries.
FixDof,AutoSPC is ignored if it exists.

• Multiple point constraints as MPC cards if the model case contains MPC entries.

• coordinate systems as CORDi cards if model.bas is defined (see basis for the format).

The obsolete call naswrite(’FileName’,node,elt,pl,il) is still supported.

node,elt

You can also write nodes and elements using the low level calls but this will not allow fixes in
material/element property numbers or writing of case information.

femesh(’reset’);

femesh(’testquad4’)

fid=1 % fid=fopen(’FileName’);

naswrite(fid,’node’,FEnode)

naswrite(fid,’node’,FEnode)

%fclose(fid)

Note that node(:,4) which is a group identifier in SDT, is written as the SEID in NASTRAN.
This may cause problems when writing models from translated from other FEM codes. Just use
model.Node(:,4)=0 in such cases.

dmig

DMIG writing is supported through calls of the form naswrite(fid,’dmigwrite NAME’,mat,mdof).
For example

naswrite(1,’dmigwrite KAAT’,rand(3),[1:3]’+.01)

A nastran,dmig entry in model.Stack, where the data is a cell array where each row gives name,
DOF and matrix, will also be written. You can then add these matrices to your model by adding
cards of the form K2GG=KAAT to you NASTRAN case.

114

naswrite

job

NASTRAN job handling on a remote server from the Matlab command line is partially supported.
You are expected to have ssh and scp installed on your computer. On windows, it is assumed that
you have access to these commands using CYGWIN. You first need to define your preferences

setpref(’FEMLink’,’CopyFcn’,’scp’);

setpref(’FEMLink’,’RunNastran’,’nastran’);

setpref(’FEMLink’,’RemoteShell’,’ssh’);

setpref(’FEMLink’,’RemoteDir’,’/tmp2/nastran’);

setpref(’FEMLink’,’RemoteUserHost’,’user@myhost.com’)

setpref(’FEMLink’,’DmapDir’,fullfile(fileparts(which(’nasread’)),’dmap’))

You can define a job handler customized to your needs and still use the nas2up calls for portability
by defining setpref(’FEMLink’,’NASTRANJobHandler’, ’FunctionName’).

You can then run a job using nas2up(’joball’,’BulkFileName.dat’). Additional arguments can
be passed to the RunNastran command by simply adding them to the joball command. For example
nas2up(’joball’,’BulkFileName.dat’,struct(’RunOptions’,’memory=1GB’)).

It is possible provide specific options to your job handler by storing them as a info,NasJobOptentry
in your model.Stack. nas2up(’JobOptReset’) resets the default. The calling format in various
functions that use the job handling facility is then

model=stack_set(’info’,’NasJobOpt’,nas2up(’jobopt’));

nas2up(’joball’,’step12.dat’,model);

RunOpt.RunOptions stores text options to be added to the nastran command. RunOpt.BackWd can
be used to specify an additional relative directory for the JobCpFrom command. RunOpt.RemoteRelDir
can be used to specify the associated input for the JobCpTo command.

nas2up(’JobCpTo’, ’LocalFileName’, ’RemoteRelDir’) puts (copies) files to the remote direc-
tory or to fullfile(RemoteDir,RemoteRelativeDir) if specified.

nas2up(’JobCpFrom’, ’RemoteFileName’) fetches files. The full remote file name is given by
fullfile(RemoteDir,RemoteFileName). Any relative directory is ignored for the local directory.

Here is a simple script that generates a model, runs NASTRAN and reads the result

wd=sdtdef(’tempdir’);

model=demosdt(’demoubeam-2mat’); cf=feplot;

model=fe_case(model,’dofload’,’Input’, ...

struct(’DOF’,[349.01;360.01;241.01;365.03],’def’,[1;-1;1;1],’ID’,100));

model=nas2up(’JobOpt’,model);

115

http://www.cygwin.com/

naswrite

model=stack_set(model,’info’,’Freq’,[20:2:150]);

% write bulk but do not include eigenvalue options

naswrite([’-new’ fullfile(wd,’ubeam.bdf’)],stack_rm(model,’info’,’EigOpt’))

% generate a job by editing the reference mode.dat file

fname=’ubeam.dat’;

edits={’Set’,’PARAM’,’POST’,’-2’;
’replace’,’include ’’model.bdf’’’,’’,’include ’’ubeam.bdf’’’;

’replace’,’EIGRL’,’’,nas2up(’writecard’,-1,[1 0 0 30],’ijji’,’EIGRL’)};
nas2up(’editbulk’,’mode.dat’,edits,fullfile(wd,fname));

cd(wd);type(fname)

nas2up(’joball’,fname,model)

cg=feplot(4);mo1=nasread(’ubeam.op2’);

Wop4

Matrix writing to OUTPUT4 format. You provide a cell array with one matrix per row, names in first
column and matrix in second column. The optional byte swapping argument can be used to write
matrices for use on a computer with another binary format.

kv=speye(20);

ByteSwap=0; % No Byte Swapping needed

nas2up(’wop4’,’File.op4’,{’kv’,kv},ByteSwap);

For ByteSwap you can also specify ieee-le for little endian (Intel PC) or ieee-be depending on
the architecture NASTRAN will be running on. You can omit specifying ByteSwap at every run by
setting

setpref(’FEMLink’,’OutputBinaryType’,’ieee-le’)

WriteFreqLoad

edits=naswrite(’Target.bdf’,’WriteFreqLoad’,model) (or the equivalent nas2up call when the
file is already open as show below) writes loads defined in model (and generated with
Load=fe load(model)) as a series of cards. FREQ1 for load frequencies, TABLED1 for the associated
curve, RLOAD1 to define the loaded DOFs and DAREA for the spatial information about the load. The
return edits argument is the entry that can be used to insert the associated subcase information in
a nominal bulk.

The identifiers for the loads are supposed to be defined as Case.Stack{j1,end}.ID fields.

116

naswrite

% Generate a model with sets of point loads

model=demosdt(’Demo ubeam dofload noplot’)

% Define the desired frequencies for output

model=stack_set(model,’info’,’Freq’, ...

struct(’ID’,101,’data’,linspace(0,10,12)));

fid=1 % fid=fopen(’FileName’);

edits=nas2up(’writefreqload’,fid,model);

fprintf(’%s\n’,edits{end}{:}); % Main bulk to be modified with EditBulk

%fclose(fid)

Write[Curve,Set,SetC,Uset]

Write commands are used to WriteCurve lets you easily generate NASTRAN curve tables.

WriteSet lets you easily generate NASTRAN node and elements sets associated with node and
element selection commands.

WriteSetC formats the sets for use in the case control section rather than the bulk.

WriteUset generates DOFs sets.

model=demosdt(’demogartfe’);

fid=1; % display on screen (otherwise use FOPEN to open file)

nas2up(’WriteSet’,fid,3000,model,’findnode x>.8’);

selections={’zone_1’,’group 1’;’zone_2’,’group 2:3’};
nas2up(’WriteSet’,fid,2000,model,selections);

st=nas2up(’WriteSet’,-1,2000,model,selections);

curves={’curve’,’Sine’,fe_curve(’testEval -id1 sin(t)’,linspace(0,pi,10)) ; ...

’curve’,’Exp.’,fe_curve(’testEval -id100 exp(-2*t)’,linspace(0,1,30))};
nas2up(’WriteCurve’,fid,curves)

DOF=feutil(’getdof’,model);

nas2up(’WriteUset U4’,fid,DOF(1:20))

WritePLIL

The WritePLIL is used to resolve identifier issues in MatId and ProId (elements in SDT have both
a MatId and an ProID while in NASTRAN they only have a ProId with the element property
information pointing to material entries). While this command is typically used indirectly while
writing a full model, you may want to access it directly. For example

117

naswrite

model=demosdt(’demogartfe’);

nas2up(’Writeplil’,1,model);

• p solid properties are implemented somewhat differently in NASTRAN and SDT, thus for a
il row giving [ProID type Coordm In Stress Isop Fctn]

In NASTRAN In is either a string or an integer. If it is an integer, this property is the same
in il. If it is a string equal to resp. TWO or THREE, this property is equal to resp. 2 or 3 in il.

In NASTRAN Stress is either a string or an integer. If it is an integer, this property is the
same in il. If it is a string equal GAUSS, this property is equal to 1 in il.

In NASTRAN, Isop is either a string or an integer. If it is an integer, this property is the
same in il. If it is a string equal FULL, this property is equal to 1 in il.

If Fctn is equal to FLUID in the NASTRAN Bulk file, it is equal to 1 in il and elements are
read as flui* elements.

• MAT9 and m elastic 3 differ by the order of shear stresses yz, zx,Gxy in SDT and xy, yz, zx
in NASTRAN. The order of constitutive values is thus different, which is properly corrected
in SDT 6.5.

See also

nasread, ufread, ufwrite

118

Bibliography

[1] J. Salençon, Viscoélasticité. Presse des Ponts et Chaussés, Paris, 1983.

[2] A. Nashif, D. Jones, and J. Henderson, Vibration Damping. John Wiley and Sons, 1985.

[3] C. Bert, “Material damping: An introductory review of mathematical models, measures, and
experimental techniques,” Journal of Sound and Vibration, vol. 29, no. 2, pp. 129–153, 1973.

[4] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins University Press, 1983.

[5] D. McTavish and P. Hugues, “Finite element modeling of linear viscoelastic structures,” ASME
Biennal Conference on Mechanical Vibration and Noise, sep 1987.

[6] G. Lesieutre and E. Bianchini, “Time domain modeling of linear viscoelasticity using augment-
ing thermodynamic fields,” SDM Conference, AIAA paper 93-1550-CP, pp. 2101–2109, 1993.

[7] E. Bianchini and G. Lesieutre, “Viscoelastic constrained-layer damping - time domain finite ele-
ment modeling and experimental results,” SDM Conference, AIAA paper 94-1652-CP, pp. 2666–
2676, 1994.

[8] G. Lesieutre and E. Bianchini, “Time domain modeling of linear viscoelasticity using augment-
ing thermodynamic fields,” J. Vibration and Acoustics, vol. 117, pp. 424–430, 1995.

[9] J. D’Azzo and C. Houpis, Linear Control System Analysis and Design. MacGraw Hill Book
Company, 1988.

[10] F. Renaud, J. L. Dion, G. Chevallier, I. Tawfiq, and R. Lemaire, “A new identification method
of viscoelastic behavior: Application to the generalized maxwell model,” Mechanical Systems
and Signal Processing, vol. 25, no. 3, pp. 991–1010, 2011.

[11] F. Schwartzl Physica, pp. 830–923, 1951.

[12] A. Lion, “On the thermodynamics of fractional damping elements,” Continuum Mech. Ther-
modyn., vol. 9, pp. 83–96, 1997.

119

naswrite

[13] J. Ferry, Viscoelastic Properties of Polymers. Wiley, 2nd ed., 1970.

[14] Zilson, D. Kiureghian, and Bayo, “A replacement of the srss method in seismic analysis,”
Earthquake Engineering and Structural Dynamics, vol. 9, pp. 187–194, 1981.

[15] G. Kergourlay, Mesure et prédiction de structures viscoélastiques - Application à une enceinte
acoustique. PhD thesis, Ecole Centrale de Paris, 2004.

[16] American Society for Testing and Materials, E756-98 Standard Test Method for Measuring
Vibration-Damping Properties of Materials, 1998.

[17] H. Oberst and K. Frankenfeld, “Über die dämpfung der biegeschwingungen dünner bleche durch
festhaftende beläge,” Acustica, vol. 2, pp. 181–194, 1952.

[18] D. Ross, E. Ungar, and E. Kerwin, “Damping of plate flexural vibrations by means of viscoelastic
laminates,” ASME, vol. 51, 1959.

[19] E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale
Paris, 1997-2012.

[20] T. Caughey, “Classical normal modes in damped linear dynamic systems,” ASME J. of Applied
Mechanics, pp. 269–271, 1960.

[21] J. Rayleigh, The Theory of Sound. Dover Publications, New-York, NY, 1945 (reedition).

[22] E. Balmes, Modèles analytiques réduits et modèles expérimentaux complets en dynamique des
structures. Mémoire d’habilitation à diriger des recherches soutenue à l’Université Pierre et
Marie Curie, 1997.

[23] R.-J. Gibert, Vibrations des Structures. Editions Eyrolles, Paris, 1988.

[24] E. Balmes, “New results on the identification of normal modes from experimental complex
modes,” Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229–243, 1997.

[25] L. Rogers, C. Johnson, and D. Kienholz, “The modal strain energy finite element method and
its application to damped laminated beams,” Shock and Vibration Bulletin, vol. 51, 1981.

[26] D. Inman, Engineering Vibration. Prentice-Hall, Englewood Cliffs, N.J., 1994.

[27] W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven,
Belgium, 1997.

[28] D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY,
1984.

120

http://www.sdtools.com/pdf/PolyId.pdf
http://www.sdtools.com/pdf/PolyId.pdf
http://www.sdtools.com/pdf/pHab.pdf

naswrite

[29] EDF, RCC-G : Règles de conception et de construction des ı̂lots nucléaires REP. EDF - Direc-
tion de l’Equipement Edition, Juillet 1988.

[30] L. Komzsik, “Implicit computational solutions of generalized quadratic eigenvalue problems,”
Finite Elements In Analysis and Design, vol. 37, pp. 799–810, 2001.

[31] G. Lesieutre and E. Bianchini, “Time domain modeling of linear viscoelasticity using augment-
ing thermodynamic fields,” SDM Conference, AIAA paper 93-1550-CP, pp. 2101–2109, 1993.

[32] D. Golla and P. Hughes, “Dynamics of viscoelastic structures – a time domain finite element
formulation,” Journal of Applied Mechanics, vol. 52, pp. 897–906, 1985.

[33] ABAQUS/Standard, User’s Manual, vol. 1. Hibbit, Karlsson, Sorhensen, Inc.

[34] L. Bagley and P. Torvik, “Fractional calculus - a different approach to the analysis of viscoelas-
tically damped structures,” AIAA Journal, vol. 21, no. 5, pp. 741–748, 1983.

[35] E. Balmes, “Modes and regular shapes. how to extend component mode synthesis theory.,”
Proceedings of the XI DINAME - Ouro Preto - MG - Brazil, March 2005.

[36] S. Rubin, “Improved component-mode representation for structural dynamic analysis,” AIAA
Journal, vol. 13, no. 8, pp. 995–1006, 1975.

[37] R. MacNeal, “A hybrid method of component mode synthesis,” Computers and structures,
vol. 1, no. 4, pp. 581–601, 1971.

[38] R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal, vol. 3, p. 380, 1965.

[39] R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,” AIAA Journal,
vol. 6, no. 7, pp. 1313–1319, 1968.

[40] A. Plouin and E. Balmes, “A test validated model of plates with constrained viscoelastic ma-
terials,” International Modal Analysis Conference, pp. 194–200, 1999.

[41] B. Groult, Extension d’une méthode de modification structurale pour la conception de dispositifs
dissipatifs intégrant des matériaux viscoélastiques. PhD thesis, École Centrale Paris 2008-14,
2008.

[42] E. Balmes, “Model reduction for systems with frequency dependent damping properties,” In-
ternational Modal Analysis Conference, pp. 223–229, 1997.

[43] T. Kant and S. K., “Free vibration of isotropic, orthotropic and multilayer plates based on
higher order refined theories,” Journal of Sound and Vibration, vol. 241, no. 2, pp. 319–327,
2001.

121

http://www.sdtools.com/pdf/diname05.pdf
http://www.sdtools.com/pdf/IMAC99_damping.pdf
http://tel.archives-ouvertes.fr/tel-00285042/fr/
http://www.sdtools.com/pdf/IMAC97damp.pdf
http://www.sdtools.com/pdf/IMAC97damp.pdf

naswrite

[44] E. Balmes and A. Bobillot, “Analysis and design tools for structures damped by viscoelastic
materials,” International Modal Analysis Conference, February 2002.

[45] D. Mead and S. Markus, “The forced vibration of a three layer, damped sandwich beam with
arbitrary boundary conditions,” Journal of Sound and Vibration, vol. 10, no. 2, pp. 163–175,
1969.

[46] E. Balmes, “Parametric families of reduced finite element models. theory and applications,”
Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381–394, 1996.

[47] H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons 1995, Masson,
1992.

[48] G. Kergourlay, E. Balmes, and D. Clouteau, “Interface model reduction for efficient fem/bem
coupling,” International Seminar on Modal Analysis, Leuven, pp. 1167–1174, September 2000.

122

http://www.sdtools.com/pdf/imac02_damp.pdf
http://www.sdtools.com/pdf/isma00.pdf

	Modeling viscoelastic materials
	Introduction
	Representing complex modulus
	Non parametric (tabular) representations
	Simple rheological models
	High order rational models
	Fractional derivative models
	3D constitutive laws

	Environmental factors
	Influence of temperature
	Other environment factors

	Determining the complex modulus
	Conclusion

	Viscoelastic FEM models
	Viscous and structural damping
	Properties of the damped 1 DOF oscillator
	Real modes and modal damping
	Selection of modal damping coefficients

	Viscoelastic models
	Frequency domain representation with variable coefficients
	State-space representations
	Second order models with internal states
	Fractional derivatives

	Spectral decomposition and reduced models
	Complex modes of analytical models
	Complex mode eigenvalue problems with constant matrices
	Model reduction methods
	Equivalent viscous damping
	Case of viscoelastic models

	Meshing of sandwich models
	Mesh convergence and non conformity

	Thermal considerations
	Thermal model
	Heat source due to viscoelastic behavior
	Cantilever plate example
	Thermo-elastic damping

	Toolbox tutorial
	Download and installation procedures
	Representing viscoelastic materials
	Introducing your own nomograms
	Selecting a material for your application
	Selective components in constitutive law

	Viscoelastic device meshing tools
	Generation of sandwich models
	Meshing foam fillings
	Exporting submeshes to NASTRAN

	Parametric models, structure reference
	Parametric models, zCoef
	Parametric models, zCoef
	Input definitions
	Sensor definitions
	MVR Format reference
	Response post-processing options

	Sample setup for parametric studies
	Performance in modulus/loss plane
	Illustration of pole range computations
	Model parameterization
	Sample parametric study in SDT (full solver, Upcom superelement)
	Parametric model generated within NASTRAN (fo_by_set DMAP)
	Parametric model from NASTRAN element matrices

	Fluid/structure coupling
	Summary of theory
	Acoustic stiffness on a loudspeaker

	Rayleigh integral computations
	Summary of theory
	Diffuse field and transmission loss

	NASTRAN Generation of the parametric model
	Advanced connection models
	Screw models
	Physical point with rotations

	Toolbox Reference
	 fe2xf
	 fevisco
	 m_visco, mvisco_3m
	 nasread
	 naswrite

	Bibliography
	Index

