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Abstract
This paper deals with model reduction of assemblies of bladed disks. Some considerations about the use
of the Fourier theory to describe the dynamics of assemblies of geometrically periodic structures are first
recalled. This allows to define a set of spatially mono-harmonic solutions that are used to build the kinematic
subspaces in a subsequent reduction process. The main characteristics of this sector substructuring technique
are then presented and discussed. Finally, the proposed methodology is applied to an industrial rotor provided
by Snecma to demonstrate its capability to handle large finite element models.

1 Introduction

For a long time, the industrial practice has consisted in modelling separately each stage of the assembly of
bladed disks that compose the rotor of a jet engine. In preliminary analyses, many simplifications are allowed
by the nominal geometry of the individual stage when one exploits its properties of cyclic symmetry. Further
analyses including mistuning or parametric modelling (rotation, temperature effects,...) can be carried out
with more complex models. In both cases, a collection of reduction techniques has been proposed by many
authors and many of them are currently used in the industrial design process of single stages [1, 2].

The current geometries of the disks make them more flexible, which leads to non-negligible coupling effects
between stages [3, 4]. This inter-disk coupling controls the spread of the strain energy between disks and
therefore is identified as the main cause of discrepancies between single stage and multi-stage dynamics.
To minimize the modelling effort, the already existing mono-stage reduction techniques would be a good
framework to deal with multi-stage assemblies. However, as underlined in [3], the critical point is the choice
of the proper boundary conditions that would represent the inter-stage coupling. Recent work [4–6] has
focused on multi-stage reduction procedures.

The first part of the present paper recalls the main characteristics of geometrically periodic structures. In
particular, one focuses on the Fourier transform of the discrete fields that represent the motion. Multi-stage
dynamics are derived from mono-disk dynamics, which allows to compute mono-harmonic eigensolutions,
which are known to be modes for single disks.

In the second part, the methodology developed by the authors in [4, 7] is briefly recalled. This substructuring
method consists in a decomposition of the disks into sector super-elements connected with each other through
inter-sector elements and inter-disk ring elements. The kinematics of each sector super-element are sought
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in a subspace generated by a set of targeted mono-harmonic modeshapes as defined by Laxalde et al. [6]
and normal modes of the sector with its right and left interfaces fixed. The reduction leads to a very compact
model whose assembly is straightforward and whose accuracy is driven by the choice of the reduction bases.

As an illustration, in the third part of the paper, the proposed method is applied to a realistic rotor model
provided by Snecma. The exploitation of this model is not only the occasion to demonstrate that this
methodology can be integrated in a industrial design process, but also to carry out performance tests (computing
time, memory required for data storage, procedures of modeshape recovery, ...). A discussion about the
content of the reduction bases is included in this section since the latter is critical in terms of model size and
accuracy.

2 Multi-stage dynamics and cyclic symmetry

2.1 Fourier transform of geometrically periodic structures

A structure is said to present cyclic symmetry when it is composed of Ns geometrically identical angular
sectors, numbered from 0 to Ns � 1, that are generated by rotations of a reference sector S0. When cyclic
symmetry is preserved by the Ritz-Galerkin discretization process, the discrete displacement tqsu relative
to the DOF set of sector Ss form a series tquJ � t q0 q1 � � � qNs�1 u whose Fourier transform can be
computed. The discrete displacement tqu is related to its Fourier harmonics stored in tpqu by the two matrix
relations

tpqu � rEJ b IN0s tqu and tqu � rE b IN0s tpqu . (1)

where tpquJ � t pq0 � � � Reppqδq Imppqδq � � � pqNs
2

u, b is the Kronecker product and IN0 is the identity
matrix of size the the number of DOFs in sector S0. The Fourier harmonics are real if δ � 0 and δ � Ns{2
(if Ns is even), complex otherwise. rEs is the Fourier transform matrix defined by

rEs � 1?
Ns

�������������

1 � � � ?
2 0 � � � 1

...
...

...
...

1 � � � ?
2 cos pδ αq �?2 sin pδ αq � � � �1

...
...

...
...

1 � � � ?
2 cos ps δ αq �?2 sin ps δ αq � � � p�1qs

...
...

...
...

1 � � � ?
2 cos ppNs � 1q δ αq �?2 sin ppNs � 1q δ αq � � � p�1qNs�1

�������������
. (2)

When mechanical properties also satisfy cyclic symmetry, i. e. they are identical from sector to sector, any
matrix rAs defined on the full disk is recovered by rAs � rINs b A0s, with rA0s the corresponding matrix in
sector S0. The congruent transformation of matrix rAs, which corresponds to the expression of rAs using
DOFs tpqu, is then

r pAs � �
EJ b IN0

� �
INs b A0

� rE b IN0s
� �

INs b A0
�

.
(3)

The blocks associated with harmonic coefficients δ � 0 and δ � Ns{2 are simply
�
A0
�
. The blocks associated

with the other harmonic coefficients are diagpA0, A0q, the rows correspond to the real and the imaginary parts
of the Fourier harmonic.

2.2 Multi-stage dynamics

Only multi-stage rotors made of disks whose both geometry and mechanical properties are rotationally
periodic are considered here. Such an assembly may be asymmetric, stating that the discrete displacement



defined of the full rotor has no particular property. However, the Fourier transform of its restriction to each
disk can be performed.

Consider two disks D1 and D2 that are connected through an intermediate ringR as illustrated by the lumped
model in figure 1.

D1

R

D2

Figure 1: Lumped model of an assembly of tuned disks.

The discrete displacement is"
q1

q2

*
�
�

E1 b IN1,0 0
0 E2 b IN2,0

� " pq1pq2

*
. (4)

Any matrix rAs relative to this rotor comes from the assembly of matrices rA1s, rA2s and rARs defined on
D1, D2 andR respectively such that

rAs �
�

A1 0
0 A2

�
� �AR� . (5)

Matrix rAs is transformed into r pAs
r pAs � � pA1 0

0 pA2

�
� r pARs. (6)

Matrices r pA1s and r pA2s are returned by equation (3).

Figure 2 displays matrix r pARs in the case of two rotors with 4 and 8 sectors and 5 and 8 sectors. It can clearly
be seen that in both cases Fourier harmonics are coupled between disks, but remain uncoupled for a given
disk, with a simpler pattern when the number of blades are multiples of each other.

Figure 2: Projected stiffness matrices of the ring for an assembly of disks with 4 and 8 sectors (left) and 5 and
8 sectors (middle). Colormap refers to Fourier harmonics (right).



This figure shows that matrix r pARs is problematic even if ring R satisfies cyclic symmetry Fourier harmonics
remain coupled. If this matrix is decomposed into blocks indexed by dd1 that couple disks Dd and Dd1

, these
blocks are

r pARdd1s � rEd b INd,0sJ rARdd1s rEd1 b INd1,0s. (7)

These blocks can themselves be subdivided into blocks indexed by δδ1 that couple Fourier harmonic tqd
δu of

Dd to Fourier harmonic tqd1

δ1 u of Dd1

, leading to

r pARdd1,δδ1s � rEd
δ b INd,0sJ rARdd1s rEd1

δ1 b INd1,0s. (8)

Equation (8) shows that:

(i.) the Fourier harmonics of a single disk are not coupled together, thus only mistuning (if any) may
contribute to intra-disk harmonic coupling,

(ii.) the Fourier harmonics of given disk are coupled to those of the other disk and is the only contribution to
inter-disk harmonic coupling.

The fact that harmonics with different δ are coupled together across the stages prevents a decomposition of
the subsequent mechanical problem into mono-harmonic subproblems. Nevertheless, one can assume the
inter-disk harmonic coupling to be negligible.

such a decomposition is achieved under the assumption of decoupled harmonics, by selecting in r pARs only
the blocks associated with target coefficient δ. The resulting matrix is denoted r pARδ s. From a general dynamic
problem formulated for the assembly of disks,

rZs tqu � tfu , (9)

with tqu � t q1 q2 u and tfu � t f1 f2 u, mono-harmonic solutions are written as����
����
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with additional inter-sector continuity conditions that state how the shapes are dephased between two adjacent
sectors����
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Particular cases are summarized in table 1 and are exhibited in [7].

Case δ � 0 δ � N1
s {2 δ � N2

s {2 other δ

disk D1 real real complex complex
disk D2 real complex real complex

Table 1: Particular cases of equation (10).

Mono-harmonic eigensolutions are derived from equation (10) by letting the right hand terms be zero. One
insists on the fact that, in the general case, they are only eigensolutions since they differ from the true
eigenmodes of the rotor in the fact that they are mono-harmonic, whereas normal modes are generally
multi-harmonic. When at least tq1

δu or tq2
δu is complex, the projection of the dynamic stiffness matrix of the

concerned disk is equivalent to duplicate this matrix. This is unfortunately not the case for the ring, which
leads to near-pair eigensolutions. For finer meshes of the ring, the near-pair solutions would converge towards
exact pairs.



3 Model reduction

The reduction technique described in this section is a Rayleigh-Ritz method. Such methods generate approxi-
mations of the kinematics of the response by combining solutions of simple problems, e. g. modes or static
shapes. Linear combinations of these are assumed shapes for an approximation subspace. If the initial shapes
are not independent a basis generation procedure is needed. The model equations are reduced by a congruent
transformation that involves the basis of this subspace. The number of DOFs of the reduced model then
corresponds to the subspace dimension.

The proposed method is component based in the sense that the reduction is performed for parts of the structure
(in the present case sectors of a disk). The reduced component models are similar to the pair elementary
matrix-physical DOFs for a finite element, hence the common denomination of super-elements.

In classical Component Mode Synthesis (CMS) [8, 9] one assumes component independence: the reduction
basis for a component is obtained by solving static and eigenvalue problems on the component while ignoring
others. The fundamental change in the present work is that the reduction bases are generated considering
cyclic symmetry solutions.

A classic property of Rayleigh-Ritz methods is that if exact solutions are used to generate the reduction
subspace, the reduced model is exact. As detailed in section 2, if cyclic symmetry solutions are exact modes
for tuned disks, they are approximate solutions for rotors. Using the restriction of these solutions to sector
Sd,s to reduce its model will thus generate a reduced model that will be exact with respect to the retained
eigensolutions, approximate for others, thus approximate for the modes of the rotor. Considering classical
graphs in which eigenfrequencies are plotted vs. Fourier harmonic coefficients δ (as figure 7 which will be
described in section 4.2), one retains the following shapes:

(i.) a set of mono-harmonic solutions r RepΦd,s
rcycq ImpΦd,s

rcycq s whose harmonics δ are selected for a
particular reason (design, ...). These modeshapes are identical for all the sectors of a given disk. They
will account for either disk-dominated motion or blade-dominated motion according to their position in
the graph fpδq,

(ii.) if needed, a set of eigenmodes rΦd,s
fixs of this sector with its left and right interfaces both clamped.

These modes can differ from a sector to another. They will account for blade-dominated motion. High
δ shapes will however be nearly identical to such shapes.

The initial set of assumed vectors considered to generate the reduction will thus always be of the form

rT d,s
inits � r RepΦd,s

rcycq ImpΦd,s
rcycq Φ

d,s
fix s. (12)

A first difficulty is that such sets of vectors are often degenerate. A trivial case of dependence is found if one
retains both modes of pairs found for δ ¡ 0, since it is known that the second model can be found by shifting
the Fourier transform of the modeshape. Less obvious cases are found when retaining vectors from multiple δ.
The independence of vectors may then be lost for the considered numerical precision. Methods to deal with
this problem are discussed in section 3.1.

A second difficulty is that coupling of components within a Rayleigh-Ritz procedure requires the assumed
shapes to be continuous (kinematically admissible). A first method, described in [10], takes a basis of
subspace generated by rT d,s

inits and completes it to obtain left and right generalized DOFs whose equality across
sector interfaces implies continuity at all points of the unreduced model. The proposed method described
in section 3.2 completely bypasses the difficulty of enforcing continuity by considering reduced models
that are disjoint. Components are then coupled by reducing the model of an interface rather than enforcing
inter-component continuity.



3.1 Assumed vectors and reduction bases

In the considered applications, one uses reference computations to generate sets of assumed shapes. When
keeping modes of multiple target Fourier coefficients, the sets of generating vectors kept in rT d,s

inits are not
bases in the sense that they are not full rank. Using non full rank reduction bases generates models that are
singular or at least poorly conditioned. Procedures to generate bases from large vector sets are thus critical for
the proposed reduction methods.

In linear algebra, the classical approach to generate a well conditioned basis for a subspace is to generate an
orthonormal basis of that subspace. The key issues in the process are the way to guarantee orthogonality in
the presence of numerical round-off errors and the criterion used to eliminate dependent vectors.

The singular value decomposition (see [11] for example) is the most robust approach to generate an orthonor-
mal basis. Using a Euclidean norm (norm ||.||2) on a vector of degrees of freedom is however not particularly
suited for applications in mechanics. It was shown in [12] that solving for the lowest frequency eigenvalues
of the reduced mass and stiffness matrices gives a proper extension of the singular value decomposition to
mechanics. The result of the decomposition is of the form

rT s � rU srΣsrV sT (13)

where rΣs is diagonal and ranks the contributions of the orthonormal vectors in rU s. A basis of the subspace is
thus obtained by keeping the columns tUju corresponding to significant singular values (such that σj ¥ ε σ1).

A proper use of the SVD requires that the columns of rT s to have comparable initial scaling. This is typically
achieved by initial scaling of each of the columns. In the proposed applications, the bases are composed of
modes that are typically mass normalized. No rescaling is thus needed.

Gram-Schmidt methods (see annex 2 of [13] for example) provide a classical procedure to generate a basis
from a set of vectors. They are however very sensitive to numerical round-off. Modified Gram-Schmidt
methods do a recursive orthogonalization which alleviates the numerical problem but do not introduce a
mechanism to eliminate vectors. Iterative modified Gram-Schmidt (IMGS) provides a procedure that gives a
robust mechanism to eliminate vectors that are not independent.

In Gram-Schmidt methods, vectors are considered dependent if the norm of the part orthogonal to currently
retained vectors is too small. Practically if t pTju is the part of tTju orthogonal to tTku with k   j, the vector
is truncated if || pTj ||2   ε ||Tj ||2.

The use of orthonormal bases in both SVD and Gram-Schmidt methods is motivated by the need to guarantee
the independence of base vectors. An other approach to achieve the same result is to ensure that each vector is
non zero at a different location. This is the classical approach of finite element models where shape functions
are equal to one at the location associated to their DOF and zero at the locations of other DOFs. This idea
motivated the Independent Maximum Sequence (IMS) algorithm presented in [14] for sensor placement and
used here to generate bases.

The IMS algorithm iteratively defines a series of independent vectors generating the target subspace as follows.
At step i,

• one seeks for vector tTiu the value of DOF m with maximum absolute amplitude. If this amplitude is
too small (a typical value of 10�8 �maxpT0q), the vector is eliminated.

• the vector is normalized in the sense of norm ||.||
8

t rTiu � tTiu
Tipmq �

tTiu
||Ti||8

,

• further vectors tTju with j ¡ i are made independent from tTiu by making the response at DOF m
equal to zero (psychologically orthogonal)

t rTju � tTju � t rTiuTjpmq.



This step is not an orthogonalization but guarantees independence too.

This procedure generates vectors that are obviously independent (the maximum of tTju is is reached at
a position where Tj � 0 for j ¡ i) and normalized (the maximum of all vectors is 1). The elimination
mechanism is well suited if the initial vectors are scaled in a similar fashion, as is the case in the proposed
methods where the generating vectors are mass normalized modes. The cost of finding the maximum response
is much lower than that of computing a scalar product, the procedure thus costs significantly less than
Gram-Schmidt methods and does not require any iteration for round-off problems.

A significant motivation for the use of the IMS algorithm in this work is its ability to generate bases that are
strictly zero on a subset of DOFs. The procedure is as follows. Let the DOFs be partitioned in two sets a and b.
The modified IMS algorithm proceeds iteratively in three phases. One first reorders vectors by the maximum
amplitude within DOF set a. One the selects a basis of the restriction of tT u to DOF set a. To do so, at step i,

• one seeks for vector Ti the value of the DOFs m with maximum absolute amplitude within DOF set a.

• if ||Ti||8   ε1 ||T0||8 the vector is considered dependent and eliminated: linear combinations with
vectors of lower index led to a null vector.

• if Tipmq   ε2 ||Ti||8 the vector is considered null within set a. tTi,au is set strictly to t0u and the
vector is set aside for the third phase.

• further vectors tTju with j ¡ i are made independent from tTiu by making the response at DOF m
equal to zero

t pTju � tTju � t pTiuTjpmq.

In the last phase, vectors set aside as having a strictly null contribution on DOF set a can be made independent
using the classical IMS approach.

The procedure thus generates a basis which guarantees vectors independence by the means of blocks of zeros.
Like all methods with elimination, the results are somewhat dependent on the tolerances (values εi). While
the issue should be considered in further detail, the results presented use ε1 � 10�8 and ε2 � 10�4.

3.2 Definition of the super-elements

When it comes to multi-stage assemblies, sectors of a given disk are not only connected to each other, but
also with one or more sectors that belong to the adjacent disks, through a volumic interface in the present
method. Figure 3a displays the sample academic rotor used in [7] with some updates. Table 2 summarizes the
characteristics of its mesh.

Stage Nb. of Nb. of Nb. of Nb. of Type of
sectors Nodes/sec. Elements/sec. DOFs/sec. Elements

1 12 184 84 552 Hexa8
2 15 184 84 552 Hexa8

Table 2: Description of the finite element model of the sectors of the academic rotor.
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Figure 3: Sector substructuring in the multi-disk case: (l) sector super-element, (�l) inter-sector super-element
and (�l) ring surface.

Each bladed sector is condensed into an sector super-element (white region with blue border in figure 3) that
is connected thanks to inter-sector slices, themselves condensed into a super-element for convenience (green
region with black border in figure 3) and inter-disk rings R that are kept as is (red region in figure 3). The
discrete displacement of sector Sd,s is partitioned according to figure 3b so that

tqd,suJ �
!

qd,s
rXR qd,s

r qd,s
R qd,s

c qd,s
l

)
. (14)

The approximate kinematic subspace of sector Sd,s is built so that tqd,su is sought in this subspace as

tqd,su � rT d,s
M s tqd,s

M u, (15)

where tqd,s
M u contains the generalized degrees of freedom. rT d,s

M s is a basis of the subspace derived from
rT d,s

inits, which is partitioned according to equation (14) into

rT d,s
M sJ �

�
T d,s

M,rXR T d,s
M,r T d,s

M,R T d,s
M,c T d,s

M,l

�
. (16)

Any matrix rAd,ss relative to sector Sd,s is then projected onto the subspace spanned by rT d,s
M s thanks to the

relation
rAd,s

M s � rT d,s
M

J

Ad,s T d,s
M s. (17)

According to equation (14), slice Cd,s that connects sectors Sd,s and Sd,s�1 couple tqd,s
l u to tqd,s�1

rXR u and
tqd,s�1

r u, so that any matrix rAd,s
C s relative to this slice has to be projected on the subspace generated by

rT d,s
M,ls, rT d,s�1

M,rXRs and rT d,s�1
M,r s such that

rAd,s
M,Cs �

��� T d,s
M,l 0
0 T d,s�1

M,rXR
0 T d,s�1

M,r

���
J

rAd,s
C s

��� T d,s
M,l 0
0 T d,s�1

M,rXR
0 T d,s�1

M,r

��� . (18)

Ring R between disks Dd and Dd1

connects tqd,s
rXRu and tqd,s

R u, @s P v0, Nd
s � 1w, to tqd1,s1

rXRu and tqd1,s1

R u,
@s1 P v0, Nd1

s � 1w. Any matrix rARs relative to ring R is projected on the full subspace spanned by the
vectors in the restriction of rTM s to the ring DOFs denoted rTM,Rs (not shown here for the sake of brevity)

rARM,Rs � rTJM,RAR TM,Rs. (19)



To limit connectivity and guarantee vector independence, one chose to build a basis with the following target
topology

rT d,s
M s �

��������

rT d,s
M,rXR,rXR 0 0 0rT d,s

M,r,rXR
rT d,s
M,r,r 0 0rT d,s

M,R,rXR 0 rT d,s
M,R,R 0rT d,s

M,c,rXR
rT d,s
M,c,r 0 rT d,s

M,c,crT d,s
M,l,rXR

rT d,s
M,l,r 0 rT d,s

M,l,c

�������� . (20)

In this basis one distinguishes

• r rT d,s
M,rXRs non zero shapes that have their maximum on DOFs common to the right edge r and the rings

R. These are in very limited number and thus kept non-zero everywhere. They are selected by a sort of
the initial vectors by contribution on the r XR DOF set followed by simple application of the IMS
algorithm.

• r rT d,s
M,rXRs shapes that are only zero on the right edge/ring intersection r XR. They are obtained by

simple application of the IMS algorithm on the remaining vectors.

• other shapes are possibly non zero on both the interior c and ring DOFs. To limit coupling, one builds
r rT d,s

M,R,Rs by singular value decomposition of the trace on R of the remaining vectors and r rT d,s
M,rs

by application of the IMS for the trace of the same vectors on c Y l. This step thus involves some
replication, which was deemed acceptable.

Figure 4 displays the transpose of a sample multi-disk reduction basis for disk D1 with vector ordering (not
used but shown here for legibility). The triangular areas of non-zero data in this figure correspond to typical
results of the IMS.

Figure 4: Sample multi-stage reduction basis of a single sector with vectors sorted.

Note that the full subspace of motion of the rotor is never explicitly built but the reduced matrices are
assembled from the super-elementary matrices in two steps:

Step 1: the physical finite element matrices of the sectors and inter-sector matrices are built sector by sector,
disk by disk, thanks to Eqns. (17) and (18), leading to matrices rAd,s

M s and rAd,s
M,Cs associated to sector

Sd,s and inter-sector slice Cd,s respectively. These matrices are assembled into reduced disk matrices,
exactly as in the mono-disk approach.

Step 2: the matrices of the ring are projected onto the kinematic subspaces of its neighbouring disks with
respect to the inter-disk generalized DOFs thanks to equation (19). In order to avoid using the basis of
the full subspace, rARM s is built iteratively block by block, i. e. sector by sector.

A typical matrix topology is displayed in figure 5, where it can be seen that the bandwidth of such matrices is
quite wide, leading to large factorized matrices.



Figure 5: Topology of the reduced matrices: (left) without ring coupling and (right) with ring coupling.

4 Application to an industrial rotor

4.1 Presentation of the model

The numerical model of a compressor in development was used as an illustration. It is depicted in figure 6
and is composed of three integrally bladed disks (blisks), whose characteristics are reported in Tab. 3. The
full finite element model is made of 11, 289, 230 tetrahedrons connecting 2, 631, 094 nodes, with a total of
7, 893, 282 DOFs. Only linear elements are used here, but computations with quadratic elements are currently
in progress.

(a) (b)

Figure 6: Industrial 3 stage HP compressor: (a) full model and (b) sector model.

Stage Nb. of Nb. of Nb. of Nb. of Type of
sectors Nodes/sec. Elements/sec. DOFs/sec. Elements

1 36 16, 343 65, 170 49, 029 Tetra4
2 56 9, 566 36, 815 28, 698 Tetra4
3 70 23, 104 97, 860 69, 312 Tetra4

Table 3: Finite element model of the 3 blisks of the HP compressor with linear elements.



4.2 Mono-harmonic modeshapes

Figure 6b focuses on the sector plus ring model that is used for mono-harmonic computations. The full graph
that displays the eigenfrequcencies of the rotor and the disks with various boundary conditions is depicted in
figure 7. Frequencies normalized with respect to the frequency of the first flexible 0 diameter solution of the
rotor are denoted by f .

(a) (b)

Figure 7: (a) Full and (b) zoomed normalized frequencies of the cyclic solutions for the rotor (©) and the
modes of disk D1 (�), disk D2 (�) and disk D3 (��) in free-fix, fix-fix and fix-free condition. (—), (—) and
(—) are asymptotic blade mode frequency.

It can be seen that all coupled solutions lie inside a triangle that has δ � 0, f � 0 as a summit, and δ � 0
and f � δ as edges, with a replication of such triangle with respect to δ � 15 du to aliasing. In this area, as
Fourier harmonic coefficient δ increases, noticeable differences between the frequencies of the rotor solutions
and the disk natural frequencies are observed, due to the fact that a fix condition at inter-stage interfaces is too
stiff and disk modes that are similar to solutions of the rotor are higher in frequency, as can be seen in the
zoomed region in figure 7b. On the contrary, modes of the disks with free rims would be below rotor solutions
since a free condition at the inter-stage interfaces is far too soft. Elsewhere, many mono-harmonic solutions
are close to modes of the individual disks, merely due to:

(i.) a small disk-blade coupling, which confines the strain energy on the blades [2]. The motion similar
to that of the individual disks whatever their boundary conditions, because the latter do not affect the
blade-dominated motion due to the low coupling ratio between the disk and the blades.

(ii.) a small disk-disk coupling, which confines the strain energy on a single disk.

Typical mono-harmonic solutions are exhibited in figure 8, they can involve either a single disk or many disk,
which implies that the extended cyclic symmetric model correctly takes inter-disk coupling into account.

4.3 Reduced model

The reduced model is built from a set of cyclic solutions with δ P t0, 2u and f P r0, 16.13s. 44, 342
generalized DOFs were involved after the reduction process. The assembled reduced stiffness matrix occupies
1022 Mb before and 16 Gb after factorization.

The generalized modes in the normalized frequency range r0, 19.5s were computed. A Fourier transform of the
reduced modeshapes was performed so that the spatial spectrum of the generalized modes could be exhibited



per disk. As displayed in figures 9 and 10, localized multi-harmonic modes and coupled mono-harmonic
modes were found.

(a) (b)

Figure 8: (a) Coupled cyclic solution with δ � 1 at f � 15.53 (blade shapes are 2S1, 2F and 1T) and (b)
cyclic solution localized to disk D1 with δ � 4 at f � 8.63 (blade shape is 2F).

(a) (b)

Figure 9: Restored mode at f � 10.23 localized to disk D2: (a) modeshape and (b) spatial harmonic content
for disks (�) D1, (�) D2 and (�) D3.

(a) (b)

Figure 10: Restored mode at f � 15.89 with strong coupling: (a) modeshape and (b) spatial harmonic content
for disks (�) D1, (�) D2 and (�) D3.



4.4 Recovery

Using equation (15) the full displacement can be recovered sector by sector. However, the finite element
model described in table 3 cannot easily be displayed and manipulated. Moreover, the full recovery of the
modeshapes as exhibited in figures 9a and 10a may not be necessary when the motion is localized to a limited
area. A subset γ of physical DOFs can be chosen for each sector Sd,s so that the motion is recovered to this
subset only thanks to

tqd,s
γ u � rT d,s

M,γs tqd,s
M u, (21)

where rT d,s
M,γs is the restriction of rT d,s

M s to subset γ. This subset can be different from a sector to another and
can be different from the finite element mesh of the rotor. Two typical choices are displayed in figure 11 and
are:

• a pseudo-mesh that leans on nodes of the finite element model, connected by display only elements.
This gives only a quick insight into the motion, but allows to determine what kind of blade motion is
involved. Nevertheless, it provides a wireframe to perform test/analysis correlation.

• a subset of finite elements, which can be used for strain, stress and energy post-processing.

Both are applicable to recovery of cyclic symmetry modeshapes, as it is done in figure 11a for an eigensolution
with δ � 1, as well as reduced computations as it is done in figure 11b for a reduced mode with f � 15.89
whose Von Mises stress is computed for a few elements of disk D1. The subset of finite elements used to
post-process this mode was selected from the recovery of the motion on the same pseudo-mesh as in figure 11a,
noticing that both the tips of the blades in D1 and the rim between disks D1 and D2 had a motion with a high
amplitude for this generalized mode.

(a) (b)

Figure 11: Partial recovery of (a) motion and (b) stresses.

5 Conclusions

The present paper introduces a multi-stage reduction technique the authors developed and presents its
application to an industrial rotor model. Guidelines for an effective use of the proposed method are derived
from this study:



(i.) a set of mono-harmonic solutions are computed, they contain valuable information in the sense that a
direct interpretation can be performed,

(ii.) this set is used to build a compact reduced model that represents the multi-stage model with a controlled
accuracy, with subsequent enrichments of the kinematic spaces if requested (such strategies are the
object of future work).

(iii.) when the Fourier transform of modes show that they are spatially mono-harmonic, they can be paired to
mono-harmonic solutions. In such case, if the excitation is a single engine-order, the forced response
can be computed directly from the mono-harmonic subproblems.

(iv.) if some of the modes of interest are multi-harmonic, they may be forced by any external excitation and
the response must be computed with the reduced model.

(v.) in every case, a subset of true or display elements can be chosen for partial recovery. This choice is
driven either by an a priori analysis of the mono-harmonic solutions or by an a posteriori analysis of
the spatial spectrum of the generalized modes.

This methodology is implemented within the Structural Dynamics Toolbox [15] with critical use of the
super-element capabilities of this library. Internal element formulations are used although imports from
SAMCEF and NASTRAN have also been done for verification. The SDT switches to use NASTRAN as the
eigenvalue solver for SDT based models when models become very large. The SDT/OpenFEM export to
VTK format was used to generate some of the figures included in this paper with ParaView. Developments
specific to this study, grouped as the embryo of an SDT/Rotor package, are

(i.) pre-processing tools to assemble sector models and mesh rings using an automated volume mesher,

(ii.) mono-harmonic rotor computations,

(iii.) sector super-element building from a set of mono-harmonic multi-stage solutions and fixed sector
modes,

(iv.) post-processing tools for harmonic and generalized coordinate viewing.
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