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Abstract
The use of damping augmentation concepts is spreading, thus motivating the need for design and validation
methodologies. The frequency and temperature dependence of viscoelastic materials pose the challenge of
correlating the response at multiple operating conditions. The fact that each mode is affected differently by
the viscoelastic treatments is another difficulty. The paper first presents test results, at multiple temperatures,
on a structure representative of a windshield with a damped joint. Then after a short reminder of numerical
methodologies used to obtain response predictions, issues with the use of pole frequency and damping ratio
for model correlation are illustrated.

1 Introduction

Devices using viscoelastic materials are often considered to enhance damping levels in vibrating structures
in automotive, aerospace and energy applications. These designs often include parameters such as viscoelas-
tic material thickness, position or properties that can vary over wide parametric ranges and only lead to
good performance in relatively narrow operating ranges. Finding an efficient operating point thus requires
parametric models where the treatment properties can easily be varied. Model validation is particularly im-
portant and yet challenging since temperature and frequency dependence need to be taken into account and
each mode is affected differently by the treatment.

PSA Peugeot-Citroen has developed new concepts for windshield vibration damping trough the joints rather
than using the traditional approach of damping material selection for the laminated glass. The experiment
described in section 2 and used to illustrate this paper was motivated by the need to validate the joint models
in such concepts. The test analysis correlation presented in the section is relatively good but poses many
questions which the rest of the study addresses.

Section 3 summarizes procedures used to model the frequency and temperature dependence of viscoelastic
materials and choices typically made to mesh viscoelastic treatments. Model reduction techniques, which
are necessary to deal with the computational challenge posed by the proper representation of viscoelastic
behavior, are then addressed.

Section 4 first recalls the equations associated with spectral decompositions. It is then shown that poles
and modulus cannot be directly related in the considered applications. Since pole damping and frequencies
remains the easiest correlation objective for damping validation, one proposes to use modal filters to extract
modes. This works reasonably well for separated modes in both test and analysis but fails in tests when
the modal density increases. Attempts to use output error identification techniques were found to give un-
reliable results in the same frequency range. The study then concludes by showing, using simple numerical
illustration, that indeed there are unicity and bias problems with identification procedures.
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2 Experiment representative of windshield joints

2.1 Test configuration

Two test cases are considered in this study. A structure dynamically representative of a windshield with a
500 × 400 × 0.5 mm panel glued onto a aluminum frame shown in figure 2. The glue is a SMACTANE 50
band of section10× 4 mm (see figure 5 for properties). A ”simplified” test corresponding to a cut of the full
model is shown in figure 2. The joint is placed on a 2 mm plate that is representative of panel thicknesses
found for windshield connection surfaces.

Figure 1: Test representative of a windshield glued onto its frame. Half model and photo of the test setup.
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Figure 2: Simplifiedslice test.

The aluminum frames and plate were carefully manufactured to limit initial correlation errors to the effects
in the joint model. The components where tested before being connected by the joint and initial correlation
gave good results with less than 2 % error on predicted modal frequencies.

The tests where performed in an environmental chamber allowing a precise temperature control. 49 point
where used for the slice and 223 for the frame. The optical scanner was placed in the chamber while the single
point Polytech vibrometer was kept outside. Free-free conditions where approximated using bungee cords,
which added some damping but also gave a temperature dependent static position which implied optical
realignment. The slice was tested at 15, 25 and 35 C, the frame was also tested at 5 C. Data acquisition with a
Photon system and scanner alignment where automatically controlled using a custom MATLAB application.



2.2 Test/analysis correlation

Figure 3 illustrates the good level of correlation found. Overall levels are well matched over the whole
frequency band. The blue and green curves in the computed transfer are obtained with 2% and 0.2% loss
factors in the frame respectively. The spread gives an idea of the how much of the difference in correlation
could be due to external effects. In reality the bungee cords probably contribute most of the damping not due
to the joint, but this contribution was not properly characterized.
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Figure 3: Test and analysis sample transfers and sum of transfers at 5 and 35 C (frame test)

Figure 4 gives a correlation for the first eight modes. These modes are not in the range where the treatment
becomes really efficient but pole identification in that range was not possible for reasons that will be discussed



in later sections.

The general correlation is deemed to be quite good although the temperature trends are never reproduced
exactly. Two FEM predictions are obtained using two separate material characterizations. This gives an idea
of the difficulty of ensuring that the simulation is performed using characteristics that are close to those of
the actual material. The significantly higher test damping on the first mode is attributed to dissipation in the
bungee cords.
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Figure 4: Pole correlation at 5, 15, 25, 35 C for the frame model and test.

3 Representing viscoelastic materials in dynamic models

3.1 Modeling issues

This section summarizes the main modeling issues pertinent in this study. More details can be found in
Ref.[1]. For a selection of materials, indexedm, and using the fact that element stiffness depend linearly on
the considered moduli, one can represent the dynamic stiffness matrix of a viscoelastic structure as a linear
combination of constant matrices

[Z(Em, s)] = Ms2 +Ke +
∑
m

Λm(s, T, σ0)
Λm0

Kvm(Λm0) (1)

Possibly all moduli could be independent. In most applications, the stiffness is however dominated by either
shear or compression. In free layers or support blocks, compression is dominant and the behavior of the
damping device is dictated by the equivalent stiffnesskv = Eh (compression modulus times height for
free layer treatments). In constrained layer damping or shear struts, the viscoelastic stiffness is given by
kv = GS/h with G the shear modulus,S the viscoelastic surface andh its thickness. In design phases a
nominal value ofG is used with a constant loss factor (typically1) [2]. One then assembles the matrices for
the elasticKe and viscoelasticKv parts and considers the parameterized dynamics stiffness given by

[Z(kv, s)] =
[
Ms2 +Ke + kv

kv0
[Kv]

]
(2)



In validation phases, one assumes that either shear of compression dominates and considers the frequency
dependence of either the shear or Young’s modulus and generally approximates the true variation of the other
components using a constant real Poisson’s ratio. Note that effects linked to the near incompressibility of
some viscoelastic materials are known to have strong influence, but proper material characterization is then
also very difficult.

Figure 5 for example shows the nomogram of the material used in the experiments. This figure assumes
the validity of the frequency temperature superposition principle where the modulus is assumed to be a
function of the reduced frequencyωα(T ) rather than a function of two independent variablesω andT . This
principle is reasonably verified in many material tests and thus commonly used. It is also the only acceptable
approach to extrapolate material properties in frequency ranges above 1 kHz where no dynamic material
analyzer exists.
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Figure 5: Nomogram for Smactane 50 material (www.smac.fr).

In most damping enhancement applications, viscoelastic materials are used in conjunctions with metals.
Bending of the viscolastic layers is thus rarely dominant so that volume elements can be used appropri-
ately to represent the strain energy. For classical free layer configurations, one can show that the com-
posite model and a shell/volume model give nearly identical predictions. For constrained layer damping,
shell/volume/shell models are appropriate even though the aspect ratio of the volumes elements used for the
intermediate viscoelastic layer is out of normally accepted ranges [3, 1].

3.2 Solving for responses : reduction and parametric studies

To simulate the dynamic response it is not useful and rarely possible from a numerical cost standpoint to
use direct frequency response computations by factoring (1). Model reduction methods (modal analysis,
substructuring, component mode synthesis, ...) seek an approximate solution within a restricted subspace.
One thus assumes

{q}N×1 = [T ]N×NR{qR}NR×1 (3)

and seek solution of the full model forced response equation whose projection on the dual subspaceT T is
zero (this congruent transformation corresponds to a Ritz-Galerkin analysis). Transfer functions are thus
approximated by

[H(s)] = [c] (Z(s))−1 [b] ≈ [cT ]
[
T TZ(s)T

]−1[
T T b

]
(4)

One can note that for a non-singular transformationT (when{q} = [T ]{qR} is bijective) the inputu /
outputy relation is preserved. One says that the transfer functions are objective quantities (they are physical
quantities that are uniquely defined) while DOFsq are generally not objective.



Classical bases used for model reduction combine modes and static responses to characteristic loads [4].
Bases containing free modes and static responses to applied loads{b}

[T ] =

[
[φ1 . . . φNM ]

[
[K]−1[b]−

∑NR
j=1

[c]{φj}{φj}T [b]
ω2

j

]]
(5)

have been used component mode synthesis (component model reduction to prior to a coupled system pre-
diction) by Rubin [5], MacNeal [6], and many others. In the case of damped structures, this has lead to the
Modal Strain Energy method [7].

Damped modes can be considered as elastic models with an external damping load. Static correction for the
effects of damping loads can then be incorporated. The first order correction given by

[T ] =
[
[T0]

[
[K]−1

0 [Kvi[φ1:NM ]]
]]

(6)

has been shown to much more accurate prediction than a simple modal base in numerous occasion [3, 8, 4]
and is used for simulations performed here. Other multi-model approaches are discussed [9] and used in
some of the simulations presented here.

4 Using poles for correlation

4.1 Spectral decomposition theory

In analysis complex modes are classically defined as non trivial solutions of the homogeneous frequency
response problem. That is left{ψjL} and right{ψjR} modeshapes associated with unique polesλj that
verify the generalized non linear eigenvalue problem associated with a viscoelastic model

[Z(λj , G(λj))]{ψjR} = {0} and {ψjL}T [Z(λj)] = {0}. (7)

For analytic representations of the modulus, one can generally rewrite (7) as a higher order (quadratic or
more), but linear, problem. The use of analytical representations ofG however requires the solution of
an inverse problem tofit the raw modulus measurement which is an error prone process. Direct uses of the
complex modulus measurements is preferred by the authors but this too may be subject to bias in the dynamic
material testing process [10].

Under the very unrestrictive assumption that the moduli are analytic functions, one knows thatZ(s) and its
inverse are also analytic so that near a given isolatedλj one has

[Z(s)]−1 =
{ψjR}{ψjL}T

αj (s− λj)
+O(1) (8)

where the normalization coefficientαj depends on the choice of a norm when solving (7) and is determined
by

αj = {ψjL}T

[
∂[Z(s)]

∂s

∣∣∣∣
λj

]
{ψjR} (9)

For symmetricZ(s), the left and right complex modes are equal. For the particular case of a model of a fixed
hysteretic damping ratioZ(s) = Ms2 +K + iB, one normally verifies that rigid body modes are in the null
space of[B], and can normalize complex modes such thatψT

j [M ]ψk = δjk so that the transfer is given by

H(s)−
∑ cφjRBφ

T
jRBb

s2
=

NM∑
j=RB+1

{cψjR}
{
ψT

jLb
}

s2 − λ2
j

=
NM∑

j=RB+1

{cψjR}
{
ψT

jLb
}

2λj(s− λj)
+
{cψjR}

{
ψT

jLb
}

−2λj(s+ λj)
(10)



This model is not physical in the sense than poles with negative imaginary parts are unstable (−λj rather than
λ̄j). This implies that the static computations biased. Physically the complex modulus for negative values
of ω should be the conjugate of that for positive values ofω and the loss factor should be zero atω = 0. A
modal synthesis that is consistent with this hypothesis would thus use

H(s) =
∑ RRB

s2
+ [c][Kflex]−1[b] +

NM∑
j=RB+1

s2Rj

2λ3
j (s− λj)

+
s2R̄j

2λ̄3
j (s− λ̄j)

(11)

with Rj = {cψjR}
{
ψT

jLb
}

. The later formula is also consistent for a model with both viscous and hysteretic
damping.

These spectral decompositions being unique can be used in both test and analysis to characterize damping
levels associated with specific modes. In simple well controlled configurations, one can directly relate the
complex modulus and the pole damping. This is in particular used for the Oberst beam testing methodology
and its variants [11, 12]. For more complex structures, the correlation is not straight forward as will be
illustrated next.

Figure 6 shows the location of poles when a constant complex modulus is varied in the on the edges of the
design square given byE = [4MPa − 8MPa] andη = [.5, 1.3]. The figure clearly indicates a non-linear
relation between the modulus value and the pole.

The first two modes (7,8) cross so that proper tracking is nearly impossible. For the heavily damped modes
(13,14) and the lightly damped one (9) the mapping is fairly regular so that one could reasonably relate an
experimentally measured pole and the associated modulus. There are however other poles with light damping
in the same range so that extracting the poles of the heavily damped modes may not be possible. For more
intricate relations, poles (10,11), there is no unique value of the modulus leading to a single pole.

10
2

0

5

10

15

20

25

30

35

40

Frequency [Hz]

D
am

pi
ng

 [%
]

 

 
 7
 8
 9
10
11
12
13
14
15

Figure 6: Pole tracking for a square variation of modulus and loss factor (slice model).

For test or when using frequency dependent moduli, the poles cannot be determined from an eigenvalue
problem but must be deduced from particular transfers that are either measured or computed. Figure 7
illustrates a computation where four modes are active. One of the modes is particularly difficult to track
since it heavily damped and its frequency passes the frequency of a less heavily damped mode.

4.2 Extracting poles from test or analysis transfers

While pole correlation may not be the perfect tool is remains one of the first criteria for a quantitative
correlation of damping predictions. Extracting these values is thus deemed critical. This section illustrates
the use of modal filters for this extraction but also shows its limits.



Modal filters [13, 14] can be used to combine measurements into responses where one particular mode is
more specifically excited or observed. The idea behind this methodology is the dual for observation of what
modal appropriation is to excitation with multiple shakers [15]. In the present case modes are not known,
but one can use the normal modes of a reference elastic structure (with some reference modulus of each of
the viscoelastic materials) to build the modal filters. Figure 7 clearly shows in this simulation that the peaks
are perfectly separated by this approach.
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Figure 7: Sum of the imaginary part of transfers (left) and modal filters (right) (frame model).

When applied to test data, the modal filter results are quite good for the first modes as shown in figure 8.
In higher frequencies results become poor. The reason for this is illustrated by the test auto-MACS shown
in figure 9. This figure clearly indicate that only the first modes are well separated in shape (later there
a significant off-diagonal terms for modes that are close in frequency). These are limitations of the test
configuration but illustrate the fact that, in this application, one was interested in predicting and validating
predictions in a much broader range than what is usually considered for modal analysis.
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Figure 9: Auto MAC of FEM modes on sensors with indication of frequency. Left : frame. Right : slice.

For analysis, modal filters can be used to estimate damping levels more efficiently since one can use both
input and output filtering. Figure 10 illustrates the gradual rise of damping with frequency in the considered
application which is the basis of the proposed design.
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Figure 10: Pole tracking for the frame model.

4.3 Identification limits for highly damped and close modes

The preceding section showed that heavy damping and close frequencies posed a significant challenge. This
was also found to induce difficulties in identification procedures. This section points fundamental reasons
for this fact.

In practical cases, parameters estimation is performed using data from a restricted frequency band. Given an
estimated model order, one solves the non-linear output-error minimization problem [16]



([Rn], λn) = ArgMin
[Rn],Λn

ωmax∑
ωmin

∥∥∥∥∥∥Ht(ωs)−
Im(λn)<ωmax∑
Im(λn)>ωmin

Rn

jωs − λn
+

R̄n

jωs − λ̄n
− F +

G

ω2
s

∥∥∥∥∥∥
2
 , (12)

whereF andG are the high and low frequency residuals and the mode residues have the form discussed in
section 4.

When damping is high and poles relatively close, the conditioning of this problem deteriorates rapidly which
induces a lack of precision on damping estimates. To illustrate this point, one uses the simple 8 DOF test
shown in figure 11. All masses are set to 1 Kg, exept for DOF 7 and 8, were masses are set to 10 Kg.
Stiffness, shown on the figure 11, are respectively k1=1e4 N.m−1, k2=1e5 N.m−1, and k3=5e7 N.m−1.
Viscous damping d will vary from 1 to 25 N.m−1.s. Frequenciesωn and damping ratiosζn for the extreme
values ofd are given in the table of figure 11. Free-free sine mode-shapes have been applied to computed
complex mode to simulate measurements. Hence, the simulated frequency response functionH between an
input b and an outputck is given by

Hk(s) =
8∑

n=1

(
{ck}[ψn][ψn]T {b}

(s− λn)
+
{ck}

[
ψ̄n
][
ψ̄n
]T {b}(

s− λ̄n
) )

. (13)

with {ck} = {sin(πk) ... sin(nπk)}, k ∈ [0, 1], {b} = {0 1 0 ...0}T andλn = ωn

(
j −

√
1− ζ2

)
.

For each viscous damping coefficientd, a state space model is assembled. Frequencies, damping ratios and
complex modes and FRF are computed and used asmeasurements in this illustration.

1

2

3

4

5

6

7

8
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k3,d
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k3,d

k1,d/2

k1,dk1,d

10k1,dk1,d

k1,2d

d=1 N.m−1.s d=25 N.m−1.s
Frequency (Hz) Damping (%)

90.6901 0.48685
97.4868 0.6817
152.2651 0.27863
234.6602 0.46333
245.9542 0.4266
329.7354 0.10011
375.0836 0.2902
811.8541 0.014084

Frequency (Hz) Damping (%)
91.9862 8.2824
95.5752 15.139
151.8816 5.5511
232.7833 9.3533
244.6676 8.4768
329.4132 1.8795
373.5898 5.8432
811.8329 0.28087

A. Connectivity between B - Frequencies and damping ratios
the 8 DOF of the model for extrema values of viscous damping d

Figure 11: Numerical test case

For identification, one considers the 200-280Hz band which contains the fourth and fith modes (see ta-
ble11.B). For given values of poles 4 and 5 exact damping (d = 17) is used and the frequency is varied in a
[-8% ; 8%] range. Since the poles are given, the minimization of (12) is a linear least squares problem that
gives the residues.

Figure 12 shows a map of the objective function for the range of frequency values. One first notes the
presence of two local minima meaning that the output error minimization problem (12) has non-unique
solutions. Further studies have shown that this split is observed for high damping compared to separation.
This condition can be evaluated using the modal overlap criterion [17] : for 2 modesj andk, when2ζjωj ≈
|ωj − ωk| then damping can be considered high compared to frequency separation.



Figure 12: Log(Min(J)) for F4 and F5 within [-8% ; 8%]

Figure 13 overlays the analytical pole value, the frequency at which the minimum of the cost function is
observed when the pole frequency is varied for the exact damping ratio, the uncertainty range defined as the
range of frequencies for which the cost is less than 2% higher than the minimum.
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Figure 13: True pole VS found poles. Pole locations for the cost function J within [Min(J) Min(J)*1.02] is
also presented

These illustrations clearly indicate that when damping increases the level of bias and uncertainty in the output
error solution augments drastically. Modal extraction is thus fundamentally difficult in such situations.



5 Conclusion

This study has shown that modeling techniques for structures containing viscoelastic materials are well
mastered and lead to reasonable test/analysis correlation. Material characterizations that properly include
frequency and temperature dependence remain a key difficulty and in most situations one cannot expect to
find a simple relation between a pole and the modulus value at the associated frequency. Pole extraction is
further made more difficult by the presence of damping. Modal filter techniques have been found to help
but fail when the modal density increases. Finally identification techniques have been shown to have unicity
and bias problems in the same situation. Many questions are thus left unanswered and will be the object of
further study.
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[11] Oberst, H. and Frankenfeld, K., “Über die D̈ampfung der Biegeschwingungen dünner Bleche durch
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