
Tools for Viscoelastic Damping Treatment Design.
Application to an Automotive Floor Panel.

Etienne Balmès† and Sylvain Germès‡
†SDTools, 52 rue Vergniaud, 75013 Paris, France and Ecole Centrale Paris, 92295 Chatenay Malabry
e-mail: balmes@sdtools.com
‡PSA Peugeot Citro¨en, Dpt. of Sciences for Automobiles and Advanced Research, 78943 V´elizy-Villacoublay
e-mail : sylvain.germes@mpsa.com

Abstract
Passive damping treatments are often considered, in the automotive and other industries, to achieve acceptable
vibroacoustic behaviour. This paper present an on-going effort to provide tools to assess, at the design stage,
the validity of possible technical solutions. These tools address material representation, meshing of constrained
viscoelastic treatments from shell models, and solvers for direct frequency response and eigenvalue solution of
moderately detailed problems. The case of an automotive floor panel is then used to illustrate computations
that can be needed in a design phase.

1 Introduction

Low frequency (20 - 200 Hz) noise reduction in the
passenger compartment has emerged in the past few
years as a crucial subject of research in the car in-
dustry. This kind of noise is mainly due to the panel
vibrations, resulting from the propagation of mechan-
ical inputs (engine, trains) in the car body frame.
Nowadays, two main techniques are widely applied
in the automotive industry in order to address low fre-
quency noise reduction:

• The first one consists in filtering the mechani-
cal inputs close to the vibratory sources. En-
gine mounts for instance, aim to limit the energy
transfers between the engine and the car body
frame.

• The second one is based on passive damping sys-
tems, which are generally located on the panels
responsible for noise radiation [1].

Passive damping systems are generally made of
viscoelastic constrained layer patches. This kind
of system efficiently dissipates the vibratory energy
through the viscoelastic layer shearing deformation.
In order to design smart (lightweight, inexpensive,
durable, robust and efficient) passive-damping sys-
tems, there is a need for reliable Finite Element Mod-
els (FEM) capable of predicting the frequency re-
sponses of structures containing viscoelastic materi-

als. Moreover, computer-aided design phases tend to
be shorter and shorter. Consequently, low cost model
generation and fast solution times are required in or-
der to assess quickly at the design stage many possible
technical solutions.

To achieve these objectives one must create tools
to easily and accurately represent viscoelastic con-
stitutive laws, generate multi-layer models, and, last
but not least, estimate frequency responses and com-
plex modes for tens of thousands of design points de-
fined by frequency, temperature, layer configuration
and pre-stress.

Section 2 addresses constitutive law representa-
tion and handling. Section 3 details the multi-element
strategy retained to easily generate multi-layer mod-
els. Section 4 summarizes Ritz bases used to create
approximate solutions fast enough to tackle the com-
putational challenge of a design run. Precisions and
performance issues associated with these solvers are
also discussed.

In section 5, these analysis tools are finally
used to validate various damping treatment de-
signs for an automotive floor panel modeled using
MSC/NASTRAN [2] elements and SDT [3] based
solvers. The study analyzes the influence of impor-
tant design variables : material selection, operating
temperature, layer thickness, and treatment position.



2 Representing viscoelastic ma-
terials

The basic assumption of linear viscoelasticity is the
existence of a relaxation functionh(t) such that the
stress is obtained as a convolution with the strain his-
tory. Using the Laplace transform, one obtains an
equivalent representation where the material is now
characterized by theComplex ModulusE (transform
of the relaxation function)

σ(s) = E(s, T, σ0)ε(s) = (E′ + iE′′)ε(s) (1)

For all practical purposes, one can thus, in the fre-
quency domain, deal with viscoleasticity as a special
case of elasticity where the material properties are
complex and depend on frequency, temperature, pre-
stress and other environmental factors.

In practice, the complex modulus is determined
experimentally using dynamic excitation [4, 5, 6]. For
a given set of material test results, analysis requires
knowledge ofE(s) for arbitrary values ofs or at least
of the frequency on the Fourier axis (s = iω). Three
approaches must be supported in practice:

• E(iω) is interpolated from tabulated material
test data with appropriate treatements for low
and high frequency asymptotes.

• E(s) is represented by a rational fraction

E(s) = E0
1 + α1s+ ...+ αnnsnn

1 + β1s+ ...+ βndsnd
(2)

This form is of particular interest since the asso-
ciated eigenvalue solvers exist (see section 4.2).

• E(s) is represented using another analytical rep-
resentation, in particular fractional derivatives
[7].

When proper care is taken, all three approaches are
capable of closely approximating material test data.
They thus have the same “physical” validity. The dif-
ferences are really seen in how each representation
can be integrated in FEM solvers and in the valid-
ity of extrapolations outside the tested material be-
haviour range. On the later point, the actual process
used to obtain the parameters has a strong influence,
it may thus be easier to obtain a good model with a
particular representation even if that representation is
not inherently better.

Dependence on environmental factors (tempera-
ture, pre-stress, ...) shoulda priori be arbitrary. In

practice however, one generally assumes, and gener-
ally verifies, that environmental factors only act as
shifts on the frequency [4]. Tests thus seek to char-
acterize a master curveEm(s) and a shift function
α(T, σ0) describing the modulus as

E(s, T, σ0) = Em(α(T, σ0)s) (3)
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Figure 1: Reduced frequency nomogram

Classically, viscoelastic materials are thus de-
scribed using a reduced frequency nomogram as
shown in figure 1. For simulations, a function gen-
eratingE for all values ofs, T, σ0 must be created.
This function must handle continuations outside of
the range of the experimental nomogram, since these
are likely to happen in a design study. Useful com-
plements are the ability to generate nomograms, to
combine experimental material characterizations into
a nomogram, or to estimate the parameters of an ana-
lytic representation of test points.

3 Sandwich models

Viscoelastic treatments typically work in free and
constrained modes [4]. In the free mode, extension of
the viscoelastic layer is induced by the offset of this
layer from a shell neutral plane. In the constrained
mode, the difference in the extension of two stiff lay-
ers induces high shear levels in a thin viscoelastic
layer.

Two main strategies have been considered to
model sandwich structures : building higher order
shell models [8] or connecting multiple elements. The
main problem with the higher order element approach



is that developing good shell elements is very diffi-
cult so that most developments for sandwiches will
not perform as well as state of the art shell elements.

The multiple element strategy is easiest to imple-
ment and has been considered here. To account prop-
erly for shear effects in the viscoelastic layer, the off-
sets between the neutral fiber and the shell surface
must be considered. Rather than defining offsets for
shell elements [9], rigid links between the shell nodes
and the volume element are used here as shown in
figure 2. Although this generates additional nodes (4
node layers for a single constrained layer model), this
strategy accommodates all possible layer configura-
tions. During resolution, the model is smaller since
all viscoelastic volume nodes are constrained.

z

Volume

Shell

Shell

Rigid links

Sandwich shell FEM Model

Figure 2: Shell/volume/shell model for sandwiches

For stiff layers, shells are preferred over volumes
because volume element formulations are sensitive
to shear locking when considering high aspect ratio
(dimensions of the element large compared to thick-
ness).

For soft layers, the use of a volume element both
necessary, because shell elements will typically not
correctly represent high shear through the thickness,
and acceptable, because almost all their energy is as-
sociated with shear so that they will not lock in bend-
ing [10]. Note finally that shear corrections used
in some FEM codes to allow bending representation
with volumes must be turned off to obtain appropriate
results.

Automated layer mesh generation from a selected
area of a nominal shell model is a basic need for the
considered study. Figure 3 shows how the strategy re-
tained by default is to preserve the viscoelastic layer
thickness through the normal to the element rather
than through the node normal which is used to gen-
erate the rigid connections with stiff layers modeled
with shells.

The case also clearly illustrates the non unique-
ness of the choices made here. A proper study of the
domain of validity of various multiple element repre-

sentations still needs to be made. This validity will
in particular depend on layer thickness and material
property ratios.

Figure 3: Layer generation for a shell

For press formed sandwiches, there are further un-
knowns in how the forming process affects the core
thickness and material properties. In particular, most
materials used for their high damping properties are
also very sensitive to static pre-stress. To the authors’
knowledge no significant work has been done on char-
acterizing the actual effect of the forming process on
the final properties of a curved sandwich.

A final difficulty is to deal properly with bound-
ary conditions of the skin layers. Since differential
motion of the skins plays a major role in the effec-
tiveness of the core, the boundary conditions of each
layer has to be considered separately. This is easily
illustrated by the generation of cuts in constraining
layers [11, 9].

4 Numerical solvers

Typical solvers for direct frequency response and
eigenvalue solution are often quite slow and not ap-
propriate when a range of frequencies, temperatures
and designs are to be considered. The principles of
the methods used for this study are summarized in
this section.

4.1 Frequency response

The frequency response of a FEM model is obtained
by solving the frequency domain dynamic equilib-
rium equation

[Z(Ei, s)]{q} = {F (s)} (4)



at various operating points (values of frequencys,
temperatureT and/or pre-stressσ0). While most
FEM codes will handle one instance of problem (4)
easily, typical design studies require computation of a
few thousand frequency points at tens of design points
thus making direct frequency resolution totally im-
practical.

Given a constitutive law described by parameters
Ei(s, T, σ0), one can use the fact that element stiff-
ness matrices depend linearly on those parameters to
build a representation of the dynamic stiffness a linear
combination of constant matrices

Z =
[
Ms2+Ke+

∑
iEi(s, T, σ0)

Kvi(E0)
E0

]
(5)

The ability to manipulate this expression effi-
ciently for arbitrary material representations and both
full and reduced models is the first critical step for
efficient frequency response computations.

The next step is to avoid direct resolution (4) since
the factorization ofZ is expensive. For a givenZ,
iterative solvers already outperform direct ones [12].

But one can make further use of the fact that one
solves many similar problems. Ref. [13] discusses the
adaptation to multiple shifted problems of restarted
GMRES and similar algorithms which are used clas-
sically for the iterative resolution of linear systems
of equations. PSA developed a Component Mode
Synthesis strategy that gives good results [14] but is
not suited for design phases over a relatively wide
frequency range. Automated substructuring strate-
gies, such as described in [15], might be extended to
damped cases. For section 5, one will use the ap-
proach described in Ref. [16] and summarized below.

Since one solves a class of problems, one can con-
sider pre-conditioners that are too expensive for stan-
dard iterative methods. The tangent elastic stiffness

K0 = Re (Z(Ei, 0)) (6)

is a good candidate with the significant advantage of
being real and thus faster to invert.

Spending time to get a good starting guess also
makes sense since it will be used many times. As
proposed in [17], a basis composed of normal modes
associated withK0 and a correction for the viscoelas-
tic loads generated by these shapes. For the subspace

T =
[
φ1:NM (K0) K−1

0 Im(Z(ω0, Ei0))φj

]
, (7)

one estimates the response using a simple model re-
duction

{q̂} ≈ [T ]
[
T TZ(ωj, T, σ0)T

]−1[
T T

]
{F (s)}, (8)

and computes the energy error associated with this ap-
proximation by evaluating the displacement residual

Rd = [K0]
−1[Z(ωj, T, σ0)q̂ − F (s)] (9)

If this residual is large, it can be used to enrich sub-
spaceT until convergence to the exact solution is ob-
tained [16]. Note that similar residual iterations can
be used for complex eigenvalue computations [18]
and that this technique can be seen as a subspace ver-
sion of a conjugate gradient solver usingK0 as a pre-
conditioner [19].

4.2 Eigenvalue extraction

Poles and modes are non-zero solutions of the gener-
alized eigenvalue problem

[Z(Ei, λj)]{ψj} = {0} (10)

Given a material representation, one can distin-
guish two main strategies to solving (10): algebraic
and non-linear solvers.

For algebraic solvers, one considers cases where
theEi have a rational fraction expression. This ap-
proach is also feasible for particular fractional deriva-
tive models [7]. An arbitrary rational fraction (2) that
is proper and has distinct poles, can be represented as
a sum of first order rational fractions

E(s) = E∞ −

 n∑

j=1

Ej

s+ ωj


 (11)

By introducing an intermediate fieldqvj =
− Ej

(s+ωj)
q, one can rewrite (5) as a higher order first

order problem, which for a singleqvj takes the form


 M 0 0

0 M 0
0 0 M


s+


 0 −M 0
Ke+E∞Kv 0 Kv

EjM 0 ωjM









q
sq
qv


 =




0
F
0




(12)
Depending on the operators available in the FEM

code, one may want to use a second order form. The
Anelastic Displacement fieldmethod [20] thus writes
the model as[
s2

[
M 0
0 0

]
+ s

[
0 0
0 Kv

Ej

]

+

[
Ke−E∞Kv Kv

Kv
ωj

Ej
Kv

]] {
q
qvj

}
=

{
F
0

}

(13)



with possibly multipleqvj for each pole in (11).
But this form has no mass associated withqvi

which may be a problem for some solvers. An al-
ternative is the GHM method [21], which represents
E in the form

E(s) = E∞


1 +

n∑
j=1

αj

s2 + 2ζjωjs+ ω2
j


 (14)

and defines fieldsqvj = αj

s2+2ζjωjs+ω2
j
q. Note how-

ever that not all rational functions can be represented
in form (14).

While transformation to a standard constant ma-
trix form allows the use of eigenvalue solvers present
in FEM codes, the increase in the number of degrees
of freedom can be significant and the high connectiv-
ity between elements of the sandwich means that the
sparsity pattern of the considered matrices is rather
full. Strategies for improved solvers that are not too
sensitive to the order augmentation are discussed in
Ref. [18].

Non-linear eigenvalue solvers, search a direct res-
olution of (10). A full search of the complex plane
being impractical for large models, such solvers take
into account the expected pattern of solutions. Since
the considered damping is still relatively low, one can
have meaningful estimates of the complex modes by
defining a reference eigenvalue problem where the
stiffness is constant.

From this initial estimate, continuation tech-
niques [22] or estimation using specific transfer func-
tions [17] can be used to converge to the true solution.
The later solution is the only one applicable for inter-
polated tabular material data which is only known on
the Fourier axis (s = iω) and was used to generate
pole estimates in section 5.

4.3 Solver performance

Two types of solvers need to be considered. Solvers
for design need to be very fast and somewhat accu-
rate. Solvers for verification need to be very reli-
able and not too slow. Design solvers considered here
use a fixed basis such as (7) and optimize the resolu-
tion of (8). Solutions where residual (9) is computed
and one iterates until convergence are typically much
slower and will be calledverification solvers.

Table 1 gives an indication of CPU times for basic
steps of the considered solvers for floor panel consid-
ered in section 5. MSC/NASTRAN version 70.7 [2]
and SDT 5.0 [3] are compared on an SGI Origin 2000

parallel computer. While as expected NASTRAN
runs faster, the speedup is not by orders of magni-
tude (in other cases it is smaller [9]). The Matlab/SDT
environment is thus very appropriate for the selected
objectives of introducing design solvers and testing
verification ones.

Assembly times correspond to the building of ele-
ment matrices and combination to form real mass and
stiffness matrices. Reassembly times correspond to
the computation of (5). In reduced solutions, comput-
ing TTZT is quite long. It is thus preferable to use a
reduced version of (5) where each constant matrix is
reduced separately. This approach is however not fea-
sible for verification solvers which need to compute a
residue. Thus the projection step puts a critical limi-
tation on the ability to optimize verification solvers.

Table 1: CPU times in seconds on a SGI Origin 2000
of some key steps (design A+B of section 5 with
58766 DOFs, N.A. : not applicable)

NAST. SDT
M −K Assembly 45 N.A.
Factorization of K 20 67
F/B substitution (7 vect) 1.85 4.02
75 normal modes 166 730
Z reassembly N.A. 6
ProjectionTTZT N.A. 25
Factorization of Z 77 153
F/B substitution (1 vect) 2.7 4.1

The typical solution considered in section 5 is a
parametric study with variations of frequency and one
or two other parameters (temperature, layer thick-
ness, ...). A design will thus typically consider at
least 1000 frequency points and 10 parametric points.
Even with NASTRAN’s efficient solution in 80 s (not
counting reassembly), such a run would take more
than 9 days and thus be quite unacceptable for de-
sign. By comparison, all operations needed to build
basis (12) (with 152 vectors) are performed in 445
s and a 10 240 design point study runs in 612 s (a
speedup of 1300). For iterative verification solvers,
performance is quite sensitive to the basis size and
increase drastically when large bases need to be en-
riched regularly. Tools to eliminate vectors from a
given basis are thus still needed.

At the nominal design point, design solvers are
typically quite accurate as illustrated in figure 4. For
very different operating conditions, this may however



not always be true for large deviations as illustrated
in figure 10.
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Figure 4: Exact and approximate FRFs for the floor
panel of section 5 (Case B1/Ta)

5 Applications to a floor pannel

Parameters particularly relevant for the design of
damping treatments include

• material properties for a given tempera-
ture/frequency range

• layer thickness

• treatment shape and location.

Understanding how these parameters affect the ef-
fectiveness of the damping treatment is the main dif-
ficulty for optimization as will be illustrated in this
section.

5.1 Model

The proposed tools will be illustrated for the case of
an automotive floor panel shown in figure 5. The
nominal model was meshed by PSA and read in Uni-
versal File Format. After addition of the damping
treatment models (creation of node layers described
in section 3), an elastic eigenvalue computation was
run in MSC/NASTRAN [2] whose element matrices
were imported back into the SDT [3] to run various
computations shown here.

The panel is clamped on its edge and two point
loads, shown in figure 5, are considered for FRF com-
putations. The nominal model contains 7998 nodes
and 7813 elements. A single free layer adds 2195

nodes and 1908 elements. But the model order re-
mains the same since all nodes of the free layer are
slave. A constrained layer model adds three node lay-
ers (6595 nodes) and two element layers (3816 ele-
ments). The model size increases by6 × 2195 =
13170 DOFs.

The initial model used eight viscoelastic damp-
ing treatment areas shown in gray. Two additional
patches, indicated by arrows were also considered in
configurations not show here.

Additional patches

F

F

Figure 5: FE model of an automotive floor pannel

The following designs were considered:

• A1 : a free layer treatment (working in exten-
sion) covering the nominal patches with a nomi-
nal 0.67 mm steel layer and a 2.47 mm viscoelas-
tic layer;

• B1 : a constrained layer treatment with a nom-
inal 0.67 mm steel layer, a 50µm viscoelastic
layer and a 0.3 mm steel constraining layer;

5.2 Material selection

When selecting a material to be used in a viscoelastic
damping treatment, it is essential to understand how
the material behaves in the temperature/frequency
range of interest. Before actually defining a geometry,
one can display reduced frequency bands on the mas-
ter modulus curve. For example, figure 6 illustrates
that material SM50e has low stiffness and loss factor
for low frequency (10-200 Hz) near room tempera-
ture operation. The same material would be efficient
for sub-zero temperatures or a higher frequency band
(5-20 kHz).



10
1

10
2

10
3

10
7

Reduced frequency

R
e(

G
) 

P
a

0

10
20

3040

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

Reduced frequency

Lo
ss

 fa
ct

or

0

10

20
30

40

Figure 6: Nomogram of a viscoelastic material
SM50e with frequency bands associated to the 10-200
Hz range at various temperatures.

Figure 7 illustrates the same dependence for a
much stiffer material that will be considered for un-
constrained layer designs in section 5.4. Now the
operating range of interest is above loss factor peak,
so that reducing temperature will actually decrease
damping. The smaller band overlap also illustrates
a higher sensitivity to operating conditions.
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Once a particular design is selected, it is impor-
tant to validate its robustness to temperature varia-
tions. This can be done by computing FRFs for a
frequency/temperature range as shown in figure 8.
While an improvement can be noticed around20oC
the damping here is quite low and the plot is thus dif-
ficult to interpret.
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Figure 8: FRFs for a frequency/temperature range
(Case B1/Ta).

Pole tracking as shown in figure 9 is a useful alter-
native. For the considered case it confirms that indeed
optimal damping is achieved near20oC.
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Figure 9: Pole tracking on the 0+40oC range (Case
B1/Ta)

Care must however be taken in using fixed basis
reduced models over a wide parametric range. Fig-
ure 10 for example shows the classical temperature
optimum but also a strong increase of damping at
very low temperatures. This effect disappears when
changing the tangent elastic stiffness (6) to reflect a
much higher nominal value of the viscoelastic layer.
Indicators to warn of likely result inaccuracy are thus
needed as intermediates between design and verifica-
tion solvers.
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(Case B1/SM50e)



5.3 Thickness optimization

An exact study of the influence of thickness varia-
tions is an enormous task since it implies remeshing
of the layers and full solution of the frequency re-
sponse and/or modes. To get a first cut at the task,
one can linearize the influence of thickness on the el-
ement matrices.

For a constrained viscoelastic configuration, the
constrained layer essentially works in shear. Shear
stiffness being inversely proportional to thickness,
one can approximate the stiffness contribution of a
constrained layer of another thickness by

Kvi(hv , Ei) ≈ hv0

hv

Ei(s, T, σ0)
E0

Kvi(E0) (15)

Similarly, for relatively low constraining layer
thickness, the energy is essentially associated to the
layer extension and thus proportional to thickness.
One thus has, for an elastic constraining layer

Kci(hc) ≈ hc

hc0
Kci(Ei) (16)

Based on these approximations, one can compute
the evolution of poles and FRFs with thickness. Fig-
ure 11 shows the evolution of the damping of 4 poles
as a function of layer thickness for patch configu-
ration B1, material TA at 20oC (nominal viscoelas-
tic layer athv0 = 50µm and constraining athc0 =
.3mm). This map indicates that dissipation could be
augmented by increasinghc to .5or.7mm. For hv

the50µm nominal seems reasonable but the optimum
differs for each pole (and the reliability of estimates
at higher frequencies can be questioned).
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Figure 11: Influence of layer thickness on the damp-
ing ratio of pole 1.

Figure 12 shows that a direct exploitation of the
responses computed for this range of layer thickness

is difficult. The retained objective function is thus the
RMS response of the acceleration transfer functions
over the 10-200 Hz range which is of interest.
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The map of RMS responses in figure 13 con-
firms the need to increase the constraining layer thick-
ness (to .5mm). For the viscoelastic layer thickness
the variations are quite low which confirms the pole
tracking indications.
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acceleration for range 10-200 Hz.

5.4 Treatment nature

This section compares three designs (free layer A1,
constrained layer B1 with TA and SM viscoelastic
materials). Figure 14 shows the difficulty of com-
paring designs from FRF plots. While third octave
bands give easier interpretation, the temperature axis
is missing. Temperature effects are shown in fig-
ure 15 where one sees that design B1-Ta is actually
as good as design A1 at room temperature while the
mass added by the treatment is 50% less.
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Figure 14: RMS responses for various designs. FRF
and third octave averages.
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Figure 15: RMS responses for various designs.

6 Conclusion

This paper illustrated an ongoing effort to develop
effective design tools to select damping treatments.
While enormous progress has been made in the abil-
ity to handle models of sizes interesting for design,
many questions remain to be answered.

For mesh generation, a tool was created to gen-
erate single and multiple layer models of shells and
thin volumes connected by rigid links to represent the
actual position of the bond between layers. But sys-
tematic studies of the validity of shell/volume/shell
models and of possible evolutions of material proper-
ties during sandwich forming process are still needed.

For design solvers, fixed basis reduced approxi-
mations are the only ones likely to allow coverage of

a large design space. The actual range of accuracy of
such solutions is however difficult to establish, so that
low cost indicators warning of probable solution in-
accuracy are clearly needed. For verification solvers,
optimizing combinations of substructuring and itera-
tive tools will provide much needed improvement to
the methods currently available.

Finally, the availability of these tools will enhance
the ability to select among many possible technical
choices. Developing standardized procedures help
this process is another area needing a major efforts.
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