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ABSTRACT

Constrained viscoelastic layers have traditionally been consid-
ered as damping enhancement mechanisms. More recently
bonding has appeared as an alternative to traditional welding
strategies and sandwich shells with thick plastic cores have
been considered to provide high flexural stiffness for a low
overall weight. The present study focuses on computational
strategies that can be used to analyze and design the vibroa-
coustic behavior of such assemblies. Difficulties of the task
are the use of experimentally derived complex moduli for the
viscoelastic materials, studies in the frequency and tempera-
ture domains, integration of the bonded shells into large finite
element models, ability to modify the geometry of a particular
assembly in an optimization phase or the ability to account for
changes in the viscoelastic material properties during the part
forming process. The study is illustrated by applications to an
automotive oil pan.

1 INTRODUCTION

Constrained viscoelastic layers have traditionally been consid-
ered as damping enhancement mechanisms. More recently
bonding has appeared as an alternative to traditional welding
strategies and sandwich shells with thick plastic cores have
been considered to provide high flexural stiffness for a low
overall weight.

When studying the vibroacoustic behaviour of such assem-
blies, using elastic representations of the viscoelastic materi-
als is often not appropriate. Difficulties in creating proper mod-
els are the use of experimentally derived complex moduli for
the viscoelastic materials, studies in the frequency and tem-
perature domains, integration of the bonded shells into large
finite element models, ability to modify the geometry of a par-
ticular assembly in an optimization phase or the ability to ac-
count for changes in the viscoelastic material properties dur-
ing the part forming process.

The present study reviews important issues for the model-
ing of damped structures and illustrates the typical compu-
tations performed in a design phase. Section 2 addresses is-
sues linked to element selection and material representation.
Section 3 discusses practical solvers for frequency response,
eigenvalue and time domain problems.

Finally section 4 illustrates typical computations for the model
of an automotive oil pan. An aluminum and two sandwich de-
signs with thin and thick cores are first compared. The robust-
ness of a particular design to temperature variations is con-
sidered. Finally, the need to properly account for the relative
motion of skins in sandwich designs is illustrated.

2 MODELING STRATEGIES

2.1 FEM models of sandwiches

The easiest approach to represent a sandwich structure is a
shell/volume/shell model as shown in figure 1. The shell off-
sets result in a correct representation of displacement conti-
nuity at the bonded shell surface.

Shells are preferred over volumes because volume element
formulations are sensitive to shear locking when considering
high aspect ratio (dimensions of the element large compared
to thickness).

The use of a volume element for the viscoelastic core is ac-
ceptable in most applications, because the core is significantly
softer than the shells so that almost all its energy is associated

with shear [1]. This same fact makes the use of shell elements
inappropriate for soft cores. Note finally that shear corrections
used in some FEM codes to allow bending representation with
volumes must be turned off to obtain appropriate results.
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Figure 1: Shell/volume/shell model for sandwiches

Alternatives to this direct use of basic elements is the develop-
ment of sandwich elements with higher order section kinemat-
ics. The problem with this approach is that developing good
shell elements is very difficult so that most developments for



sandwiches will not perform as well as state of the art shell
elements.

Dealing with curved sandwiches, particularly when they are
press formed, pauses a number of additional difficulties. Dis-
continuity in the surface normals between shell elements
leads to various possible choices in meshing the core and
sharp edges can be difficult to mesh properly when starting
with a surface description of the part.

There are furthermore many unknowns in how the forming
process affects the core thickness and material properties. In
particular, most materials used for their high damping prop-
erties are also very sensitive to pre-stress. To the author’s
knowledge no significant work has been done on characteriz-
ing the actual effect of the forming process on the final prop-
erties of a curved sandwich.

The final difficulty is to deal properly with boundary conditions
of the skin layers. Since differential motion of the skins plays
a major role in the effectiveness of the core, the boundary
conditions of each skin has to be considered separately. This
effect will be illustrated in section 4.3.

2.2 Handling viscoelastic materials

The basic assumption of linear viscoelasticity is the existence
of a relaxation function h(t) such that the stress is obtained as
a convolution with the strain history

σ(t) =

∫ 0

−∞
ε(t− τ )h(τ, T, σ0)dτ (1)

Using the Laplace transform, one obtains an equivalent rep-
resentation where the material is now characterized by the
Complex Modulus E (transform of the relaxation function)

σ(s) = E(s, T, σ0)ε(s) = (E′ + iE′′)ε(s) (2)

For all practical purposes, one can thus, in the frequency do-
main, deal with viscoleasticity as a special case of elasticity
where the material properties are complex and depend on
frequency, temperature, pre-stress and other environmental
factors.

In practice, the complex modulus is determined experimen-
tally using dynamic excitation. For a given set of material
test results, analysis requires knowledge of E(s) for arbitrary
values of s or at least of the frequency on the Fourier axis
(s = iω). Three approaches are typically used :

• E(iω) is interpolated from tabulated material test data.

• E(s) is represented by a rational fraction

E(s) = E0
1 + α1s + ... + αnnsnn

1 + β1s + ... + βndsnd
(3)

Some particular reduced forms of a rational fraction may
be used in practice (see section 3.1).

• E(s) is represented using another analytical representa-

tion, in particular fractional derivatives [2].

When proper care is taken, all three approaches are capable
of closely approximating material test data. They thus have
the same “physical” validity. The differences are really seen
in how each representation can be integrated in FEM solvers
and in the validity of extrapolations outside the tested material
behaviour range. On the later point, the actual process used
to obtain the parameters has a strong influence, it may thus be
easier to obtain a good model with a particular representation
even if that representation is not inherently better.

Dependence on environmental factors (temperature, pre-
stress, ...) should a priori be arbitrary. In practice however,
one generally assumes that environmental factors only act as

shifts on the frequency [3]. Tests thus seek to characterize a
master curve Em(s) and a shift function α(T, σ0) describing
the modulus as

E(s, T, σ0) = Em(α(T, σ0)s) (4)

3 PRACTICAL SOLVERS FOR FEM MODELS

3.1 Dynamic stiffness representations

Given a constitutive law described by parameters E i(s, T, σ0),
one can use the fact that element stiffness matrices depend
linearly on those parameters to build a representation of the
dynamic stiffness a linear combination of constant matrices

[Z(Ei, s)] =
[
Ms2 + Ke +

∑
i
Ei(s, T, σ0)

Kvi(E0)
E0

]
(5)

This representation is the basis used to develop practical
solvers for viscoelastic vibration problems.

Of particular interest are the cases where the E i have a ratio-
nal fraction expression. An arbitrary rational fraction ( 3) that is
proper and has distinct poles, can be represented as a sum of
first order rational fractions

E(s) = E∞ −
(

n∑
j=1

Ej

s + ωj

)
(6)

By introducing an intermediate field qvj = − Ej

(s+ωj)
q, one can

rewrite (5) as a higher order first order problem, which for a
single qvj takes the form

[[
M 0 0
0 M 0
0 0 M

]
s+

[
0 −M 0

Ke+E∞Kv 0 Kv

EjM 0 ωjM

]]{
q
sq
qv

}
=

{
0
F
0

} (7)



Depending on the operators available in the FEM code, one
may want to use a second order form. The Anelastic Displace-

ment field method [4] thus writes the model as

[
s2

[
M 0
0 0

]
+ s

[
0 0
0 Kv

Ej

]

+

[
Ke−E∞Kv Kv

Kv
ωj

Ej
Kv

]]{
q
qvj

}
=

{
F
0

} (8)

with possibly multiple qvj for each pole in (6).

But this form has no mass associated with qvi which may
be a problem for some solvers. An alternative is the GHM
method [5], which represents E in the form

E(s) = E∞

(
1 +

n∑
j=1

αj

s2 + 2ζjωjs + ω2
j

)
(9)

and defines fields qvj =
αj

s2+2ζjωjs+ω2
j

q. Note however that

not all rational functions can be represented in form ( 9).

3.2 Frequency response

The frequency response of a FEM model is obtained by solv-
ing a problem of the form

[Z(Ei, s)]{q} = {F (s)} (10)

at various operating points (values of frequency, T and/or σ 0).

While most FEM codes will handle one instance of prob-
lem (10) easily, typical design studies require computation of
a few thousand frequency points at tens of design points thus
making direct frequency resolution totally impractical.

Computing the dynamic stiffness using a formulation similar
to (5) is a first improvement over the reassembly performed in
certain codes.

The next step is to avoid direct resolution (10) since the fac-
torization of Z is expensive. For a given Z, iterative solvers

already outperform direct ones [6].

But one can make further use of the fact that one solves many

similar problems. Ref. [7] discusses the adaptation to multiple
shifted problems of restarted GMRES and similar algorithms
which are used classically for the iterative resolution of lin-

ear systems of equations. Ref. [8] describes an automated
substructuring strategy which might be extended to damped
cases. For section 4.1, one will use the approach described

in Ref. [9] and summarized below.

Since one solves a class of problems, one can consider pre-
conditioners that are too expensive for standard iterative meth-
ods. The tangent elastic stiffness

K0 = Real (Z(Ei, 0)) (11)

is a good candidate with the significant advantage of being
real and thus faster to invert.

Spending time to get a good starting guess also makes sense

since it will be used many times. As proposed in [10], a basis
composed of normal modes associated with K0 and a correc-
tion for the viscoelastic loads generated by these shapes. For
the subspace

T =
[
φ1:NM (K0) K−1

0 imag(Z(ωj , T0, σ0(0)))φj

]
(12)

one estimates the response using a simple model reduction

{q̂} ≈ [T ]
[
T TZ(ωj , T, σ0)T

]−1[
T T
]
{F (s)} (13)

The error associated with this approximation is obtained by
computing the strain energy error of the displacement residual

Rd = [K0]
−1[Z(ωj , T, σ0)q̂ − F (s)] (14)

If this residual is large, it can be used to enrich subspace T

until convergence to the exact solution is obtained [9]. Note
that similar residual iterations can be used for complex eigen-

value computations [11].

3.3 Eigenvalue extraction

Poles and modes are non-zero solutions of the generalized
eigenvalue problem

[Z(Ei, λj)]{ψj} = {0} (15)

Given a material representation, one can distinguish two main
strategies to solving (15): algebraic and non-linear solvers.

Algebraic formulations introduce additional fields, as shown
in section 3.1, to obtain a standard eigenvalue problem with
constant matrices. This approach is also feasible for fractional

derivative models [2].

While transformation to a standard constant matrix form al-
lows the use of eigenvalue solvers present in FEM codes, the
increase in the number of degrees of freedom can be signifi-
cant and the high connectivity between elements of the sand-
which means that the sparsity pattern of the considered ma-
trices is rather full. Working on improved solvers that are not
too sensitive to the order augmentation can thus be important
(see the computational time comparisons in section 4).

Non-linear eigenvalue solvers, search a direct resolution
of (15). A full search of the complex plane being impractical
for large models, such solvers take into account the expected
pattern of solutions. Since the considered damping is still rel-
atively low, one can have meaningful estimates of the complex
modes by defining a reference eigenvalue problem where the
stiffness is constant.



From this initial estimate, continuation techniques [12] or es-

timation using specific transfer functions [10] can be used to
converge to the true solution. The later solution is the only
one applicable for interpolated tabular material data which is
only known on the Fourier axis (s = iω).

Another difficulty for non-linear eigenvalue solvers is the deter-
mination of the modeshape scaling condition needed to create
a representation of transfer functions as a sum of modal con-
tributions.

3.4 Time domain models

Rational fraction representations of the modulus lead to equa-
tions similar to (7)-(8) which are directly related to time do-
main representations. Model reduction techniques motivated
by control or FEM considerations can then be used to cope
with large models.

With other representations of the complex modulus using the
inverse Fourier transform is often not practical. The solution

considered in [13] is to build an equivalent model with viscous
damping properties. The underlying principle of this approach
is to define a set of transfer functions, that is representative of
the dynamics one seeks to approximate, and to use identifica-
tion techniques, developed for experimental modal analysis,
to build a model that has a time domain representation.

4 TYPICAL DESIGN STUDIES

This section illustrates typical computations needed to vali-
date the design of a particular sandwich structure. The exam-
ple retained is an aluminum oil pan shown in figure 2. The
objective of the paper is to illustrate computational strategies
and not the technological advantage of a particular solution.
The constitutive laws used for the viscoelastic are thus not as-
sociated to a particular material on the market.

4.1 FEM model and CPU times

The nominal model has 5561 elements with 8507 nodes
(33003 DOF). Sandwich models have 14227 elements and for
cases without cuts 12931 nodes (57457 DOFs). The nominal
mesh was generated with I-DEAS and the additional elements
needed to model the sandwich designs are generated using

the MATLAB based Structural Dynamics Toolbox [14].

Computations shown in this paper are performed using a 3
parameter model for the viscoelastic cores

E(s, T ) = Emax
αT s + ωmin

αT s + Emaxωmin
Emin

(16)

log10(αT ) = −c1
T − Tref

T − (Tref − c2)
(17)

with for the thin core Emax = 10GPa, Emin = 3GPa, ωmin =
300Hz, c1 = 2, Tref = 70oC, c2 = 100oC. For the thick core
Emin = 8GPa.

Figure 2: First flexible mode of the oil pan model.

Computational times are obtained on a 64 processor Origin

2000 computer running MSC-NASTRAN [15] version 70.7.0

and SDT 5.0 beta1 [14]. While the solvers are partially paral-
lel, total CPU times are shown in table 1.

TABLE 1: CPU times in seconds of some key steps
(design B with 57457 DOFs, N.A. : not applicable)

NASTRAN SDT
Assembly of design B 41 N.A.
Factorization of K 50 90
Forward/back. substitution 5.2 2.7
20 normal modes 273 281
Factorization of Z 162 249
Forward/back. substitution 7.9 5.6
20 cpx. modes Hysteric 2042 370
20 cpx. modes visco. N.A. 477 to 1016
Iterative Z−1F per freq. N.A. 1 to 20

Both codes use similar multifrontal sparse factorization rou-
tines and the differences in factorization time can be attributed
to different settings in the approach used to create the elimina-
tion trees. For both real K and complex Z matrices, the SDT
spends more time optimizing the factorization which results in
faster forward/backward substitution. Thus times for normal
mode solutions and direct frequency solution are similar.

For the solution of the complex eigenvalue problem with a con-
stant loss factor (hysteretic damping), NASTRAN uses a com-

plex Lanczos algorithm, while residual iterations [11] are used
in the SDT. The speedup is significant and it is interesting to
note that extensions to a viscoelastically damped model only
marginally affects convergence speed for the SDT. The range
of times shown in this case corresponds to different temper-
atures with convergence being slower in cases with higher
damping.

Finally the iterative direct frequency solver [9] gives for 1000
frequency points very interesting times per point from 20 to



below 1 second depending on tolerances and damping level
(quality of initial guess).

4.2 Basic designs

The first step in designing a sandwich is to select the core ma-
terial and thickness. While vibroacoustic properties are impor-
tant, other factors such as adhesion, behaviour during press
forming, fatigue, ... are also essential but not considered here.

To illustrate, the effect of possible design changes one will
consider the following designs of an aluminum oil pan

A Nominal design : 3.9 mm shell. Weight 2.58 kg.

B Sandwich with 1.95 mm shells and 0.1 mm highly
damped core. Weight 2.73 kg.

C Design B with transverse cut of the inner skin cut along
the width of the pan. Weight 2.73 kg.

D Sandwich with 0.5mm shells and 3 mm core. Weight 2.04
kg.

In reality, manufacturing designs B,C,D would imply a num-
ber of changes in the attachments so that keeping the same
model is only interesting for design purposes.

Figures 3 and 4 illustrate the main motivations for sandwich
designs in terms of vibration behaviour.
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Figure 3: Impedance at center point for designs (—) A ,
(– –) B (0.3 loss factor in core),(– - –) D (0.05 loss factor

in core), 0.01 loss factor in aluminum

Thin viscoelastic cores (design B) can be soft and highly
damped. As they are thin, the overall stiffness is not very af-
fected and a significant amount of strain energy is transmitted

through the core leading to high overall damping of the modes.
Here the damping is more effective at higher frequencies with
a major decrease in peak levels of the cross transfer above
800 Hz.

Thick cores (design D) require stiffer materials which are typi-
cally less damped. This design is thus interesting because of
the mass gain. The improved weight of design D is not great
here because the densities of aluminum (2700 kg/m 3) and
stiff plastic cores (1500 kg/m3) are not very different. The
ratio would be more interesting for steel sandwiches.
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Figure 4: Cross transfer between center and edge for
designs A,B,D

4.3 Environmental factors

Metal/viscoelastic/metal sandwiches are very sensitive to en-
vironmental parameters, in particular temperature and pre-
stress, which must thus be studied with care to validate the
robustness of a particular design.

Accounting for pre-stress requires both a characterization of
the influence of pre-stress on material properties and the sim-
ulation of the part forming process. Both information are hard
to obtain and were not considered in this study although the
overall effect is known to be significant.

Designing for a temperature range is fairly straight forward but
is a major computational challenge since direct frequency re-
sponses or non-linear eigenvalue analyses need to be per-
formed at a set of temperatures.
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Figure 5: Cross transfer in the 10 − 60oC range, design B

The FRFs shown in figure 5 clearly illustrate the sensitivity de-
sign B to temperature with an optimum located around 50 oC.
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Figure 6: a. Pole locations in the the 10 − 80oC range for
design B b. Optimal temperature for each mode compared

to frequency of maximum loss factor.

The tracking of poles in figure 6 gives other interesting infor-
mation. The bell shape of pole locations corresponds to the
shifting of the highest material loss factor from below the res-
onance to above it. The second curve shows that the op-
timal temperature for each pole is systematically lower than
the temperature at which the material dissipates most. This
shows that the core must not be too soft or it will not transmit
enough strain energy. The optimum does however depend on
the mode shape.

4.4 Layer cuts & Boundary conditions

A consequence of the fact that a major part of the strain en-
ergy is due to shear in the core is that weld spots, or on the
contrary, selective cuts in the constraining layers significantly
affect the dynamic response and should thus be properly ac-
counted for.

Figure 7 illustrates the effect of a transverse cut of the inner
skin at the mid length of the pan. Here the cut significantly
lowers the energy fraction in the core and thus the overall
damping in the model. For other structures the effect might
be the opposite.
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Figure 7: Fraction of strain energy in core for design B
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5 CONCLUSION

The present study showed that all the tools needed to properly
handle the design of viscoelastically damped structures are
currently available. While not widely available and still likely
to improve, state of the art solvers are practical for direct fre-
quency response and eigenvalue solutions. This only leaves
open the question of building time domain models for transient
simulation.

By analyzing the example of an oil pan, it clearly appears
that major difficulties remain to design press formed sandwich
structures. Among important issues, one can cite

• trade-offs between manufacturing and vibroacoustic ob-
jectives;

• automatic remeshing of a model to allow variable core
thickness;

• experimental and analytical tools to determine the effect
of the forming process on the core material properties
and thickness;

• systematic strategies for material selection and design
robustness verification;

• practical management of separate boundary conditions
for the skins;

• shape optimization if the sandwich is formed by gluing a
constraining layer which could present cuts.
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