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Use of Generalized Interface Degrees of Freedom
in Component Mode Synthesis.
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ABSTRACT

Substructuring, Component Mode Synthesis, super-element,
and related methods are used in numerous applications. The
principle of these methods is to represent the model of a system
by coupled component models. In most cases, prior knowledge
of the predictions of interest is used to reduce component
models. Continuous interfaces between plate or solid
components traditionally imply the use of large component
models (with more degrees of freedom than there are in the
interfaces). This strongly limits the interest of using reduced
models. An automated, and yet computationally robust and
efficient, treatment of component coupling conditions is
introduced. This approach allows significant extensions to
traditional component model reduction but does not eliminate
the risk of poor predictions linked to locking of incompatible
component models. The example of a stiffened panel is used to
demonstrate the practicality of the proposed framework. In
particular, methods for the reduction of plate interface models
and for the treatment of locking are addressed.

NOMENCLATURE

The paper uses the standard Modal Analysis notations.
Variables not contained in the standard are

b, c input and output shape matrices
u, y vectors of inputs, outputs

  K = Ms Cs K2 + + dynamic stiffness matrix
λ Lagrange multipliers linked to interface forces
s i= ω Laplace variable

1. INTRODUCTION

Model reduction procedures have the general objective of using
solutions of intermediate problems to later allow multiple low
cost predictions of the global response. A large class of methods
(including substructuring, Component Mode Synthesis (CMS)
[1], and super-element methods) decompose systems into
components and perform intermediate computations at the
component level. Approximate component models are generally
used, but recently the availability of parallel computers has
motivated the use of substructuring methods to compute exact
solutions (one then usually talks of domain decomposition
methods).

A major difficulty is that the reduction of component models
and the enforcement of component coupling conditions cannot
be considered separately. In particular, this has traditionally led
to the use of nodal Degrees Of Freedom (DOF) for the
representation of component interfaces. For interfaces between
plates or solids, the resulting number of DOFs and the
associated computational costs are strong limitations for the use
of substructuring methods. Methods such as those proposed in
this paper can thus significantly extend the applicability of
traditional methods.

It is shown in section 2 that component coupling conditions
can be treated as generalized kinematic (for displacement) or
natural (for force) boundary conditions. For compatible and

incompatible meshes and for nodal and integral [2] formulations,
boundary conditions on discretized models take the form of a
finite number of constraints which can be treated through a
direct elimination or the addition of Lagrange multipliers. A
computationally efficient and robust direct elimination algorithm
is discussed.

Traditional reduction methods and extensions allowing
reduced representations of interface deformations are discussed
in section 3. With the direct elimination approach, reduced
component models can be constructed using any method.
However, arbitrary reduction procedures often lead to
incompatible models which can give poor predictions due to a
locking phenomenon which is addressed.

The proposed generalizations of the treatment of interface
boundary conditions and component model reductions, give a
very general framework to analyze a wide range of new and
existing CMS methods. Typical foreseen applications are
illustrated in section 4 using the example of a stiffened panel
with a hole. It is first shown how reduced models with much
fewer DOFs than interface DOFs can be created and used to
provide accurate predictions of the coupled response. It is then
shown how the locking of incompatible component models
imposes trade-offs between global accuracy, interface continuity
and reduction without prior knowledge of other components.

2. COUPLING OF COMPONENT MODELS USING

GENERALIZED BOUNDARY CONDITIONS

2.1. Properties of model form

This study considers cases where all substructures have an
accurate second order representation, generally constructed
using the finite element method, of the form

Ms Cs K q b u

y c q

2 + +[ ]{ } = [ ] { }
{ } = [ ] { }

(1)

In these models, the response is fully described by a finite
number of degrees of freedom (DOFs) q that depend on
time/frequency. The dynamic stiffness matrix   K = Ms Cs K2 + +
gives the relation between the response of the model DOFs q
and the model loads Fq . (The dynamic stiffness is assumed

symmetric but extensions to non symmetric cases are possible).
Physical displacements (translations, rotations, stresses,

strains, etc.) are called outputs y and assumed to be linearly
related to the DOFs q through output shape matrices c
( y = c q{ } ). For example, the matrix c  associated with
displacement outputs of a displacement based finite element
corresponds to the evaluation of the element shape functions at
the considered node.

Similarly loads (applied forces, aerodynamic or acoustic
pressure fields, control forces, gravity, etc.) are represented by
the product of time independent input shape matrices b and
time/frequency dependent inputs  u ( Fq u( ) = b u).

For many applications one is interested in coupling models
of different components. This will be done here by appending
models of different components
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and considering generalized boundary conditions (i.e.
constraints) linked to the connection of the different
components.

Models (1) and (2) only differ by the fact that in (2)
component indices are used to characterize blocks of degrees of
freedom. In the following analysis one will assume that the
models of all components have been appended (as in (2)) to
form a single uncoupled model of the form (1) (the handling of
blocks of DOF is a computer related issue and its use in
analytical presentations of methods leads to notations that are
more complicated than necessary).

2.2. Coupling of component models using generalized

kinematic boundary conditions

Predictions of the system response are obtained by coupling
component models. For the underlying continuous model, com-
ponent coupling is traditionally achieved by enforcing continuity
of displacements y (in general translations along three axes, but
possibly rotations, temperature, pressure, etc.) on the boundary

∆ Ωy x y x y x x( ) = ( ) − ( )( ) = ∈1 2 0 for all ∂ (3)

It clearly appears in (3) that the continuity requirement of
interface displacements corresponds to a generalized kinematic
(also named Dirichlet or essential) boundary condition (∆y is set
to 0). In a Ritz type analysis, trial functions only need to verify
kinematic boundary conditions [3]. Natural (also named
Neumann) boundary conditions may also be enforced but they
correspond to further model reduction and induce a loss of
accuracy (see details in section 2.3).

For a discretized model (an element, a group of elements, the
reduced model of a group of elements, etc.), interface
displacements are represented by a linear combination of shape
functions so that for any position x one can construct an output
shape matrix c x( )  such that the deformation described in the
model DOFs by the vector q corresponds to a displacement

∆y x c x q( ) = ( )[ ] { } (4)

where c x( )  is generally sparse because DOFs of different
components have been appended in a single vector q (Eq. (2))
and some DOFs do not induce interface deformations.
Result 1: for a discretized model, generalized kinematic
boundary conditions of the form (3) can be expressed in the
form of a finite set of constraints on relative interface
displacements ∆yInt

∆y c qInt Int{ } = [ ] { } = 0 (5)

This result simply comes from the fact that, for a finite
model, the range of c x( )  in the space of all functions of x is
finite. If ∆y represents the relative displacement of the edges of
two contiguous compatible elements the constraints cInt  simply
correspond to the equality of corresponding nodal DOFs (one
generally calls compatible or conforming, elements that are such
that equality corresponding nodal DOFs is equivalent to the
continuity of shape functions at the interface). The
generalization of this approach to compatible component models
is straightforward (just impose the equality of corresponding
DOFs of the interfaces, case A in Fig. 1).

A B

Fig. 1: Continuity constraints cInt  can be built by enforcing
continuity of displacements at nodes of the elements  as
well as intermediate nodes .

For incompatible interfaces the determination of the
constraints may pose some difficulties. The easiest approach is
to use a set of nodal constraints such as taking all nodes of
elements on both sides of an interface (case B in Fig. 1). For
cases with intermediate nodes and elements with non-nodal
DOFs, a knowledge of the element shape functions is needed to
relate the nodal displacements to the element DOFs but this is
not a fundamental problem.

Different authors (e.g. Ref. [2]) have used discretizations of
the interface model to build a finite vector space Vλ  of λ
functions (representing interface forces) and integral constraints
to impose the boundary condition

λ λ λ∆ Γ
Γ

y d V∫ ∈for all  (6)

For ∆y and λ  taken in finite vector spaces, this clearly leads
to a finite set of conditions of the form (5). For discretized
models, full sets of nodal or integral constraints are
fundamentally equivalent and their use should be mostly
motivated by implementation considerations.

In cases with incompatible meshes, incompatible models, or
points common to more than two substructures, it is difficult to
define a minimal set of independent constraints leading to exact
verification of the boundary conditions. In such cases, it is
preferable to consider obviously redundant sets of constraints
and take proper care of the fact that some of these constraints
may not be independent (see section 2.4).

For certain component models, the use of redundant
constraints may lead to poor solutions (an over-stiffening effect
known in finite element analysis as locking). Relations between
global accuracy, selected constraints and component model
reduction are addressed in sections 2.4 and 4.4.

2.3. Model reduction using generalized natural boundary

conditions

In many applications, it is known that no external forces are
applied to a given set of DOFs. For a discrete model, such
natural (also called Neumann) boundary conditions can be
written

c Ms Cs K q sInt[ ] + +[ ] ( ){ } =2 0 (7)

For most finite elements, continuity of stresses across
boundaries or nullity on edges is either not imposed or imposed
in a weak sense. As a result, the link between continuous and
discrete natural boundary conditions is not obvious and may
lead to interesting results [4].

If the DOFs q are chosen so that cInt  just corresponds to the
extraction of the first C  rows and A refers to the other rows.
Condition (7) is clearly equivalent to limiting q to the subspace
defined by

q

q

I

M s C s K M s C s K
qA

C CC CC CC CA CA CA
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The solution (8) for an exact natural boundary condition (7)
is non-linear in frequency which makes it impractical for most
uses. Several methods have thus been introduced to obtain
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approximations of the solution (8). The simplest idea is to find a
first order expansion near s=0

q
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=
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{ }−1 (9)

where all knowledgeable readers will recognize a static or
Guyan condensation [5]. The fact that this approach gives
statically exact results is a distinct advantage.

Another approach is to evaluate condition (8) at another
frequency that is closer to the frequency of interest (one then
talks of dynamic condensation [6]). Finally, one can also
consider [7,8] MacLaurin series expansions of the inverse

M s K K K M K s h o tCC CC CC CC CC CC
2 1 1 1 1 2+( ) = −( ) +

− − − − . . . (10)

For CMS methods, many authors have considered free
vibration problems where no external forces are applied on the
interface. For compatible substructure models, the absence of
external forces on the interface is clearly equivalent to the
equilibrium of internal forces applied on each substructure.
Different approximations of a generalized natural boundary
condition have thus been considered to condense boundary
degrees of freedom [7-9].

2.4. Numerical methods for the handling of constraints

It appears from previous sections that all the coupled
component models of interest can be written in the form (this
was rapidly recognized [8] in studies on CMS methods)

Ms Cs K q s b u s

y s c q s
c q sInt

2

0
+ +[ ] ( ){ } = [ ] ( ){ }

( ){ } = [ ] ( ){ }
[ ] ( ){ } =with (11)

By using discrete Lagrange multipliers for the constraints
[8,10], one finds the usual form of mixed finite element
formulations [11]

  

K s( )
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c

c

q FInt
T

Int 0 0λ
(12)

The problem can be solved directly using a model of the
form (12). This may be particularly efficient for
implementations on parallel computers, as some steps can be
performed on a substructure by substructure basis [12,10]. The
classical approach [1,13] is however a direct elimination of
constraints. This approach consists in determining a basis T for
the null space of the constraints ( range T cInt( ) = ( )ker ) and
projecting the model on this subspace

T MTs T CTs T KT q T b u

y cT q

T T T
R

T

R

2 + +[ ]{ } = [ ] { }
{ } = [ ] { }

(13)

In many cases the determination of T  is obvious. For
example, the standard assembly procedure for finite element
models takes into account that DOFs of corresponding nodes for
contiguous elements have the same displacement by only
defining one set of nodal displacements and projects the model
by adding the contributions of the different elements connected
to a given DOF.

To treat general classes of problems, it is proposed to use a
fully automated algorithm for the determination of the null space
of cInt . A numerically efficient and robust algorithm was
constructed [14] by taking the following factors into account.

As pointed out in section 2.2, simplicity in the application of
substructuring methods often leads to sets where all constraints
are not independent. A way to distinguish the effective rank of
the matrix is thus needed. The singular value decomposition or
the related QR decomposition are known to provide very robust
measures of effective rank and are thus quite appropriate [12].
Plate or solid problems do however lead to large numbers of

interface degrees of freedom so that the cost of such
decomposition may become excessive. The size of pivots in an
LU decomposition provides a slightly less robust but
significantly cheaper approach which has shown good results on
a variety of cases [14].

In many cases and particularly when using nodal constraints,
cInt  can be decomposed in blocks of constraints that only affect
certain degrees of freedom. By automatically monitoring the
existence of such blocks it is possible to consider a single set of
constraints for all substructures and yet retain the low cost of
finding the null space for blocks of constraints.

Many CMS approach are constructed to take advantage of
particular forms of the constraint equations and thus eliminate
them easily. The general approach proposed here loses such
simplifications but gains the possibility of coupling components
reduced with arbitrary procedures and of using redundant
constraints. Furthermore, considering that extremely efficient
procedures can be constructed to determine the null space, the
overall computational advantage of using an ad hoc elimination
procedure is often small.

The proposed automated procedure gives coupled
predictions for arbitrary reduced component models. For
incompatible component models, locking may however lead to
very poor results (see more details in sections 3.3 and 4.4).

3. RELATIONS BETWEEN REDUCTION AND COUPLING OF

COMPONENT MODELS

3.1. Displacement based reduction of component models

The construction of many finite elements can be seen as the
computation of a number of particular solutions to continuous
analytical problems and the projection of the continuous
equations on the associated basis. Similarly, super-elements or
reduced component models correspond the projection of a
component model onto a basis of particular solutions defined for
the component DOFs. Such an approach corresponds to a
Rayleigh Ritz analysis, or displacement based reduction
approaches, where one seeks approximate solutions in a reduced
subspace corresponding to the range (described by reduced
DOFs qR) of a rectangular matrix T

q T qRTrue{ } ≈ [ ] { } (14)

The validity of the projection is based on the assumption,
that all effectively found displacements q of the full order model
have a close approximation in the range of T. The projection
(14) applied to loads and displacement of the full order model
(1) lead to the reduced model (with nQR rather than nQ DOFs)

T MTs T CTs T KT q T b u

y cT q

T T T
R

T

R

2 + +[ ]{ } = [ ] { }
{ } = [ ] { }

(15)

Models are used to compute “qualities” which characterize
the system response. Typical “qualities” are static responses to
fixed loads, stress/strain distributions, modal frequencies,
modeshapes, or damped system responses. Full (1) and reduced
(15) models can give estimates of the same “qualities”. The
difficulty is to choose the reduction basis T so that, for the
qualities of interest, predictions of the full and reduced models
are similar.

Published ways to construct reduction bases are so numerous
that the search for an exhaustive listing would be futile. In
almost all cases however, the idea is to use solutions to
representative sub-problems that allow a good representation of
external and inertial loads.

All models are only valid in certain conditions. Model
reduction procedures introduce certain assumptions that allow
the use of a smaller model. In all cases there is a compromise
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between introducing too many assumptions, which limits
accuracy, and too few, which increases model size. In the
absence of a priori selection methods the following rules are
useful.

The model should achieve good representation of inertia
forces for the frequency range of interest. This is generally
obtained by retaining a number of component normal modes.
Boundary conditions used to compute these modes can be
different than those of the full model (fixed [13], free [7], and
loaded [15] interfaces have all been considered in different CMS
methods). A usual alternative to retaining modes is the selection
of internal DOFs in static and dynamic condensation methods
[6], with more difficulties however for determining the
bandwidth in which the model is valid [16].

The model should contain a good representation of the
response to all loads of interests. In particular interface forces
(for CMS methods), external loads, internal loads linked to
model modifications [17] need to be considered. The loads of
interest can be grouped into a general input shape matrix bInt

and one usually retains the exact static responses to these loads.
The static responses to the unit loads described by the input

shape matrix bInt  are generally called attachment modes [1] and
found by

T K bC Int[ ] = [ ] [ ]−1 (16)

In cases with rigid body modes, the stiffness matrix is
singular and one uses attachment modes which correspond to the
flexible response to the applied loads bInt . These modes are
computed by projecting the loads bInt  onto a subspace that is
orthogonal to the inertia forces of rigid body modes ( M Rφ ) and
computing the associated response TCFlex  (which exists [3])

K T I M M bCFlex R R
T

R Int[ ][ ] = [ ] − [ ][ ]( )[ ]−
φ φ φ

1
(17)

The loads bInt  are generally applied on a subset qINT  of the
DOFs and the static ( s = 0) or dynamic ( s j= ω ) responses to
unit displacements qINT  (the static responses are called
constraint modes) are used in place of attachment modes

  
T

I
Cs

CC CInt

=
− ( ) ( )









−K s K s1 (18)

Constraint modes correspond to a static (Guyan)
condensation [5] on the interface DOFs and are used in many
CMS methods (Craig-Bampton [13], branch mode analysis [15],
etc.).

Inertia relief modes are defined by the static response to
inertia forces of rigid body modes

T
K

MR
CC

R= 




[ ]−

0 0

0 1 φ (19)

It was shown [1] that the range of the constraint modes +
inertia relief modes and the range of the attachment modes are
identical. Attachment or constraint modes should thus be chosen
based on computational consideration.

3.2. Generalized interface degrees of freedom.

To achieve a good representation of interface loads, CMS
methods have generally assumed that independent loads or
displacements could be applied to all boundary nodes. As a
result, as many vectors as boundary DOFs are used. For plate or
solid interfaces the number of modes considered can be quite
large and this has been rapidly recognized as a being a
significant limitation.

Constraint modes (18) can be generalized by defining a basis
of interface deformations TInt  and computing

T
T

T
T TCsG

Int

CC CInt Int
Cs IntK K

=
−







= [ ][ ]−1 (20)

The generalized constraint modes are linear combinations of
the standard ones, but do not imply the need to assemble the
condensation matrix K KCC CInt

−1  which can be a significant
computational advantage. Several methods can be considered
(see examples in section 4.1) to select the basis TInt  but the idea
is as always to find a basis that is representative of actual
displacements. Attachment modes (16) can be similarly
extended by considering a matrix bInt  with less columns than
interface DOFs.

In a model reduction (15), these generalizations of the usual
interface modes are associated to coordinates that can
appropriately be named generalized interface degrees of
freedom.

Generalized constraint modes have the significant advantage
of being compatible for components with compatible meshes.
(obviously if the same TInt  is used for both sides of an interface,
it is possible to build global shape functions that verify the
continuity constraints). Generalized attachment modes and
approaches using different bases of interface deformations lead
to incompatible models which are considered below.

3.3. Reduction and incompatible component models

The use of incompatible models is illustrated in figure 2. For
the piece-wise linear and higher order polynomial shape
functions shown, enforcement of continuity at all points leads to
no displacement. Meaningful results can be achieved by
enforcing continuity at a reduced set of intermediate points. The
choice of intermediate points is an important issue. In the figure
selecting the  nodes rather than the  node limits the average
gap. In the figure the  nodes were obviously selected with care.
For most arbitrary choices of two or more nodes, zero motion
would be the only possibility. Such impossibility of motion,
called locking, can result in poor predictions and must be taken
into account.

Fig. 2: Piece-wise linear and higher order polynomial shape
functions with possible intermediate points  or  for
continuity enforcement.

Different factors can lead to incompatible models.
Incompatibility of element shape functions is the most classical
and the use of incompatible elements is widespread (see most
textbooks on the finite element method). Incompatible meshes
have been studied by a number of people (Refs. [18,2] for
example) and the intermediate node approach shown in section
2.2 gives another possibility. In the present study,
incompatibility of generalized constraint or attachment modes
will be addressed. All types of incompatibility are clearly
strongly related and methods can be extended to treat all cases.
The problem is however important enough to justify the use of
different point of views to achieve a better global understanding.

The point of view introduced in section 2.2 was to start with
an obviously redundant set of boundary conditions on relative
nodal displacements which for 2 substructures can be written in
the form

c c
q

qInt Int1 2
1

2

0−[ ]






= (21)

For components reduced using bases T1  and T2  (of
dimensions n nj Rj by ), condition (21) becomes

c T c T
q

qInt Int
R

R
1 1 2 2

1

2

0−[ ]






= (22)

For compatible models, interface deformations of the two
components are described by the same number of degrees of
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freedom (ranks n nInt Int1 2 and  of c TInt1 1  and c TInt 2 2 ) and this
number is equal to the number nInt  of independent constraints

(rank of c T c TInt Int1 1 2 2−[ ] ). When these conditions are not

verified the model presents some level of locking.
Traditional CMS methods construct compatible models in

many different ways. When using fixed interface normal modes,
compatible models are easily found by using standard (18) or
generalized (20) constraint modes. When using free or loaded
interface normal modes, compatibility is achieved by using
complete bases of constraint or attachment modes [7] or static
extensions to other components [15]. Clearly, static extensions
correspond to the use of generalized constraint modes linked to
the considered interface deformations.

Generalized constraint modes provide an efficient approach
to building compatible models but computational considerations
may still be in favor of incompatible models. The difficulty is
then to determine if locking is important and, if so, find an
appropriate treatment (relaxation (just ignore) or simply
penalization of certain constraints). By relaxing one looses the
full verification of kinematic boundary conditions, so that the
guarantee of monotonic convergence found for Ritz analyses is
lost. In a number of cases however, this is the best approach.
This topic is still very open and an example is analyzed in
section 4.4.

4. IMPLEMENTATION ON A PRACTICAL EXAMPLE

4.1. Definition of the example

The methods introduced in previous sections will be
analyzed for the example of a stiffened panel with a hole (see
figure 3). The nominal configuration consists of a flat panel
(0.60 x 0.30 x 0.007 m) with a hole of diameter 0.06m at its
center and three stiffeners (height 0.03 m, thickness 0.007 m, the
two edge stiffeners are place 0.12m away from the middle one).

The model is separated in three components a main piece
(skin and middle stiffener) and two edge stiffeners. The model
shown in figure 3 is composed of 356 QUAD4 elements, 466
nodes, 2796 DOFs of whom 252 duplicated interface DOFs
(component models are initially appended as in (2) without
taking the overlap of interface DOFs). A general form of loading
is assumed so that the model does not take any symmetry into
account. Computations are performed in the MATLAB

environment [14].

Fig. 3: Stiffened panel with a hole. The components are a
main piece (skin and middle stiffener) and two edge
stiffeners (shaded in gray).

One considers predictions of the structure with free
boundary conditions. For this example, fixed or loaded boundary
conditions would be more representative of industrial problems.
This would however lead to ignore computational difficulties
linked to the presence of rigid body modes, so that the free
boundary conditions were considered here.

Comparisons will be done using three criteria (the relative
frequency error, the Modal Assurance Criterion and the
maximum singular value of the decomposition of the imbalance
loads) defined below. The comparison is done on the first 10

flexible modes as in all considered cases the 6 rigid body modes
are predicted exactly.

The first two criteria assume that the exact solution is
known. The Modal Assurance Criterion (which measures the
correlation between two modes)

MAC

T

T T
φ φ

φ φ

φ φ φ φ
1 2

1 2

2

1 1 2 2

{ } { }( ) =
{ } { }( )

{ } { }( ) { } { }( ), (23)

is used to compare spatial properties of computed modes and to
pair reduced model predictions and exact modes. The relative
difference of frequencies for paired modes are then computed
and used as a second criterion.

The third criterion sMAX  does not imply the knowledge of the
exact solution and gives a single number a direct evaluation of
errors in modeshape and frequencies. This criterion, introduced
in Ref. [19], corresponds to the maximum singular value of a
decomposition of the imbalance loads defined for a set of
predicted modes (here the first 10 modes of the reduced models)
by

b M Kj j j= − +[ ]{ }ω φ2 (24)

sMAX  gives a measure of the maximum strain energy
associated to the a unit combination of the imbalance loads.
Since these loads are representative of the error done on the
predicted normal modes, sMAX  gives a direct measure of model
accuracy.

4.2. Reduction using generalized interface modes

The construction of generalized constraint or attachment
modes is linked to the choice of a set of representative
deformations of the interface or loads applied to the interface.
The “representativity” is very much case dependent so that
selection methods need to be introduced.

A first approach is to discretize the interface and use
traditional finite element shape functions. For the example,
interfaces are lines. Polynomial shape functions used for beams
are thus appropriate. As usual there is a choice between h
(geometrical division of the interface) or p (increase of the order
of the considered polynomials) refinement. The h refinement is
more flexible in terms of allowing complex geometry of the
interface but links with convergence are not obvious.

For a given discretization, further reduction can be achieved
by introducing arbitrary physical properties and computing
global deformations. For example, two “modes” of an interface
model corresponding to a beam discretization are shown in
figure 4 (A-B).

A B

C D

Fig. 4: A-B: interface deformations linked to the
interpolation functions of standard beam elements. C-D:
interface deformations linked to a local model.

Arbitrary interface models do not necessarily take physical
properties of the systems into account. For example one can
wonder whether it is more important to represent extension of
the interface rather than flexion. Such decisions can be made by
solving representative sub-problems.
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The local model approach retains elements connected to the
interface and computes modes of this model (low frequency
modes correspond to deformations that have the lowest strain
energy and are thus the most likely deformations of the interface
[19]). For example, figure 4 C-D shows two modes of a local
model of the interface.

The local model approach can obviously be extended by
considering a large fraction of the system elements while
keeping model size low by statically condensing interior DOFs
not connected to the interface. In the limit one can consider a
static condensation of the full model onto the interface DOFs
and use generalized constraint modes that correspond to the low
frequency modes of the associated reduced model. This
approach was proposed by Craig and Chang [9] and one can
show that it corresponds to an optimal selection of generalized
constraint modes [19].

Shapes defined on interface DOFs can be seen as
representative of interface deformations (leading to generalized
constraint modes) or loads (leading to generalized attachment
modes). As generalized attachment modes are generally not
compatible, more vectors must be retained so that the gain
linked to the use of generalized interface vectors becomes less
obvious.

4.3. Predictions using generalized interface modes

To validate the interface mode construction methods
introduced in section 4.2. Four models were considered. In all
cases 20 flexible modes of the main piece with the interfaces
with the edge stiffeners fixed are retained. The first frequency of
the edge stiffeners with one side fixed is more than 1.5 times
above the last frequency of interest so that no stiffener modes
are retained. Different models are considered and qualities of the
associated predictions are summarized in table 1.

Table 1: accuracy of normal mode predictions for different
models. Mean relative error on frequency, minimum
MAC (23) and maximum imbalance singular value sMAX .

Model size mean ∆ω ω( ) min MAC( ) sMAX *10-3

CB
CBP20
CBL
CBLP

272
40

120
40

0.44 %
0.45 %
0.47 %
0.87 %

99.02
99.17
99.16
66.41

1.30
1.30
1.33
1.52

For reference, the CB model defines one constraint mode for
each of the 252 interface DOFs leading to a model of the main
piece with 272 DOFs and two models of the stiffeners with 126
DOFs each. Interface continuity introduces 252 constraints
which once eliminated lead to the classical Craig-Bampton [13]

model with 272 DOFs.
The CBP20 (Craig-Bampton with principal interface modes)

retains the flexible modes of the main piece and the first 20
modes of the condensation of the model onto the interface
DOFs. This model which has much fewer DOFs is almost as
accurate. In the present case there are however significantly
mode interface DOFs than interior DOFs. The computational
costs of the CB and CBP models are thus very similar.

A reduction in the cost of the CBP20 model can be found
through the use local models to construct a set of generalized
constraint modes. Model CBL corresponds to the use of 50
generalized constraint modes with interface deformations given
by modes of the local model shown in figure 4 C-D. The
marginal deterioration of results (when compared with models
CB and CBP) validates the approach. Model CBLP computes
principal contributions of the basis retained in CBL. The
deterioration of results is minor which again validates the
approach (the low minimum MAC is linked to a recombination
of closely spaced modes which does not imply large errors).

For the considered example, the use of interface shape
functions based on a beam model poses a problem of
compatibility with the elements. The relation between
translations and rotations of rigid body modes are not the same
for the standard beam model and the considered plate elements.
Meaningful results are thus only obtained trough relatively
complex extensions which fall beyond the purpose of this paper.

4.4. Continuity and accuracy : a trade-off for incompatible

component models

The simple case of a model, where different numbers of
principal constraint modes are retained for the main piece and
the stiffeners, gives a good illustration of the trade-offs found
for incompatible models. Measures of accuracy for the
considered models are summarized in table 2.

A reference model CBP15 is constructed by imposing all
continuity constraints on an initial model with 20 fixed interface
modes of the main piece and 15 principal constraint modes
considered for all components. Since the same number of
generalized constraint modes are retained for all components,
the model is compatible. If other generalized constraint modes
of the main piece are considered, the model becomes
incompatible. An exact enforcement of interface continuity leads
to eliminate these additional degrees of freedom (one keeps
using model CBP15). The additional retained modes are fully
locked and thus useless.

The simplest incompatible model approach is to leave those
degrees of freedom completely free (no penalization). As shown
in table 2, this can significantly improve results: model
CBP15+5 where five additional principal constraint modes of
the main piece are retained is clearly much more accurate. (Once
again close modal spacing explains the low minimum MAC
while the more robust sMAX  indicator shows that the model is in
fact quite good). Further analysis shows however that letting
free just one of these generalized interface DOFs (the fourth by
order of frequency) leads to a model (CBP15+1) which is
almost as accurate as CBP15+5. Selection methods for the
generalized interface DOFs to be retained would thus be useful.

When using unpenalized incompatible modes, monotonic
convergence properties linked to the use of a Ritz type approach
are lost. Here, the use of additional DOFs linked to relatively
high frequency principal constraint modes does not permit low
energy deformations that would significantly decrease predicted
modal frequencies but there is no general guarantee.

For compatible meshes (and, with extensions, for
incompatible meshes) a simple penalization can be found by
taking into account the overlap of interface nodes (considering
that the interface deforms but assuming zero motion of the
interior DOFs of other components). This approach guarantees
monotonic convergence, but model CBP15+5P which uses this
penalization shows minor improvements over model CBP15.
Here deforming the interface with no interior deformation is
associated to too much strain energy to allow any motion. This
shows that locking and over-stiffening are strongly related.

Table 2: accuracy of normal mode predictions for different
models. Mean relative error on frequency, minimum
MAC (23) and maximum imbalance singular value sMAX .

Model size mean ∆ω ω( ) min MAC( ) sMAX *10-3

CBP15
CBP15+5
CBP15+1
CBP15+5P
CBP20

35
40
36
40
40

43.36 %
1.17 %
2.10 %

36.13 %
0.45 %

43.44
69.22
69.49
55.74
99.17

10.92
1.30
1.30
9.46
1.30
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Another penalization would be to consider static extensions
of the principal constraint mode which comes back to the use of
global principal constraint modes (the very accurate model
CBP20). This highlights the fact that penalization can be seen as
the extension of incompatible modes to all or part of
neighboring components.

5. CONCLUSION

A general framework for the treatment CMS problems with
arbitrary interface deformations was introduced. Interface
displacement continuity conditions appeared as generalized
kinematic boundary conditions and interface force equilibrium
conditions lead to model reduction through static condensation.
For the prediction of the coupled response, which corresponds to
the resolution of a constrained problem, numerical issues linked
to the direct method (elimination of the constraints) were
addressed.

As the use of arbitrary interface deformations can be
considered, extensions to the traditional attachment or constraint
modes clearly become interesting. Through a fairly complex
example, practicality of the direct constraint elimination
approach and of the proposed generalized constraint modes was
demonstrated. For this and other examples, the proposed
methods were found to be very robust.

The use of incompatible models introduces locking
phenomena which must be properly treated. The consideration
of locking for incompatible component models gives a
significantly different perspective on locking, a phenomenon
previously studied for incompatible elements and meshes.
Finally, the construction constraint penalization through local or
global extensions shows a great potential.
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