
PSEUDO-MODAL REPRESENTATIONS OF LARGE MODELS

WITH VISCOELASTIC BEHAVIOR

Anne-Sophie Plouin and Etienne Balmès,

Department of Mechanical Engineering of Soils, Structures and Materials

École Centrale Paris, 92295 Châtenay-Malabry, France

plouin@mss.ecp.fr, balmes@mss.ecp.fr
�

Abstract

Damping augmentation materials and devices are often

characterized by a frequency dependent complex modu-

lus. The present study focuses on the prediction of the ef-

fects of damping treatments on complex structures which

can only be modeled with large �nite element models. For

such models, the inversion of the dynamic sti�ness at each

frequency point of interest is not a viable approach. Re-

duction procedures similar to the modal truncation used

for elastic structures are thus essential. The paper in-

troduces a robust approach based on a projection on the

basis of pseudo-normal modes which correspond to singu-

larities of the conservative part of the dynamic sti�ness.

The accuracy achieved by this method is demonstrated

for a 440 DOF model of a windshield bonded to a rigid

frame by a viscoelastic material.

Nomenclature

[M ] : full-order model mass matrix

[K] : elastic part of full-order model sti�ness matrix

[Kv] : viscoelastic part of full-order model sti�ness

matrix

E : Young modulus

N : size of the full order model

NA : number of the considered outputs

NR : size of the reduced model

NS : number of the considered inputs

[T ] : reduction basis

fbg : frequency-independent input shape matrix

fcg : frequency-independent output shape matrix

fqg : degrees of freedom of the full order model

fqRg : degrees of freedom of a reduced model

s : Laplace's variable, i! (i2 = �1)
fug : force inputs

fyg : displacement outputs

!j : normal frequency of the jth mode (rad.s�1)

�to be presented at IMAC 98 (Printed on October 9, 1997)

f g
j
: jth mode shape

[	] : mode shape matrix

1 Introduction

The behavior of linear viscoelastic materials is character-

ized by a complex frequency dependent but linear relation

between stress and strain [1, 2]. This linear relation allows

the use of �nite elements developed for linear elasticity

with simple extensions to take into account the complex

and frequency dependent constitutive laws.

Viscoelastic materials are often used to enhance the

dissipation in complex structures (cars, engine mounts,

etc.). These structures are however complex enough to re-

quire large order �nite element models to get realistic pre-

dictions of the dynamic behavior. For simple viscous or

histeretic representations of the damping e�ects, low fre-

quency models of the behavior are typically constructed

by projection of the model on a basis of low frequency

normal modes and possibly static responses associated to

the considered force inputs. Such projections are the basis

of modal analysis are required to obtain predictions of the

low frequency responses of a large model at a reasonable

cost.

For general viscoelastic models, normal modes are not

de�ned and projection on modal basis computed for a

mean modulus are often inaccurate. The present study

extends traditional notions by de�ning pseudo-normal

modes as singularities of the conservative part of the dy-

namic sti�ness and using dynamic corrections computed

at the higher end of the model frequency band.

Section 2 summarizes theoretical results linked to

modal projections of large order models for the purpose

of predicting frequency responses and shows how these

results are not applicable to viscoelastic models. Pseudo-

normal modes are then de�ned and their properties illus-

trated for a simple 2-DOF example.

A method for determining pseudo-normal modes of

large order models is described in section 3. The use of
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pseudo-normal modes for the description of a viscoelastic

model is then validated for the case of an elastic wind-

shield bonded to a rigid frame by a viscoelastic material.

2 Modes of viscoelastic models

2.1 Models of viscoelastic structures

The viscoelastic materials considered in this paper are

supposed to be described by a complex frequency depen-

dent modulus E as usual in linear viscoelasticity [1, 2].

For the examples considered here, one will only consider

a single type of viscoelastic material while the rest of the

structure is assumed to be elastic. The general form of

the input/output models considered here is thus

�
M!2 +K +E(!)Kv

�
fqg = [b]fug

fyg = [c]fqg
(1)

where Kv is the sti�ness matrix of the viscoelastic part of

the structure for a unit modulus. More general viscoelas-

tic materials could be considered but would require more

complex representations than (1).

For a standard viscoelastic solid, the Young modulus

takes the form:

E(!) = E0

1 + i!�

1 + i!�
(2)

where � is known as the constant of stress relaxation and

� is a constant of the model.

Such rational descriptions of the modulus, while allow-

ing the construction of models in a higher dimensional

but standard second order form [3], are rapidly limited in

their ability to describe experimentally determined mod-

uli over a wide frequency range. In particular the frac-

tional derivative model [4]

E(!) = E0

1 +

1X
n=1

an(i!)
�n

1 +

1X
n=1

bn(i!)
�n

(3)

where 0 < �n < 1 and 0 < �n < 1 is not associated to a

rational representation and thus cannot be simply treated

by standard decompositions on bases of real or complex

modes.

2.2 Standard spectral approximations

For large �nite element models, one can seldom use the

model form (1) to compute time or frequency responses

and the traditional approach is to project the model on a

truncated basis of normal modes.

For a model with a real and frequency independent

sti�ness matrix, the normal modes are solution of the

eigenvalue problem

�
�M!2

j
+K

�
�j = 0: (4)

For M symmetric positive de�nite and K symmetric

positive semi-de�nite, there are N real modal frequencies

!j forming a diagonal matrix
�
n
2

n

�
and N independent

vectors �j forming a matrix � and that these �normal�

modes verify two orthogonality conditions

[�]
T
[M ][�] = [nIn] [�]

T
[K][�] =

�
n
2

n

�
(5)

where the modal mass f�jg
T [M ]f�jg is an arbitrary con-

stant which is here set to 1.
The mass and sti�ness being diagonal in the basis of the

normal modes, the equations linked to the use of modal

coordinates are uncoupled for an undamped model. Since

each mode is associated with a frequency it is possible to

de�ne a number of NR low frequency modes covering the

frequency range for which one seeks a model. A quasi-

static approximation of the contribution of other modes

is then introduced. Thus, a transfer function between

a force, described by the input shape matrix b, and a

displacement, described by the output shape matrix c, is

approximated by

H(!) = [c]
�
�M!2 +K

�
�1

[b] �P
NR

j=1

[c]f�jgf�jg
T [b]

�!2 + !2
j

+
P

N

j=NR+1

[c]f�jgf�jg
T

[b]

!2
j

(6)

It is a classical result that this �modal� representation

of the transfer function corresponds to a projection of the

full order model on the basis generated by the retained

normal modes and the static response to the considered

load. The assumption is thus that fqg � [T ]fqRg with

[T ] =
h
�j=1;NR [K]

�1
[b]
i
.

For damped predictions whereK is assumed to be com-

plex and possibly frequency dependent. The true spectral

decomposition is found by solving the generalized eigen-

value problem

�
M�2

j
+K(�j)

�
 j = 0 (7)

whose eigenvalues and eigenvectors are complex and lead

to a representation of the response of the form

[c]
�
�M!2 +K

�
�1

[b] �
2NX
j=1

[c]f jgf jg
T
[b]

i! � �j
(8)

Unlike the case of the �normal� mode decomposition,

it is di�cult in this form to know how to truncate the
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series of modal contributions or how to compute a residual

contribution for the truncated modes. Furthermore the

search for a complex mode solution of (7) requires to have

a description of the frequency dependence of K over the

full complex plane rather than on the imaginary axis s =
i!.

For models with viscous (K(s) = K + sC) or struc-

tural (K(s) = K + iB) damping, it is relatively common

to circumvent the di�culty linked to the computation of

complex modes by projecting the damped model on the

basis [T ] =
h
�j=1;NR [K]

�1
[b]
i
, thus leading to a low

order model (as many generalized DOFs as independent

columns in the matrix T )

�
�T TMT!2 + T TK(!)T

�
fqRg =

�
T T b

�
fug

fyg = [cT ]fqRg
(9)

This projection when applied to a viscously damped

model (K(!) = K + i!C) leads to diagonal mass and

sti�ness matrices (consequence of the orthogonality con-

ditions (5)), and to the assumptions of proportional or

modal damping where o�-diagonal terms in T TCT are

assumed to be negligible [5, 6].

For cases where the real part of the sti�ness is also fre-

quency dependent, the approach proposed in Ref. [7] is

to keep a similar projection basis where the modes are

computed for the value of the sti�ness at one or two fre-

quencies. The application of section 4 will however show

that this approach can be strongly dependent on the con-

sidered case so that a more robust approach is needed

and motivated the introduction of pseudo-normal modes

in this paper.

2.3 Pseudo-normal modes and model

projection

The pseudo-normal modes of a viscoelastic model are de-

�ned as the solutions of the generalized eigenvalue prob-

lem

�
�M!2

j
+Re(K(!j))

�
~�j = 0 (10)

which corresponds to a straightforward generalization

of the standard eigenvalue problem de�ning normal

modes for a frequency independent sti�ness. As for

the standard problem, these modes allow an accu-

rate representation of the low frequency singularities

of [b]
�
�!2M +Re(K(!))

�
�1

[c] (the conservative transfer
function associated to the real part of the dynamic sti�-

ness). The assumption in using a projection on the low

frequency pseudo-modes
h
~�j=1;NR

i
is that the changes

induced by the imaginary part of the dynamic sti�ness

will not, for low enough damping, signi�cantly a�ect the

subspace where an approximation of the solution is found.

As for standard spectral approximations, keeping an

approximation of the contribution of high frequency

modes can be important. It is thus proposed to com-

plement the basis of low frequency pseudo-normal modes

by the static response to the load computed for a high

frequency modulus

[TA] = [Ke +RefE(!max)gKv]
�1[b]: (11)

Finally the damping e�ects can be signi�cant so that

not taking into account the imaginary part of the dynamic

sti�ness may limit the achievable accuracy. It is thus

proposed to introduce a �rst order correction to the basis

[T ] =
h
~�j=1;NR TA

i
by computing the static response to

the load generated by the imaginary part of the sti�ness

when exciting a given pseudo-normal mode

[TCj ] = [Ke +RefE(!j)gKv]
�1

[Kv]
n
~�j

o
: (12)

The basis
h
~�j=1;NR TCj=1;NR TA

i
is contains twice

the number of pseudo-normal modes in the considered

band but the accuracy improvement (see section 4) may

well justify the additional cost.

2.4 Pseudo-normal modes for a 2-DOF

example

Let us consider the two spring-two mass system shown in

the �gure 1 where the sti�ness of the �rst spring follows

the 3-parameter viscoelastic law

k1(!) = k0
1 + i!�

1 + i!�
(13)

m
1

m
2

k
1
(ω) k

2

q
1

q
2

Figure 1: 2-DOF viscoelastic model

Applying de�nition (10), the pseudo-normal modes are

solutions of

h
�M!2 +K + 1+!2��

1+!2�2
Kv

in
~�j

o
= [0] (14)

which is equivalent to the second order eigenvalue prob-

lem in !2
j

�
��2M!4 +A!2 +Ke +Kv

�
f�g = [0] (15)

with A = �2Ke + ��Kv �M .
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An exact solution of (15) is classically found (see

Ref. [3] in particular) by transformation to a �rst order

generalized eigenvalue problem in !2
j

�
A �2M

�2M 0

� �
n
2

n

�
[�]+

�
Ke +Kv 0

0 ��2M

�
[�] = [0]

(16)

where [�]2N�2N =

�
[�]

�[�]
�
n
2

n

� �.
The pseudo-modes are the solutions of (15) associated

with real !2
j
. While the existence of such real eigenvalues

is not demonstrated here, they exist in practice and it

is clear that the associated deformations (pseudo-modes)

are real valued.

For m1 = m2 = 1, k0 = k2 = 3,� = 2=3 and � = 1, the
spring-mass system has two pseudo-modes which when

mass-normalized to 1 are

!1 = 1:135 ~�1 =

�
0:495
0:869

�

!2 = 2:959 ~�2 =

�
0:887

�0:462

� (17)

The pseudo-modes being de�ned by the eigenvalue

problem (16), they do not diagonalize the M , Ke and

Kv matrices. Here for example, the mass orthonormality

test leads to

[�]
T
[M ][�] =

�
1 0:038

0:038 1

�
(18)

where one notes signi�cant o�-diagonal terms. The sti�-

ness orthogonality tests evaluated at the pseudo-mode fre-

quencies

[�]T [K(!1)][�] =

�
1:288 0:049
0:049 8:248

�

[�]
T
[K(!2)][�] =

�
1:447 0:334
0:334 8:757

� (19)

do not indicate any orthogonality even though the con-

dition ~�T
j
K(!j)~�j = !2

j
remains true for mass normalize

pseudo-modes.

The �nal objective being to compute FRFs, one will

consider the response near the frequency of the �rst

pseudo-mode. One will compare projections of the 2-DOF

model on the �rst pseudo-normal mode ~�1 and the �rst

normal normal mode associated to the low frequency sti�-

ness (setting k1 = k0 the �rst mode �1 = [0:526 0:851]
T

is found at !1 = 1:070 which should be compared with

the pseudo-normal mode given in (17)).

For a force applied on mass 2 and a response measured

at the same location (bT = c =
�
0 1

�
), �gure 2.4

shows the conservative response (obtained by setting the

imaginary part of k1 to zero) and the damped response.

The conservative response clearly indicates that only the

pseudo-mode shape results in a good placement of the

�rst resonance. Obtaining a good representation of sin-

gularities of the conservative response is really the basis

for the de�nition of pseudo-modes.

In general this approximation is su�cient to represent

correctly the damped response (as shown in the �gure)

but improvements can be found using the correction pro-

posed in eq. (12).
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Figure 2: a) conservative response (i.e. with the imagi-

nary part of k1 set to zero) b) damped response

3 Determination of pseudo-normal

modes

The pseudo-normal modes must be determined using a

iterative method allowing the determination of those as-

sociated with the lowest frequencies. The principle of such

a method is to use a variable projection basis T k that is

adapted as more pseudo-modes are determined. Methods

to build the variable projection are those traditionally

used to estimate low frequency modes of frequency ide-

pendent models (Lanczos or subspace-iteration).

The test used for the determination of a pseudo-normal

mode at ~omega
j
is the existence of a normal mode solu-

tion of

�
Re(K(~!j))� !2M

�
f�g = f0g (20)

whose frequency is equal to ~!j . The pseudo-normal mode

shape is then given by the normal mode shape found in

(20).

The pseudo-normal frequencies and modes are

computed by frequency bands. Starting at 0,
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one computes the normal modes associated with�
Re(K(0))� !2M

�
f�g = f0g. The �rst frequency !1

of this model is taken as an estimate of the �rst pseudo-

normal mode frequency (~!m
j

with j = m = 1). The �rst

considered projection basis T 1 will contain the �rst NR

normal modes associated to K(~!k1 ).
In this basis one will search for roots of the projected

dynamic sti�ness. One will thus solve

det
��
T (k)

�T �
Re(K(!))� !2M

��
T (k)

��
= 0 (21)

A �rst approximation of these roots is given by the

normal mode frequencies associated with K(!k
j
). This

approximation is used to select a frequency range where

a low order polynomial approximation is built leading to

a rapid and robust convergence to the actual roots of (21).

The next projection basis T k+1 contains the NR nor-

mal modes associated with K(~!m
j
) (the current estimate

of the next pseudo-normal mode frequency). One then it-

erates on the determinant search until ~!m
j
and ~!m+1

j
di�er

by less than a given tolerance. The condition (20) is then

taken to be veri�ed and the associated normal mode used

as the estimate of the pseudo-normal mode shape. One

then looks for the next pseudo-mode (of index j + 1).
In practice, and exact estimate of theNR normal modes

associated with K( ~!m
j
) would be too costly and one uses

an iterative correction of the previous estimate of those

modes in a procedure similar to the one proposed in Ref.

[8].

4 Application

To validate the proposed approaches, a rectangular

0:35m � 0:55m � 4mm glass plate representing a wind-

shield will be considered. The four edges of this plate are

bonded to a rigid frame using a 5mm�0:05mm ribbon of

viscoelastic material. For the purpose of this example, the

properties of the ISD112 [9] will be used. The frequency

dependence of the properties of this material are shown

in �gure 3. One notes the increase of the storage modulus

by a factor higher than 4 over the considered frequency

range and decreasing loss factor. Additional properties

of the viscoelastic are � = 4:5 and � = 1:2kg=m3. The

elastic properties of the glass plate are E = 6 1010N=m2,

� = 2:5, � = 2:5 103kg=m3.

The windshield is modeled using a 7 by 10 grid of 4-

node/20-DOF thin plate element while the bonding uses

30 8-node/24-DOF solid elements. The model thus as 440

DOF while the reduced models considered will have 22

(pseudo-mode and multi-model) and 43 vectors (pseudo-

mode with �rst order correction).

The elastic properties of the glass plate are E =
6 1010N=m2, � = 2:5, � = 2:5 103kg=m3.
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Figure 3: Frequency-dependent modulus characteristics

In ref. [7], it was proposed to use a multi-model ap-

proach combining modal bases associated with the modu-

lus at di�erent frequencies. A straightforward application

of this approach would be too retain the �rst 11 normal

modes of a model with a low frequency modulus (�rst

half of the considered frequency band), and the normal

modes 12 to 21 of a model with a high frequency modu-

lus (second half of the frequency band). The alternative

proposed here is to use the pseudo-normal modes com-

puted in the frequency range of interest (0-1200 Hz). As

for standard spectral approximations, these two bases are

complemented by the static response to the considered

load (11).

Figure 4: Pseudo-normal modes

To understand the motivation for pseudo-normal

modes, one �rst predicts the frequency response assum-

ing that the imaginary part of the modulus is equal to

zero (which corresponds to the extension of the notion

of conservative system associated to a model). Figure

5 clearly indicates a very good accuracy of the pseudo-

normal mode projection (minor di�erences only visible

near anti-resonances) whereas the multi-model reduction

leads to mismatches of the resonances.

Further analysis would actually show that keeping the

normal modes associated with the high frequency modu-

lus lead to good predictions but assessing this accuracy

without computing the exact results would not be pos-

sible. The pseudo-normal modes are thus a more robust
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approach to building an accurate projection of a viscoelas-

tic model.
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Figure 5: Frequency response functions: (�) exact re-

sponse , (- -) pseudo-normal modes, (� � �) multi-model

In �gure 6, the damped predictions are compared with

the exact response for the same two reduction bases.

The poor accuracy of the chosen multi-model reduction

is again clearly apparent while the pseudo-normal modes

give very good although not perfect results.
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Figure 6: Frequency response prediction: (�) exact re-

sponse , (- -) pseudo-normal modes, (� � �) multi-model

If the accuracy obtained with the simple pseudo-normal

mode basis, signi�cant improvements can be achieved

with the �rst order correction (12). In the present ex-

ample. The di�erence between the true response and the

corrected pseudo-normal mode model is not visible in �g-

ure 7a and �gure 7b shows that the relative error is almost

always below 10�3.
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Figure 7: (a) Frequency response function: (�) exact re-

sponse , (- -) pseudo-normal modes, (���) pseudo-normal

modes with �rst order correction, (b) Quality of the fre-

quency response predictions (�) pseudo-normal modes,

(- -) pseudo-normal modes with �rst order correction

5 Conclusions

Pseudo-normal modes and the proposed �rst order correc-

tion for the damping e�ects give a robust and well de�ned

procedure to build projection bases allowing the predic-

tion of the low frequency response of linear viscoelastic

structures. This approach extends modal analysis proce-

dures to a large class of viscoelastic structures even when

no analytic expression of the modulus exists.

For very large models, the simple approach of inverting

the dynamic sti�ness at each frequency point is not vi-

able [10]. The proposed approaches are thus essential to

allow the prediction of frequency response functions for

large viscoelastic models. Improvements are however still

needed in the algorithm used to compute pseudo-normal

modes. Finally, the methods to build equivalent mass,

viscous-damping, sti�ness models in the modal domain

proposed in Ref. [7] should be tested in this new frame-

work.
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