
Rotor Module for

the Structural Dynamics Toolbox

For Use with MATLAB®

THESE CAPABILITIES ARE DISTRIBUTED EXPERIMEN-
TALLY.
NOT ALL FUNCTIONALITY IS DOCUMENTED

User’s Guide Etienne Balmes

Jean-Philippe Bianchi

Version 1.0 Arnaud Sternchüss

How to Contact SDTools

33 +1 44 24 63 71 Phone
SDTools Mail
44 rue Vergniaud
75013 Paris (France)

www.sdtools.com Web

info@sdtools.com Sales, pricing, and general information

SDT Rotor Module User’s Guide on February 14, 2025
© Copyright 1991-2025 by SDTools

The software described in this document is furnished under a license agreement.

The software may be used or copied only under the terms of the license agreement.

No part of this manual in its paper, PDF and HTML versions may be copied, printed, photocopied or reproduced

in any form without prior written consent from SDTools.

Structural Dynamics Toolbox is a registered trademark of SDTools

OpenFEM is a registered trademark of INRIA and SDTools

MATLAB is a registered trademark of The MathWorks, Inc.

Other products or brand names are trademarks or registered trademarks of their respective holders.

Contents

1 Installation 5

2 Theoretical reminders 7

2.1 Rotating bodies . 8

2.1.1 Problem definition in a rotating frame . 8

2.2 Problem definition in a fixed frame . 10

2.3 Fourier analysis of structures . 10

2.3.1 cyclic structure basics . 10

2.3.2 Fourier transform for shaft computations . 12

2.3.3 Solutions in periodic media . 12

3 Toolbox tutorial 15

3.1 Rotor meshing . 17

3.1.1 Meshing utilities . 17

3.1.2 Basic 1D rotor example . 19

3.1.3 Meshing 3D rotor from 1D and 2D models . 20

3.1.4 From sector to shaft in the case of cyclic symmetry 21

3.1.5 Utilities for handling slanted blades . 22

3.1.6 Disk connections in multi-stage cyclic symmetry 23

3.1.7 View meshes for cyclic symmetry . 24

3.2 Bearing and support representations . 26

3.2.1 Linear bearing . 26

3.2.2 Non-linear bearings in the time domain . 28

3.3 Gyroscopic effects . 28

3.3.1 Fixed frame models . 29

3.3.2 Rotating frame models . 29

3.4 Frequency domain analysis, full model . 30

3.4.1 Campbell diagrams, full model . 30

3.4.2 Blade with centrifugal stiffening . 31

1

2 CONTENTS

3.4.3 Complex modes . 32

3.4.4 Forced frequency response to unbalanced load 33

3.5 Solvers for models with cyclic symmetry . 33

3.5.1 Static response . 33

3.5.2 Single stage mode computations . 34

3.5.3 Multi-stage harmonic mode computations . 35

3.5.4 Campbell diagrams . 36

3.5.5 Complex modes . 37

3.5.6 Forced frequency response to unbalanced load 38

3.6 Full rotor model from cyclic computation . 38

3.6.1 Single stage full rotor example . 38

3.7 Time domain analysis . 39

3.7.1 Simple example . 39

3.7.2 Gyroscopic effects . 40

3.7.3 Other representations of bearings . 41

4 Validation 43

4.1 Rigid disk example . 44

4.1.1 Matrices in rotating frame . 44

4.1.2 Matrices in global fixed frame . 45

4.1.3 Validation with 3D model disk . 47

4.2 Simple 2DOF model of shaft with disk . 50

4.3 1D models . 54

4.3.1 1D example in a fixed frame . 55

4.3.2 1D models in a rotating (body-fixed) frame 58

4.4 3D rotor . 58

4.5 Data structure reference . 60

5 Function reference 61

fe cyclic 62

fe rotor 66

rotor1d 72

rotor2d 75

demo cyclic 77

fe cyclicb Mesh 81

fe cyclicb 85

obsolete 96

nl spring 103

mkl utils 117

chandle 120

CONTENTS 3

Non linearities list 122
nl inout 124
Non linearities list (deprecated) 127
Creating a new non linearity: nl fun.m 139
nl solve 142
nl mesh 150
spfmex utils 158
nl bset 159
extrotor 160

Bibliography 161

Index 162

4 CONTENTS

1

Installation

6 CHAPTER 1. INSTALLATION

The SDT/Rotor toolbox is intalled as a patch on an SDT installation. You can download the toolbox
from

http://www.sdtools.com/distrib/beta/rotor_patch_dis.p

Then within MATLAB,

% 1/ cd to location where you saved the patch

% MUST differ from SDT path

cd tempdir

% 2/ check that you will overwrite the expected SDT installation

path

which(’feplot’);

% 3/ install the patch (you must have write permission on the directory)

rotor_patch_dis

END OF CHAPTER

http://www.sdtools.com/distrib/beta/rotor_patch_dis.p

2

Theoretical reminders

Contents

2.1 Rotating bodies . 8

2.1.1 Problem definition in a rotating frame . 8

2.2 Problem definition in a fixed frame . 10

2.3 Fourier analysis of structures . 10

2.3.1 cyclic structure basics . 10

2.3.2 Fourier transform for shaft computations 12

2.3.3 Solutions in periodic media . 12

8 CHAPTER 2. THEORETICAL REMINDERS

The following sections give a number of theoretical reminders on things used for the toolbox. THIS
IS VERY INCOMPLETE AND NOT VERY ORDERED.

2.1 Rotating bodies

2.1.1 Problem definition in a rotating frame

The developments of this section are derived from internal work on the SDT Rotor module which is
currently only distributed to SNECMA. The results shown here can be seen as a summary of those
found in Ref. [1] which treats the problem with a strong emphasis on the theoretical formalism.
Other classical references that treat of the problem of rotating bodies are [2],[3], [4].

Particles located in point p of the body fixed frame are at location x at time t. One defines the
displacement u by

{x(p, t)} = {p}+ {u(p, t)} (2.1)

At time t, a reference point of the rotating body is assumed to have a rigid rotation speed {ω} with
respect to the reference frame (in the present study, this speed is related to a global rotation around
a fixed axis characterized by angle θ). The velocity is thus given by

{vx} (p, t) =
∂{x}
∂t

+ {ω(t)} ∧ {x(p, t)} (2.2)

This expression can easily be derived by decomposing the position in body fixed coordinates
{x} = xi {ebi} and noting that the derivatives the base vectors ∂ {ebi} /∂t = {Ω} (t) ∧ {ebi}. In
implementations, one replaces the vector product ω(t)∧ by the product by the corresponding skew-
symmetric matrix

Ω(t) =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 . (2.3)

The acceleration, derived from the velocity expression, is given by

{a} (p, t) = {ẍ}
+

[
Ω̇(t)

]
{x}+ 2 [Ω] {ẋ}

+
[
Ω2

]
{x}

= {ü}+
[
Ω̇(t)

]
(p+ u) + 2 [Ω] {u̇}+

[
Ω2

]
{p+ u}

(2.4)

where three contributions (rows of the equation) are typically considered : the acceleration in the
rotating frame, the Coriolis acceleration and the centrifugal acceleration.

2.1. ROTATING BODIES 9

The virtual work of acceleration quantities is thus typically expressed as

{q̂} ([M] {q̈}+ [Dg] {q̇}+ [Ka +Kc] {q}+ fc + fg) (2.5)

with the following element level expressions. The displacement within an element is given by the
position and the element shape functions [N] in the three directions xyz

{x} = {p}+ [Nxyz] {q}

The matrices and loads are integrated over the volume S0 in the reference configuration and are
given by

� [M] =
∫
S0

ρ0 [Nxyz]
⊤ [I] [Nxyz] dS0 the mass in the rotating frame

� [Dg] =
∫
S0

2ρ0 [Nxyz]
⊤ [Ω] [Nxyz] dS0 the gyroscopic coupling

� [Kc] =
∫
S0

ρ0 [Nxyz]
⊤ [

Ω2
]
[Nxyz] dS0 the centrifugal softening/stiffening

� [Ka] =
∫
S0

ρ0 [Nxyz]
⊤ ∂[Ω]

∂t [Nxyz] dS0 the centrifugal acceleration

� fc =
∫
S0

ρ0 [Nxyz]
⊤ [

Ω2
]
{p} dS0 the centrifugal load

� fg =
∫
S0

ρ0 [Nxyz]
⊤ ∂[Ω]

∂t {p} dS0 the Coriolis load

It is acknowledged that the notations used can be somewhat confusing. Indeed, in a discretized
vectors DOFs are placed either sequentially x,y,z at all nodes of the element, or separated x at all
nodes, ... while the operations [Nxyz]

⊤ [I] [Nxyz] imply the use of vectors. This 2 dimensional product
notation however directly reflects the numerical implementation as is thus deemed preferable.

In the applications considered in this study, one will use a fixed axis of rotation Ω = ω(t) {ez}∧.
The matrices and loads are thus proportional to the scalars ω, ω2 and ω̇. One will thus simply use

[Dg(ω)] = ω [Dg(1)]

which results in significant computational cost savings since the matrix only needs to be computed
for a single velocity. One proceeds similarly for the other matrices and loads.

10 CHAPTER 2. THEORETICAL REMINDERS

2.2 Problem definition in a fixed frame

Fully axisymmetric rotors can be modeled in a fixed frame using an Eulerian representation, where
particles are moving under a deformed mesh. Particles located at point {p(p0, t)} = {p0}+{u(p0, t)}
in the deformed Eulerian frame have a velocity given by xxx

{v(x, t)} =
∂x(p+ u(p, t), t)

∂t
+

∂x(p+ u(p, t), t)

∂x
(2.6)

The body fixed frame verifies θ = ϕ + Ωt, which can be written as pG = {r, θ, z} = RΩt {p}. The
matching of displacements in both frames is given by

{u(p, t)} = {uG(pG, t)} (2.7)

The velocity of a particle in the disk is given by

{v(pG, t)} = [Ω] {pG}+ [Ω]

{
∂u

∂pG

}
+

{
∂uG
∂t

}
(2.8)

Validation example : One first considers a disk that has a steady state deformation in the global
frame. That is the Eulerian frame, one has ∂u

∂t = 0 and {u(r, θ, z)} = {u(p)} = (2− cos2θ) {eθ}.

One now considers a disk that has a steady state deformation in the rotating frame: ∂u
∂t = 0 and

{u(r, ϕ, z)} = (1− cos2ϕ) {eϕ}. The displacement of a particle located at at time t is given by

{uG(pG, t)} = (1− cos2(θ − Ωt))
{
e(θ−Ωt)

}
= [RΩt] {u(p)}

its velocity is

2.3 Fourier analysis of structures

For more details, you can refer to[5] that is available on-line.

2.3.1 cyclic structure basics

For cyclic system with N sectors (angle α = 2π/N), a point load placed at angle nα is associated
with the harmonic load

2.3. FOURIER ANALYSIS OF STRUCTURES 11

Y (k) =
1

N

N−1∑
n=0

y(n)e−jαnk (2.9)

this can be used to simply compute the k diameter response. Using the symmetry of the spectrum,
one can recover the full spatial response by inverse fourier transform. For N odd

y(n) = Y (0) +

(N−1)/2∑
k=1

2Re(Y (k)ejαnk) (2.10)

for N even

y(n) = Y (0) + (−1)nY (N/2) +

N/2−1∑
k=1

2Re(Y (k)ejαnk) (2.11)

The displacements y(n) of each sector are however expressed in local coordinates, when applying
conditions a transformation θαn to global coordinates is thus needed

q(n)x
q(n)y
q(n)z

Glob

=

 cosα −sinα 0
sinα cosα 0
0 0 1

n
q(n)x
q(n)y
q(n)z

Loc

(2.12)

For a point on the axis, the in plane response is given by two components u(0), v(0), the response
at other points of the series is given by (2.10) but the point being coincident on has {u(0), v(0)} =
(θα)n {u(n), v(n)}. It follows that Y (k) = 0 for all k ̸= 1.

The intersector continuity condition says that the nodes that are common to two sectors have the
same motion. By convention the left nodes in SDT rotor are those with the lowest clockwise polar
angle, the left nodes of sector 0 have thus equal motion than the right nodes or sector N − 1. Thus
cL − cR(Y (k)e−jαk) = 0. Which leads to the constraint

[
[cl]− cos(k α) [cr] − sin(k α) [cr]

sin(δ α) [cr] [cl]− cos(δ α) [cr]

]
2Nr×2N

{
Re(q)
Im(q)

}
= 0 (2.13)

The Fourier transform being a linear relation, one can actually rewrite the relation as a {y} =
[E] {Y }. For N even

12 CHAPTER 2. THEORETICAL REMINDERS

y0
...
yn
...

yN−1

=

1 · · · 2 0 · · · 1
...

...
...

...
1 · · · 2cos(αkn) −2sin(αkn) · · · (−1)n

...
...

...
...

Y0
...

Re(Yk)
Im(Yk)

...
YN/2

(2.14)

Note that ETE is a diagonal matrix with [N 2N · · · 2N N] on the diagonal.

Posing [INQ] is the identity matrix whose size is the number of physical DOF of the sector and ⊗ is
the Kronecker product, the fourier DOFs Qk (sorted as in (2.14)) and physical DOFs on the whole
disk are related by

{q} = [E ⊗ INQ] {Qk} (2.15)

When performing harmonic computations, one typically uses the fact that the model matrices are
identical for each sector. As a result, the transformed matrices are block-diagonal, which is the basis
for the ability to compute full responses based on independent computation of each Fourier solution
Qk.

When adding a matrix to sector n, the relation to to the Fourier DOFs is given by a row En, the
product ET

nEn is not block diagonal as a result one has coupling between the Fourier harmonics.

2.3.2 Fourier transform for shaft computations

From mono-harmonic modes stored in SDT, you can obtain the physical response using for complex
value shape pairs

ℜ
(√

2/N {q} eshift
)

(2.16)

and for real valued vectors associated with 0 and N/2 diameters.(√
1/N

)
{q} eshift (2.17)

2.3.3 Solutions in periodic media

This really does not apply to rotors but is implemented in fe cyclic, and thus documented here.
One considers a model whose properties are spatially periodic. For a physical response, known at

2.3. FOURIER ANALYSIS OF STRUCTURES 13

regularly spaced positions n∆x, one can compute the its fourier transform

U(κ) =
+∞∑

n=−∞
u(n∆x)e−jn(κ∆x) (2.18)

U(κ) is a complex shape defined on the mesh of the repeated cell. One actually uses two cells to
represent the real and imaginary parts of U . The wave number κ varies in the [0, 2π

∆x] interval (or
any interval of the same length, since U(κ) is periodic in the wavelength domain).

Given the fourier transform U(κ), on can recover the physical motion by computing the inverse
Fourier transform

u(n∆x) =
∆x

2π

∫ 2π
δx

0
U(κ)ejκn∆xdκ (2.19)

For a mono-harmonic response (fixed wave number κ), the spatial transform is given by u(n∆x) =(
U(κ)ejn(κ∆x)

)
, using the continuity condition linked to the fact that uleft(n∆x) = uright((n−1)∆x),

one thus has [cL] {U(κ)} = [cR] {U(κ)} e−j(κ∆x). Hence in the real/imaginary format, one has the
constraint equation[

[cl]− cos(κ∆x) [cr] − sin(κ∆x) [cr]
sin(κ∆x) [cr] [cl]− cos(κ∆x) [cr]

]
2Nr×2N

{
Re(U)
Im(U)

}
= 0 (2.20)

and one solves for U(κ) knowning the transform of the applied loads. For a discrete load on the
first slice n = 0, the fourier coefficients of the load is F (κ) = f(0).

One can usefully note that the wave length L = π/κ covers the full interval of positive lengths,
that U(2πδx − κ) = Ū(κ), and that the half spectrum corresponds to a wavelength of ∆x. Using the
property of symmetry allows the use of computations for wavelengths larger than ∆x only. In the
fe cyclic eig calls, one specifies the period as a number of steps p∆x. The phase angle is thus
κ∆x = 2π

p and the spectrum is symmetric for p′ = 2/p.

mo1=femesh(’testhexa8b divide 2 1 1’);

mo1=fe_cyclic(’build -1 1 0 0’,mo1);

% symmetry along right edge

r2=fe_cyclic(’build -1 0 1 0’,mo1);

r2=fe_case(r2,’getdata’,’Symmetry’);

mo1=fe_case(mo1,’FixDof’,’y_symmetry’,r2.IntNodes(:,1)+.02);

mo1=stack_set(mo1,’info’,’EigOpt’,[2 2 1e3]);

14 CHAPTER 2. THEORETICAL REMINDERS

range=1./linspace(.01,.99,21);

def=fe_cyclic([’teig -all’ sprintf(’ %g’,range)],mo1);

figure(1);plot(1./def.data(:,2),def.data(:,1),’x’)

feplot(mo1,def)

[r1,i1]=unique(def.data(:,2),’first’);

Ek=fe_caseg(’enerm -bygroup’,mo1,fe_def(’subdef’,def,i1));

if norm(Ek.Y*4-1)>sqrt(eps); error(’Inconsistent energy’);end

if 1==2 % manual verification

[m,k,mdof]=fe_mknl(mo1,’assemble NoT’);

def=feutilb(’placeindof’,mdof,def);

feutilb(’dtkt’,real(def.def),m)+feutilb(’dtkt’,imag(def.def),m)

end

3

Toolbox tutorial

Contents

3.1 Rotor meshing . 17

3.1.1 Meshing utilities . 17

3.1.2 Basic 1D rotor example . 19

3.1.3 Meshing 3D rotor from 1D and 2D models 20

3.1.4 From sector to shaft in the case of cyclic symmetry 21

3.1.5 Utilities for handling slanted blades . 22

3.1.6 Disk connections in multi-stage cyclic symmetry 23

3.1.7 View meshes for cyclic symmetry . 24

3.2 Bearing and support representations . 26

3.2.1 Linear bearing . 26

3.2.2 Non-linear bearings in the time domain . 28

3.3 Gyroscopic effects . 28

3.3.1 Fixed frame models . 29

3.3.2 Rotating frame models . 29

3.4 Frequency domain analysis, full model . 30

3.4.1 Campbell diagrams, full model . 30

3.4.2 Blade with centrifugal stiffening . 31

3.4.3 Complex modes . 32

3.4.4 Forced frequency response to unbalanced load 33

3.5 Solvers for models with cyclic symmetry 33

3.5.1 Static response . 33

3.5.2 Single stage mode computations . 34

3.5.3 Multi-stage harmonic mode computations 35

3.5.4 Campbell diagrams . 36

3.5.5 Complex modes . 37

3.5.6 Forced frequency response to unbalanced load 38

3.6 Full rotor model from cyclic computation 38

15

3.6.1 Single stage full rotor example . 38

3.7 Time domain analysis . 39

3.7.1 Simple example . 39

3.7.2 Gyroscopic effects . 40

3.7.3 Other representations of bearings . 41

3.1. ROTOR MESHING 17

fe rotor module can use 2 different frames to describe rotating effects (rotating frame and fixed
frame). Rotors can also be describes at 3 levels of modelization : 1d, 2d or 3d.

The next section illustrates meshing capabilities, supported computations are described next

� Frequency domain analyses (section 3.4) : Campbell diagram building, Direct computation
of critical speeds, response to unbalanced mass, asynchronous load, and harmonic loads on
bearings.

� Time domain simulation accounting for non-linear bearings is under development (these are
performed with the shaft in a rotating frame and the stator fixed).

3.1 Rotor meshing

3.1.1 Meshing utilities

1D

The SDT/Rotor toolbox supports analysis of 1D models of symmetric rotors composed of

� shafts represented by beam1 element (see sdtweb(’beam1’) and sdtweb(’p beam’)). The
rotation axis is taken to be that of the beam.

� disks represented by mass1 (see sdtweb(’mass1’)). The rotation axis is the one whose moment
of inertia is different from the 2 others that are equal.

� bearings supports by celas.

You can generate a beam model of your rotor by providing a skyline (points not on the axis defining
the radius at various locations). Use NaN to define 2 segments. See rotor1d Skyline for more
details.

xy=[0 0; 0 .1;1 .1;1 1;1.1 1;1.1 .1;2 .1];

xy(:,3)=0; figure(1);plot(xy(:,1),xy(:,2));

% Mesh as beams

mo1d=rotor1d(’skylineToBeam’,xy);

% Add bearings as spring elements:

18 CHAPTER 3. TOOLBOX TUTORIAL

mo1d=rotor1d(’AddBearing DOF -123 k 1e4 -keep’,mo1d,[0.1 0 0]);

mo1d=rotor1d(’AddBearing DOF -123 k 1e4 -keep’,mo1d,[1.9 0 0]);

% now view as 3D model

mo2d=rotor1d(’1To2d lc 5e-2’,mo1d);

cf=feplot;cf.model=rotor2d(’buildFrom2D nsec16’,mo2d);

You can also add beam through rotor1d Addbeam command.

mo1d=rotor1d(’AddBeam x1 0 x2 0.7 r2 0.77 MatID 1’,[]); % add rod

mo1d=rotor1d(’AddBeam x1 0.5 x2 0.8 r1 0.77 r2 0.90 MatID 1’,mo1d); %add tube

mo2d=rotor1d(’1To2d lc 5e-2’,mo1d);

cf=feplot; cf.model=mo2d; fecom colordatapro;

2D

For 2D rotor representations, the SkyLineTo2d command eases the generation of simple rotors. Note
how in the following example Nan separators are used to generate a rotor in multiple parts : center
shaft first, then after the separator various disks.

xy=[0 0;0 0.00945;0.0088 0.00945; 0.0088 0.0057;

0.042 0.0057;0.042 0.00938; 0.057 0.00938;

0.057 0.008;0.0637 0.008; 0.0637 0.00595;

0.0919 0.00595;0.0919 0.00925; 0.0979 0.00925;

0.0979 0.006;0.121 0.006; 0.121 0.008;

0.127 0.008;0.127 0.0095; 0.142 0.0095;

0.142 0.006;0.175 0.00565; 0.226 0.00565; 0.226 0.0088;

0.232 0.0088;

NaN 0.0057; % Disk

0.00952 0.0057;0.00952 0.008;

0.0209 0.008; 0.0209 0.0369;

0.0242 0.0369; 0.0242 0.0572; 0.0266 0.0572;0.0266 0.0369;

0.0299 0.0369; 0.0299 0.008;0.0413 0.008

NaN .00565; % Separator giving non zero internal diameter .00565

0.177+.01 0.0057;0.177+.01 0.02;0.191 0.02; 0.191 0.0057;

NaN .00565; % Separator giving non zero internal diameter .00565

0.197+.005 0.0374; 0.215-.005 0.0374; % Impeller

0.215-.005 0.006+.003;0.222-.002 0.006+.003; % between sub disks

0.222-.002 0.0775; 0.2259 0.0775;

];

xy(:,3)=0;

3.1. ROTOR MESHING 19

mo2d=rotor1d(’skyline To2d -lc .005’,xy); % x axis

mo2d.pl=[...

1 fe_mat(’m_elastic’,1,1) 200000000000 0.29 7800

2 fe_mat(’m_elastic’,1,1) 7.17e10 0.33 2830 %2830

3 fe_mat(’m_elastic’,1,1) 3.07e12 0.3 .78 % 7800

];

mo2d.Elt(feutil(’findelt matid 2 3 4 5’,mo2d),5:6)=2;

mo2d.Elt(feutil(’findelt innode {x>=.15 & y<=.0057}’,mo2d),5:6)=3;
mo2d.Elt(feutil(’findelt innode {x>=.22 & y<=.01}’,mo2d),5:6)=3;
feplot(mo2d); fecom colordatamat

cf=feplot;cf.model=rotor2d(’buildFrom2D nsec16’,mo2d);

cf.sel={’-disk1’,’ColorDataMat’};fecom(’;view1’)

Figure 3.1: Example rotor generated with meshing utilities

3.1.2 Basic 1D rotor example

Following example builds by hand a simple 1D rotor, with one shaft, one disk and 2 bearing stifnesses.
It is almost the same as one accessible through d rotor TestShaftDiskMdl.

% define mesh :

model=struct(’Node’, ...

[1 0 0 0 0 0 0; 2 0 0 0 0.4/3 0 0;

3 0 0 0 0.4*2/3 0 0; 4 0 0 0 0.4 0 0]);

model.Elt=feutil(’ObjectBeamLine’,(1:4)’); % define shaft

model.Elt=feutil(’ObjectMass’,model,2,...

[16.5 16.5 16.5 0.18608 0.093 0.093]); % add disk

model=feutil(’AddElt’,model,’celas’, ...

[3 0 2 0 100 0 0; 3 0 3 0 101 0 0]); % add bearings (y and z stifness)

% define properties

model.pl=m_elastic(’dbval 1 steel’); % shaft material

model.il=p_beam(’dbval 1 circle 1e-2’); % shaft, r=1e-2

model.il=p_spring(model.il,’dbval 100 5e5’,’dbval 101 5e5’); % bearings

% ends boundaries :

20 CHAPTER 3. TOOLBOX TUTORIAL

model=fe_case(model,’fixdof’,’Ends’,...

[1.01;1.02;1.03;4.01;4.02;4.03]);

% Assemble nominal matrices:

model=fe_caseg(’assemble -reset -secdof -matdes 2 1 70’,model);

cf=feplot(model);

% For solution see sdtweb(’freqstud’)

Note that at this time only fixed frame representation is available for such 1d rotors (beam1 and mass1

elements). Gyroscopic coupling is then computed under MatType 70 (The formula for gyroscopic
coupling can be found in [6]) The nominal representation for these models is then the Eulerian
point of view where the displacement of the rotor is expressed in a non-rotating frame. For the
1D representation, the model nodes are always placed on the nominal rotation axis. Thermal and
pre-stress effects are not accounted for.

3.1.3 Meshing 3D rotor from 1D and 2D models

The rotor module supports all 3D elements of SDT. 2D models are only considered through an
extrusion and 3D cyclic symmetry. One can import a volume model, or mesh it using feutil

meshing commands. This section describes procedures to mesh volumes from 1D and 2D models.

From 1D rotor model meshed using beam1 elements, one can create a 2D model using rotor1d

1To3D command. Note that mass1 elements can not be converted for the moment. For example,
with section ?? rotor model

xy=[0 0; 0 .1;1 .1;1 1;1.1 1;1.1 .1;2 .1];

mo1d=rotor1d(’skyline ToBeam’,xy); % Mesh as beams

% Add bearings as spring elements:

mo1d=rotor1d(’AddBearing DOF -123 k 1e4 -keep’,mo1d,[0.1 0 0]);

mo1d=rotor1d(’AddBearing DOF -123 k 1e4 -keep’,mo1d,[1.9 0 0]);

mdl3d=rotor1d(’1To3d-quad-lc0.02-div24’,mo1d); % build 3d rotor

cf=feplot(mdl3d)

Command option -quad force the use of quadratic elements (hexa20) instead of linear elements
(hexa8).
Shaft is meshed using hexa8 degenerated elements. The edges on the axis of the shaft are using the
same nodes as the beam nodes so that bearings described by celas in 1D intial rotor can remain the
same. RBE3 rings are created at each bearing celas. Concentrated masses (no inertia) on the axis
are also left.
THIS IS NO LONGER TRUE BUT SHOULD BE REACTIVATED XXX: mass1 elements with in-
ertia that represents disks, are meshed as volume disks of arbitrary thickness (dt) 0.005, with radius
R2 computed so that inertia along rotation axis is the same (Ir = 0.5m(R2

2 +R2
1)) and then density

3.1. ROTOR MESHING 21

is computed to match the mass m (m = π ∗ (R2
2 −R2

1) ∗ dt). (R1 is shaft radius). Young modulus of
disk is taken at 100*steel modulus.

Gyroscopic coupling and centrifugal stifness for 3D elements are only described in the rotating frame,
that is to say under MatType 7 and MatType 8.

mdl3d=fe_mat(’defaultil’,mdl3d); % default element pro

mdl3d=fe_mat(’defaultpl’,mdl3d); % default material pro

% Assemble nominal matrices:

mdl3d=fe_caseg(’assemble -reset -secdof -matdes 2 1 7 8’,mdl3d);

One can also find an example of a 3D rotor in d rotor(’TestVolShaftDiskMdl’).

data={’Rs’ ,0.01 , ’shaft radius’;

’Rd’ ,0.15 , ’disk radius’;

’Ls’ ,0.4 , ’shaft length’;

’Ld’ ,0.03, ’disk thickness’;

’yd’ ,0.4/3, ’disk position on the shaft’

’yb’ ,0.4*2/3,’bearing stifness position on the shaft’

’Tol’ ,0.05, ’elt length Tol’

};
model=d_rotor(’TestVolShaftDiskMdl’,data);

rotor2d BuildFrom2D convert 2d model to 3d model using cyclic symetry. For example, to convert
previous 2D model:

mdl2d=rotor1d(’1To2d-quad-lc0.02’,mo1d);

mdl3d=rotor2d(’buildFrom2D -close nsec3 div8’,mdl2d);

3.1.4 From sector to shaft in the case of cyclic symmetry

Closing a disk

The SDT fe cyclic function only handles single sector models using symmetry conditions. SDT/Rotor
extends the capabilities by dealing with a full (possibly multi-stage, then called shaft) rotor model.

Building a disk/shaft model is done in two steps. For each sector, one defines matching edges using a
fe cyclic Build command, the generates a disk/shaft model using fe cyclicb DiskFromSector.

demosdt([’download-back donnees_secteur.dat’])% xxx missing patchfile

% -removeface : removes skin elements

samcef(’read-removeface’,fullfile(sdtdef(’tempdir’),’donnees_secteur.dat’));

22 CHAPTER 3. TOOLBOX TUTORIAL

cf=feplot;

% Fix sector edges

fe_cyclic(’buildepsl .1 fix’,cf.mdl);

fecom(’curtabCases’,’Symmetry’)

fecom(’;view3;proViewOn’);

Figure 3.2: Left and right sides of the sector

The left and right edges of sectors should be conform ! Practically you need to mesh the two surfaces
first (possibly generate the second by rotation of the first). Then mesh the interior. You will note
that this typically requires at least two layers of element for tetra10 meshing.

3.1.5 Utilities for handling slanted blades

Typically blades have an angle with respect to the er, ez plane. In a number of cases, removing this
angle makes node and element selection easier. With two nodes the FixTheta command modifies
node positions by removing the angle. The transformation is saved in info,FixTheta stack entry
and the back transformation is obtained using a FixTheta call with no argument.

cf=feplot(2);cf=d_rotor(’TestSector’);%sdtweb(’d_rotor.m#TestSector’)

n1=cf.mdl.Node; % save nodes

cg=feplot(5); % place rectified model in figure(5)

cg.mdl=fe_cyclicb(’MeshFixTheta 10061 10086 -offset 80’,cf.mdl);

fecom(cg,’view2’)

% verify that the back step works

cf.mdl=fe_cyclicb(’MeshFixTheta’,cg.mdl);fecom(cf,’view1’)

if norm(cf.mdl.Node-n1)>1e-10; error(’Back transform failed’);end

3.1. ROTOR MESHING 23

3.1.6 Disk connections in multi-stage cyclic symmetry

In multi-stage cyclic symmetry, each stage is modeled using a superelement called diski (see
fe cyclicb DiskFromSector). Coupling between stages is done using elements. The most con-
sistent approach is to use a physical area that is properly meshed for the full 360 degrees, but this
may be difficult in particular when the mesh refinement is notably different between the two stages,
so that a node to surface penalized connection is also implemented and an example given at the end
of this section.

Two steps are required:

1. the first step is a manual declaration of the nodes that belong to the two regarding surfaces. The
declaration of the nodes in the 2D cut provided by fe cyclicb DisplayAllEdges command
is sufficient (and therefore recommended).

2. the second step is the automatic reconstruction of the rims as volumes (using automated 3D
tessellation) or penalty based node to surface bilateral contact in the MeshRim command.

Note that fe shapeoptim can be used to local deform the disk in order to allow rim meshing.

% load two disk example with space between disks

cf=demo_cyclic(’TestForMeshRimVol’)

% RimStep1: select nodes at the matching interfaces

fe_cyclicb(’DisplayAllEdges’,cf);

% start cursor to pick values : fe_fmesh(’3dlineinit’)

n1=[12 18 24 1127 1133 1139];

% RimStep2: build rims and tessellate

fe_cyclicb(’MeshRimStep2 epsl.1’,cf,n1);

cf.sel=’EltName~=SE’;fecom(’showpatch’);

24 CHAPTER 3. TOOLBOX TUTORIAL

Figure 3.3: Selected disk edge nodes for rim tesselation

If you choose the penalty approach here is a working example where the edges of sector edges are
assumed coincident thus allowing an automated search of intersection with the -FindIntersect

option.

% load two disk example with space between disks

cf=demo_cyclic(’testrotor 7 10 3 -NoRim -RimH .1 -blade -cf 2 reset’);

% RimStep1: find nodes at the matching interfaces

n1=fe_cyclicb(’DisplayAllEdges -FindIntersect epsl .2’,cf);

% RimStep2: build rims as springs

fe_cyclicb(’MeshRimStep2 epsl.1 -kp 1e12 -slavedisk 1 3 -masterdisk 2’,cf,n1);

cf.sel={’groupall’,’colordatagroup -edgealpha .05 -alpha.1’}
def=fe_cyclicb(’shaft eig 0’,cf.mdl);

sel={’disk1’,’groupall’;’disk2’,’groupall’;’disk3’,’groupall’;’rim’,’’};
cf.def=fe_cyclicb(’DisplaySel’,cf,def,sel);

fecom(’ColorDataEvalTanz’)

3.1.7 View meshes for cyclic symmetry

3.1. ROTOR MESHING 25

Figure 3.4: Sample viewing mesh for post-processing multi-stage computations

Meshing tools also include procedures to build viewing meshes from the finite element mesh. fe cyclicb(’MeshRimLine2Patch’,cf,sel)

aims to build viewing meshes made of surface elements connecting selected nodes of the true mesh
of the rotor. sel can be:

� an array of lines connecting nodes of the inner disk parts in the 2D cut of the rotor (returned
by a previous fe fmesh(’3dLineInit’)). Note that this function automatically removes the
segments that connect nodes of two different disks.

� an array of elements connecting nodes of the blades of each disk (returned by a previous
fe fmesh(’3dLineInitAddInfo Quad4’)).

The selection is stored in the cf.mdl.Stack{’info’,’ViewMesh’}. If the -reset option is not
specified, the current selection is appended to the existing one. For each project, you should typically
edit a script similar to the following

cf=demo_cyclic(’BuildStep0’);

% Viewing mesh step 1: disk elements

fe_cyclicb(’DisplayAllEdges’,cf);

%fe_fmesh(’3dLineInit’,cf); % right click ’Type’ or ’Done’

26 CHAPTER 3. TOOLBOX TUTORIAL

L=[1 3 5 15 26 0 1121 1123 1125 1135 1146 0 13 15 18 1133 1135 1138];

fe_cyclicb(’MeshRimLine2Patch -reset’,cf,L);

% Viewing mesh step 2: blade elements

% disk1

fe_cyclicb(’DisplayFirst’,cf,{’disk1’});
%fe_fmesh(’3dLineInitAddInfo Quad4’,cf); % pick four nodes to form a quad

% use right click ’Type’ or ’Done’ to display

Elt=[Inf abs(’quad4’);

154 156 152 148 1 1;148 146 150 154 1 1;

146 142 144 150 1 1;142 111 83 144 1 1];

fe_cyclicb(’MeshRimLine2Patch’,cf,Elt);

% disk2

fe_cyclicb(’DisplayFirst’,cf,{’disk2’});
fe_fmesh(’3dLineInitAddInfo Quad4’,cf); % pick four nodes to form a quad

model.Elt=[Inf abs(’quad4’);

1274 1276 1272 1270 1 1;1270 1272 1268 1266 1 1

1266 1268 1264 1262 1 1;1262 1231 1203 1264 1 1];

fe_cyclicb(’MeshRimLine2Patch’,cf,model.Elt);

fecom(’ShowPatch’);

% save cf.Stack{’info’,’ViewMesh’}

% Once the geometry generated typical calls are

fesuper(’Sebuildsel -initrot’,cf,cf.Stack{’info’,’ViewMesh’})
fe_cyclicb(’Displaysel 2’,cf,def,cf.Stack{’info’,’ViewMesh’})

3.2 Bearing and support representations

3.2.1 Linear bearing

One can simply represent a support or a bearing by a linear spring that is to say a celas element (for
more details see sdtweb(’celas’)). A celas element is announced in the model element matrix
by the header [Inf abs(’celas’)] and format is as follow: [NodeId1 NodeId2 -DofID1 DofID2

ProID EltID Kv Mv Cv] NodeId1 and NodeId2 define between which nodes celas is connected (if
NodeId2=0 celas is grounded), DofID1 and DofID2 which dof are connected, and Kv Mv and Cv give
respectively stiffness mass and damping. A typical bearing for a rotor turning around x will then

3.2. BEARING AND SUPPORT REPRESENTATIONS 27

be defined by

Figure 3.5: Simple disk on long rod model.

The following generates a spring bearing connected to node n1, stiffness is 1e9 and damping 1e2 in
the xy plane. The use of a spring property is necessary for non linear time domain applications

model=d_rotor(’TestDiskLongBeam’);

n1=feutil(’findnode z==.71 & x==0 & y==0’,model);

28 CHAPTER 3. TOOLBOX TUTORIAL

model=feutil(’AddElt’,model,’celas’,[n1 0 -12 0 100]);

model.il=p_spring(model.il,’dbval 100 1e10 0 1e2’);

fe_simul(’mode’,model)

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 1 111 1 3.1;

5.0 1 112 1 4;], ...

’MasterCelas’,[0 0 -123456 123456 10 0 1e14], ...

’NewNode’,0);

links={’connection’,’bearing’,...
struct(’C1’,1,’C2’,r1,...

’link’,{{’celas’,[0 0 23 0 103 0 1e5 0 0.1]}},...
’NLdata’,struct(’type’,’RotCenter’,’lab’,’Bearing’,...

’sel’,’ProId 1’,’JCoef’,1,’drot’,n1+.06))}
[model,RunOpt.idof]=nl_spring(’ConnectionBuild’,model,links)

[cf.mdl,RunOpt.idof]=nl_spring(’ConnectionBuild’,cf.mdl,links);

For 3d rotors, if there is no node on the axis of the shaft where one want to model the bearing, one
can add a node whose displacement depends on displacements of nodes on a ring of the shaft using
(see sdtweb(’fe case#connectionscrew’)). Then one can connect a grounded celas to this node.
xxx a full example is needed xxx

3.2.2 Non-linear bearings in the time domain

Documentation of nl spring capabilities should go here.

One has a particular example, with a simple rotor (beam1+mass), non linear bearings (not the same
in y and z direction), using the rotcenter non linearity, spurious mass for rotation DOF (no basis
transformation). The strategy to have different NL according to Y and Z is to add a mass connected
to the rotcenter extremity usually connected to stator, and to use this mass motion in global basis
to apply NL bearing in the 2 different directions Y and Z. See sdtweb d rotor rotcenter.

3.3 Gyroscopic effects

SDT supports gyroscopic matrices in both rotating (body-fixed) and fixed frames (Eulerian represen-
tation of an axisymmetric structure). When performing assembly, the matrices in the local rotating

3.3. GYROSCOPIC EFFECTS 29

frame are obtained with MatType 7 gyroscopic and MatType 8 centrifugal softening. MatType 70

corresponds to the gyroscopic matrix in the global fixed frame. There is no centrifugal softening in
this frame.

3.3.1 Fixed frame models

The mass1 and beam1 elements gyroscopic matrices are only available in the global fixed frame
(MatType 70). The rotation axis is assumed to be the axis of the beam for beam1 elements. Mo-
ments of inertia must be equal (axisymmetry). For mass1 elements the rotation axis is assumed to
be the one whose rotation inertia is different from the 2 others that must be equal.
mass1 .Elt format: [n mxx myy mzz ixx iyy izz EltId]

One can build simple models of 1d rotor using mass1 elements to represent rigid disk and beam1 to
represent the shaft. One can find an example of such a rotor in d rotor(’TestShaftDiskMdl’).
See section ?? for more details on how to mesh such a rotor.

For volume and shell elements, the formulation of gyroscopic matrices in global fixed frame is unclear
and thus not currently implemented.

3.3.2 Rotating frame models

For all volume elements, one can compute gyroscopic (MatType 7) and centrifugal softening (MatType
8) matrices in the local rotating frame.

Elements under development are

� mass1 : Only point masses with same mass along the 3 translation DOF and no rotation inertia
are considered. Other are ignored.

� beam1 : Not supported.

� shell : Not supported.

In that case rotation axis must be given as a vector in info,Omega stack entry in the model. For
example model=stack set(model,’info’,’Omega’,[0 1 0]) will define a rotation axis along Y.
Note that the norm of this vector is assumed to be the rotation speed in rad/s. The norm of the
rotation vector should be 1 so that matrices are assembled for a rotation speed of 1 rad/s. Indeed

30 CHAPTER 3. TOOLBOX TUTORIAL

it is assumed that gyroscopic and centrifugal softening matrices have been assembled for a rotation
speed of 1 rad/s in many functions (such as fe rotor etc. ...).

Finer definition of the rotation speed is possible using a struct input with fields

� data the rotation axis defined as described above.

� unit optional, defintion of the rotation speed unit as a string, either rad/s or RPM.

� group optional, to apply gyroscopic coupling only to specified element groups.

The definition of the group field can be handled by fe cyclic(’OmegaGroup’, model,findElt,[0

1 0]’. The findElt argument can be either a FindElt string or a vector of EltId values. In both
cases, gyroscopic coupling will be applied to the groups containing the element founds, with the
rotation axis [0 1 0] in this example. Warning: the whole group will be impacted even if the
findElt input only selects parts of it.

3.4 Frequency domain analysis, full model

Supported computations in fe rotor, are

� Campbell diagram building

� Direct computation of critical speeds

� Frequency domain response to unbalance and harmonic loads on bearings

� Time domain simulation accounting for non-linear bearings is under development (these are
performed with the shaft in a rotating frame and the stator fixed).

3.4.1 Campbell diagrams, full model

Campbell diagrams are implemented in the fe rotor Campbell command.

model=d_rotor(’TestShaftDiskMdl’);

fe_rotor(’Campbell -crit -cf100’,model,linspace(0,8000,100));

figure(100);set(gca,’ylim’,[0 200])

Command options are -cfi to define figure where to plot, -crit to compute critical speeds,
-stability to display a stability diagram (damping-rotation speed).

The following is an example of a simple disk rotating at the end of a long rod. For other details see
rotor2d.

3.4. FREQUENCY DOMAIN ANALYSIS, FULL MODEL 31

% Model Initialization

mo1=rotor2d(’test simpledisk -back’); % init model

cf=feplot;cf.model=rotor2d(’buildFrom2D’,mo1);

SE=cf.Stack{’disk1’}; % enforce boundary cond. on sector and assemble

SE=fe_case(SE,’FixDof’,’Base’,’z==1.01’);

SE=fe_cyclic(’assemble -se’,SE);

cf.Stack{’disk1’}=SE; fecom(’view1’);

% automated building of Campbell diagram : XXX NEED REVISION

RunOpt=struct(’targ’,1, ...

’Range’,linspace(0,1,30));

cf.def=rotor2d(’teig’,cf,RunOpt);

d1=fe_def(’subdof’,cf.def,feutil(’findnode r==0’,SE));

3.4.2 Blade with centrifugal stiffening

One considers stiffness matrices that are dependent on the rotation speed. Assuming that a second
order polynomial representation is sufficient, one can build a vector of weigthing coefficients

α1

α2

α3

 =

 1 1 1
Ω1 Ω2 Ω3

Ω2
1 Ω2

2 Ω2
3

−1
1
α2

α3

 (3.1)

Such that the stiffness at rotation speed Ω is approximated by

[K(Ω)] =
∑
αi

[KΩi] (3.2)

The zCoef uses velocity Omega in rad/s.

This example now treats computation at variable rotation speeds

% Model Initialization

model=demo_cyclic(’testblade’);cf=feplot(model);

% Compute matrix coefficients for a multi-stage rotor

range=struct(’data’,[0 0 1;0 0 8e3;0 0 16e3],’unit’,’RPM’);

% Assembling in the feplot figure, allows memory offload

fe_cyclicb(’polyassemble -noT’,cf,range);

X=struct(’data’,linspace(0,16e3,10),’unit’,’RPM’);

fe_rotor(’Campbell -cf1’,cf.mdl,X);set(gca,’ylim’,[0 3000])

32 CHAPTER 3. TOOLBOX TUTORIAL

Now a more standard non-linear static computation for a range or rotation speeds.

model=demo_cyclic(’testblade’);cf=feplot(model);

r2=linspace(1e3,15e3,20)’;

range=struct(’data’,r2*[0 0 1],’unit’,’RPM’);

model=stack_set(model,’info’,’Omega’,range);

model=fe_cyclic(’LoadCentrifugal’,model)

opt=fe_simul(’NLStaticOpt’);

opt.MaxIter=100;opt.JacobianUpdate=1;

def=fe_time(opt,model);def.data(:,1)=range.data(:,3);

def.LabFcn=’sprintf(’’%.1f RPM’’,def.data(ch,1))’;

d_rotor(’viewMises’,cf,def);

3.4.3 Complex modes

To compute complex modes at a given rotation speed, one can use fe rotor Campbell command
with option -cmode. Complexe modes are the computed using a real mode basis projection. Mode
options should be stored in the ’info’ ’EigOpt’ model stack entry. The complexe modes are return
for the first rotation speed given as input argument.
Once modes are computed, you can display them in feplot. The fecom ShowTraj command displays
trajectories. For example:

model=d_rotor(’TestShaftDiskMdl’)

model=fe_caseg(’assemble -SE -secdof -matdes 2 1 70’,model); % assemble model matrices

def=fe_rotor(’Campbell -cmode -cf100’,model,100); % C modes at 100 RPM.

cf=feplot(model,def); fecom(’view3’);iimouse(’resetvie’);

fecom(cf,’ShowTraj’)

Figure 3.6: Complex mode and trajectory.

3.5. SOLVERS FOR MODELS WITH CYCLIC SYMMETRY 33

3.4.4 Forced frequency response to unbalanced load

One can compute the frequency response to an unbalanced load, or to an asynchronous load using
fe rotor RotatingLoad and ForcedResponse command (see sdtweb(’fe rotor’) for more de-
tails). Definition of the load is different in local rotating frame or global fixed frame. One can see
the validation part of this document for various examples. Following example computes the response
to an unbalanced mass on the 1D rotor model:

model=d_rotor(’TestShaftDiskMdl’)

model=fe_caseg(’assemble -SE -secdof -matdes 2 1 70’,model); % assemble model matrices

mb=1e-4; db=0.15; % mass, distance to axis

om=linspace(0,6000,201); % RPM

model=fe_rotor(sprintf(’RotatingLoad 2 %.15g -90 2’,mb*db),model); % unbalanced mass

r1=struct(’Omega’,om/60*2*pi,’w’,om/60*2*pi); % Range

model=stack_set(model,’info’,’Range’,r1);

R1=fe_rotor(’ForcedResponse’,model); % compute forced response

iiplot(R1) % plot response

3.5 Solvers for models with cyclic symmetry

The SDT/Rotor module contains

� classical cyclic symmetry solvers, where one assumes the solution to be associated with a
specific number of diameters (spatial harmonic associated to the Fourier transform of a periodic
geometry, see [5] for more details.)

� full rotor reduced models where cyclic symmetry solutions are used to build a reduced model
for various stages. The associated solvers are discussed in section 3.6 .

3.5.1 Static response

Resolution of static responses is performed using fe cyclicb ShaftSolve. You should be aware,
that non-linear static iterations may fail to converge if you have rigid body modes in your system.
In the example below, this is the reason for fixing the axial motion of point 136 in disk1 and using
the -FixTan which adds a tangential translation constraint on the first disk.

if 1==1 % One disk case

if ishandle(2);delete(2);end

34 CHAPTER 3. TOOLBOX TUTORIAL

cf=demo_cyclic(’testrotor 7 -blade -cf 2’);

Sel={’disk1’,’groupall’};
else % Two disk case

cf=demo_cyclic(’testrotor 7 10 -blade -cf 2 reset’);

Sel={’’,’EltName SE’;

’disk1(1:2)’,’groupall’;’disk2(1:3)’,’groupall’};
end

cf.Stack{’disk1’}=fe_case(cf.Stack{’disk1’},’FixDof’,’Axial’,136.03);

% Linear static response

cf.Stack{’info’,’Omega’}=struct(’data’,250,’unit’,’RPM’);
d0=fe_cyclicb(’shaftsolvestatic 0 -FixTan’,cf.mdl)

d_rotor(’viewMises’);

% Non-linear static response

cf.Stack{’info’,’Omega’}=struct(’data’,250,’unit’,’RPM’);
d0=fe_cyclicb(’shaftsolvestatic 0 -FixTan -nlstep 1e-10’,cf.mdl)

fe_cyclicb(’displaySel’,cf,d0,Sel)

fecom(’ColorDataEvalRadZ’)

XXX example with thermal loading xxx

Example with temperature dependent properties.

3.5.2 Single stage mode computations

As a first example one will consider computations of a single disk using mono harmonic solutions

Call shaftTeig in fe cyclicballows to compute the specified mono-harmonic normal modes.

Mono-harmonic normal modes are recovered to the rotor with the help from command shaftdispay.
If command option sel is specified and a selection of elements is provided, the shapes are recovered
to that selection only. Selections are cell arrays with the typical entry Sel={’disk1’,sel1} where
sel1 is either a string (to select a subset of elements in the true mesh) or a list of elements (to build
a reduced viewing mesh).

% Model Initialization

cf=demo_cyclic(’testrotor 7 -blade -cf 2 reset’);

% Mono-harmonic Solutions

3.5. SOLVERS FOR MODELS WITH CYCLIC SYMMETRY 35

model=stack_set(cf.mdl,’info’,’EigOpt’,[5 5 -1e3 11 1e-8]);

def=fe_cyclicb(’shaft Teig 0 5’,model);

% partial display and computation of strain energy

Sel={’disk1’,’withnode {r<130}’};
fe_cyclicb(’Displaysel’,cf,def,Sel,’enerkdens’);

if 1==2 % total display if needed

cf.sel=’groupall’;cf.def=fe_cyclicb(’Display’,cf,def);

end

cf.Stack{’info’,’StressCritFcn’}=’fe_cyclicb(’’StressRR’’);’
[dfull,STRESS]=fe_cyclicb(’Displaysel’,cf,def,Sel,’stress-gstate’);

z=STRESS.GroupInfo{1,5};figure(1);plot(squeeze(z.Y(1,1,:,7)))

This will be extended to full disk computations in section ?? .

3.5.3 Multi-stage harmonic mode computations

Call shaftTeig in fe cyclicb allow to compute the specified mono-harmonic solutions (multi-stage
solutions for which disks share the same Fourier harmonic coefficient δ) in a single job.

Mono-harmonic eigensolutions are recovered using Dispay. If command option sel is specified and
a selection of elements is provided, the shapes are recovered to that selection only. Selections are
cell arrays with the typical entries:

� Sel={’disk1’,sel1} where sel1 is either a string (to select a subset of elements in the true
mesh) or a list of elements (to build a reduced viewing mesh),

� Sel={’’,selg} where selg is a string that selects elements of the global mesh (selg is often
’eltname==SE’ so that only disks are displayed).

In the same fashion, mono-harmonic static responses are returned by ShaftSolveStatic. This is of
particular interest to compute the static deformation under the centrifugal loading (known to have a
Fourier harmonic coefficient of δ = 0) and built with command LoadCentrifugal within fe cyclic.

% Model Initialization

cf=demo_cyclic(’testrotor 7 10 -blade -cf 2’);

% Mono-harmonic Solutions

36 CHAPTER 3. TOOLBOX TUTORIAL

model=stack_set(cf.mdl.GetData,’info’,’EigOpt’,[5 5 -1e3 11 1e-8]);

def=fe_cyclicb(’shaft Teig 0 2’,model);

demo_cyclic(’RefcheckDisk710’,def) % non regression check

cf.Stack{’disk1’}=fe_case(cf.Stack{’disk1’},’park’,’blade’,’innode{r>=200}’);
Curve=fe_cyclicb(’fourier 1:13 -mono -egyfrac’,cf,def); % check energies

iiplot(Curve);colormap(flipud(hot));

cf.def=fe_cyclicb(’Display’,cf,def);

% static responses : sdtweb(’freqcyclic#cyclic_static’)

model=stack_set(model,’info’,’Omega’,struct(’data’,1000,’unit’,’RPM’));

model=stack_set(model,’curve’,’StaticState’, ...

fe_cyclicb(’shaftsolvestatic 0’,model));

fe_cyclicb(’DisplayFirst’,model, ...

stack_get(model,’curve’,’StaticState’,’get’));

d_rotor(’viewradz’)

% Pre-stressed modes

dp=fe_cyclicb(’shaft Teig 0 2’,model);

[def.data dp.data]

After full rotor assembly restitution is performed using SeRestit.

3.5.4 Campbell diagrams

First example of the beam with single disk

% Model Initialization

model2D=rotor2d(’test simpledisk -back’);

cf=feplot(rotor2d(’buildFrom2D’,model2D));

SE=cf.Stack{’disk1’}; % enforce boundary cond. on sector and assemble

SE=fe_case(SE,’FixDof’,’Base’,’z==1.01’); cf.Stack{’disk1’}=SE;

% Compute matrix coefficients for a multi-stage rotor

range=struct(’data’,[0 0 1; 0 0 1000/2/pi*60],’unit’,’RPM’);

fe_cyclicb(’polyassemble -noT’,cf,range);

% Now run a mono-harmonic computation returning reduced model

cf.Stack{’info’,’Omega’}=struct(’data’,range.data(1,:),’unit’,’RPM’);

3.5. SOLVERS FOR MODELS WITH CYCLIC SYMMETRY 37

cf.Stack{’info’,’EigOpt’}=[5 20 0]; % define eigenvalue options

MVR=fe_cyclicb(’shafteig 1 -ReAssemble 2 -NoN -buildMVR’,cf);

MVR.Stack{end}(end+[-1:0],4)={’1’;’0’}; % skip problem with geometric softening

rc=struct(’data’,linspace(0,8000*2*pi,50),’unit’,’RPM’);

hist=fe_rotor(’Campbell’,MVR,rc);

fe_rotor(’plotCampbell’,hist,struct(’fig’,100,’axProp’,{{’ylim’,[0 250]}}))

Another example will be needed to treating the multi-stage case. This example needs further vali-
dation and rewrite.

% Model Initialization

model=demo_cyclic(’testrotor 7 10 -blade’);

cf=feplot(model);

% Compute matrix coefficients for a multi-stage rotor

range=struct(’data’,[0 0 1;0 0 800;0 0 1600],’unit’,’RPM’);

% Assembling in the feplot figure, allows memory offload

model=fe_cyclicb(’shaftRimAsSe’,model); % Needed for PolyAssemble

fe_cyclicb(’polyassemble -noT’,cf,range);

% Now run a mono-harmonic multi-speed computation

cf.Stack{’info’,’Omega’}=struct(’data’,range.data(1,:),’unit’,’RPM’);
cf.Stack{’info’,’EigOpt’}=[5 20 -1e3]; % define eigenvalue options

MVR=fe_cyclicb(’shafteig 1 -ReAssemble 2 -NoN -buildMVR’,cf);

%MVR.Stack{end}(end+[-2:0],4)={’1’;’0’;’0’}; % skip problem with geometric softening

rc=struct(’data’,linspace(1,8000,50),’unit’,’RPM’);

hist=fe_rotor(’Campbell’,MVR,rc);

fe_rotor(’plotCampbell’,hist,struct(’fig’,100,’axProp’,{{’ylim’,[0 3e3]}}))

%Sel={’disk1’,’groupall’;’disk2’,’groupall’};
%fe_cyclicb(’Displaysel’,cf,def,Sel)

3.5.5 Complex modes

Need documentation here.

38 CHAPTER 3. TOOLBOX TUTORIAL

3.5.6 Forced frequency response to unbalanced load

Need documentation here.

3.6 Full rotor model from cyclic computation

3.6.1 Single stage full rotor example

Starting from the mono-harmonic computation in section 3.5.2 . One builds a full shaft model that
will allow prediction of all the modes.

%H5.close;fclose all; % may be needed for overwrite

cf=demo_cyclic(’testrotor 7 -blade -cf 2’);

cf.Stack{’info’,’Omega’}=struct(’data’,250,’unit’,’RPM’);
d0=fe_cyclicb(’shaftsolvestatic 0’,cf.mdl) % auto-display with no arg

cf.Stack{’curve’,’StaticState’}=d0;
RunOpt.Root=fullfile(sdtdef(’tempdir’),’Disk_7’);

RunOpt.FileSe=fullfile(sdtdef(’tempdir’),’Disk_7_SE’);

cf.mdl=fe_cyclicb(’shaftSeAssemble -reset’,cf.mdl,RunOpt.FileSe);

RunOpt.FileTeig=fullfile(sdtdef(’tempdir’),’Disk_7_TEIG.mat’);

% See sdtweb(’fe_cyclicb#ShaftEig’) for -batch option

def=fe_cyclicb(’shaft Teig 0 1 5’,cf.mdl);

% Now build a multi-harmonic model

fe_cyclicb(’ShaftPrep -handle’,cf,def);

fesuper(’fassemble’,cf);

% Mode Computations

defr=fe_eig(cf.Stack{’MVR’},[5 50 1e3 11 1e-8]);

cf.sel=’reset’;cf.def=fesuper(’sedef’,cf,defr);

def_ext=fe_cyclicb(’DefList’,RunOpt.FileTeig(1:end-4))

% the same results should be achived by assembling the prestress inside

% shaftTeig xxx update matrices only once, not for each diameter

3.7. TIME DOMAIN ANALYSIS 39

cf=demo_cyclic(’testrotor 7 -blade -cf 2’);

cf.Stack{’info’,’Omega’}=struct(’data’,250,’unit’,’RPM’);
cf.mdl.il=[1001 fe_mat(’p_super’,’SI’,1) 1 0 0 1];

fe_cyclicb(’shaft Teig 0 1 5 -batch -reassemble’,cf.mdl,RunOpt.FileTeig);

def_int=fe_cyclicb(’DefList’,RunOpt.FileTeig(1:end-4))

%if norm(def_int.data(def_int.data(:,1)>1,1)-def_ext.data(def_ext.data(:,1)>1,1),inf)>1e-5;

%error(’ShaftTEig internal and external prestress produce different results’); end;

Note that to build a disk model from a sector, you should use model=fe cyclicb(’DiskFromSector

1’,model,sector). xxx Arnaud : need to check adaptation for multi-disk models.

3.7 Time domain analysis

Once rotor model is created, one can perform time computation. nl spring function is very useful
in that case. Gyroscopic effects can be treated as non linear load depending on instant value of a
model DOF (observation of the rotation speed for example). Links between fixed and rotating parts
can also be modelized as non linear loads.

3.7.1 Simple example
Following example simply computes the response to an impact on the disk, assuming that rotation
speed is 1000 RPM:

model=d_rotor(’TestShaftDiskMdl’); % build simple 1D rotor

% Define Time option and other parameters:

opt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 1e4’); % TimeOpt

Range=struct(’Omega’,1000/60*2*pi);

model=stack_set(model,’info’,’Range’,Range);

opt.matdes=[2 1 70];

model=stack_set(model,’info’,’TimeOpt’,opt);

model=fe_rotor(’TimeOptAssemble’,model);

% initial impact:

model=fe_case(model,’DofLoad’,’In’,...

struct(’def’,1,’DOF’,2.02,...

’curve’,sprintf(’TestStep%.15g’,opt.Opt(4)*5)));

40 CHAPTER 3. TOOLBOX TUTORIAL

% Compute response:

def=fe_time(model); iiplot(def);

3.7.2 Gyroscopic effects
Gyroscopic coupling is represented by a load −Ω(t).D(Ω = 1) ∗ V where Ω is the rotation speed
and D the gyroscopic coupling matrix. That can be applied at each step of time using the DofKuva
nl spring non linearity (see sdtweb(’nl spring’)).

An unbalanced mass is a load proportional to rotation speed. In the local rotating frame it can be
described using nl spring DofV non linearity.

Following example deals with the simple 1D rotor and performs a time integration in fixed global
frame taking in account the gyroscopic effect, for an initial impact on the disk. Note that the non
linear holding of the gyroscopic effect is not necessary here since the global frame is considered, and
rotation speed is assumed to be constant (1000 RPM). The gyroscopic effects (in green in figure
below) are coupling the y and z motion.

Figure 3.7: y (top) and z (bottom) deflection, with (green) and without (blue) gyroscopic effect.

model=d_rotor(’TestShaftDiskMdl’);

model=fe_case(model,’FixDof’,’Ends’,...

[1.01 1.02 1.03 4.01 4.02 4.03 0.01]);

% TimeOpt:

opt=d_fetime(’TimeOpt -gamma .501’);

opt.NeedUVA=[1 1 1];

opt.IterEnd=’if ite>90;evalin(’’caller’’,’’assignin(’’’’base’’’’,’’’’def’’’’,out)’’);end’;

3.7. TIME DOMAIN ANALYSIS 41

opt.Follow=1; opt.RelTol=-1e-5;

opt.Opt(7)=-1; % factor type sparse

opt.Opt(4)=1e-4; opt.Opt(5)=0.6e4; % NSteps

% Initial impact:

model=fe_case(model,’DofLoad’,’In’,...

struct(’def’,1e3,’DOF’,2.02,...

’curve’,sprintf(’TestStep%.15g’,opt.Opt(4)*5)));

% Without gyroscopic effect:

def0=fe_time(opt,model) % compute

% With NL gyroscopic effects:

model=stack_set(model,’pro’,’DofKuva1005’, ... % gyroscopic effects

struct(’il’,[1005 fe_mat(’p_spring’,’SI’,1) 0 0 0 0 0],...

’type’,’p_spring’,’NLdata’,struct(...

’type’,’DofKuva’,’lab’,’gyroscopic effect’, ...

’Dof’,[],’Dofuva’,[0 1 0],’MatTyp’,70,...

’factor’,-1*1000/60*2*pi,’exponent’,1,’uva’,[0 1 0])));

def=fe_time(opt,model) % compute

% Display results as curves

ci=iiplot;

iicom(’sub 2 1’);

iicom(ci,’IIxOnly’,{’disp(1)’;’disp(2)’});
i1=fe_c(ci.Stack{’disp(1)’}.DOF,2+[.02;.03],’ind’);
iicom(ci,sprintf(’;cax1;chc%i;cax2;chc%i’,i1(1),i1(2)));

% comgui(’ImWrite’,comgui(’cd’,’o:\sdt.cur\rotor\plots\shaftdisk_withandwithoutgyro.png’))

% display deformation

cf=feplot(model); % display model

cf.def=def0; % without gyrocopic effects

cf.def=def; % with gyroscopic effects

3.7.3 Other representations of bearings
In the fixed basis the simplest bearing model is a linear spring (celas element. In rotating basis,
using a spring to model beaing is not possible using a celas element. The nl spring RotCenter non
linearty is usefull to modelize link between rotating and non rotating parts.

In the fixed basis one can use a non linear spring to model the bearing. The nl maxwell non linearity
describes a set of generalized maxwell rheological models that can be used as non linear bearing in

42 CHAPTER 3. TOOLBOX TUTORIAL

the global frame. As an illustration, following example replaces the linear bearing of the 1D rotor
by a zener model of the link.

model=d_rotor(’TestShaftDiskMdl’); % Build model

model=fe_case(model,’FixDof’,’Ends’,...

[1.01 1.02 1.03 4.01 4.02 4.03 0.01]); % Clamp ends

% TimeOpt:

opt=d_fetime(’TimeOpt’);

opt.Follow=1; opt.RelTol=-1e-5;

opt.Opt(7)=-1; % factor type sparse

opt.Opt(4)=1e-4; opt.Opt(5)=0.6e4; % NSteps

opt.IterInit=’model.FNL0=model.FNL+0;’;

% Initial impact:

model=fe_case(model,’DofLoad’,’In’,...

struct(’def’,1e3,’DOF’,2.02,...

’curve’,sprintf(’TestStep%.15g’,opt.Opt(4)*5)));

% NL bearings

% define nl_maxwell data

model.il(ismember(model.il(:,1),[100;101]),:)=[]; % remove properties

k0=500000; k1=k0/2; c1=600; % 20.41% for f=54.15 Hz

data=nl_maxwell(sprintf(’db Fu"zener k0 %.15g k1 %.15g c1 %.15g"’,k0,k1,c1));

data.Sens{2}=3.02; % translation sensor defining nl_maxwell inputs

r1=p_spring(’default’); r1=feutil(’rmfield’,r1,’name’);

r1.NLdata=data; r1.il(3)=k0; % translation sensor defining nl_maxwell inputs

r1.il(1)=100; model=stack_set(model,’pro’,’bearingy’,r1);

r1.NLdata.Sens={’trans’,3.03}; % translation sensor defining nl_maxwell inputs

r1.il(1)=101; model=stack_set(model,’pro’,’bearingz’,r1);

ci=iiplot(3); % results will be store there

def0=fe_time(opt,model); % compute

4

Validation

Contents

4.1 Rigid disk example . 44

4.1.1 Matrices in rotating frame . 44

4.1.2 Matrices in global fixed frame . 45

4.1.3 Validation with 3D model disk . 47

4.2 Simple 2DOF model of shaft with disk 50

4.3 1D models . 54

4.3.1 1D example in a fixed frame . 55

4.3.2 1D models in a rotating (body-fixed) frame 58

4.4 3D rotor . 58

4.5 Data structure reference . 60

44 CHAPTER 4. VALIDATION

4.1 Rigid disk example

Figure 4.1: Simple rigid disk.

We consider a simple rigid disk of axis Y, thickness h, radius R, mass m. This simple example is
very useful because we can easily compute matrices in both of global and local frame for a simple
description of motion with 4 DOF. Besides we can compute in SDT equivalent matrices for a mass1

rigid disk, for a disk described by a beam1 element and for a volume disk in hexa8 elements. Then
we can compare gyroscopic matrices and make sure that their implementation for each element is
correct.

4.1.1 Matrices in rotating frame

The motion of the disk is described by 2 translations (uc and wc) and 2 rotations DOF (θu and
θw). Disk is assumed to be rigid so displacements at each point of the disk are given by the shape
functions

u
v
w

 =

 1 0 0 −v
0 0 −w u
0 1 v 0

uc
wc

θu
θw

 = [Nxyz] {q} (4.1)

4.1. RIGID DISK EXAMPLE 45

Rotation matrix (2.3) along Y axis is given by

[Ω] = Ω

 0 0 1
0 0 0
−1 0 0

 (4.2)

Using matrix expression given in section 2.1.1 in body fixed local rotating frame, and projecting the
integrals by assuming rigid disk motion

[M] =

m 0 0 0
0 m 0 0
0 0 Iu 0
0 0 0 Iw

 (4.3)

with Iu = Iw = 1
4mR2 +mh2

12

[D] = 2mΩ

0 1 0 0
−1 0 0 0

0 0 0 h2

12

0 0 −h2

12 0

 (4.4)

[Kc] = −mΩ2

1 0 0 0
0 1 0 0

0 0 h2

12 0

0 0 0 h2

12

 (4.5)

[M] {q̈L}+D {q̇L}+Kc {qL} = FL (4.6)

An unbalanced mass is represented by a static load in the local rotating frame

{FL} =

1
0
0
0

 (4.7)

4.1.2 Matrices in global fixed frame

Local frame (indexed with L) is rotating in global fixed frame (indexed with G) according to rotation
matrix

46 CHAPTER 4. VALIDATION

[Rt] =

[
cos(Ωt) −sin(Ωt)
sin(Ωt) cos(Ωt)

]
(4.8)

so that we have
{qL} = [Rt] {qG}
{q̇L} = [Rt] {q̇G}+

[
Ṙt

]
{qG}

{q̈L} = [Rt] {q̈G}+ 2
[
Ṙt

]
{q̇G}+

[
R̈t

]
{qG}

and equation (4.6) can thus be rewritten as

[
RTMR

]
{q̈G}+

[
2RTMṘ+RTDR

]
{q̇G}+

[
RTMR̈+RTDṘ+RTKcR

]
{qG} = FG

[MG] {q̈G}+ [DG] {q̇G}+ [KcG] {qG} = FG

(4.9)

One has RT Ṙ = Ω

[
0 −1
1 0

]
and RT R̈ = Ω2

[
1 0
0 1

]
thus in the gyroscopic effect the translation

terms disappear and one has

[DG] = 2Ω

0 0 0 0
0 0 0 0
0 0 0 −Iv
0 0 Iv 0

with Iv = 1

4mR2 = Iu − 2mh2/12 and the xxx UNEXPECTED xxx centrifugal softening in the
global frame

[KcG] = −Ω2

0 0 0 0
0 0 0 0
0 0 1

2Iv 0
0 0 0 1

2Iv

An unbalanced mass is represented by a rotating load in the global fixed frame

{FG} =

sin(Ωt)
cos(Ωt)

0
0

 (4.10)

4.1. RIGID DISK EXAMPLE 47

4.1.3 Validation with 3D model disk

This validation example considers a disk meshed with hexa8 volume elements. Local frame matri-
ces are computed and projected on the geometrical rigid body modes (x and z translations, and
corresponding rotation). One checks matching of

� matching of theoretical and numerical matrices

� response amplitudes of the disk with unbalanced mass in global and local frame

� mass1 and beam1 elements gives the same gyroscopic matrices in the global frame (mattype
70)

% model of disk:

R1=.01;R2=.15;h=0.03;rho=7800;

md=d_rotor(sprintf(’testvoldisk -dim %.15g %.15g %.15g 5 24’,R1,R2,h))

md.DOF=[];md=fe_caseg(’assemble -se -matdes 2 1 7 8 not’,md);

% disk assumed to be rigid:

rb=feutil(’geomrb’,md); cf=feplot(md); cf.def=rb;

md.K=feutil(’tkt’,rb.def(:,[1 3 4 6]),md.K);

md.DOF=[1.01 1.03 1.04 1.06]’;

md.K{2}=0*md.K{2}; % rigid disk

md.K{2}(1,1)=5e5;md.K{2}(2,2)=5e5; % bearing

md.K{2}(3,3)=1e5;md.K{2}(4,4)=1e5; % bearing rot /XXX

% Campbell in local rotating frame:

fe_rotor(’campbell-critical’,md,linspace(0,9000,31));

% Unbalanced mass:

w=1; t=12; wrange=logspace(0,3,100); Q=[];

for j1=1:length(wrange);w=wrange(j1);

% rotation matrix

R=[cos(w*t) -sin(w*t); sin(w*t) cos(w*t)]; R=[R zeros(2);zeros(2) R];

Rp=w*[-sin(w*t) -cos(w*t); cos(w*t) -sin(w*t)];Rp=[Rp zeros(2);zeros(2) Rp];

Rpp=-w^2*R;

% Global matrices

MG=R’*md.K{1}*R;
DG=2*R’*md.K{1}*Rp + R’*w*md.K{3}*R;
KG=R’*md.K{1}*Rpp + R’*w*md.K{3}*Rp + R’*w^2*md.K{4}*R + R’*md.K{2}*R;
% compare to theoretical values

m=pi*(R2^2-R1^2)*3e-2*7800;

48 CHAPTER 4. VALIDATION

Iv=0.5*m*(R2^2+R1^2); Iu=0.5*Iv+m*h^2/12;

DGth=zeros(4); DGth(4,3)=Iv; DGth(3,4)=-Iv; DGth=w*DGth;

KGth=diag([0 0 1 1]); KGth=-w^2*Iv/2*KGth;

if norm(KG-R’*md.K{2}*R-KGth)/norm(KGth)>5e-2;error(’Cent. soft mismatch’);end

if norm(DG-DGth)/norm(DGth)>5e-2; error(’gyro matrix mismatch’); end

% unbalanced mass:

X0L=inv(md.K{2}+w^2*md.K{4})*w^2*[1 0 0 0]’; % local

X0L=abs(X0L(1));

X0G=inv(-w^2*MG+1i*w*DG+KG) *w^2*[-1i 1 0 0]’; % global

X0G=abs(X0G(1));

Q(1,j1)=X0L; Q(2,j1)=X0G;

end

figure(4);semilogy(wrange*60/2/pi,Q(1,:),wrange*60/2/pi,Q(2,:));

legend(’local’,’global’); title(’Unbalanced mass’);setlines

xlabel(’Rotation velocity [RPM]’); ylabel(’Amplitude [m]’)

if norm(Q(1,:)-Q(2,:))/norm(Q(1,:))>1e-8; error(’Global/Local error’); end

% check mass1 gyroscopic matrix 70:

mdmass=struct(’Node’,[1 0 0 0 0 0 0], ...

’Elt’,[Inf abs(’mass1’) 0; 1 m m m Iu Iv Iu]);

mdmass=fe_case(mdmass,’fixdof’,’Base’,[1.02 ;1.05])

mdmass=fe_caseg(’assemble -se -matdes 2 1 70’,mdmass)

if norm(w*mdmass.K{3}-DGth)/norm(DGth)>1e-8; sdtw(’_err’,’mass1 gyro 70 unmatch’); end

% check beam1 gyroscopic matrix 70:

Omega=[0 1 0]; % axis of the disk

mdbeam1=struct(’Node’,[1 0 0 0 -h/2*Omega; 2 0 0 0 h/2*Omega],...

’Elt’,[Inf abs(’beam1’) 0; 1 2 1 1 0 0 0]);

mdbeam1.il=p_beam(’convertto1’,p_beam(sprintf(’dbval 1 TUBE %.15g %.15g’,R2,R1)));

mdbeam1.pl=m_elastic(’dbval 1 steel’);

mdbeam1=fe_case(mdbeam1,’fixdof’,’fix1’,...

[1+(find(Omega)+[0;3])/100;2+(find(Omega)+[0;3])/100]);

rb=feutil(’geomrb’,mdbeam1); mdbeam1=fe_case(mdbeam1,’DofSet’,’fix2’,rb);

rb=fe_simul(’static’,mdbeam1); mdbeam1=fe_case(mdbeam1,’remove’,’fix2’);

mdbeam1.DOF=[]; mdbeam1=fe_caseg(’assemble -se -matdes 2 1 70’,mdbeam1);

mdbeam1.DOF=fe_case(’gettdof’,mdbeam1);

rb=feutil(’placeindof’,mdbeam1.DOF,rb)

mdbeam1.K=feutil(’TKT’,rb.def(:,setdiff(1:6,find(Omega)+[0 3])),mdbeam1.K)

if norm(w*mdbeam1.K{3}-DGth)/norm(DGth)>1e-8;
sdtw(’_err’,’beam1 gyro 70 unmatch’);

4.1. RIGID DISK EXAMPLE 49

end

The response to the unbalanced mass is the same in both of the 2 frames. The maximum of
response matches rotation speed found as critical speed for forward whirl in local and global Campbell
diagram.
Note that we can compute Campbell in local frame from Campbell in global frame with:

f
(F)
L = ∥f (F)

G − Ω∥ for forward modes and

f
(B)
L = ∥f (B)

G +Ω∥ for backward modes.
The 2 Campbell diagrams have been computed using matrices in corresponding frame and we check
that we can pass from one to other using these formulas.

XXX In this example:
- Centrifugal softening in global fixed frame? Not 0
- In GLOBAL frame gyroscopic matrix DG do not modify unbalanced response because only trans-
lation dof are affected... - In LOCAL frame gyroscopic D do not modify unbalanced response:
X0L=inv(md.K2+w2*md.K4)*w2*[1 0 0 0]’; % local

Figure 4.2: Top: Unbalanced mass response amplitude computed in local and global frame. Bottom
left: Campbell diagram in local rotating frame, right: in global frame.

50 CHAPTER 4. VALIDATION

4.2 Simple 2DOF model of shaft with disk

This section is about the simple 2 DOF rotor model described in chapter 2 of Lalanne and Ferraris [7].

Figure 4.3: Simple model of rotor.

The disk is rigid, the shaft is described by 2 sin shape functions f(y) = sin(πyL) where L is the length
of the shaft.

Bearing at y = L
3 is represented by 2 additional stiffness and damping. Kbearing = sin(2π3)

[
kxx kxz
kzx kzz

]
Cbearing = sin(2π3)

[
cxx cxz
czx czz

]
The 2 DOF are considered in the global fixed frame.

[
m 0
0 m

]
{q̈}+Ω

[
0 −a
a 0

]
{q̇}+

[
k 0
0 k

]
{q} = F (4.11)

For an unbalanced mass mb at a position of L/3 on the shaft and at a distance of db of the rotation

axis F = m∗dbΩ2

{
sin(Ωt)
cos(Ωt)

}
where m∗ = sin(π3)mb.

For a simple asynchronous load of amplitude f0 rotating at sΩ F = f0

{
sin(sΩt)
cos(sΩt)

}
.

Frequency analysis is performed.
Harmonic solutions are computed under the form ℜ(Q0exp(ısΩt)) (s = 1 for unbalanced mass and
s <> 1 for asynchronous load).

Implementation of this case can be found in d rotor Lalanne2DOF. One can define values of pa-

4.2. SIMPLE 2DOF MODEL OF SHAFT WITH DISK 51

rameters (kxx, czx, m, a, mb, f0, s etc. ...) as fields of a data structure r1 given as argument :
d rotor(’Lalanne2DOF’,r1). A campbell and frequency forced response are then computed at the
rotation speeds defined (in RPM) in the field .om of the parameter data structure. One can ask only
for the model using model=d rotor(’Lalanne2DOFMdl’,r1);.

If this first case, no bearing is considered (Kbearing = 0 and Cbearing = 0).

beta=0;

r1=struct(’om’,linspace(0,9e3,101),’s’,1,...

’kxx’,0,’kzz’,0,’kxz’,0,’kzx’,0,...

’cxx’,1e2*beta,’czz’,5e2*beta,’cxz’,0,’czx’,0);

R1=d_rotor(’TestLalanne2DOF’,r1)

Figure 4.4: Campbell diagram. Symmetric rotor without bearing.

Figure 4.5: Response to an unbalanced load (left) and asynchronous load (right). Symmetric rotor
without bearing.

52 CHAPTER 4. VALIDATION

Maximum response for unbalanced mass is obtained for the exact critical rotation speed of forward
mode computed in the Campbell (3089 RPM). This speed is the same as in Lalanne theoretical
expression.

Bearing stiffness along z is now taken in account so that rotor is not symmetric. kzz = 5e5 and
kxx = kxz = kzx = 0. There is no damping in the bearing: Cbearing = 0).

beta=0;

r1=struct(’om’,linspace(0,9e3,101),’s’,1,...

’kxx’,0,’kzz’,5e5,’kxz’,0,’kzx’,0,...

’cxx’,1e2*beta,’czz’,5e2*beta,’cxz’,0,’czx’,0);

R1=d_rotor(’TestLalanne2DOF’,r1)

Figure 4.6: Campbell diagram. Asymmetric rotor with z stiffness bearing.

Now the 2 modes are not at the same frequency for Ω = 0.

Figure 4.7: Response to an unbalanced load (left) and asynchronous load (right). Asymmetric rotor
with z bearing stiffness.

4.2. SIMPLE 2DOF MODEL OF SHAFT WITH DISK 53

Now there are 2 maximums of response that match critical rotation speeds for both forward and
backward modes. This is the same for the asynchronous load.

Bearing stiffness along z is taken in account so that rotor is not symmetric. kzz = 5e5, kxx = 1e5
and kxz = kzx = 0. Damping in the bearing is also considered with cxx = 100β, czz = 500β and
cxz = czx = 0.

beta=15;

r1=struct(’om’,linspace(0,20e3,201),’s’,1,...

’kxx’,1e5,’kzz’,5e5,’kxz’,0,’kzx’,0,...

’cxx’,1e2*beta,’czz’,5e2*beta,’cxz’,0,’czx’,0);

d_rotor(’TestLalanne2DOF’,r1)

54 CHAPTER 4. VALIDATION

Figure 4.8: Campbell (left) and Responses to unbalanced load (right) for different damping (top:β =
1, middle:β = 15 and bottom:β = 26). Asymmetric rotor with z bearing stiffness and damping.

Backward and forward mode can cross each other in the Campbell diagram. Asymmetry leads to
the excitation of the backward mode. Damping leads to a more spread resonance response.

4.3 1D models

4.3. 1D MODELS 55

4.3.1 1D example in a fixed frame

This first example treats the simple case, taken from [6], of a shaft with a rotating disk at one third
the length.

In order to compare this model to the simple 2 DOF model of Lalanne (see section 4.2) we project
the matrices on the 2 sin shape function of the shaft. Relative error for mass matrix is 0.01%, 4.59%
for stiffness and 1.64% for gyroscopic matrix. Campbell for the projected model and the Lalanne
2 DOF model are almost the same. For the full 1d model (not projected) the increasing of the
frequency of 1rst forward whirl mode tends to an asymptote.

Figure 4.9: Campbell diagrams. Left: 1D rotor (up: projected on 2 DOF, down: full model), right:
Lalanne 2 DOF rotor.

Following example performs preceding comparison :

% - LALANNE 2DOF

model2DOF=[]; m=14.29; k=1.195e6; a=2.871;

kxx=0; kzz=0; kxz=0; kzx=0;% bearing

% define model matrices :

model2DOF.K={m*eye(2), k*eye(2)+sin(pi*2/3)^2*[kxx kxz;kzx kzz],a*[0 -1;1 0]};
model2DOF.DOF=1+[.01;.03];

model2DOF.Klab={’m’,’k’,’Dg’};model2DOF.Opt=[1 0 0;2 1 70];

56 CHAPTER 4. VALIDATION

% rotate model so that x=rotating axis:

model2DOF.K=feutil(’tkt’,[1 0 0; 0 0 1],model2DOF.K);

model2DOF.K=feutil(’tkt’,[0 -1 0;1 0 0; 0 0 1],model2DOF.K);

for j1=1:3; model2DOF.K{j1}=model2DOF.K{j1}([2 3],[2 3]); end

model2DOF.DOF=[1.02;1.03];

model2DOF=stack_set(model2DOF,’info’,’Omega’,[1 0 0]);

% - SHAFTDISK beam1+mass1 gyro 70 - - - - - - - -

[model,TR]=d_rotor(’TestshaftdiskMdl -TRLalanne’)

model.Elt=feutil(’removeelt eltname celas’,model);

% project matrices on 2 sin shape functions equivalent to lalanne 2DOF model

model=fe_caseg(’assemble -secdof -matdes 2 1 70 3’,model);

TR=feutilb(’placeindof’,model.DOF,TR);

model.K=feutil(’TKT’,TR.def,model.K); model.DOF=[2.02;2.03];

% - compare with reference matrices from Lalanne

for j1=1:3 % Compare matrices [model.K{j1} model2DOF.K{j1}]
if normest(model.K{j1}-model2DOF.K{j1})/normest(model.K{j1})>0.05;
sdtw(’_err’,’2DOF and shaftdisk unmatch for mat %s’, model.Klab{j1});
end

end

% Campbell with SDT matrices reduced on Lalanne shapes

r1=struct(’data’,linspace(0,9e3),’unit’,’RPM’);

fe_rotor(’campbell -nodir -crit -cf1’,model,r1);

% - Now compare full beam model and 2D shapes

model.DOF=[]; model.K={};if ishandle(1);close(1);end

fe_rotor(’campbell -nodir -crit -cf1’,model2DOF,r1);

set(findall(1,’type’,’line’),’color’,’k’, ...

’linewidth’,2,’linestyle’,’--’);

hold on;

fe_rotor(’campbell -nodir -crit -cf1’,model,r1);

hold off;set(gca,’ylim’,[0 160]);

h=findall(1,’type’,’line’);legend(h(end+[0 -3]),’2 DOF’,’beam’)

Following example computes frequency response to unbalanced or asynchronous load:

model=d_rotor(’TestShaftDiskMdl’); % Model Initialization

% Assemble nominal matrices:

model=fe_caseg(’assemble -reset -secdof -matdes 2 1 70’,model);

4.3. 1D MODELS 57

% Campbell diagram and critical speeds:

fe_rotor(’campbell -full -critical’,model,linspace(0,20000,30));

set(gca,’ylim’,[0 350]);

% Unbalanced mass or asynchronous load :

mb=1e-4; db=0.15; % mass, distance to axis

s=1; f0=1; % s=1, unbalanced load. s<>1, asynchronous load

om=sort([3296 3200:10:3500 linspace(0,20000,101)]); % RPM

% RotatingLoad NodeId f0 theta0 exponent : define complex rotating load

if s==1 % unbalanced mass

model=fe_rotor(sprintf(’rotatingload 2 %.15g -90 2’,mb*db),model);

else % asynchronousload

model=fe_rotor(sprintf(’rotatingload 2 %.15g -90 0’,f0),model);

end

r1=struct(’Omega’,om/60*2*pi,’w’,s*om/60*2*pi); % Range

model=stack_set(model,’info’,’Range’,r1);

R1=fe_rotor(’forcedresponse’,model); % compute forced response

iiplot(R1) % plot response

% Post (radial deformation):

Q=max(abs(R1.Y),[],2); figure;semilogy(om,Q);

xlabel(’Rotation speed [RPM]’); ylabel(’radial def amplitude [m]’)

if s==1; title(’Unbalanced mass’)

else; title(sprintf(’Asynchronous load %.15g\\Omega’,s))

end

58 CHAPTER 4. VALIDATION

Figure 4.10: Top: Campbell diagrams. Bottom: Responses to unbalanced mass and asynchronous
load.

Fig 4.10 shows the radial deformation response for an unbalanced load and for an asynchronous
load rotating at −Ω speed. The unbalanced load excites the forward modes (3296 RPM) whereas
the asynchronous load excites the backward modes (2785 RPM and 4697 RPM). Frequencies match
those computed as critical frequencies in the Campbell diagram.

4.3.2 1D models in a rotating (body-fixed) frame

While this representation is not very classical, it corresponds to the nominal choice when doing time
integration of a rotor that is not axisymmetric.

4.4 3D rotor

The same rotor as described in lalanne (see fig 4.3) is meshed using hexa8 elements. Use model=d rotor(’TestVolShaftDiskMdl’).

4.4. 3D ROTOR 59

Figure 4.11: 3d model of Lalanne rotor.

Matrices are defined in the local rotating frame. We described the unbalanced load by a static load,
and we use in following example the same procedure as for local frame 1d rotor, at w = 0.

model=d_rotor(’testvolshaftdiskmdl’)

% Assemble nominal matrices:

model.DOF=[];model=fe_caseg(’assemble -se -matdes 2 1 7 8’,model);

model.DOF=fe_case(’gettdof’,model);

% Campbell diagram:

model=stack_set(model,’info’,’eigopt’,[5 20 1e3]);

fe_rotor(’campbell -critical’,model,linspace(0,20000,30));

% Unbalanced mass or asynchronous load :

mb=1e-4; db=0.15; % mass, distance to axis

s=0; f0=1; % s=1, unbalanced load. s<>1, asynchronous load

om=sort([2789 2750:10:2820 11760:10:11840 linspace(0,20000,101)]); % RPM

model=fe_rotor(sprintf(’rotatingload 180 %.15g 0 2’,f0),model);

r1=struct(’Omega’,om/60*2*pi,’w’,s*om/60*2*pi); % Range

model=stack_set(model,’info’,’Range’,r1);

R1=fe_rotor(’forcedresponse’,model); % compute forced response

iiplot(R1) % plot response

60 CHAPTER 4. VALIDATION

% Post (radial deformation):

Q=abs(R1.Y(:,1)); % unbalanced along x

figure;semilogy(om,Q);

xlabel(’Rotation speed [RPM]’); ylabel(’radial def amplitude [m]’)

if s==0; title(’Unbalanced mass’)

else; title(sprintf(’Asynchronous load %.15g\\Omega’,s))

end

Figure 4.12: Left: Campbell diagram. Right: Response to unbalanced mass.

Unbalanced mass excites the forward whirl modes. Maximum response is found at critical speeds
(rotation speeds that induce a complex mode of 0 Hz frequency in the rotating frame). Campbell
critical speed (2789 RPM) matches computed frequency response.

4.5 Data structure reference

xxx

5

Function reference

Contents

fe cyclic 62

fe rotor 66

rotor1d 72

rotor2d 75

demo cyclic 77

fe cyclicb Mesh 81

fe cyclicb 85

obsolete 96

nl spring 103

mkl utils 117

chandle 120

Non linearities list 122

nl inout 124

Non linearities list (deprecated) 127

Creating a new non linearity: nl fun.m 139

nl solve 142

nl mesh 150

spfmex utils 158

nl bset 159

extrotor 160

fe cyclic

Purpose

Support for cyclic symmetry computations.

Syntax

model=fe_cyclic(’build NSEC’,model,LeftNodeSelect)

def=fe_cyclic(’eig NDIAM’,model,EigOpt)

Description

fe cyclic groups all commands needed to compute responses assuming cyclic symmetry. For more
details on the associated theory you can refer to [8].

Assemble [,-struct]

This command supports the computations linked to the assembly of gyroscopic coupling, gyroscopic
stiffness and tangent stiffness in geometrically non-linear elasticity. The input arguments are the
model and the rotation vector (in rad/s)

model=demosdt(’demo sector all’);

[K,model,Case]=fe_case(’assemble -matdes 2 1 NoT -cell’,model);

SE=fe_cyclic(’assemble -struct’,model,[0 0 1000]); %

def=fe_eig({K{1:2},Case.T,model.DOF},[6 20 0]);% Non rotating modes

def2=fe_eig({K{1},SE.K{4},Case.T,model.DOF},[6 20 0]); % Rotating mode shapes

[def.data def2.data]

Note that the rotation speed can also be specified using a stack entry model=stack set(model,

’info’, ’Omega’,[0 0 1000]).

Build ...

model=fe cyclic(’build nsec epsl len’,model,’LeftNodeSelect’) adds a cyclic symmetry
entry in the model case. It automatically rotates the nodes selected with LeftNodeSelect by 2π/nsec
and finds the corresponding nodes on the other sector face. The default for LeftNodeSelect is
’GroupAll’ which selects all nodes.

The alternate command
model=fe cyclic(’build nsec epsl len -intersect’,model,’LeftNodeSelect’) is much faster
but does not implement strict node tolerancing and may thus need an adjustement of epsl to higher
values.

fe cyclic

Command options are

� nsec is the optional number of sectors. An automatic determination of the number of an-
gular sectors is implemented from the angle between the left and right interface nodes with
the minimum radius. This guess may fail in some situtations so that the argument may be
necessary.

� nsec=-1 is used for periodic structures and you should then provide the translation step. For
periodic solutions,
model=fe cyclic(’build -1 tx ty tz epsl len -intersect’,model,’LeftNodeSelect’)

specifies 3 components for the spatial periodicity.

� Fix will adjust node positions to make the left and right nodes sets match exactly.

� epsllen gives the tolerance for edge node matching.

� -equal can be used to build a simple periodicity condition for use outside of fe cyclic. This
option is not relevant for cyclic symmetry.

� -ByMat is used to allow matching by MatId which allows for proper matching of coincident
nodes.

model=demosdt(’demo sector 5’);

cf.model=fe_cyclic(’build epsl 1e-6’,model);

LoadCentrifugal

The command is used to build centrifugal loads based on an info,Omega stack entry in the form

data=struct(’data’,[0 0 1000],’unit’,’RPM’);

model=stack_set(model,’info’,’Omega’,data);

model=fe_cyclic(’LoadCentrifugal’,model);

Eig

def=fe cyclic(’eig ndiam’,model,EigOpt) computes ndiam diameter modes using the cyclic
symmetry assumption. For ndiam¿0 these modes are complex to account for the inter-sector phase
shifts. EigOpt are standard options passed to fe eig.

This example computes the two diameter modes of a three bladed disk also used in the d cms2 demo.

63

fe cyclic

model=demosdt(’demo sector’);

model=fe_cyclic(’build 3’,model,’groupall’);

fe_case(model,’info’)

def=fe_cyclic(’eig 2’,model,[6 20 0 11]);

fe_cyclic(’display 3’,model,def)

The basic functionality of this command is significantly extended in fe cyclicb ShaftEig that is
part of the SDT/Rotor toolbox.

Omega[,Group,GroupSet]

Handling of dynamic rotating bodies. Warning At the moment only one rotation vector can be
defined. It can either be applied to the whole model or to specified groups. At low level, information
is located in the info,Omega entry of an SDT model. This entry is a structure with fields

� .data provides the angular rotation vector whose norm is the angular velocity, defining the
rotation axis.

� .unit provies the unit system associated to the amplitude, eitherrad/s or RPM.

� .group (optional) defines the model groups affected by the rotation, if omitted or left empty
the whole model is affected.

� .orig (optional) defines the origin rotation (a point of the axis).

Command Omega provides the current data associated to a model.
[omega,rot,data]=fe cyclic(’Omega’,model);

model is a standard SDT model. The outputs are omega the rotation vector, rot the rotation matrix,
and data a reconstructed info,Omega stack entry based on the current state.

Commands OmegaGroup provides tools for definition of models with specific rotor areas.

� OmegaGroupSet provides an integrated definition forcing groups to be reset to conform with
any FindElt selection. The specific group assignment is required due to low level assembly
implementations.
model=fe cyclic(’OmegaGroupSet’,model,list);

Input model is a standard SDT model, list is a three column cell-array with as many lines as
declarations following the format {FindEltStr, Amplitude, Axis, Orig;...} respectively
providing an element selection string, the angular velocity amplitude (scalar), the rotation axis
(only the direction is used here), nx,ny,nz, and an origin point of the rotation axis ox,oy,oz.
data can be directly placed as a stack entry named info,OmegaData in the model. The last

64

fe cyclic

column can be omitted, in which case the origin considered is the global frame one. At the
moment all rotation axes and amplitudes must be the same for all lines. The output model is
then a model with separated groups for (one for each element type) affected to the rotation
and with a new stack entry info,Omega. Command option First will force the new groups
to be the first ones in the model.

� OmegaGroup is a lower level command without group modification.
model=fe cyclic(’OmegaGroup’,model,sel,data);

Input model is a standard SDT model, sel is an element selection string, data is the omega
structure with fields .data as defined at this command header.

See also

fe cyclicb

65

fe rotor

Purpose

The fe rotor function implements classical solutions for rotor dynamics applications.

AddMass

mdl=fe rotor(’AddMass’,mdl,RO);

This command can be used to add a local mass on a 3d rotor mesh. The mass is added, and linked
to existing node using a MPC connection.

RO is a data structure with fields

� .mxyz matrix whose first 3 columns define x y and z coordinates of added mass, and the 4th
defines the mass.

� .ProId the ProId of the rotor where mass is added.

Command options are

� -DofLoad defines a 6 direction load on added masses (usefull for reduction purpose).

� -mpcmaster modifies MPC connection so that mass DOF are master ratherthan slave.

Campbell

fe rotor(’Campbell’,model,RunOpt) computes the Campbell diagram and displays it with fe rotor(’plotcampbell’,out,RunOpt)

if no output argument is requested.
RunOpt can be a vector of rotation speeds (RPM) or a data structure with at least field .Omega con-
taining rotation speeds and other fields giving other variables used in zCoef (for example .par field).

Accepted command options are

� -cf i can be used to force display of the diagram in a specific figure.

� -nodir avoids the call to determine the rotation direction.

fe rotor

� -full forces the use of full matrices. Without the argument, full matrix eigenvalue calls are
only performed with less than 100 DOFs.

� -crit overlays the critical speed computation.

� -stability displays stability diagram (damping/Omega).

Examples can be found in section 3.4.1 .

Critical

Computation of critical speeds. It can be called when computed Campbell using command option
-crit (see Campbell).
Critical speed are computed assuming deformation is a complex mode at the same frequency as the
rotation speed (w = Ω) in the global fixed frame or equal to 0 (w = 0) in the local rotating frame.
In the global fixed frame:
M ¨{X}+ (C +ΩD(Ω = 1)) ˙{X}+ (K +Ω2Kc(Ω = 1)) {X} = 0
With X = X0exp(ıΩt)
(Ω2(−M + ıD(Ω = 1)) + ıΩC +K) {X0} = 0
In the local rotating frame:
M ¨{X}+ (C +ΩD(Ω = 1)) ˙{X}+ (K +Ω2Kc(Ω = 1)) {X} = 0
With X = X0 constant
(K +Ω2Kc(Ω = 1)) {X0} = 0

Examples can be found in section 3.4 xxx.

Whirldir

Internal command to display the direction of the modes on the Campbell diagrams. xxx details

Assemble

model=fe rotor(’Assemble’,model,zCoef,r1); This command is used to assemble mass stiffness
and damping matrices taking in account all the rotor matrices (gyroscopic coupling, centrifugal
softening, etc. ...).
Default zCoef can be obtain using model=fe def(’zCoef-default’,model);. r1 is a data structure
whose fields are parameters used in zCoef. In particular one should specify the rotation speed
r1.Omega (rad/s). Command option -cell can be used to return only matrices in a cell array.

67

fe rotor

RotatingLoad

This command builds a rotating DofLoad on a model node for frequency analysis.
model=fe rotor(’RotatingLoad NodeId f0 theta0 wexponent’,model);

NodeId is the id of the node where load will be applied, f0 is the amplitude of the load, theta0 is
the angle formed by the load initial direction and the first global direction in the plane orthogonal
to rotation axis (x for y and z rotation and y for x rotation). The amplitude of the load can depend
on a power of pulsation defined with wexponent.
Resulting complex load is of the form

f0wwexponent
{

1
±ı

}
in the plane orthogonal to the rotation axis (sign of +/− ı depends on rotation axis).
Forced response to this load can be computed using ForcedResponse.

ForcedResponse

This command can be used to compute forced response to a frequency load (for example a rotating
load built using RotatingLoad).
R1=fe rotor(’ForcedResponse’,model);

Complex load must be prior defined as a ’In’ entry in the case of the model.
Observation can be defined as ’output’ SensDof entry. If not, only dof corresponding to the ’In’

load will be returned.
Range of computation must be defined in the ’info’ ’Range’ Stack entry of the model as a struc-
ture of data (with fields .Omega defining rotation speeds and .w defining pulsations of the load at
corresponding rotation speeds. These fields must be of the same length. If necessary one can add
other fields for variables used in a defined zCoef). If .w is equal to zero, frequency dependence of
load is assumed to concern the .Omega vector (it is usefull to described unbalanced mass in the lo-
cal rotating frame since load amplitude depends on Ω2 but load is static in this frame so that w = 0).

Following example defines an unbalanced load on the simple 1d ShaftDisk model defined in d rotor

and computes the forced response (local frame):

model=d_rotor(’TestShaftDiskMdl’) % build simple model

model=fe_caseg(’assemble -se -matdes 2 1 70’,model); % assemble model

mb=1e-4; db=0.15; % mass, distance to axis

om=linspace(0,6000,201)’; % RPM

model=fe_rotor(sprintf(’RotatingLoad 2 %.15g -90 2’,mb*db),model); % unbalanced mass

68

fe rotor

r1=struct(’Omega’,om/60*2*pi,’w’,om/60*2*pi); % Range

model=stack_set(model,’info’,’Range’,r1);

R1=fe_rotor(’forcedresponse’,model); % compute forced response

iiplot(R1) % plot response

In global rotating frame, load is static (w = 0). Following example deals with a rigid disk in global
rotating frame:

R1=.01;R2=.15;h=0.03;

md=d_rotor(sprintf(’TestVolDisk -dim%.15g %.15g %.15g 2 16’,R1,R2,h));

md.DOF=[]; md=fe_caseg(’assemble -se -matdes 2 1 7 8’,md);

% disk assumed to be rigid :

rb=feutil(’geomrb’,md); cf=feplot(md); cf.def=rb;

md.K=feutil(’tkt’,rb.def(:,[1 3 4 6]),md.K);

md.DOF=[1.01 1.03 1.04 1.06]’;

md.K{2}=0*md.K{2}; % rigid disk

md.K{2}(1,1)=5e5;md.K{2}(2,2)=5e5; % bearing

md.K{2}(3,3)=1e5;md.K{2}(4,4)=1e5; % bearing rot

% Unbalanced mass or asynchrone load :

mb=1e-4; db=0.15; % mass, distance to axis

s=0;

om=sort([2789 2750:10:2820 11760:10:11840 linspace(0,20000,101)]); % RPM

md=fe_rotor(sprintf(’RotatingLoad 1 %.15g 0 2’,mb*db),md);

r1=struct(’Omega’,om/60*2*pi,’w’,s*om/60*2*pi); % Range

md=stack_set(md,’info’,’Range’,r1);

R1=fe_rotor(’forcedresponse’,md); % compute forced response

iiplot(R1) % plot response

SEBuild

This command can be used to build a superelement of rotor from a 3d rotor model. It includes Craig
Bampton reduction, bearing rings adding, ...

SE=fe rotor(’SEBuild’,model,RO);

model is a 3d mesh of rotor.
RO is a data structure with following fields

.xbea vector defining position of bearings according to rotor axis.

.bea data structure of bearing infos. bea.length is the length of the bearings, bea.Npt the number
of points on one bearing, bea.ProId is the ProId of the journal.

69

fe rotor

.mxyz is optional. Defines the mass position (reduction is performed so that DOF are created at
these positions).

.EigOpt eig option for mode computation for Craig-Bampton reduction.

One can use following options:

-noreduce no reduction is performed.

-rigid use rigid ring for bearings instead of rbe3 rings.

% Lalanne 3D rotor

model=d_rotor(’TestVolShaftDiskMdl’); % Build model

% remove bearing and boundary conitions:

model.Elt=feutil(’RemoveElt proid1000:1001’,model); % remove linbearings

model=fe_case(model,’Remove’,’Ends’);

% Build SE:

RO=struct(’mxyz’,[0.0894892917244 0.118333333333 0.0516666666667],... Position of mass

’EigOpt’,[5 20 1e3]); % eig option for CraigBampton

RO.xbea=[0;0.4];

RO.bea.length=0.01;

RO.bea.Npt=1;

RO.bea.ProId=1; % proid of the bearing

SE=fe_rotor(’SEBuild-rigid’,model,RO); % Following is now in SEbuild command

TimeOpt

model=fe rotor(’TimeOpt’,model);

Defines a default TimeOpt in the ’info’ ’TimeOpt’ model stack entry for time integration with
rotor models. Following command options are available:

� Assemble Defines AssembleCall field in order to take in account gyroscopic effects in time
computation. TimeOpt field .matdes should be filled by user in order to define what matrices
will be assembled. Default is [2 1 7] for mass stiffness and gyroscopic coupling matrix, see
sdtweb(’MatType’) for available matrices (for example 8 for centrifugal softening...). Before
time integration desired matrices will be assembled taking in account the ’info’ ’Omega’

model stack entry that defines rotation vector (norm should be equal to one so that matrices
can be assembled once for different computation with different rotation speed). Rotation speed
is taken as first parameter on the ’info’ ’Range’ model stack entry (in that case rotation

70

fe rotor

vector norm must be one). If there is no Range entry, rotation is taken equal to the norm of
rotation vector. Corresponding M C K matrices are then built (fe rotor Assemble call) and
will be used for Newmark time integration.

71

rotor1d

Purpose This function gives some commands to help the meshing of 1D rotor. See section ?? for general
details about 1d rotors and section 3.1.2 for a full example of 1d rotor meshing.

1To2D

From a 1d model with beam1 elements (masses are not converted for the moment), builds a 2d rotor.
LC l defines the max length of elements.

1To3D

From a 1d model with beam1 elements (masses are not converted for the moment), builds a 3d rotor.
one can see section 3.1.3 for a tutorial.

� LC l defines the max length of elements.

� div n defines the number of sector of 3d mesh.

The grounded celas are assumed to be bearings. RBE3 rings are defined at each bearing.

AddBearing

This command add a rotor bearing as a celas element.
mo1d=rotor1d(’AddBearing ...’,mo1d,pos);

mo1d is a 1d rotor model pos is the x y z position of the bearing.

Command options are

� -keep if not present remove existing celas at given position.

� DOF DOF that defines the DOF concerned by bearing link.

� k k the spring stiffness.

� c c the spring damping.

rotor1d

� ProID ProID the spring ProID.

For example:
mo1d=rotor1d(’AddBearing DOF -123 k 1e4 -keep’,mo1d,pos);

AddBeam

mo1d=rotor1d(’AddBeam ...’,mo1d);

This command adds a beam on the axis of the rotor, accordin to following argument specified as
command option:

� x1 x1 beginning of the beam in the axis direction

� x2 x2 end of the beam in the axis direction

� r1 r1 inner radius of the beam. By default 0.

� r2 r2 outer radius of the beam.

� MatID MatID MatID. If not given new MatID is used.

� ProID ProID ProID. Note that the associated element property contains the section information
according to r1 and r2, so that existing ProID will be lost. If not given new ProID is used.

� -refine Refine existing beams to ensure that beams have coincident nodes.

For example
mo1d=rotor1d(’AddBeam x1 0.5 x2 0.7 r1 0.11 r2 0.77 MatID 1’,mo1d);

AddNodeRefine

[mo1d,ind]=rotor1d(’AddNodeRefine ...’,mo1d,xyz);

This low level call command adds nodes at given positions xyz (one row per node, 3 columns x y
and z, or one column to define distance along the rotor axis) refining beams of the model mo1d if
needed.

Command options are:

� -epsl epsl Tolerance for new node adding.

For example
[mo1d,ind]=rotor1d(’AddNodeRefine’,mo1d,[0.2 0 0]);

73

rotor1d

Skyline

mdl=rotor1d(’Skyline...’,xy);

This command can be used to generate rotor model from skyline description. xy is a 2 column
matrix whose 1st column defines position according to rotation axis, and 2nd column defines radius
at corresponding positions. One can define multiple parts rotor using separator NaN in the 1st
column. For 2D rotor meshing, use [NaN r] to define internal radius r of the corresponding part.

� SkylineToBeam builds 1d beam rotor model. See example in 1D subsection of section ?? .

� SkylineTo2D a 2D rotor model (that can be used to generate 3D model by revolution, or using
cyclic symetry, see rotor2d BuildFrom2D)), see example in 2D subsection of section ?? .

Following command options are accepted

� -Lc l specify maximum length l of elements.

74

rotor2d

Purpose

The rotor2d function lets you build a superelement representation for rotor applications starting
from a 2D model. A tutorial is given in section ??

teig

Needs description.

test

Simpledisk

BuildFrom2D

model=rotor2d(’buildFrom2D’,model2D); builds a 3D sector model by revolution of a 2D section.
In the rotor module, the symmetry axis is always z so that if the 2D mesh is given in xy coordinates
a permutation is performed.

� -nsec N number of sectors. By default, one considers 10 sectors, for a different value use
buildFrom2D -nsec N.

� -div N number of divisions in each sector.

The sector is modeled as a superelement called disk1.

% Model Initialization

model2D=rotor2d(’test simpledisk -back’);

cf=feplot(rotor2d(’buildFrom2D’,model2D));

SE=cf.Stack{’disk1’}; % enforce boundary cond. on sector and assemble

SE=fe_case(SE,’FixDof’,’Base’,’z==1.01’);

SE=stack_set(SE,’info’,’Omega’,[0 0 0;0 0 1000]); % define speed range

SE=fe_cyclic(’assemble -se’,SE);

cf.Stack{’disk1’}=SE; fecom(’view1’);

cf.Stack{’info’,’EigOpt’}=[5 20 0]; % define eigenvalue options

RunOpt=struct(’targ’,1, ... % define target diameter

’Range’,linspace(0,1,30)); % define speed points relative to range

rotor2d

[cf.def,hist]=rotor2d(’teig’,cf,RunOpt);

figure(1);rotor2d(’plot’,hist);set(gca,’ylim’,[0 250])

76

demo cyclic

Purpose

Combines examples of the use of fe cyclicb commands.

Syntax

demo_cyclic(’testdisk nsec’)

demo_cyclic(’testrotor nsec1 nsec2 ...’)

Disk

Moved to section 3.5.2 .

ShaftMono

Moved to section 3.5.3 .

Variable speed

One considers stiffness matrices that are dependent on the rotation speep. Assuming that a second
order polynomial representation is sufficient, one can build a vector of weigthing coefficients

α1

α2

α3

 =

 1 1 1
Ω1 Ω2 Ω3

Ω2
1 Ω2

2 Ω2
3

−1
1
α2

α3

 (5.1)

Such that the stiffness at rotation speed Ω is approximated by

[K(Ω)] =
∑
αi

[KΩi] (5.2)

The zCoef uses velocity Omega in rad/s.

This example now treats computation at variable rotation speeds

% Model Initialization

model=demo_cyclic(’testblade’);cf=feplot(model);

% Compute matrix coefficients for a multi-stage rotor

demo cyclic

range=struct(’data’,[0 0 1;0 0 800;0 0 1600],’unit’,’RPM’);

% Assembling in the feplot figure, allows memory offload

fe_cyclicb(’polyassemble -noT’,cf,range);

X=struct(’data’,linspace(0,1600,10),’unit’,’RPM’);

fe_rotor(’Campbell -cf1’,model,X)

Another example will be needed to treat the multi-stage case

% Model Initialization

model=demo_cyclic(’testrotor 7 10 -blade’);

model=fe_cyclicb(’shaftRimAsSe’,model);

cf=feplot(model);

% Compute matrix coefficients for a multi-stage rotor

range=struct(’data’,[0 0 1;0 0 800;0 0 1600],’unit’,’RPM’);

% Assembling in the feplot figure, allows memory offload

fe_cyclicb(’polyassemble -noT’,cf,range);

% Now run a mono-harmonic multi-speed computation

cf.Stack{’info’,’Omega’}=struct(’data’,range.data(1,:),’unit’,’RPM’);
def=fe_cyclicb(’shafteig 0 -ReAssemble 2 -NoN’,cf);

Sel={’disk1’,’groupall’;’disk2’,’groupall’};
fe_cyclicb(’DisplaySel’,cf,def,Sel)

% Reduce the full model

fe_cyclicb(’ShaftPrep -svdtruncate -mseq1 -handle -norestit’,cf,def);

fesuper(’fassemble’,cf);

% Force single harmonic

% xxx

Rewrite needed here.

ShaftMulti

The second example is a non-monoharmonic shaft computation.

The following example builds a reduced order model from a set of mono-harmonic modeshapes whose
Fourier harmonics are 0, 1 and 2 and sector modes with fixed interfaces. The latter are computed

78

demo cyclic

within the framework of mono-harmonic computations, they are called with -1 in shaftTeig. No
confusion is possible since the true mono-harmonic solutions with δ = −1 are solutions with δ = 1.
However, the restitution of fixed interface solutions with Display[Sel] has no sense.

Call shaftprep aims to build the reduced kinematic subspaces of the sector super-elements from
the specified target solutions. Prior to that, it separates the sector mesh into two: the slice with the
left-interface nodes (the inter-sector super-element) and the remaining elements (the sector super-
element). It projects the matrices of the sector super-elements onto their individual subspaces
and the matrices of the inter-sector slices onto the subspaces of its two neighbouring sector super-
elements.

Command fassemble in fesuper first projects the finite elements matrices of the inter-disk volumic
interface onto the subspaces of its neighbouring disks. It then assembles the reduced matrices of the
sector super-elements and inter-sector slices to form the reduced matrices of the disks. Finally, it
assembles these reduced matrices and that of the volumic interfaces to form the reduced matrices of
the whole rotor.

Here too, a selection can be specified so that the generalized modeshapes can be recovered to a
subset of physical DOF (relying on the true mesh or a viewing mesh). The selections are defined
like in DisplaySel, however both the sector and inter-sector super-elements have to be considered
so that the recovery concerns the whole underlying bladed sector.

The Fourier harmonic contents of the generalized modeshapes can be obtained without recovery with
the help from command fourier of fe cyclicb. When specified, -egyfrac returns the fraction of
strain energy per harmonic per disk so that energy localization within a disk can be achieved with
the supplementary information of which harmonics are involved in the response. The graph displays
the disks (from top to bottom) and for each disk the possible harmonics between 0 and N/2 (if
applicable). Another way to display the same information is to group the harmonics first and then
the disks. This is done with the -sortbyd option. It adds the proper amount of zeros for harmonics
that are not present on a given disk.

mono.mat to name a model that contains the mono-harmonic description.

% Model Initialization

cf=demo_cyclic(’testrotor 7 10 -blade -cf 2’);

% Mono-harmonic Solutions

model=stack_set(cf.mdl,’info’,’EigOpt’,[5 10 -1e3 11 1e-8]);

[def,sectors]=fe_cyclicb(’shaftteig -1 0 1 2’,model); %-batch

Curve=fe_cyclicb(’fourier 1:50 -mono -egyfrac’,cf,...

fe_def(’subdef’,def,def.data(:,2)~=-1));

% xxxNeed : display curve fe_cyclicb(’fourier -mono -egyfrac -cf 3’,Curve);

r1=sortrows(def.data);

79

demo cyclic

if any(r1(1:6,1)>r1(7,1)/1e5);error(’Missing rigid modes’);end

% Model Reduction

fe_cyclicb(’ShaftPrep -svdtruncate -mseq1 -handle -norestit’,cf,def);

fesuper(’fassemble’,cf);

% Mode Computations

defr=fe_eig(cf.Stack{’MVR’},[5 50 1e3 11 1e-8]);

Sel={’disk2’,’innode {r>150}’;
’disk2l’,’innode {r>150}’;
’disk1’,’groupall’;

’disk1l’,’groupall’;

’’,’withnode {x>0}’};
fesuper(’sebuildsel -initrot’,cf,Sel);

cf.def=feutilb(’placeindof’,cf.sel.cna{1}.adof,defr);
fecom(’colordataevala’);

% Post-processing: spatial spectra

cf.sel=’reset’;cf.def=[];

fe_cyclicb(’fourier 7:25 -red -egyfrac -cf 4’,cf,defr);

fe_cyclicb(’fourier 7:25 -red -egyfrac -sortbyd -cf 5’,cf,defr);

% focus on mode 7

fe_cyclicb(’fourier 7 -red -egyfrac -cf 6’,cf,defr);

Now one wants to treat the case of a forced response for loads defined on the disks only. The
command ShaftLoadMulti allows to build one mono-harmonic excitation per disk. For each disk i,
the shape def i and harmonic coefficient delta i are specified in a cell array whose a typical line
is {’diski’,def i,delta i}.

Call fourier provides a means to checkout the spatial harmonic content of the generalized load
with respect to the set of generalized coordinates (option -red has to be specified). Energy-based
computations are not available for generalized loads.

80

fe cyclicb Mesh

Purpose

MeshAddRim

MeshAddRim deals with already existing inter-disk volumic rings. It renumbers their model to be
integrated with the already defined disk super-elements. Note that adjusting the geometric tolerance
with option epsl val can be important.

cf=demo_cyclic(’buildstep0’);% See sdtweb(’demo_cyclic.m#Step0’)

% Extract rim model into mo1 (would come from other reading)

[cf.mdl.Elt,mo1.Elt]=feutil(’RemoveElt EltName~=SE’,cf.mdl);

mo1.Node=cf.mdl.Node;mo1.Node=feutil(’GetnodeGroupAll’,mo1);

cf.mdl.Node=[];

% Combine mo1 (rim) and cf.mdl (disks)

fe_cyclicb(’MeshAddRim epsl 1e-3’,cf,mo1);

cf.sel=’EltName~=SE’;fecom(’showpatch’);

Other commands documented in the tutorial are

� MeshRim described below and illustrated in section 3.1.6 , is an automated procedure to mesh
rims form a selection of nodes on two disks.

� MeshRimLine2Patch, described in section 3.1.6 is used to build view meshes of large models.

MeshRim

This command is used to mesh rims as volumes or penalty springs.

� -kp val is used to specify the penalty stiffness.

� epsl val specifies length tolerance for node matching.

� -masterdisk val specifies the disk(s) on whose surface the slave nodes will be matched.

� -masterdisk val specifies the slave disk(s) whose edge nodes will be connected to the master
disk surface.

fe cyclicb Mesh

MeshSecAddNode

MeshSecAddNode [epsl espl] is used to place sensors relatively to a disk/rotor model. It uses a
cell array to define sensors (see sdtweb(’sensor#scell’)). It first matches each sensor to a surface
in a sector of a disk with an optional tolerance epsl that allows to tune the research. It then adds
these surface elements to the selection. The latter serves as the input of the subsequent SensMatch
call that

1. automatically deals with the specified direction of measure (column ’DirSpec’) by detecting
the normals, computing vectors from the latter, etc.,

2. builds the observation matrix at each sensor (cta entries) that relates the DOF of the matched
surface to the observation at this sensor along the measurement direction.

% Load 360 reduced shaft model, sdtweb(’demo_cyclic.m#Step2’)

cf=demo_cyclic(’buildstep2’);

sensors=cf.Stack(’Test’).tdof;

disp(sensors); % display sensor properties

% match sensors

[sens,sel]=fe_cyclicb(’MeshSecAddNode epsl 20’,cf,sensors);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Test’,sens);

% display sensors

fecom(’showpatch’);

fecom(cf,’curtab Cases’,’Test’);

The model to which the sensors are matched is made of super-elements already reduced, call to
MeshSecAddNode with the supplementary input of a generalized quantity (with a list of generalized
coordinates stored in .DOF) automatically builds the observation matrix that expands the generalized
modeshapes to the sensors along the measurement direction.

A first application of this is to animate generalized modeshapes on the experimental wire frame as
proposed in the example below.

cf=demo_cyclic(’buildstep4’);

def=cf.Stack(’def_mvr’);

% match sensors

sensors=stack_get(cf.mdl,’info’,’Test’,’GetData’);

82

fe cyclicb Mesh

[r1,sel,sens]=fe_cyclicb(’MeshSecAddNode epsl 20’,cf,sensors.tdof,def);

% add wireframe

r1.Elt=[r1.Elt zeros(size(r1.Elt,1),1);cf.Stack(’WireFrame’)];

r1.Elt=feutil(’setgroupall egid -1’,r1);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Test’,r1);

% animate generalized modes at sensors

cf.sel(1)=’groupall’;

cf.sel(2)=’-Test’;

cf.def=struct(’def’,sens.cta*def.def,...

’DOF’,cf.CStack(’Test’).tdof(:,1),...

’data’,def.data);

cf.o(1)={’sel 2 def 1 ch 1 ty8 scc10’,’edgecolor’,’r’,’linewidth’,2};

A second application is to display and animate generalized response or transfer functions.

cf=demo_cyclic(’buildstep6’);

xF=cf.Stack(’xF_mvr’);

% match sensors

sensors=stack_get(cf.mdl,’info’,’Test’,’GetData’);

[r1,sel,sens]=fe_cyclicb(’MeshSecAddNode epsl 20’,cf,sensors.tdof,xF);

% add wireframe

r1.Elt=[r1.Elt zeros(size(r1.Elt,1),1);cf.Stack(’WireFrame’)];

r1.Elt=feutil(’setgroupall egid -1’,r1);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Test’,r1);

% display responses

xF=cf.Stack(’xF_mvr’);

ci=iiplot(3);iicom(ci,’curvereset’);

r1=struct(’X’,{{xF.data(:) sens.lab}},’Xlab’,{{’Freq’,’DOF’}}, ...

’Y’,(sens.cta*xF.def).’)

iicom(’curveInit’,’Test’,r1)

iicom(’SubMagPha’);

% animate response at sensors

cf.sel(1)=’groupall’;

cf.sel(2)=’-Test’;

cf.def=struct(’def’,sens.cta*xF.def,...

’DOF’,cf.CStack(’Test’).tdof(:,1),...

’data’,xF.data);

83

fe cyclicb Mesh

cf.o(1)={’sel 2 def 1 ch 1 ty8 scc10’,’edgecolor’,’r’,’linewidth’,2};

MeshSensMatch

supports topology correlation for a SensDof entry defined on a multi-stage shaft model.

MeshSurfSet

generates standard surface sets for a sector.

MeshCylSurf

model=fe cyclicb(’MeshCylSurf epsl val’,model,NodeList) makes a surface perfectly cylin-
drical. The node list of nodes to be used on the left edge may be omitted (it will be found automat-
ically).

MeshFixTheta

provides handling utilities for slanted sectors, see section 3.1.5 .

MeshFixRadial

Generates MPC constraints for using DOFs given in radial coordinates: .01 is radial, .02 tangential,
.03 axial.

The following example illustrates a case where tangential motion of nodes 5 and 6 is set.

cf=demo_cyclic(sprintf(’testrotor %i -cf 5’,5));

cf.Stack{’disk1’}=fe_cyclicb(’MeshFixRadial’, ...

cf.Stack{’disk1’},’radial’,[5.02;6.02]);
def=fe_cyclicb(’shaftteig 0 1’, ...

stack_set(cf.mdl.GetData,’info’,’EigOpt’,[5 3 0]))

fe_cyclicb(’Display’,cf,def);

fecom(’ColorDataEvalTanZ -ColorBarTitle"TanZ"’);

84

fe cyclicb

Purpose

Support for advanced cyclic symmetry computations.

Description

fe cyclicb groups advanced commands used to build and manipulate reduced order models of single
symmetric structures and their assemblies. For more details on the associated theory you can refer
to [8].

Rotor Construction

DiskFromSector

This command builds a disk/rotor model from (a) physical sector model(s). Shafts can be generated
by combining multiple calls to disk from sector. Once, disks are combine, their connection trough
rim models is described in section 3.1.6 .

Command DiskFromSector also handles the construction of the cyclic sector models. Cyclic sym-
metry information can be already given in the sector model (calls to fe cyclic(’build’) done
beforehand) or done in the command. In the later case, an optional epsl tol can be declared so
that it is propagated to the subsequent call to fe cyclic(’build epsl tol’,...), where tol is
the desired tolerance for left-right interface node matching.

The example below demonstrates the capability of the function for two disks with 7 and 10 blades
respectively.

cf=demo_cyclic(’buildstep0’);

sector1=cf.Stack{’disk1’};
sector2=cf.Stack{’disk2’};

% build disk1 from sector1

model=fe_cyclicb(’DiskFromSector epsl 1e-6’,[],sector1);

% build disk2 from sector2 and append to disk1

model=fe_cyclicb(’DiskFromSector epsl 1e-6’,model,sector2);

fe_cyclicb(’DisplayFirst’,model) % Avoids full display for large models

In cases when cf already contains one sector per disk, the shaft model can be created in a single opera-
tion with the command fe cyclicb(’diskfromsector’,[],cf,{’sel disk1’,’sel disk2’,...});
where sel diski selects the sector model of disk i. The example below illustrate this by putting
the two sector models into a single one prior to the rotor assembly.

fe cyclicb

cf=demo_cyclic(’buildstep0’); % See sdtweb demo_cyclic(’Step0’)

sectors=cf.Stack{’disk1’}; % Build a model with two sectors

sectors=feutil(’addtest’,sectors,cf.Stack{’disk2’});
sectors.Stack={};
cf.model=sectors;

% build rotor from sectors and auto display

fe_cyclicb(’DiskFromSector epsl 1e-3’,cf,{’group1:2’,’group3:4’});
During the build process, sectors are automatically renumbered so that node numbers are left in-
terface, interior, right interface (in order matching that of the left interface). The renumbering can
be forced with the -renumber option. This allows to have nodal overlap between the superelements
of two adjacent sectors. The command then adds a mpc,diski end multiple point constraint to
account for the fact that the disk is closed circumferentially.

Mesh

Meshing utilities See fe cyclicb Mesh.

ConnectionRing

ConnectionRing builds a ”ring connection” where the structure is fixed axially and radially on a
set of nodes and first point only in tangential direction

Display

Display commands group tools to build mesh views specific to disk assemblies.

� [def,ENER]=fe cyclicb(’Displaysel’,cf,def,Sel,’enerkdens’) is used to recover mono-
harmonic solutions on a partial selection For details on monoharmonic solutions see section 3.5
. Examples can be found in section 3.5.2 , section 3.5.3 , ...

Sel is a cell array specifying how each stage is displayed. In the example from section 3.5.1 ,
one uses

Sel={’’,’EltName SE’; % Keep only SE for display (no interstage rim)

’disk1(1:2)’,’groupall’; % all elements from sectors 1:2

’disk2(1:3)’,’groupall’};% all elements from sectors 1:3

See sdtweb fesuper#SeBuildSel for details on partial superelement display and more exam-
ples on the way to define Sel). The last command can be any valid fe stress command.
Without output argument the result is displayed.

86

fe cyclicb

[cf,def]=demo_cyclic(’buildstep1’);

def=fe_def(’subdef’,def,def.data(:,2)>=0); % remove fixed edge solutions

fe_cyclicb(’Display’,cf,def);fecom(’ColorDataEvalA’);

fe_cyclicb(’DisplaySel’,cf,def,cf.Stack(’ViewMesh’));

fecom(’ColorDataEvalA’);

During the command one defines SE.cGL0 corresponding to a rotation by one sector. And the
SE.Alpha for the harmonic shift. fesuper(’sedefinit -rot’,cf); is then used to define a
restitution by disk. The SeRestit then contains the def so that SeDefinit is performed for
every restitution.

� fe cyclicb(’Display’,cf,def) defines a full disk selection within feplot. def=fe cyclicb(’Display’,cf,def)

is used to recover full motion from mono-harmonic solutions. For large models, restitution on
the full shaft model may be very costly (remember that one vector for 1e6 DOF requires 7.6
MB) and DisplaySel is typically preferred.

� fe cyclicb(’DisplayAllEdges’,cf[,sel]) displays 2D cuts of the disks specified in the cell
array sel, with a typical entry {’diski’} to display only disk i (default displays all disks).
This cut is basically the projection of the right interface (or equivalently the left interface
when meshes are compatible) to the plane θ = 0. Such a view is particularly well suited to the
definition of the inter-stage rim nodes in MeshAddRim as well as to the construction of viewing
meshes in MeshRimLine2Patch. Note finally that this view keeps the elements in their original
groups.

cf=demo_cyclic(’buildstep0’);

fe_cyclicb(’DisplayAllEdges’,cf);

fecom(’colordatag’);

� fe cyclicb(’DisplayFirst’,cf[,sel]) provides a simple command to display the first sec-
tor of each stage (cf can be replaced by a model resulting from fe cyclicb DiskFromSector).
A selection can also be specified to restrict the view to a subset of stages.

cf=demo_cyclic(’buildstep0’);

fe_cyclicb(’DisplayFirst’,cf,{’disk2’});

� fe cyclicb(’DisplaySkin’,cf[,sel]) displays the outer enveloppe of the selected disks in
sel with the inter-sector common surfaces removed.

cf=demo_cyclic(’buildstep0’);

fe_cyclicb(’DisplaySkin’,cf,{’disk1’});
fecom(’showpatch’);set(cf.o(1),’FaceAlpha’,.33);

87

fe cyclicb

� fe cyclicb(’DisplayInterDisk’,cf,nodes) displays the two ring surfaces used to define
the inter-stage volumic interface.

cf=demo_cyclic(’buildstep0’);

% rim nodes

n1=feutil(’getnode NodeId’,cf.mdl,[12 18 24 1127 1133 1139]’);

fe_cyclicb(’DisplayInterDisk’,cf,n1);

� fe cyclicb(’DisplaySymmetrySurface’,cf) displays the nodes in a cyclic symmetric con-
dition as colored surfaces.

Mono-harmonic solutions

These commands apply to sector models used to compute mono-harmonic eigensolutions.

ShaftEig, ShaftTEig, ShaftSolve

These commands compute mono-harmonic solutions with specified Fourier harmonics (classical cyclic
solution for single stage models). For a tutorial on generating the proper models, see section 3.1.6 .
For the associated theory, please refer to [9].

The calling format is def=fe cyclicb(’shaft Teig delta list’,model);. ShatTeig accepts mul-
tiple diameters in the delta list and packages individual calls that to ShatTeig. For a disk example
section 3.5.2 .

The main command options are

� Diameter -1 is used to ask for the computation of fixed edge modes.

� The eigenvalue options ’info’,’EigOpt’ should be set in the model stack.

� -ReAssemble forces reassembly rather than reuse of disk matrices that may have been pre-
computed and saved in the sector superelements.

� -thermal takes thermal loading into account. Thermal state should be stored as a case entry
called DofSet,ThermalState. See example in section 3.5.1 .

� for computations at prestressed state curve,StaticState should be defined.

� -all xxx

88

fe cyclicb

� -FixTan is used to enforce no tangential motion of one interface node. This is used for static
analysis of freely rotating rotors (example in section 3.5.1).

� -NoN stores the imaginary component of the eigenvector using a DOF shift by 50 (thus .51 is
the imaginary x translation). This is necessary if further computations require complex fields
(by considering different components there is no difficulty storing the spatial Fourier transform
of a complex field).

� model.Dbfile when the field is defined to a proper file name, intermediate matrices above the
preference getpref(’SDT’,’OutOfCoreBufferSize’,100) (in MB) are stored in the database
file which uses the standard HDF5 based .mat format (MATLAB ¿= 7.3).

� -nlstep tol is used to compute the large non-linear large transformation problem with a
tolerance δq/q < tol. See an example in section 3.5.1 .

� -soft if present include centrifugal softening effects

� For static computations, the centrifugal load is rebuilt at each step using model=fe cyclic(’loadcentrifugal’,model);

for the rim and sectors.

� -batch option is used to compute eigenvectors with multiple diameter in a single run. For large
models, this can take many hours so that intermediate file saves are used to allow restarts.

One then typically expects to have set a cf.mdl.Dbfile=’file DB.mat’ to allow memory
off-loading during the computation.

cf=demo_cyclic(’testrotor 7 -blade -cf 2’);

root=fullfile(sdtdef(’tempdir’),’Disk_7_Batch’)

%setpref(’SdtRuntime’,’ExecLocal’,1) % May be needed

% cf.mdl.Dbfile=[root ’_DB.mat’]; % out of core matrices

fe_cyclicb(’shaft Teig 0 1 5 -batch’,[root ’.mat’]);

% multiple Disk_7_batch_diam.mat files are generated

% Now reload pointers to selected solutions

RO=struct(’Fmax’,8000,’diams’,[0 1 5]);

d1=fe_cyclicb(’DefList’,root,RO);

ShaftSeAssemble

fe cyclicb(’ShaftSeAssemble -force’,cf.mdl,fname) is used to assemble superelement matri-
ces of each of the disk* superelements. If a curve,StaticState is defined in the model stack,
fe cyclic assemble is used, otherwise SE=fe mknl(SE,’NoT’) is called.

89

fe cyclicb

If the -force option is omitted an attempt to reload the variable Stack SE diski from the file is
first made and assembly is only performed if that variable does not contain the matrices.

If a mdl.Dbfile field is defined, the argument fname may be omitted.

-reset xxx.

Deflist,Def ...

Cyclic symmetry results can be stored in three main forms

� the basic form, valid for real vectors only, stores real and imaginary components for the spatial
fourier transform as real and imaginary components at a single DOF

� the long vector form uses additionnal DOFs shifted by 50. Starting from the basic form one
would have d1.DOF=[d1.DOF;d1.DOF+.5]; d1.def=[real(d1.def);imag(d1.def)]

The test for usage of this format is that the last dof is above .05 rem(d2.DOF(end),1)>.5.

� the double vector form uses the nominal DOFs of the first sector but store the real and
imaginary parts as consecutive vectors.

d1.def=[real(d1.def(:,1));imag(d1.def(:,1)]; d1.data=[d1.data(1,:);NaN NaN]

DefDouble, DefLong, DefBasic commands allow transformations between formats while handling
out-of-core files properly.

When reading results, def=fe cyclicb(’DefList’,’root’); reads all root*.mat files and com-
bines the vectors into a single deformation set in the double vector format. Selection of diameters
and frequency range during the read process is peformed using

RO=struct(’Fmax’,8000,’diams’,[0 1 5 18]);

d1=fe_cyclicb(’DefList’,’root’,RO);

Specific cases require to sort the output vectors according to the list of diameters specified in the
.diams field, especially when one wants to put fixed interfaces solutions first for reduction purposes.
The command to use becomes DefListSortDiam.

Full rotor SE model

ShaftPrep

fe cyclicb(’ShaftPrep’,cf,def); generates reduced sector super-elements.

90

fe cyclicb

Each bladed sector is divided into two regions. A first super-element is attached to the elements
with the left interface nodes, it is called the inter-sector super-element. A second one is attached to
the remaining elements to form the sector super-element.

A reduced kinematic subspace of the sector super-element (with the definition above) is built from
def, disk by disk.

Vectors are first sorted with respect to their contribution to the considered disk if the -svdtruncate
option is used.

Then, they are sorted according to their contribution to subsets of physical DOF of the initial sector.
If one specifies -mseq 0 (default call), these subsets are

1. DOFs within either the inter-sector interface (right interface) or the inter-stage interface(s),

2. remaining DOFs (left interface and interior DOF).

If -mseq 1 is enforced, these subsets are

1. DOFs common to the inter-stage and inter-sector interface(s),

2. DOFs within the inter-sector interface (right interface),

3. DOFs within the inter-stage interfaces,

4. remaining DOFs (left interface and interior DOFs).

Both these sortings make the subsets of vectors linearly independent from each other. They require
that fixed edge solutions are stored at the beginning in def.

The following step is to make the vectors linearly independent within each set. Vectors in sets (1.),
(2.) and (4.), when applicable, are processed with an Iterative Maximum Sequence Algorithm ([10]).
Vectors in set (3.), when applicable, are processed with a Singular Value Decomposition.

See Ref. [5] for details.

-handle option controls whether the resulting bases are stored in memory or on the disk.

-norestit suppresses the explicit construction of the Restit variable, normally stored in cf.mdl.Stack.

Once the sector superelements have been generated, the disk model is assembled using the subsequent
fesuper(’fassemble’,cf) call which generates the reduced disk model in cf.Stack{’SE’,’MVR’}.

A compact example is provided below. A fully developed example can be found in demo cyclic

ShaftMulti.

91

fe cyclicb

[cf,def]=demo_cyclic(’buildstep1’);

fe_cyclicb(’ShaftPrep -svdtruncate -mseq1 -norestit’,cf,def);

fesuper(’fassemble’,cf);

ShaftLoad,ShaftSELoad

fe cyclicb(’ShaftLoadMulti’,cf,data); generates a reduced mono-harmonic load for each disk
specified in data. It is a cell array whose a typical line is {’diski’,def i,delta i} where for each
disk i, the shape def i and harmonic coefficient delta i are specified.

fe cyclicb(’ShaftSELoad’,cf,def); generates a reduced load from its physical counterpart. In
practice, it is used for very specific loading cases, e.g. single DOF load or random load.

Developed examples are presented in demo cyclic ShaftMulti.

% define model

cf=demo_cyclic(’buildstep4’);

% build the excitation on first all sectors, with specified

% diameters 3 on disk1 and 4 on disk 2

data={’disk1’,cf.Stack{’disk1’}.Stack{’Enforce_mode_7’},3;
’disk2’,cf.Stack{’disk2’}.Stack{’Enforce_mode_7’},4
’disk1l’,struct(’def’,1,’DOF’,cf.Stack{’disk1l’}.Elt(2,1)+.01),3;
’disk2l’,struct(’def’,1,’DOF’,cf.Stack{’disk2l’}.Elt(2,1)+.01),4};

def34=fe_cyclicb(’ShaftLoadMulti’,cf,data);

def34.def=sum(def34.def,2); % one column in def34.def per row in data

def34.data=[0 0];

fe_cyclicb(’fourier 1 -red -cf 1’,cf,def34); % checkout shape

% now keep the same shapes but force delta=0 on both disks

data(:,3)={0};
def00=fe_cyclicb(’ShaftLoadMulti’,cf,data);

def00.def=sum(def00.def,2); % one column in def00.def per row in data

def00.data=[0 0];

fe_cyclicb(’fourier 1 -red -cf 1’,cf,def00); % checkout shape

% now try a random load

r1=fesuper(’fnode’,cf.mdl);

r1=[r1(:,1)’+.01;r1(:,1)’+.02;r1(:,1)’+.03];

defrnd=struct(’DOF’,r1(:),’def’,[]);

defrnd.def=randn(length(defrnd.DOF),1);

92

fe cyclicb

defrnd=fe_cyclicb(’ShaftSELoad’,cf,defrnd);

defrnd.data=[0 0];

fe_cyclicb(’fourier 1 -red -cf 1’,cf,defrnd); % checkout shape

% now consider a physical load on first sector of disk 1

r1=fesuper(’fnode’,cf.mdl);

r1=[r1(:,1)’+.01;r1(:,1)’+.02;r1(:,1)’+.03];

defsp=struct(’DOF’,r1(:),’def’,[]);

defsp.def=fe_c(defsp.DOF,1+[.01;.02;.03])’*randn(3,1);

defsp=fe_cyclicb(’ShaftSELoad’,cf,defsp);

defsp.data=[0 0];

fe_cyclicb(’fourier 1 -red -cf 1’,cf,defsp); % retrieve a Dirac’s comb

ShaftFRF [, D, MS, -rest]

This command allows to build the Frequency Response Functions of a rotor model, either full or
reduced. A load and a set of observation DOF have to be defined and added to the model with
fe case. The frequency range is stored in the stack as a ’info’,’Freq’ entry.

The general call is

xF=fe_cyclicb(’ShaftFRFD’,disk,lossfac)

xF=fe_cyclicb(’ShaftFRFD -rest’,disk,lossfac,cf,sel)

xF=fe_cyclicb(’ShaftFRFMS’,disk,def,damp)

xF=fe_cyclicb(’ShaftFRFMS -rest’,disk,def,damp,cf,sel)

The command FRFD assembles the matrices of the model then uses them to compute the response.
An optional loss factor can be specified.

The command FRFMS synthetizes the response from a set of modeshapes. A damping ratio for all
modes can be specified.

The option -rest restores the response computed on the reduced model to a given selection of
physical DOF. Without selection, the response is restored to the whole physical DOF set. This
option must be disabled when dealing with a full rotor model.

The example developed in demo cyclic ShaftMulti builds the sythetized response of a reduced
rotor model to a random excitation.

% define model

[cf,load,def]=demo_cyclic(’buildstep5’);

% Compute the response to the random excitation

93

fe cyclicb

mdl=fe_case(cf.Stack(’mvr’),’dofload’,’Load’,load);

mdl=stack_set(mdl,’info’,’Freq’,linspace(900,2000,2201));

xF=fe_cyclicb(’shaft frfms’,mdl,def,.001);

% select where to restore (upper blade corner)

Sel1={’’,’eltname SE’;’disk1’,’selface & withnode{NodeId 154}’};
Sel1=fesuper(’SeBuildSel -initrot’,cf,Sel1);

Sel2={’’,’eltname SE’;’disk2’,’selface & withnode{NodeId 154}’};
Sel2=fesuper(’SeBuildSel -initrot’,cf,Sel2);

% ... and do restore

xF1=fesuper(’SeDef’,Sel1.cna{1},xF);
xF2=fesuper(’SeDef’,Sel2.cna{1},xF);

% plot responses

ci=iiplot(3);

XF=iicom(ci,’curveXF’);

XF(’Disk1’)=struct(’w’,xF.data,’xf’,xF1.def’,’dof’,xF1.DOF);

XF(’Disk2’)=struct(’w’,xF.data,’xf’,xF2.def’,’dof’,xF2.DOF);

iicom(’subMagPha’)

iicom(ci,’IIxOnly’,{’Disk1’,’Disk2’});
ii_plp(def.data);

Fourier [,ind], ... [-phys, -mono, -red, -egy, -egyfrac, -sortbyd]

This command allows to perform a 3D Fourier analysis of given modeshapes. The maximum norm
of each harmonic is plotted against the harmonic coefficient. The plot is different when dealing with
a single modeshape or a set of modeshapes.

Accepted options are

� ind is an optional selection of deformations. See also the alternate fe def SubDef.

� -phys, -mono and -red are used to distinguish between an analysis of physical modeshapes
(full 3D), mono-harmonic modeshapes (the DFT step is omitted) and generalized modeshapes
(reduced multi-harmonic model). In all cases, the user has to check that the physical or reduced
models are geometrically periodic, i.e. that DOF come in repetitive groups, except for -mono
where the concept of mono-harmonic modeshapes assumes that structures are periodic.

� -egy and -egyfrac provides means for energy-based computations. Option -egy displays the
fraction of energy in each existing harmonic within each disk so that the total amount of

94

fe cyclicb

energy within each disk is 1. Option -egyfrac displays the fraction of energy in each existing
harmonic within each disk so that that total amount of energy within the rotor is 1. The
default displays these quantities disk by disk (from top to bottom) and for each disk, all the
possible harmonics are displayed (from bottom to top), as depicted in the figure below.

� -sortbyd groups these quantities first by harmonics (from bottom to top) and then by disk
(from top to bottom), with the appropriate number of zeros for non present harmonics (typi-
cally when δ > N/2 for a given disk), as displayed in the figure below.

[cf,def]=demo_cyclic(’buildstep1’); % sdtweb demo_cyclic(’step1’)

Curve=fe_cyclicb(’fourier 1:50 -mono -egyfrac’,cf,...

fe_def(’subdef’,def,def.data(:,2)~=-1));

’xxx’%fe_cyclicb(’fourier -mono -egyfrac -cf 3’,Curve);

% sdtweb demo_cyclic(’step4’) multi-harmonic analysis

[cf,def]=demo_cyclic(’buildstep4’); %

fe_cyclicb(’fourier 7:25 -red -egyfrac -cf 11’,cf,def);

fe_cyclicb(’fourier 7:25 -red -egyfrac -sortbyd -cf 13’,cf,def);

See also

fe cyclic

95

obsolete

Purpose

Obsolete functionality

Syntax

model=fe_cyclicb(’Basis [, -norm, -all, -int, -rb]’,model,orders,omegas,opt)

def=fe_cyclicb(’DiskEig’,DISK)

def=fe_cyclicb(’DiskEngineLoad EO’,model)

def=fe_cyclicb(’DiskFRFD [, -rest]’,DISK,lossfac,cf,sel)

def=fe_cyclicb(’DiskFRFMS [, -rest]’,DISK,def,damp,cf,sel)

K=fe_cyclicb(’DiskMatrices [mk]’,DISK,Eltselection)

fe_cyclicb(’Fourier MODENUM [, -phys, rotor, disk, -red, -test TOL]’,fignr,model,def)

model=fe_cyclicb(’PolyAssemble [, NoT]’,model,params)

DISK=fe_cyclicb(’Reduce NODEID0 ELTID0 [, -int]’,sector,def)

model=fe_cyclicb(’Renumber’,model)

def=fe_cyclicb(’Display’,cf,def)

def=fe_cyclicb(’ShaftEngineLoad EO’,model)

def=fe_cyclicb(’ShaftFRFD [-rest]’,model,lossfac,cf,sel)

def=fe_cyclicb(’ShaftFRFMS [-rest]’,model,def,damp,cf,sel)

fe_cyclic(’ShaftPrep’,model,def)

mdl=fe_cyclic(’ShaftRing [-round N1 N2 N3 -autoclose N4]’,rim1,rim2)

fe_cyclicb(’ShaftLoad’,model)

[def,mdl]=fe_cyclicb(’ShaftTEig ORDERS’,model)

OBSOLETE Basis [, -all, -norm, -int, -rb]

This command allows to build a set of modes :

� with the harmonics specified in an array [δ1, δ2, ...],

� for the rotation vectors specified in a cell {[ω1x, ω1y, ω1z] , [ω2x, ω2y, ω2z] , ...}.

The general call is

[model,def]=fe_cyclicb(’basis -all -int -norm -rb’,sector,orders,omegas);

The output is a struct array containing the modeshapes. If only one output is required, the basis is
added to the model as a TR field. The field data refers to the harmonic in column 2 and the rotation
speed in column 3. The number of computed modes is controlled by the field ’info’,’EigOpt’ in
the stack.

obsolete

cf=demo_cyclic(’testload disk 5 -nor reset’) % reset file (rather than load)

% Set of Cyclic Modes / Fixed Interface Modes

sector=stack_set(cf.Stack{’disk1’},’info’,’EigOpt’,[5 4 0 11 1e-8]);

sector=stack_set(sector,’info’,’EigOptFixInt’,[5 4 0 11 1e-8]);

sector=fe_cyclicb(’basis -all -int -norm’,sector,[0:3],...

{[0 0 0],[0 0 250]});
cf.model=sector;cf.def=sector.TR;

The -all option is used to get both modeshapes associated with a double eigenvalue in the case
where harmonics are not 0 or half the number of sectors, when applicable. For more information on
cyclic symmetry, please refer to [...].

The -norm option ensures that modes are orthonormalized in mass and stiffness because of conver-
gence problems caused by the presence of double eigenvalues. This option is not required when the
eigenvalue problem is solved with Nastran (fe eig method 50). xxx discuss with EB

When the -int option is added, modes of the initial sector with its left and right interfaces fixed
(clamped) are also computed and added at the beginnning of the output. These modes have a −1
in the field data. The computation parameters are specified in the ’info’,’EigOptFixInt’ stack
entry. When this option but no harmonic are given, it computes only fixed interface modes.

The six rigid body modes of a cyclic symmetric structure are mono-harmonic with harmonic 0 (1T
along and 1R around the axis of symmetry) and harmonic 1 (2T along and 2R around the other
axes). Thus, the -rb option is used to compute two more flexible modes with harmonic 0 and four
more flexible modes with harmonic 1.

OBSOLETE DiskEig [, -ord]

This command allows to compute the approximate modes of a reduced disk model built with the
command Reduce of fe cyclicb.

Command fails and is no longer maintained zzz see with arnaud

cf=demo_cyclic(’testload disk 5 -nor’) % reload model

fe_cyclicb(’reduce 1 1 -int’,cf);disk=cf.Stack{’diskmodel’};

% Mode computations

disk=stack_set(disk,’info’,’EigOpt’,[5 30 1e3 11 1e-8]);

[def,disk]=fe_cyclicb(’diskeig -ord’,disk);

disp(def.data);

cf.def=fe_cyclicb(’Display’,cf,def);

97

obsolete

The -ord option is used to identify the Fourier harmonic coefficient associated with each mode when
dealing with the reduced model of a tuned disk. When dealing with a mistuned disk (whose modes
are multi-harmonic), this returns the coefficient whose harmonic is the greatest.

DiskEngineLoad EO [, sel]

This commands builds a physical load, spatially mono-harmonic, on a specified set of nodes. If no
selection is present, all nodes are used.

% Model Initialization

cf=demo_cyclic(’testdisk 7 -blade -cf 2’);

% External Load

Load=fe_cyclicb(’DiskEngineLoad 3 r > 201’,cf);

cf.def=Load;fecom showdefarrow;

OBSOLETE DiskFRF [, D, MS, -rest]

This command allows to build the Frequency Response Functions of a disk model, either full or
reduced. A load and a set of observation DOF have to be defined and added to the model with
fe case. The frequency range is stored in the stack as a ’info’,’Freq’ entry.

The general call is

xF=fe_cyclicb(’DiskFRFD’,disk,lossfac)

xF=fe_cyclicb(’DiskFRFD -rest’,disk,lossfac,cf,sel)

xF=fe_cyclicb(’DiskFRFMS’,disk,def,damp)

xF=fe_cyclicb(’DiskFRFMS -rest’,disk,def,damp,cf,sel)

The command FRFD assembles the matrices of the model then uses them to compute the response.
An optional loss factor can be specified.

The command FRFMS synthetizes the response from a set of modeshapes. A damping ratio for all
modes can be specified.

The option -rest recovers (xxxEB recovers, expands, interpolates, ...) the response computed on
the reduced model to a given selection of physical DOF. Without selection, the response is expanded
to the whole physical DOF set. This option must be disabled when dealing with a full disk model.

The following example builds both direct and sythetized responses of a reduced disk model to a 2EO
excitation.

cf=demo_cyclic(’testload disk 5 -nor’) % reload model

98

obsolete

% the call to fe_cyclicb basis is already done

fe_cyclicb(’reduce 1 1 -int’,cf);disk=cf.Stack{’diskmodel’};

% External Load

Load=fe_cyclicb(’DiskEngineLoad 2’,cf);

fe_cyclicb(’DiskSeDefInit’,cf);

Rload=fe_cyclicb(’DiskSeLoad’,cf,Load);

disk=fe_case(disk,’dofload’,’Blade_load’,Rload);

freq=[1500:5:3000]’;

disk=stack_set(disk,’info’,’Freq’,freq);

% Restitution to Blade Dofs

tips=feutil(’FindNode r>201’,cf.mdl);

disk=fe_case(disk,’SensDof’,’Sensors’,disk.DOF);

% Transfert Functions / Direct

xFd=fe_cyclicb(’disk frfd -rest’,disk,.002,cf,tips);

% Transfert Functions / Modal Synthesis

disk=stack_set(disk,’info’,’EigOpt’,[5 50 -1e3 11 1e-8]);

[def,disk]=fe_cyclicb(’diskeig’,disk);

xFms=fe_cyclicb(’disk frfms -rest’,disk,def,.001,cf,tips);

% Response Plots

ci=iiplot;

XF=iicom(’curveXF’);

XF(’Blade resp.D’)=struct(’w’,xFd.data,’xf’,xFd.def.’,’dof’,xFd.DOF);

XF(’Blade resp.MS’)=struct(’w’,xFms.data,’xf’,xFms.def.’,’dof’,xFms.DOF);

iicom(’subMagPha’)

iicom(ci,’IIxOnly’,{’Blade resp.D’,’Blade resp.MS’})

OBSOLETE DiskPlot

This commands provides a graphical representation of the generalied quantities (modeshapes or
load) on a patch whose nodes represent the generalized DOFs.

The following example deals with such representation for both the modes and a 3EO excitation.

% Model Initialization

99

obsolete

cf=demo_cyclic(’testload disk 5 -nor reset’)

% Model Reduction

fe_cyclicb(’reduce 1 1 -int’,cf);disk=cf.Stack{’diskmodel’};

% Mode Computations

disk=stack_set(disk,’info’,’EigOpt’,[5 50 -1e3 11 1e-8]);

[def,disk]=fe_cyclicb(’diskeig’,disk);

fe_cyclicb(’diskplot’,3,cf,def);

% External Load

Load=fe_cyclicb(’DiskEngineLoad 3’,cf);

fe_cyclicb(’DiskSeDefInit’,cf);

Rload=fe_cyclicb(’DiskSeLoad’,cf,Load);

fe_cyclicb(’diskplot’,4,cf,Rload);

OBSOLETE Disk ... (internal commands)

DiskRest computes the Fourier Recovery Matrix associated with the specified harmonic. This
function is used internally by fe cyclicb.

DiskMatrices returns the reduced matrices assembled from the sector superelement matrices. When
the option mk is specified, it returns the mass and stiffnes matrices only.

cf=demo_cyclic(’testload disk 5 -nor reset’) % reload model

fe_cyclicb(’reduce 1 1 -int’,cf);disk=cf.Stack{’diskmodel’};

Kr0=fe_cyclicb(’diskmatrices’,disk);

disk.il=[1001 1 1 250^2 250^4];

Kr=fe_cyclicb(’diskmatrices mk’,disk);

PolyAssemble [, noT] supports the computations of the coefficients of the matrix polynomial from
the assembly of the stiffness matrices (including gyroscopic and nonlinear tangent stiffnesses) at the
given values of the parameters. Three values are required.

The following example assembles the mass and full stiffness matrices at 0, 500 and 1000 rps, then
computes the modes of the free sector at 250 rps.

% Model Initialization

cf=demo_cyclic(’testdisk 5 -blade noK -nor -cf 2’);

sector=fe_cyclicb(’polyassemble noT’,cf.Stack{’disk1’},[0 500 1000]);

100

obsolete

[Case,sector.DOF]=fe_mknl(’init’,sector);

K={sector.K{1},feutilb(’sumkcoef’,{sector.K{2:4}},[1 250^2 250^4])};

% Mode Computations

def=fe_eig({K{1},K{2},Case.T,sector.DOF},[5 10 0 11]);

cf.model=sector;cf.def=def;

OBSOLETE DiskSeDefInit

This command initializes the restitution of the generalized modes computed with the DiskEig com-
mand on the physical DOF set. The restitution bases are stored in the Stack as a ’info’,’SeRestit’
entry which contains the following fields:

� a field .DOF that contains the physical DOF set,

� a field .adof that contains the generalized DOF set,

� a cell .Restit where the first column gives the indices in the physical DOF vector associated
with each sector, the second column gives the indices in the generalized DOF vector associated
with each sector and the third column contains the transformation matrix from physical to
generalized DOF coordinates.

� a cell .cGL that contains one matrix per sector which is a local to global frame transformation
matrix.

The restitution is performed with the command SeDef of fesuper. In this command, a patch can
be defined as a selection of elements so that the modeshapes are expanded only to the physical DOF
of their nodes.

The following example builds a reduced model, computes a set of generalized modes, then the
modeshapes are recovered on the blades only.

% Model Initialization

cf=demo_cyclic(’testload disk 5 reset’) % reset file (rather than load)

% Mode Computations

def=fe_eig(cf.mdl,[5 20 -1e3 11 1e-8]);

% Restitution

cf.def=fesuper(’SeDef’,cf,def);

101

obsolete

OBSOLETE DiskSeLoad

This commands transforms an external load, expressed on the physical DOF set, into a generalized
load, expressed on the generalized DOF set. It is necessary to initialize the restitution of the
underlying disk model, since this transformation is the inverse operation.

% Model Initialization

cf=demo_cyclic(’testload disk 5 -nor’)

%xxx obsolete

%Model Reduction

fe_cyclicb(’reduce 1 1 -int’,cf);

% External Load

Load=fe_cyclicb(’DiskEngineLoad 1’,cf);

fe_cyclicb(’DiskSeDefInit’,cf);

Rload=fe_cyclicb(’DiskSeLoad’,cf,Load);

Reduce [, -int]

The Reduce command is used to generate a disk model from a set of cyclic modes associated with
multiple harmonics. The general call is

[disk,SEsector]=fe_cyclicb(’reduce NodeId0 EltId0 [-int]’,model);

fe_cyclicb(’reduce NodeId0 EltId0 [-int]’,cf);

The second call uses directly a global model stored in the variable cf and stores the reduced model
as an entry ’info’,’diskmodel’ in cf.Stack.

If required, new starting points for numbering the generalized DOF and the associated elements are
defined in the command string through the two integers NodeId0 and EltId0.

The initial set of modes has to be given as a field TR of the model. This operation can be performed
directly by using the command Basis of fe cyclicb, as shown in the following script.

% Model Initialization

cf=demo_cyclic(’testload disk 5 -nor -cf reset’);

fe_cyclicb(’reduce 1 1 -int’,cf);

disk=cf.Stack{’diskmodel’};

The reduction basis is built by separating right, left and interior motion from the cyclic modeshapes.
When the -int option is invoked, fixed interface modes of the sector are added to the set of interior
modes. For more information about this procedure, refer to [11].

102

nl spring

Purpose

Non linear links/force modeling for time simulation

Syntax

model=nl_spring(’tab’,model);

...= nl_spring(’command’, ...)

Description

nl spring supports non-linear connections and loads for transient analysis. Non linear springs
between 2 DOF (see nlspring). loads which depend on DOF values (see DofKuva, DofV), springs
between 2 nodes in different bases (see RotCenter), etc. ...). A full list of non-linearities is given in
nllist

Standard non-linear simulations are handled by nl solve. Below is a description of the inner
mechanisms of a non-linear simulation with the non-linear toolbox.

After the non linearity definition, a proper TimeOpt is required to set the good fe time calls to
perform a non linear Newmark time integration. A default TimeOpt can be set using nl spring

TimeOpt. It is possible to save transient results on the fly using a properFinalCleanup call,
see nl spring fe timeCleanupCall , and to reload the same results using fe simul fe timeLoad.

The following steps are required for a time simulation

� Definition of non-linear properties. These are stored as pro entries of the model stack. The
associated property function must handle non-linearities which is currently only the case for
p spring and p contact.

A non-linearity is always associated with elements or superelements (typically a celas element.
A given group of elements can only be associated with a single non-linearity type.

The information needed to describe the non linearity is stored in a .NLdata field.

� Model initialization using the an fe case(’assemble’) call in fe time, is followed by the
building of a model.NL stack that describes all non-linearities of the model in a format that is
suitable for efficient time domain integration. This translation is performed by the nl spring

NL command.

� Jacobian computation, see nl spring NLJacobianUpdate.

� Residual computations are performed through mkl utils. The nominal residual call is r=-fc;
mkl utils(’residual’, r,model,u,v,a,opt,Case);.

nl spring

Supported non linearities

See nllist for supported non linearities, and nl fun to add your own non-linearities.

ConnectionBuild

One can define a set of non linear links between 2 parts of a model using a call of the form
[model,idof]=nl spring(’ConnectionBuild’,model,data);

idof is a second optional out argument. It returns the list of DOF concerned by links (it can be
useful in order to reduce super elements keeping idof as interfaces DOF for instance). data contains
all the information needed to define links. It is a 3 column stack like cell array. First column contains
the string ’connection’, the second the name of the non linear link described in the third column
that contains a data structure with following fields:

� .Ci define nodes to connect in first (.C1) and second component (.C2). It can be a vector
of NodeId or a screw data structure (slave nodes of the model nodes via RBE3 links, see see
sdtweb(’fe case#connectionscrew’).

� .link defines how to link component 1 to component 2. It is a 1x2 cell array. First cell defines
the type of link (’EqualDof’ or ’Celas’) and the second gives information about the link. For
celas link it is a standard element matrix row with 0 replacing NodeId :[0 0 DofId1 DofId2

ProId EltId Kv Mv Cv Bv].

� .NLdata (optional) defines non linearity associated to celas link. See the list in list of supported
NL. If this field is not present or empty, only linear link is considered.

� .PID (optional) is a 1x2 line vector that defines PID (second column of .Node matrix, see
sdtweb(’node’) of connected node (1rst column for 1rst component).

� .DID (optional) is the same as above, defining DID (third column of .Node matrix, see
sdtweb(’node’) of connected nodes.

Following example defines a model with a cylinder and a hole in a block. The cylinder is linked to
the block by 3 celas preserving the pivot link.

mo1=demosdt(’demoConnection-vol’); % meshes models

mo1=fe_case(mo1,’fixdof’,’base’,’z==-1’); % clamps the cylinder base

r1=struct(’Origin’,[0.5 0.5 0.5],’axis’,[0 0 1],...

’radius’,.1,’rtol’,.01,’length’,1,’Npt’,-3,...

’ProId’,111,’planes’,[]); % Cylinder-side

r1=nl_spring(’ConnectionCyl’,r1); % defines planes

104

nl spring

r3=r1; r3.ProId=1; % Block-side

link={’connection’,’link1’,struct(’C1’,r3,’C2’,r1,...
’link’,{{’celas’,[0 0 12345 12345 1000 0 1e9]}})}; % Defines connection

[model,idof]=nl_spring(’ConnectionBuild’,mo1,link); % builds connection

cf=feplot(model); % displays in feplot

fecom promodelviewon; fecom(’curtab Cases’,’link1_2’);

def=fe_eig(model,[5 20 1e3]); % computes the first 20 modes

if length(find(def.data<1e-3))>1; sdtw(’_err’,’connection failed’); end

cf.def=def; fecom ColorDataAll % displays modes

See also t nlspring(’2beam’) example.

ConnectionCyl

Utility to fill the .planes field of a cylinder connection in the standard connection screw data
structure format (see fe caseg ConnectionScrew).

dataOut=nl spring(’ConnectionCyl’,dataIn);

The dataIn uses fields:

� .Origin origin of the cylinder axis, .axis orientation of the cylinder

� .rtol radius tolerance for cylinder selection.

� .length length of the cylinder.

� .Npt number of planes (equally distributed on the whole length). If Npt<0, ends of the cylinder
are included in the connection points.

� .ProId ProId of the elements containing nodes to connect.

105

nl spring

Figure 5.1: ConnectionCyl

InitV

q0=nl spring(’InitV’,model,d0,RO);

InitV computes the initial static displacement and velocity associated to a DOF initial position and
velocity. d0 is a data structure with field .DOF containing the DofId where initial value is applied
and .def containing initial displacement and velocity at this DOF. RO is a optional input argument
data structure with following fields that define:

� .dt time step for time integration.

� .dq increment for initial vel computation.

� .Nv] number of time steps to reach d0.def(1) (displacement is imposed as a 0.5(1− cos) time
function on these time steps).

� .Np number of steps to stabilize at d0.def(1) and d0.def(1)+dq.

If input argument RO omitted, options are get from ’info’ ’initvopt’ Stack entry. If there is no
such entry, InitV parameters are computed using -optim process (see below).

Displacement at q0 and q0+dq is obtained meaning the last Np/10 steps of each stabilization period,
and initial velocity is computed from those 2 displacements to match d0.def(2) at d0.DOF.

106

nl spring

[q0,RO]=nl spring(’InitV-optim’,model,d0); can be used to find input parameters RO. Opti-
mization of dt and Np is performed from given or default values. Parameters dq and Nv are kept at
given or default value. First dt is optimized. dt is increased (multiplied by 4) until time integration
of the InitV process diverge and last dt that leads to convergence is kept. Then Np is increased by
100 steps until the deformation is converged on the stabilization periods, that is to say that a criteria
taking in account standard deviation/mean of the deformation and the ratio of the last Np/10 steps
upon previous Np/10 steps on each Np period is less than a tolerance (2.0).

See also t nlspring(’2beam’) example.

NL

model=nl spring(’NL’,model)

This command is used to build .NL field data for time integration from NLdata field in NL p spring

property entries in the input model Stack. The command option -storefnl can be used to specify
the way of computing and storing a non linear effort associated to NL (for those which support it).

NLJacobianUpdate

opt.Jacobian=nl spring(’JacobianCall’) returns the callback used to update or initialize the
Jacobian ki used in iterative methods. This is the low level implementation of calls documented in
nl solve TgtMdl. The said Jacobian must take non-linearities into account and is thus of the form

kj = [b]

[
∂snl
∂unl

]
[c] (5.3)

the output is controlled by the value of NL.Jacobian.

� 0 gives no Jacobian.

� 1 use finite differences to evaluate Jacobian.

� 2 fixed Jacobian.

For the case of a non-linear spring, the most important gradient of the tabulated law Fu is added as
stiffness between the 2 DOF to the stiffness matrix and the most important gradient of Fv to the
damping matrix.

For non-linear iterations in a Newmark scheme, the Jacobian is given by

ki=(model.K{3}+kj)+ (opt(2)/opt(1))/dt*(model.K{2}+cj) + 1/opt(1)/dt^2*model.K{1};

107

nl spring

Accepted command options, associated to variants of the call are

� There are three outputs accessible, being [ki,mo1,C1]=nl spring(’NLJacobian’...).

� -noFact not to factorize the output Jacobian. This is useful if further actions are performed
on the Jacobian after the standard call.

� -TangentMdl to return tangent model. It is assumed that model.K(1:3) correspond to M, C,
and K (in this order). u and v variables of caller workspace can be needed.

� -TangentMdl-back to return a superelement containing the tangent matrices.

� -TangentMdl-back-sepKj to return a superelement containing the tangent matrices split by
non linearities.

� -ener to compute for each def stored in model.d1 def structure (that is typically computed
modes), some associated energies:

– freq frequency in Hz.

– damping damping ratio: (ϕT
j [C]ϕj)/(2ωj).

– enerK total strain energy: ϕT
j [K]ϕj .

– enerC ϕT
j [K]ϕj .

– NLlink-enerK strain energy for each NL link: ϕT
j [KNLlink]ϕj .

– NLlink-enerK for each NL link: ϕT
j [CNLlink]ϕj .

SetPro

model=nl spring(’SetPro ProId i ParamName1 Value1 ...’,model)

This command is used to change some nl spring properties parameters. i is the ProId of corre-
sponding p spring property, ParamName the name of parameter to change (k for il(3), c for il(5) or
the field name in NLdata) and Value the value to assign.

It is possible to define a new property by specifying an NLdata structure in third argument: model=nl spring(’SetPro

ProId i’,model,NLdata). If the property already exists, the NLdata is interpreted as a string of
parameters and parsed to define the fields specified in the given NLdata to the existing one. Com-
mand option Edit allows directly merging the existing NLdata to the provided NLdata with priority
given to the new fields.

108

nl spring

model=nl_spring(’Demo1DOF’);

% define a non linearity with partial definition of parameters and other by default

NLdata=nl_fun(’db data 4’) % standard NLdata defintion

% NLdata has fields data, Jacobian (by default) and type

% set in model

model=nl_spring(’setpro proid201’,model,NLdata);

% edit the nl_fun nl by string keyword

model=nl_spring(’setpro proid201 data2’,model);

% edit the nl_fun with struct input

% property will be parsed using nl_fun(’paramedit’)

model=nl_spring(’setpro proid201’,model,struct(’Jacobian’,2));

% field Jacobian has been edited, other fields are kept unchanged

model.Stack{end,3}.NLdata

model=nl_spring(’setpro proid201’,model,struct(’NewField’,’test’));

% you can see that in this case NewField was not set

% as it is not referenced in the nl_fun parameters

model.Stack{end,3}.NLdata

% Force the with struct input with no check

model=nl_spring(’setproedit proid201’,model,struct(’data’,10,’NewField’,’test’));

% in this mode the NewField is propagated regardless of the

% standard nl_fun input

model.Stack{end,3}.NLdata
Standard NLdata structures depend on the non-linear function, see nllist for more details. They
can be obtained through the nl function command db, see nl fun for more details.

In the case where

GetPro

pro=nl spring(’GetPro’,model)

This command is used to get non linear properties in the model stack.

� Command option ID allows getting a specific non linear property by specifying its ProId.

� Command option type‘‘nl fun’’ allows getting the non linear properties of a specific type.
See nllist for more details on types of non-linearities.

109

nl spring

Follow

The Follow mechanism can be used to observe some variable evolution during the time integration.
opt=fe simul(’Followi’,opt);

1st Follow consists in monitoring the number of iteration, the residual norm and displacement
increment norm at each time step.

model=nl_spring(’Demo1DOF’)

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

opt=fe_simul(’Follow1’,opt); % niter norm(r) norm(dq)

def=fe_time(opt,model);

2nd Follow consists in monitoring the def.FNL in iiplot. For the moment the mechanism is differ-
ent (so note that you can’t both tracker niter and FNL), and you only have to specify the field
.FnlIiplot equal to 1 in the ’info’,’OutputOptions’ stack entry of the input model, as in fol-
lowing example :

model=nl_spring(’Demo1DOF’);

r1=stack_get(model,’info’,’OutputOptions’,’GetData’);

r1.FnlIiplot=1; % define FNL tracker

model=stack_set(model,’info’,’OutputOptions’,r1);

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

def=fe_time(opt,model);

TimeOpt

This command returns usual default TimeOpt for non-linear simulations. By default the output is
the same as the TimeOptNLNewmark presented below. See also fe time for TimeOpt definition details.

Supported TimeOpt commands are

� TimeOptNLNewmark, or TimeOpt to obtain the TimeOpt for NLNewmark simulations. Use TimeOpt-gamma
.51 to introduce numerical damping by directly giving gamma.

� TimeOptStat to perform static simulations (see also fe time nl solve).

� TimeOptTheta to perform time simulations with the θ-method (see fe time). Numerical
damping can be introduced using TimeOptTheta-alpha .05, the specified α value will be
added to θ, so that the coefficient used in the simulations will be θ1 = θ + α.

� TimeOptExplicit to perform time simulations with the explicit Newmark scheme.

110

nl spring

The following command options allows setting other TimeOpt fields to their desired value.

� dtval time step.

� tsN number of time steps.

� tendval optional end time

� tInitval initial time.

� AlphaRval a global Rayleigh damping mass coefficient (applied to the model total mass).

� BetaRval a global Rayleigh damping stiffness coefficient (applied to the model total stiffness).

� maxNoutN requests an output subsampling strategy such that only N times equally spread over
the simulation time span are output.

� RelTolval requests a specific relative tolerance for the convergence of iterative schemes.

� -gammaval requests a specific γ coefficient (default to .5) of the Newmark scheme. For the
non explicit versions, β is adapted to ensure unconditional stability of the scheme.

� -thetaval requests a specific θ coefficient (default to .5) of the Theta method.

� -acallstr provides a series of command options applied to the AssembleCall generation.

� -fcleanstr provides a series of command options applied to the FinalCleanupFcn generation.

� -jcallmodel edits the jacobian call to allow late model modification.

Alternatively to providing all these command options in the command string, one can provide a
MATLAB struct with equivalent fields as an additional argument.

By adding an SDT model as third argument, the generated TimeOpt will be directly integrated in
the model, that will be output.

Sample calls :

% basic call

opt = nl_solve(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’);

% call with struct input

RO=struct(’dt’,1e-6,’ts’,3e5,’maxNout’,1e4,...

’acall’,’lumpedMass’);

opt = nl_solve(’TimeOptExplicit’,RO);

% basic call with model input

111

nl spring

model = nl_solve(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’,[],model);

% call with struct and model input

model = nl_solve(’TimeOptExplicit’,RO,model);

Convergence tests depend on the iteration algorithm and several behaviors can be obtained by mod-
ifying RelTol. In any case the absolute value of RelTol is used for the convergence test application;
its sign is used to determine the convergence test to be used as described in the following.

� For algorithms using iterNewton as IterFcn, as is the case for methods newmark (explicit or
not), NLNewmark, and staticNewton.

– using RelTol > 0 tests the convergence of the mechanical residue, relative to value
opt.nf. If opt.nf is not provided, the scheme takes in input the norm of the exter-
nal forces fc at the first time step, or if zero the norm of the first residue of the first time
step. If still zero, opt.nf is set to 1. This convergence test is the most widespread as it
ensures mechanical stabilization. It is strongly recommended for static computations, or
when using large time steps.

– using RelTol < 0 tests the convergence of the displacement correction, relative to the
current displacement norm. The idea of this mode is to stop iterating if the correction
becomes negligible, this is very useful to limit iterations with little impact on the results
in transient simulations with small enough time steps. This must be used with care as
this criterion does not imply that the mechanical residue is converged at the end of the
time step, it is thus strongly advised to check results convergence.

iterNewton does not support the use of opt.cvg yet.

� For algorithms using itertheta nl as IterFcn, as is the case for method theta,

– using RelTol > 0 tests the convergence of the velocity field, its correction relative to the
previous iteration velocity norm.

– using RelTol < 0 tests the convergence of the velocity field, and the model.FNL vector,
their correction relative to the previous iteration norm. Stabilization of the model.FNL

field may be difficult to attain and very sensitive as this vector can contain heterogeneous
data, this mode is then not recommended by default, and use of opt.cvg should be
preferred.

iterthetal nl supports the use of opt.cvg, that forces iteration if set to 1. It is reset
to zero at the start of each iteration, but any non-linearity can alter its value by using
sp util(’setinput’,opt.cvg,ones(1),zeros(1));. Each non-linearity can thus internally
test the convergence of its fields of interest and apply a convergence veto if its convergence is
not satisfied.

112

nl spring

From standard fe time simulations, the following TimeOpt fields are added or modified

� Jacobian field is modified to take into account non linearities, see NLJacobianUpdate.

� Residual field is modified to take into account non linearities, and to use mkl utils to improve
computation times, see sdtweb mkl utils. This should be initialized by nl spring(’ResidualCall’).

� AssembleCall field is modified, to perform non-linearities initialization after assembly. AssembleCall
is the string passed to fe case, generated by nl spring(’AssembleCall’).

� OutputInit field is modified to also check non linearities and initialize non-linearities related
outputs, this is a callback generated by nl spring(’OutputInitCall’).

� FinalCleanUpFcn field is modified to perform cleanup on non linearities as well, this is realized
through the ExitFcn command option of fe simulfe timeCleanUp (see fe timeTimeOpt), us-
ing ’-ExitFcn"nl spring(’’fe timeCleanUp’’)"’. This should be initialized by nl spring(’fe timeCleanupCall’.

� OutputFcn The output function should be generated by the OutputInit command, since it
handles proper interpolation of output as function of the time step, and requires fine tuning
in the case of non linear simulations. If nl spring handles the OutputInit call, OutputFcn
is thus reset during initializations. Handling of output time steps using a time vector in
OutputFcn is supported.

AssembleCall

The TimeOptAssembleCall must use the -InitFcn callback of fe caseg Assemble to perform ini-
tialization of the non linearities.

Command options are available to tweak the assemble call with minimal user input

� MVR To adapt the assemble call for preassembled reduced models. This typically removes the
-load command option of the call as this has to be recovered in the MVR itself.

� skipMKL No to transform the model matrices into mkls objects.

� lumpedMass To adapt the mass matrix mattype to 20 and get a lumped mass matrix.

� compose For more complex calls one can redefine from scratch the assemble call line to which
the ad hoc initFcn will be added.

113

nl spring

ResidualCall

The TimeOptResidual callback should be a call to mkl utils, that performs optimized matrix vector
products, and the computation of non linear forces handled by nl functions. Command options
allows choosing a call adapted to the type of simulations

� by default a call adapted to the nlnewmark scheme.

� ResidualCallStatic provides a residual adapted to the newton-Raphson schem.

� ResidualCallExplicit provides a residual adapted to the newmark explicit scheme.

fe timeCleanupCall

The TimeOptFinalCleanupFcn callback must use the -ExitFcn of fe simulto perform post treat-
ments of non linearities. Custom options classical to the fe simulFinalCleanup call can be added
either in the command string or as a string in second argument.

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall -cf-1-fullDOF’);

% equivalent call with second argument

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall’,’-cf-1-fullDOF’);

In addition to the standard fe simulFinalCleanup, the following command options are available
(to be specified outside the ExitFcn callback.

� -HDFSave To save the output in a temporary file, and output a v handle pointer to the saved
data. This is useful for RAM optimization matters.

� -HDFfnamefname In combination to -HDFSave, to specify the file in which the output will be
saved.

� -Save To save the output in a temporary file, but keep the results.

� -fnamefname In combination to -Save, to specify the file in which the output will be saved.

OutputInitCall

The OutputInit callback is locked for internal nl spring use. Several command options are available
that will be forwarded to the OutputInit procedure

� -BlockSaveN To initialize a bufferization of the output of size N. Results will be saved as blocks
containing each N saved time steps.

114

nl spring

� -exit To force exit after initialization. This can be used to check the output format without
performing the simulation.

� -postFcn To provide a callback that can tweak the output at the end of the OutputInit

procedure. This can be used for example to initialize out.Post post treatments.

TimeOutputOptions

Fine tuning of fe time output can be achieved by specifying an ’info’,’OutputOptions’ case
entry.

Accepted fields for the OutputOptions structure are

� .FnlAllT if defined and equal to 1, non-linear loads are saved at all time steps.

� .FnlIiplot if defined and equal to 1, non linear loads are displayed in an iiplot figure as curve
FNL. If the display timer associated with this figure does not stop automatically, you can stop
it with cingui(’TimerStop’).

mkl utils

Non linearities are treated by mkl utils mex file. Details are provided in mkl utils.

rheo2NL

OBSOLETE. Use now nl spring NL.
NL=nl spring(’rheo2NL’,model,DOF,offset);

This command is used to convert rheological data into a structure of data understandable for NLforce
command. DOF is the list of the DOF coherent with u and v arguments of NLforce command. Offset
is optional. It is a structure of data with fields .DOF and .def that defined 0 reference for Fu and
Fv tab laws.

tab

model=nl spring(’tab’,model);

This command is used to convert formal rheological description data stored in model.Stack to
a tabulated law description. The format is likely to change due to optimization of the compiled
functionality in mkl utils (see mkl utils).

115

nl spring

BlockSave,BlockLoad

Undocumented intermediate save of a time block for long simulations that do not fit in memory.

116

mkl utils

Purpose

For detailed callback information see sdtweb(’nlspring timeopt’).

Residual

Residual command is used to compute standard residue.
mkl utils(’residual’,r,model,u,v,a,opt,Case); call modifies variable r in memory according
to following standard residue computation (implicit Newmark).

r = model.K{1}*a + model.K{2}*v + model.K{3}*u + b*(snl_fun) + fnl_int -fc;

In this formula, b*(snl fun) refers to the legacy m file implementations (non chandle) which expect
the nl function to fill a unl vector multiplying b (.snl field support was not activated). This
was incorrectly noted -fnl in earlier documentation the minus sign coming from the convention
of considering non-linear forces as external rather than internal (the convention used from now
on). fnl int refers to chandle implementations that match classical conventions : traction leading
to positive stress in continuous mechanics, positive over-closure (negative gap) leading to positive
pressures in contact mechanics.

Typically in fe time computations one has

opt.Residual=’r=-full(fc);mkl utils(’’residual’’,r,model,u,v,a,opt,Case);’;

with fc the time load (resulting from DofLoad entries in model Case) and fnl is the sum of the
non linear efforts (if any) computed directly by mkl utils (rotcenter, mocirc2), in the non linear
functions (see sdtweb nl fun) or in nl spring. mkl utils then calls the adequate nl fun function
(nl spring by default) automatically.

Such call stored in opt.Residual is filled by nl spring(’TimeOpt’) for default simulations.

Model information specifically supported by the residual command are

� opt.Rayleigh if the field exists defines a global Rayleigh damping and opt.Rayleigh(1)*model.K{1}*v+opt.Rayleigh(2)*model.K{3}*v
is added to the residual.

� model.K{2} can be a data structure describing modal damping with following fields:

– .def : MΦ vectors as columns.

– .data : cj modal damping coefficients as a vector. cj = 2ωjζj . A second column has to
be set to zero for transient applications.

mkl utils

– .type : @nl modaldmp handling function for callbacks. The following callbacks must be
handled

* matrix projection tkt = T TKT : tkt=feval(K.type,’getTKT’,K,T,Tt,typ)
with K the implicit matrix, T the right projection matrix, Tt the left projection matrix
(can be empty or skipped if Tt = T T , typ the output type, either imp to keep the
implicit format (by default), or full to recover a full numeric matrix (to be reserved
for small output sizes).

* vector application f = Kq : f=feval(K.type,’getForce’,K,q)
with K the implicit matrix, q a deformation vector.

– .UseDiag : to be set to one if one wants the output of getTKT to be diagonal (as for a
standard dtkt call).

– .K : optional additional damping matrix. This matrix must be in a mkl transposed
v handle format (use v handle(’mklst’,K) to convert a matlab matrix to this format).
Note that model.K{2}.K is taken in account for the Jacobian computation whereas modal
damping is not.

– .defT : the resitution matrix (left side MΦ), that can occur mainly in the case where
a non-symmetric projection has been carried out. E.g., the implicit representation of

T T
l MΦ

[
\2ζjωj\

]
ΦTMTR will use field .def to store T T

RMΦ and .defT to store TlMΦ.

Corresponding additional residue term is∑
j [M]ϕj ∗ cj ∗ ϕT

j [M]T ∗ v.

� model.NL can be a stack of non linearities. Column 3 provides a structure with the following
standard fields, see nldata.

Typically, fnl is computed by non linearity functions, see nl fun for details on these functions.
The non linear functions are called by mkl utils to provide the value of fnl at a given state. Two
implementations are supported

� An optimized input-output formulation, using observation and command matrices c and b doc-
umented in nldata. The computation of the observation is possible either on the displacement,
the velocity or both, and the command is added to the residual using r = r + b*unl. With
unl a vector depending on the observation (c*u, c v v).

� A used defined addition (older format, that should be only used when the generic b,c format
fails to be relevant. In this mode the non linear function must add fnl by itself, choosing the
sign convention, using a call of type of time(-1,fc,fc-fnl);. One will note that the residue
vector is named fc in the non linear functions.

118

mkl utils

chandle

chandle objects are used to streamline communication between mex and MATLAB in iterative pro-
cesses. They are used in various nl solve calls and in particular for ModalNemwark and ExpNewmark.

119

chandle

Purpose

chandle objects are used to streamline communication between mex and MATLAB in iterative
processes.

Creation generates a C copy of the matlab array and returns a vhandle.chandle object containing
the ID. Register the chandle object for mexAtExit.

� chandle.numType lists currently implemented chandle subtypes.

DiagNewmark

DiagNewmark is an implementation of the Newmark scheme when assuming a fixed diagonal full
Jacobian as occurs in modal domain transients (explict or implicit).

ExpNewmark

ExpNewmark is an implementation of the Newmark scheme when assuming a fixed diagonal mass
matrix for large explicit dynamic problems.

nl inout

Support for observation performed in C. .iopt for standard integer options.

.N field : Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[8],Niopt[9],size(unl,3)[10]

.opt field ? tc[1] dt0[2] K[3] Fmax[4] Fu functions currently implemented in C are listed
under nl inout fun

The header of the associated class is

// nl_inout non linearity 1003

class chandleNl_inout: public chandle {
public:

int *irc, *jcc,*irb, *jcb,*iopt;

double *prc,*pic,*prb,*pib,*unl,*vnl,*snl,*opt;

int N[11]; // Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[7],Niopt[8],size(unl,3)[9]

__Fu Fu;// (*Fu)(chandleNl_inout*,struct _ROr);

mxArray* MexData[2];

chandleNl_inout();

chandle

~chandleNl_inout();

void Residual(struct _ROr ROr, double* fc);

void initCpt(); // Initialize pointers

void EndStep(); // propagate internal states using StoreType strategy

};
// Residual structure --

struct _ROr {
int Nk,Nnl;

double RayleighM,RayleighK,tc;

double *u,*v,*a,*FNL;

};
// Default function handle

typedef void(*__Fu)(chandle* ph, struct _ROr ROr);

121

Non linearities list

Purpose

List of supported non linearities. It is possible to create new ones (sdtweb nl fun)

nl inout

nl inout is the more general non linearity, using observation and command matrix associated with
elements supporting the kinematics (cbush for point connections, see section ?? , zero thickness
volumes for surface connections (where two layers of coincident nodes are considered for a hexa8

or penta6 element, see section ??), volume elements for 3D applications (see section ??) or the
deprecated observation/sensor command/loads as detailed in section ?? .

The general form of the non-linearity fNL = b× f(C.u,C.v) is detailed in section ?? .
For a list of implemented non-linear constitutive laws xxx

The pro.NLdata structure has fields described in section ?? (with the need to distinguish the form
for model declaration and during time integration).

By default, no Jacobian is computed for this non-linearity. Experimental Jacobian are computed
according 3 methods according to the NL.Jacobian value:

� 0 : no Jacobian. (default).

� 1 : tangent matrices.

� 2 : fixed Jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for Jacobian stiffness, and
NL.alphaJD factor for Jacobian damping.

nl contact

Supports non conform fixed matching contact (squeal applications for example) and (surface contact
large displacement, as in rail/wheel interaction for example). For conform meshes, zero thickness
elements associated with p zt can be used.

See p contact, ctc utils.

Non linearities list

nl modaldmp

Implementation of modal damping. Although modal damping is not a non-linear feature in itself,
its implementation requires it to be declared as a non-linearity.

The concept is to provide shapes defined on a part of a model with associated damping ratios.
nl modaldmp handles the kinematic projection on the model which can contain superelements. In
the case where superelements are used and concerned with modal damping, the shapes provided
must be written on the physical DOF of the superelements.

The set of shapes must be stacked in model with a valid ID field. It is a common deformation SDT
data structure (see sdtweb def), with an additional .ID field. The .data field is equivalent to the
ones of complex modes (see fe ceig). It is a matrix of two columns respectively giving the frequency
and the target damping ratio for each mode.

Since modal damping implies a modal sensor, the features performs both by default. It is however
possible to simplify it as a pure modal sensor. The theory around modal sensing/damping can be
found in [12].

The pro.NLdata structure has fields

� type: string ’nl modaldmp’.

� CurveId: the curve ID stacked in model which provides the shapes and their damping ratios.

� SensorOnly: to use the feature only as a modal sensor in a def data structure.

The NLdata structure generation can be integrated using an nl modaldmp(’db’) call. See sdtweb

nl spring#setpro for this integration. This is used in transient simulations, and in complex mode
computations, see nl solve.

123

nl inout

Purpose

The generic form of NLdata specification is discussed in section ?? .

DofSet

Implementation of linear or large rotation setting of DOF values from time curves of a fe case

DofSet entry. sdtweb(’ eval;’,’d fetime.m#NLNewmark LrDofSet’).

Supported variants are

� large rotation trajectories (using MBBryan) uses .unl(:,:,1) corresponding to large displace-
ment and updates .unl(:,:,j1) when changing time step to allow velocity computations
(currently only valid for fixed time step). Requires setting .KeepDof=1 and enforcing 6 DOF
associated with the master node.

� translation trajectories (xxx).

Power

uses NLdata.opt=[comstr(’Power’,-32) k n] and snl = k unnl.

FuTable

uses tabular definitions in either NLdata.Fu or NLdata.Fv. If you want a case with both simul-
taneously to be re-implemented please provide a test case. Implements a Jacobian using tangent
stiffness. Run example with sdtweb(’ eval;’,’d fetime.m#ModalNew FuTable’).

K t

Implement time varying matrices and DofSet xxx.

MexIOa

Implements callback to user defined .m file implementations of non-linearities as detailed in sec-
tion ?? .

nl inout

SCLd

Large displacement surface contact supported as part of the contact module (see sdtweb(xxx)).
Possible application : rail/wheel contact. This supports low pass filtering of contact forces, using an
evolution equation of the form Ḟc/ωc + Fc = kcg (for a positive constant) or Ḟc/ωc + Fc = kc

√
(g)

for a negative constant. This avoids incorrect bouncing of stiff contacts in implicit computations
and ωc should be a fraction of the sampling frequency (inverse of time step) or the maximum mesh
frequency.

LRFu

Large rotation tabular spring for multi-body applications. cbush kinematics are expected and ro-
tations are assumed using Bryan angles in radians. Requires one non-linearity for each spring (not
currently vectorized). The NL.Node field gives slave and master node for each body (4 nodes). The
observed motion is given at the master node and large rotation is used to determine the current
position of the slave node. With single axis springs (large rotation rod) the position of the two slave
nodes should be disjoint.

The stress vector used by this non-linearity contains 24 elements

� sx1,sy1,sz1,srx1,sry1,srz1 forces and moments on node 1

� sx,sy,sz,srx,sry,srz forces and moments on node 2

� PX1,PY1,PZ1,rx,ry,rz absolute position of node 1 and rotations

� ux,uy,uz relative displacements in x,y,z directions, sex,sey,sez force in element frame.

slab sensor non-linearity

This non-linearity supports observation of various quantities during FEM computations. The base
definition is associated with the sdtweb(’sensor# scell’)

� For direct resultant sensors in time integration schemes using enforced displacement -fieldOut4,
leading to NL.iopt(6+isens)==4. See more details in xxx

Needs documentation, see sdtweb d fetime(’slab’).

NL=struct(’type’,’nl_inout’,’slab’,{li(:)},’UserObs’,dyn_solve(’@doObs’));
mt=stack_set(mt,’pro’,’Sensors’,struct(’il’,1e5-1,’type’,’p_null’, ...

’NLdata’,NL));

125

nl inout

Note that in predictor/corrector schemes, it may be necessary to recompute the residual to obtain
the correct residual.

temp still undocumented

� FuExpon snl = a bunl .

� uMaxw generic C implementation of nl maxwell.m file

� FuDahlC Dahl model with constant force

� STS PSA scalar STS

� CLIMA2 connector non-linearity developed with Marco Rosatello

� FuFric basic friction model with Fk = Ku bounded by ±Fmax.

� nl bset xxx

� DofSet xxx

126

Non linearities list (deprecated)

Purpose

nl maxwell (deprecated)

nl maxwell describes rheological models using stiffness and damping. Deprecated implementation
that should now be called with an nl inout.
.type ’nl maxwell’

.lab Label of the non linearity.

.Sens Observation definition. Cell array of the form {SensType,SensData} where SensType
is a string defining the sensor type and SensData a matrix with the sensor data (see
sdtweb sensor).

.Load data structure defining the command as a load (with .DOF and .def fields).

.SE superelement that defines the rheological model. Only matrices are used (.K field).
Mass matrix is ignored. The .DOF field is unused and first DOF are assumed to be
the observations defined, and following correspond to internal states.

.NLsteps Number of sub steps for the integration.

.StoreFNL strategy to store FNL output, should be initialized from StoreType.
Ncell number of cells.

Jacobian is computed using a Guyan condensation keeping only the observation (internal states are
condensed) to obtain tangent damping and stiffness.
Internal states are integrated using an independent finite differences explicit scheme, with the same
step of time as the main scheme, or a subsampling NL.NLsteps times.
At the first residue computation, the initial internal states are computed according to initial con-
dition in terms of displacements and velocities through a time integration until variation of speed
between the 2 last computed steps is lower than opt.RelTol.
Force on the observation DOF (F), displacement (Qc) and velocity (dQc) of the internal DOF, dis-
placement and velocity observations are stored in the NL output.

The command nl spring db Fu"type" is a database of generalized Maxwell rheological models.
type can be:

� zener standard viscoelastic model. Parameter k0, k1 and c1 can be given as a string of the
form db Fu"zener k0 k0 k1 k1 c1 c1" in the command.

The example of the standard viscoelastic model is detailed here as an illustration. The standard
viscoelastic model, also known as Zener model, is composed by a spring (K0) in parallel with another
spring (K1) and a serial dashpot (C1) as displayed figure 5.2.

Non linearities list (deprecated)

Figure 5.2: Standard viscoelastic model.

In the Laplace domain, the relation between the relative load and the relative displacement is given
by

F (s) = K(s)X(s) =
K0K1 + (K0 +K1))C1s

K1 + C1s
= K0

1 + s/z

1 + s/p
(5.4)

where p and z are respectively the pole and the zero of the model

p =
K1

C1
(5.5)

z =
K0K1

(K0 +K1)C1
(5.6)

The maximum loss factor is

ηm =
p− z

2
√
pz

=
1

2

K1√
K0 (K0 +K1)

(5.7)

and obtained for pulsation

ωm =
√
pz =

K1

C1

√
K0

K0 +K1
(5.8)

K0 is the static stiffness of the model. Typically K1 =
K0
2 and C1 is defined so that the damping is

maximal for the frequency of interest.

Following example considers K0 = 1000N/m, K1 = 500N/m and C1 = 1.4Ns/m. These parameters
lead to a maximum loss factor of 20.14% for a frequency of 46.41Hz. The module and the loss factor
are represented in figure 5.3.

128

Non linearities list (deprecated)

Figure 5.3: Module and loss factor.

Following example consists in a mass of 1e-2kg linked to the ground by the Zener model. Initial
displacement corresponding to a 1N load on the mass is imposed and then a time simulation is
performed.

% parameters

param.m=1e-2; param.dt=1e-4; param.N=1e3;

param.k0=1e3; param.k1=param.k0/2; param.c1=1.4; % zener parameters

% define model

model=struct(’Node’,[1 0 0 0 0 0 0],...

’Elt’,[Inf abs(’mass1’) 0; 1 0 0 param.m 0 0 0]);

% define nl_maxwell data

data=nl_maxwell(sprintf(’db Fu"zener k0 %.15g k1 %.15g c1 %.15g"’,....

param.k0,param.k1,param.c1));

data.Sens{2}=1.03; % translation sensor defining nl_maxwell inputs

% define associated property

129

Non linearities list (deprecated)

r1=p_spring(’default’); r1=feutil(’rmfield’,r1,’name’);

r1.NLdata=data; r1.il(3)=param.k0;

r1.il(1)=100; model=stack_set(model,’pro’,’zener’,r1);

% define option for time integration

opt=d_fetime(’TimeOpt’);

opt.NeedUVA=[1 1 1];

opt.Follow=1; opt.RelTol=-1e-5;

opt.Opt(7)=-1; % factor type sparse

opt.Opt(4)=param.dt; opt.Opt(5)=param.N; % NSteps

%opt.IterEnd=’eval(opt.Residual)’; % to compute real FNL for current state

% Initial state

r1=data.SE.K{3}\[1;0]; r1=r1(1); % initial displacement for 1N load

model=stack_set(model,’curve’,’q0’,struct(’def’,r1,’DOF’,1.03));

% Time computation

def0=fe_time(opt,model); ci=iiplot; % compute

% The same but NL as a model

SE2=data.SE;

SE2.Elt(end+1:end+2,1:6)=[Inf abs(’mass1’); 1 0 0 param.m 0 0];

SE2=fe_caseg(’assemble -secdof -matdes 2 3 1 -reset’,SE2);

r1=SE2.K{3}\[1;0]; %r1=r1(1);

SE2=stack_set(SE2,’curve’,’q0’,struct(’def’,r1,’DOF’,SE2.DOF));

def20=fe_time(opt,SE2); % compute

F20=SE2.K{2}*def20.v+SE2.K{3}*def20.def; F20=F20(1,:);

% zener labs: {’zener-F1’,’zener-q1’,’zener-q1-1’,’zener-dq1’,’zener-dq1-1’}
NL20=struct(’X’,{{def20.data {’LIN-F1’;’LIN-Qc1’;’LIN-dQc1’;’LIN-unl1’;’LIN-vnl1’;’ft’}}},...
’Xlab’,{fe_curve(’datatypecell’,’time’)},...
’Y’,[F20’ (fe_c(def20.DOF,1.03)*def20.def)’...

(fe_c(def20.DOF,3.03)*def20.def)’...

(fe_c(def20.DOF,1.03)*def20.v)’...

(fe_c(def20.DOF,3.03)*def20.v)’ zeros(size(def20.def,2),1)]);

NL20.name=’NLfromLIN’;

iicom(’curveinit’,{’curve’,’NL(1)’,ci.Stack{’NL(1)’};
’curve’,NL20.name,NL20});

A=ci.Stack{’NL(1)’}.Y(2:end,:);B=NL20.Y(2:end,:);t=NL20.X{1}(2:end);i2=any(A);
if norm(A(:,i2)-B(:,i2),’inf’)/norm(B,’inf’)>0.01

figure(1);plot(t,A,’--o’,t,B,’-’)

sdtw(’_err’,’something has changed’)

end

130

Non linearities list (deprecated)

DofKuva

DofKuva defines a non linear load of the form
aveDof [K] {V } with a scalar coefficient a, a scalar vDof extracted from displacement, velocity or
acceleration, and V a field specified as follows

.type ’DofKuva’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.MatTyp Type of the matrix K (see MatType). Desired matrix is automatically assembled
before time computation.

.factor Scalar factor a.

.exponent Exponent of the DOF.

.uva Type of vector V : [1 0 0] for displacement, [0 1 0] for velocity and [0 0 1] for
acceleration.

For example one can take in account gyroscopic effect in a time computation with a NL of the form

model=stack_set(model,’pro’,’DofKuva1005’, ... % gyroscopic effects

struct(’il’,[1005 fe_mat(’p_spring’,’SI’,1) 0 0 0 0 0],...

’type’,’p_spring’,’NLdata’,struct(...

’type’,’DofKuva’,’lab’,’gyroscopic effect’, ...

’Dof’,1.06,’Dofuva’,[0 1 0],’MatTyp’,7,...

’factor’,-1,’exponent’,1,’uva’,[0 1 0])));

DofV

DofV defines a non linear effort of the following form (product of a fixed vector and a dof)
(u)exponent.V NDdata fields for this non-linearity are

.type ’DofV’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.exponent Exponent of the DOF.

.def data structure with fields .def which defines vector V and .DOF which defines corre-
sponding DOF.

nl spring

131

Non linearities list (deprecated)

nl spring defines a non linear load from rheological information (stop, tabulated damping or stiffness
laws etc.) between 2 DOF.
To define a non linear spring, one has to add a classic celas element, linear spring between only
2 DOF. The non linear aspect is described by associated properties as a ’pro’ entry in the model
Stack.

One can describe non linearity by a formal rheological description using one or more of following
fields in the pro Stack entry:

� .But : [dumax k0 c0 dumin k1 c1] bumpstop. For du from dumin to dumax, f=0. For
du>dumax, k0 stiffness is applied to du-dumax, and for du<dumin, k1 stiffness is applied to
du-dumin. Damping is not taken in account at this time (due to tabulated law strategy).

� .Fsec : [fsec,cpenal]. For dv<-fsec/cpenal or for dv>fsec/cpenal, f=fsec is applied.
For -fsec/cpenal<dv<fsec/cpenal, f=cpenal*dv is applied. If omitted, cpenal=1e5.

� .K

� .C

This information will be converted in tabulated laws Fu and Fv using nl spring tab (low level call
that should be automatically called at the beginning of time computation).

One can also describe non linearity with a tabulated effort / relative displacement and effort / relative
velocity law between the DOF (dof2-dof1), respectively in the Fu and Fv fields of the pro Stack entry.
First column of Fu (resp. Fv) gives the relative displacements (resp. velocities) and second column
gives the efforts. One can give a coefficient av factor of Fv depending on relative displacement as a
third column of Fu. It can be useful to describe a non linearity depending on relative displacement
and relative velocity. Force applied is F=av(du).Fv(dv). It is used in particular to describe damping
in a stop (.But NL).

Following example performs a non linear time computation on a simple 2-node model:

RT=struct(’nmap’, vhandle.nmap);

% sdtweb d_fetime Mesh2DOF % For meshing scrip

% sdtweb d_fetime LegacyBumpStop % For NLdata definition

li={’MeshCfg{d_fetime(2DOF),LegacyBumpStop{Z0}}’
’SimuCfg{Imp{1m,10,uva110}}’; % implicit NLNewmark simulation

’RunCfg{Time}’};disp(comstr(li(1:2:end)’,-30))
RT.nmap(’CurExp’)=li; sdtm.range(RT);

model=RT.nmap(’CurModel’);def=RT.nmap(’CurTime’);

132

Non linearities list (deprecated)

li{3}=’SimuCfg{Exp{1m,10,uva110}}’; RT.nmap(’CurExp’)=li;% Same using explicit

sdtm.range(RT);mo2=RT.nmap(’CurModel’);d2=RT.nmap(’CurTime’);

figure(10);clf;% plot some comparison between results

subplot(211);plot(def.data,[def.def’ d2.def’]);xlabel(’Time [s]’);ylabel(’displacement’)

subplot(212);plot(def.data,[def.v’ d2.v’]);xlabel(’Time [s]’);ylabel(’velocity’)

legend(’Implicit’,’Explicit’);setlines;

sdth.os(10,’@OsDic’,{’ImGrid’,’ImSw80’,’ImTight’})

Following example deals with a clamped-free beam, with a bilateral bump stop at the free end.

% define model:

L=1; b=1e-2; h=2e-2; e=1e-3; % dimensions

model=[];

model.Node=[1 0 0 0 0 0 0; 2 0 0 0 L 0 0];

model.Elt=[Inf abs(’celas’) 0 0;

2 0 2 0 100 1 110 0; % linear celas

Inf abs(’beam1’) 0 0;

1 2 1 1 0 1 0 0

];

model=feutil(sprintf(’RefineBeam %.15g’,L/20),model);

model=fe_case(model,’FixDof’,’base’,1); % clamps 1st end

model=fe_case(model,’FixDof’,’2D’,[0.03;0.04;0.05]); % 2D motion

% model properties:

model.pl=m_elastic(’dbval 1 steel’);

model.il=p_beam(sprintf(’dbval 1 BOX %.15g %.15g %.15g %.15g’,b,h,e,e));

% Bump stop NL:

model=stack_set(model,’pro’,’celas1’,...

struct(’il’,[100 fe_mat(’p_spring’,’SI’,1) 1e-9 0 0 0 0],...

’type’,’p_spring’,...

’NLdata’,struct(’type’,’nl_inout’,...

’but’,[0.02 5e2 0 -0.02 5e2 0],... % gap knl cnl...

’umin’,3)));

if 1==1

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,50));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

else

f=linspace(12,18,3);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,1));

model=fe_curve(model,’set’,’input’,sprintf(’Testeval cos(%.15g*t)’,f(1)*2*pi));

end

133

Non linearities list (deprecated)

model=fe_case(model,’setcurve’,’in’,’input’);

% Time computation:

opt=d_fetime(’TimeOpt dt=1e-3 tend=10’); opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);

RotCenter

The Rotcenter joint is used to introduce a penalized translation link between two nodes A and
B (rotation DOFs of NL entry are ignored), where the motion of A is defined in a rotating frame
associated with angle θA and large angle rotation RLG(θA). The indices G and L are used to indicate
vectors in global and local coordinates respectively.

The positions of nodes are given by

{xA}G = [RGL] ({pA}+ {uA}L)
{xB}G = ({pB}+ {uB}G)

(5.9)

which leads to expressions of the loads as

{FA}L = [RLG] (K ({xB}G − {xA}G))
{FB}G = K ({xA}G − {xB}G)

(5.10)

To account for viscous damping loads in the joints, one must also compute velocities. Using (2.2),
one obtains

{ẋA}G = [RGL] ({u̇A}L + {ω(t)} ∧ {pA + uA}L)
{ẋB}G = {u̇B}G

(5.11)

Velocity computations are currently incorrect with uA ignored in the rotation effect. So that viscous
damping loads can be added

{FCA}L = [RLG] (K ({ẋB}G − {ẋA}G))
{FCB}G = K ({ẋA}G − {ẋB}G)

(5.12)

For a linearization around a given state (needed for frequency domain computations or building a
sensor observation matrix),

{
qAG

qBG

}
=

[
RGL 0
0 I

]{
qAL

qBG

}
(5.13)

In global basis, stiffness matrix of a celas link is given by

k

[
I −I
−I I

]
(5.14)

134

Non linearities list (deprecated)

which leads to the following stiffness matrix[
RT

GL 0
0 I

]
k

[
I −I
−I I

] [
RGL 0
0 I

]
= k

[
I −RT

GL

−RGL I

]
(5.15)

where qA DOFs are in the local basis (motion relative to the shaft in its initial position) and qB are
in the global frame.

data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)).

NDdata fields:

� .type string ’RotCenter’.

� .sel a FindElt command to find celas of RotCenter type.

� .k this field should not be used. .JCoef field should be used instead and has priority. Stiffness
used for Jacobian computation. Damping is not taken in account in Jacobian in this case.

� .JCoef coefficient of celas stiffness and damping for Jacobian computation. Default is 1.

� .drot the rotation DOF.

� .lab label.

nl rotCenter

This non linearity can be used to connect 2 points A and B, where the motion of A is defined in a
rotating frame associated with angle θA and large angle rotation RLG(θA). More generally A and B
are no real nodes but defined implicitly as observation matrices. nl rotcenter is an extension of
RotCenter documented above, using observation matrices which is more general.

� .type string ’nl rotcenter’.

� .sel a FindElt command to find elements associated to the NL link

� .JCoef coefficient of celas stiffness and damping for Jacobian computation. Default is 1.

� .drot the rotation DOF.

� .lab label.

135

Non linearities list (deprecated)

� .Weights (optional) Weight of the stiffness in a pivot link (in fact computed force is multiplied
by the weight factors before being applied so that the sum of weight coef divided by number
of points by pivot should be equal to 1).

� .Stack Stack of cta coupling. Of the form {’cta’, ’name’,{r1,r2}}, where ’cta’ is a con-
stant string defining the type of the link, ’name’ a string containing the name of corresponding
links. r1 is the observation in the first (rotating) part. It is a data structure with fields .Node
defining the nodes involved, .cta defining the observation matrix, .DOF defining correspond-
ing DOF (as many columns as in .cta) and .SeName defining as a string the name of the
superelement where cta is defined (if omitted, it is assumed that DOF and cta are defined on
the model.DOF - no superelement -). r2 is the same for the non rotating part.

An example can be found in t nlspring 2beam.

Default uses the damping and stiffness defined in the il field of the p spring pro entry to model a
linear spring/damper between the 2 parts (stiffness il(3) and damping il(5)).

Defining a xb parameter, the Excite NONL law will be applied instead of the spring/damper. Pa-
rameter that are to be defined are

� .xb Radial clearance.

� .kb Stiffness at radial clearance.

� .cb Damping at radial clearance.

Stiffness and damping at initial position are given in corresponding p spring properties il(3) and
il(5). For example:
cf.mdl=nl spring(’setpro ProId 103 k 371 c 2000e-3 xb 0.03 kb 37100 cb 5’,cf.mdl);

rod1

The rod1 non-linear connection is a simple penalized rigid link. One considers two nodes A and B
(see figure 5.4).

136

Non linearities list (deprecated)

Figure 5.4: Large rotation rod functional representation.

Currently, one can introduce masses at points A and B. mass2 elements should be used to account
for the actual position of the center of gravity.

The global non linear load associated with the rod is thus

Frod = kr (∥{xB − xA}∥ − L0)
{xB−xA}

∥{xB−xA}∥ (5.16)

which accounts for a load proportional to the length fluctuation around L0 (penalized rod model).

When linearizing, one considers a strain energy given by kr∥qB − qA′∥2 with the motion at node A′

being related to the 6 DOFs at node A by

{qA′} =

[
I

[
A⃗B∧

]
0 I

]
{qA} (5.17)

Node A node is free to rotate. The linearized stiffness thus corresponds to an axial stiffness in the
direction of the rod. The computation of the stiffness is however based on the current position of
the extremity nodes, a difficulty in model manipulations is thus to translate these nodes.

data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)). NL information is stored in the data.NLdata field which has itself following
fields :

� type : string ’rod1’.

� sel : a FindElt command to find associated celas of rod1 type ((’proid100’).

� ulim : build tabulated law from -ulim to ulim. Default is 1e3.

� lab : label.

137

Non linearities list (deprecated)

nl gapcyl

XIR, XOR

Reference

XI

XO

Updated Lagrangian (mesh)

xO

Current

uo

ui

eθ

e
r

This non-linearity implements non-linear contact between two cylinders of radius RO for the outer
cylinder and RI for the inner cylinder with motion defined on the cylinder center line. Assuming
the mesh to be defined in an updated Lagrangian configuration where the center lines XI and XO

at not coincident, the positions in a deformed states are given by xI = XI + uI and xO = XO + uO.

Contact may only occur when the cylinders are not centered. When the two cylinders are not
centered the non-linear observation is given by

uNL = xO − xI = uO − uI + (XO −XI) = [c] {q}+ uNL0 (5.18)

From this distance between the center lines, a cylindrical basis is defined with er(q) along the
direction from xI to xO and eθ forming a direct basis with the cylinder axis (kept constant from the
initial value of the updated lagrangian position).

The functional definition of the contact force uses the gap in the er direction defined by

g = {er}T {uNL} − (RO −RI) (5.19)

where RO − RI = d is stored as parameter NLdata.d and the contact leads to two opposite forces
on the cylinder center lines

{fI} = {−fO} = f(g) {er} (5.20)

The current implementation assumes rotations to be small enough to ignore the difference between
er and the corresponding vector Er in the upated Lagrangian configuration.

If update of mesh leads to lateral slip, then uI may account for longitudinal position of the contact
point along the beam using shapes functions.

When linearizing the contact around a given point, the stiffness ∂f∂g only occurs in the er direction.

138

Creating a new non linearity: nl fun.m

Purpose

The structure of nl spring allows creating any new non-linearity through the use of a dedicated
function, named nl fun.m. This function which non-linearity name will be fun, will be automatically
called by nl spring for classical operations.

The function structure has been designed to comply with specific needs. Standard calls have been
defined, which are detailed below:

� Residue computation, called by mkl utils (sdtweb mkl utils), must output the entry
force minus the non linear force computed. The call performed is

nl_fun(r2,fc,model,u,v,a,opt,Case)

This call is low level and must modify fc using sp util(’setinput’) as fc-fnl where fnl

is the non linear force computed. Note that this is the only possible call for nargin==8. Note
that mkl utils allows a formalism with precomputed observations, using fields unl.

� Jacobian computation, must output the tangent stiffness and tangent damping matrices
associated to the non linearity. The call performed is

[kj2,cj2]=nl_fun(NL,[],model,u,v,[],opt,Case,RunOpt);

This call must output either empty matrices if no tangent nor Jacobian matrix is associated
to the non linearity, or matrices expressed on the DOF vector of Case.DOF. The first matrix
is the tangent stiffness matrix, the second one is the tangent damping matrix. Typically there
are 3 normalized methods to be defined (but not all of them must be defined, and more can
be defined) according to the NL.Jacobian value:

– 0 : no Jacobian. (default).

– 1 : tangent matrices.

– 2 : fixed Jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for Jacobian stiffness, and
NL.alphaJD factor for Jacobian damping.

� Initializations for fe time, must initialize the model non-linearity for non linear forces com-
putation

The call must generate the non linearity stored in model.NL, it can optionally generate non
linear DOF and labels. The call performed is of the type.

Creating a new non linearity: nl fun.m

NL=nl_fun(’init’,data,mo1);

NL is a struct containing at least the field type with the nl fun handle (e.g. NL.type=@nl fun).
data contains the Stack,pro entry, and mo1 is the model, named mo1 where the call is performed.

� ParamEdit returns the ParamEdit string allowing integrated parameters interpretation (for
internal SDT use).

The call performed is of the type.

st=nl_fun(’ParamEdit’);

� db returns default NLdata fields for a non linearity. This allows integrated building of non-
linearities in a model. This function can call ParamEdit to allow interactive setup.

This call must return a NLdata field and is of the type

NLdata=nl_fun(’db data 0’);

� Energy post treatments capability, should return the elastic energy stored in the non-
linearity as a vector with as many lines as time steps in the output.

The call performed by nl solvePost is of the form

r2 = nl_fun(’PostEnerNL’);

The non linearity function can access in caller fields RO, out, model, NL, i1 with

– RO a structure with fields EnerP and EnerK respectively containing the potential and
kinetic energy.

– out the fe timeoutput.

– model the model used in the simulation.

– NL the NL containing the data of the non-linearity called.

– i1 the row index of out.Post that is currently generated.

� Renumbering capability, must return the non-linearity written for the new renumbered
nodes, elements, dof, . . .

The call performed (by feutilbfor example) is of the type

NL=nl_fun(’renumber’,NL,nind);

nind is the renumbering vector.

140

Creating a new non linearity: nl fun.m

The designed nl fun template is given in the non-linear toolbox, sdtweb nl fun.m#1. It is a func-
tional non linear function, computing a zero non linear force. The definition of a non linearity using
nl fun in a standard SDT model is given in the following.

% A standard SDT model

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 1],...

’Elt’,[Inf abs(’celas’) 0 0;

1 2 3 -3 0 1 0 10; % linear celas

]);

% Define a non linearity of type nl_fun

model=nl_spring(’SetPro ProId 100’,model,nl_fun(’db data0’));

%Equivalent to

% model=stack_set(model,’pro’,’nl_fun’,...

% struct(’il’,[100 fe_mat(’p_spring’,’SI’,1)],...

% ’type’,’p_spring’,...

% ’NLdata’,struct(’type’,’nl_fun’,’data’,[])));

% Define the case

model=fe_case(model,’FixDof’,’base’,1);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.03,’def’,1));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

model=fe_case(model,’setcurve’,’in’,’input’);

% Define the TimeOpt and compute the solution

opt=nl_solve(’TimeOpt’); opt.Opt([4 5])=[1e-3 1e4];opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);

141

nl solve

Purpose

Integrated non linear simulations

Description

The simulation of non linearities require special handling in SDT, which is packaged in the non linear
toolbox. This function aims at performing classical studies, such as done by fe simulfor classical
SDT models with this special handling.

See nllist for the list of supported non linearities.

TimeOpt

nl solve(’TimeOptMethod’,RO) used to initialize fe time options for later simulation. Currently
implemented methods

� Explicit Newmark scheme

� Stat non-linear static Newton

� Theta method time integration.

� ModalNewmark uses an optimized fully C based integration for the case where DOF correspond
to modal degree of freedom. The stepped sine strategy is discussed in section ?? .

� NLNewmark default implicit Newmark scheme.

Associated options provided in RO or in the command are

� .tend end time of simulation. Used to initialize .ts=ceil(tend/dt).

Static

To compute the static state of a model with non-linearities.

q0=nl_solve(’static’,model);

It is possible to use custom fe time simulation properties using the model stack entry info,TimeOptStat.
See nl spring TimeOpt for fields and defaults.

nl solve

It is possible to use as command option any field from the usual static simulation option, see sdtweb
nl spring#TimeOpt to have more details. E.g. To redefine on the fly the maximum number of
iteration, one can enter [q0,opt]=nl solve(’static maxiter 100’,model);.

By default, the staticNewton algorithm implemented in fe time is called.

An Uzawa algorithm is also implemented in nl solve, under the method static nl solve uzawa.
This algorithm is very different from the staticNewton one since here the solution is not incremented
but fully re-computed at each iteration. This is useful when some non-linear forces do not derive from
potentials. Command StaticUzawa can be used in nl solve – to access it: q0=nl solve(’static

Uzawa’,model);.

Mode

The definition of modes for non-linear models is not straight forward. This command aims at
computing tangent modes as function of a non-linear model current state. The resolution thus
concerns a linear model with tangent stiffness, damping matrices corresponding to the model current
displacement, velocity, acceleration state. The eigenvalue solvers used are then fe eigfor real modes
and fe ceigfor complex modes.

By default, modes tangent to a static state are computed. A static simulation is performed to
produce a model state from which tangent matrices are computed. It is also possible to compute
tangent modes at specific instants during a transient simulation, at SaveTimes instant, and to store
frequency/damping data and deformations.

A set of command options allows detailing the mode computation wanted and the output.

Accepted command options to control the model computation itself are

� -allmatdes to ask for an assembly with all matrix types assembled, the default assembly
command used is -matdes 2 3 1. This command can be used to keep specific matrix types
defined in pre-assembled superelements.

� cpx for complex mode computation (default is real mode computation).

� -evalFNL (in combination with command traj) asks to recompute the FNL field on the fly
based on displacements prior to mode computation. This command is useful when solutions
used for the tangent state have been imported from an external solver.

� skip skips fe timesimulations and performs the complex mode computation based on the zero
deformation and with initialized values of non linearities. The behavior will thus depend on
the non linearity initialization strategy. E.g. for contact see (p contact), the -skip option
will consider a full contact state.

143

nl solve

� stat for mode computation based on a static state (typically after a fe time staticNewton

simulation). Uses model stack entry info,TimeOptStat.

� time for mode computations during a transient simulation (exclusive with the default -stat
option). Uses model stack entry info,TimeOpt.

� traj for mode computations based on states provided as an additional argument.

The -stat and -time options are mutually exclusive and define the base solver options to be used by
fe timefor the preliminary state computation. With -stat option (default) the stack entry info,

TimeOptStat will be sought and used if found. With -time option, the stack entry info,TimeOpt

will be used if found.

The -traj option is complementary and is used to force the complex mode computation on provided
states. On can either provide the state in deformation curve format, see sdtweb def as a last
argument, or use predefined stack entries. In -stat mode (default), the model stack entry curve,q0

will be sought and used if found, if not the result will use the -skip mode. In -time mode, the
model stack entry curve,TSIM will be sought and used. If not found an error will occur.

Accepted command options to control the output format are

� -addedOnly (in combination with backTgtMdl) only outputs the tangent matrices as a su-
perelement that would have been added to the base matrices for the mode computation.

� -alpha (requires -cpx) to also output the real mode participation to the complex modes. This
is in fact the projection of the complex modes on the real mode basis.

� -backTgtMdl outputs the tangent model that would have been used for mode computation.

� -dataOnly to save only the frequency, damping data (does not store the deformation field).
The output is then under a frequency tracking curve in the iiplotformat.

� -fullDOF to output the deformation fields restituted on the unconstrained DOF.

� -keepTval (requires -cpx) to allow keeping the underlying real mode basis when computing
complex modes. With val set to 1, the initial real mode basis will be kept under field def.T,
as an additional independent output, coherent with the -alpha command option. With val

set to 2, the complex modes will not be restituted but expressed on the subspace used for
their computation, the subspace basis will be output in def.Mode.TR, allowing a complete
compatibility with feploton-the-fly restitution strategy for display. This latter option is the
most complete and efficient strategy. Complete subspace information is kept and can be used
for further exploitation, complex mode projection on real mode (-alpha) is naturally obtained,
and memory footprint is optimized as the storage size of the subspace is commonly lower by a
factor 1.5 to 2 than the complex mode basis;

144

nl solve

� -noPost is used to skip any solution post treatment, and outputs the raw mode structure
straight from the solver.

� -PostFcn’’cam’’ is used to perform specific post-treatments on the mode output after com-
putation.

� -real "ModeBas" (requires -cpx) to specify a particular real mode basis on which the complex
modes will be computed. The real mode basis is supposed to be stored in the model stack
entry curve, ModeBas.

Internally, the solver defines and uses the model stack entry info,SolveOpt structure to handle
the options documented above. One can define it as a structure with the fields documented (case
sensitive) and provide it instead of the EigOpt input. Additional advanced field are then accessible

� EigOpt a vector providing eigenvalue computation options following the fe eigformat.

� cpx’’command’’ to externalize the mode computation. This command is by default a Boolean
telling the solver whether to perform a complex mode computation (set to 1) or a real mode
computation (set to 0). If a string is provided, the solver will evaluate it as an external
command instead of performing mode computation. One then gets access to the nl solve

mode computation framework for ones’ own solver.

� ind provides a vector of indices that will be used to restrict the output to the indexed modes.

� SubDef provides a command that will be evaluated to perform a dynamic user defined re-
striction to the output modes, it is thus more general than the ind option. The result of the
command has to be a vector of indices.

� AssembleCall to force a specific AssembleCall strategy.

The various input and output strategies allow for the support of several input syntax. The following
calls are thus accepted, with model a standard SDT model, Case a standard SDT case structure,
eigopt either a vector providing options for fe eigor a structure with optional fields defined above,
def a standard SDT deformation field structure used by -traj when necessary.

nl_solve(’mode’,model);

nl_solve(’mode’,model,eigopt);

nl_solve(’mode’,model,Case,eigopt);

nl_solve(’mode’,model,def);

nl_solve(’mode’,model,Case,def);

nl_solve(’mode’,model,eigopt,def);

nl_solve(’mode’,model,Case,eigopt,def);

145

nl solve

Sample calls using command options to extract tangent modes are given below.

def0=nl_solve(’Mode’,model)

def0=nl_solve(’Mode’,model,[5 20 1e3]) % with eigopt

def0=nl_solve(’Mode-stat-fullDOF’,model);

defT=nl_solve(’Mode-time’,model);

hist=nl_solve(’Mode-time-dataOnly’,model);

histC=nl_solve(’Mode-cpx-time-dataOnly’,model);

defC=nl_solve(’Mode-cpx-time-alpha-real’’MyBas’’-fullDOF’,model);

def1=nl_solve(’Mode-skip-fullDOF’,model);

Post

The Post command allows performing energy and potential further post treatments of a non-linear
simulation. The output is integrated in the standard fe timesimulation outputs in field out.Post

that is a three columns cell array directly compatible with the iiplot format.

To obtain the post treatments, one must define them prior to starting the simulation. Direct com-
putation of the post-treatments a posteriori is also possible.

� Command PostDefine adapts the TimeOpt structure to initialize fields in the output and
trigger post treatments in the final cleanup phase. The PostDefine call must thus be performed
after the TimeOpt call. Using this command itself prior to a time simulation is enough to obtain
the post treatments.

opt=nl_solve(’PostDefine keys’,opt); % adapts the opt structure.

model=nl_solve(’PostDefine keys’,model); % adapts the opt structure contained in model.

� Command PostLab provides the list of available post treatment keywords. The input is a
structure with fields the post treatment keywords and a logical.

� Command PostHist provides an iiplot curve structure adapted to the post treatments.
On can provide a PostLab structure with fields assigned to 1 for desired posts to obtain the
corresponding curve.

� Command PostCompute computes the post treatments and store them in out.Post. This
command is internally called if the PostDefine command was used prior to the time simulation.
For a posteriori computations, the user must provide the out as a standard fe time format
initialized with Post field and the assembled model. The model must feature a stack entry
info, OutputOptions with field Post containing the PostLab structure.

146

nl solve

% Generate a TimeOpt

opt=nl_solve(’TimeOpt’);

Perform the time simulation

def=fe_time(opt,model);

% Initialize for post treatments

[def,RO]=nl_solve(’PostInit EnerM’,def);

model=stack_set(model,’info’,’OutputOptions’,...

struct(’Post’,RO));

% Assemble model with non linearities

model=fe_case(opt.AssembleCall,model);

% Compute post treatments

def=nl_solve(’PostCompute’,def,model);

% display in iiplot

iiplot(def.Post);

� Command PostInit is an internal function that initializes the output Post field at the start
of the simulation. Early initialization is useful if the post treatments are performed on the fly
by the OutputFcn.

The following post treatments are available

� EnerP The linear potential, or strain energy.

� EnerK The kinetic energy.

� EnerNL The elastic or strain energy stored in the non linearities.

� EnerM The mechanical energy, defined as EnerP + EnerK + EnerNL.

� PDiss The instant dissipated power.

� EnerDiss The cumulated dissipated energy over time.

Command PostEstimate allows analyzing the energy curves to compute

� Fest an estimation of the vibration frequency (based on quasi-sinusoidal oscillations)

� DmpR an estimation of the damping ratio based on the estimated frequency by computing the

dissipated mechanical energy. ζ = 1
4π log Em(t0)

Em(t1)

� Emax the maximum mechanical energy identified on the cycle analyzed.

147

nl solve

� EDiss the dissipated mechanical energy over the cycle analyzed.

The following command options allow altering the estimation

� -cfi to specify the iiplot figure with handle i.

� -bandpassfmax to perform a bandpass from 0 to fmax Hz filtering prior to the analysis.

� -curveName’’name’’ to provide the iiplot stacked curve name to exploit.

� -baseOn’’name’’ to specify on which post treated curve the frequency estimation is made.

� -globalMaxTolval to provide a relative tolerance over which a point is detected as close to
the global maximum. This is exploited to detect the peaks over the energy signal analyzed.

� -localMax to estimate the frequency by detecting the zeros of the signal derivative (less ro-
bust).

� -unit’’II’’ to provide an output unit system.

� XFcn’’str’’ to provide a function call to be evaluated that can perform further post treat-
ments(e.g. model specific posts). The called function can access out, outLab, st, j1 with
out a matrix containing the output with as many lines as provided curves and as many columns
as outputs data, outLab a cell array containing the labels of each column, st the curve list
(either names or the curves themselves), j1 the curve currently treated.

r1 = nl_solve(’PostEstimate’,def);

r1 = nl_solve(’PostEstimate’,def.Post{1,3});
r1 = nl_solve(’PostEstimate’,{’disp(1)’});
r1 = nl_solve(’PostEstimate’,{’Post_NLsolve(1)’});

TgtMdlBuild,Assemble

Integrated command to generate linearized models around a specific working point. This command
packages the tangent model generation procedures of nl solve Mode-backTgtMdl. The low level im-
plementations are documented in nl spring NLJacobianUpdate (for example keepLin interaction
are documented there).

� TgtMdlAssemble command outputs a fully linearized assembled model, based on the static
state provided.

148

nl solve

� TgtMdlBuild command generates a linearized model with superelement coupling containing
the tangent stiffness and damping contributions of all non-linearities. The following command
options are supported

– -keepName allows naming the superelements with the non-linearity name.

– -evalFNL forces recomputation of non-linearities states before generation.

– SEPro to initialize p superentries for the generated superelements.

– setPar to setup parameters associated to the generated superelements, conforming to the
content of the nlpro.

– keepNLProId not to generate tangent superelements for the non-linear properties specified
by their ProId.

– -staticInterp generates a tangent model allowing tangent matrix interpolation between
different static states. The procedure requires the definition of parameters and a method
to compute static states. Static states for MinMax configurations of each parameters is
then performed. Matrices showing differences as function of parameters are kept and an
interpolation rule is defined using the linear finite element functions of a 2npar vertices
hypercube. The output model has stack fields curve,q0 the series of static states with
q0.data providing the parameter points, and info,sCoef providing interpolation rules
for each matrix.

RA=struct(’par’,Ra,’q0cbk’,{{@my_fun,’ComputeStatic’}});
mo1=nl_solve(’TgtMdlBuild-staticInterp’,model,RA);

Ra is either a Range structure or the content of Range.param (see sdtweb fe range),
q0cbk is a callback in cell-array format.

staticInterp2 implements a more generic method using vhandle.matrix NLJac types for
richer interpolation. In such case one can provide a field .Range in the input options to force
a richer DoE for the static basis. By default griddedInterpolant is used so that the given
Range must be compatible with the interpolation strategy.

% Linearized model generation

% sample model with cubes in contact

model=d_contact(’cubes cbuild’);

% resolve static state

q0=nl_solve(’static’,model);

% linearized model

mo1=nl_solve(’TgtMdlBuild’,stack_set(model,’curve’,’q0’,q0));

% check the result

feutil(’info’,mo1)

SE=stack_get(mo1,’SE’); SE{1,3}

149

nl mesh

Purpose

Integrated mesh modifications and case handling for non-linear applications

Description

Integrated case handling for constraint penalization and coupling component splitting hare imple-
mented in this function.

Some non-linearities require surface/volume remeshing (e.g. definition of conforming interfaces for
contact) or adaptations (generation of thin interface layers). This function regroups such function-
alities. Mesh generation are performed by fe gmsh(interface to gmsh) and fe tetgen (interface to
tetgen, see help fe tetgen).

Conform

The Conform call is an integrated call to generate conforming meshes between two facing interfaces.
The command generates a conforming surface mesh of the face to replace, merges it with the conform
mesh of the second interface, replaces the model face mesh and remeshes the model volume to yield
a new equivalent volume with a conform face mesh.

mo1=nl_mesh(’conform eltsel"FindElt"’,model,sel);

% sel={eltSelToReplace eltSelForReplacement;...}
model is a standard SDT model. sel is a cell array containing in each line two FindElt com-
mands specifying the element selection face to remesh and the element selection face to use for the
conforming interface for replacement.

� Command option eltsel allows specifying in a string a FindElt command restraining the
working area in the original model.

� Command option smartSize allows generating a conforming mesh with a coherent mesh char-
acteristic length.

� Command option gmsh allows using gmsh to mesh the final volume.

� Command option tetgen allows using tetgen to mesh the final volume (by default).

� Command option output asks to output the generated mesh in a .mat file.

� Command option OrigContour asks to keep original positions of mid-nodes of the quadratic
faces delimiting the volume to remesh. This may however yield mesh wrapping problems when
the face to remesh is much coarser than the mesh trace to place for conformity.

nl mesh

� Command option mergeTo allows specifying a FindElt selection command in a string to replace
the mesh on another model selection than the one used to generate the conforming interface
(which uses eltsel.

� It is also possible to provide additional arguments, which will be passed the the nl meshcover

call performed in the procedure.

Limitations: The Conform call only supports generation of conforming interfaces when one interface
contour fully contains the other interface contour. Handling of more complex contour configurations
has not been implemented. Besides, this function has been designed to handle planar surfaces.
Additional operation to work on non planar surfaces are left to the user (e.g. pre/post projections
of the surfaces on a plane).

Contour

Call ContourFrom generates SDT beam1or beam3 contour models for CAD definitions. All formats
readable by gmsh can theoretically be used. Only the .geo, .stp and .igs are tested.

Since .geo files can contain geometric yet non discretized objects, a 1D meshing pass is performed
with gmsh to provide an SDT contour model. This is not supported for other file types.

model=nl_mesh(’contourFrom’,’file.stp’); % not specifying the type

Call Contour generates an SDT face mesh from an SDT beam1or beam3 contour.

model=nl_mesh(’contour’,model);

model is an SDT beam model defining a closed contour.

� Command option lcval allows specifying a characteristic length for Gmsh.

� Command option lcminval allows specifying a minimal characteristic length for Gmsh.

� Command option quad allows generating quadratic meshes.

� Command option keepNode asks to keep the original contour NodeId for the contour com-
mand.

� Command option diag asks to output the Gmsh log file for diagnostic problems.

� Command option single tells nl mesh that a single contour is defined. This is useful when
several closed contours are defined since it is impossible to automatically decide whether each
contour is independent or if they define a single complex contour.

151

nl mesh

� Command option groupval is used in combination to the single command option. This allows
specifying which contour group will be meshed, while other possible contours will define holes.

� Command option algo’’val’’ allows specifying which algorithm gmsh must use (this depends
on the gmsh version, report to the gmsh documentation for more details).

� Command option AllowContourMod allows gmsh adding nodes on the contour provided. By
default gmsh is forced not to add nodes to the lines defining the contour to mesh.

Cover

The Cover call is designed to mesh the interstice between two closed planar contours, when one fully
contains the other. The call is performed as

[newModel,opt,largeContour]=nl_mesh(’cover’,model,{eltsel_large,eltsel_small});

model is a standard SDT model. Variables eltsel large and eltsel small are FindElt calls
defining the element selection of the respectively large surface and small surface (the small being
contained in the large).

The output newModel is the mesh generated from the surface contours.

opt outputs additional information about the mesh generation, it is a struct containing fields
.NodeAdd specifying the potential nodes added in the interstice space meshed,.nodeEdgeSel1 spec-
ifying the NodeId of the nodes located on the eltsel large contour, .nodeEdgeSel2 specifying the
NodeId of the nodes located on the eltsel small contour, and .tname the name of the temporary
file containing the generated mesh.

largeContour provides the original contour in beam elements of the eltsel large selection.

The following command options are available

� merge allows merging the interstice mesh with the inner mesh of the eltsel small selection.

� quad allows generating proper quadratic meshes.

� smartSize allows generating an interstice mesh with a characteristic length in coherence with
the contour mesh length.

� lcval allows setting the characteristic length to Val to the interstice mesher.

� algo‘‘name’’ allows specifying the meshing algorithm name to the gmsh mesher. See the gmsh
documentation for more information.

152

nl mesh

Hole[,Groups,Diff,Drill,Gen]

The Hole command series aims at handling hole detection on surfaces and bore drilling generation.
The following functionalities are avaiable

Command HoleGroups detects holes on a closed surface and outputs a contour model with element
groups relative to each isolated contour. A second output provides the GroupId corresponding to
detected holes.

Command HoleDiff provides surface elements that are inside the holes of a given contour. You
should better exploit lsutilto get a robust result.

Command HoleGen generates a planar surface with a ruled mesh featuring a hole and controlled
radial positions.

� .len length of plate

� .wid width of plate

� .rAnulus radii for base positions

� .ND angular refinement

� .NRext external to bolt radius refinement

� .MatId assign mat/pro id to meshed part

� .noExt remove exterior side

� .Center

� .normal

Command HoleDrill generates cylindrical drills in a model with the possibility to integrate a ruled
bolt mesh.

Replace

The call Replace is designed to replace parts of a model mesh with new given meshes, mesh parts
conformity is assumed. It is performed as

model=nl_mesh(’replace’,model,nodesToReplace,NewModel,nodeIDtoKeep)

153

nl mesh

model is a standard SDT model. nodesToReplace is a cell array containing vectors of NodeId
specifying the areas to be replaced. NewModel is a cell array containing the new models which will
be merged to the mesh in coherence with the removed elements (specified by nodesToReplace).
nodeIDtoKeep is an optional argument specifying NodeId of the original model for nodes whose
NodeId must not change in the transformation.

Control of nodeIDtoKeep per NewModel part is possible by providing a cell array of NodeId list of
the same size than NewModel.

The following command options are available

� setMat allows defining a specific MatId to the output mesh.

� setPro allows defining a specific ProId to the output mesh.

� eltsetFindEltString can be provided to provide an element selection for MatId and ProId

assignment.

� keepNoCheck in combination with the use of a third argument nodeIDtoKeep assumes the
nodes numbering is correct and forces the nodes original numbering without check.

� -jAll asks to join all elements per type, then separated by MatId

� -inSet asks to maintain coherence with EltId sets. EltId sets for which the totality of a
given removed part belonged to will be updated to contain the EltId of the replacement mesh.

Rivet

This command generates rivet drills in a specified contour. A model containing a beam contour can
be provided, or an EltSel string generating a surface selection (see section and the selface option)
on a bigger model. A data structure providing the origins, and rivet radius and washer (or rivet
head radius). The mesh generated between both radius is structured.

The data structure must contain fields

� Orig providing the rivet centers in an [x y z;...] matrix.

� radHole providing the rivet hole radius, either a scalar if all rivets have the same radius, or a
line vector providing each rivet radius separately.

� radWash providing the rivet washer (or head) radius, either a scalar if all rivets have the same
washer radius, or a line vector providing each rivet washer radius separately.

and can optionally contain fields

154

nl mesh

� plane To directly provide the contour plane normal to define the drilling, in an [nx ny nz;

...] matrix.

� Ns To define the number of mesh segments in the rivet to washer radius area (default 10),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.

� Nr To define the number of mesh radial nodes in the rivet to washer radius area (default 2),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.

� Command option MatIdval allows setting the modified mesh MatId to val.

� Command option ProIdval allows setting the modified mesh ProId to val.

� Command option -fill outputs in second argument a compatible mesh of the rivet bores.

� Command option -allQuad outputs the remeshed model with elements only.

Following example meshes a rectangular contour with a few rivet drilling inside.

% Generate a global contour

model=struct(’Node’,[...

1 0 0 0 0 0 0;

2 0 0 0 10 0 0;

3 0 0 0 10 2 0

4 0 0 0 0 2 0], ’Elt’,[]);

model.Elt=feutil(’ObjectBeamLine 1 2 0 2 3 0 3 4 0 4 1’,model);

model=feutil(’refinebeam .2’,model);

%feplot(model)

% define rivet positions, eventually planes

RO=struct(’Orig’,[3 1 0;6 1 0;9 1 0],...

’radHole’,[.2;.2;.2],...

’radWash’,[.8;.8;.8]);

model=nl_mesh(’Rivet’,model,RO);

cf=feplot(model);

155

nl mesh

ShellSkin

Generation of a skin mesh from shell elements.

Syntax: mo1=nl mesh(’ShellSkin,model,RO. model is a model with shell elements, RO is a faculta-
tive option structure input. Output mo1 is a model with added volume elements.

By default, all shell elements are selected, and the average thickness is computed using the associated
integration rules. A symmetric extrusion following the shell normals is performed.

Command option Get outputs an exteral model rahter than an addition to the existing model. The
following options are available:

� .sel to provide a Findelt command to select target shell elements.

� .twoSided to generate a volume extrusion from both sides.

� .vol to define the volume mesh format: 0 will generate shell skin meshes linked with rigid
elements, 1 will generate volume elements, 2 will generate volume elements linked with rigid
elements to the shell.

� .MatId to assign a new material identifier to the new elements. Set to NaN to leave initial
MatId.

� .ProId to assign a specific ProId to the new elements, one can set to 0 if only the topology is
used.

� .New to add the new elements to the existing model, with new EltId.

% Generate a shell mesh

model=femesh(’testquad4 -divide 4 4’);

% Generate a wolume mesh with rigid connections to the shell nodes.

RA=struct(’sel’,’groupall’,’vol’,2,’twoSided’,1);

mo1=nl_mesh(’ShellSkinGet’,model,RA);

cf=feplot(mo1); fecom(cf,’colordagagroup’)

GmshVol

This call integrates the generation of a volume mesh from a face mesh with gmsh.

model=nl_mesh(’GMSHvol’,model);

model is a standard SDT face mesh model.

156

nl mesh

� Command option setmat allows specifying a specific MatId to the output mesh.

� Command option setpro allows specifying a specific ProId to the output mesh.

� Command option keepFaces asks to keep original NodeId of the nodes located on the face
mesh.

� Command option lc specifies a characteristic length for gmsh.

� Command option clmin specifies a minimal mesh length for gmsh.

� Command option clmax specifies a maximal mesh length for gmsh.

ExtrudeLayer

This command generates a non trivial extrusion of a face mesh following the face normal at each
node, to generate a volume layer.

model=nl_mesh(’ExtrudeLayer thick Val’,model);

model is an SDT model with shell elements (a surface definition).

Command option thick specifies the extrusion thickness. Command option setmat allows specifying
a specific MatId to the output. Command option setpro allows specifying a specific ProId to the
output.

StackClean

This call cleans up a model stack when mesh modifications have been performed. It cleans up stack
entries definition that became incoherent with some mesh modifications.

model=nl_mesh(’StackClean’,model);

Command option rmuns removes stack entries that could not be sorted out. Command option rmmod

removes stack entries affected by the model modifications.

See also celas, p spring, fe gmsh

157

spfmex utils

Purpose

OfactOptim

This command can be used to set spfmex parameters in order to optimize computation speed for
factorization and / or solving.

spfmex utils(’OfactOptim’,ki,RO,ofact(1,’lu’));

ki is the matrix that is used for the optimization. RO is a data structure defining options with
following fields:

� .nCompt Number of computation for result averaging.

� .maxDomain Max size of blocks of the elimination tree (fraction of matrix size).

� .maxZeros Max number of zeros in the blocks of the resolution tree (fraction of matrix size).

� .refineStep Number of step to refine the optimal parameter pair found in the first step.
Command option -refine must be added to perform the refine step.

The last argument ofact(1,’lu’) is needed in order to call directly spfmex utils.

Available command options are

� -setopt use default RO.

� -refine performs refine step for optimal search.

� fact to benchmark factorization step.

� solve to benchmark resolution step.

� -plot to plot history in iiplot

Following example optimize only solving:

ki=rand(20);

RO=struct(’nCompt’,100,... number of computation for result averaging

’maxDomain’,2.^[4:7],... parameter 1

’maxZeros’,logspace(-3,1,5),... parameter 2

’refineStep’,3); % refine results to most relevant parameters

spfmex_utils(’ofactoptim solve-refine’,ki,RO,ofact(1,’lu’)); % method,solve,fact,-setopt,refine,

nl bset

Purpose

Non linearity to support handling of enforced displacement

This is implemented in nl spring(’nl bset’). This currently assumes the existence of a stiffness
and xxx viscous damping xxx.

extrotor

Purpose

External links

� https://www.sdtools.com/help/mpc.html

� https://www.sdtools.com/help/p_spring.html

� https://www.sdtools.com/help/beam1.html

� https://www.sdtools.com/help/case.html

� https://www.sdtools.com/help/celas.html

� https://www.sdtools.com/help/findnode.html

� https://www.sdtools.com/help/findelt.html

� https://www.sdtools.com/help/fe_gmsh.html

� https://www.sdtools.com/help/fe_gmsh.html

� https://www.sdtools.com/help/fe_mknl.html#MatType

� https://www.sdtools.com/help/fe_time.html#newmark

� https://www.sdtools.com/help/fe_time.html#NLNewmark

� https://www.sdtools.com/help/fe_time.html#staticNewton

� https://www.sdtools.com/help/fe_case.html#ConnectionScrew

� https://www.sdtools.com/help/fesuper.html

� https://www.sdtools.com/help/feplot.html

� https://www.sdtools.com/help/iiplot.html

� https://www.sdtools.com/help/ctc_utils.html

� https://www.sdtools.com/help/fe_eig.html

� https://www.sdtools.com/help/fe_ceig.html

� https://www.sdtools.com/help/fe_time.html

� https://www.sdtools.com/help/fe_simul.html

� https://www.sdtools.com/help/feutilb.html

https://www.sdtools.com/help/mpc.html
https://www.sdtools.com/help/p_spring.html
https://www.sdtools.com/help/beam1.html
https://www.sdtools.com/help/case.html
https://www.sdtools.com/help/celas.html
https://www.sdtools.com/help/findnode.html
https://www.sdtools.com/help/findelt.html
https://www.sdtools.com/help/fe_gmsh.html
https://www.sdtools.com/help/fe_gmsh.html
https://www.sdtools.com/help/fe_mknl.html#MatType
https://www.sdtools.com/help/fe_time.html#newmark
https://www.sdtools.com/help/fe_time.html#NLNewmark
https://www.sdtools.com/help/fe_time.html#staticNewton
https://www.sdtools.com/help/fe_case.html#ConnectionScrew
https://www.sdtools.com/help/fesuper.html
https://www.sdtools.com/help/feplot.html
https://www.sdtools.com/help/iiplot.html
https://www.sdtools.com/help/ctc_utils.html
https://www.sdtools.com/help/fe_eig.html
https://www.sdtools.com/help/fe_ceig.html
https://www.sdtools.com/help/fe_time.html
https://www.sdtools.com/help/fe_simul.html
https://www.sdtools.com/help/feutilb.html

Bibliography

[1] C. Desceliers, Dynamique non linéaire en déplacements finis des structures tridimensionnelles
viscoélastiques en rotation. PhD thesis, École Centrale de Paris, 2001.

[2] M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dy-
namics. John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris, 1993.

[3] J. Batoz and G. Dhatt, Modélisation des Structures par Éléments Finis. Hermès, Paris, 1990.

[4] J.-P. Lâıné, Dynamique des rotors. Cours de l’École Centrale de Lyon, 2005.

[5] A. Sternchüss, Multi-level parametric reduced models of rotating bladed disk assemblies. PhD
thesis, Ecole Centrale de Paris, 2009.

[6] M. Lalanne and G. Ferraris, Rotordynamics prediction in Engineering. Wiley, 1998.

[7] G. Lallement, C. Berriet R., and S., “Updating finite element models using static deformations,”
International Modal Analysis Conference, pp. 494–499, 1992.

[8] R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,” Code Aster,
Version 5.0, R4.06.02-B, pp. 1–34, 1998.

[9] Sternchüss, A. and Balmes, E. and Jean, P. and Lombard, JP., “Reduction of Multistage disk
models : application to an industrial rotor,” in 012502, 2008. Paper Number GT2008-012502.

[10] E. Balmes, “Orthogonal maximum sequence sensor placements algorithms
for modal tests, expansion and visibility.,” IMAC, January 2005.

[11] A. Sternchüss and E. Balmes, “On the reduction of quasi-cyclic disks with variable rotation
speeds,” in Proceedings of the International Conference on Advanced Acoustics and Vibration
Engineering (ISMA), pp. 3925–3939, 2006.

[12] G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to
the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools,
2010.

161

http://www.sdtools.com/pdf/imac05_sens.pdf
http://www.sdtools.com/pdf/isma06_cyclic.pdf
http://www.sdtools.com/pdf/isma06_cyclic.pdf
http://tel.archives-ouvertes.fr/tel-00594224_v1/

extrotor

162

	Installation
	Theoretical reminders
	Rotating bodies
	Problem definition in a rotating frame

	Problem definition in a fixed frame
	Fourier analysis of structures
	cyclic structure basics
	Fourier transform for shaft computations
	Solutions in periodic media

	Toolbox tutorial
	Rotor meshing
	Meshing utilities
	Basic 1D rotor example
	Meshing 3D rotor from 1D and 2D models
	From sector to shaft in the case of cyclic symmetry
	Utilities for handling slanted blades
	Disk connections in multi-stage cyclic symmetry
	View meshes for cyclic symmetry

	Bearing and support representations
	Linear bearing
	Non-linear bearings in the time domain

	Gyroscopic effects
	Fixed frame models
	Rotating frame models

	Frequency domain analysis, full model
	Campbell diagrams, full model
	Blade with centrifugal stiffening
	Complex modes
	Forced frequency response to unbalanced load

	Solvers for models with cyclic symmetry
	Static response
	Single stage mode computations
	Multi-stage harmonic mode computations
	Campbell diagrams
	Complex modes
	Forced frequency response to unbalanced load

	Full rotor model from cyclic computation
	Single stage full rotor example

	Time domain analysis
	Simple example
	Gyroscopic effects
	Other representations of bearings

	Validation
	Rigid disk example
	Matrices in rotating frame
	Matrices in global fixed frame
	Validation with 3D model disk

	Simple 2DOF model of shaft with disk
	1D models
	1D example in a fixed frame
	1D models in a rotating (body-fixed) frame

	3D rotor
	Data structure reference

	Function reference
	 fe_cyclic
	 fe_rotor
	 rotor1d
	 rotor2d
	 demo_cyclic
	 fe_cyclicb Mesh
	 fe_cyclicb
	 obsolete
	 nl_spring
	 mkl_utils
	 chandle
	 Non linearities list
	 nl_inout
	 Non linearities list (deprecated)
	 Creating a new non linearity: bluenl_fun.m
	 nl_solve
	 nl_mesh
	 spfmex_utils
	 nl_bset
	 extrotor

	Bibliography
	Index

