
EFFICIENT SENSITIVITY ANALYSIS BASED ON FINITE

ELEMENT MODEL REDUCTION

Etienne Balmès,

Department of Mechanical Engineering of Soils, Structures and Materials

École Centrale Paris, 92295 Châtenay-Malabry, France

balmes@mss.ecp.fr
�

Abstract

The computation of frequency and modeshape sensitiv-

ities with respect to design parameters is essential to

many structural optimization and �nite element update

algorithms who use this gradient information to orient

the search for a minimum of various objective functions.

Sensitivity computations may often become prohibitively

expensive if large-dimensional models are used. On the

other hand, approximating the gradients may lead to poor

estimates and a loss of convergence.

The cost of Nelson's exact method to compute mode-

shape sensitivities is generally not acceptable for indus-

trial size models. The present study thus gives a general

categorization of existing approximation methods with

suggestions for some new extensions. Iterative corrections

of the sensitivities signi�cantly improve the accuracy of

predictions found using Fox and Kapoor's modal based

sensitivities but still require the computation of the ex-

act modes at the current design point. Fixed basis model

reduction allow an extremely fast and relatively accurate

prediction of both modeshapes and their sensitivities over

a limited area of the parameter space. Illustrations using

a 7980 DOF engine block model are provided to demon-

strate the applicability of the proposed approaches while

giving indications on their cost and accuracy for a model

of realistic size.

1 Introduction

Iterative methods are widely used for �nite element model

updating and structural optimization. Most of these ap-

proaches use partial derivatives, called sensitivities, of

properties with respect to physical parameters of the full

order model. Accurate and yet inexpensive evaluations of

sensitivities is thus a major issue.

Computation of eigenvalue and eigenvector sensitivi-

ties has been the object of an extensive literature. The
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modal method (Fox and Kapoor [1]) is most widespread

although its relatively poor accuracy is well known. A

method to compute the exact solution was proposed by

Nelson [2] but the present study will illustrate that the

associated computational cost is too large for industrial

models. As alternatives to the exact method, Ojalvo and

Zhang [3] proposed to use a basis of Lanczos vectors to

replace the modes used by Fox and Kapoor while Wang

[4] and in a more general setting Liu [5] proposed the use

of static corrections to the modal method.

The present study gives a presentation of all these

methods within the uni�ed framework of �xed and vari-

able basis model reduction. This framework allows the

simple introduction of new approaches to obtain low cost

predictions of both modeshapes and their sensitivities

over an arbitrary segment of design parameter space.

The theoretical presentation is followed by a detailed

analysis of the various methods in terms of accuracy and

computational cost for a 7980 DOF �nite element model

of an engine block [6]. It is assumed that this model size

will provide real insight on the applicability of the meth-

ods to industrial problems while still allowing the com-

putation of an exact solution for accuracy evaluations.

2 Theoretical aspects

2.1 Exact solution

Modes are solution of the eigenvalue problem

�
K(p)� !2jM(p)

�
f�jg = [Z(!j ; p)]f�jg = f0g (1)

and verify two orthogonality conditions with respect to

mass

f�kg
T
[M ]f�jg = �jk (2)

and sti�ness

f�kg
T
[K]f�jg = !2j �jk (3)
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The mass normalization of mode j, linked to the con-

stant f�jg
T
[M ]f�jg, is arbitrary and will be assumed to

be equal to 1 in all cases (as shown in the orthogonality

conditions (2)-(3)).

Equation (1) being valid for all values of p, its derivative

with respect to p is also equal to zero, which one easily

shows to result in

[Z(!j)]

�
@f�jg
@p

�
= fB(!j)g (4)

where

B(!j) =
h
�
@K
@p

+
@!2j
@p
M + !2j

@M
@p

i
f�jg (5)

By de�nition of modes (1), the dynamic sti�ness [Z(!)]
is singular at modal frequencies !j so that that equation

(4) does not necessarily have a solution. The kernel of

[Z(!)] is however f�jg and it is a well known theorem of

linear algebra that equations of the form Zq = B with Z

singular have solutions if and only if B is orthogonal to the

kernel of ZT . Thus here, one must have f�jg
T
B(!j) = 0

which de�nes the sensitivity of modal frequencies

@!2j

@p
= f�jg

T
h
@K
@p

� !2j
@M
@p

i
f�jg (6)

Again it is known from linear algebra that solutions of

(4) take the general form @f�jg=@p =  j + ��j where

 j is an arbitrary particular solution of [Z(!j)]f jg =
fB(!j)g.
As proposed by Nelson [2], a particular solution of (4)

can be determined by imposing that one of the compo-

nents of  j to be equal to zero. This particular solution

clearly exists as long as the corresponding component of

�j is non-zero. Knowing that a component of  j is zero,

one can eliminate a row and a column of (4) which leads

to a non-singular set of equations that can be solved rel-

atively easily. This solution however requires the factor-

ization of a block of Z(!j). This factorization must be

performed at the frequency of each of the desired mode-

shape sensitivities which tends to be prohibitively expen-

sive for realistic �nite element models (see the numerical

application later).

Finally a condition is needed to de�ne the coe�cient

� in the general form of the solution. Assuming that

the modeshape is always mass normalized as shown in

(2), this condition can be derived with respect to p which

leads to

f�jg
T
M
@f�jg

@p
= �

1

2
f�jg

T @M

@p
f�jg (7)

Thus, given  j a particular solution of Z(!j) j =
B(!j), the sensitivity of the mass normalized modeshapes
is given by

@f�jg

@p
= f g � (�Tj M +

1

2
�Tj

@M

@p
�j)f�jg (8)

Note that for cases with multiple modes, this discussion

needs further considerations as found in Refs. [7, 8, 9].

All the methods considered in this paper could however

be extended to treat multiple modes.

2.2 Approximations by projection of the

solution

Projection methods are widely used to seek approxima-

tions of the properties of dynamic systems. The simplest

of such approximations is the projection on a truncated

modal basis. Condensation [10], component mode syn-

thesis and substructuring methods [11], approximations

on series of Krylov or Lanczos vectors [12] are other well

known methods (the later are typically used to seek ap-

proximations of low frequency eigenvalues [13]).

All these methods are linked to the assumption that an

accurate approximation of the response can be found in

a subspace spanned by the columns of a rectangular pro-

jection matrix T (with N rows and NR << N columns).

As analyzed in Ref. [14], a constant basis can be used to

approximate the solutions of a family of models charac-

terized by the parameters p. The approximate modes of

a model projected on the basis T are given by �j = T�jR
with �jR solution of the projected (reduced) eigenvalue

problem

[T ]T
�
K(p)� !2jRM(p)

�
[T ]f�jRg = f0g (9)

Assuming that T is �xed, equation(9) is valid for all

values of p and can be derived as done for the full order

model in the previous section. The general form of the

approximate sensitivity is clearly given by

@f�jgR
@p

= [T ]( jR + ��jR) (10)

where  jR is solution of

[ZR(!j)] jR = fBR(!j)g (11)

with ZR = T TZT and

BR = T T
h
�
@K
@p

+
@!2j
@p
M + !2j

@M
@p

i
Tf�jRg (12)

The method proposed by Fox and Kapoor [1] is the

most widespread projection method used to approximate

modeshape sensitivities. At any design point p, the pro-

jection basis is taken to be a truncated set of the ex-

act modes at this design point T = [�1(p) : : : �NR(p)].
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By multiplying equation (4) on the left by T T and us-

ing the orthogonality conditions (2)-(3), one classically

shows that a particular solution of the projected equa-

tion is given by

 jR =
X
k 6=j

f�kg
T

�
@K

@p
� !2j

@M

@p

�
f�jg

!2j � !2k
f�kg (13)

and that the component of the exact solution in the di-

rection of �j is given by � = ��Tj (@M@p)�j=2.
Rather than using these expressions that are only valid

for the exact modes at the current design point, one

should realize that they correspond to the use of Nel-

son's exact method applied on the model projected on

the associated basis. Nelson's method being applicable to

any reduced sensitivity equation of the form (11) �nding

explicit expressions for the particular solution is not use-

ful. Furthermore the cost associated to this evaluation

is negligible since the dimension of the subspace (num-

ber of columns of T ) is small compared to the size of

the initial model. When designing improved methods for

the approximation of sensitivities, the e�ort should thus

concentrate on building a reduction basis that will give

accurate predictions of the sensitivities.

The truncated modal basis, while generally available is

not the most e�cient reduction basis in terms of allowing

accurate predictions of modeshape sensitivities. As a �rst

example of alternate bases, Ojalvo and Wang [3] realized

that the estimates of �j(p) are often determined by pro-

jection of the model on a basis of Lanczos vectors which

span the same subspace as the Krylov vectors given by

Tp = (K�1M)p�1K�1T0 and thus proposed a method al-

lowing the use of the same basis of Lanczos vectors for the

estimation of modeshapes and modeshape sensitivities.

This approach continues to accept the cost of comput-

ing the exact modes at each iteration but uses a larger

projection basis to estimate sensitivities, so that results

can be expected to be more accurate. The applications

in section 3 will however show that better results are ob-

tained when some knowledge of the modi�cation is taken

into account as shown in the following sections.

2.3 Iterative determination of the exact

solution

A �rst category of methods continues to accept the cost

of computing the exact modes at each iteration but seeks

to �nd a way of approximating the exact sensitivity. Such

improvements will be found by complementing the modal

basis of Fox's method or the Lanczos basis of Ojalvo's

method by additional vectors that take properties of the

modi�cation into account.

Realizing that in the sensitivity equation (4), the sec-

ond member B(!j) corresponds to a load that is repre-

sentative of the modi�cation, it is useful to complement

the basis T by the static responses to this load

TC =

�
f�j(p)g

h
~K
i�1

[B(!1; p) : : : B(!n; p)]

�
(14)

As shown here, the augmented basis should include the

static responses to modi�cation loads of several modes

(the one wishes to compute the sensitivity of) rather than,

as proposed in Ref. [4], consider a static correction for

each mode. As mentioned in Ref. [5], a mass shifted

sti�ness matrix ~K = K + �M can be used in place of

the nominal sti�ness matrix when rigid body modes pose

problems. The static �exible response would be another

alternative (see section 6.8 in Ref. [13] on iterations in

presence of rigid body modes).

This �rst level correction can be extended using

the following vectors of the Krylov series Tk =h
~K�1M

ikh
~K
i�1

B1:::n but care must be taken to orthog-

onalize the successive additions Tk to the base subspace

spanned by TC . One could for example use the Lanczos

orthogonalization scheme for this purpose. This would go

back to the idea proposed by Ojalvo and Wang [3] but useh
~K
i�1

[B(!1; p) : : : B(!n; p)] as the base vectors to restart

a block Lanczos algorithm.

Note that one saves a lot of time by using the same

factorization of K or ~K to compute eigenvectors (using

a subspace or Lanczos method) and the corrections (14)

needed to compute accurate sensitivities.

2.4 Fixed basis approximation of modes

and sensitivities

The idea that a �xed Ritz basis can be used to compute

the modes for various values of the parameters was de-

tailed in Ref. [14]. Among the various methods proposed

to build such �xed basis approximations, one will here

consider a multi-model basis which combines modes com-

puted at both ends of an interval

TM =
�
f�j(p1)g f�j(p2)g

�
(15)

and a basis combining modes and sensitivities at the ini-

tial point of the interval

TS =

�
f�j(p1)g

@f�jg
@p

����
p1

�
(16)

The motivation for using such approaches is that the

reduced model thus created will be able to predict both

the modes and their sensitivities at a minimal cost but
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with a relatively good accuracy. While the two meth-

ods considered in this study are clearly tailored for line

searches (predictions over a segment of parameter space),

they could also be applied to parameter areas of higher

dimensions. The size of the basis would however increase

fairly rapidly with the number of independent directions

in parameter space, so that the interest in terms of cost

reduction would decrease rapidly.

3 Comparisons in terms of cost

and precision

3.1 Sample problem

To evaluate the di�erent methods, the case of the engine

block model shown in �gure 3.1 and analyzed in Ref. [6] is

considered. This model contains 2660 nodes, 7980 DOFs,

1380 hexa8 solid elements. The connectivity is fairly

high so that the Cholesky factor after reverse Cuthill-

McKee renumbering contains 2,848,742 non-zero elements

(density of 4.4%).

Figure 1: 7980 DOF engine block model used for the

detailed accuracy evaluation.

The elastic modulus of the top part of the engine block

(shown in gray in the �gure) is used as a design parameter

as might be done in an optimization study on the proper-

ties of this model. Results shown later in the section are

given with the current modulus being a fraction (between

0.1 (90% decrease) and 2 (100% increase)) of the nominal

value.

Numerical comparisons are be given for the prediction

of the �rst 5 �exible modes and their sensitivities. As the

structure is free-free, there are always 6 rigid body modes

but those are invariant and are predicted exactly by all

methods.

The multi-model method MUL (15) is used with 6 rigid

body modes and the �rst �ve �exible modes at both ends

of the considered parametric interval E 2 [0:1 2]E0.

The nominal + sensitivity method N+S (16) is used

with 6 rigid body modes, the �rst �ve �exible modes and

their sensitivities at E = 0:4 �E0.

MUL and N+S thus both use bases with 16 vectors.

The variable basis methods are used with more vectors

(20 for FOX and 40 for OJA) since using them with 16

modes gives very poor results that are harder to present

on the plots.

3.2 Structure of computational costs

Table 1 shows a decomposition of computational costs as-

sociated with the di�erent methods with the major steps

being

D Cholesky decomposition of the sti�ness or dy-

namic sti�ness matrix, with speci�c precautions

taken when the matrix is singular or not positive

de�nite.

I forward/backward substitution to solve a prob-

lem of the form [Z]fqg = fFg with the RTR or

LDLT decomposition of Z given.

EV Cost of full order eigenvalue solution. Using the

Lanczos algorithm this cost is driven by the de-

composition D and a series of two times the num-

ber of modes forward/backward substitutions and

orthogonalizations with respect to the mass ma-

trix.

ER Reduced eigenvalue problem

nS number of modeshape sensitivities computed.

nL number of points evaluated for a line search.

Table 1: Approximate cost structure associated to a nL
point line search with nS sensitivities at each point

Exact (Nelson) nL(EV + nS(D + I))
Fox and Kapoor FOX nL(EV + nS(P ))
Ojalvo,Wang OJA nL(EV + nS(4P )
Fox+correction F+C nL(EV + nS(I + P ))
Multi-model MUL 2EV + P + nL(ER)
Nominal + sensit. N+S EV + nS(D + I) + nL(ER)

The di�erent methods were implemented in the envi-

ronment provided by the Structural Dynamics Toolbox

for use with MATLAB [15] and table 2 compares actual

costs on a Silicon Graphics Octane workstation with 256

MB physical memory. Care was taken to use e�cient

algorithms but, as always, evaluations of computational

costs could be somewhat modi�ed by further optimiza-

tion of the algorithms, change of computer or of com-

putational environment. Known signi�cant distortions of

cost are found for

� the exact method. MATLAB provides a sparse

Cholesky rather than LDLT decomposition so that for
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non-positive de�nite matrices a signi�cantly more ex-

pensive LU decomposition is used. A change in this

strategy might decrease the cost of the factorization in

the exact sensitivity computation by at least a factor 3

but nothing close to the factor 7000 needed to obtain

similar to the F+C method.

� the N+S reduced model. This method projects on a ba-

sis of exact sensitivities. Since it will be shown that the

F+C method is very accurate, initial point sensitivities

computed with this method would drastically decrease

the initial cost while not decreasing the accuracy very

much.

Table 2: CPU times (in seconds) associated to the com-

putation of sensitivities for the engine block application

Exact nL � (236 + nS � (687 + 2:5))
Fox,Kapoor nL � (236 + nS � (0:1))
Ojalvo,Wang nL � (236 + nS � (0:1)
Fox+correction nL � (236 + nS � (2:6))
Multi-model 2� 236 + nL � (0:0)
Nominal + sensitivity 236 + nS � (690) + nL � (0:0)

Table 2 clearly illustrates that the exact approach is

particularly costly which is the main motivation for this

study. NEL and OJA have very low costs but do not

take modi�cations into account which limits their accu-

racy (see details in the next section).

F+C seems to provide an extremely e�cient compro-

mise provided that the cost of the full order eigenvalue

solution is acceptable and that the same factorization of

the sti�ness matrix can be used for both the eigenvalue

and sensitivity computations (the cost of the factorization

is more than half the total cost of the full order eigenvalue

solution). The �rst order correction seemed su�cient here

but higher order corrections, seen in section 2.3, would

not increase the cost very much.

The �xed basis reduction methods MUL and N+S pro-

vide very interesting alternatives to the need to recom-

pute exact modes at each design point. But they can only

be constructed to provide good approximations for pa-

rameter segments or possibly low dimension boxes within

the full parameter space. For traditional multiparameter

optimization algorithms, they would thus be mostly of

interest for detailed line searches using nS > 2 points.

3.3 Modeshape and frequency sensitivi-

ties with �xed basis methods

The �xed basis reduction methods (here MUL and N+S)

give approximate predictions of modeshapes and fre-

quency sensitivities at a negligible cost. A good un-

derstanding the accuracy of these predictions is clearly

needed to properly analyze the quality of modeshape sen-

sitivity predictions.
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Figure 2: Evolution of frequencies and relative error on

frequencies predicted by reduced models (16 modes com-

puted for � = :4, MUL, and N+S)
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Figure 3: Evolution of frequency sensitivities and rela-

tive error on frequency sensitivities predicted by reduced

models

The evolution of frequencies on the interval of varia-

tions considered for the top plate modulus is shown in

�gure 2. The relative error on the frequencies also shown

in the �gure clearly indicates the advantages of the two

reduction methods retained here. The MUL reduction is,

by de�nition, exact at both ends of the interval, hence a

bell shaped error curve with a maximum below 4% for
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all modes. The sensitivities added to the N+S reduction

lead to a very good accuracy for a wider region near the

initial E = 0:4E0 point but to signi�cant divergence later

on. Finally, the predictions obtained using a projection

on 16 modes computed at E = 0:4E0 gives relative er-

rors on frequency predictions that are higher by a factor

10 clearly indicating the interest of alternate �xed basis

methods.

The methods using exact modes at the current design

point predict the exact frequency sensitivities shown in

�gure 3. The approximate predictions by MUL and N+S

follow the trends seen for frequency predictions with max-

imum relative errors on sensitivity predictions below 20%.

Note that mode 5 strongly interacts with mode 6 above

� = 1:5 so that pairing errors can be expected (see di�-

culties in �gures 4 and 6).
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Figure 4: relK(�jR; �j) and MACM for predictions of

modeshapes using the MUL (15) and N+S (16) reduction

bases

For modeshape comparisons the mass weighted Modal

Assurance Criterion

MACM (�jR; �j) =
k�TjRM�jk

2

(�TjRM�jR)(�Tj M�j)
(17)

is common but gives a relatively forgiving measure of cor-

relation between shapes, while the relative strain energy

error

relK(�jR; �j) =
(�jR � �j)

TK(�jR � �j)

�Tj K�j
(18)

is much more accurate (values below 0:2 indicate very

good correlation).

Figure 4 clearly shows the very high accuracy of mode-

shape predictions by those two methods with similar

ranges of validity as those seen for frequency predictions.

3.4 Modeshape sensitivity predictions
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Figure 5: Evolution of relK(@�jR=@p; @�j=@p) for the

�rst 5 �exible modes and the di�erent methods
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Figure 6: Evolution of MACM (@�jR=@p; @�j=@p) for the
�rst 5 �exible modes and the di�erent methods

Figures 5-6 give similar indications on the accuracy of

modeshape sensitivity predictions by the 5 methods con-

sidered here. Both FOX and OJA give very poor results
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(even though projections on bases of 20 and 40 vectors

are considered while the �xed basis methods use only 16).

The F+C method is always extremely accurate. A sec-

ond correction would only help for E < 0:2E0 where the

accuracy is already quite good.

The �xed basis methods give very encouraging results.

The bell shaped curve found for modeshape predictions

using the MUL method is now inverted with the best sen-

sitivity predictions obtained near the middle of the inter-

val. The two measures of error are clearly not equivalent

since the MAC tends to show the MUL and N+S meth-

ods to be equivalent while the relative strain energy error

gives and advantage to the N+S method.

4 Conclusions

A general classi�cation of existing methods for mode-

shape sensitivity computations has been provided with

suggestions for new extensions of existing methods. In

particular it was highlighted that Nelson's exact method

provides an extremely general procedure to estimate sen-

sitivities for arbitrary reduction bases.

Comparisons in terms of numerical cost and accuracy

clearly indicate that Nelson's exact method is generally

too expensive while �rst or second order static corrections

to the modal method give extremely accurate results at

fractions of the cost.

When the exact computation of modes at each design

point is too costly, the �xed basis methods proposed in

Ref. [14] were shown here to allow low cost predictions of

both modeshapes and sensitivities over limited domains of

parameter space. These approaches should be extremely

helpful in iterative optimization algorithms that use mul-

tiple point line search sequences.
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