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Abstract
New methods for the dynamic analysis of tuned and mistuned bladed disks are presented. A new technique
for disk substructuring using parameterized superelements is first described. It allows individual blade mis-
tuning to be taken into account as slight variations in the reduced stiffness matrix of the bladed sectors or as
shifts in fixed blade frequencies. A parametric multi-model reduction approach is then introduced to allow
predictions of the evolution of vibration characteristics with respect to the rotation speed. Using prestressed
solutions at three rotations speeds, this method allows a very accurate reanalysis of modes and forced re-
sponses of mistuned disks at all intermediate speeds.

1 Introduction

This work deals with the parametric reduction of models of structures whose nominal configuration presents
properties of cyclic symmetry. The objective is to build a reduced model that represents particular mode-
shapes exactly and others with a good accuracy for variable rotation speeds and mistuning levels. In a recent
survey, Castanier and Pierre [1] review the latest advances in the field of the vibration of bladed disks and
underline some new directions of research for the study of mistuning and rotation.

Section 2 summarizes the mechanical problem related to rotating structures with a focus on those who present
properties of cyclic symmetry and to which a specific substructuring technique can be applied. This property
vanishes when material or geometrical differences occur from blade to blade. This phenomenon called mis-
tuning is mainly due to manufacturing process or service wear. It is often modeled as a random phenomenon
which requires a statistical approach through Monte-Carlo simulations. But where cyclic symmetry con-
siderations can be used to model tuned disks, mistuned disks should be modeled fully since each sector is
different. This is not acceptable in many instances. Many reduction techniques have thus been introduced.
They often include methods derived from the tuned system analysis coupled with either a CMS method [2–6]
or a non-CMS method [3, 7–9], assuming in every case that mistuned modes are given by projecting the indi-
vidual blade mistuning onto the tuned system modes. In the case of large mistuning, the non CMS technique
has been improved by building a reduction basis made of tuned system normal modes and blade static or
quasi-static modes [10]. The quasi-cyclic reduction technique presented here uses a physical description
of the bladed disk motion to build accurate reduced disk models with parameterized superelements. Small
blade mistuning is easily taken into account as slight shifts in the natural frequencies of the bladed sector
with fixed interfaces or directly as variations of the reduced stiffness matrix. Computations of the modal
characteristics of the tuned or mistuned assembly of superelements are then really straight forward.

Among the other emerging computational challenges is the influence of the inertial effects induced by rota-
tion. To address this issue a modal analysis technique has been proposed by Marugabandhu and Griffin [11]
that consists in seeking the modes at any rotation speed as a linear combination of modes at rest. Section 4
presents a multi-model reduction approach [12] that can be applied to build full Campbell diagrams of tuned

mailto:arnaud.sternchuss@ecp.fr


or mistuned structures using exact computations of targeted modes at selected rotation speeds. As an illus-
tration the Campbell diagram of a tuned disk is built through this method. The multi-model reduction basis
itself can be then built through the quasi-cyclic reduction technique which results in very fast computations
of the modes and the response of the disk in either tuned or mistuned cases.

2 Mechanical problem associated with a rotating structure

The disk presented in figure 1 is supposed to be in rotation with the angular speedΩ. The full mesh of the
disk is composed of 20 node hexahedrons and 15 node pentahedrons with a total ofN = 293457 DOFs.
The front and aft rims are fixed. The material is titanium. In the following, for confidentiality reasons, all
frequencies are normalized with respect to the lowest tuned frequency.

Figure 1: Sample disk

2.1 Rotation induced effects

The discrete dynamic problem is written in the frequency domain under the general form

[Z(ω, Ω)]N×N{q(Ω)}N×1 = {f(ω, Ω)}N×1 (1)

where{q(Ω)} stands for the DOFs vector of the disk,{f(ω, Ω)} for the applied load and[Z(ω, Ω)] for the
dynamic stiffness, including the effects induced by the rotation speedΩ

[Z(ω, Ω)] = −ω2 [M ] + i ω [C(ω, Ω)] + [K(ω, Ω)] (2)

with:

• [M ] the mass matrix;

• [C(ω, Ω)] = [D(ω)] + [Cg(Ω)] the viscous matrix, with[D(ω)] the damping matrix and[Cg(Ω)] the
gyroscopic coupling;



• [K(ω, Ω)] = [KNL(ω, Ω)]+ [Kg(Ω)]+ [Ka(Ω)] the stiffness matrix, with[KNL(ω, Ω)] the nonlinear
tangent stiffness matrix stating that the disk vibrates around a prestressed state induced by inertia
loading,[Kg(Ω)] the gyroscopic stiffness and[Ka(Ω)] the centrifugal acceleration.

HereΩ will be assumed constant so that the matrix[Ka(Ω)] which depends only oṅΩ is equal to zero.
Notice that[C(ω, Ω)] and[KNL(ω, Ω)] can depend both on frequency, for viscoelastic materials [13], and
on rotation speed. In the following one assumes that neither the damping nor the stiffness matrix depend on
frequency. To simplify further notations the dependance of[Z], {q} and{f} onω and/orΩ will be explicited
only if needed.

The general form of problem (1) implies that the determination of free vibration modes or the computation
of the forced response of a structure including rotation effects is performed through two steps:

• the static response of the structure under the inertial load associated with a constant rotation speed is
computed;

• the response of the structure prestressed by the initial load is obtained using the tangent stiffness matrix
associated with the static stress state.

The true static computation should consider large deformation effects and the nonlinear characteristics of
inertia forces which are follower forces, i.e. they depend of the current state of deformation. In this paper,
one will however assume, as acceptable in many industrial applications, that a linear computation of the
inertial load is sufficient. This results in

{f(Ω)} = Ω2
{
f1

}
= Ω2

∫
disk

ρ r(Ω = 0) dV (3)

and one assumes that the static displacement is solution of the linear problem

[K(Ω = 0)]N×N{qstat}N×1 = Ω2
{
f1

}
N×1

(4)

where it is apparent that{qstat} is directly proportional toΩ2. In the nonlinear tangent stiffness the defor-
mation induced by{qstat} appears quadratically, it results that the tangent stiffness is a second order matrix
polynomial inΩ2. Similarly the gyroscopic stiffness is clearly proportional toΩ2. One can finally write

[Z(ω, Ω)] = −ω2[M ] + i ω [C] +
2∑

p=0

Ω2p [Kp] (5)

Recall that the stiffness matrix depends only onΩ due to the fact that in this study one only considers elastic
materials. Computations are simplified by the fact that only five constant matrices are needed whatever the
rotation speed. If the range of rotation speed is[0,Ωmax], these constant matrices are given by

[M ]N×N

[C]N×N[
K0

]
N×N

= [K(0)][
K1

]
N×N

=
1

3Ω2
max

(
16

[
K(1

2Ωmax)
]
− [K(Ωmax)]− 15[K(0)]

)
[
K2

]
N×N

=
4

3Ω4
max

(
[K(Ωmax)]− 4

[
K(1

2Ωmax)
]
+ 3[K(0)]

)
(6)

Notice that the elastic stiffness of the structure appears directly in the matrix polynomial as the term
[
K0

]
.



2.2 Cyclic Symmetry

Structures that present cyclic symmetry are composed ofNs identical sectors, numbered from0 to Ns − 1,
generated by rotations of angleα = 2π/Ns around axisOez of a reference sector such as that of figure 1. In
the followingθ stands for the rotation of angleα around axisOez. Since the model geometry is invariant by
any rotationθs, it is useful to consider the displacement as a Discrete Fourier Series as proposed in [14]

∀s ∈ NNs−1, u(xs) =
Ns/2∑
δ=0

θs
(
uδ(x0)

)
ei s δ α (7)

The well known property of symmetry for DFT givesuδ = uNs−δ wherez denotes the complex conjugate.
Given this relation, the number of independant harmonics is equal toNs/2 if Ns is even and(Ns − 1)/2
if Ns is odd. In particular, the eigenmodes come by complex conjugate pairs, except those withδ = 0 and
δ = Ns/2 if Ns is even, which are real. In the limiting case of a structure invariant by any rotation (pure
axisymmetry),Ns goes to infinity and (7) becomes a Fourier Series.
The angular harmonicδ has various denominations: “Fourier/Floquet coefficient”, “interblade/intersector
phase index”, “circumferential wave number”... All these denominations are equivalent sinceδ α is a wave
number that represents the phase difference between two adjacent sectors. As a result, ifδ α ≡ 0 [2π] these
sectors vibrate in phase whereas ifδ α ≡ π [2π] they vibrate in antiphase. In the latter case this implies that
the motion of the interface between two sectors is null for compatibility with the antiphase condition. The
motion of the bladed disk is thus very close to that of the sectors with their interfaces fixed. If one considers
the circumferential modeshapes,δ corresponds to their number of nodal diameters. The Fourier coefficients
uδ are classically defined on the first sector (coordinatesx0). Nevertheless, they could be propagated to
other sectors with

∀s ∈ NNs−1, uδ(xs) = θs
(
uδ(x0)

)
ei s δ α (8)

It can be shown from finite groups theory [15] of Floquet’s theory [16] that eigenmodes only involve a single
harmonicδ. In most practical cases, the external load is decomposed using the same Fourier strategy and the
forced responses associated with each “engine order”, i.e. each load harmonic, are computed. This is due to
the fact that a perfectly tuned disk will respond only on the angular harmonics equal to those of the external
load [17, 18].
While (7) and (8) relate Fourier harmonics on the nominal sector and motion on the full disk, it does not ac-
count for the continuity of displacement between sectors. As shown in figure 2, one considers two matching
right and left surfacesIs

r andIs
l and an interior domainDs

c . The right and left surfaces are matching in the
sense that for any pointxs

r onIs
r , xs

l = θ(xs
r) is onIs

l .

@@R

���

Ds
c

Is
l

Is
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Figure 2: Subdomains of sectors

Intersector continuity between sectorss ands + 1 is simply given by

∀s ∈ NNs−1, ∀xs
l ∈ Is

l , ∃xs+1
r ∈ Is+1

r ,

xs
l = xs+1

r andu(xs
l ) = u(xs+1

r )
(9)

For both compatible and incompatible meshes, continuity conditions of the form (9) can be written as a set of
linear constraints associated with interface DOFs [19]. One thus defines right and left observation equations



which for compatible meshes give a discrete representation of the motionu(xs
l ) on the left interfaceIs

l and
the rotationθ of the corresponding motion on the right interfaceIs

r .

θ (u(xs
r)) =⇒ {qs

r} = [cr]{qs}
u(xs

l ) =⇒ {qs
l } = [cl]{qs}

(10)

{qs} is the DOFs vector on sectorDs. Notice that[cr] takes the rotationθ into account so that the dis-
placement is expressed in a basis coherent with the interface motion. If the mesh at interfaces is regular, the
observation matrices are identical for all sectors.

In the tuned case, displacements of particular interest are those who involve a single harmonicδ. With the
assumption of cyclic symmetry, problem (1) can be restrained to a single sector

[Zs]Ns×Ns{qs}Ns×1 = {fs}Ns×1 (11)

where[Zs] has the same properties as described in section 2.1. However, an additional constraint equation
has to be introduced to take the continuity condition between sectors into account. Substituting equation (9)
into equation (8) gives

∀s ∈ NNs−1, ∀xs
l ∈ Is

l , ∃xs
r ∈ Is

r ,

xs
l = θ(xs

r) anduδ(xs
l ) = θ

(
uδ(xs

r)
)
ei δ α

(12)

which, when discretized, leads to a constraint equation of the form(
[cl]− ei δ α [cr]

)
(<{qs}+ i={qs}) = {0} (13)

Sinceei δ α = cos(δ α) + i sin(δ α), one often considers a double sector approach separating the real and
imaginary parts

[c<(δ)]

{
<{qs}
={qs}

}
= {0} (14)

with

[c<(δ)] =

[
[cl]− cos(δ α)[cr] sin(δ α)[cr]
− sin(δ α)[cr] [cl]− cos(δ α)[cr]

]
2Nr×2N

(15)

Recall that={qs} = {0} for δ = 0 andδ = Ns/2 if Ns is even, in this case the double sector approach is
equivalent to a single sector approach with a simple continuity condition between two adjacent sectors. The
solutions are then sought in the kernel of[c<(δ)] by projecting problem (11) onto the basis of this kernel
denoted[TKer(δ)].

3 Quasi-cyclic reduced models

As actual disks are not perfectly periodic due to manufacturing tolerances and service wear, extensive com-
putations using statistical approaches such as Monte-Carlo simulations are widely used. These blade to blade
differences called mistuning also imply that the full problem (1) has to be assembled then solved. Because
of the actual size of the finite element models used in industry, typically around one million DOFs, there is
a great need for reduced order models. In the proposed quasi-cyclic (QC) reduction technique one builds
individual sector superelements that:

• allow parametrization of the sector in rotation and mistuning described as slight deviations of its natural
frequencies when its interfaces are fixed,

• reproduce exact results in certain configurations;

• can be assembled into a disk model.



3.1 Basis of modes

To allow assembly into a disk model the proposed method combines matching left and right interface modes
and interior modes for which the interfaces are fixed, as illustrated in figure 3.

[TS ] = [ ∪ ∪ ]

(r) (c) (l)

Figure 3: Reduction basis

The reduced sector model thus distinguishes right, complementary and left generalized DOFs for sectors

[Zs
S(ω, Ω)]Ns

S×Ns
S


qs
Sr

qs
Sc

qs
Sl


Ns

S×1

=


fs

Sr

fs
Sc

fs
Sl


Ns

S×1

(16)

which are related to initial sector DOFs by a constant basis[TS ] with

{qs}Ns×1 =
[

[TSr] [TSc] [TSl]
]
Ns×Ns

S


qs
Sr

qs
Sc

qs
Sl


Ns

S×1

(17)

The first step of the proposed procedure is to build the subspace generated on sector0 by the target modes,
i.e. selected modes that will be found exactly by solving the reduced problem. These modes are selected
with respect to the characteristics of the tuned motion that depends onδ:

• a set of tuned eigenmodes[Φtun] with low values ofδ to account for the disk-dominated motion
computed using cyclic symmetry methods presented in section 2.2 and thus identical for all sectors;

• a set of modes of sector with fixed interfaces[Φfix] to account for the blade-dominated motion.

This basis is built through the following procedure:

• Most of the cyclic eigenmodes are complex and their real and imaginary parts are first separated

[Tb]N×Nb
=

[
<([Φtun]) =([Φtun]) [Φfix]

]
(18)

• One considers only the restriction of the modes of the entire structure on both interfaces

[Trl](Nr+Nl)×Nrl
=

[
[cr][Tb]
[cl][Tb]

]
(19)

Fixed interface modes vanish naturally at this step. A Singular Value Decomposition (SVD) of[Trl] is
performed

[Trl] = [U ][Σ][V ] (20)

[Σ] is the matrix of the singular valuesλj . Nλ is then defined by

Nλ = max{j, λj/λ1 > ε} (21)



whereε is chosen to keep a sufficient independence between interface and interior modes.

According to the properties of SVD, theβ first columns ofU , ({u1}, . . . , {uβ}), are a basis of the
image of[Trl]. Therefore, this leads to a basis of modes restricted to the interface. Then, from basis
[Tb], one defines

[Tc] =
[

[Tb][vj ]j>Nλ
[Φfix]

]
[Ti] = [Tb][vj ]j≤Nλ

(22)

[Tc] contains both the eigenmodes rejected by the SVD and the initial modes with fixed interfaces. An
additional zero condition is imposed at the interfaces in the first equation to ensure that[Tc] will really
be a basis for interior modes with both interfaces fixed, that is to say a basis for modes that correspond
to diagram (c) of figure 3

[Tc]|Ir∪Il
= [0] (23)

[Ti] and [Tc] are orthonormalized with respect to the elastic stiffness
[
K0,0

]
of sector0 through a

Gramm-Schmidt procedure:

[Ti] = [Ti]−
[
T>

c K0,0 Tc

]−1 [Tc]
[
T>

c K0,0 Ti

]
(24)

This leads to bases whose general forms are

[Tc]N×(Nrl−Nλ) =

 [0]
[Tcc]
[0]

 and[Ti]N×Nλ
=

 [Tir]
[Tic]
[Til]

 (25)

• the following step is to build the interface modes from[Ti]. This set of modes is completed such that

[Ti]N × 2Nλ
=

[
[Ti1] [Ti2]

]
(26)

with

[Ti1] =

 [Tir]
[Tic]
[Til]

 and[Ti2] =


[Tir]

−
[
K0,0

cc

]−1[
K0,0

cr

]
[Tir]

[0]

 (27)

[Ti2] contains the right interface modes, their static recovery on the complementary domain and no
motion on the left interface.

• As stated before right and left interface modes are matched moduloθ. Introducing the following matrix

[B]2Nλ × 2Nλ
=

 [0] [I](
[cr]

[
T̂ 2

])−1 (
[cl]

[
T̂ 1

])
−[I]

 (28)

one builds [
[TSr] [TSl]

]
N × 2Nλ

= [Ti][B] (29)

with

[TSr]N × Nλ
=


θ ([Til])

−
[
K0,0

cc

]−1[
K0,0

cr

]
θ ([Til])

[0]



[TSl]N × Nλ
=


[0]

[Tic] +
[
K0,0

cc

]−1[
K0,0

cr

]
θ ([Til])

[Til]


(30)



• With [TSc] = [Tc] the basis is finally

[TS ] =
[

[TSr] [TSc] [TSl]
]

(31)

This basis has the particular shape described by figure 3.[TSr] is a basis of modes with right interface
free and left interface fixed.[TSc] is a basis of interior modes with both interfaces fixed.[TSl] is a basis
of modes with left interface free and right interface fixed.

3.2 Reduced matrices

Problem (11) is projected onto the constant reduction basis[TS ] for each sectors. [Zs] is projected such that

[Zs
S(ω, Ω)] = −ω2 [M s

S ] + i ω [Cs
S ] +

2∑
p=0

Ω2p
[
Ks,p

S

]
(32)

where[M s
S ] =

[
T>

S M s TS

]
, [Cs

S ] =
[
T>

S Cs TS

]
and

[
Ks,p

S

]
=

[
T>

S Ks,p TS

]
, p ∈ {0, 2}.

Recall that
[
Ks,0

]
is the elastic stiffness of sectors and this leads to the following relations[

T>
Sc M s TSc

]
= [I][

T>
Sc Ks,0 TSr

]
=

[
T>

Sc Ks,0 TSl

]
= [0][

T>
Sc Ks,0 TSc

]
= [Ks

Sc] =
[
\
(
ωs

cj

)2

\

] (33)

whereωs
cj is the jth natural frequency of sectors with fixed interfaces.[M s] and

[
Ks,0

]
have then the

following form

[M s
S ] =

 T>
Sr M s T d

Sr T>
Sr M s T s

Sc T>
Sr M s T d

Sl

T>
Sc M s T d

Sr I T>
Sc M s T d

Sl

T>
Sl M

s T d
Sr T>

Sl M
s T s

Sc T>
Sl M

s T d
Sl


[
Ks,0

S

]
=

 T>
Sr Ks,0 T d

Sr 0 T>
Sr Ks,0 T d

Sl

0 Ks
Sc 0

T>
Sl K

s,0 T d
Sr 0 T>

Sl K
s,0 T d

Sl


(34)

There is no stiffness coupling between the interface modes and the interior modes. The coupling is fully
integrated in the non-zero terms of the reduced mass matrix. The matrices displayed in figure 4 are obtained
with 2× 21 interface modes and10 interior modes atΩ = 0.

Right and left interface modes are built so that they are matched. This ensures that the intersector continuity
condition (9) is equivalent to stating that left generalized DOFs of one sector are equal to right generalized
DOFs of the next one:

[cl][TSl] = [cr][TSr] ⇐⇒ {qs
Sl} =

{
qs+1
Sr

}
(35)

This condition makes the assembly of a disk model with respect to the generalized coordinates really straight
forward, leading to block diagonal matrices obtained by the assembly of those of the sector superelements.

With this representation, mistuning is directly taken into account through slight deviations of the natural
frequencies of each sectors with fixed interfaces on the diagonal terms of the reduced stiffness:

∀s ∈ NNs−1, [Ks
Sc] = [I + ∆s]

[
K0

Sc

]
(36)

[∆s] is a diagonal matrix containing the mistuning factors.



Figure 4: Reduced matrices[M s
S ] and[Ks,0

S ]

3.3 Verification in the case of a tuned disk

Before any consideration of mistuning it was necessary to verify the reduction technique on a tuned disk, in
particular to be sure that the modes used to build the reduction basis are obtained exactly with the reduced
model. A model of the disk atΩ = 0 was then built using a basis composed of2 × 21 interface modes
built from 3 single or paired modes withδ ∈ {0, 3} and a frequency in the range[1, 5] to account for the
disk-dominated motion and10 modes of the sector with fixed interfaces to account for the blade-dominated
motion. Table 1 summarizes the number of DOFs of the different models used in this study.

Model Full FE QC reduced
Sector 14355 52
Assembled disk 293457 713

Table 1: Number of DOFs of each model

The modes obtained with the reduced problem were compared to the modes given by the cyclic substruc-
turing technique. The resulting graphωj(δ) and the corresponding frequency relative error for10 single or
paired modes withδ ∈ {0, 11} in the frequency range[1, 15] are given in figure 5.

Figure 5:ωj(δ) and frequency relative error for the tuned disk

As expected, this error is zero for the targeted values ofδ and stays under0.7% for the non-target modes in
a three times wider frequency band than that of the target modes. One notices that the use of sector modes



with fixed interfaces overstimates by around0.1% the frequencies of cyclic modes with high values ofδ. As
the modes are complex conjugate for almost all values ofδ, a specific MACM criterion has to be used to
check the correlation between reference and reduced modeshapes:

MACMkl =
M({φk}, {φl})2

M({φk}, {φk})M({φl}, {φl})

whereM({U}, {V }) =
∣∣∣<{U}>[M ]<{V }+ ={U}>[M ]={V }

∣∣∣ (37)

The correlation between the reduced modes and the reference modes computed with the cyclic substructuring
is very good. Naturally, the correlation between the target modes and the corresponding reduced modes is
excellent as these modes are found exactly with the reduced model. Maximum accuracy is obtained for
modes with either smallδ at low frequencies or highδ as they are very close to that of the reduction basis.

3.4 Application to mistuning

The sample set of frequencies of the sector with fixed interfaces shown in figure 6 was used to illustrate
considerations of mistuning. These frequencies are found in the diagonal of

[
K0

S

]
, reduced elastic stiffness

of the whole disk.

Figure 6: Natural frequencies of the sectors with fixed interfaces

Figure 7: Response to a1 engine order excitation– · – tuned,— mistuned and– –amplification factor



The forced response of the disk can then be obtained directly from the reduced order model. Figure 7 shows
the maximum amplitude of the blade tips for a1 engine order excitation with a loss factor of0.005 in the
tuned and mistuned cases. The amplification factor is plotted in the same figure. Peak scattering and huge
variations of the amplification factor appears clearly in the vicinity of the tuned resonances. As can be seen
in this figures, the frequency resolution has to be small to correctly capture frequency scattering and a small
but accurate reduced model is mandatory. In this study, the obtained responses use a resolution of3.10−3

with a total of32768 points of frequency as the minimum difference between the natural frequencies of two
different sectors with fixed interfaces is around5.10−3.

4 Variable speed fixed basis models

Another objective of this study was to accelerate the computation of Campbell diagrams, i.e. diagrams that
represents the evolution of the modal frequencies with respect to the rotation speed, in the tuned and mistuned
cases.

4.1 Multi-model reduction

Dynamic problems (1) or (11) form parametric families and they can be solved using a multi-model (MM)
reduction technique [12]. Their solutions are sought in a subspace generated by some exact solutions targeted
at selected values of the parameter, here the rotation speedΩ. One then builds a constant reduction basis
whose form is

[TΩ]N×NΩ
=

[
[Φ(Ω1)] [Φ(Ω2)] · · · [Φ(Ωn)]

]
(38)

[Φ(Ω)] are either tuned modes on a single sector or mistuned modes on the whole disk. Target modes can
also be defined as a set of modes of interest but this time with respect to the rotation speed. Once more, they
would then be found exactly by the resolution of the reduced problem [20].

If one considers the full disk problem (the transposition to the sector problem is easy), the dynamic stiffness
is projected onto the subspace generated by[TΩ]

[ZΩ]NΩ×NΩ
{qΩ}NΩ×1 = {fΩ}NΩ×1 (39)

with

[ZΩ(ω, Ω)] = −ω2 [MΩ] + i ω [CΩ] +
2∑

p=0

Ω2p
[
Kp

Ω

]
(40)

where[MΩ] =
[
T>

Ω MΩ TΩ

]
, [CΩ] =

[
T>

Ω CΩ TΩ

]
and

[
Kp

Ω

]
=

[
T>

Ω Kp
Ω TΩ

]
, p ∈ {0, 2}. The generalized

and physical DOFs are related through the following relation:

{q}N×1 = [TΩ]N×NΩ
{qΩ}NΩ×1 (41)

Problem (39) of sizeNΩ × NΩ is then solved for any value of interest ofΩ. As the matrix polynomial is
quadratic inΩ2, n = 3 is necessary to achieve sufficient accuracy.

4.2 Campbell diagram of the tuned disk

The considered tuned bladed disk is that of figure 1 and its Campbell diagrams were computed separately in
the speed range[0, 10] for each single value ofδ ∈ {0, 11}. To do so, a parametric multi-model was built with
a basis of10 single or paired modes in the frequency range[1, 15] computed with the cyclic substructuring
technique atΩ ∈ {0, 5, 10} andΩ ∈ {0, 7.5, 10}. Figure 8 displays the diagram forδ = 1 and it is compared
to the results obtained with the full sector problem at each speed step. The maximum of the relative error for



Figure 8: Campbell diagram forδ = 1 and veering region

(a) (b)

Figure 9: Maximum frequency error for a multi-model basis at (a)Ω ∈ {0, 5, 10} – (b)Ω ∈ {0, 7.5, 10}

each of the10 single or pairs of modes in the frequency range[1, 15] for each value ofδ is plotted in figure 9.
The vertical dashed lines refer to the target speeds.

The Campbell diagrams are perfectly merged, this is confirmed by the fact that the maximum relative error
is under0.7% except for the10th pair of modes withδ = 2 in figure 9 (a). This also illustrates the fact
that the choice of the speed values to build the basis is the key point:Ω = 7.5 as the intermediate speed
increases accuracy as the maximum error in figure 9 (a) is located in the vicinity of this speed. As expected
this error is zero for the target modes corresponding to the retained values ofΩ in the basis. Moreover, the
frequency veering in speed [21] is correctly taken into account by the multi-model as can be seen in figure 8.
Besides, the check of the modeshapes is mandatory in those regions and the same MACM criterion is used.
Multi-model and reference modes are in fact perfectly correlated for every value of speed in general and
around the veering points in particular. All these results show that exact solutions computed at only three
rotation speeds are sufficient to estimate the solution at any intermediate speed with great accuracy.



4.3 Multi-level reduction computations

The results of section 3 allow the use of a set of target modes at some selected speeds and with selected values
of δ to build the multi-model reduction bases by generating the remaining needed modes with a quasi-cyclic
reduced model. These bases can then be used to compute the Campbell diagrams and the forced responses
in either tuned or mistuned cases.

In the tuned case it is very close to that of figure 8 and will not be reproduced here for brevity. The maximum
relative error is plotted for each speed and each value ofδ. The target modes are indeed found exactly by
the multi-model as displayed in figure 10 (a) and the error stays below0.02% in the frequency range of
the target modes. Figure 10 (b) also showns that the frequency error is still small, below1.4%, in a three
times wider frequency band. As expected, the frequency error committed on the basis modes due to the
quasi-cyclic reduction technique appears directly in this figure and forΩ = 0 it corresponds exactly to the
maximum enveloppe of figure 5. The two levels of error that add to each other can thus be clearly seen. The
first error is induced by the quasi-cyclic reduction technique as described in section 3.3 and then a second
error is superimposed on the previous one by the multi-model approach. Nevertheless, estimations remain
sufficiently accurate to be used to predict the vibratory state of rotating tuned or mistuned disks.

(a) (b)

Figure 10: Maximum frequency error for a multi-model built from a QC disk model in the frequency band
(a) [1, 5] – (b) [1, 15]

5 Conclusions

The quasi-cyclic reduction technique proposed in this paper aims to build a reduced disk model in which
each individual sector is considered as a superelement whose properties can be slightly deviated from the
tuned configuration to take mistuning into account. It allows the selection of a target set of modes which
are found exactly with the reduced disk model. Other modes are then estimated with an accuracy that is
directly related to the choice of target modes. The size of this reduced model is such that forced responses
computations are quite fast with a speed that is independent of mistuning level.

The sector reduction technique was then extended to allow fast computations of the Campbell diagrams or
forced response at variable speeds. The procedure uses exact cyclic symmetry computations of certain target
modes at three rotations speeds to generate the reduced model. The resulting reduced model can then be
used to predict modes or forced responses at any speed or mistuning level.
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