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ABSTRACT - This paper presents advances in norafir@mulations for systems with
contact-friction. Presented applications deal sifneal analysis of industrial (600,000 DOF)
brake models. First a reduction method allowingkéep the exact system real modes is
proposed for all simulations. For transient simola a modified non-linear Newmark
scheme is used to evaluate the apparition of lioyitles. A space-time limit cycle
decomposition is then performed to correlate compt®des and the limit cycle. Although
the shapes are close, the comprehension in thensys¢haviour is much finer in the time
domain; in particular, since saturation patterng dahen available. Since transient
computations remain costly (12h), the end of theep&ocuses on quick continuation methods
to evaluate saturation threshold based on compteemtrajectories. Encouraging results are
obtained, making the concept viable for indussiatems.

1. INTRODUCTION

Automotive brake design is nowadays oriented towaad optimized weight/performance
ratio which tends to generate noisy systems. Hightidn coupling happening at the pad/disc
interface is responsible for self-sustained inditéds in the audible frequency range. The
noise can attain 120dB in the brake vicinity anéinewn as squeal between 1 and 16 kHz or
moan under 1kHz. Squeal, unlike low frequency \ibres, does not alter the brake
performance and happens mostly in low pressuresfmed conditions. The perceived quality
is however altered, as the driver's feeling iswlistd, and the environmental nuisance is not
welcome.

Silent brake design methods are mainly empirical difficult to control, due to modelling
issues (e.g. contact complexity) or due to impletawgon difficulties. Classical design
methods for brake vibrations are set in the freqguetomain and widely spread in industry.
This approach is coherent with experimental resuitsinstable mode lock-in patterns, see for
example Masset al [1]. The system is linearized around a workinghpdunction of global
parameters such as the friction coefficient or kinaking pressure, to apply Lyapounov
theorem to compute complex modes. The system isyabihere related to the damping of its
poles. This method shows great limitations asavjgles growth ratios at a given deformation
state. The resulting ranking of unstable mode lgyrdal part of their poles is biased as no
information is obtained about vibration levels otio@t cycles are attained. Such observation
have been made for example by Siebal.[2,3], or Lorang [4].

Working in the time domain allows simulating thestgm with its full non linearities and then
gives a clear view of the brake stability. Such lenpentation raises many issues - a direct
simulation on a full industrial model would requipeohibitive computational costs. Contact
handling requires relatively small time steps ambut0°s which makes long (100ms)
simulations difficult to handle. For the industrialake application, illustrated in figure 1,



using a non linear implicit Newmark scheme on a,800 DOF system would actually
generate over 1TB of data in over 700 hours. Thesges are dealt with model reduction
techniques and an adaptation of the Newmark schemeon linear penalized contact
vibrations, briefly presented in section 2, and[7h The simulation cost becomes then
affordable, yielding from 500MB to 5GB of data i hours.

Figure 1: Presentation of the application casejldfake system provided by Bosch

From the time simulations obtained, the analysiss@nted in section 3 focuses on the
evaluation of changes from the nominal complex modsing shape correlation and a
dynamic stability analysis. The focus is set onghawiration pattern responsible for the limit
cycle.

Since transient simulations are costly and statroglex modes are easier to work with in the
scope of design oriented analysis, a methodologgvisstigated in section 4 to enhance the
complex mode information at a cheaper computatioc@dt. The suggestion aims at
evaluating complex mode evolution with the ampléuw their trajectory, which has a clear
relation with continuation methods commonly usethm framework of the non-linear normal

modes [5]. Pseudo dynamic stability diagrams araprded over complex mode trajectories
showing interesting results in section 4.2. Sedligheventually explores finer complex mode
continuation ideas.

2. EFFICIENT METHODS FOR INDUSTRIAL SQUEAL SIMULATNS

Simulation of large industrial models in the desagrd validation processes has a number of
implications which are not met by current computadil performance. Transient simulation
of such systems is not directly available in readdstime. Two levers are proposed to tackle
the problem; a reduction method to decrease théersysize is presented in section
2.1.Contact formulation choices are presented atige 2.2. An efficient time integration
scheme based on an implicit non linear Newmark reehbas been used. It is not detailed
here, but all details can be found in [7].

2.1 Reduction method adapted to large models withl Inon-linearities

Computational power improvement and algorithmic aabes like Automated Multi Level

Solvers allow solving systems over a few million BOn usual workstations. The full real
modes of large system are thus accessible, atifeasiminal configuration, which opens the
way to new reduction methods more adapted in skwgplications than the traditional
Component Mode Synthesis (CMS) method [6].

CMS was indeed based on the assumption of companeéependence, static solution
capability and explicit boundary coordinates. latgion information is thus a priori ignored,
such that the full finite element basis of theitenface is kept. The target application is
however different from the aim of this study, whishto reproduce dynamic vibrations of an
automotive brake working near a static steady state



Brake squeal models rely on the quality of the ppaakie interface, as it is the location of the
main instability. The idea for time simulationghsis in a first approach to consider the rest of
the system as linear, based on the pseudo-peiiutia state. All DOF in the vicinity of this

contact area are thus kept explicitly, noted @ je remaining of the system DOF are noted

Gi-

To achieve the accuracy objective of exact dynaneilsaviour, the trace of the exact real
modes of the assembly is used as Rayleigh-Ritox&cAs only the gDOF will be reduced,
the trace (or restriction) of the Rayleigh-Ritz isaen this part is only considered. The
reduction basis, illustrated in figure 2, is thepressed as
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The pad/disc section is kept unreduced, while edhaining parts are reduced in a super-
element. In the process, the interface DOF areiamiglreduced on the system real modes.

Figure 2: Industrial brake and model reductiontstyg for non linear simulations

To generate a cinematically coherent coupling betwéhe finite element part and the
superelement, the reduction basis must in additmmtain the stationary condition;.qThe
final time model features then 30,700 DOF, witheasonable sparsity. More details, on this
reduction method can be found in [7].

2.2 Contact-friction modelling

Contact/friction modelling is commonly split intwd formulation strategies contact, giving
normal forcesd, and friction giving tangential forcesdepending on the friction coefficient
K. The exact Signorini/Coulomb laws represent adntar ideally smooth surfaces, while
functional representations take into account a llefeasperity compression through a
controlled interpenetration.

A functional representation has been chosen heneg &n exponential stiffness, as illustrated

in figure 3. Practically, a relationship betweer thap and contact pressure is established to
account for an approached contact constraint. Im@fation details and numerical aspects

can be found in [7]. The exponential contact lataireed is thus defined at each contact point

by

P(9) = pee™ (2)

where p is the contact pressure, g is the gapndA are parameters to define depending on
the interface properties. It can be noted thatudeeof an exponential formulation still allows
rather brutal non linear events in case of locaraxonstraints and opening.

Friction implementation follows the definition ofig Coulomb law, which for two solids
relates the sliding velocity and the friction fascé@ basic regularization is shown in figure 3



and considered in the study. Low sliding velocitiested w) are penalized through the

introduction of a parametet, lsuch that
fo=kws ifulwg <k OF, (3)
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Figure 3: Sample contact (left) and friction (riglaws.

3. TIME/FREQUENCY ANALYSIS

Stability and transient analyses are performed eaatiens 3.1 and 3.2. A correlation is
proposed using the Singular Value Decomposition¥m section 3.2.1. In depth analysis

of the limit cycle is given in section 3.2.2.

3.1 Sliding stability of the periodic solution

At 12 Bar, the brake system provided features sgverstable modes, following the stability
diagram of figure 5.
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Figure 5: Brake stability diagram at 12 Bar

Some unstable modes can be highlighted, in paati@dmplex modes C44 and C51, whose
shapes are shown in figure 6. The illustrationaswkd from the Component Mode Tuning
(CMT) method presented in [7,8], which allows irregng explicit component information at
the system level.
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Figure 6. Shapes of unstable complex modes C4t} élefl C51 (right). Colors from blue to red ranking
ascending elastic strain energy per componeniveltd the total strain energy.

Complex mode 44 shows a component interaction legtwiee disc, outer pad and caliper.
Complex mode C51 shows a knuckle/anchor interactith little participation of the disc
and pads. Structural effects thus seem importatttinbrake system, as components outside
the pad/disc interface are significantly involvedthe deformations. This is here a great
justification of the modeling choices that allowsng models with very refined geometries.



3.2 Transient simulations and correlation to commpimdes

A 100ms transient simulation is obtained in 12imngghe methods presented in section 2; the
resulting braking torque, and vibration levels presented in figure 7. After a modulation
period, the signal becomes very stable, this resuttlled a limit cycle although no further
characterization is attempted. This purely prattidafinition is deemed sufficient for
industrial applications.

1
1
0

Mb/yt [N.mm]
ODS disp [u m]
(=]

|
4
T

0 éO 4‘0 6‘0 B‘O 100 0 0.05 0.1 0,157 02
Time [ms] Time [ms]

Figure 7: Installation of a limit cycle over a 108tnansient simulation performed on the industirake.
Displacement result on the disc surface in theafrile time response (um).

3.2.1 Time/frequency correlation using SVD

The limit cycle extracted from the end of the tians simulation in figure 7 should be
correlated to the complex modes of the initial defation. This limit cycle constitutes a non-
linear normal mode, following the definition givdsy Kerschenet al [5]. The transient
simulation output is indeed a family of shapes anftequency defining a periodic cycle.
Several shape identification methods exist, asqeeg by the author in [7] or for example by
Lorang in [4].

The method presented here performs a space-tinoengesition of the limit cycle through an
SVD. From a response vector, the SVD extracts ardeftion basis ranked by amplitude in
the provided cycle, and their transient participatvolution.
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Figure 8: Space time decomposition of a limit cywléh the SVD

The concept is illustrated in figure 8, and carrddated to what is performed aposteriori
Proper Orhogonal Decomposition (POD) methods [5].lirAitation of the direct SVD
application is the absence of a mechanical nornis €an be improved by performing the
SVD on the strain energy, as presented in [7].

The limit cycle application result is provided iigdre 9. It can be seen that the cycle is
basically of dimension 2. With a main instability4kHz and an harmonic at 8kHz. The first

shape, presented in figure 9 (left) shows a corpehing pattern at the rear side of the outer
pad.
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Figure 9: SVD applied to the computed limit cydleft: main deformation shape. Middle: amplitudetie
response. Right: correlation by MAC with the nonhic@mplex modes.
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These shapes are well correlated to complex madeshown in figure 9. These modes are
however fully unstable and cannot explain the agpar of a limit cycle over a full
divergence. A more in depth analysis must thusdsopmed.

3.2.2 Dynamic stability

A specific post-treatment is performed from thensiant simulation presented in figure 7.
The system state in displacement/velocity/non liieeces for a time sampling over the limit
cycle is exploited to evaluate the stability aschion of time. The resulting diagrams are
consequently calledynamic stability diagramsTwo representations of these diagrams are
presented in figure 10 for the frequency band tdrast (mode C44, 4kHz).

44, , P o 2
Ta S ~ T 9 H
T B
i - = +*
§ : g 0 S —
5] = =
2oy - : y
3 I a -l g

1]
34 = | -2
et 2 [mC;]s 04 04 4000 4100 4200 4300 4400

Frequency [Hz]
Figure 10: Dynamic stability diagram in the 4kHeduency range in the limit cycle

Clear mode coalescence patterns are observed, whitlbe interpreted as the effect of a
contact opening pattern observed in figure 9. Tegqufency diagram shows in particular the
variation of a complex mode in the squeal frequeraryge. The frequency/damping diagram
in the same frequency range shows in additionldedtanstable transition.

By tracking the complex mode showing large freqyewariations in figure 10, and
computing component wise strain energies, shapkitemo can be assessed as presented in
figure 11.
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Figure 11: Evolution of the component strain enaapartition as function of time in the limit cycle

As a first observation, the shape is linked to tme of complex mode C44. Significant
changes however occur as the strain energy distiblevolves. The indistinguishable
pad/disc/caliper interaction given by mode C44 shegn here be decomposed in a specific
sequence.

At the beginning of the cycle, the pad/disc intéactis preponderant and is the cause of the
instability. As the pads follows the trajectory givby mode C44, the outer pad rear side



opens contact, and increases its coupling withctdger, which consequently comes into
high strain energy. At this state, the system bexostable and the caliper pushes back the
pad onto the disc. Once the outer pad rear coala®ts again the instability restarts.

4. EXTENDED COMPLEX MODE ANALYSIS

4.1 Introduction

The observations obtained in section 3 match comoomeepts of the non-linear mechanics
literature fields. The centre manifold theory [2&thrts from the idea that at a certain
threshold, a fully stable system will have a modming into an area of controlled instability.

The classical formalism exploited in the centre iiwdah theory is however limited, as it
assumes a fully stable system for a starting p@ims conducts most authors to consider a set
of control parameters including the friction coeiint as a cause of instability trigger, it was
however demonstrated here that a constant fricto@fficient is sufficient to evolve to a limit
cycle. A second limitation comes from the consiteraof a single complex mode for limit
cycle evaluations, which tends to over-simplify thstability mechanisms in such system. In
the cycle found here, two shapes were found to dateithe response but others were
involved.

Developments, such as the CNLMA proposed by Sirtoal.ein [2], seek to find the limit
cycle amplitude associated to the unstable complede detected at the Hopf bifurcation
point. The complex mode amplitude is then used@m&ol parameter to find the limit cycle.
Indeed, from the Hopf bifurcation point to the lingycle point, the system will show a
divergence phase, characterized by an unstable mitdea strictly positive real which will
come to zero once the limit cycle is attained @mvhfer divergence).

The approach proposed here is, given a set of hiestaomplex modes, to analyze their
stability by processing responses associated wiin trajectory at variable amplitudes.

4.2 Simulating complex mode cycles

The free decay trajectory of a complex mode is ratisnof the form

{w o} =rda fy}&") ©
which has for an unstable mode an increasing anagiassociated with the real part of the

pole. In practice, since there is a limit cyclestrepresentation does not correspond to the
physical response. To analyze the complex modepmposes to use the trajectory given by

{Wj (t)} = Re(aj{‘//j} Eiwjt) (6)

associated with perio@7r/ w; and trajectory of amplituds,

Figure 12 illustrates the pseudo-trajectory basednode C44, plotted on a point of the disc
surface. The range of vibration amplitude is fronilo04 um as function of the coefficient
amplitude, which corresponds to the displacemelutegathat can be experimented with brake
systems.
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Figure 12: Complex mode C44 trajectory as functibthe amplitude coefficient, left: displacementtbe disc
surface over the trajectory. Middle: associatedingtorque. Right: Braking torque zoom in (firstlf).

The braking torque associated with the trajectsrglso shown in figure 12. The cycle starts
with the brake unloading as the outer pad rear sgg@rates from the disc. In the second half
of the cycle, the outer pad comes back into contaitt an over-penetration peak. For all
these trajectories, the pseudo instantaneous tastgas can be evaluated and new complex
modes can be computed. The evolution of the stiasiland instabilities can therefore be
assessed.

The following results focus on one sample amplitude3.5.10% This gives maximum
displacement amplitude of 2u81. The patterns of figure 10 and figure 13 are afiye
comparable which clearly shows the pertinence afigu€omplex mode trajectories. The
absence of mechanical equilibrium is however atdmaaation.
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Figure 13: Pseudo dynamic stability diagram ovedenG44 trajectory

4.3 Non-linear analysis of complex mode cycles

To improve the results of section 4.2, it is pragab$o simulate complex mode cycles but
respecting the mechanical equilibrium at each sWpe chosen strategy considers the
complex mode trajectory driven by its velocity aateleration, while the displacement must
comply with a mechanical equilibrium. At each stdpthe pseudo time, a non-linear static
resolution is thus performed, with the inertial attmmping forces taken as a constant load
input, while the new displacement and contactibictforces are updated. Using assumed

accelerationy; and velocityy, , one resolveﬁﬁ, f )such that

F,(t) = K (foo+ £, (@ (6) - M@, (t) -Cy, (1)) (7)

This resolution produces a succession of quascstatutions which can be considered as a
cycle, continuity conditions are however not vexdfibetween time steps. The braking torque,
shown in figure 14 for low vibration amplitudesvisry different from the previous ones. The
contact opening in the first phase is associatatl widecrease of the braking torque and
closing in the second phase with a torque incre@iBe.disc displacement is however very
low (0.01 um) which suggests that the proposed method to emftite field needs to be
refined.
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Figure 14: Complex mode trajectory with statigptheement equilibrium for low amplitude vibratiohsft:
disc displacement. Middle: braking torque. Righictton work relative to the amplitude.

The friction work obtained is positive, which ishayent with an instability where friction
forces introduce energy into the system. The dsere&this work, relative to the amplitude,
is coherent with the fact that to achieve a linyitle the work of friction forces must converge
to zero.

At higher amplitudes the contact closing becomesgerboutal. One thus observes a threshold
at which the pad compression becomes so high teadisplacement pattern is altered on the
full system during the peak of contact forces. Fegl5 thus shows that at higher amplitudes
transitions effects that still need to be explain@tie threshold pattern, which occurs
for a=6.7, is confirmed by the computation of the foctiwork over the cycle, in figure 14,
and 15, using the velocity computed by finite diéieces of the displacement.
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Figure 15: Complex mode trajectory with static thispment equilibrium for low amplitude vibrationsft:
disc displacement. Middle: braking torque. Righictton work relative to the amplitude.
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5. CONCLUSION

The simulation of systems with contact-friction bees a stake for more and more
applications. In particular, brake squeal appeatseta critical application for the automotive
sector.

To the difference of most applications the simolatmethod proposed here aims at keeping
fine geometrical details for all computation. Thvas attained through aad hocreduction
method, which contained the system size and mapatsity, two distinct indicators of the
performance achievable for a given finite elemeadet.

Long transient simulations have been performed @rdelated to complex modes of the
periodic state through the use of SVD. Although pamable, great differences exist in terms
of system behaviour between the shapes from theitmat and the complex modes.

To improve computation times, it was suggested herese continuation methods adapted to
the problem. For complex modes trajectories, a @a@chl equilibrium must be found to get

to the observation of saturation patterns. Suchulsitions, briefly tested in this paper, appear
very encouraging to develop for design studies. Qutations are indeed much quicker than
transient simulations, which could be used fordation only.
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