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ABSTRACT

Constrained viscoelastic layers have traditionally been con-
sidered as damping enhancement mechanisms. The re-
cent large scale availability of steel/viscoelastic/steel sand-
wich plates has however renewed the need for analysis
methods allowing accurate predictions of their dynamic re-
sponse. A modeling methodology is presented that uses ba-
sic shell and solid elements in conjunction with experimen-
tally derived viscoelastic constitutive laws. The choice not
to use parametric models (rational fraction, fractional deriva-
tives, ...), while simplifying model characterization and allow-
ing the use of standard finite element codes, leads to mod-
els that are really frequency dependent and are thus associ-
ated with very high computational costs. Appropriate model
reduction, error estimation and pole estimation methods are
thus introduced with care taken to allow studies of the fre-
quency/temperature dependence. The proposed methodol-
ogy is validated for both flat and curved test samples of Usinor

Solconfort steel/viscoelastic/steel sandwiches.

1 INTRODUCTION

Constrained viscoelastic layers have traditionally been con-
sidered as damping enhancement mechanisms. The re-
cent large scale availability of steel/viscoelastic/steel sand-
wich plates has however renewed the need for analysis meth-
ods allowing accurate predictions of their dynamic response.

Rather than seeking time domain methods allowing the use of
standard complex eigenvalue solvers (see [5−7] for example),
it was chosen to work in the frequency domain with experi-
mentally derived viscoelastic constitutive laws and the motiva-
tion for doing so is discussed in 2.1.

Section 2.2 summarizes previous results [9] on the validity of
the shell-solid-shell model used to represent sandwiches.

While the exact solution can be computed for a few fre-
quency/temperature points, design studies for industrial struc-
tures require many points which would take days or weeks
of CPU time. Reduction methods generalizing modal analy-
sis methods to the case of frequency dependent matrices are
thus essential. Section 3 summarizes methods proposed in

earlier work and addresses error evaluation and pole estima-
tion issues.

The application section 4 first presents an excellent
test/analysis correlation for a flat sample of Usinor Solconfort.
The validity of the proposed computationnal methodology is
then evaluated for the model of a press-formed cup with an
emphasis on accurately predicting responses on large tem-
perature ranges.

2 MODELING OF METAL/VISCOELASTIC/METAL
SANDWICH PLATES

2.1 Characterization of viscoelastic materials

Viscoelastic materials are characterized by a complex fre-
quency and temperature dependent complex modulus E as
usual in linear viscoelasticity [1, 2]. Considering the relation
between frequency and temperature, the storage modulus E ′

and the loss factor η are thus given as a function of ωαT ,
where αT , the temperature shift factor, is an absolute func-
tion of temperature [3]

E(ω,T ) = E′(ωαT )(1 + jη(ωαT )) (1)

The viscoelastic properties are thus fully characterized by a
master curve at a nominal temperature and a law for the evo-
lution of αT . The viscoelastic considered in this study is the
TA resin considered by Usinor for the production of Solconfort
sandwich steel. The master curve is shown in figure 1 and a
model of the form Log(αT ) = −c1(T − T0)/(T − T∞) is used
for the temperature shift factor. This paper considers a non-
parametric description of the complex modulus which allows
the direct use of an experimentally derived master curve. To
obtain the modulus at an arbitrary frequency/temperature pair,
ωαT is first computed and the modulus is estimated using the
two nearest points of the master curve and a log-scale linear
interpolation. This clearly implies preprocessing of the master
curve raw data to obtain a smooth curve, which is equivalent
to using higher order interpolation.

Parametric descriptions of the master curves are also fairly
classical. Thus the standard viscoelastic solid [1] uses

E(s) = E0
1 + βs

1 + αs
(2)
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Figure 1: Solconfort-TA master curve at 20◦C

where α is known as the constant of stress relaxation and β is
a constant of the model. However, the use of this model is lim-
ited by its incapacity to describe a real material behavior over
a wide frequency range. Well known alternatives to the stan-
dard viscoelastic solid, are the fractional derivative model [4]

E(s) = E0

1 +
∑

i

ai(s)
βi

1 +
∑

i

bi(s)
αi

, with 0 < αn, βn < 1 (3)

known for its wide frequency range of validity but difficult to
represent in the time domain. The GHM (from Golla-Hughes-
McTavish [5, 6])

sG(s) = G0

(
1 +

∑
i

αi
s(s+2ζiω̂i)

s2+2ζiω̂is+ω̂2
i

)
, (4)

and ADF (Anelastic Displacement Fields [7])

G(s) = G0

(
1 +

∑
i

∆i
s

Ωi+s

)
. (5)

have published time domain equivalents and have been used
in many applications.

These applications rarely acknowledge that both the GHM and
ADF models use constitutive laws that correspond to chains of
3 parameter standard viscoelastic models (called Kelvin chain
models in [1]) so that the two methods mostly differ in how
they formulate the equivalent time domain representation (us-
ing the Kelvin chain model, one can easily determine when
they are expected to give strictly identical predictions).

The logic for not using the parametric approach is the follow-
ing. Industrial size models have large number of Degrees
of Freedom (DOFs), so that vibration studies are almost al-
ways performed using modal bases. Expressing parametric

viscoelastic constitutive laws in the time domain, multiplies
the number of DOFs in the model at least by the number of
time derivatives / real poles in the constitutive law. This leads
to huge models even for fairly trivial structures, requires the
experimental determination of the coefficients, does not ap-
ply for fractional derivative models, and requires the use of
complex eigenvalue solvers with repeated solutions needed
at each temperature.

Directly working in the frequency domain, with arbitrary con-
stitutive laws, implies that no algorithm is readily available to
compute modes but leads to much smaller models. Comput-
ing the exact solution at each frequency/temperature point
is still not acceptable so that advances in model reduction
methods are needed and discussed in section 3. Building
a time domain modal model is a second difficulty that is not
addressed in this paper.

2.2 The 3Layer shell/solid/shell finite element model

The modeling of sandwich plates with two stiff shells bonded
together by a very soft viscoelastic material is a difficult
subject. Composite plate models cannot be used because
they fail to represent the strong variations of in plane strains
through the thickness. Developing a specific element is a
tough subject and will not be easily implemented in commer-
cial FEM codes. As shown in figure 2, the approach retained
here is to use two classical shell elements for the stiff layers
and a standard volume element for the viscoelastic material.
For the stiff layers, the element nodes are off-set to the plane
in contact with the viscoelastic instead of the standard mid-
plane. This results in coincident nodes and thus the proper
coupling.

This approach doubles the number of DOFs that would be
used for a classical thick shell formulation, but the addition of
DOFs is compensated by reduction techniques described in
section 3. Standard meshes for the stiff layers lead to very

Sandwich plate Finite Element Model
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Figure 2: The 3L shell/solid/shell element construction

poor aspect ratios for the volume element so that one can
question the validity of its formulation. In particular, when us-
ing 4 node shells and thus 8 node volumes, it is known that
8 node volumes have a tendency to lock when subjected to
bending. The experience of the authors, illustrated in Ref. [9],
is that, for the applications of interest where the core is very
much softer than sides, the energy in the viscoelastic is almost
exclusively linked to shear deformation. The element does
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lock but this locking has no impact on the predicted response.
In this application, it is thus acceptable to use volumes with
very poor aspect ratios.

For this study, the quad4 thick shell element of the SDT [8] is
used. This element uses a Q4WT formulation for the membrane
and a Q4Gamma formulation for bending. The 3L model thus
leads to a 4-node/48-DOF element defined in the upper or
lower plane of the viscoelastic layer.

3 REDUCTION METHODS FOR VISCOELASTIC MOD-
ELS

This section describes model reduction techniques to obtain
reasonable computational costs and used in this study. For
the examples, one will only consider a single type of viscoelas-
tic material while the rest of the structure is assumed to be
elastic. The form of the input/output model is thus[

−Mω2 +Ke + Ev(ω)Kv

]
{q(ω)} = [b]{u(ω)}

{y(ω)} = [c]{q(ω)} (6)

where M , the mass matrix, Ke, the elastic part of the stiff-
ness matrix, and Kv, the viscoelastic part for a unit Young’s
modulus Ev, are of size N ×N .

3.1 Basic model projection

Reduced model approaches compute frequency responses by
projecting the model (6) on a basis [T ], with the assumption
that {q} � [T ]{qR}. The projection of model on the consid-
ered basis leads to a low order model (as many generalized
DOFs as independent columns in the matrix T )[

−T TMTω2 + T TK(ω)T
]
{qR(ω)} =

[
T T b

]
{u(ω)}

{y(ω)} = [c]{qR(ω)} (7)

For elastic models (real and frequency independent stiffness
matrix), the standard reduction basis combines normal modes
and a static correction to the considered load

[
K−1[b]

]
.

Normal modes are solution of the eigenvalue problem[
−Mω2

j +K
]
φj = 0. (8)

and one retains the low frequency modes covering the fre-
quency range of interest. The static correction

[
K−1[b]

]
is

introduced to ensure a correct representation of the low fre-
quency contribution of truncated high frequency modes.

This projection when applied to a viscously damped model
(K(ω) = K + iωC) leads to diagonal mass and stiffness
matrices (orthogonality conditions associated to the eigen-
value problem (8) and a fully populated damping matrix. The
assumptions of proportional or modal damping use models
where off-diagonal terms in T TCT are zero. These assump-
tions are valid for low damping [10, 11] and are thus of little in-
terest here.

For cases where the real part of the stiffness is frequency and
temperature dependent, the projection (7) can still be used

directly but the standard basis with normal modes and static
correction is insufficient to obtain correct predictions.

3.2 Reduction of viscoelastic models

As the normal modes are not defined for a frequency depen-
dent stiffness matrix, the projection described in section 3.1
can be applied by replacing the normal modes by either a
multi-model approach [12] or the pseudo-normal modes [13].
The multi-model approach consists in taking normal modes
computed for the value of the real part of the stiffness at one
or two frequencies [12], for instance[

Φ(E(ωmin)) Φ(E(ωmax))
]

(9)

The pseudo-normal modes φ̃j=1,NR are defined as the solu-
tions of the generalized eigenvalue problem[

−Mω̃2
j + Re(K(ω̃j))

]
φ̃j = 0 (10)

As for standard spectral approximations, keeping an approxi-
mation of the contribution of high frequency modes can be im-
portant. The bases (9) or (10) thus need to be complemented
by a term similar to the static correction used for elastic struc-
tures. To introduce this correction, one defines a reference
stiffness K0 (taken here to be [K0] = [Ke + Re(E(ωmax))Kv]
with no very convincing justification) and adds to the basis a
static correction defined by

[TA] = [K0]
−1[b]. (11)

Damping effects are significant in the considered applications,
so that not taking into account the imaginary part of the dy-
namic stiffness may limit the achievable accuracy. A first or-
der correction is thus added to the initial basis. If the normal
modes are used, one computes the static response to the load
generated by the imaginary part of the stiffness when exciting
a given pseudo-normal mode[

T̃Cj

]
= [Ke + Re(E(ω̃j))Kv]−1[Kv ]

{
φ̃j

}
. (12)

If a multi-model is used, ones computes the static response to
the load generated by the imaginary part of the stiffness when
exciting the set of chosen normal modes for the real part of a
constant stiffness

[TC ] = [K0]
−1[Kv][Φ(E(ωmin)) Φ(E(ωmax))]. (13)

To generate a unique basis allowing the predictions of FRFs
for different temperatures, it is clear that the pseudo-normal
modes cannot be used anymore. The multi-model method is
thus retained.

3.3 Error estimation

As for all linear system, the resolution of the first equation of
model (6) allows to build the residue characteristic of the er-
ror made with the approximation of the true solution by the
reduced solution {qR}. For the reduced solution

{qR(ω)} =
[
T TZ(ω)T

]−1[
T T b

]
{u(ω)} (14)
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the residue, which gives a direct indication of the error associ-
ated with the reduced solution, is expressed as

R̂(ω) = [Z(ω)][T ]{qR(ω)} − [b]{u(ω)} (15)

In practice, one uses u(ω) = 1. An important issue for an error
estimation is to choose a norm for the residue. The euclidean
norm is not physically based and would be sensitive to unit
or mesh density changes. Strain or kinetic energy are the
standard, physically motivated choices [?]. Since the residue
(15) has the dimension of an effort, one must associate it with
a displacement. To do so, one considers a reference stiffness
[K0] (here the real part of the stiffness at low moduli) and
computes the static response to the residue

R(ω) = [K0]
−1R̂(ω) (16)

The error estimate is then the ratio of the strain energy of the
displacement residue (16) and that of the response

ε(w, T, b) =

{
R
}T

[K0]{R}{
TqR

}T
[K0]{TqR}

(17)

An iterative methodology to increase the accuracy of any re-
duction basis is to enrich the initial basis with the displacement
residues [R][

T k+1
]

=
[
T k Re(Rselected) Im(Rselected)

]
(18)

where a methodology to select the frequency/temperature
pairs at which the residues are computed is clearly needed.

The approach retained in this paper is close to the idea of
modal filters. The reduction basis is first orthonormalized with
respect toM andK0 so that each generalized coordinate cor-
responds to a modal coordinate of the reference model. Since
mode shapes of the viscoelastic model strongly related to the
reference ones, the frequency response functions

Hk(ω) = [δk]T
[
T TZ(ω)T

]−1
[δk] (19)

mostly show a single peak. The results shown in the appli-
cation section are based on an automated identification algo-
rithm (based on [?]) that uses these FRFs to estimate the fre-
quency and damping associated with the complex mode that
contributes most to each FRF.

The energy error is then evaluated at the frequencies esti-
mated for the low frequency viscoelastic modes.

4 APPLICATIONS

4.1 Test/analysis correlation on flat samples

To validate the reduction model methodology, computations
were carried out on rectangular 30 × 300mm sandwich plates
in the 100 − 1500Hz frequency band for the 10 − 40◦C tem-
perature range. The thickness are 0.7mm for the steel sides
and 0.05mm for the viscoelastic layer. The elastic properties
taken for the steel sides are E = 2.2 1011N/m2, ν = 0.3 and

ρ = 7.8 103kg/m3. The viscoelastic is the Solconfort-TA resin
whose damping properties given by the master curve in fig-
ure 1. The finite element model uses 2460 DOFs, 205 nodes,
160 elements of 3L model described in section 2.2.

The high modulus (1500Hz/10◦C) stiffness is used as the ref-
erenceK0. The considered reduction basis combines the first
19 normal modes for a low modulus (100Hz/40◦C) stiffness
(modes below 2000 Hz), the first 14 normal modes associated
withK0, the static correction (11) and first order correction for
damping effects (13). The validity of this basis is checked us-
ing the energy ratio (17) and a final prediction using an iter-
ation of the form (18). The final basis

[
T f
]

leads to a basis
containing 51 vectors.

For an input and an output in the center of the plate, experi-
mental FRFs provided by Usinor and FRFs obtained with the
reduction basis

[
T f
]

are compared in figure 3 at 10, 20, 30
and 40◦C. Except a slight shift at the anti-resonances, the
match is excellent at all temperatures. These results encour-
aged us to pursue the work with pressed-formed component
models.
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Figure 3: Frequency response functions at 10, 20, 30 and
40◦C

4.2 Application to pressed-formed component models

One now considers press formed steel/viscoelastic/steel
“cups” shown Figure 4. The base radius of one cup is 0.10m,
its 0.05m, its edge 0.04m. The generator of the curved parts
is a quadrant of 0.01m radius. The thicknesses are 0.7mm
for the steel sides and 0.045mm for the viscoelastic layer.
The elastic properties taken for the steel sides are identical
to those of the flat samples described in section 4.1.

The finite element model used in this study is shown in Fig-
ure 4. The model uses 10812 DOFs, 901 nodes, 864 4-node
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and 36 3-node 3l elements of 3L described in section 2.2.

Figure 4: Finite element model of the components

To predict the frequency response functions in the 300 −
1500Hz frequency band, 4 reduction basis were considered.
Model A contains the normal modes associated to the low
modulus and the static correction ([K0] computed for the mod-
ulus at 1500Hz/0◦C)

[TA] =
[

Φ(Emin) K−1
0 b

]
(20)

Model B, compared to model A, contains an additional set of
normal modes associated to the high modulus stiffness [K 0]

[TB] =
[

Φ(Emin) Φ(Emax) K−1
0 b

]
(21)

Model C adds to model B the first order correction for the
damping effects

[TC] =
[
TB K−1

0 KvΦ(Emax)
]

(22)

Model D, compared to model C, introduces the correction as-
sociated to displacement residues [R]

[TD] =
[
TC Re

(
K−1

0 R
)

Im
(
K−1

0 R
) ]

(23)

The residues are computed at the first ten estimated vis-
coelastic frequencies, leading to a final basis with 109 vectors.

To compare models A, B, C and D, predictions were carried
out for temperatures between 0 and 40◦C. For each model
and temperature, the FRFs described by equation (19) were
computed and the error was evaluated at the estimated modal
frequencies. Figure 5 shows, for each model as a function of
temperature, the evolution of the first three distinct frequencies
and the associated errors.

Frequencies decrease with temperature, which is expected
since the viscoelastic becomes softer. The figure shows de-
creases of 34% which clearly indicates the need to take tem-
perature into account.

Model A gives very poor predictions in most cases with diffi-
culties just to estimate the second and third frequencies.

For temperatures above 15◦C, model B gives frequencies
comparable to model C while the error, similar to model C
for the second and third frequencies, is much higher for the
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Figure 5: (left) First 3 frequencies ωj, (right) Error in
energy ε(ωj)

first frequency (still above 6% at 15◦C). For temperatures be-
low 15◦C, model B is clearly inaccurate. The frequencies are
overpredicted and the error exceed 100% for the lowest tem-
perature.

Model C gives frequencies very close to the frequencies of
model D but the error computed at these frequencies is higher
specially for the high temperatures. For the first frequency,
the error is maximum (13%) at 0◦C and decreases below 1%
from 15◦C. For the two last frequencies, the error is maximum
(above 60%) at 0◦C and decreases until approximatively 1.5%
at 40◦C.

As expected, model D presents the lowest error for the three
modes and all temperatures. The error at the first resonance
frequencies is below 0.5% for all temperatures. For the two
other frequencies, the error is maximum (approximately 30%)
at 0◦C and decreases below 1% above 20◦C. The residues
used to go from model C to model D are for each mode the
the residue at the temperature where the error is largest. For
all frequencies, the maximum error occurs at 0◦C which corre-
sponds to the high modulus. The relatively high energy errors
at low temperatures, thus still need to be explained.

Figures 6-7 show force to acceleration transfer functions for
the 4 reduction bases and different temperatures. Model A is
inaccurate compared to the other models for temperatures be-
low 35◦C. However, this model is comparable to model B for
temperature above 35◦C as expected. Indeed, these temper-
ature corresponds the range of low viscoelastic moduli and the
normal modes chosen for the reduction basis are associated
to a stiffness matrix computed with a low viscoelastic modulus.
Models B gives similar results to models C starting at 20◦C
but, below this temperature, it mismatches resonances and
anti-resonances. Model C predicts the same resonance fre-
quencies as model D with a slight difference of amplitudes but
the accuracy on the anti-resonances decreases significantly
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with temperature.
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Figure 6: Frequency response functions
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As the FRFs are heavily damped, they only allow an accurate
evaluation of the influence of temperature and reduction basis
selection on the few well separated peaks. The modal filter
technique gives estimates of the poles which are illustrated in
figure 8. An interesting feature is the frequency crossing near
20◦C. On the left, one shows the location of the poles of model
D in the complex plane. This plot indicates that maximum
damping is obtained near 30◦C for all modes. The frequency
crossing near 20◦C does not correspond to a pole crossing.
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Figure 8: (left) Pole frequencies ωj, (right) Poles λj in
complex plane for model D

The decision on which model to use, must also take com-
putational times into account. Table 1 indicates approximate
time decompositions. The 77.8 s needed for a full order FRF
point clearly motivate the need for model reduction : com-
puting a few thousand points at several temperatures would
take days. The construction of model reduction bases is a
significant effort that is comparable to computing a few full or-
der frequency points. Once the reduced model built however,
one can easily evaluate responses for a large number of fre-
quency/temperature points.

CPU time (s)
assembly 104
30 normal modes 330
model A basis (49 modes) 3.56
reduced FRF/frq point 9.9e-3
model B basis (72 modes) 3.8
reduced FRF/frq point 20e-3
model C basis (97 modes) 24.1
reduced FRF/frq point 39e-3
model D basis (109 modes) 47.5
reduced FRF/frq point 60e-3
full FRF/frq point 77.8

TABLE 1: CPU times FRF predictions using SDT 3.1 [8]

on a SGI R10000 processor

5 CONCLUSION

The paper has presented a complete methodology allowing
the practical study of frequency/temperature dependence of
large finite element models with viscoelastic materials without
restrictions on the form of the constitutive law. The validity
of computations was demonstrated for both flat and curved
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components. Remaining needs are linked to the refinement
of the error evaluation strategy and the ability to automatically
build equivalent time domain representations.

Excellent test/analysis correlation was shown for flat compo-
nents. Similar comparisons on press formed components
have not given as good results and difficulties are currently
assumed to be linked to improper material characterization.
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