References
- 
[1]
 - 
N. Lieven and D. Ewins, “A proposal for standard notation and terminology in
modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 7, no. 2,
pp. 151–156, 1992.
 - [2]
 - 
K. McConnell, Vibration Testing. Theory and Practice.
Wiley Interscience, New-York, 1995.
 - [3]
 - 
W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing.
KUL Press, Leuven, Belgium, 1997.
 - [4]
 - 
D. Ewins, Modal Testing: Theory and Practice.
John Wiley and Sons, Inc., New York, NY, 1984.
 - [5]
 - 
E. Balmes, Methods for vibration design and validation.
Course notes ENSAM/Ecole
Centrale Paris, 1997-2012.
 - [6]
 - 
“Vibration and shock - experimental determination of mechanical mobility,”
ISO 7626, 1986.
 - [7]
 - 
E. Balmes, “Integration of existing methods and user knowledge in a mimo
identification algorithm for structures with high modal densities,” International Modal Analysis Conference, pp. 613–619, 1993.
 - [8]
 - 
E. Balmes, “Frequency domain identification of structural dynamics using the
pole/residue parametrization,” International Modal Analysis
Conference, pp. 540–546, 1996.
 - [9]
 - 
P. Guillaume, R. Pintelon, and J. Schoukens, “Parametric identification of
multivariable systems in the frequency domain : a survey,” International Seminar on Modal Analysis, Leuven, September, pp. 1069–1080,
1996.
 - [10]
 - 
R. J. Craig, A. Kurdila, and H. Kim, “State-space formulation of multi-shaker
modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 5, no. 3,
1990.
 - [11]
 - 
M. Richardson and D. Formenti, “Global curve fitting of frequency response
measurements using the rational fraction polynomial method,” International Modal Analysis Conference, pp. 390–397, 1985.
 - [12]
 - 
E. Balmes, “New results on the identification of normal modes from
experimental complex modes,” Mechanical Systems and Signal Processing,
vol. 11, no. 2, pp. 229–243, 1997.
 - [13]
 - 
A. Sestieri and S. Ibrahim, “Analysis of errors and approximations in the use
of modal coordinates,” Journal of sound and vibration, vol. 177,
no. 2, pp. 145–157, 1994.
 - [14]
 - 
D. Kammer, “Effect of model error on sensor placement for on-orbit modal
identification of large space structures,” J. Guidance, Control, and
Dynamics, vol. 15, no. 2, pp. 334–341, 1992.
 - [15]
 - 
E. Balmes, “Review and evaluation of shape expansion methods,” International Modal Analysis
Conference, pp. 555–561, 2000.
 - [16]
 - 
E. Balmes, “Sensors, degrees of freedom, and generalized modeshape expansion
methods,” International Modal
Analysis Conference, pp. 628–634, 1999.
 - [17]
 - 
A. Chouaki, P. Ladevèze, and L. Proslier, “Updating Structural
Dynamic Models with Emphasis on the Damping Properties,” AIAA
Journal, vol. 36, pp. 1094–1099, June 1998.
 - [18]
 - 
E. Balmes, “Optimal ritz vectors for component mode synthesis using the
singular value decomposition,” AIAA Journal, vol. 34, no. 6,
pp. 1256–1260, 1996.
 - [19]
 - 
D. Kammer, “Test-analysis model development using an exact modal reduction,”
International Journal of Analytical and Experimental Modal Analysis,
pp. 174–179, 1987.
 - [20]
 - 
J. O'Callahan, P. Avitabile, and R. Riemer, “System equivalent reduction
expansion process (serep),” IMAC VII, pp. 29–37, 1989.
 - [21]
 - 
R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal,
vol. 3, p. 380, 1965.
 - [22]
 - 
R. Kidder, “Reduction of structural frequency equations,” AIAA Journal,
vol. 11, no. 6, 1973.
 - [23]
 - 
M. Paz, “Dynamic condensation,” AIAA Journal, vol. 22, no. 5,
pp. 724–727, 1984.
 - [24]
 - 
M. Levine-West, A. Kissil, and M. Milman, “Evaluation of mode shape expansion
techniques on the micro-precision interferometer truss,” International
Modal Analysis Conference, pp. 212–218, 1994.
 - [25]
 - 
E. Balmes and L. Billet, “Using expansion and interface reduction to enhance
structural modification methods,” International Modal
Analysis Conference, February 2001.
 - [26]
 - 
MSC/NASTRAN, Quick Reference Guide 70.7.
MacNeal Shwendler Corp., Los Angeles, CA, February,, 1998.
 - [27]
 - 
E. Balmes, “Model reduction for systems with frequency dependent damping
properties,” International Modal Analysis
Conference, pp. 223–229, 1997.
 - [28]
 - 
T. Hasselman, “Modal coupling in lightly damped structures,” AIAA
Journal, vol. 14, no. 11, pp. 1627–1628, 1976.
 - [29]
 - 
A. Plouin and E. Balmes, “A test validated model of plates with constrained
viscoelastic materials,” International Modal
Analysis Conference, pp. 194–200, 1999.
 - [30]
 - 
E. Balmes and S. Germès, “Tools for viscoelastic damping treatment design.
application to an automotive floor panel.,” ISMA, September 2002.
 - [31]
 - 
J.-M. Berthelot, Materiaux composites - Comportement mecanique et analyse
des structures.
Masson, 1992.
 - [32]
 - 
N. Atalla, M. Hamdi, and R. Panneton, “Enhanced weak integral formulation for
the mixed (u,p) poroelastic equations,” The Journal of the Acoustical
Society of America, vol. 109, pp. 3065–3068, 2001.
 - [33]
 - 
J. Allard and N. Atalla, Propagation of sound in porous media: modelling
sound absorbing materials.
Wiley, 2009.
 - [34]
 - 
A. Girard, “Modal effective mass models in structural dynamics,” International Modal Analysis Conference, pp. 45–50, 1991.
 - [35]
 - 
R. J. Craig, “A review of time-domain and frequency domain component mode
synthesis methods,” Int. J. Anal. and Exp. Modal Analysis, vol. 2,
no. 2, pp. 59–72, 1987.
 - [36]
 - 
M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application
to Structural Dynamics.
John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris,
1993.
 - [37]
 - 
C. Farhat and M. Géradin, “On the general solution by a direct method of a
large-scale singular system of linear equations: Application to the analysis
of floating structures,” International Journal for Numerical Methods in
Engineering, vol. 41, pp. 675–696, 1998.
 - [38]
 - 
R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,”
AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.
 - [39]
 - 
E. Balmes, “Use of generalized interface degrees of freedom in component mode
synthesis,” International Modal Analysis
Conference, pp. 204–210, 1996.
 - [40]
 - 
E. Balmes, “Parametric families of reduced finite element models. theory and
applications,” Mechanical Systems and Signal Processing, vol. 10,
no. 4, pp. 381–394, 1996.
 - [41]
 - 
E. Balmes, “Efficient sensitivity analysis based on finite element model
reduction,” International Modal
Analysis Conference, pp. 1168–1174, 1998.
 - [42]
 - 
T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite
Element Analysis.
Prentice-Hall International, 1987.
 - [43]
 - 
H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction.
J. Wiley & Sons 1995, Masson, 1992.
 - [44]
 - 
J. Imbert, Analyse des Structures par Eléments Finis.
E.N.S.A.E. Cépaques Editions.
 - [45]
 - 
J. Batoz, K. Bathe, and L. Ho, “A study of tree-node triangular plate bending
elements,” Int. J. Num. Meth. in Eng., vol. 15, pp. 1771–1812, 1980.
 - [46]
 - 
E. Balmes, Viscoelastic
vibration toolbox, User Manual.
SDTools, 2004-2009.
 - [47]
 - 
R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,”
Code_Aster, Version 5.0, R4.06.02-B, pp. 1–34, 1998.
 - [48]
 - 
S. Smith and C. Beattie, “Simultaneous expansion and orthogonalization of
measured modes for structure identification,” Dynamics Specialist
Conference, AIAA-90-1218-CP, pp. 261–270, 1990.
 - [49]
 - 
C. Johnson, “Discontinuous galerkin finite element methods for second order
hyperbolic problems,” Computer methods in Applied Mechanics and
Engineering, no. 107, pp. 117–129, 1993.
 - [50]
 - 
M. Hulbert and T. Hughes, “Space-time finite element methods for second-order
hyperbolic equations,” Computer methods in Applied Mechanics and
Engineering, no. 84, pp. 327–348, 1990.
 - [51]
 - 
G. Vermot Des Roches, Frequency and time simulation of squeal
instabilities. Application to the design of industrial automotive brakes.
PhD thesis, Ecole Centrale Paris,
CIFRE SDTools, 2010.
 - [52]
 - 
M. Jean, “The non-smooth contact dynamics method,” Computer methods in
Applied Mechanics and Engineering, no. 177, pp. 235–257, 1999.
 - [53]
 - 
R. J. Craig and M. Blair, “A generalized multiple-input, multiple-ouptut modal
parameter estimation algorithm,” AIAA Journal, vol. 23, no. 6,
pp. 931–937, 1985.
 - [54]
 - 
N. Lieven and D. Ewins, “Spatial correlation of modeshapes, the coordinate
modal assurance criterion (comac),” International Modal Analysis
Conference, 1988.
 - [55]
 - 
D. Hunt, “Application of an enhanced coordinate modal assurance criterion,”
International Modal Analysis Conference, pp. 66–71, 1992.
 - [56]
 - 
R. Williams, J. Crowley, and H. Vold, “The multivariate mode indicator
function in modal analysis,” International Modal Analysis Conference,
pp. 66–70, 1985.
 - [57]
 - 
E. Balmes, C. Chapelier, P. Lubrina, and P. Fargette, “An evaluation of modal
testing results based on the force appropriation method,” International Modal
Analysis Conference, pp. 47–53, 1995.
 - [58]
 - 
A. W. Phillips, R. J. Allemang, and W. A. Fladung, The Complex Mode
Indicator Function (CMIF) as a parameter estimation method.
International Modal Analysis Conference, 1998.