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ABSTRACT - This paper presents advances in non-linear simulations for systems with 
contact-friction. Presented applications deal with squeal analysis of industrial (600,000 DOF) 
brake models. First a reduction method allowing to keep the exact system real modes is 
proposed for all simulations. For transient simulations a modified non-linear Newmark 
scheme is used to evaluate the apparition of limit cycles. A space-time limit cycle 
decomposition is then performed to correlate complex modes and the limit cycle. Although 
the shapes are close, the comprehension in the system behaviour is much finer in the time 
domain; in particular, since saturation patterns are then available. Since transient 
computations remain costly (12h), the end of the paper focuses on quick continuation methods 
to evaluate saturation threshold based on complex modes trajectories. Encouraging results are 
obtained, making the concept viable for industrial systems. 
 
1. INTRODUCTION 
 
Automotive brake design is nowadays oriented towards an optimized weight/performance 
ratio which tends to generate noisy systems. High friction coupling happening at the pad/disc 
interface is responsible for self-sustained instabilities in the audible frequency range. The 
noise can attain 120dB in the brake vicinity and is known as squeal between 1 and 16 kHz or 
moan under 1kHz. Squeal, unlike low frequency vibrations, does not alter the brake 
performance and happens mostly in low pressure, low speed conditions. The perceived quality 
is however altered, as the driver's feeling is disturbed, and the environmental nuisance is not 
welcome. 
 
Silent brake design methods are mainly empirical and difficult to control, due to modelling 
issues (e.g. contact complexity) or due to implementation difficulties. Classical design 
methods for brake vibrations are set in the frequency domain and widely spread in industry. 
This approach is coherent with experimental results on unstable mode lock-in patterns, see for 
example Massi et al. [1]. The system is linearized around a working point, function of global 
parameters such as the friction coefficient or the braking pressure, to apply Lyapounov 
theorem to compute complex modes. The system stability is here related to the damping of its 
poles. This method shows great limitations as it provides growth ratios at a given deformation 
state. The resulting ranking of unstable mode by the real part of their poles is biased as no 
information is obtained about vibration levels once limit cycles are attained. Such observation 
have been made for example by Sinou et al. [2,3], or Lorang [4]. 
 
Working in the time domain allows simulating the system with its full non linearities and then 
gives a clear view of the brake stability. Such implementation raises many issues - a direct 
simulation on a full industrial model would require prohibitive computational costs. Contact 
handling requires relatively small time steps around 10-6s which makes long (100ms) 
simulations difficult to handle. For the industrial brake application, illustrated in figure 1, 



using a non linear implicit Newmark scheme on a 600,000 DOF system would actually 
generate over 1TB of data in over 700 hours. These issues are dealt with model reduction 
techniques and an adaptation of the Newmark scheme to non linear penalized contact 
vibrations, briefly presented in section 2, and in [7]. The simulation cost becomes then 
affordable, yielding from 500MB to 5GB of data in 12 hours. 

 
Figure 1: Presentation of the application case, a full brake system provided by Bosch 
 
From the time simulations obtained, the analysis presented in section 3 focuses on the 
evaluation of changes from the nominal complex modes using shape correlation and a 
dynamic stability analysis. The focus is set on the saturation pattern responsible for the limit 
cycle. 
 
Since transient simulations are costly and static complex modes are easier to work with in the 
scope of design oriented analysis, a methodology is investigated in section 4 to enhance the 
complex mode information at a cheaper computational cost. The suggestion aims at 
evaluating complex mode evolution with the amplitude of their trajectory, which has a clear 
relation with continuation methods commonly used in the framework of the non-linear normal 
modes [5]. Pseudo dynamic stability diagrams are computed over complex mode trajectories 
showing interesting results in section 4.2. Section 4.3 eventually explores finer complex mode 
continuation ideas. 
 
2. EFFICIENT METHODS FOR INDUSTRIAL SQUEAL SIMULATIONS 
 
Simulation of large industrial models in the design and validation processes has a number of 
implications which are not met by current computational performance. Transient simulation 
of such systems is not directly available in reasonable time. Two levers are proposed to tackle 
the problem; a reduction method to decrease the system size is presented in section 
2.1.Contact formulation choices are presented in section 2.2. An efficient time integration 
scheme based on an implicit non linear Newmark scheme has been used. It is not detailed 
here, but all details can be found in [7]. 
 
2.1 Reduction method adapted to large models with local non-linearities 
 
Computational power improvement and algorithmic advances like Automated Multi Level 
Solvers allow solving systems over a few million DOF on usual workstations. The full real 
modes of large system are thus accessible, at least in nominal configuration, which opens the 
way to new reduction methods more adapted in several applications than the traditional 
Component Mode Synthesis (CMS) method [6]. 
 
CMS was indeed based on the assumption of component independence, static solution 
capability and explicit boundary coordinates. Interaction information is thus a priori ignored, 
such that the full finite element basis of their interface is kept. The target application is 
however different from the aim of this study, which is to reproduce dynamic vibrations of an 
automotive brake working near a static steady state. 
 



Brake squeal models rely on the quality of the pad/brake interface, as it is the location of the 
main instability. The idea for time simulations is thus in a first approach to consider the rest of 
the system as linear, based on the pseudo-periodic initial state. All DOF in the vicinity of this 
contact area are thus kept explicitly, noted as qc. The remaining of the system DOF are noted 
qi. 
 
To achieve the accuracy objective of exact dynamic behaviour, the trace of the exact real 
modes of the assembly is used as Rayleigh-Ritz vectors. As only the qi DOF will be reduced, 
the trace (or restriction) of the Rayleigh-Ritz basis on this part is only considered. The 
reduction basis, illustrated in figure 2, is then expressed as 

 
 (1) 

 
The pad/disc section is kept unreduced, while all remaining parts are reduced in a super-
element. In the process, the interface DOF are implicitly reduced on the system real modes.  

 
Figure 2: Industrial brake and model reduction strategy for non linear simulations 
 
To generate a cinematically coherent coupling between the finite element part and the 
superelement, the reduction basis must in addition contain the stationary condition q0i. The 
final time model features then 30,700 DOF, with a reasonable sparsity. More details, on this 
reduction method can be found in [7]. 
 
2.2 Contact-friction modelling 
 
Contact/friction modelling is commonly split into two formulation strategies contact, giving 
normal forces fn, and friction giving tangential forces ft depending on the friction coefficient 
µ. The exact Signorini/Coulomb laws represent contact for ideally smooth surfaces, while 
functional representations take into account a level of asperity compression through a 
controlled interpenetration. 
 
A functional representation has been chosen here, using an exponential stiffness, as illustrated 
in figure 3. Practically, a relationship between the gap and contact pressure is established to 
account for an approached contact constraint. Implementation details and numerical aspects 
can be found in [7]. The exponential contact law retained is thus defined at each contact point 
by  

gepgp λ−= 0)(  (2) 

where p is the contact pressure, g is the gap, p0 and λ are parameters to define depending on 
the interface properties. It can be noted that the use of an exponential formulation still allows 
rather brutal non linear events in case of local over-constraints and opening. 
 
Friction implementation follows the definition of the Coulomb law, which for two solids 
relates the sliding velocity and the friction forces. A basic regularization is shown in figure 3 
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and considered in the study. Low sliding velocities (noted ws) are penalized through the 
introduction of a parameter kt, such that  
                      if ntS fkw ⋅≤⋅µ      (3) 

                       else 

.  
 
 
 

 

Figure 3: Sample contact (left) and friction (right) laws. 
 
3. TIME/FREQUENCY ANALYSIS 
 
Stability and transient analyses are performed in sections 3.1 and 3.2. A correlation is 
proposed using the Singular Value Decomposition (SVD) in section 3.2.1. In depth analysis 
of the limit cycle is given in section 3.2.2. 
 
3.1 Sliding stability of the periodic solution 
 
At 12 Bar, the brake system provided features several unstable modes, following the stability 
diagram of figure 5. 

Figure 5: Brake stability diagram at 12 Bar 
 
Some unstable modes can be highlighted, in particular complex modes C44 and C51, whose 
shapes are shown in figure 6. The illustration is derived from the Component Mode Tuning 
(CMT) method presented in [7,8], which allows integrating explicit component information at 
the system level. 

Figure 6. Shapes of unstable complex modes C44 (left) and C51 (right). Colors from blue to red ranking in 
ascending elastic strain energy per component relative to the total strain energy. 
 
Complex mode 44 shows a component interaction between the disc, outer pad and caliper. 
Complex mode C51 shows a knuckle/anchor interaction with little participation of the disc 
and pads. Structural effects thus seem important in this brake system, as components outside 
the pad/disc interface are significantly involved in the deformations. This is here a great 
justification of the modeling choices that allows using models with very refined geometries. 
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3.2 Transient simulations and correlation to complex modes 
 
A 100ms transient simulation is obtained in 12h using the methods presented in section 2; the 
resulting braking torque, and vibration levels are presented in figure 7. After a modulation 
period, the signal becomes very stable, this result is called a limit cycle although no further 
characterization is attempted. This purely practical definition is deemed sufficient for 
industrial applications. 
 

              
Figure 7: Installation of a limit cycle over a 100ms transient simulation performed on the industrial brake. 
Displacement result on the disc surface in the end of the time response (µm). 
 
3.2.1 Time/frequency correlation using SVD 
 
The limit cycle extracted from the end of the transient simulation in figure 7 should be 
correlated to the complex modes of the initial deformation. This limit cycle constitutes a non-
linear normal mode, following the definition given by Kerschen et al. [5]. The transient 
simulation output is indeed a family of shapes and a frequency defining a periodic cycle. 
Several shape identification methods exist, as proposed by the author in [7] or for example by 
Lorang in [4]. 
 
The method presented here performs a space-time decomposition of the limit cycle through an 
SVD. From a response vector, the SVD extracts a deformation basis ranked by amplitude in 
the provided cycle, and their transient participation evolution. 

 
Figure 8: Space time decomposition of a limit cycle with the SVD 
 
The concept is illustrated in figure 8, and can be related to what is performed in a posteriori 
Proper Orhogonal Decomposition (POD) methods [5]. A limitation of the direct SVD 
application is the absence of a mechanical norm. This can be improved by performing the 
SVD on the strain energy, as presented in [7]. 
 
The limit cycle application result is provided in figure 9. It can be seen that the cycle is 
basically of dimension 2. With a main instability at 4kHz and an harmonic at 8kHz. The first 
shape, presented in figure 9 (left) shows a contact opening pattern at the rear side of the outer 
pad. 



        
Figure 9: SVD applied to the computed limit cycle. Left: main deformation shape. Middle: amplitude in the 
response. Right: correlation by MAC with the nominal complex modes. 
 
These shapes are well correlated to complex modes, as shown in figure 9. These modes are 
however fully unstable and cannot explain the apparition of a limit cycle over a full 
divergence. A more in depth analysis must thus be performed. 
 
3.2.2 Dynamic stability 
 
A specific post-treatment is performed from the transient simulation presented in figure 7. 
The system state in displacement/velocity/non linear forces for a time sampling over the limit 
cycle is exploited to evaluate the stability as function of time. The resulting diagrams are 
consequently called dynamic stability diagrams. Two representations of these diagrams are 
presented in figure 10 for the frequency band of interest (mode C44, 4kHz). 

Figure 10: Dynamic stability diagram in the 4kHz frequency range in the limit cycle 
 
Clear mode coalescence patterns are observed, which can be interpreted as the effect of a 
contact opening pattern observed in figure 9. The frequency diagram shows in particular the 
variation of a complex mode in the squeal frequency range. The frequency/damping diagram 
in the same frequency range shows in addition a stable/unstable transition. 
 
By tracking the complex mode showing large frequency variations in figure 10, and 
computing component wise strain energies, shape evolution can be assessed as presented in 
figure 11. 

Figure 11: Evolution of the component strain energy repartition as function of time in the limit cycle. 
 
As a first observation, the shape is linked to the one of complex mode C44. Significant 
changes however occur as the strain energy distribution evolves. The indistinguishable 
pad/disc/caliper interaction given by mode C44 shape can here be decomposed in a specific 
sequence. 
 
At the beginning of the cycle, the pad/disc interaction is preponderant and is the cause of the 
instability. As the pads follows the trajectory given by mode C44, the outer pad rear side 



opens contact, and increases its coupling with the caliper, which consequently comes into 
high strain energy. At this state, the system becomes stable and the caliper pushes back the 
pad onto the disc. Once the outer pad rear contact closes again the instability restarts. 
 
4. EXTENDED COMPLEX MODE ANALYSIS 
 
4.1 Introduction 
 
The observations obtained in section 3 match common concepts of the non-linear mechanics 
literature fields. The centre manifold theory [2,5] starts from the idea that at a certain 
threshold, a fully stable system will have a mode coming into an area of controlled instability.  
 
The classical formalism exploited in the centre manifold theory is however limited, as it 
assumes a fully stable system for a starting point. This conducts most authors to consider a set 
of control parameters including the friction coefficient as a cause of instability trigger, it was 
however demonstrated here that a constant friction coefficient is sufficient to evolve to a limit 
cycle. A second limitation comes from the consideration of a single complex mode for limit 
cycle evaluations, which tends to over-simplify the instability mechanisms in such system. In 
the cycle found here, two shapes were found to dominate the response but others were 
involved. 
 
Developments, such as the CNLMA proposed by Sinou et al. in [2], seek to find the limit 
cycle amplitude associated to the unstable complex mode detected at the Hopf bifurcation 
point. The complex mode amplitude is then used as a control parameter to find the limit cycle. 
Indeed, from the Hopf bifurcation point to the limit cycle point, the system will show a 
divergence phase, characterized by an unstable mode with a strictly positive real which will 
come to zero once the limit cycle is attained (no further divergence). 
 
The approach proposed here is, given a set of unstable complex modes, to analyze their 
stability by processing responses associated with their trajectory at variable amplitudes.  
 
4.2 Simulating complex mode cycles 
 
The free decay trajectory of a complex mode is normally of the form 
 
{ } { }( )t
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which has for an unstable mode an increasing amplitude associated with the real part of the 
pole. In practice, since there is a limit cycle, this representation does not correspond to the 
physical response. To analyze the complex mode, one proposes to use the trajectory given by 
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associated with period jωπ /2 and trajectory of amplitude αj.   

 
Figure 12 illustrates the pseudo-trajectory based on mode C44, plotted on a point of the disc 
surface. The range of vibration amplitude is from 0 to 4 µm as function of the coefficient 
amplitude, which corresponds to the displacement values that can be experimented with brake 
systems. 



      
Figure 12: Complex mode C44 trajectory as function of the amplitude coefficient, left: displacement on the disc 
surface over the trajectory. Middle: associated braking torque. Right: Braking torque zoom in (first half). 
 
The braking torque associated with the trajectory is also shown in figure 12. The cycle starts 
with the brake unloading as the outer pad rear side separates from the disc. In the second half 
of the cycle, the outer pad comes back into contact with an over-penetration peak. For all 
these trajectories, the pseudo instantaneous tangent states can be evaluated and new complex 
modes can be computed. The evolution of the stabilities and instabilities can therefore be 
assessed.  
 
The following results focus on one sample amplitude, α=3.5.10−2. This gives maximum 
displacement amplitude of 2.3µm. The patterns of figure 10 and figure 13 are directly 
comparable which clearly shows the pertinence of using complex mode trajectories. The 
absence of mechanical equilibrium is however a great limitation. 

                     
Figure 13: Pseudo dynamic stability diagram over mode C44 trajectory 
 
4.3 Non-linear analysis of complex mode cycles 
 
To improve the results of section 4.2, it is proposed to simulate complex mode cycles but 
respecting the mechanical equilibrium at each step. The chosen strategy considers the 
complex mode trajectory driven by its velocity and acceleration, while the displacement must 
comply with a mechanical equilibrium. At each step of the pseudo time, a non-linear static 
resolution is thus performed, with the inertial and damping forces taken as a constant load 
input, while the new displacement and contact-friction forces are updated. Using assumed 
acceleration jψ&& and velocity jψ& , one resolves ( )nlf,~ψ such that 

( ))()())(~()(~ 1
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  (7) 

 
This resolution produces a succession of quasi-static solutions which can be considered as a 
cycle, continuity conditions are however not verified between time steps. The braking torque, 
shown in figure 14 for low vibration amplitudes, is very different from the previous ones. The 
contact opening in the first phase is associated with a decrease of the braking torque and 
closing in the second phase with a torque increase. The disc displacement is however very 
low (0.01 µm) which suggests that the proposed method to enforce the field needs to be 
refined. 
 
 



    
 Figure 14: Complex mode trajectory with static displacement equilibrium for low amplitude vibrations. Left: 
disc displacement. Middle: braking torque. Right: Friction work relative to the amplitude. 
 
The friction work obtained is positive, which is coherent with an instability where friction 
forces introduce energy into the system. The decrease of this work, relative to the amplitude, 
is coherent with the fact that to achieve a limit cycle the work of friction forces must converge 
to zero.  
 
At higher amplitudes the contact closing becomes more brutal. One thus observes a threshold 
at which the pad compression becomes so high that the displacement pattern is altered on the 
full system during the peak of contact forces. Figure 15 thus shows that at higher amplitudes 
transitions effects that still need to be explained. The threshold pattern, which occurs 
for α=6.7, is confirmed by the computation of the friction work over the cycle, in figure 14, 
and 15, using the velocity computed by finite differences of the displacement. 

   
Figure 15: Complex mode trajectory with static displacement equilibrium for low amplitude vibrations. Left: 
disc displacement. Middle: braking torque. Right: Friction work relative to the amplitude. 
 
 
5. CONCLUSION 
 
The simulation of systems with contact-friction becomes a stake for more and more 
applications. In particular, brake squeal appears to be a critical application for the automotive 
sector. 
 
To the difference of most applications the simulation method proposed here aims at keeping 
fine geometrical details for all computation. This was attained through an ad hoc reduction 
method, which contained the system size and matrix sparsity, two distinct indicators of the 
performance achievable for a given finite element model. 
 
Long transient simulations have been performed and correlated to complex modes of the 
periodic state through the use of SVD. Although comparable, great differences exist in terms 
of system behaviour between the shapes from the transient and the complex modes.  
 
To improve computation times, it was suggested here to use continuation methods adapted to 
the problem. For complex modes trajectories, a mechanical equilibrium must be found to get 
to the observation of saturation patterns. Such simulations, briefly tested in this paper, appear 
very encouraging to develop for design studies. Computations are indeed much quicker than 
transient simulations, which could be used for validation only. 
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