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†ECP, MSSMat,92295 Châtenay-Malabry, France

‡EDF/DER, 92141 Clamart, France

balmes@mss.ecp.fr, Laurent.Billet@der.edfgdf.fr

ABSTRACT

Structural modification techniques have the general objective
of predicting the effect of a modification on the dynamic be-
havior of a structure that is only known through test results.
While the validity of the method is established for cases were
the modification is connected to the base structure at dis-
crete points, obtaining good predictions for distributed modifi-
cations is still considered a major problem. The paper extends
the classical theory of structural modification by coupling it
with modeshape expansion and Component Mode Synthe-
sis with interface model reduction. While combining these
well-established methods, specific care is taken to give the
user criteria on the validity of the predictions. The proposed
methodology is applied to the case of a stator casing in an
electricity production plant. The method is first validated on
a finite element model that is representative of the real struc-
ture. Predictions based on the real test are then obtained and
compared with the test performed after modification.

1 INTRODUCTION

Structural modification methods use experimental models to
obtain predictions of the response of structures after modifi-
cation. While modal and FRF based structural modification
methods have been used for years (see [1] for a review), very

few studies address the case of distributed modifications [2, 3]

or allow for test setups designed with no a priori knowledge of
the modification geometry.

The present study revisits modal based structural modification
methods by coupling them to test shape expansion and Com-
ponent Mode Synthesis with interface model reduction.

Shape expansion [4] is used to estimate the responses of all
degrees of freedom of the interface between the base struc-
ture and the modification. Doing this implies the use of a par-
tial model of the base structure. This is considered accept-
able as long as the partial model is extremely simplified and
can thus be built during the testing process. Expansion is then
really used as an advanced interpolation method. The use of
two different interpolations using or not information about the
modification is however used as an indicator for the validity of
coupled predictions.

Interface model reduction [5, 6] is used to allow the represen-
tation of loads applied on the base structure by the modifica-
tion through a reduced number of generalized loads that cor-
respond to test sensor locations (the test model is assumed
to verify reciprocity so that FRFs to/from all sensors can be
predicted).

Section 2 gives theoretical developments needed for the pro-
posed method. Section 3 uses a representative FEM model
to simulate test results and allow analyses of the advantages
and limitations of the method. Section 4 shows results for the
real tests [7]. Sections 3-4 share the same test configuration
and same modification model.

2 THEORETICAL BACKGROUND

As shown in figure1, structural modification is well posed as a
closed loop prediction problem. The base structure deforms
under external loads applied by the modification u I . With no
external loads applied to the modification, loads u I only de-
pend on interface deformations y I . The knowledge of the rela-
tion between yI and uI , that is the existence of a model of the
modification, allows a closed loop prediction of the response.
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Figure 1: Structural modification as a closed loop
prediction problem

2.1 FRF based, multiplicative formulation

For a base structure described by FRFs

{yI} = [HB(s)]{uI}, (1)



and a known dynamics stiffness of the modification

{uIM} = [ZM (s)]{yIM} (2)

one can use displacement continuity yIM = yIB and dynamic
load equilibrium uIM = uIB conditions, to obtain the classical

expression [1]

{yIB} = [I + HB(s)ZM (s)]−1[HB(s)]
{

uext
IB

}
(3)

The main problem with this approach is the need to invert
[I + HB(s)ZM (s)]. Since near resonances HB is dominated
by the contribution of a single mode, it is poorly conditioned. It
is thus often necessary to use regularization techniques (see
[8] for example).

2.2 Model based additive formulation

A second class of formulations assumes the existence of a
model in the form of a linear differential equation. Here, we
will only consider second order models of the form

[ZB(s)]N×N{qB(s)}N = [bIB ]N×NA{uIB(s)}NA

{yIB(s)}NS = [cIB ]NS×N{qB(s)} (4)

where the dynamic stiffness Z is the sum of mass, damping,
and stiffness contributions Z(s) = Ms2 + Cs + K, but the
same problem could be solved with more general state-space

models [9].

Note that the input/output shape matrix formalism used here
decouples the choice of DOF qB from the choice of inputs
{uIB(s)} and outputs {yIB(s)}. For full FEM models with
compatible interface meshes, bIB and cIB are Boolean ma-
trices. In other words, the uI form a subset of the load com-
ponents F (s) = [bIB ]{uIB(s)}. The interest of writing it this
way is that transformations of the DOFs are easily translated
into transformations of bIB and cIB with no change in the for-
malism. The test derived modal models considered in the fol-
lowing sections thus keep the same form.

For the coupled prediction, one assumes that the modifica-
tion is modeled with the finite element method. One can thus
always write the modification model in the form

[
ZM

II (s) ZM
IC(s)

ZM
CI(s) ZM

CC(s)

]{
{yIM}
{qC}

}
=

{
{uIM}
{0}

}
(5)

where interface DOFs explicitly appear as DOFs of the model

(see [10] for a justification that this is always possible even
with incompatible meshes).

Using the general framework of Ritz methods, the coupled
prediction is obtained by imposing displacement continuity on
the interface (yIB = yIM ) and projecting the associated model
on loads dual to the displacement subspace admissible under
the continuity constraint. The projection thus combines conti-
nuity and dynamic equilibrium of loads u IB = uIM .

For a base model given by (4) and a modification described
by (5) this leads to[[

ZB 0
0 ZM

CC

]
+

[
bIB

0

][
ZM

II

]
[cIB 0]+

+

[
bIB

0

][
0 ZM

IC

]
+

[
0

ZM
CI

]
[cIB 0]

]{
qB

qC

}
=Fext

(6)

For qB et qC corresponding to FEM DOFs, bIB and cIB are
Boolean and (6) corresponds the standard assembly process.
For the applications considered here, the q B are modal co-
ordinates and qC corresponds to fixed interface modes of a
Craig-Bampton model.

2.3 Dealing with continuous interfaces

The assumption, made in the previous section, that all inter-
face DOFs are tested puts a strong limitation on the practical
use of the approach. One will thus introduce a distinction be-
tween interface displacements {yI}NI×1, which correspond
to the discretization of the modification model ( 5), and test
displacements {yT }NT×1, which correspond to whatever was
acquired during the modal test of the unmodified base. Simi-
larly one will distinguish uT and uI .

This highlights the spatial incompatibility problem since in
practical applications NT � NI . To bypass this incompati-
bility, one will assume that there exists a constant coefficient
linear combination relating interface and test displacements
for the actual coupled response

{yI}NI×1 ≈ [cIT ]NI×NT {yT }NT×1 (7)

This relation imposes a strong constraint on interface kinemat-
ics since yI must be approximated by a subspace of basis TG

whose dimension is smaller than the number of sensors used
NG ≤ NT � NI . The choice of this subspace and the justi-
fication of its ability to represent the coupled response is a key
aspect of the propose methodology.

The construction of a reduced interface model (T G subspace)
is a classical extension of component mode synthesis ad-

dressed in references [5, 11, 10,6] to only cite a few. The re-
sults shown in this study use a Craig-Bampton type reduction
of the modification where the constraint modes are replaced
by the low order modes of the model statically condensed on
its interface (as originally proposed in [5]).

For this study, one already assumed that a FEM model existed
for the modification. One will further require that a local model
of the base exists. The objective of this model is only to allow
interpolation of test motion at an arbitrary number of degrees
of freedom of the interface between the base model and the
modification. This model need not be representative of the
base dynamics.

The TG subspace is here defined on the DOFs of a local
model including or not the modification. The extraction of in-
terface motion is thus written as

{yI}NI×1 = [cIL]NI×NL[TG]NL×NG{yG}NG×1 (8)



Given the local model, one can build an observation matrix
relating the qL (DOFs of the local model) with measurements

{yT } = [cTL]{qL} (see [12] for possible methods). Thus

{yT } = [cTG]NT×NG{yG} = [cTLTG]NT×NG{yG}NG×1 (9)

To estimate generalized motion of the interface, one seeks to
establish a relation of the form

{yG}NG×1 = [cGB ]NG×NB{qB}NB×1 (10)

The standard approach, used by subspace based expansion

methods [4], solves the least squares problem

{yG} = arg min
yG

‖[cTG]{yG} − [cTB ]{qB}‖ (11)

whose solution is given by

[cGB ] =
[
cT
TGcTG

]−1[
cT
TGcTB

]
(12)

which leads to the observation equation ( 7) with cIT =
cILTGcGB .

Given assumption (8), the second block row of equation (5)
describing the motion of the modification becomes

[ZCC(s)]{qC} = −
[
ZM

CI(s)
]
[TG]{yG} (13)

For the first block row, one further assumes that generalized
loads are defined by projection on the subspace T G. Equa-
tion (5) thus becomes

{uGM} = [cIG]T
[
ZM

IC

]
{qC} + [cIG]T

[
ZM

II

]
[cIG]{yG} (14)

The coupled response is obtained as before by assuming dy-
namic equilibrium of generalized loads uGB = uGM . The
model still has the form of equation (6) but one replaces ZM

II

by [cIG]T
[
ZM

II

]
[cIG], and ZIC by [cIG]T

[
ZM

IC

]
.

2.4 Error evaluation

Since the predictions made are based on many assumptions,
introducing error evaluation tools is essential. The idea im-
plemented in this study is to use two different methods to esti-
mate motion yI . The first one is given by the coupled response
and the observation equation (8). The second is a static ex-
pansion yIexp of the interface response using the local model
of the base. This corresponds to an another choice of T G

where the modification is not taken into account.

For a good prediction, one expects y Iexp ≈ [cIT ]{yT }. A vi-
sual display can be used to analyze problems but a numerical
criterion is needed for interface mode selection. For results
shown in the next section, a relative strain energy criterion

eK(yT ) =
‖[cIT ]{yT } − {yIexp}‖KM

‖[cIT ]{yT }‖KM
+ ‖{yIexp}‖KM

(15)

and a similar kinetic energy criterion eM were used, with KM

and MM being the mass and stiffness matrices of the modifi-
cation condensed on the interface.

3 SIMULATIONS ON A PSEUDO-TEST

3.1 FEM model and test configuration

Mode 1 at 13.77 Hz Mode 2 at 22.43 Hz 

Mode 3 at 31.36 Hz Mode 4 at 33.75 Hz 

Figure 2: FEM model of base structure.

Mode 1 at 17.87 Hz Mode 2 at 28.24 Hz 

Mode 3 at 37.33 Hz Mode 4 at 40.81 Hz 

Figure 3: Modified configuration.

To validate the proposed methods, one considers a plate
model of a structure similar in shape to the stator casing con-
sidered in section 4 and a fairly realistic model of the modifica-
tion that was really built. The nominal and modified configura-
tions are shown in figures 2-3. All simulations and identifica-
tion in this study are performed using the Structural Dynamics

Toolbox[13].



To account for the constraint that the method must not require
a FEM model of the base structure, one considers a local
model made of the back plate of the casing.

Mode 1 at 139.5 Hz 

Figure 4: Test configuration and local model used for
expansion. First mode with fixed sensors.

A first check on the sensor configuration is to predict the first
mode for fixed sensors. If the frequency of this mode is too
low, one clearly expect the coupled predictions to be poor
since low frequency components of the base response can-
not be observed.

The first configuration, shown in figure 4, with only axial sen-
sors (direction y) shows that a bending mode in the xz plane.
This motion being important for mode 2 of the base, one can
clearly reject the sensor configuration as not acceptable for
coupled predictions.

Mode 1 at 274.5 Hz 

Figure 5: Fixed sensor mode for the retained test
configuration.

A second configuration shown in figure 5, keeps 3 additional
horizontal measurements at the level of the upper stiffener
which leads to a much better behavior with the fixed sensor
mode showing high response in an area with few sensors.
This final configuration considers 27 sensors.

3.2 Coupled predictions

Figure 6 shows ratios between true and predicted natural fre-
quencies of the modified structure for a varying number of in-
terface modes retained.

For 27 interface modes kept (as many as sensors) predictions
are poor. By keeping too many modes, one allows a fairly
complex behavior of the interface that is not representative of
low frequency behavior.

For 10 interface modes retained, one has good predictions for
a base model with and without static correction. While this in-
dicates that obtaining good predictions is possible, it illustrates
the need to have indicators allowing this selection.

Note that, the figure is somewhat misleading because auto-
mated mode matching, based on the MAC, pairs predicted
modes 3-4 to the same true mode 3. But this difficulty is hard
to avoid in an automated procedure.
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Figure 6: Frequency ratio (predicted/true coupled) with
automated mode pairing based on MAC.
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Figure 7: Quality of predictions for the first 4 modes as a
function of the number of retained interface modes.

To seek the optimal number of interface modes, one computes
the coupled response for each possible value and shows, in
figure 7, the evolution of frequencies and energy errors. The
strain energy criterion has a relatively clear minimum for 10
interface modes retained. The proposed selection strategy
thus seems applicable.



3.3 Transfer functions and sensitivity

The previous section focused on modal frequencies. One now
seeks to analyze performance for FRF predictions. One con-
siders the first input 34y of the real test (section 4) and outputs
at the three input locations (25y, 34y et 34x). Predictions are
made with 10 interface modes since it lead to the best results
in frequency predictions.

The superposition in figure 8 of nominal, exact modified, and
predicted modified FRFs show that the global effect of the
modification is well represented. Only the error on the fre-
quency of mode 4 leads to significant discrepancies.
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Figure 8: FRF for nominal, exact modified, modified with
structural modification method.
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Figure 9: FRF for nominal (bold), exact modified (bold),
and random realizations of approximate coupled prediction.

The next issue is the sensitivity of coupled predictions to errors
in the base model. To evaluate this sensitivity, one considers

an additive error of 10% on modeshapes (cT φ̃j = cT φj +
∆(cT φj) with |∆(cT φj)| = 0.1 |cT φj |) and an error of 1% on
frequencies.

Even though the assumed errors are very high and not real-
istic, coupled predictions, shown in figure 9, match the global
trends of the modified FRF very well. The method thus seems
rather robust to errors in the base model.

A final issue is the ability to use partial tests where only a
few modes are identified. For this purpose one only considers
modes 3 and 4 for the base structure (31.3 et 33.7 Hz). The
results shown in figure 10 are excellent in the neighborhood
of the modes 3-4 for the modified structure. This of course is
possible because the shape of this modes does not change
very much with the modification. But again it is a reassuring
check on the validity of the method.
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Figure 10: FRF for nominal, exact modified, and coupled
prediction using 8 and 2 modes of the base structure.

4 APPLICATION TO A REAL TEST

4.1 Test data

The analytical example of section 3 was chosen to be some-
what similar to the true case shown in this section. In particu-
lar it used the same test geometry. The casing was tested by
EDF/DER/AMV in 1998, the modification shown in figure 12
was proposed and built so that this gives a good practical ex-
ample to test the proposed methodology.

The test were performed on site, with the casing coupled to
the rotor, using hammer excitation. The test results are thus
as good as can be expected in non laboratory conditions. The
procedure uses reciprocity to build the modal model of the
base.



Equerres largeurs base 750 mm / haut 160mm 

(ep. 20 mm) et hauteur 1400mm assemblees par

boulonnages sur nervures verticales de 150 mm 

et sur embases.

Nervures de renfort

150 mm (ep. 20 mm)

Equerres en dessus et au dessous

la nervure horizontale

Embase 95 mm (ep. 20 mm)

Embase 150 mm (ep. 20 mm)

34x
34y

25y

Figure 11: Final modification of the real casing.
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Figure 12: Reciprocity checks for nominal configuration.

The reciprocity check shown in figure 12 clearly indicates that
the data does not verify the hypothesis very well particularly
checks with 34x input/output.
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Figure 13: Test data, raw identification result and final
base model with real modes verifying reciprocity.

In figure 13, on sees that the second order modal model of
form (4) is quite good for the first driving point FRF (25y/25y)
but significantly different for 34y/34y. Despite multiple trials,
all attempts to build a reciprocal test model that would rep-
resent 34y/34y correctly failed. Since the raw identification

result [14], which does not verify reciprocity but includes resid-
uals, fits the data very well, this difficulty can be attributed to
the high contributions of modes not taken into account in the
modal model.



Despite this clear limitation of the modal model of the base
structure a coupled prediction was made. The results show in
figure 14 are very encouraging. The resonance occurs at 36
rather than 32 Hz, but the decrease in the 25 Hz region is well
predicted for the 25y/34y FRF.
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Figure 14: Initial and modified responses (test and
analysis).

5 CONCLUSION

The main evolutions from standard structural modification
methods are the use of a much simplified FEM model of the
base structure to allow expansion and the use of generalized
interface coordinates. Two tools have proven to be useful to
obtain an a priori evaluation of the ability to obtain valid pre-
dictions.

• The computation of the first mode with sensors fixed
which gives a good indication of the type of motion that
cannot be represented with the chosen sensor configu-
ration.

• The simultaneous use of more than one expansion
method leading to various estimates of the interface mo-
tion which should be coherent for cases where good pre-
dictions can be obtained.

This first application obviously leaves much room for improve-
ments of the procedure and, an even more crucial point, of
the tools used to evaluate its validity on a given case without
needing a detailed model of the structure under test. But re-
sults clearly demonstrate that the proposed methods have the
potential to solve a much broader class of structural modifica-
tion problems than previously thought possible.
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