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ABSTRACT

Modeshape expansion techniques deal with the spatial incom-
patibility linked to the measurement of modeshapes through
a limited set of physical sensors and their analytical predic-
tion at a (larger) number of finite element degrees of free-
dom. Expansion methods are formulated here with the mini-
mal assumption that sensor measurements be linearly related
to finite element DOFs. This allows the localization of experi-
mental points independently from the FE mesh, the measure-
ment of translations in arbitrary directions, as well as the com-
bined use of translation and strain sensors. Various methods
to interpolate sensor motion from DOF motion are discussed.
Generalized static, dynamic, and minimum residual expansion
methods are introduced and it is shown how reduction meth-
ods traditionally used in Component Mode Synthesis applica-
tions allow the use of the proposed methods for industrial size
finite element models.

1 INTRODUCTION

Expansion methods seek to estimate the motion at all DOFs of
a finite element model based on measured information (mode-
shapes or frequency response functions). While a signifi-
cant literature exists in the area, well established method still
present major shortcomings.

The theory is always presented using the assumption that
measurements corresponds to DOFs which leads to major
and unnecessary limitations. DOFs of finite element models
are translations/rotations at finite element mesh nodes. Con-
fusing sensors and DOFs thus imposes that the sensors be
located at mesh nodes. Furthermore, using sensors that cor-
respond translations in arbitrary possibly non-orthogonal di-
rections or strain measurements is either impossible or very
cumbersome to implement. The present paper shows that the
use of an observation equation giving a linear description of
the relation between measurements and DOFs gives a sound
theoretical basis to solve expansion problems even for very
complex test configurations.

Most expansion methods can be categorized by how they re-
late to, modify, or combine the static (based on Guyan re-

duction [1]) and modal/SEREP [2, 3] expansion methods. Dy-

namic expansion [4] is often acknowledged as the best exten-
sion of static expansion but its use has been limited because
of its high numerical cost. The limitations linked to the lack
of residual terms in modal expansion have shown the need

to create hybrid methods [5,6]. But such combinations imply
the setting of parameters (coefficients or selection of target
modes) which leads to a possibly dangerous form of user in-
volvement.

The second part of this paper shows how observation equa-
tions, static/dynamic expansion, and finite element model re-
duction methods can be combined to formulate generalized
static and dynamic expansion methods. The discussion of
the assumptions underlying the proposed Reduced Basis Dy-
namic Expansion (RBDE), then leads to the introduction of
a Minimum Residual Expansion (MRE) and its extension us-
ing quadratic inequality constraints on measurement errors
(MRE-QI) in a fashion similar to the QI versions of standard
methods discussed in [7]. The proposed methods are then
briefly illustrated.

2 SENSORS AND DOFS

2.1 Motivation

To illustrate the distinction between sensors and DOFs let us
consider the laser vibrometer test of a harp resonator shown
in figure 1.

Figure 1: Sensors, test nodes, DOFs



Presented at IMAC 1999, reproduced with permission from SEM : www.sem.org 2

When doing the test, one measures translations in the line of
sight of the measurement head. The measurements made de-
fine a set of sensors and one can build an input/output model
from the exciter(s) to the sensors. Sensors typically used for
modal analysis are

• accelerometers which, at a given point, measure the accel-
eration in one or more directions

• laser vibrometers which measure velocity or displacement
of a surface in the line of sight

• strain gauges which measure local deformation in one or
more directions.

In the testing process, it is important to visualize test results
using a wire frame representation of the structures linking
physical points where a measurement is made (these will be
called test nodes). Here the motion is only measured in a
single sensor direction assumptions must thus be made to re-
construct the 3-D motion of test nodes. Setting motion orthog-
onal to the line of sight measurement to zero is easy enough
and acceptable for intermediate verifications of test results.
For a laser head positioned close to the harp, this however
significantly differs from true motion and is not acceptable for
test/analysis correlation.

To go beyond the wire-frame representation of the test config-
uration, one needs to start using a mechanically meaningful
model which is generally a finite element model of the struc-
ture. Finite element models of linear structures lead to second
order differential equations with a number of Degrees of Free-
dom (DOF) which generally correspond to translations and
possibly rotations of finite element mesh nodes. For this ex-
ample and most industrial structures, the mesh is generated
by a CAD system and the number of nodes is strongly depen-
dent on the geometric complexity of the structure.

From the analysis of this example it appears that a complete
methodology for test/analysis correlation

• must allow arbitrary numbers of sensors (scalar measure-
ments of translation, rotation, strain) at each test node

• must allow an independent selection of test and mesh
nodes

• should be independent from the element formulation

The first item is needed for non triaxial measurements. Such
measurements are often used to overcome limitations of the
correlation methodology in cases where mono or biaxial mea-
surements would be sufficient. Cost effectiveness dictates an
optimal repartition of measurements and thus the use of non-
triaxial sensors.

Non coincidence of test and FE nodes is a practical constraint.
The FE mesh and test nodes are often positioned by different
teams, at different times, with different objectives. While bring-
ing the test and analysis people to cooperate better is certainly
desirable, one must provide methods that do not require full
coordination.

The last item comes from the fact that correlation is gener-
ally performed using software packages that differ from the
general purpose finite element codes used for analysis. It
is important to provide methods that will work without insider
knowledge of how finite elements are formulated for two rea-
sons. First detailed element formulation and source code,
is not publicly available for major commercial finite element
codes. Second, methods based on particular elements would
need to be adapted to the countless elements available in
most codes.

2.2 Practical methodology

The distinction of DOFs {q} and outputs {y} through the use
of linear observation equations of the form

{y(t)} = [c] {q(t)} (1)

is the key of the proposed methodology. One thus considers
that the dynamics of a system are described by an evolution
equation (2) and a set of observation equations (1). This de-
scription is common in control theory (state-space models are
composed of two sets of equations) but rarely used in me-
chanical applications. Its usefulness will be shown here.

In the simplest case where sensors are positioned at FE
nodes and measure in DOF directions, the observation ma-
trix [c] is just a Boolean matrix often called a localization ma-
trix. An objective of this section is to show that in general, one
should use observation matrices that are not just Boolean.

For translation measurements, which is the common case, it is
useful to consider two levels of observation. First, one relates
the 3-D motion of test nodes to DOFs. Then, one projects this
motion along an arbitrary sensor direction to obtain the sen-
sor measurement (this allows the use of an arbitrary number
of possibly non-orthogonal sensors). The first level of obser-
vation is clearly the difficult part.

For test nodes that do not coincide with finite element nodes
(second requirement), the optimal approach would probably
be to get inside the formulation of the element to which the
sensor is connected and to use its shape functions to deter-
mine the displacement of a particular node in physical space.
We have however already mentioned that this is not practical
(third requirement).

The simplest alternative is to consider the nearest node. For
coarse meshes or movements with significant rotational com-
ponents, the error made by neglecting the relative motion of
the nearest and physical nodes can be significant.

The natural extension is thus to take rotations into account
by imposing a linearized rigid connection between the two
nodes. Rotations are typically not defined for solid elements
and must be handled with caution in the case of plates
and shells. Typical finite elements either eliminate the ro-
tation around axes normal to the shell (this DOF is often
called a drilling DOF) or use it to improve the convergence
of the membrane properties of the element. Thus, the popu-
lar MSC/NASTRAN QUAD4 element uses drilling DOFs that
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have no physical meaning, while the QUADR uses this rotation

to represent motion at the element mid-sides [8]. The vector
of rotational DOFs thus often does not give an accurate in-
dication of the local rotation of the physical vector linking the
test/FE node pair.

A third method acknowledges the problems linked to rotations
and thus uses a rigid link with rotations estimated based on
the translations of two additional non–collinear nearby nodes.

Figure 2 illustrates the nodes used to build the observation
matrix of an engine block cover (see details in section 4). The
rigid links connect the circles, while the additional nodes used
to infer rotations are shown as pluses linked to the nearest
FEM node used. The plot and the observation matrix was
here automatically generated using the Structural Dynamics

Toolbox [9] with an additional effort to ensure that links only
use nodes of the physical component on which the sensor is
located.

Figure 2: Nodes used to build the observation matrix of an
engine block cover

The third method (rigid link with inferred rotation), is currently
considered as giving a good trade-off between cost and ac-
curacy. Improvements to this approach will obviously be in-
troduced, but results obtained so far have always been satis-
factory (which is not the case of the two other methods men-
tioned).

Finally, observation equations provide a theoretical basis al-
lowing to deal with measurements of mixed nature (transla-
tions, rotations, strains, ...), this will not be emphasized in the
examples but is another important reason to distinguish sen-
sors and DOFs.

3 EXPANSION OF TEST DATA

We will now consider that the FE model leads to equations of
motion of the form

[MF E ]{q̈} + [KF E]{q} = [b]{u(t)} (2)

but instead of the traditional partition of q into measured and
unmeasured DOFs, we will use the observation equation ( 1).

Expansion methods estimate the motion of DOFs based on
the observation of particular measurements at sensors. The
basis for expansion is the fact that while a finite element model
has many DOFs, the dimension of a subspace accurately rep-
resenting the response to a limited sets of loads in a limited

frequency range is typically small. This principle is the ba-
sis of reduction methods which are briefly summarized before
introducing generalized expansion methods.

3.1 Short reminder on model reduction

The fundamental approach for model reduction is to project
the FE mass and stiffness matrices on the vector space
spanned by the columns of a reduction matrix [T ] which has
less columns than rows

[MR] = [T ]T [MF E][T ] and [KR] = [T ]T [KF E ][T ] (3)

The choice of the reduction basis has been the object of nu-
merous publications and categories of methods known as
modal analysis, condensation, component mode synthesis,

sub-structuring [10, 11]. For the present paper, vectors con-
sidered for reduction will combine

• eigenvectors of the nominal model. They are used to en-
sure that the reduced model will be valid over a certain fre-
quency range. Boundary conditions need not correspond
to those of the test of interest.

• static responses to particular imposed displacements or
loads. They ensure spatial completeness for the consid-
ered loads.

A key property for the present paper is the fact that the dynam-
ics of reduced models only depend on the subspace spanned
by [T ]. More precisely, the dynamics of the system are char-
acterized by the dependence of outputs {y(t)} on the inputs
{u(t)}. This relation is described by two equations (evolution
and observation) given for the reduced model by

[MR]{q̈R} + [KR]{qR} = [T ]T [b]{u(t)}
{y(t)} = [c][T ] {qR(t)} (4)

or in the frequency (Laplace) domain

[ZR]{qR} =
[
MRs2 + KR

]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [c][T ] {qR(s)} (5)

The u, y relationship is clearly identical for a model projected
on [T ] or on

[
T̃

]
= [T ][A] with A non-singular

[cT ]
[
T T ZF E(s)T

][
T T b

]
=

[
cT̃

][
T̃ T ZF ET̃

][
T̃ T b

]
(6)

We will refer to this property as the equivalence of models
projected on various bases of the same subspace.

3.2 Generalized Static Reduction/Expansion

The standard Guyan or static reduction method [1] partitions
the DOFs in two sets of active and complementary DOFs. The
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active DOFs, which correspond to interface DOFs in Compo-
nent Mode Synthesis applications, are for tests assumed to
correspond directly to sensor measurements

{qa} = {yT } (7)

Assuming further that the inertia forces acting on the comple-
mentary DOFs are negligible, there exists an exact relationship
between active and complementary DOFs given by

{
qa

qc

}
=

[
I

−K−1
cc Kca

]
{qa} = [T ]{qa} (8)

which can be used as an expansion method (given {qa}, the
relation above gives an interpolation for {q c}) or a reduction
method (application of (4) with T given by (8)).

When using a non-boolean observation equation, this method
is not directly applicable. The fundamental assumption made
in the classical method is that the only significant forces (iner-
tial and external) are applied on active DOFs. One thus intro-
duces a generalized static expansion defined as the static re-
sponse to forces collocated to the sensors such that the predicted
response at sensors corresponds exactly to the measurement.

For a set of sensors observed through (1), unit collocated
forces (those associated with the sensors by the reciprocity
assumption) are given by the columns of [c]T . The considered
reduction basis is thus defined by

[KF E]
[
T̃

]
= [c]T (9)

In many cases, the finite element model will have rigid body
modes so that [KF E] is singular. This is a standard difficulty
in structural dynamics and the two standard approaches to
solving this problem are to orthogonalize the response with

respect to rigid body modes [c]T [12] or to use a mass-shifted

stiffness matrix [11].

The second step of the generalized static expansion takes ad-
vantage of the invariance property (6). To go back to an equa-
tion of the form (8), one wants to find a new basis T of the
subspace spanned by T̃ such that cT = I . Assuming that the
observations of the vectors of the reduction basis are inde-
pendent (cT̃ is non-singular, this assumption will be relaxed in
the next section), a generalized static expansion will thus be
given by

{q} =
[
T̃
][

cT̃
]−1{y} (10)

For a structure without rigid body modes and a boolean ob-
servation matrix ([c]{q} = {qa}), one can verify that

[
T̃

]
=

[
Kaa Kac

Kca Kcc

]−1[
I
0

]

=

[
I

−K−1
cc Kca

][
Kaa − KacK

−1
cc Kca

]−1
(11)

so that
[
T̃

][
cT̃

]−1
is indeed the static expansion considered

in (8) and the proposed method can be called a generalized
static expansion.

3.3 Generalized Dynamic Expansion

The assumption that inertia forces are negligible is often poor
for some deformations. Dynamic expansion was thus in-
troduced to take into account that in many applications the
considered deformation is associated to a known frequency
(modeshapes, measured FRFs). The Kidder dynamic ex-

pansion [4] thus generalizes static expansion by considering
the exact steady-state response to an imposed harmonic dis-
placement at sensors that correspond to DOFs

{
qa(ω)
qc(ω)

}
=

[
I

−Z(ω)−1
cc Z(ω)ca

]
{qa(ω)} (12)

This is a simple generalization of the static expansion but
guarantees that the exact modes will be found if {q a(ω)} is a
restriction of the shape and the associated frequency are ex-
act. While this method is clearly much more accurate than the
static expansion, it uses a different reduction basis for each
frequency. For industrial FE models in an model updating
phase, dynamics responses to unit loads at sensors have to
be computed for each target frequency and each step of the
updating procedure. Numerically this is often very expensive
and difficult to justify for a method that typically only has an
effect on few modes.

For an arbitrary reduction basis T̃ with more vectors than sen-
sors, one can define a generalized dynamic expansion (GDE)
as the search for harmonic inputs {u(ω)} collocated to the
considered sensors and such that the predicted response cor-
responds to the measurement

[
T̃ T ZF E(ω)T̃

]
{qR(ω)} =

[
cT̃

]T {u(ω)}
and[
cT̃

]
{qR(ω)} = {yTest(ω)}

(13)

The statement of this problem is clearly invariant by any
change of basis in the subspace spanned by T̃ . Assuming
that the rank of

[
cT̃

]
is equal to the number of sensors, it is

possible to build a transformation A such that[
cT̃A

]
= [cT ] =

[
[I ]NS×NS [0]NS×NR−NS

]
(14)

The last NR − NS columns of A correspond to any basis
of the kernel of

[
cT̃

]
(which can be found using the singular

value decomposition of this matrix for example [9]). Given a
basis of the kernel, the first NS column of A can be found
by applying (10) to a basis of a subspace orthogonal to the
kernel.

With a reduction basis T verifying (14), the generalized DOFs
of the reduced model are of the form {qR}T =

{
yT

T qT
Rc

}
and

the solution of problem (13) is

{q} = [Te]{yT } = [T ]

[
I

−Z(ω)−1
RcRcZRcT

]
{yT (ω)} (15)
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which is very similar to (12) but only requires the inversion of
Z(ω)RcRc which has dimensions NR−NS rather than N−NS
which carried an unacceptable numerical cost.

Note that the invariance of problem (13) by any change of ba-
sis in the subspace spanned by T̃ , implies that the solution
found in (15) is independent of the choices made for the coor-
dinate change leading to (14).

The proposed generalized dynamic expansion (GDE) has the
advantages of the standard dynamic expansion (no sensitiv-
ity to mass effects) while allowing low cost computations by
using a model reduction (RBDE : reduced basis dynamic ex-
pansion). A typical reduction basis would combine static re-
sponses to unit sensor loads (to ensure that the result is at
least as good at static expansion), analytical target mode-
shapes (to guarantee exact expansion for these modes), and
possibly other vectors (target modeshapes of other FE con-

figurations, modeshape sensitivities, etc. [13, 14]). It should
be noted that this method can be viewed as the definition of a
projector in the general class of hybrid methods discussed in

Refs. [5, 6]

3.4 Minimum dynamic residual expansion

The assumption that dynamic loads used for the expansion
are only applied at sensor locations is not particularly realistic.
In particular for finite element updating procedures where the
model is known to be incorrect, the dynamic residual (R j =
Z(ωj)φj for modeshapes or Rj = Z(ω)q − F for frequency
response to the harmonic load F) should be non zero at most
DOFs.

One thus defines here a minimum dynamic residual expansion
(MDRE) which seeks to minimize the strain energy associ-
ated to the dynamic residual. For the case of a modeshape
and a reduced basis coordinate change such that {q R}T ={
yT

T qT
Rc

}
, one thus seeks the solution of

min
qRc

||
{

φT

qRc

}T

[Z(ωj)]
[
K̂

]−1
[Z(ωj)]

{
φT

qRc

}
|| (16)

where
[
K̂

]
is a mass shifted stiffness for cases with rigid body

modes and the standard stiffness otherwise.

The numerical cost associated with this expansion method is
only acceptable for cases with qRc not exceeding a few hun-
dred DOFs. The MDRE should thus only be considered for re-
duced basis dynamic expansion using bases similar to those
considered in the previous section.

3.5 Estimation error and smoothing

As a result of measurement and estimation errors (bias and
variance), identified modeshapes are never exact. The obser-
vation of the expanded vector should thus be allowed to differ
somewhat from the measurement.

For cases with a reduction basis with less vectors than sen-
sors, the problem is easily solved through a least squares min-

imization which has a solution of the form

{q} = [T ]{qR} = [T ]
[
[cT ]T [cT ]

]−1
[cT ]T {yTest} (17)

It can easily be verified that for Boolean [c] selecting measured
DOFs and a reduction basis containing a set of target modes,

the application of (17) is known as the SEREP method [3].

Ref. [7] showed how classical expansion methods can be re-
formulated in terms of minimization problems and how the
classical least squares problem with quadratic inequalities

(LSQI) [15] allows to account for errors in test results. The
same work can and should be done for the extensions pro-
posed in this paper.

The principle of LSQI based expansions is as follows. As-
suming that the measurement {yT } is inexact, one seeks
a smoothed {ŷT } close to the measurement (verifying the
quadratic inequality ||{ŷT − yT }|| ≤ α||{yT }||) such that the
expanded vector is more realistic. Various definitions of realis-
tic lead to different expansion methods.

Thus, the minimization of the strain energy of the dynamic
residual associated to a modeshape leads to a MDRE-QI
method where one solves

min
qRc

||
{

ŷT

qRc

}T

[Z(ωj)]
[
K̂

]−1
[Z(ωj)]

{
ŷT

qRc

}
|| (18)

with
||{ŷT } − {φT }|| ≤ α||{φT }|| (19)

4 ILLUSTRATIONS

4.1 Observation equations

The first part of this paper motivated the need to use observa-
tion matrices to distinguish sensors and DOFs and discussed
various methods to interpolate test node displacement from fi-
nite element DOFs. Figure 3 illustrates this aspect for the case
of an engine block cover (data kindly provided by Renault-
DR). The test configuration uses 182 sensors distributed at
91 nodes with measurements made in two directions at each
node. The (coarse) finite element model uses 2218 nodes,
7758 DOFs (solid elements have no rotational DOF), 444
plate/shell elements for the cover and 1386 solid elements for
the base.

Test DOF motion was interpolated based on analytical mode-
shapes computed with MSC/NASTRAN using the nearest
node, linearized rigid link and alternate rigid link (interpolated
rotations) methods discussed in section 2. The plot in figure 3
illustrates the difference between the first 2 methods and the
3rd (assumed to be ”exact”). The plot clearly indicates that
the nearest node method shows less difference which, at first,
seems surprising.
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Figure 3: Wire frame representation of test configuration,
finite element model, MAC comparisons of different

methods for test node interpolation
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Figure 4: Interpolations of first analytical torsion mode on
test mesh.

The origin of this difference is actually linked to drilling DOFs
of the QUAD4 elements used in the NASTRAN model. At the
joint between the cover and the support block (top in figure
4), these DOFs are mostly oriented around the y direction so
that off-sets of test nodes in the xz plane will, for the standard
rigid link method, lead to non-physical corrections linked to the
drilling rotation. In figure 4, when comparing the response at
the joint level (top of the structure in the figure), one indeed
sees that the basic rigid method significantly differs from the
two other results.

4.2 Computational times

Computational times are always dependent on many factors
including computer, level of software optimization, ... All com-
putations and illustrations are here performed using the Struc-

tural Dynamics Toolbox for use with MATLAB [9]. The only
area where version 3.1 of the SDT is known to be fundamen-
tally slower than fully compiled codes is in the computation of
element matrices. The comparisons made in table 1 are thus
quite representative of the real cost of expansion methods.

Full order dynamic expansion has a high cost (linked to the

TABLE 1: CPU times for modeshape expansion of the
engine block cover test (on an SGI-R10000 processor

running MATLAB 5.2.1 and SDT 3.1) .

Model assembly 72 s
Eigenvalue solution (20 modes) 21 s
Full order Dynamic Expansion (14 modes) 77 s
Reduction for RBDE (202 shapes) 60 s
Reduced Basis DE (14 modes) 4 s

block extraction and factorization). This cost is directly pro-
portional to the number of modes to be expanded.

The cost of reduced basis version of the generalized dynamic
expansion (RBDE) is composed of an up-front cost linked to
the reduction and an additional cost linked to each expansion.
The later part is very small for this model and only depends
on the reduction basis size so that it would not grow for larger
models. The reduction is here fairly expensive but it is driven
by the number of shapes in the reduction basis (here 182
static responses associated to each sensor + 20 modeshapes
already computed).

This case was chosen because it has many sensors and few
modes to be expanded, the full and reduced order methods
are thus found to have similar computational costs. The ad-
vantage of the reduced order method becomes significant
when the model size or number of expanded modes is in-
creased, the number of sensors is decreased, or if the reduc-
tion basis is already computed for other reasons (estimation
of modeshape sensitivities, ...).

4.3 Selection of expansion method

The relative merits of various expansion methods discussed in
this paper are difficult to establish since they all work in many
cases. This section will thus seek to illustrate typical difficul-
ties of that have motivated the development of the MDRE-QI
method which is currently considered as best by the author.

The illustrations will be made using the example of the GAR-

TEUR SM-AG-19 testbed [16, 17]. This test article is a simple
structure with publicly available test results (contact the author
for more information). The simple 816 DOF/90 element model
of the structure shown in figure 5, the nominal 24 sensor con-
figuration, the first 14 modeshapes measured by participant C
will be used here.

Figure 5 compares, for mode 11, static and dynamic expan-
sion to the finite element modeshape. For the mode shown,
the 3 sensors available in the x direction (shown as arrows on
the plot), cannot capture the bending of the fuselage. Static
expansion thus gives a significant rigid body contribution for
the fuselage and wings which is very unrealistic.
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Mode 11 (103 Hz)

Static 
Dynamic
FE mode

Figure 5: Modeshape expansion for the GARTEUR
SM-AG-19 testbed.

Most modal test have enough sensors for static expansion to
give correct results for many modes. But this example shows
that even in simple tests, it can occasionally fail miserably
to represent inertia effects whereas dynamic expansion gives
much more robust results.

Figure 6 analyzes modal/SEREP results for various selec-
tions of modeshapes. Keeping the 6 rigid body modes works
well with only 8 flexible modes (1:14 case) and poorly with
14 (1:20). Keeping 14 flexible modes (7:20) works well but
adding more 7:26 and 7:30 shows clear deterioration. The
modal method thus shows a lack of robustness which elimi-
nates it as a good alternative to static expansion.
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M
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Modal expansion

1:14
7:20
1:20
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7:30

Figure 6: Mass weighted MAC of modal expansions of
GARTEUR test data versus FE model

Figure 6 confirms the result mentioned previously that dy-
namic expansion is more accurate than static (modes 11:14).
Modal results (given for the case with 8 flexible modes) is good
in this range. No distinction is made between dynamic and re-
duced basis dynamic expansion as differences are minimal.
The RBDE, MDRE and MDRE-QI methods give an increas-
ingly good correlation which could be expected but is not nec-
essarily a good indication of true correlation.

Finally, the difference between MDRE and MDRE-QI is
illustrated in figures 8-9 where the strain energy dis-
tribution associated to the dynamic residual {R j} =[
K̂

]−1[
K − ω2

jidM
]
{φjex} (a particular case of the error in
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Flex Mode #
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Static
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MDR−QI

Figure 7: Mass weighted MAC of modal expansions of
GARTEUR test data versus FE model

constitutive law criterion) is displayed for the first 4 modes.

Mode 1 at 6.376 Hz Mode 2 at 16.1 Hz  

Mode 3 at 33.12 Hz Mode 4 at 33.53 Hz 

Figure 8: Strain energy distribution of dynamic residual for
RBDE

The experimental modeshapes used show a slight calibration
error of the sensors at the middle of the drums so that they
appear to bend. The direct MDRE result thus indicates large
error levels on the drums which is indication of experimental
error and not of model errors which are of interest.

When gradually increasing α (how to do this is really the
problem with the method), the MDRE-QI method accounts for
measurement errors and gives the correct result that the first
mode is mostly in error because of a poor representation of

the viscoelastic constraining layer [18], mode 2 shows an er-
ror on the tail connection, ...

5 CONCLUSION

The use of observation matrices gives a sound theoretical ba-
sis extend expansion methods to non trivial test configurations
(non coincident test and FEM nodes, non-orthogonal sensors,
strain measurements, ...). Combining observation matrices
and model reduction gives a good framework to extend tradi-
tional modeshape expansion methods and provide computa-
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Mode 1 at 6.376 Hz Mode 2 at 16.1 Hz  

Mode 3 at 33.12 Hz Mode 4 at 33.53 Hz 

Figure 9: Strain energy distribution of dynamic residual for
RBDE-QI with α = 3%

tionally efficient methods.

While all methods work on many cases, some are more ro-
bust than others. Modal based methods tend to be sensitive
for mode selection. Static expansion gives poor results in con-
figurations with few sensors in certain key areas. Dynamic
and minimum residual expansions combine static and modal
results and their reduced basis versions have relatively low
numerical costs, they thus seem to be the best. One of the
advantages of the modal approach was to allow some level
of smoothing trough a least-squares formulation. Accepting
that measurements are not exact seems a very important fac-
tor in any expansion method. The proposed formulation using
quadratic inequalities seems a promising possibility but ex-
perience on how to set the error level parameter and how
to choose a proper norm for the measured deformation still
needs to be gained.
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