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the Pole/Residue Parametrization.
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ABSTRACT

The pole/residue parametrization has been traditionally used
in single and multiple degree of freedom identification methods
for structural dynamics. By considering residues as secondary
unknowns that are solution of a least-squares problems, the non-
linear optimization linked to this parametrization can be
performed with the poles as only unknowns. An ad hoc
optimization scheme, based on the use of gradient information
and allowing simultaneous update of all poles, is proposed and
shown to work in many situations. The iterative nature of the
algorithm and the use of poles as only unknowns permits simple
user interactions and generally allows the construction of models
that contain all physical modes of the test bandwidth and no
other modes. Models of structures generally verify many
constraints (minimality, reciprocity, properness, positiveness)
which are not necessarily verified by pole/residue models
(which only assume linearity and diagonalizability). It is shown
that constrained pole/residue models can be easily constructed as
approximations of unconstrained pole/residue models and that
this approach gives good representations of the initial data set.
Difficulties, that a few years of experience with the proposed
algorithms have shown to be typical, are highlighted using
examples on experimental data sets.

1. INTRODUCTION

Identification methods can be classified using four main
characteristics: the experimental data, the parametrization of the
model, the cost function used to compare model and experiment,
and the optimization algorithm.

For the test data, it is useful distinguish methods that use the
measurements directly and methods that perform some form of
non-parametric identification. By non-parametric identification,
one means all methods that represent the properties of a linear
system in the form of a function of discrete or continuous time
(Markov parameters or impulse response) or frequency (transfer
function). For non-linear systems higher order representation
exist but are difficult to apply to complex structures.

Using the result of a non-parametric identification as “the
experimental data set” presents the major advantage that effects
of noise and external disturbances can be reduced at a relatively
low cost [1] thus allowing the computationally intensive
parametric identification to be performed on a relatively small
and noise free data set. Most time and frequency domain
identification methods use a data set that is the result of a non-
parametric identification. The present study will be presented in
the frequency domain where the quality of a model is generally
evaluated.

Polynomial, state-space, second-order, rational fraction
models are some of the parametrizations that have been
considered for different identification methods. In most cases
the only constraint taken into account is linearity. When
identifying structures a number of other properties such as the
reciprocity, diagonalizability, pole multiplicity, or the possibility
to be represented by a second order model, are also desired

and/or assumed. Section 2 gives a review of assumptions related
to structures and their implications in terms of properties of
second order and pole residue models.

Parametric identification methods determine a parametric
model that “optimally” matches the data. The definition of an
optimum is based on the choice of a cost function that measures
the difference between the data and the predictions of a
parametric model. In the frequency domain, two costs have
retained significant attention. The quadratic (LinLS) cost
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has nice mathematical properties (see section 3) and is the most
widespread. The logarithmic (logLS) cost
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presents significant advantages for convergence and weighting
of anti resonances but is computationally expensive [2].

The choice of a cost and parametrization is generally
motivated by the algorithm used to determine the “optimal”
model. One can generally distinguish synthesis methods which
provide a direct transformation from data to model and tuning
methods which improve an initial model. Tuning methods
improve the results of a synthesis method and thus allow the
correction of initial errors that always appear for real data.
Section 3 presents, the IDRC method which tunes unconstrained
pole/residue models using comparisons to measured FRFs and
the IDRM method which tunes constrained pole residue models
using comparisons with unconstrained models.

As for all identification methods limitations appear when
applied to real data sets. The methods proposed in section 3 have
now been used successfully for a few years and typical difficul-
ties, that have been identified, are highlighted in section 4.

2. EXPECTED PROPERTIES FOR PARAMETRIC MODELS OF

STRUCTURES

2.1. Linearity

Linear structures are generally represented by a model of the
second order form

Ms Cs K q b u s

y s c q
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(3)

In this model, the response is fully described by a finite
number of degrees of freedom (DOFs) q that depend on
time/frequency. The dynamic stiffness matrix   K = Ms Cs K2 + +
gives the relation between the response of the model DOFs q
and the model loads Fq . Symmetry of the dynamic stiffness
corresponds to the assumption of reciprocity (see section 2.4).

Physical displacements (translations, rotations, stresses,
strains, electric charge going through a piezoelectric, etc.) are
called outputs y and assumed to be linearly related to the DOFs
q through output shape matrices c ( y = c q{ }). For example, the
matrix c associated with displacement outputs of a displacement
based finite element corresponds to the evaluation of the
element shape functions at the considered node.Copyright © 1995 by Etienne Balmès. To appear in the
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Similarly loads (applied forces, pressure fields, control
forces, gravity, tension on a piezoelectric, etc.) are represented
by the product of time independent input shape matrices b and
time/frequency dependent inputs  u ( Fq u( ) = b u).

Models of the form (3) can also be written in the symmetric
first order form
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The first order form (4) is associated to the left and right
eigenvalue problems
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where Λ is the diagonal matrix of poles and the blocks of zeros
in (4) imply that the eigenvectors θ can be decomposed into a
displacement contribution ψ and a velocity contribution ψΛ
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Note that the first order eigenvalue problems (5) are
equivalent to the second order eigenvalue problems
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T
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2.2. Diagonalizability

Except for the case of rigid body modes which will be
addressed below, one can prove for proportionally damped
structures and one assumes in other cases, that model (4) has a
full set of 2N independent left ψLj  and right ψRj modeshapes
and 2N complex eigenvalues λj. The assumption that the model
is diagonalizable is equivalent to writing the following
orthogonality conditions for the 2N modes
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from these conditions, one easily transforms the model form (4)
to the diagonal forms
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or the pole/residue form (also called rational fraction expansion)
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In most cases, rigid body modes, which are not coupled to
other modes by stiffness, are also not coupled by damping. As
are result the model cannot be diagonalized. One has however a
simple pole/residue form
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The left and right eigenvectors and eigenvalues of real
models come in complex conjugate pairs or are real. This leads
to the pole/residue form
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2.3. Multiplicity

From (10), residue matrices linked to a single complex mode
have the general form
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which, as the product of a column vector c jψ{ } by a row vector

bT
j

T
ψ{ } , have obviously rank 1. Residue matrices with a higher

rank correspond to multiple poles (more than one eigenvector
linked to a single eigenvalue).

Although structures that have multiple poles are very
unlikely (even axisymmetric structures often have enough
dissymmetry in either their mass, damping, or stiffness
properties to separate their theoretically double poles). The
effective rank of a unconstrained residue matrix thus gives an
indication of model accuracy (see section 3.3 and 4.3).

2.4. Reciprocity

Reciprocal models can be written in a symmetric form where
the system matrices M, C, K are symmetric and input b and
output c matrices of reciprocal (also called collocated)
actuator/sensor pairs are the transpose of each other b cT= . For
models in such a form, the left and right complex modes are
clearly equal and, for all collocated transfer functions, one has
the scaling relation between the residue and the modal inputs
and outputs

b c RCol
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2.5. Properness

Second order systems are proper in the sense that high
frequency velocities tend to zero. Using the rational fraction
form (10), one thus has for arbitrary b and c matrices
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which implies the properness condition on complex modes
ψψ T = 0 . This condition can be used to provide transformations
between the complex mode form (10) and the second order form
(3), thus allowing the separate identification of mass, damping
and stiffness properties [3].

2.6. Proportional damping

One often combines the contributions of complex conjugate
poles in the following form
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where the hypothesis of proportional damping of a given mode
corresponds to Re Rj( ) = 0  [4,5].

2.7. Positiveness

An actuator/sensor pair is said to be collocated if the
associated transfer function measures the power input to the
structure. For passive structures the energy goes from the
actuator to the structure which implies that the real part of a
collocated force to velocity transfer function is always positive
(this property has major implications for control applications [6])

Passive systems such as structures are positive for all inputs.
Theoretically, it is possible to select a generalized input such
that only one mode responds. As a result the contributions of all
modes must be positive. In other words for all collocated FRFs
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which can be translated into conditions on the residues Rj .
Although structures are known to be positive systems, actuator
and sensor dynamics often lead to the measurement of transfer
function that are not.

2.8. Truncation of high frequency modes

Structures are continuous systems so that they always have
an infinite number of poles. To obtain a low frequency model of
a structure one must thus retain the low frequency modes (in a
model of the form (12)) and find an asymptotic representation of
other modes
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For an arbitrary linear system the static contribution E0  of
truncated modes has no particular reason to be a sufficient
representation of the asymptotic effect of truncated modes. For
structures however, α represents the dynamic flexibility matrix
so that the E0  term corresponds to the residual static flexibility
of truncated modes. Hundreds of studies related to Component
Mode Synthesis methods have shown that for analytical models,
the representation of the residual flexibility is generally
necessary and sufficient to obtain a good representation of the
low frequency dynamics. The use of higher order terms has been
considered [7] but is generally not necessary.

Experience using the algorithms proposed in this paper has
shown that the definition of residual terms is absolutely essential
for a good identification and that the achievable accuracy is
limited if these terms do not correspond to physical
characteristics. Thus a test with a suspended structure should
add a term in 1 s2  to account for the mass contributions to the
dynamic compliance of suspension modes that are below the test
bandwidth. Similarly, the use of a constant E term on a mobility
measurement (force to acceleration) for which the residual
stiffness takes the form Es2 will limit significantly the quality of
an identification.

2.9. Non-structural Dynamics

With the notable exceptions of structures with significant
viscoelastic behavior [5] and measurement systems with
significant time delays (Pade approximations of time delays
contain real poles), possible real modes of structures are at very
high frequencies so that their contributions can be assimilated to
a constant asymptote. Dynamics linked to sensor or actuators are
in series with the structure, they thus lead to poles with the
number of sensors/actuators as multiplicity. The damping of
such poles is generally quite different from the damping of
structural poles so that it may be necessary to treat
actuator/sensor identification and structural identification as two
sequential problems.

3. IDENTIFICATION USING THE POLE/RESIDUE FORM

The methods described here and implemented in Ref. [8]
decompose the identification problem in three steps, creation of
an initial model, the identification of an “optimal” pole/residue
model of the form (18) by tuning of the initial estimate,
determination of an approximation of the identified model that
verifies other desired properties (multiplicity, reciprocity,
properness, positiveness, etc.)

3.1. Determination of an initial model

For the IDRC algorithm described in section 3.2, an initial
estimate of the poles must be provided. Traditional single pole
methods (circle fitting [9], narrowband single mode MIMO
model [8], etc.) generally give very satisfactory results, but often
leave out some modes (local modes or closely space modes)
which can be added later. General identification algorithms can
also be used to generate the initial pole but this leads to the
necessity to eliminate computational poles. Although the
author's preference is to build an initial pole set from single pole
estimates, several criteria have been proposed to eliminate of
computational poles and this approach is certainly worth
considering (related issues are addressed in Refs. [10,2]) .

3.2. Identification of a pole/residue model (IDRC algorithm)

The real objective of an identification is to identify all
physical modes in the bandwidth and those only (no
computational modes). Since such a result is never achieved by
direct methods, some level of tuning is necessary. The method
proposed here is to perform a non-linear optimization of the
parameters of a pole/residue model of the form (18) with the
LinLS cost (1) as a measure of error.

A number of authors have considered optimizing all the
parameters of model (18) (poles λ j  and residues

  R = ( )R T T Ej j R, , , ). However, for a very small test with 2 inputs,

5 outputs, and 5 identified modes there are already more than
120 parameters, and for 15 inputs and outputs and 30 modes the
number jumps to 13785. Computational costs are thus critical
even for moderately large models. To allow treatment of
structural dynamics problem which typically have many FRFs
and few poles, the IDRC algorithm (“Identification De Résidus
Complexes” first proposed in Ref. [11]) considers poles as
unknowns and residues as implicit functions of the poles.

The response of a pole residue model of the form (18)
clearly depends linearly on the residues and residual terms

  R = ( )R T T Ej j R, , , . One can thus rewrite the model (18) as a

product of the form
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From the decomposition (19) it appears that for a given set
of poles λ j  the minimization of the cost (1) corresponds to the
resolution of a linear least-squares problem in R. In the IDRC
algorithm, the residues R  associated to the unknowns (poles λ j )
are thus found by solving the linear least-squares problem
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The numerical efficiency of least-square solvers makes (20)
a very efficient way to find residues. Provided that the
contributions of pairs of complex conjugate poles are grouped as
shown in (18), the contributions of each pole is only important
near its resonance. This leads to a very well conditioned least-
square problem. (The case of extremely close poles has not been
found to pose numerical problems). The number of columns in
Φ λ j ,s( ) (2 times the number of complex poles + the number of
real poles + one column for rigid body modes + one column for
the residual flexibility) is independent of the number of
actuator/sensor pairs (measured FRFs) so that the solution is
well suited for problems with many actuators/sensors.

The traditional explicit expression for the solution of a least-
squares problem is
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which leads to an explicit expression of the quadratic cost
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From (22), the derivative of the quadratic cost J with respect
to the parameter θ (here this parameter is the real or imaginary
part of the different poles) can be computed explicitly [12]

∂J

∂θ
= 2 α − αTest( )T ∂Φ

∂θ
R (23)

The principle of the IDRC algorithm is to optimize the
unknowns (poles λ j ) while recomputing the residues at each
step. The computation of residues is expensive so that good
initial guesses and optimization procedures that improve results
in a few steps are needed. As will be shown in section 4.2 the
conditioning linked to the pole optimization is poor, so that,
except for one pole models, traditional optimization algorithms
have so far not given results at an acceptable cost.

Applications shown in this paper use an ad-hoc optimization
procedure [8] which can be summarized as follows. The sign of
the derivatives (23) is used to determine if the real and
imaginary parts of the different poles are over- or under-
estimated. Assuming that the error made on other poles does not
change the sign of the derivatives for a given pole, a step on the
real and imaginary parts of all poles is done at each iteration.
The step sizes associated to the real and imaginary parts of
different poles are divided by two when the sign of the gradient
changes.

This approach is not guaranteed to converge, but in practice
it gives very good results in most cases at an acceptable
computational cost (since all the poles are updated
simultaneously the number of iterations needed rarely exceeds
50). Cases with non-converging poles often correspond to
computational modes and can be otherwise corrected by
resetting this particular pole after optimization of the other
poles.

3.3. Constrained pole/residue models (the IDRM algorithm)

As shown in section 2, one usually expects a number of
properties from a structural model. Pole/residue models of the
form (18) assume that the system is linear and diagonalizable
and that the residue flexibility E gives a sufficient representation
of truncated high frequency modes.

Other constraints are very difficult to take into account in the
IDRC approach which led to the development of the IDRM
algorithm (“Identification de Résidus Multiples”). The objective
of this algorithm is to find a model whose residue matrices are
close to those of the identified model of the form (18) (i.e. such
that the norm of their difference is small) but verify additional
constraints of minimality, reciprocity, properness or proportional
damping.

Minimality corresponds to the constraint on the rank of the
residue matrix found for single poles (see section 2.3). By
definition, the singular value decomposition of a matrix provides
optimal (in the sense of the matrix norm) rank constrained
approximations. Thus the best approximation of rank nj  of a
matrix (for a residue matrix this corresponds to a pole of
multiplicity nj ) is found by retaining the contributions of its first
nj  singular values
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j j j j
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with the error linked to using a minimal approximation of the
non-minimal model (18) being given by the ratio of singular
values σ σj nj j, ,+1 1 .

For reciprocal models, the residue matrix must be
symmetric. An approximation is thus found by taking the
symmetric part of the identified matrix

R̃ R Rj j j
T= +( ) 2 (25)

and using a singular value decomposition (24) to simultaneously
enforce minimality and reciprocity.

Approaches to enforce other conditions have also been
considered but extend beyond the purpose of this paper (for the
properness condition which allows the separation of mass,
damping and stiffness properties see Ref. [3]).

4. APPLICATIONS TO EXPERIMENTAL DATA SETS
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Fig. 1: Typical FRF/model comparison, 30 pole model with
225 FRFs. Data taken on the ONERA active plate
experiment (EPA) [13]. (—) measured FRF αTest , (---)
model FRF α Model , (-. -)α αTest Model− .

Experience has shown that the use on real data of the
IDRC/IDRM identification procedure is fairly robust. A typical
result is shown in figure 1 for a case with 32 poles, one of which
is heavily damped. For this broadband model, both magnitude
and phase of test and model overlay so well (the lines are barely
distinguishable) that a better indication of model quality is given
by the magnitude of the difference α αTest Model−  (more than 20
dB below the response in the figure).

The following sections will highlight typical limitations of
the procedure since this will be more helpful for practical
applications and extensions of the proposed methods than any
number of good results.

4.1. Limitations of the residue estimation phase

The first use of the IDRC algorithm is the estimation of
residues without update of the poles. The use of residual terms is
a first requirement. For the EPA test, an heavily damped pole
with its frequency outside the band is needed to account for the
frequency dependent behavior of the piezoelectric patches uses
as sensors/actuators. Such poles have a role similar to that of the
residual flexibility and can be considered as residual terms.
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Fig. 2: Influence of residual terms in the EPA test. (—) αTest

measured FRF, (---)α Model  for model without residual
terms, (- . -) α αTest Model−  for model with E asymptote and
heavily damped pole.

For two FRFs, figure 2 shows the identified model without
residual terms. It appears that only the low frequency range of
FRF 7/1 is not so bad. FRF 8/1 is very typical of an FRF with
high residual flexibility contribution. The error drops extremely
rapidly (here the norm of α αTest Model−  is 40 dB below the
response) as soon as such a contribution is added. In most test
configuration and a good fraction of FRFs, residual stiffness and
rigid body mode contributions (for suspended structures) are
necessary and sufficient for a good fit.

The fact that appropriate residual terms are needed to obtain
good results can have significant effects on the choice of the test
bandwidth. Figure 3 shows such an example. The two modes
above the selected band have a strong contribution so that the fit
is poor and show peaks that are more apparent than needed (in
the 900-1100 Hz range the FRF should look flat). This type of
problem can become acute if the size of residues increase with
frequency (piezoelectric patches can lead to such cases) and may
require the use of wide frequency bands. Note also that similar
errors in residue estimates are found if the pole of a dominant
mode is not accurate enough.
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Fig. 3: Influence of error on a significant mode. (—) αTest

measured FRF, (---)α Model  for 7 poles in the band shown
by vertical solid lines, (-. -)α Model  for model also
considering two poles above the band.

A typical approach used to limit the effects of errors on large
modes is the segmentation of the frequency band during the
estimation. For a given segmentation of the frequency range,
residues can be estimated using poles within the band and usual
asymptotic contributions (18) (type 1) or all poles of the test
bandwidth and retaining shapes associated to modes of the
current band (type 2). Once local models determined, broadband

comparisons are only valid after a determination of broadband
asymptotic contributions (since the local asymptotes cannot be
combined into a single broadband model). For narrow band
models of types 1 and 2, figure 4 shows the difference between
the local and global model error. Two important facts appear in
the figure. The segmentation approach does work even to
recreate a global model. The use of a richer basis for residual
terms (type 2 model) increases accuracy (for both local and
global models).

500 1000 1500 2000 2500
10

−7

10
−6

10
−5

10
−4

Frequency (Hz)

A
m

pl
itu

de
 (

m
/N

)

Channel  1

500 1000 1500 2000 2500
10

−7

10
−6

10
−5

10
−4

Frequency (Hz)

A
m

pl
itu

de
 (

m
/N

)

Channel  1

Fig. 4: Frequency band segmentation approach (frequency
bands shown as vertical dashed lines) of type 1 (above)
and 2 (below) : (—) measured FRF, (-. -)α αTest Model−  for
local models, (---) α αTest Model−  for global model.

In many cases frequencies of estimated FRFs go down to
zero. The first few points in these estimates generally show very
large errors which can be attributed to both signal processing
and limitations of sensors. Figure 5 shows a typical case where
the first few points are in error by orders of magnitude. Of two
models with the same poles, the one that keeps the low
frequency erroneous points has a very large error while the other
gives an extremely accurate fit of the data.
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Fig. 5: Influence of erroneous low frequency points. (—)
αTest  measured FRF, (---) α αTest Model−  for model down
to 0 Hz, (-. -) α αTest Model−  for model >30 Hz (dashed
line).

4.2. Convergence of the pole update phase

Application of the IDRM algorithm is only valid if the
identified unconstrained model is close to verifying the imposed
constraints. This generally implies that the identified
unconstrained model need to be very accurate. As a result
optimization of the pole positions is almost always a necessity.

Ad-hoc algorithms such as the one proposed in section 3.2
are not guaranteed to converge (one can easily construct cases
where they do not converge). The difficulty is however that
algorithms with better mathematical foundations are associated
to much higher computational costs which have so far limited
their use.
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Fig. 6: Iso-cost lines (---) and gradient directions for the
optimization of two pole frequencies.

A second limitation is the poor conditioning typically found
for the optimization problem. Figure 6 shows the cost map and
gradient directions for the optimization of two frequencies
allowed to vary by 1%. The cost is much more sensitive to the
first frequency so that the gradient gives a poor indication of the
direction of the actual minimum. By only using the sign of the
gradient and stepping on all poles simultaneously ad-hoc
algorithm clearly converges well in this case. Better
optimization algorithms are desirable and might alleviate the
need to start with a good initial guess.

The level of accuracy needed for a given set of parameters is
clearly a very important question which up to now as only been
partially addressed. It appears rapidly in practice that the optimal
set of poles significantly depends on the objective function used.
This is illustrated in table 1, where poles that are “optimal” in
different senses (different frequency bands) are compared. In
this table and in other examples, typical variations are 0.05% for
optimal frequencies and 10% for optimal damping ratio. Such
errors do however significantly degrade a fit so that optimums
need to be known with much better accuracy. The variations in
the optimums can be related to errors in residual terms, but as
seen in section 4.2 the choice of residual terms is a very difficult
problem.

Table 1: Variations in the “optimal” set of poles. Case 1:
local estimates based on 15 frequency points. Case 2:
identification with five modes of the considered band.
Case 3: 2 modes above and 2 below the frequency band
are considered.

Nominal Case 1 Case 2 Case 3

∆ω (%)

762.1
825.6
884.2
914.5
986.1

0.0
0.0
0.0
0.0
0.0

0.039
0.025

-0.025
0.012
0.073

0.020
0.022

-0.024
0.005
0.076

∆ζ (%)

0.657
0.401
0.484
0.474
0.533

0.0
0.0
0.0
0.0
0.0

42.5
0.0

15.7
6.7

68.4

13.7
-1.6
-2.2
4.0

14.4

Finally, it should be noted that the IDRC method aims at
constructing a single broadband MIMO model which implies
that poles are common to all FRFs. Changing actuators/sensors
for different tests, doing sequential SIMO tests on a non-linear
structure, having insufficient frequency resolution are possible
reasons that may lead to data sets that do not comply with this
hypothesis. It may thus be impossible to obtain a single pole set
that will give a correct estimation for all FRFs (see example in
Ref. [12]).

4.3. Applications of the IDRM algorithm

The IDRM algorithm finds constrained approximations
(minimal, reciprocal, proper, positive, etc.) of the unconstrained
pole/residue model resulting from the use of IDRC. In most
practical cases, minimality is the most difficult constraint so that
it will be the only one illustrated here (note that minimality can
only be considered for MIMO tests).

For the identified EPA model shown in figure 1, a minimal
realization (poles with multiplicity 1) was computed. The ratios
σ σ2 1  of singular values σ σ3 1  are shown in figure 7. For a
few modes these ratios are above 0.1. For these modes however,
the residues (shown by σ 1) are relatively small and there are
other modes close in frequency (see the steep slopes of the high
peaks). This highlights the fact that high singular value ratio are
generally due to bad identification and/or close modal spacing
(close modal spacing implies that it is quite difficult to separate
the influence of two poles, see the example below). Ratios
significantly above 0.1 generally mean bad identification and
exceptionally multiple poles which are well indicated by the
Multivariate Mode Indicator Function [14] (see the example
below).

500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

Frequency (Hz)

sj
/s

1

Fig. 7: Ratio (—)σ σ2 1  and (---)σ σ3 1  for decomposition of
non-minimal model of the EPA test. Size of residues,
given by σ 1 , are shown by (o).

For good identifications, the use of a minimal model induces
very small perturbations. For the EPA model with 3 inputs and
15 outputs, the LinLS error (1) increases from 1.1e-8 to 1.4e-8
and the logLS error (2) from 66.2 to 84.7. Such changes are
barely discernible in figures such as figure 1 and are thus not
shown here.

When creating a minimal model, residual terms are still
essential but the rank constraint is not applicable (the static
contributions of different high frequency poles are independent).
When heavily damped or real poles are added to take into
account actuator or sensor dynamics, these dynamics are applied
to all inputs/outputs so that no rank constraint should be applied.
For the EPA identification, an heavily damped pole is used at
ω ζ= =5900 0 9Hz, . . If a rank 1 approximation is used for this
mode, the logLS error (2) jumps from 66.2 to 5094.8.

Figure 7 showed the fact that very close modes often lead to
identified residue matrices with stronger non-minimal
contributions. This fundamental difficulty linked to the transfer
of contribution between close modes can be illustrated as
follows. Figure 8 shows the Multivariate Mode Indicator
Function for the EPA. The fact that two indicator functions have
a minima near 1850 Hz indicates the presence of a double pole.
These two poles are so close that one might consider that they
are identical.
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Fig. 8: Multivariate Mode Indicator Function [14] for 3-inputs
and 15 outputs of the EPA. Note the 2 very close modes
near 1850 Hz.

Table 2: Transfer of contributions of closely spaced poles.
Global model with 1 or 2 poles near 1850 Hz.

ω (Hz) ζ % LinLS LogLS σ σ2 1 σ σ3 1

1853.3 0.306 1.97e-8 1.22e+2 0.47 0.01

1853.3

1857.8

0.306

0.542
1.07e-8 0.83e+2

0.03

0.07

0.01

0.05

Table 2 summarizes the results of a global fit obtained using
1 or 2 poles. The LinLS (1) and logLS (2) errors indicate that the
error induced by retaining 1 mode instead of 2 is minor.
Furthermore when using 1 mode, the singular value ratio clearly
indicate a multiplicity of 2 which is expected. When using 2
modes, the quality of the identification of the second mode is not
clearly minimal ( σ σ2 1 0 07= . ) but this error is almost certainly
related to an identification error (non-optimal value for the
second pole).

5. CONCLUSION

The proposed methods have demonstrated the possibility to
use tuning approaches to create models that verify all constraints
of interest for structures (linearity, diagonalizability,
multiplicity, reciprocity, positiveness, properness, proportional
damping) and yet contain all physical modes of the test
bandwidth and those only.

The iterative nature of the IDRC algorithm and the use of
poles as only unknowns leads to a user friendly and extremely
efficient algorithm. Improved optimization strategies may lead
to larger convergence regions. This should improve overall
speed but user involvement will remain both desirable and
necessary. Issues linked to residual terms and local/global
frequency band selections need to be further addressed.

Although effectiveness has been demonstrated for a number
of fairly complex cases, it is not always be possible to identify
an unconstrained pole/residue model or to achieve sufficient
accuracy to perform the step from unconstrained to constrained
pole/residue model. Outside limitations of the optimization
algorithms, there are fundamental reasons that lead to
experimental data sets that cannot be accurately fitted by a
parametric model. For the unconstrained pole/residue model, the
two main reasons are non-linearity and time variance
(modification of the system when performing sequential SIMO
tests for example). For constrained models a number of
problems may occur: actuator/sensor dynamics lead to non-
minimal poles, force and displacement measurements that are
not truly collocated lead to a non-reciprocal test, viscoelastic
behavior with heavily damped poles lead to coupling of normal
modes over a large band which is not compatible with the use of
a proper model, etc.
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