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ABSTRACT

Modal parameters of structural systems can be obtained in
many different ways. The force appropriation method uses one
sine signal to generate forces at different points of a structure
and adjusts the relative values of those forces so as to isolate a
single mode. Such tests provide very accurate information on the
modeshapes which is then complemented by specific tests to
determine the mode damping and scaling (modal mass). This
approach has been traditionally used for ground vibration testing
of aircraft where the use of sine inputs is compatible with the
need for large forces at very low frequencies.

After a presentation of the theory related to this testing
methodology, this study applies, on the analytical model of
actual aircraft, the tools generally used to extract experimental
modal characteristics (frequency, damping, modeshape and
modal mass) from test data. The knowledge of the true answer
allows a real evaluation of the difficulties linked to different
steps of the appropriation method. Issues addressed in particular
are the definition of the actuator and sensor set-up, the
determination of the appropriation forces rejecting unwanted
modal contributions, and the accuracy of identified modal
characteristics.

NOMENCLATURE

The paper uses the IMAC notation. Variables not contained
in the standard are
b, c input and output shape matrices
u, y vector of input, outputs
x ∝ y x proportional to y
δ jk 1 for j=k, 0 for j≠k

I. INTRODUCTION

The force appropriation method (also called phase resonance
testing or normal mode testing) has been traditionally used for
ground vibration testing of aircraft [Erreur! Source du renvoi
introuvable.].

The rationale for the appropriation method is that the
application of an ad hoc generalized force (single signal applied
at different actuators) allows the measurement of the response of
a single normal mode. As other modes have small contributions,
it is then possible to extract the modal characteristics of the
considered mode (frequency ωj, damping ratio ζj, modal mass
mjIN, modeshape φ) with great accuracy.

The different methods, used to appropriate a mode and
determine its properties, are based on a number of assumptions
which are not truly verified in practice. To improve the level of
confidence in the quality of appropriation results, an effort was
made to provide analytical simulations of the complete testing
process. The resulting tools provide both a development
environment for methods linked to particular steps of the
appropriation method and a proofing tool for the a posteriori
(possibly during the test) check of results.

Section 2 details the theory behind the different steps leading
to the identification of normal mode properties using the
appropriation method. In section 3, an evaluation of limitations
linked to these steps is done using the test simulation tools on a
relatively complex modal model of true aircraft (see details in
section 3.1). The use of an analytical model allows proper
measures of errors linked to the different methods. The
derivation of this analytical model from a real experiment allows
the highlighting of a number of real world difficulties.

Problems addressed in section 3 include the definition of the
actuator and sensor set-up, the determination of the
appropriation forces rejecting unwanted modal contributions,
and the accuracy of identified modal characteristics.

2. APPROPRIATION OF A NORMAL MODE

2.1. BASIC EQUATIONS

The theory of the force appropriation method is based on the
initial assumption that there exist a viscously damped model of
the system response of the form

Ms2 + Cs + K[ ] q{ } = b u s( ){ }
ẏ s( ){ } = c s q{ }

(1)

where it is assumed that
- the mass M, damping C, and stiffness K matrices are time-

invariant, symmetric and positive-definite.
- the forces in the model coordinates depend linearly on forces

(inputs) u in user defined coordinates Fq = bu . The matrix b is
called the input shape matrix.

- the outputs y are linearly related to the model coordinates q
through the sensor output shape matrix c ( y = cq ).

From model (1), normal modes are defined as solutions of
the associated undamped eigenvalue problem

−MφΩ + Kφ = 0 (2)

where the normal modes φ verify two orthogonality conditions
with respect to the mass and the stiffness

φT Mφ = µ  and φT Kφ = µΩ . (3)

µ is a diagonal matrix of modal masses (which are non-
physical quantities depending uniquely on the way the
eigenvectors φ are scaled). In this paper, φ indicates the
modeshapes associated with unity mass ( µ = I ). For such mass
normalized modeshapes, the generalized mass linked to an
output c is given by

mgCj = 1 cφj( )2
(4)

Although modeshapes scaled using the constraint that µ = I
contain a scaling information, the generalized mass at the sensor
or excitation point with the maximum response will also be
used, as done by most people, as a measure of the modeshape
scaling.

Using the principal or modal coordinates p = φ[ ]−1
q , a new

representation of model (1) is found
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Is2 + Γs + Ω[ ] p{ } = φTbu

ẏ = cφ s p{ }
(5)

where the mass is the unity matrix ( µ = I ), the modal damping
matrix Γ = φTCφ is non-diagonal, and the modal stiffness
matrix Ω (normal mode frequencies squared) is diagonal. cφ is
the modal output shape matrix, and φTb the modal input shape
matrix.

2.2. RATIONALE FOR THE FORCE APPROPRIATION

METHOD

The extraction of parameters from a measured response
would be relatively simple if the response only contained one
mode. The appropriation methods thus tries to define a single
generalized input, applied as a number of physical forces with
the same time characteristics, which tends to excite the response
of a single mode.

Mathematically, this objective can be stated as follows. For a
set of actuators described by the modal input matrix φTb[ ] , one
seeks a constant and real (in general) vector u  such that only
one mode responds significantly ( ṗk ≈ δ jk ).

If there were as many modes as actuators, one could impose
an arbitrary response ṗ{ }  of the different modes using the forces

u = φTb[ ] −1
Is + Γ + Ωs−1[ ] ṗ{ } (6)

For example one could isolate mode j at its resonance ωj

(obtain a unit velocity response ṗk = δ jk ) by applying the real
forces

ul = φTb[ ] lk

−1
Γkj

k
∑ (7)

For a proportionally damped system (Γ  diagonal), these
forces would result in a simple one mode response of the form

ẏ =
s cφj{ } bTφj{ } T

s2 + 2ζ jω js + ω j
2 u (8)

Important characteristics of the single mode response (8) are
shown in figure 1. For real inputs, the phase of all outputs
transitions from ±90° to   m90° with a passage at 0° at the
resonance. Furthermore the real part of the response is only
significant in a small band of width 2ζ jω j  centered at the
resonance.
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Figure 1: Velocity response of a single normal mode. (—)
usual mode, (....) low and high damping envelope.
(.-.) variation of bandwidth for increasing damping
levels.

For a non-proportionally damped system (all physical
systems), the forces (7) would only isolate the mode at the

resonance. But the difference from the single mode response
might not be significant.

2.3. APPROPRIATION IN PRACTICE

In reality, the modeshapes are not known and one cannot
estimate the modal amplitudes p  from the outputs y .
Approximate criteria are thus used to evaluate the quality of
mode isolation. Iterations are done using a phase criterion (to
determine the resonance) and a quality criterion (to give a
measure of the rejection of unwanted modes).

The phase criterion is based on the response of a single
mode which, as shown in figure 1, is real at the resonance. One
thus chooses a particular sensor or combination of sensors and
defines an estimate of the resonance frequency, as the frequency
for which the phase of a particular reference velocity sensor is
real (imaginary for acceleration or displacement).

The phase criterion is a good approximation when other
modes are not significantly coupled with the considered mode:
when their bandwidth (see figure 1) is separated from the
bandwidth of the considered mode. When one or a few modes
are close to the considered mode, the phase criterion is only
accurate when the forces injected already tend to isolate the
considered mode.

The velocity response of an isolated mode at its resonance is
purely real. The relative importance of the measured real and
imaginary responses at the resonance (estimated with the phase
criterion) thus provide an information on the quality of the
appropriation (rejection of unwanted modes). This information
is used in the form of different quality criteria such as those
shown below

• The quality index used at ONERA gives a ratio of imaginary
response to total response (its value is 1 for a perfect
appropriation)

q s( ) = 1−
Im ẏ{ } T

ẏ{ }
ẏ{ } T

ẏ{ }
(9)

• The MMIF [Erreur! Source du renvoi introuvable.] gives a ratio of
the quadrature energy (in-phase for displacement) to the total
energy (its value is 0 for a perfect appropriation)

q s( ) =
Im ẏ{ } T

M Im ẏ{ }
ẏ{ } H

M ẏ{ }
(10)

• The inverse MMIF [Erreur! Source du renvoi introuvable.]

maximizes ratio of the in-phase energy (quadrature for
displacement) to the total energy (its value is 1 for a perfect
appropriation)

q s( ) =
Re ẏ{ } T

M Re ẏ{ }
ẏ{ } H

M ẏ{ }
(11)

For the criteria (10) and (11), the mass matrix M is
introduced to compare energies. In most cases, the mass is not
known and the identity matrix is used instead (as for the
criterion (9)). Except for sensor calibration issues, this has been
found to be quite appropriate.

The appropriation method is usually performed through an
empirical adjustment of inputs and resonance frequency so as to
optimize the chosen quality criterion.

It was however noted by different authors that the mobility
matrix Y gives a linear relationship between u  and ẏ ,
ẏ s( ) = Y s( )u s( ) so that the mode indicator functions (9)-(11)
correspond to Rayleigh quotients of the form
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q s( ) = u{ } T A u{ }
u{ } T B u{ }

(12)

with A = Im Ẏ[ ]T

M Im Ẏ[ ]  and B = Ẏ[ ] H
M Ẏ[ ]  for the MMIF

and A = Re Ẏ[ ]T

M Re Ẏ[ ]  and B = Ẏ[ ] H
M Ẏ[ ]  

for the inverse

MMIF. Note also the extended Asher method [Erreur! Source du

renvoi introuvable.] where A = Im Ẏ[ ]T

Im Ẏ[ ]  and B = I .

Force inputs u  that optimize q, thus correspond to the
eigenvectors and eigenvalues (for q) solution of Au = Buq .
When a transfer matrix is measured at the resonance, one can
thus compute easily forces that optimize the quality criterion for
the given measurement. Limitations linked to this approach will
be addressed in section 3.3.

2.4. PARAMETER EXTRACTION FROM A SINGLE MODE

RESPONSE

When properly found, appropriation forces allow to obtain
measurements where the response is dominated by one mode.
The work put into determining the appropriation forces is meant
to allow an easier determination of the modal characteristics
(frequency ωj, damping ratio ζ j, modal mass mjIN, modeshape φ).
The complex power (PC) and force in quadrature (FQ) methods,
based on the assumption of a perfectly isolated mode with a
response of the form (8), are classically used for this purpose.

From (8), the complex power input (transfer from force to
collocated velocity) to the structure has the form

PCIN = ẏIN

uIN

=
s cINφj{ } cINφj{ } T

s2 + 2ζ jω js + ω j
2 =

∆ 1

mjIN

s

s2 + 2ζ jω js + ω j
2 (13)

which verifies four relations allowing the determination of
modal characteristics

ω j = argmax
ω j

PCIN

∂PCIN ∂ω ω j
= −1 2mjINζ j

2ω j
2

PCIN ω j
= 1 2mjINζ jω j

φ ∝ Re ẏ( )

(14)

If one performs a reinjection of a force in quadrature with
the force applied at resonance ũIN = 1+ iα( )uIN .
= uIN + iα 2mjINζ jω j  The response is then given by

ẏIN = suIN

mjIN s2 + 2ζ jω js + ω j
2 + α 2ζ jω jω( )( ) (15)

whose phase resonance is found for ω̃ j = ω j 1− ζ jα . The
modal characteristics are thus determined by the relations

ω j = ω̃ j α =0

ζ j = 1

ω j

∂ω̃ j

∂α

mjIN = 1 2ζ jω j Re PCIN( )
ω j

φ ∝ Re ẏ( )

(16)

In practice, the mode is not perfectly isolated. Alternative
approaches to the classical methods can thus introduce
corrections for the effects of other modes. In section 3 for
example the method called ML2 uses the following steps. Using
a set of measured transfer functions near the resonance, the
IDRC [Erreur! Source du renvoi introuvable.] identification method

is used to determine the mode frequency and damping. The
modal mass and shape are then determined using

mjIN = 1 2ζ jω j Re PCIN( )
ω j

φ ∝ Re ẏ( )
(17)

The usual objection to the validity of the appropriation
approach is the fact that the number of actuators (and sensors) is
lower than the number of modes so that formulas such as (7) are
not applicable. For lightly damped systems however, the
response of modes well separated from a given frequency is both
small and almost imaginary (see figure 1). If the modal
characteristics are based on measurements near the resonance of
the mode of interest, the frequency, damping and mass estimates
can take into account small residual terms and the modeshape
estimate is insensitive to contributions to the imaginary
response.

The adjustment of appropriation forces thus only needs to
reject modes that are close in frequency (active in the considered
bandwidth). As this is quite feasible (it basically amounts to the
case with as many actuators as modes) the appropriation method
has been widely used and very successful.

3. AN EVALUATION OF THE APPROPRIATION APPROACH

3.1. MODEL OF THE “PARIS” AIRCRAFT

The Paris aircraft, designed in the 50s by Morane Saulnier, is
a metallic four places subsonic jet motorized with 2 Turbomeca
Marbore engines inside the 10 meter long fuselage. The aircraft
has a T tail and a 10 meter span straight wing with two water
tanks at the tips. The controls are classical. During the tests the
elevator and rudder were clamped to the structure and the tanks
full of water.

As part of an effort to join the two French Ground Vibration
Test teams: ONERA and SOPEMEA, experiments were
conducted on the Paris aircraft at the SOPEMEA plant.
ONERA’s part of the test [Erreur! Source du renvoi introuvable.]

included the identification of a set of modes by the appropriation
method (128 accelerometers and 14 shaker locations) and the
acquisition of several transfer functions under different
excitation conditions.

The test model retained for the rest of the present evaluation
is composed of 9 normal modes (see table 1). It assumes
linearity and proportional damping. Computations for this study
were performed using the Structural Modeling Toolbox for
MATLAB [Erreur! Source du renvoi introuvable.] and the ONERA
Toolbox for the analysis of force appropriation results.

Table 1: Modes retained for the study.

# Name ω  (Hz) ζ (‰) Nd# mg (kgm2)

1
2
3
4
5
6
7
8
9

aileron rotation
2 node bending
tail roll
anti. tank pitch
sym. tank pitch
tail yaw
3 node bending
sym. aileron rota.
harm. aileron rota.

1.81
4.77
8.15

10.92
11.30
11.34
15.15
16.00
17.06

189.5
9.4
6.3

10.9
11.4
15.7
17.9
19.7
15.2

101012
1008 1330
1025 33
1000 105
1004 77

110 43
109 101
998 9
998 23

For appropriation purposes, only a subset of reference
sensors are used to evaluate the quality of appropriation with the
criteria (9)-(11). The locations and directions of the sensors
retained for the example are shown in figure 2. In all cases
forces are applied at some of the reference sensor locations.
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Figure 2: Locations and directions of reference sensors
(actuators).

3.2. DEFINING A TEST SET-UP

The quality of an appropriation is measured by one of the
criteria (9)-(11) which are computed based on sensor outputs.
The value of these criteria mostly depend on the choice of
retained sensors. In general, only those reference sensors are
acquired during appropriation, since the full measurement is
only needed at the appropriated resonance to determine the
modeshape.

In the choice of reference sensors, the important factor is the
geometrical independence of modeshapes. If the considered
modeshapes are not geometrically different, the associated
output shape matrix cφ is not well conditioned so that small
differences in outputs y may correspond to large changes in the
modal responses p  (leading to inaccurate modeshape
evaluations).

Initial Finite Element calculations, even when their
frequencies and modeshapes are not very accurate, can be used
for sensor placement. Simple checks of cross-MAC terms or
more complex algorithms , such as the effective independence
[Erreur! Source du renvoi introuvable.], lead to sensor placements
preserving the geometrical independence. In the present case, no
initial model was available so that the validity of the chosen set
of reference sensors (shown in figure 2) could only be checked a
posteriori.

Table 2: MAC (18) and singular values of cφ for an a
posteriori check of reference sensor set validity.

#   1   2   3   4   5   6   7   8   9 S.V.

1

2

3

4

5

6

7

8

9

100   0   0   9   0   0   0   0  94

  0 100   0   1  59   2   0   1   0

  0   0 100  22   0  21  13   0   0

  9   1  22 100   0   8   5   0   8

  0  59   0   0 100   5   0  16   0

  0   2  21   8   5 100   9   1   1

  0   0  13   5   0   9 100   1   0

  0   1   0   0  16   1   1 100   6

 94   0   0   8   0   1   0   6 100

49.0

45.1

35.0

24.4

17.6

15.5

8.4

4.6

0.3

Table 2 clearly indicates that the chosen sensor set did not
exactly respect the geometrical independence, particularly for
modes 1/9 (two aileron rotation modes only distinguishable by
the control column motion which was not measured) and 2/5
(where reference sensors on the wing mid-span would be
needed). The similar modes are however well separated in
frequency so that the sensor set did allow accurate
measurements of the modes. (Modes 4-6 are the only ones with
overlaying 2ζ jω j  bandwidths).

The phase criterion is based on the response of a particular
sensor or group of sensors. For good results, this response must

show a significant contribution of the mode of interest (if the
response is too low, contributions of other modes may lead to
significant shifts in frequency). Some a priori knowledge of
modeshape is thus necessary to properly select the phase
criterion sensor. In practice, this choice can be easily made from
FRFs measured before the appropriation is actually performed
(these FRFs also give an idea of the mode frequencies).

Practical considerations drive for the use of a minimal
number of actuators to appropriate a given mode. Experience,
the advance knowledge of general modeshape characteristics,
and the rule of thumb that the force pattern should match the
modeshape are generally sufficient to determine needed
locations.

When the initial choice does not allow a good rejection of
other modes, extra actuators are added in areas where the
response is not in phase (thus allowing the rejection of modes
with significant responses in those areas). For the determination
of such areas, local quality criteria (based on wing, fuselage, tail,
etc. sensors) are sometimes used.

As for sensors, the choice of actuators should preserve the
geometrical independence of modes. One will however only try
to achieve independence from close modes (by looking at the
conditioning of the associated input shape matrix φTb). Finally,
the prediction of the modal amplitudes also provide a useful
understanding of mode rejection.

For example, one could try to appropriate mode 5 (where the
response is mostly localized to the tanks) using two actuators on
the tanks (1000, 1004). Figure 3 shows the real and imaginary
parts of the displacement responses of the 9 modes for forces
optimizing the MMIF criterion (10). It clearly appears in this
figure that mode 6 also has a significant contribution to the
response and this contribution has a significant imaginary part
so that modeshapes estimates would be inaccurate. (One
obviously concludes that the number of actuators is insufficient).
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Figure 3: Modal displacements for 2 (1000, 1004) actuators
and exact MMIF forces. (---) p5, (-.-) p6

3.3. “DIRECT” FORCE ESTIMATES BASED ON MEASURED

FRF

When a transfer matrix between the force inputs and
reference outputs is measured, “optimal” values of forces
needed to obtain a good appropriation can be readily obtained
through the optimization of the quotient (12) (eigensolution or
any other method). This approach is subject to several problems.

• The determination of the resonance frequency is difficult.
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The resonance is determined through the phase criterion or
through the computation of the best “optimal” quality values
over a range of measured frequencies. In both cases the accuracy
of the frequency is limited because of noise in the measurement,
approximate convergence, inappropriate sensor choices, or
limitations of the frequency generators.

• The “optimal” forces can vary rapidly with frequency and be
sensitive to noise in measured FRF.

For example, the exact MMIF (10) and associated
normalized appropriation forces are shown in figure 4. For mode
5 at 11.3 Hz, the forces change rapidly near the resonance. For
the analytical model, a standard deviation from the true
resonance of 0.002 Hz leads to variations of the estimated forces
with a standard deviation above 80 % of their nominal value.

Similarly the predicted forces can be very sensitive to noise
in the measured data. For 5% random noise on the FRF, the
standard deviations on the predicted forces are low for mode 5
(less than 8% for significant forces) but high for mode 6 at 11.34
Hz (above 25 % for all four considered inputs, see also results in
table 5). Note that this is not the result that would be expected
from figure 4, where MMIF forces vary rapidly near mode 5 and
slowly near mode 6.
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Figure 4: MMIF appropriation forces for 4 (1000, 1004, 109,
110) actuators. The vertical dotted lines indicate
the frequencies of the poles.

(Note that the variations considered here happen without
further difficulties such as a switch in optimal forces considered
in Ref. [Erreur! Source du renvoi introuvable.]).
• The use of the transfer function matrix is based on the

assumption of linearity.

In practice, appropriation is used to test non-linear systems
(such as airplanes) where the modal characteristics change for
each form and level of input (each row/column of the transfer
matrix).

The transfer matrix from excitation on the wing tips (1000
and 1004) and the tail (109 and 110) to the reference sensors
were measured on the Paris using sine excitation. The MMIF
values shown in figure 5 seem to indicate the presence of two
modes (with frequencies indicated as vertical lines). A more
thorough check of the data, however, shows that there is only
one mode whose frequency is 10.9 Hz for excitation by the
wings and 11.0 Hz for excitation by the tail. The shift in
resonance frequency is simply confirmed by plotting cross-
transfers which would overlay exactly for a linear reciprocal
system.

Note that the level of response in the transfers has also
changed which implies a modification of both the mode

frequency and shape. A reciprocity check for a non-linear
system should be performed at equal amplitude levels for the
non-linearity. Here location of the non-linearity is not known
and the response of known points was not maintained constant
(a factor 2 for point 109). Therefore, the results shown in the
figure weren’t proper to test for reciprocity.
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Figure 5: MMIF values and the cross transfers (1000 to 109
and 109 to 1000), for a FRF matrix obtained
through a sine test. This data seems to indicate the
presence of two modes when there is only one.

It is unclear that one can reach with different excitations a
single operating point, where the modal characteristics would be
sufficiently constant (the sensitivity of the modal frequency
found here is relatively small for an aircraft mode), It has been
proposed [Erreur! Source du renvoi introuvable.] to construct the
FRF matrix using small amplitude/phase variations from the
currently estimated appropriation force, but demonstrations of
this approach for complex systems have not been shown.

3.4. EXTRACTION OF MODAL CHARACTERISTICS

Passing the difficulties linked to the optimization of the
quality criterion, the validity of the method should be judged by
the accuracy of predicted modal characteristics. Frequencies and
damping can be compared directly.

Modal masses and modeshapes are interlinked quantities so
that appropriate criteria must be defined. The Modal Assurance
Criterion

MACjk =
clφjclφk

l
∑
clφj( )2

clφk( )2

l
∑

l
∑

(18)

gives an indication of the correlation between two shapes,
without reference to scaling (modal masses must be compared)
and without guarantee that the shapes are equal (correlated ≠
equal). The relative modeshape error

cφj − cφj cφj (19)

implies the use of mass normalized modeshapes and is a much
less forgiving criterion (for 0 relative modeshape error the two
modeshapes are equal at all measured sensor locations and the
modal masses are the same).

Table 3 summarizes the results of an analysis of the final
result qualities for optimal MMIF forces at true resonance
frequency combined with the FQ method (16) for modal mass
and damping extraction. Except for mode 5, all the results are
very accurate.



6 janvier d, yyyy

Table 3: Summary of final result accuracy for optimal
MMIF forces at true resonance frequency combined
with the FQ method (16) for modal mass and damping
extraction. Mode number # and frequency ω, number of
actuator positions na, MMIF quality criterion q, error on
predicted frequency ∆ω and damping ratio ∆ζ , modal
assurance criterion MAC (18) with error on modal mass
at two different nodes ∆mgi, relative error on mass
normalized modeshape (19).

# ω na q ∆ω %∆ζ % MAC  ∆m1%

∆m2%

∆φ/φ
(%)

1 1.81
2 4.77
3 8.15
4 10.92
5 11.30
6 11.34
7 15.15
8 16.00
9 17.06

20.00
20.00
20.00
40.01
20.01
40.00
30.02
20.00
20.01

0.0 0.0
0.0 0.0
0.0 0.7
0.0 0.7
0.0 2.8
0.0 0.0

-0.4 2.7
0.0 0.3

-0.3 1.3

1.00 0.0 0.0
1.00 0.9 0.9
1.00 0.8 0.7
1.00 0.6 -20.0
0.95 0.6 -15.7
1.00 0.1 0.5
1.00 -0.4 -0.4
1.00 0.5 -0.5
1.00 -1.0 -1.3

0.0
0.5
0.4
0.5

24.7
1.0
0.7
0.3
0.5

For mode 5, the damping is well predicted and the first
modal mass also. The modeshape is however not correct as
indicated by the high relative error (25%) and to some extent the
MAC (although most people think that .95 is good). Figure 6
shows a comparison of the modeshape and its estimate. It clearly
appears that the main error is located on the tail. This
corresponds to the result shown in figure 4, where the modal
amplitude of mode 6 (tail yaw) is significant.

Figure 6: True and identified modeshapes (mode 5).

The extremely good quality criterion would not allow a
detection of the error made. A priori analyses using analytical
modeshape predictions or a posteriori evaluations such as the
analyses made here should thus be performed to guarantee the
validity of the results.

To understand the reason for the error on mode 5, the
appropriation was performed on the model using 1, 2 or 3
actuators. The results shown in table 4, clearly indicate that 3
actuators are needed to appropriate mode 5. This corresponds to
the number of close modes (i.e. 4-6) which confirms the rule of
thumb “as many actuators as close modes”.

Table 4: Errors in % in frequency, damping and generalized
mass prediction for mode 5 at 11.3 Hz using
MMIF appropriation forces and 1 (1000), 2 (1000,

1004), and 3 (1000, 1004, 109) actuator positions.

# Exact 1 act.
FQ ML2

2 act.
FQ ML2

3 act.
FQ ML2

MMIF 0.104 0.004 0.000
ω  (Hz)
ζ (‰)
mg
(1004)
mg
(1000)

11.30
12.21
77.38

131.51

-0.6 0.2
42.0 13.7
73.4 -11.6
-53.4 -32.0

-0.0 0.0
1.3 1.9
1.7 4.9

-15.4 -22.2

0.0 0.0
0.0 0.0
0.1 0.0

-1.0 -1.0

Table 4 also gives a comparison of results obtained using
MMIF appropriation forces at the true resonance but the FQ and
ML2 methods for parameter estimation.

From the results shown and other evaluations, it appears that
estimates based on the ML2 approach are more accurate for very
bad appropriations (such as the case with 1 actuator), but give
sensibly equivalent results otherwise (with equal chances of
being slightly wrong). The F Q and PC methods are thus
sufficient for parameter extraction of an appropriated mode from
data near its resonance. Advanced identification methods, such
as IDRC used in ML2, should be used for parameter extraction
in non-appropriated cases.

Finally, an evaluation of the integrated methodology was
performed. For this evaluation, 5% normal noise was added on
the real and imaginary parts of FRFs and the MMIF
appropriation forces were computed at the phase resonance
(rather than the true mode resonance). (As for the results of table
3, the FQ (16) method was used to extract modal parameters
from predicted FRF near the resonance). Table 5 summarizes
results for one particular evaluation.

The results shown in table 5 and the fact that they are only
slightly worse than those shown in table 3 give a final
demonstration of the robustness of the appropriation method.
For modes 1 2 3 7 9, the relative scaled modeshape error is close
to the 5% lower limit imposed by the added noise. Modes 3 and
6 are well identified even though the applied forces differ
significantly from those needed for an optimal appropriation in
the noise-free case.

Table 5: Summary of final result accuracy for sub-
optimal MMIF forces at phase resonance with 5%
normal noise on real and imaginary parts of all predicted
FRFs. (see table 3 except for ∆u  which represents the
relative error on the input vector u)

#     ∆u % na q ∆ω %∆ζ % MAC  ∆m1%

∆m2%

∆φ/φ
(%)

1 3
2 15
3 92
4 2
5 2
6 132
7 1
8 8
9 1

20.00
20.00
20.00
40.01
20.01
40.00
30.02
20.00
20.01

0.1 -14.3
-0.1 2.4
0.0 0.4

-0.1 -8.0
0.0 -0.6
0.0 1.7

-0.5 -0.2
0.0 -1.1

-0.2 2.3

1.00 8.0 31.1
1.00 -11.3 8.9
1.00 4.1 -5.6
1.00 9.5 4.3
0.93 -1.0 -8.2
0.99 0.9 -4.2
0.99 6.4 -1.2
0.99 6.9 -3.9
1.00 2.6 15.6

6.7
4.0
5.1

14.9
36.7
9.6
7.3

10.6
3.2

4. CONCLUSIONS

Normal mode testing is a very efficient testing approach but
it involves a number of choices which need to be well
understood. The present study showed how most important
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issues could be addressed through the use of testing methods on
an analytical model derived from test of an actual aircraft. Main
points highlighted in this study were

• the need to properly choose actuators and reference sensors
• the difficulties linked to the use of force estimates based on

measured FRFs (for non-linear systems in particular)
• the accuracy of the traditional single mode parameter

identification methods (for appropriated modes)
• the robustness of the overall parameter identification process

to noise and resonance estimation with the phase criterion.

By including models of more complex phenomena such as
non-proportional damping and non-linearities, the tools
developed for this study will allow better proofing of test results
and evaluation of new techniques for appropriation (in particular
for the reduction of the time needed to identify a mode).
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