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Abstract

Surface damping treatments by viscoelastic materials are of-
ten considered nowadays to enhance dissipation in sheet metal
and laminated glass parts. Constraining layers are needed to in-
crease shear levels in the viscoelastic which is the primary source
of dissipation. The damping behavior of such sandwich types
structures is strongly influenced by the characteristics of the con-
straining layer and the deformation modes of the structure. It is
first shown that finite element models based on classical lami-
nated plate theory (CLPT) do not allow a proper representation
of boundary conditions of the viscoelastic and the constraining
layer which leads to an inaccurate prediction of the behavior of
the damped structure. A layered shell/solid/shell model is intro-
duced and shown to correct these shortcomings. The validity of
the proposed model is demonstrated by correlation with exper-
imental results obtained on the GARTEUR SM-AG-19 testbed.
The damping treatment of this structure is a layer of ISD112 (a
viscoelastic manufactured by 3M) constrained by an aluminum
plate. Test and analysis damping levels are first shown to be
very well correlated. Temperature dependence and computa-
tional times are finally discussed to give further insight in the
proposed methodology.

1 INTRODUCTION

Surface damping treatments with viscoelastic materials are often
introduced in existing structure to alleviate noise and vibration
problems. Free-layer treatments lead to traction-compression
deformations of the viscoelastic, which needs to be stiff in order
to carry a significant fraction of the load and thus dissipate a
noticeable fraction of the energy. Constrained layer treatments
use the stiffness of the constraining layer to induce high levels
of shear deformation in the viscoelastic and are thus typically
more efficient.

Constraining layer effects can be easily introduced in sheet metal
and laminated glass parts and have led to the development of
commercial products such as Solconfort by SOLLAC which seek
to use the enhanced damping in noise and vibration reduction
applications. The development of models allowing the design of
the dynamic behavior of such structures is the ultimate aim of
the work presented here.

The dynamics of sandwich type structures with viscoelastic ma-
terials, depends not only on the characteristics of the viscoelas-
tic (frequency, temperature and geometry) but also very signif-
icantly on the geometry and boundary conditions of the con-
straining layer. The Classical Laminated Plate Theory (CLPT)
leads to a finite element model which does not represent shear
deformations in the viscoelastic very well and cannot take in
account the boundary conditions of the damping and constrain-
ing layers. A shell/solid/shell model is thus introduced in this
paper. The resulting model uses about twice as many degrees
of freedom but the use of model reduction techniques for vis-
coelastic structures [ lead to fairly reasonable computational
costs. Section 2 discusses theoretical aspects of the CLPT, the
new three layer model, and model reduction techniques used for
actual computations.

These theoretical results are then applied to the GARTEUR
SM-AG-19 testbed ! in section 3. This structure designed for
ground vibration testing was tested by 12 European laboratories
to evaluate the reliability of various modal testing as a Round
Robin exercise. Unlike previous exercises Round Robin exercises
in modal testing 1], significant damping levels were obtained
through the use of a constrained viscoelastic layer.

Predictions of modal characteristics are first made for a wing
only model in order to compare the CLPT elements and the
three layer model. The accuracy of the three layer model is
then demonstrated by correlating experimental results of the
GARTEUR exercise with predictions for the entire structure.
Temperature dependence and computational times are finally
discussed to give further insight in the proposed methodology.

2 MODELING OF VISCOELASTIC SANDWICH PLATES
2.1 Classical Laminated Plate Theory

The Classical Laminated Plate Theory (CLPT) models plates
constituted by two or more laminae. The kinematics of each ply
are assumed to follow the Reissner-Mindlin thick plate assump-

tions leading to a linear variation of the strain field through the
thickness

{ep={e"} +2{s} {v}={""} (1)



where {€} is associated to the membrane and bending deforma-
tion and {7} to the shear deformation.

The constitutive relations for each layer are

{o;} =1Qijl{e;} {m} =[Ci;l{7} (2)

where @i; (4,7 = 1,2,6) are the reduced stiffness for plane
stress and Cy; (4, j = 4, 5), the ply shear stiffness.

The constitutive relations for the plate are deduced from inte-
gration of (2) and use of (1)
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with {A;;, Bij, D} = f,h,/jz Qii{1,2,2°}dz  {i,j=1,2,6}

where the membrane force and bending moment resultants are
defined as usual.

The form of the displacement field leads to constant transverse
shear stresses through the thickness of the plate, which are in-
compatible with free boundary conditions on the upper and lower
faces and the global equilibrium of the plate. To solve this prob-
lem linked to the use of a first order theory, shear correction fac-
tors are usually introduced in the transverse shear constitutive
relations: ~2, and 'ygz are respectively replaced by k172, and
k2y0.. The shear constitutive relations for the plate are thus

given by
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with Ai; = [*% Cijdz  {i,j = 4,5} which can be written

{1} = [A[{~"}

The approach used here to determine k; and k> is based on
Chow ™! who starts from the assumption of cylindrical bending
of the z and y axes to determine the shear factors. Taking the
case of cylindrical bending along the = axis, the constitutive
relations for each ply take the form

of = Qf(Bjm + 2Djm)Mm {i,jym=1,6}  (5)

where 01 = o0, and g6 = 0zy. B* and D" are defined by

inverting (3)
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Combining equation (5) with the equilibrium equations and the
global equilibrium of the plate yield the following form of the
shear transverse stress

k= — QY2 (2B;,, + 2D} T

ij g {i:j:m:LG} (7)

where T: = Ty, and Ts = T,,. The constant ¢/ is determined
by the boundary conditions, assuming that 7., vanishes on the

bottom ply. The value of k1 is obtained by equalizing the coef-
ficient of T} in the shear strain energies deduced from (4) and
(7) which are defined respectively by

(TY'[A] T} and [ {r*}"[s*]{*}dz  (8)

where [S;;] (i,7 = 4,5) is the transverse shear compliance ma-
trix.

For orthotropic plies, the shear correction factor is given by
2_ 1 [rhr2 k2]
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The viscoelastic materials considered in this paper are supposed
to be described by a complex frequency dependent modulus E,
as usual in linear viscoelasticity %1, The computation of the
shear correction factor is thus not trivial. The assumption made
here is to take constant shear correction factors corresponding
to the static problem at w = 0, the viscoelastic modulus is then
real.

Extensions that were not considered, but probably would not
correct the major shortcomings of the CLPT model, would be
to recompute the correction factor using the storage modulus of
the viscoelastic at each frequency and to introduce a correction
for the imaginary part of the stiffness matrix using a constant
loss factor for the elastic materials.

2.2 The 3Layer shell/solid/shell model

As will be shown in section 3.2, the CLPT model has signifi-
cant shortcomings. To alleviate these problems, this study in-
troduces an alternative finite element model for sandwich plates.
The specificity of this model is to use classical finite elements
for each layer of the sandwich. The constrained and constraing
metal layers use two 4-node/24-DOF classical shell elements and
the viscoelastic layer uses a 8-node/24-DOF solid element (See
Figure 1). For the metallic layers modeled with shells, the ele-
ment nodes are off-set to the plane in contact with the viscoelas-
tic instead of the standard midplane. This results in coincident
nodes and thus an acceptable coupling. Shell rotations are not
coupled even though it is understood that this results in a non-
conforming finite element formulation. For this study, the quad4
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Figure 1: The 3L shell/solid/shell element construction



thick shell element of the SDT [l is used. This element uses a
Q4WT formulation for the membrane and a Q4Gamma formulation
for bending, with the classical 5/6 shear correction factor. The
3L model thus leads to a 4-node/48-DOF element defined in
the upper or lower plane of the viscoelastic layer. This element
comprises twice the number of DOFs compared to a classical
thick shell element but the addition of DOFs is compensated by
reduction techniques described in the next subsection.

2.3 Reduction of viscoelastic models

This section summarizes model reduction techniques introduced
in 1] to obtain reasonable computational costs and used in this
study. For the examples considered here, one will only consider a
single type of viscoelastic material while the rest of the structure
is assumed to be elastic. The form of the input/output model
is thus

[-Mw® + Ke + Ey(w)Ky | {gw)} = [b]{u(w)}
{y(Ww)} = [el{g(w)}

where K. is the elastic part of the stiffness matrix and K, the
viscoelastic part for a unit Young's modulus E,.

(10)

The traditional approach for computing frequency responses is
to project the model (10) on a basis [T'], with the assumption
that {¢} ~ [T'1{¢gr}- The projection of model on the considered
basis leads to a low order model (as many generalized DOFs as
independent columns in the matrix T")

[-T"MTw® + TTK (w)T]{gr(w)} = [T7b]{u(w)}

{y(w)} = [cH{ar(w)} (11)

For a model with a real and frequency independent stiffness
matrix, the model is traditionally projected on a basis containing
the first NR normal modes ¢;j—1,nr covering the frequency
range of interest and the static response to the considered load

[K 1]

The projection can be applied to a frequency dependent damped
model by replacing the normal modes by either normal modes
computed for the value of the real part of the stiffness at one or
two frequencies ¥ or pseudo-normal modes [l ¢~Sj=1,NR which
are defined as the solutions of the generalized eigenvalue prob-
lem

[ M} + Re(K(@;))] b5 =0 (12)

To these modes which characterize the low frequency response,
one adds the static response to unit load(s) [6] ! to account for
low frequency effects of high frequency modes. The projection
basis thus has the form

[Tal=[ $imive  [Re{K(wmax)}] '] ] (13)
As shown in [l better accuracy on the damping predictions is

obtained by introducing a first order correction to the basis [T'a]
by computing the static response to the load generated by the

imaginary part of the stiffness when exciting a given normal or
pseudo-normal mode

[To;] = Re{K (@)}~ Im{ K (@;)}1{; }- (14)

The basis [Ta Tcj—1,~r] contains twice the number of normal
modes in the considered band but the accuracy improvement and
increased confidence in the results typically justify the relatively
minor increase of computational cost.

3 ILLUSTRATIONS
3.1 Model of the GARTEUR testbed

The GARTEUR SM-AG-19 structure 2! was tested by 12 lab-
oratories from European companies, research centers and uni-
versities in France, Germany, the Netherlands, Sweden and the
United Kingdom as a Round Robin exercise to evaluate the re-
liability of various modal testing. The details of the final design
are summarized in [2I. The major difficulty of the test was a
group of three very close modes. Most of the participants be-
ing involved in ground vibration testing of aircraft, the testbed
was made heavy (50 kg) to try minimizing measurement equip-
ment loading even when using equipment designed to test much
larger structures. The availability of many openly available test
results on this structure motivated its use in the present study
even though short term applications are really the prediction
of damping levels in objects made with steel/visco/steel sand-
wiches such as Solconfort made by SOLLAC.

The finite element model used in this study is shown in Figure 2.
The global model uses 2262 DOFs, 262 nodes, 228 elements
including 1380 DOFs, 115 nodes, 180 elements for the wing.

Figure 2: Finite element model of the testbed

The undamped part of the structure is modeled with 4-node/24-
DOF plate elements. The damped part of the wing is modeled
using a 12 by 4 grid of CLPT shells or 3L models (see sec-
tion 2). The elastic properties taken for the aluminium parts
are E =72 10°N/m?, v = 0.3 and p = 2.7 103kg/m®. Real,
temperature and frequency independant values used for the vis-
coelastic are v = 0.45 and p = 1.2kg/m>.



The damping treatment is composed of a 1.7m x 76mm x
0.05mm viscoelastic self-adhesive film constrained by a 1mm
thick aluminium plate and set on the wing which is a rectan-
gular 2m x 100mm x 10mm aluminium plate. Two 100mm X
400mm x 10mm rectangular drums are centered on each wing
tip. The viscoelastic is the 3M-ISD112 acrylic polymer whose
damping properties are provided by 3M [® in the standard re-
duced temperature format. Considering the relation between
frequency and temperature, the storage modulus and the loss
factor are thus given as a function of war, where ar, the tem-
perature shift factor, is an absolute function of temperature [*°].

E(w,T) = f(war(T)) (15)

where Log(ar) = —c1(T — To) /(T — Too)-

The two first subplots of figure 3 give the master curves at
20°C of the 3M-ISD112 strorage modulus and loss factor.
The properties for a specific temperature T' are deduced from
this curve by an off-set on the log-frequency axis of value
Log(ar(T)/ar(20)), whose curve is given in the third subplot
of figure 3.
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Figure 3: 3M-ISD112 master curve at 20°C and
temperature shift factor

The GARTEUR testbed was designed to have relevant test
modes in the 5 to 50 Hz range. Figure 3 indicates that the
room-temperature loss factor of the ISD112 is above 0.9 in this
range which motivated the selection of this particular viscoelas-
tic.

In the rest of the paper, an estimation of the damping ratio ¢
linked to an approximation of the structural loss factor n will be
used, considering the relationship n ~ 2¢. The structural loss
factor is predicted using the strain energy method adapted to
composite structures. The principle of this method is that the
structural loss factor can be estimated by the ratio of the dissi-
pation energy to the strain energy in the undamped structure.
For composite structures, the structural loss factor can thus be
considered as the sum of the material loss factors weighted by

the ratio of the elastic strain energy in the each part of the
structure to the total strain energy in the undamped structure

(m)
Up Z(m) n(m)USm
o (m)
Us 2 my Us

where 7™ is the loss factor for each material, and Up the
dissipation energy of the entire structure. Us represents the
elastic stain energy of the entire structure and is equal to the
sum of all Uém), the elastic strain energy of each part structure.

n =~ (16)

In practice, the modal damping ratio ¢ is computed with the
pseudo-normal modes using

1{85} K. + Im(B(@;)K. {9 }

C(@;) = - - (17)
2 {4} Re(E@)){i)
Test FEM
w (Hz) ¢ (%) | w (Hz2) ¢ (%) MAC
e =0 7n.=02%

6.38 1.30 6.56 0.89 0.99 100
16.10 1.30 14.76 1.70 1.80 93
33.12 0.83 36.10 1.13 1.23 79
33.53 1.00 36.23 1.13 1.23 86
35.65 1.10 39.72 0.75 0.85 96
48.38 2.30 51.39 2.16 2.25 99
49.43 0.46 53.07 0.23 0.33 97
55.08 0.20 57.06 0.03 0.13 100

Table 1: MAC comparison on 24 sensors between
experimental (GARTEUR participant C) and FEM modes

Table 1 gives the MAC comparison between experimental and
computed pseudo-normal modes of the structure. The poor
correlation for modes 3 and 4 is linked to the dissymmetry of
the actual structure which leads to torsion modes that are not
truly symmetric. This also affects mode 4 which is very close
in frequency. For the present paper, which focuses on damping
predictions, no further effort was done to determine the origin of
the noticeable error on the second mode or to update the model
to obtain better correlation of the frequencies.

3.2 Comparison between the CLPT elements and the 3L
model

The purpose of this section is to show the respective ranges
of applicability of the CLPT and 3L models. To do so, one
will consider only the wing of the GARTEUR structure and use
the fact that cuts in constraining layers are expected to have
significant impact on the damping levels of various modes [*1.

To motivate the use the 3L model, one first predicts the damping
ratios of the two first modes of real the wing. Wing only tests
were performed before assembly of the final structure and the



drums were then 10 cm longer. Table 2 shows the experimental
and numerical damping ratios. The results obtained with the 3L
model are slightly lower than those obtained for the wing with
the damping treatment. The computations were performed as-
suming no damping in the aluminium parts. But tests carried
out on the wing before addition of the damping treatment indi-
cate some levels of dissipation. Taking into account a small loss
factor for the aluminium would thus lead to better predictions
of the 3L model. On the other hand, the CLPT element totally
underpredicts both of the damping ratios. Even readjusting the
loss factor of aluminium would not lead to a correct prediction.

mode tests tests 3L | CLPT
before after
treatment | treatment
bending 0.3 1.1 0.9 le-5
torsion 0.1 0.9 0.8 le-6

Table 2: Damping ratios (%) for the GARTEUR wing only,
estimated by the energy method

The results of the 3L model on the wing with the complete
damping treatment (case A) encourage us to use it to examine
the effects of cuts in the damping treatment. Two cases of cuts
(see Figure 4) are considered here. In the first case (case B),
one cut of 0.1 mm is done along the width of the damping treat-
ment in the middle of the length while the second case (case C)
contains a second 0.1 mm cut in length of the damping treat-
ment. The models associated to the three cases have the same
number of DOFs as the considered cuts are only one element
wide and the model used for case A already uses the very narrow
constraining layer elements that are removed for case B and C.

cut (0.1 mm)

——— constraining layer (1 mm)
——p» viscoelastic layer (0.1 mm)
———p» constrained layer (10 mm)

Figure 4: Detail of a cut in the damping treatment

To illustrate the validity of the CLPT and 3L models, one
will assume elastic properties for the viscoelatic layer and an-
alyze predicted modal frequencies and strain energy reparti-
tion (fraction of strain energy in the viscoelastic layer) for
a modulus varying between the low frequency storage mod-
ulus of ISD112 (~ 10°N/m?) to the modulus of aluminium
Ea = 72 10°N/m?. The predicted frequencies are clearly
expected to fall within the two limiting cases of the structure
with no treatment (10mm aluminium plate) and the structure
where the viscoelastic is really aluminum (11.1mm aluminium
plate). These expected limits are plotted in figures 5 and 6 as
dashdotted and dotted lines.

The variations for the first bending mode, shown in figure 5,
are only given for cases A and B, case C yielding to the same
results as case B. Similarly, the variations for the first torsion

mode (figure 6) are only given for cases A and C as the results
for case B are the same as case A. These results show that a cut
in the length of the damping area has no effect on the modal
characteristics for the bending mode whereas a cut in the width
has no effect on the torsion mode.
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Figure 6: Frequencies and damping energy ratios of the
first torsion mode

To analyse the performance of the CLPT model, one first no-
tices that in case A for low moduli, the bending frequency does
not tend to the lower frequency limit. This over-stiffening is
due to the assumption of linear variation of strain through the
thickness that is not verified and cannot be corrected by the
shear correction factor. For the torsion mode, the frequencies
obtained for low moduli are completely below the lower limit
because the shear correction factor tends to zero. The deter-
mination of the correction factor based on cylindrical bending



solutions is not adapted for torsion. For high moduli, the re-
sponse is as expected very accurate.

For both modes, the energy fractions in the viscoelastic (and
thus the resulting damping predictions) are underpredicted for
all but very high moduli. Moreover, only minor differences are
visible between the modal characteristics of the three cases A,
B and C with the CLPT element which indicates that it does
not properly take cuts into account.

The validity of the CLPT model is thus poor at best for the
cases of interest where the modulus of the viscoleastic is much
lower than that of the constraining layers.

For high moduli (Re(E,) — Egi,). the 3L model also overes-
timates the bending frequencies (torsion frequencies are correct
for the whole range). This over-stiffening corresponds to a well
known "locking” phenomenon typically illustrated by the inabil-
ity of bilinear membrane elements to represent in-plane bending
motion for high aspect ratio. The cases of interest here corre-
spond to the low moduli range, where the element really works
in shear and does so correctly. In the plots, one effectively sees
modal frequencies converging with the lower frequency limit.

The energy ratio curves based on the 3L model show a peak in-
dicating an optimum value of the viscoelastic modulus for which
maximum damping is obtained. For the bending mode, the max-
imum damping ratio is 3.1% in case A and decrease at 2.7% in
cases B and C whereas, for the torsion mode, the maximum
damping ratio is 2.7% in case A and B and increase at 2.9% in
case C. However, when a cut has an influence on the damping
ratio of a given mode, one notes that the peak is obtained for
a higher modulus than in case without cut. Depending on the
actual variation of a viscoelastic modulus, cutting the damping
treatment could then be a solution to get higher damping levels
for specific modes.

3.3 Damping predictions for the entire structure

The 3L model will now be used to perform predictions of damp-
ing levels of the whole GARTEUR structure described in sec-
tion 3.1. Only nine participants of the GARTEUR SM-AG-19
provided results complying with the test specification. The min-
imum, maximum and mean damping ratio values derived from
these tests are given as the solid line envelope in figure 7. Com-
putations based on the 3L model using damping estimator (17),
and loss factors in the aluminum varying between 0 and 0.5%
are then superposed. The match is extremely good except for
mode 2 which is also poorly correlated in terms of mode shape
(this poor correlation probably comes from the wing/fuselage

link).
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Figure 7: Comparison of the damping ratios between
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computations based on the 3L model with various loss
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Figure 8: Influence of the temperature on the frequencies
and damping ratios

For the previous computations, the temperature was assumed
to be constant at 18°C. However, the influence of the temper-
ature can be significant on the damping level. Figure 8 shows
the variations of the damping levels of the first four modes of
the structure between 15°C and 25°C'. The frequencies of the
four modes exhibit all a slight fall on the temperature range of
interest (maximum fall of 0.01% for the fuselage rotation). For
further predictions, the frequency can thus be estimated a priori
on a temperature range with a unique computation at a mean
temperature. For the two-node bending and fuselage rotation



modes of wing, the damping levels increase on the tempera-
ture range, specially the two node bending mode with a rise of
50%. On the other hand, for the two modes of wing torsion,
the damping levels drops by 50% between 15°C and 25°C.

task CPU time (s)
assembly 25
20 normal modes 6
20 pseudo-modes 89
correction basis 7
full FRF/frq point 28
reduced FRF/frq point 5.9e-3
reduced corrected FRF/frq point 9.8e-3

Table 3: CPU times FRF predictions using SDT 3.1 [ on
a SGI R10000 processor

Model reduction is an important aspect of the proposed method-
ology. Computational times shown in table 3 indicate that the
reduction phase takes about 2 or 3 times longer than model
assembly. While this could be significantly improved, it would
never go much below assembly times. The resolution of the full
order viscoelastic problem is about 3000 times slower than the
associated reduced version. This ratio is in part due to the use
of the basic MATLAB sparse functions for the full order compu-
tation. But orders of magnitude in difference would still remain
after optimization. Finally, it should be noted that reduction
can be performed at a single temperature for studies of tem-
perature dependence, thus giving another critical advantage in
design studies.

4 CONCLUSION

A three layer shell/solid/shell model was demonstrated to be
effective in modeling metal/visco/metal sandwich plates. The
demonstration was based on comparisons with test results on
the wing-only and full structure configurations of the GARTEUR
SM-AG-19 testbed. For the full structure the variations between
realistic damped models of the structure are lower than those
found between various test results.

The 3 layer model is built using classical finite elements available
in most commercial software. It was shown to be efficient at
capturing the effect of cuts in the damping treatment leading to
variations in the damping of various modes. Comparisons with
results obtained with Classical Laminated Plate Theory showed
the failure of this approach but also illustrated over-stiffening
effects of the 3 layer model in cases with very stiff viscoelastics
(which are not the focus of the present study).

The whole study was made possible by the use of model reduc-
tion techniques introduced in Ref. [, These techniques limit
the impact of the increased number of degrees of freedom (the
3L model uses 2 layers of standard shell elements) and elements
(three elements trough the thickness). Studies for more intricate

models with tens of thousands DOFs are thus quite reasonable.

Further directions of research are the validation of the 3L model
for sandwich shells and realistic industrial objects, use of iden-
tification techniques rather than energy ratio considerations to
estimate loss factors, and introduction of a methodology to build
dynamically equivalent time domain models.
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