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ABSTRACT

Errors in predicted modal behavior can result from modeling errors or actual variations of the properties due to
flight conditions, change in payload or manufacturing tolerances. Launcher models used by EADS-ST for modal analysis
studies have a nominal definition and adaptations for each flight. Experimental modal analysis and model updating
are used to validate the nominal model giving very satisfactory results for the considered Ariane 5 applications. Given
a test validated model, one then seeks to exploit an uncertainty characterization on physical parameters to predict
uncertainties on modal properties. These predictions are then used for dynamic response validation and control design.
Predictions are obtained using reanalysis techniques thus allowing very fast estimates within a design hypercube while
having an error evaluation strategy that is detailed. Model reduction is obtained using the multi-model approach and
possible choices in implementation are discussed. The results are illustrated on a model of upper cryogenic stage of
Ariane 5.

1 INTRODUCTION

Model updating methods use test/analysis correlation to validate the properties of a model and possibly correct some of its parameters.
Variability studies seek to exploit a characterization of uncertainties on model parameters to predict uncertainties on modal properties.
Such predictions can then be used for dynamic design and control.

Both updating and uncertainty propagation use parametric studies that are very demanding in terms of computational time. Reanal-

ysis techniques [1,2,3] are typically considered to obtain approximations in an acceptable time. Section 2 summarizes, the principles

of the Residue Iteration method [4], which introduces an error control mechanism in reanalysis techniques.

Section 3 then considers an application to the model updating of the Upper Stage of the Ariane 5 launcher. Section 4 finally
discusses, for the same model, uncertainty propagation and ideas on how to use the results of such computations.

2 RESIDUE ITERATION METHOD

Reanalysis techniques [1,2,3] build approximation bases that span a subspace where one seeks solutions to a parametric family of
problems. Many methods to build bases have been developed for eigenvalue computations, substructuring, sensitivity analyses, ...
But the problem specific nature of these methods limits their usefulness.

The Residue Iteration (RI) method, outlined in figure 1, gives a general framework to extend reanalysis techniques while giving an
error control and enrichment mechanism.

Starting with an initial basis T (o) obtained with a classical reanalysis technique, one computes an approximate solution and defines
a dynamic residual characterizing the error level for the approximate solution. This residual is very classical in iterative methods.
For example, the residual associated with the computation of a normal mode {φj(p)}, ωj(p), is given by

RL({φj(p)}, ωj(p), p) =
[
K(p) − ω2

j M(p)
]
{φj(p)} (1)

To the load residual RL, one associates a displacement residual RD =
[
K̂

]−1
RL where K̂ is usually taken to be the nominal

stiffness matrix and can be seen as a preconditioner [4].
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Figure 1: Principle of enrichment strategy of the Residue Iteration Method [4].

The displacement residual leads to a relative error in strain energy

ε({φj(p)}, ωj(p), p) =
‖RD‖K(p0)

‖φj(p)‖K(p0)

(2)

and also gives a new direction to enrich the subspace by using T (k+1) =
[
T (k) R

(k)
D

]
. In practice, an orthonormalization must be

performed before appending R
(k)
D to T (k). Error computations shown in section 4.5 are based on this technique.

This approach has been shown to be efficient for the computation of normal and complex modes [4], multiple field problems found

in fluid structure interaction and updating [5,6], as well as direct frequency response and sensitivities [7,4].

3 MODEL UPDATING

Model updating is a parametric optimization of model parameters in order to minimize test/analysis distance. Many questions
remain opened in this area. In particular one can cite

• the effect of equivalent representations of joints or parts with internal structure which are very often used to simplify the

representations of some parts [8].

• the need to aggregate the parameters affecting various elements to obtain global parameters that are sufficiently influent to
be estimated during the updating phase. The problem of default detection will be illustrated in the oral presentation.

• the effect of residual errors, which for practical reasons, one does not wish to correct in the model.



To answer all those questions, one needs to have easy access to a whole panel of tools : identification methods, topology correlation,
test/analysis correlation criteria, parameter selection methods, reanalysis for large parameterized models. The last item in particular
is still not widely available for large industrial models and motivated the RI method developments outlined in section 2.

The updating of the Ariane 5 upper cryogenic stage (ESC-A) was performed in [4]. As shown in figure 2, the initial correlation is
quite good as soon as one accounts for the dissymmetry which induces a rotation of the main bending planes.
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Figure 2: TEST vs. FEM MAC. Initial without and with accounting for bending plane rotation.

The updating improved correlation of the 15 retained modes with no deterioration of correlation for the following modes (see details
in table 1. It appeared however that most of the remaining difference could be explained by errors on the localization of payload
center of gravity below 5 cm, which is a very realistic value.

4 UNCERTAINTY PROPAGATION IN MODAL ANALYSIS

Launch vehicle models used by EADS-ST for modal analysis have a nominal definition, which is then adapted for each flight. Here
one seeks to exploit a characterization of uncertainties on model parameters in order to predict uncertainties on modal properties.
These uncertainties can then be used in dynamic design and control synthesis.

The main results of [9] are summarized here. Section 4.1 lists classical representations used to account for uncertainties in definition,
modeling and manufacturing processes. Section 4.2 details an original implementation of reanalysis techniques adapted for the
prediction of modal properties inside a parametric hypercube. The use of reanalysis is mandated for statistical studies and one pays
particular attention to error control on the predictions. The following sections apply the proposed tools to the case of the dynamic
model of the Ariane 5 Upper Cryogenic Stage.

4.1 Modelling of uncertainties

Mechanical structures are, in practice, described by a set of geometric and material properties. An uncertainty model in the space
of physical parameters is thus a characterization of possible changes in the model parameters (geometry, constitutive material
properties, choice of element formulation, etc.) One can formally write a nominal model and possible variations

p = p0 + ∆p (3)

If the possible parameters p are described in terms of their probability distribution, one talks about a stochastic model. The
propagation of probability distributions on physical parameters to probability distributions on modal properties is the subject of this
study.

On a given mesh, the properties of each element can theoretically vary independently. In practice however, there is a strong
correlation between values at various points. A realistic handling of parameter uncertainties thus uses a small number of uncertainty
functions P (x) describing how the properties vary as a function of the position or element number x. This results in a description



∆f/f MAC ∆f/f MAC
initial initial final final

1.82 (%) 99 1.62(%) 99
0.18 99 0.03 99

-0.58 100 -0.59 100

-7.63 99 -7.62 99
-0.59 92 -0.21 95
-0.65 93 0.03 93

-0.08 96 0.25 97
-0.76 97 0.62 94

2.64 91 2.57 98
-2.34 92 -0.80 97
-3.73 92 -3.54 98
-0.00 97 0.09 97

0.73 89 0.73 96
-0.99 83 -0.70 92
-0.76 93 -0.74 93

0.17 96 0.24 96

1.76 75 1.77 76
-4.54 72 -4.54 72

-1.88 67 -1.88 66

-3.56 69 -3.56 69
1.38 77 1.44 79

0.61 76 0.81 71

38.50 59 38.47 51
-13.94 25 -13.84 24

-2.66 41 -3.31 33

TABLE 1: Correlation before and after updating

of p as a linear combination of a small number of aggregated parameters p̃

p(x) =

NPI∑
k=1

P (x)p̃ (4)

which are usually assumed to be uncorrelated. The aggregation of element mass and stiffness parameters in (6) corresponds to the
choice of fields P (x) equal to one on elements within a group and zero elsewhere.

The building of P (x) fields based on correlation distances for random property fields has been well studied in the literature on

stochastic finite elements [10]. A representation of spatial variations of an auto-regressive field, leads to a decomposition of spatial
variations of the associated operator, still of the form (4).

In practice, the computation of element matrices for many different values of parameters has a high numerical cost. One is thus
usually limited to cases where the global matrices can be expressed as linear combinations of constant matrices with variable
coefficients. The constant matrices are often taken to be element matrices, thus leading to

[M(p)] =
∑
e,k

αk(p)[Me
k ] [K(p)] =

∑
e,k

βk(p)[Ke
k] (5)

where element matrices are grouped in selections (ei, ej) with associated mass pi or stiffness parameters pj . Thus for a mass
parameter pi associated with element selection ei, one has

αk, βk = 1 for k /∈ ei or ej

αk = pi for k ∈ ei

βk = pj for k ∈ ej

(6)

This representation easily accounts for variations in constitutive relations (modulus, density, shell thickness, etc.). Some alternatives
exist but are not widely considered.



The choice of uncertain parameters and their aggregation is a key aspect of any uncertainty study. The basic assumption is that
the initial FEM mesh can really be used to represent all the possible responses of the family of models being considered.

This assumption, although unavoidable, is of doubtful validity when uncertainties are associated with simplifying assumptions in
the model. The use of detailed local models seems the only valid procedure to establish an uncertainty model in this case. Such
validations are often considered, but they require significant engineering time. There will thus always be a compromise.

The last difficulty is to build an uncertainty model for each parameter. In the present study, uncertainty bounds were generated
based on static tests on the launch vehicle. But there is no consistent justification for why this is a valid procedure. Model updating

results [4] do not currently give a procedure to build an uncertainty model, in particular because of remaining bias in the model.
The subject of building an uncertainty model thus remains a very open subject that has not been addressed in this study.

The last assumption used here is that probability distributions are uniform over an interval. Using a bounded support for the probability
distribution is needed for the error control procedure shown in the next section, but the form of the probability distribution is an
arbitrary design choice.

4.2 Propagation through reanalysis techniques

As will be shown in section 4.4, variations of modal properties are quite non linear. The use of perturbation methods, even of high

order, thus does not yield sufficient accuracy. Reanalysis techniques [1,2,3] will thus be preferred here.

These methods seek approximate solutions in a subspace T independent of p by solving for each value of p

[[
T T K(p)T

]
− ω2

jR(p)
[
T T M(p)T

]]
{φjR(p)} = {0} (7)

As long as K and M are a matrix polynomials in p, one can project the matrix coefficients once and for all. The resolution of (7)
can thus be very fast. Restitution of responses on all DOFs is then simply given by {φj} = [T ]{φjR}.
The fundamental question is the procedure to build a basis T giving good predictions for all desired values of p. A few classical
solutions should be considered

• the basis of nominal modes T = [φ(p0)1:NM ] [1],

• the enrichment of this basis by inclusion of mode shape sensitivities [2] (for their computation one can see [11]), thus
T =

[
φ(po)

∂φ
∂pi

]

• the multi-model approach [2] exact modes at a number of design points pi are retained, thus T = [φ(p1) φ(pNE)]

For a basis of nominal modes, predictions are valid for a fairly narrow parametric zone because the reduction basis does not account

for actual model variations [2]. By including sensitivities, one significantly extends the range of validity but this range is not easily
controlled. For a multi-model basis, mode shapes predictions are exact for the retained values pi, i = 1 : NE and fairly good
between those points. In the rest of the paper, one considers a basis where one keeps the nominal modes and a number of other
design points.

Building a multi-model reduction basis requires exact computations at target design points. The choice of these points is an

important problem treated in the design of experiments [12].

As shown in figure 3 the uncertainty intervals are assumed to form an hypercube. A classical experiment would evaluate objectives
at all corners, thus leading to 2NP evaluations.

Building a multi-model basis using this full experiment is not realistic for the applications of interest. For the ESC-A model, keeping
15 modes uses 13 MB. Keeping modes for 210 corners of a 10 parameter hypercube would require 13 GB which is not realistic both
in terms of disk space and computational time.

The retained experiment uses the exact NP + 1 responses at the face centers. Which is much more practical. This however
introduces an arbitrary selection of the upper face of the hypercube. In practice, one thus verifies the accuracy of reanalysis results
on the opposite face using the error evaluation technique detailed section 2.



Figure 3: Positions of exact mode evaluations in parameter space. a) Hypercube face center. b) Classical 2NP factorial
plan.

The basis combining modes computed at each design point is generally poorly conditioned (the vectors are very collinear). One
thus uses a complete reorthonormalization of this basis with respect to the nominal mass and stiffness matrices (the need to this

orthonormalization is discussed in more details in [4]).

Finally, the uncertainty model to be propagated being defined by the parametric hypercube pi ∈
[
pmin

i pmax
i

]
, it is important to

validate the precision of reanalysis predictions on the full domain. Possible strategies on the selection of points where this accuracy
is estimated will be discussed in section 4.5.

4.3 Objectives and parameters

Quantities of interest in this study are modal frequencies and excitabilities. Excitability is defined by the value of jth mode
contribution at its resonance frequency, that is

ej =
[c]{φj}{φj}T [b]

2ζjω2
j ω

(8)

For applications, one considered the first 15 modes and 6 excitabilities associated with the transfer between engine gimbal joint and
inertial measurements (SRI) in roll (θx to θx), pitch (uz to θy), and yaw (uy to θz).

One will see later that transmissibilities undergo strong variations during modal crossing. It thus appeared important to use concepts
derived from MIMO control design methodologies.

Rather than considering individual transmissibilities, one can consider the 3 inputs (engine θx, uz, uy) and 6 outputs (rotations at
both SRI). ej then is a 6 × 3 matrix whose singular values can be used as objectives since they are much more stable. Similarly for

close modes, one can consider the sum of transmissibilities for nearby modes [13].

The number of computations increasing exponentially with the number of parameters, it is important to only retain parameters that
are really necessary. In the initial decomposition into substructures shown in figure 4 a single multiplicative stiffness parameter is
retained.



Figure 4: Model decomposition into sub-structures.

This is clearly a rough approximation but finding a logical basis for any aggregation of parameters is difficult. Engineering judgment
and analysis of static test results led to retain 10 parameters shown in table 2.

TABLE 2: Paramètres retenus et variations maximales sur les 15 premières fréquences

# Name typ cur. min max max ∆f

1 461 ACU Basse k 1 0.8 1.2 11 % (3)

2 430 Sylda5 court k 1 0.9 1.1 6 % (12)
3 530 IS Skirt k 1 0.9 1.1 2 % (15)

4 RLH2 upper k 1 0.82 1.07 2 % (9)

5 RLH2 lower k 1 0.82 1.07 1 % (8)
6 410 Case C k 1 0.9 1.1 1 % (3)

7 481 Cone PPF k 1 0.95 1.15 0 % (3)

8 520 BMA k 1 0.95 1.05 1 % (7)
9 ITS k 1 0.95 2.2 11 % (7)

10 570 Saro k 1.12 1.12 1.27 1 % (6)

Analysis of target mode sensitivities was then used to allow further parameter elimination [9]. The end result of these analyzes is a
table giving, for each target modes, the important parameters by order of importance.

4.4 Propagation analyses

Figure 5a shows evolutions of the first mode frequency. The figure shows the edges of the dimension 4 hypercube associated with
parameters 2,3,4,6 as a function of the two parameters inducing the largest variations.

This display is generated using 160 evaluations, which is much below a coverage of the hypercube using random or structured
experiments necessary for the constitution of histograms shown in figure 5b, while still giving an excellent indication of the range of



variations for the objectives (frequency or excitability).

The first few modes are favorable cases, because they do not lead to modal crossing phenomena. Similar results are obtained for
modes that do not show strong sensitivity to parameters. In other cases, one has difficulties illustrated for modes 5-7 in figure 6.
There, one clearly sees that the range of variation of ITS properties can lead to two mode crossings. Such behavior could not be
reproduced by perturbations or polynomial response surfaces. One will note that reanalysis can be seen as the creation of a response
surface characterized by a rational fraction with the inverse of a polynomial dynamic stiffness.
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Figure 5: a) Evolution of mode 1 frequency on the edges of a 4 parameter hypercube. b) Corresponding histograms
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Figure 6: Evolution of frequencies and excitabilities during crossing of modes 5:7 for changes in properties of ITS (Inter
Tank Struts). o exact values.

4.5 Computational strategies and error control

For the 105 000 DOF model of ESC-A, the evaluation of 15 modes at a parametric point is performed in 80s (PIII 1 GHz Linux,

SDT [14] with spfmex static solver). A propagation study requiring several thousand points, find a compromise between accuracy
and computational time is an obligation.

For the considered problem, building the reanalysis basis requires 500 s (for 6 full order solution) and reanalysis itself is approximately
1000 faster than a full order solve. The main factor influencing that acceleration is the size of the reanalysis basis, which depends

on the number of parameters and the selection of target modes. One thus shows in [9] that is possible to speed computations up
by focusing on a small number of target modes that need not be the first few.

The error evaluation strategy shown in section 4.2 is here only four times faster than an exact result. This is in great part due to
the heavy cost of matrix / vector product for the mass matrix that has very large blocks linked to added mass for the fluids. Error
evaluation could still be significantly optimized but gaining orders of magnitude is unlikely.

To control error, the initial idea was to select a richer experiment design than for the reanalysis building. A first control is actually
performed by checking accuracy levels on negative face centers of the hypercube of figure 3. This check is coupled with the initial
sensitivity analysis on parameters.



This first verification does not however validate the effects of correlated variations of multiple parameters. For a small number of

parameters, the 2NP factorial experiment (see [12]) associated with the corners of the hypercube gives a good confidence in results.
But beyond ten parameters the cost associated with this check becomes prohibitive.

The retained strategy is to check error on points of hypercube edges shown in figure 5a where at least one of the objective scalars
reaches an extremum. For the application extrema of frequency and transmissibility to SRI1 of modes 5-6-7, a number of extrema
are reached at the same parametric points which leads to only 16 error evaluations.
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Figure 7 shows that errors are small when transmissibilities are important. The few points where transmissibilities are not very small
and the error visible could be used to enrich the reanalysis basis. It is interesting to note that the relative error on strain energy is
always small (< 10−6), which shows that this error is not a good indicator of errors on transmissibilities (local error on shape).

5 CONCLUSIONS AND PERSPECTIVES

A number of new results obtained during a collaboration between EADS-ST and Ecole Centrale Paris on the theme of model updating
and uncertainty modeling were summarized here.

The main theoretical development is the residue iteration method, which generalizes reanalysis methods and provides a class of
iterative solvers that are well suited for advanced problems in modal analysis. For applications in uncertainty propagation

• building of bases using the multi-model approach seems the most suited for a control of prediction error levels;

• the fundamental limit of the proposed approach is linked to the size of the retained bases. One can however control that size
by eliminating parameters or focusing on a restricted number of target modes.

For model updating, most of the tools developed are now available in the SDT [14] environment. The initial correlation of the
ESC-A model being very good, updating only allowed the correction of a few parameters. The main limitation of the model is a
poor accounting for payload dissymmetry. One thus has a situation where the model cannot accurately represent reality without
introducing significant modifications that could not easily be represented as updating parameters.

In the subjects that remain open, one will note the need to refine the strategy used to build an uncertainty model based on static
tests of the structures; to introduce new parameters such as payload dissymmetry; to improve sensitive parameter selection tools
and controlled basis enrichment; to define more precisely objectives that are pertinent for dynamic design; to improve the handling
of mode crossing problems.
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