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ABSTRACT

Minimum Dynamic Residual Expansion (MDRE) seeks to esti-
mate the response of test modeshapes at all degrees of free-
dom of a model by minimizing the weighted sum of a test er-
ror defined at sensors and a modeling error taken to be the
strain energy of the dynamic residual associated with the esti-
mated modeshape. Theoretically the computation of the dy-
namic residual gives a simple mechanism to localize modeling
errors. While various forms of MDRE have been often considered
in the literature, few systematic analyses of the exact resolution
have been attempted on industrial models in good part because
of excessive computational costs. The present paper introduces
an iterative method allowing the exact solution of MDRE for
large problems. Exact solutions, either direct or iterative, are
compared with reduced basis versions that were proposed in
earlier papers. The ability to localize errors is then evaluated
for simulated tests with known modifications. The evaluations
are shown for a small 1032 DOF model of the GARTEUR SM-
AG-19 testbed and a more industrial 16840 DOF model of an
engine cover.

1 INTRODUCTION

Expansion methods seek to estimate the motion at all DOFs of
a FE model based on information known at sensors. A clas-
sification of expansion methods was proposed in Ref.[7] divid-
ing methods into subspace based, where the model is used to
build the subspace in which the expanded modes will lay, and
error based where modeling and measurement errors are consid-
ered simultaneously. Well known subspace methods are modal
[1]/SEREP [2], static (based on Guyan reduction [3]), dynamic
[4] and hybrid [5] [6].

Error based expansion methods (see [7] [8] among others) have
rarely been applied to industrial size models due to excessive
computational costs. This paper introduces an exact iterative
resolution technique which enables detailed studies of this class
of methods. Section 2 goes through various formulations of Min-
imum Dynamic Residual Expansion (MDRE) and relates those

to practical solution strategies including the new exact iterative
method. Convergence of the solution is analyzed in section 3.

Finally, the motivation typically set forth for solving MDRE prob-
lems is that the displacement residual associated with the mod-
eling error should enable localization of modeling errors. The
ability to actually do so is analyzed in detail in section 4.

2 MINIMUM DYNAMIC RESIDUAL EXPANSION

2.1 Motivations

Minimum dynamic residual expansion methods estimate re-
sponses at all DOFs of the FE model by formulating a mini-
mization problem combining modeling and measurement errors.

Measurement errors are taken into account using a quadratic
norm

εj = ‖{yTest,j} − [c]{φexp,j}‖2
Qj

(1)

where the Qj norm can be used to weight the different sensor
responses according to their reliability. Using such a norm, that
takes into account an estimated relative error on measurements,
seems most appropriate. Various energy based metrics have also

been considered in [8] although the physical significance of an
energy norm on test results is unclear.

Modeling errors are taken into account using the energy norm of
a residual. Natural dynamic residuals are RL,j = Z(ωj)φj for
modeshapes and RL,j = Z(ωj){q} − F for frequency response
functions. These residuals correspond to generalized loads. To
obtain an energy norm, they must be associated to displacement

residuals. The standard solution [9] is to compute the static
response to the dynamic load residual

RD,j = K̂−1RL,j , (2)

where K̂ is the stiffness of a nominal FE model and can be a
mass-shifted stiffness in the presence of rigid body modes. Mod-



eling error is thus estimated using the associated strain energy

‖RD,j(φexp)‖2
K = {RD,j}T [K]{RD,j}. (3)

Given metrics on test and modeling error, one uses a weighted
sum of the two types of errors to formulate a generalized least-
squares problem, where one seeks to minimize the cost function

J(ωTest,j) = min
φexp,j

� ‖RD(φexp,j)‖2
K + γjεj

�
. (4)

In the applications shown, the relative weight γj of the two
terms is varied until a preselected level of measurement error is
reached

‖{yTest,j} − [c]{φexp,j}‖Qj

‖{yTest,j}‖Qj

= σj , (5)

with σj the relative error on the measured mode yTest,j .

Choosing to fix σj is somewhat arbitrary. Saying there is 1% or
10% error on the measured vector seems a reasonable statement.
Using a vector norm on the error will correctly account for the
fact that locations of high response are usually identified with
less error. But until methods to estimate bias and variance
on modeshapes are developed, the indicator used to quantify
measurement error will remain arbitrary.

2.2 Two-field formulation

The load and displacement residuals verify [K]{RD, j} −
[Z(ωTest,j)]φexp,j = 0. Using a Lagrange multiplier λj to en-
force this relation, one can reformulate problem (4) as

J(ωTest,j) = min
RD,j ,φexp,j ,λ

�{RD,j}T K{RD,j}

+ γj‖[c]φexp,j − yTest,j‖2
Qj

(6)

+ λj‖K.{RD,j} − Z(ωTest,j)φexp,j‖2�.
At the optimum, the derivative of (6) with respect to RD,j ,
φexp,j and λj should be zero, so that

2
4 K 0 K

0 γjc
T Qjc −Zj

K −Zj 0

3
5
8<
:

RD,j

φexp,j

λ

9=
; =

8<
:

0
γjc

T QjyTest,j

0

9=
; (7)

with Zj = Z(ωTest,j).

By remarking that the first two blocks give λ = −RD,j , one
can actually solve a two field (RD,j , φexp,j) formulation (see

also [10])

� −K Zj

Zj γjc
T Qjc

��
RD,j

φexp,j

�
=

�
0

γjc
T QjyTest,j

�
. (8)

Formulation (8) is similar to (4), except there no longer is a
need to define a mass shift.

2.3 Reduced basis version

The reduced basis resolution of (7) implies the choice of a re-
duction basis for {φexp,j} and RD,j. The simplest alternative
is to take the same bases for these two fields, that is

�
ˆRD,j

ˆφexp,j

�
=

�
TRred,D,j

Tφred,exp,j

�
, (9)

and in this case the reduced basis version of (8) is

�−T TKT T TZjT

T TZjT γjT
TcT QjcT

��
Rred,j

φred,exp,j

�
=

�
0

γjT
TcT QjyTest,j

�
(10)

The bases proposed in [7], and used in section 3.2, combine
nominal modes, static responses associated with sensors, ...

2.4 Iterative solution of exact problem

The reduced solution (10) being an estimate of the exact solu-
tion, a procedure to enrich T iteratively is proposed here. The
procedure computes residuals to evaluate the accuracy of the
reduced solution and, if needed, adds displacement residuals to
the reduction basis. These residuals are defined as

�
RL,RD ,j

RL,φ,j

�
=

�−K Zj

Zj γjc
T Qjc

��
ˆRD,j

ˆφexp,j

�
−
�

0
γjc

T QjyTest,j

�
. (11)

The procedure for the completion of T is then based on the
estimation of the relative strain energy of RL,RD ,j and RL,φ,j .
At iteration n, the following steps are performed:

1. Computation of the load residuals Rn,L,RD ,j and Rn,L,φ,j

associated to the basis Tn (see (11)),

2. Computation of the displacement residuals

Rn,D,RD,j = K̂−1Rn,L,RD ,j

Rn,D,φ,j = K̂−1Rn,L,φ,j ,
(12)

3. Evaluation of the relative strain energy errors,

εn,RD ,j =
RT

n,D,RD,jKRn,D,RD,j

ˆRD,j
T

K ˆRD,j

εn,φ,j =
RT

n,D,φ,jKRn,D,φ,j

ˆφexp,j
T

K ˆφexp,j

,
(13)

4. Completion

εn,RD ,j > Tol ⇒ Tn+1 = [Tn, {RD,RD,j}]
εn,Rφ,j > Tol ⇒ Tn+1 = [Tn, {RD,φ,j}]

These steps are repeated until every εj is less than a user-fixed
tolerance (typically 10−8 for high precision).

It should be noted that many normalization problems arise from
adding residuals to the basis Tn, which is typically composed of
modes, mode sensitivities and static responses to unit loads at



sensors. Indeed, residuals are of a different type from Tn, do not
necessarily have the same order of magnitude, and can also be
very colinear to the space spanned by Tn. All these causes lead
to numerical conditioning problems that need proper treatment
to achieve convergence.

3 SOLVING MDRE PROBLEM

3.1 Models used for applications

The expansion process exposed in section 2 has been tested
on two models. Except for importing the element matrix dic-
tionary of the engine cover from NASTRAN, all computations
were performed using the Structural Dynamics Toolbox for

MATLAB[11].

The first model, the GARTEUR SM-AG-19 testbed used as
a benchmark by the COST F3 working group on model up-
dating, has 1032 DOFs. Its sensor configuration is shown on
figure 1. Sensors do not necessarily coincide with Finite El-
ement (FE) DOFs, so that motion at sensors is interpolated
using an elaborate technique (rigid links shown as thick lines in
figure 1 with interpolated rotations using nodes shown with cir-
cles). The method has been tested with simulated experimental
modes. Simulated experimental modes are generated by intro-
ducing a stiffness modification in a substructure (see figure 1)
Kmod = 2Kmod,0. The modes of that modified structure are
then computed and projected on the sensors DOFs, which gives
“simulated experimental modes”.

Figure 1: Top: Sensor configuration of garteur and links
used to observe motion at sensor locations,

Bottom: Localization of the modification Kmod = 2Kmod,0

The second, more industrial model, is an engine cover model
with 16840 DOFs. The sensor wire-frame representation and

the sensor measurement directions are shown in figure 2. The
technique previously mentioned is also applied here to estimate
motion at sensors. The modification introduced is a stiffness
perturbation (Kmod = .5Kmod,0 for the central part of the
cover, plotted in bold in figure 2).

Figure 2: Top: Wire-frame representation of the sensors
(sensors located at bold points) for the engine cover,

Middle: Sensor measurement directions,
Bottom: Localization of modification Kmod = .5Kmod,0

3.2 Comparing solutions

The objective of this section is to compare the methods proposed
in section 2 with respect to their accuracy and computational
efficiency. The considered bases are

• Modal: Tmod = [φnom,1:20] computed for the nominal
structure.

• modal + static responses to unit loads at sensors:

Tmod+stat =
h
φnom,1:20, K̂

−1cT
i
where c is the obser-

vation matrix associated to the sensors.

• modal + sensitivities: Tmod+sens =
h
φnom,1:20,

∂φ
∂p 7:20

i
,

where sensitivities of the flexible modes are computed with
respect to the parameter corresponding to the modification
introduced.

• modal + sensitivities + static responses:

Tmss =
h
φnom,1:20,

∂φ
∂p 7:20

, K̂−1cT
i
.

• exact iterative : Tenr which is the basis Tmss enriched by
the iterative procedure described in 2.4 with γ = 108 and
a tolerance set to 10−8.



The two applications have been chosen so that the exact direct
solution (8) could be computed. For accuracy, the comparisons
use a relative strain energy error to establish the validity of ex-
panded modeshapes

αj =
{φexa,j − φred,j}T K{φexa,j − φred,j}

{φexa,j}T K{φexa,j} + {φred,j}T K{φred,j}
(14)

and of the displacement residuals defined in (9)

βj =

n
ˆRD,exa,j− ˆRD,red,j

oT

K
n

ˆRD,exa,j− ˆRD,red,j

o
n

ˆRD,exa,j

oT

K
n

ˆRD,exa,j

o
+
n

ˆRD,red,j

oT

K
n

ˆRD,red,j

o (15)
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Figure 3: Comparisons of expansion results for the Garteur
Model. Top: Shape comparison, see (14),
Bottom: Residual comparison, see (15)

A reason to define the relative strain energy of the displace-
ment residuals is that it will be used in the next section of error
localization.

Equivalent criterion can be defined with kinetic energy instead
of strain energy, but since the results obtained are very similar,
they are not presented.

Figures 3 and 4 show the comparisons for the Garteur and en-
gine cover models respectively. With reduced bases, the er-
rors on shape are always lower than those on residues. As ex-
pected, adding vectors to the reduced basis improves results.
Adding static responses to loads applied at sensors, which leads

to an hybrid between modal and static expansion [7], always
lead to a significant improvement whereas adding the sensitivi-
ties (mod+stat+sens) is only useful for the engine cover case.
Finally the comparisons between the iterative and direct meth-
ods show that the iterative method has converged indeed.
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Figure 4: Comparisons of expansion results for the engine
cover model. Top: Shape comparison, see (14),

Bottom: Residual comparison, see (15)

The next question is to analyze the convergence of the iterative
procedure. Figure 5 shows, for the engine cover, the evolution
of basis size and relative strain energy error during iterations.
A modal basis containing the 20 first modes computed for the



nominal structure (without modification) is used as a starting
point even though it was shown earlier than modal+static would
have been more appropriate. For the chosen tolerance ε of 10−6,
convergence is clearly quite rapid. As expected, convergence on
the residue is slower.
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Figure 5: Convergence of the enrichment iterative process,
case of the engine cover with the modification of figure 2
(T0 = [φnom,1..20], tol = 10−6, γj such that σj = 10%)

Finally, the choice between the various methods will eventually
depend on computational times. For the engine cover with ε =
10−8 and γ = 108, table 1 shows various computational times.

The main result is that the exact iterative method is tremen-
dously less expensive than the direct method in time (speedup
of 72) and required memory (factor 4 with poor code optimiza-
tion in the case of the iterative method). An additional very
interesting fact is that iterating does not significantly add to
the required resources when compared to the modal+static so-
lution.

The iterative exact method thus clearly appears as providing the
best speed/accuracy compromise.

TABLE 1: summary of computational times
(Engine cover, R10000 processor)

Computation of iterative exact direct exact
ε = 10−8

φ1:20 84 sec ”�
∂φ
∂p 7:20

�
79 sec ”

K̂−1b 25 sec ”h
φ1:20

∂φ
∂p 7:20

K̂−1b
i

4 sec ”

projection of model 5 sec ”
enrichment 231 sec ”

total 7.1 min 516 min
Memory 400 Mo 1.6 Go

Matrix size 266 33680

4 USING MDRE RESULTS FOR LOCALIZATION

4.1 Localization with the exact residual

One of the main motivations for using MDRE is its theoreti-
cal ability to localize defaults. Ideally, MDRE will result in an
approximation of the exact residual

RD = K̂−1
�
Zφmod

�
, (16)

where φmod are the modes of the modified structure.

For the case of the engine cover, the mean element strain energy
ratio for the exact residual of the first 10 modes

eel =
1

10

10X
j=1

RT
D,jK

elRD,j

φT
j Kφj

(17)

is computed and shown in 6 where the localized nature of the
exact residual is clearly apparent, showing that localization is
feasible using such an indicator (eel). Similar results are ob-
tained for Garteur.

Figure 6: Localization of a modification introduced in the
middle, repartition of eel see (17)



4.2 Localization with the MDRE residual

One now considers the displacement residual resulting of the
iterative solution of MDRE (with a tolerance of 10−8), and uses
it for localization.

The selection of the modeling/measurement error factor γ is
a key aspect of using MDRE, since localization will be highly
dependent on its value.

Indeed, γ must be high enough in order for the expansion process
to take into account the pseudo-measures. Figures 7 and 8 show
the effects of γ on localization ability. The following quantities

• Emodif = 1
10

P10
j=1

‖RD,j‖2
Kmodified substructure

‖RD,j‖2
K

, which is

the ratio between the residual strain energy in the modified
substructure and the total residual strain energy,

• Erel,res = 1
10

P10
j=1

‖RD,j‖2
K

‖φj‖2
K
, which is the relative residual

strain energy in the structure,

• J1
J2

= 1
10

P10
j=1

‖RD,j‖2
K

γj






{yTest,j}−[c]{φexp,j}







2

Qj

, which is the

ratio between the first and the second term of the cost
function (equation (4)),

are plotted versus the relative error on the measured modes σ
(γ being computed iteratively such that the desired value of σ
is reached, see section 2).
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Figure 7: Evolution of different quantities with respect to
the relative error on measures (Garteur)

For the Garteur case, figure 7 shows that for a low value of
σ, Emodif is relatively low (the modified substructure being
global and in contact with many other substructures, so that
the error spreads to the connected substructures), and decreases

slowly when σ increases, indicating a poorer localization for high
σ. The relative residual strain energy Erel,res decreases with
increasing σ, showing that when one do not take into account
measurements information, expansion only searches to minimize
the error linked to the model and thus produces a low error with
no link to measures. This is confirmed by the study of J1

J2
which

clearly indicates that model-linked error becomes negligible with
respect to test-linked error for increasing σ.

For the engine cover (figure 8), the shape of the plots is very
similar and brings the same conclusions. The major difference is
that Emodif is about .5 for low σ, which is higher than for Gar-
teur (the modification is far more local and have less connected
substructures, so that the error spreads less).
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Figure 8: Evolution of different quantities with respect to
the relative error on measures (Engine Cover)

Figures 7 and 8 indicate a threshold value for σ, after which
localization is no longer possible (because Emodif is too low).
For the Engine Cover, this value is around 1%, which means that
if measurements were performed with more than 1% of error,
localization would not be possible. This statement is confirmed
by figure 9, which represents the repartition of eel through the
Engine Cover model for σ = 10−3 and σ = 10−1 respectively. It
is clear that allowing 10% error on measures makes localization
impossible, whereas a smaller value allows it.



Figure 9: eel for σ = 10−3 and σ = 10−1, respectively

Figure 10 represents localization results for Garteur and a low σ
(10−5). The quantities plotted are respectively

• eel (see (17)) which is plotted on each element, and

• enode = diag([K])−1 1
10

P10
j=1

�
RL,j

2
	
(term by term

square of the dynamic residual) which represents a nodal
residual strain energy.

Figure 10: Top: eel,bottom: enode

One can see that for a low σ, localization is possible, even if in
this case the error spreads to the connected substructures, due
to the implicit use of K−1 in the two-field formulation (8). It
should be noted that for the same value of σ, enode tends to
localize error at sensors, which seems to be a constant pattern
of MDRE and a drawback for its use in localization.

5 CONCLUSION

The main result of this paper is the introduction of an iterative
solver for the full order MDRE problem. The ability to solve the
problem exactly on industrial size problems allowed studies on
the ability to localize errors using the displacement residual as-
sociated with the MDRE solution. The conclusions, drawn from
the cases treated, are that the ability to localize is very much
dependent on the quality of measurements and that the result
has a strong tendency to localize errors on sensors. For uses
on real test results, it thus seems essential to run simulations
to quantify the ability to localize a given defect before using an
MDRE result to draw conclusions on the model.
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