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1 Abstract

Variable models are used to describe structures that

change in time, whose properties are not well known, or

that are improperly modeled. When the objective of the

model is to predict Frequency Response Functions (FRF),

variability descriptions typically need to be considered

in the physical, modal and FRF parameter spaces. The

present study uses simulations of a fairly complex vari-

able �nite element model to seek a better understanding

of limitations that can be expected in forward and reverse

propagation of variability descriptions between those pa-

rameter spaces. The �nite element model represents the

GARTEUR SM-AG-19 testbed so that predicted variabil-

ities can be compared with di�erences between the test

results of participants of this Round-Robin exercise.

2 Introduction

When performing di�erent tests of a single structure, one

always �nds a certain amount of variability between the

results. When the tests are performed using di�erent

hardware set-ups (because di�erent teams test the struc-

ture or because di�erent con�gurations of the test equip-

ment are considered) the variations are even more visible

but are now also expected since actual modi�cations were

made. In general, such modi�cations are not fully charac-

terized, so that the test con�gurations are often compared

as if they did not a�ect the structure. The test results

should thus be considered as samples of a stochastic en-

semble.

In a more general setting, stochastic models can be used

to represent a number of situations.

� The structure can be assumed to change in time be-

cause of aging, temperature e�ects, loading conditions,

etc.

� The same model is often used to represent a number

of structures that should be identical but typically are

not. Thus manufacturing tolerances, residual stresses,

changes in welding point positions, etc. are known to

signi�cantly modify the properties of cars coming from

a single assembly line.

� Material or geometrical properties may not be mea-

surable at all points and so that random distributions

of these properties must be assumed. Soils, for exam-

ple, are typically only characterized through statistical

properties.

� Cost considerations often lead to the representation

of complex mechanical parts by simple assemblies of

beams, plate/shells and solids which need to have

equivalent properties leading to a similar global behav-

ior of the model rather than being readily related to

local material/geometry properties. In many cases the

best values of these equivalent properties depends, in

an unknown fashion, on the objective of the model.

These parameters should thus be considered as uncer-

tain. Similar variability should be considered when

using mock-ups for complex pieces that may not yet

be fully designed.

All those sources of variability can be expected to have

similar e�ects on the response of the structure. The

present study thus focuses on a particular application

where modeled test conditions are variable assuming that

the results found will remain representative of variability

found in other cases.

The 12 members of the GARTEUR Structures and Ma-

terials Action Group 19 performed a Round-Robin exer-

cise where each participant tested a single representative

structure using his own test equipment [1, 2]. A conclu-

sion of the exercise was that test equipment variability

was a major factor in explaining the di�erences between

the results found by di�erent participants. The present

study thus uses a well re�ned �nite element model of the

GARTEUR SM-AG-19 structure with a variable descrip-

tion of loading e�ects linked to test equipment. Compar-

isons with the results from tests on the real structure give

a good indication of the realism of this variable model.

Predicting the Frequency Response Functions (FRF)



in the low frequency range is considered to be the objec-

tive of the models. These responses are characterized by

properties of low frequency modes which allow the predic-

tion of FRF. After a discussion of variability descriptions

in di�erent forms, the study propagates a variability de-

scription in physical parameter space into modal and FRF

parameter samples using Monte-Carlo simulations. The

samples are then used to characterize variability in the

FRF and modal parameter spaces. This analysis leads

to a better understanding of limitations that can be ex-

pected in forward and reverse propagation of variabil-

ity descriptions in physical, modal and FRF parameter

spaces.

3 Describing variability

3.1 Physical parameter space

Structures are typically described by a set of geometrical

and material properties which can be translated into a �-

nite element model (mass, sti�ness and possibly damping

matrices). Variability descriptions in physical parameter

space are characterizations of changes of the parameter

vector

p = p0 +�p (1)

In practice realistic manipulations of models require

reparametrization of the model. Usually, one will write

the sti�ness matrix as a linear combination of elementary

constant matrices

K(p) =

NBX
j=1

�j(p)Kj (2)

where, for example, a plate model with variable thick-

ness and Young's Modulus will require three parameters

�1 = Et; �2 = Et
3
; �3 = Et

2 to account for membrane,

bending and possibly coupling e�ects.

It is important to note that software implementations

of variable models will much more easily consider the �

coe�cients as variable than the actual physical parame-

ters since this approach does not require recomputation

of the element matrices for each value of the parame-

ters p. Linearized representations of the relation between

p and � are of course possible but may have very lim-

ited ranges of validity. Note also that the disassembly

method [3] that describes K(p) as a product of the form

[C]

h
n
�(p)n

i
[C]

T
seems to be another promising approach

for the parametrization of variable �nite element models.

3.2 Modal parameter space

Models are used to make predictions of the response to

applied forces, in other words, to �nd solutions of the

form

q(!; p) =
�
K(p)� !

2
M(p)

��1
[b]fu(!)g (3)

In most practical applications, the size of the model

matrices is such that the inverse of the dynamic sti�ness

matrix K(p)�!
2
M(p) cannot be computed directly and

one uses a truncated modal series to approximate the re-

sponse. Normal modes are solutions of the eigenvalue

problem

�[M(p)]f�j(p)g!
2
j (p) + [K(p)]f�j(p)g = f0g (4)

and are traditionally used to project the model. The gen-

eral form of a projected model is

q(!; p) = [T (p)]
�
T (p)TZ(!; p)T (p)

��1�
T
T
b
�
fu(!)g (5)

but when the vectors of T are chosen to be an in-

complete basis of low frequency normal modes T =

[�1(p) : : : �NR(p)], the projected dynamic sti�ness is di-

agonal

q(!; p) =
PNR

j=1

f�jgf�jg
T
[b]
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(6)

The traditional approach to describe variability in

modal space is to characterize changes on the frequen-

cies and mode shapes

!j = (!j)0 +�(!j) and f�jg = f�jg0 +�f�jg (7)

An alternative that will be considered here is to project

the model on a �xed basis T . Thus if this basis is given by

T = [�1(p0) : : : �NR(p0)], the variability will be described

using

[MT ] =

h
n
In

i
+�MT and [KT ] =

h
n
!
2
j n

i
+�KT (8)

One advantage of using a �xed basis description is that

variability descriptions in physical parameter space are

easily propagated into the �xed basis modal space (which

could be called reduced model parameter space) since the

full order parametrization (2) can be projected on the

basis T leading to



T
T
K(p)T =

h
n
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2
j n

i
+�KT =

NBX
j=1

�jT
T
KjT (9)

In this description, the modes associated to a set of p

(or �) parameters are typically estimated using the re-

duced eigenvalue problem

�
�
T
T
M(p)T

�
f�jR(p)g!

2
jR(p)+

�
T
T
K(p)T

�
f�jT (p)g = f0g

(10)

where the shape de�ned on the initial degrees of freedom

is given by f�jg = [T ]f�jRg. The use of this reduced

eigenvalue problem drastically lowers the computational

cost associated with the variability description while re-

taining a description of the correlation between the vari-

ations of the di�erent modal properties (see section 5.2).

While the simple projection on the basis of low frequency

modes can be considered [4], its accuracy can be ques-

tioned and one may want to consider more complex bases

adapted to a particular variability description (see Refs.

[5, 6] and section 4).

3.3 Frequency response parameter space

For most test cases, the data available for analysis are

estimates of the frequency responses at a �nite number of

points. The traditional way of describing variability on

FRFs is to de�ne for each frequency the variability of the

amplitude/phase

H(!) = (jH0j+�jH j) ei(<(H0)+�<(H)) (11)

or the real/imaginary parts

H(!) = H0(!) + �H(!) (12)

The later description is often considered in robust con-

trol applications (in particular for so called �-synthesis

methods [7]).

4 The GARTEUR SM-AG-19

testbed

4.1 About the testbed

During 1995 and 1996, 12 members of the GARTEUR

Structures and Materials Action Group 19 tested a rep-

resentative structure shown in �gure 1. The results of

this Round-Robin exercise have been publicized in di�er-

ent papers [1, 2] and the current work proposes partial

explanations for the variability of those results.

Figure 1: General view of the GARTEUR Structures and

Materials -Action Group -19 testbed

4.2 The updated �nite element model

The �nite element model, used here and shown in �gure 2,

was created by DLR and re�ned by the author. This 485

node, 2509 DOF model contains 100 8-node plate/shell el-

ements for the main aluminum and steel parts, 80 beam

elements for the suspension and various connections be-

tween the main parts, 26 concentrated masses for the sen-

sors and compensation masses.

Table 1 gives indications on the quality of the �nal

test/analysis correlation. One notes good agreement of

both modal frequencies and mode shapes (based on MAC

at the 24 sensor locations shown in �gure 2). Remaining

identi�ed problems are the following

� The true wing is not symmetric (its width actually

varies between 99 and 100 mm). This signi�cantly af-

fects the wing torsion modes. This di�erence between

the model and reality accounts in good part for the

Modal Assurance Criterion values of 81 and 88 found

for modes 3 and 4.

� The constraining layer used in the testbed to augment

damping levels is di�cult to model properly. The

1700x76.2x1mm constraining layer has the 3M ISD-

112 viscoelastic work in shear. The actual levels of



shear energy depend on the deformation pattern and

the equivalent sti�ness for torsion modes should be de-

creased while not modifying the properties linked to

wing bending. The e�ect of such a modi�cation could

not at the time of writing be tested using the Structural

Dynamics Toolbox [8] which was used for all compu-

tations.

Figure 2: Mode 3 of the �nite element model of the GAR-

TEUR SM-AG-19 structure with locations of the 24 re-

quired accelerometers

Table 1: Test analysis correlation with experimental re-

sults of participant C.
Mode name !TestC (Hz) !FE MAC

Two node bending 6.4 6.3 100

Fuselage rotation 16.1 16.2 99

Antisym. wing torsion 33.1 35.7 81

Symmetric wing torsion 33.5 36.1 88

3N wing bending 35.6 37.2 94

4N wing bending 48.4 49.3 100

Inplane wing vs. fuselage 49.4 52.1 98

Sym. inplane wing bend. 55.1 62.8 99

4.3 Description and validation of variable

model

Discussions within the GARTEUR SM-AG-19 led to the

identi�cation of many sources of variability. Those seen

as the most important were retained in the current study

and are

� Value of the additional masses located at the front of

the wing tip bodies. In the actual testing, these masses

let participants, who used current driven shakers with

no load cell, compensate for the weight of the shaker

moving mass which becomes part of the "structure" in

such test con�gurations. The instructions on how to

compensate were often misinterpreted which resulted

in signi�cant variability. For the simulations, these

masses are assumed to be evenly distributed between

160 and 240 grams.

� Value of the sensor masses added at the 24 nominal

locations. Participants used their own accelerometers

and were actually free to use more than the 24 required

sensors. As a rough approximation of the sensor load-

ing, the mass loading is assumed to be equal at the

24 nominal sensor locations and with the sensor mass

evenly distributed between 5 and 30 grams.

� Sti�ness of the suspension. In the actual test, a set of

common bungees was used but participants were given

some freedom on how to attach the bungee connector.

Actual heave modes were estimated between 1.8 and

2.7 Hz. Similar variability is achieved here by letting

the sti�ness of beam model of the bungees vary by a

factor 20. A equal distribution of the log of this factor

is used for simulations.

� Shaker position. A misunderstanding of the test doc-

umentation led a number of participants to misplace

the wingtip excitation points using the inboard side

(where the compensation mass is located) rather than

the outboard side (where the required sensor is placed,

as shown in �gure 2). For FRF predictions in section

5.1, the two positions are taken to be equally likely.

The �rst step in assessing the validity of this variability

model is to look at modal frequencies. As shown in table

2, the variabilities found in the analysis are lower than

those found experimentally. Especially for mode 1 (no

explanation found) and 6 (shaker sti�ness e�ects that are

not taken into account here would signi�cantly increase

variability found for this mode). For the three closely

spaced modes 3-5, the model seems very realistic.

Table 2: Test and analysis variability of modal frequen-

cies, mean values, standard deviations (in Hz and % of

frequency)

# �!T �!T Hz �!T % �!A �!A Hz �!A %

1 6.7 0.22 3.4 % 6.3 0.05 0.9 %

2 16.2 0.15 0.9 % 16.2 0.08 0.5 %

3 33.4 0.63 1.9 % 35.8 0.52 1.5 %

4 33.8 0.65 1.9 % 36.2 0.63 1.7 %

5 35.5 0.54 1.5 % 37.3 0.25 0.7 %

6 48.3 1.30 2.7 % 49.4 0.24 0.5 %

7 49.4 0.68 1.4 % 52.2 0.23 0.4 %

8 54.8 0.78 1.4 % 62.9 0.43 0.7 %



Figures 3 and 4 compare variability of 8 test results and

of 20 �nite element models selected randomly in the given

range. The �gures clearly indicate the same trends. The

three modes near 35 Hz are signi�cantly a�ected by test

�xtures with noticeable changes in the resonance frequen-

cies and associated shifts in the phase. The variability

of driving point position can be seen by the shift in the

frequency of the antiresonance near 20 Hz. This e�ect is

even more drastic on other FRFs for which the level of re-

sponse in the higher part of the frequency range depends

signi�cantly on the shaker position.
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Figure 3: Measured FRFs by 8 of the GARTEUR SM-

AG-19 participants
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Figure 4: Predicted FRFs for a sample of 20 models

In the present study, forward propagations of vari-

ability models are obtained through Monte-Carlo simula-

tions. For the propagation of physical parameter variabil-

ity, reasonable numerical cost is obtained by introducing a

�xed basis reduction before propagation. For more details

on this approach see Refs. [5, 6]. The basis considered

here contains 25 normal modes of the nominal model com-

plemented by the modeshape sensitivities of the 6 rigid

+ �rst 8 �exible modes to the three considered variable

parameters (@�j=@pk; j = 1; 14; k = 1; 3). The basis thus

created actually only contains 59 independent vectors. It

can be shown that this approach is actually more accu-

rate than using a �xed basis projection on the �rst 59

modes of the nominal structure as considered in Ref. [4].

5 Properties of typical variations

5.1 Characterizing variability of FRFs

Assuming that the sample set of transfer functions is rep-

resentative of actual variations between tests, it appears

that traditional FRF variability descriptions are not use-

ful near resonances. Thus, although the variability near

the �rst bending mode seems quite small in �gure 4, a

zoom on the frequency range shows (see �gure 5) that

damping is small enough for the shifts of resonant fre-

quency to lead to signi�cant variations of amplitude and

phase near the peak.
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Figure 5: Predicted FRFs near the resonance of mode 1

for a sample of 20 models

Looking at the Bode plot in �gure 5, the �rst idea is to

select a variability description at a given frequency point.

For the 6.2 Hz point one could describe the amplitude and



phase as being in the range shown by arrows in �gure 5.

On the Nyquist plot shown in �gure 6, this translates into

a sector. Similarly the unstructured uncertainty model

typically used in controls [7] would lead to a description

of variability as a circle on the Nyquist plot corresponding

to an error of bounded norm on the real and imaginary

parts.

Figure 6 shows the variability sector linked to stan-

dard deviations in amplitude/phase, the variability circle

linked to standard deviations in real/imaginary parts, as

well as a dotted line linking the 20 points associated to the

chosen frequency. It clearly appears that these character-

izations of variability fail to account for the constraint

existing between amplitude and phase shifts which leads

to the area shown in gray where all the Nyquist plots are

located. Note that the e�ect would be even more pro-

nounced if ranges (as shown in �gure 5) rather than stan-

dard deviations were used to show the variability sector

or circle.

Using the terms of robust control theory, the non para-

metric uncertainty models (11) or (12) can only give an

extremely conservative (unprecise) representation of the

parametric uncertainty linked to physical parameter vari-

ations.
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Figure 6: Nyquist plots for a set of 20 models with

envelope for all points shown in gray. (� � �) links all

6.2 Hz responses. (�) envelopes of magnitude/phase or

real/imaginary part variability descriptions for a pole at

6.2 Hz

5.2 Characterizing and propagating vari-

ability of modal properties

In a �rst phase, one could consider that the mode shapes

are constant and that the variability only a�ects the

modal frequencies. A Monte-Carlo simulation of the re-

sulting responses was performed while focusing in the

35 Hz range. Figure 7 shows the result of a sample of 20

models. It clearly appears that the interactions between

the two torsion modes are quite di�erent from those seen

in �gure 4. In particular, an antiresonance sometimes ap-

pears near 36 Hz which signi�cantly lowers the predicted

level of response as well as leads to an increase of the

phase in the 35.5�36.5 Hz range.
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Figure 7: FRF variability associated with propagated

modal frequency variability is not representative.

These poor predictions of FRFs are linked to the in-

teractions between the two torsion modes which are close

in frequency. The three considered modi�cations do not

actually allow the frequencies of these modes to move

independently, as clearly apparent in the �xed basis pro-

jection (9) of the full order variability model.

Another way to demonstrate the correlation between

variations of di�erent modes is to plot the modal masses

at a particular sensor versus modal frequency. Thus �g-

ure 8 indicates that the modal mass of mode 5 (3 node

bending) at the shaker position 112z (wing tip) changes

by more than an order of magnitude (the node is fairly

close to a node line which explains the high and sensitive

modal mass). The almost constant slope of the lines link-

ing the three points of a given model clearly indicate a

strong but fairly di�cult to entangle relationship between

the properties of the three modes.
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Figure 8: Plot of modal mass at shaker position 112z

versus frequency. The dotted line links the two torsion

and 3-node bending modes of each model.

6 Conclusion

The illustration trough realistic simulations of a variable

model of the GARTEUR SM-AG-19 testbed leads to the

following statements.

The parametric nature of variations is essential for a

realistic representation of variability of the dynamic be-

havior of structures. In particular, none of the usual de-

scriptions of FRF variability based on variations of the

response at a given frequency point can account for the

actual properties that are typical of structural modi�ca-

tions (this is particularly true near resonances and anti-

resonances).

The typical variations are not well described by a

characterization of frequency and modeshape variability.

Given a variable full order model, a reduced representa-

tion can be obtained by projection on the �xed basis of

nominal low frequency modes (eventually complemented

by appropriate corrections [5, 6]). Such projected mod-

els are low order and thus useful even for very large full

order �nite element models, but retain key information

on the links existing between variations of the di�erent

modeshape and frequencies.

These conclusions given on a forward propagation

study give indications on what can be expected for re-

verse propagation. FRF variability descriptions cannot

be expected to be useful to estimate physical parameter

variability that is typical of structures. Mode shape vari-

ability is also very limited as soon as some of the modes

are close to each other. A method to de�ne a �xed ba-

sis projection for experimental results seems the missing

piece to allow an experimental characterization of vari-

ability by other means than doing series of �nite element

model updates for samples of experimental results.
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