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1.1 Key areas

This section is intended for people who don’t want to read the manual. It summarizes what you
should know before going through the SDT demos to really get started.

You can find a primer for beginners at http://www.sdtools.com/help/primer.pdf.

Self contained code examples are distributed throughout the manual. Additional demonstration
scripts can be found in the sdt/sdtdemos directory which for a proper installation should be in your
MATLAB path. If not, use [sdtcheck path|to fix your path.

The MATLAB doc command no longer supports non MathWorks toolboxes, documentation access
is thus now obtained with sdtweb FunctionName.

The SDT provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification (data acquisition
and signal processing, followed parametric identification) with information about the spatial position
of multiple sensors and actuators.

An experimental modal analysis project can be decomposed in following steps

e before the test, preparation and design (see section )

e acquisition of test data, import into the SDT, direct exploitation of measurements (visualization,
operational deflection shapes, ...) (see section [2.1])

e identification of modal properties from test data (see section )

e handling of MIMO tests and other model transformations (output of identified models to state-
space, normal mode, ... formats, taking reciprocity into account, ...) (see section )

The series of gart.. demos cover a great part of the typical uses of the SDT. These demos are
based on the test article used by the GARTEUR Structures & Materials Action Group 19 which
organized a Round Robin exercise where 12 European laboratories tested a single structure between
1995 and 1997.


http://www.sdtools.com/help/primer.pdf

Mode 7 at 6.515 Hz

Figure 1.1: GARTEUR structure.

e gartfe builds the finite element model using the pre-processor

gartte shows how to prepare the visualization of test results and perform basic correlation

gartid does the identification on a real data set

d_cor (’TutoSensPlace’) discusses sensor/shaker placement

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation for modal
tests. Chapter [3| addresses topology correlation, test preparation, correlation criteria, modeshape
expansion, and structural dynamic modification. Details on the complete range of sensor definitions
supported by SDT can be found in Indications on how to use SDT for model updating are
given in section [6.5] .

e gartco shows how to use [fe_sens| and [fe_exp| to perform modeshape expansion and more
advanced correlation

e gartup shows how the interface can be used to further correlate/update the model

13
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Area 3: Basic finite element analysis

Chapter [ gives a tutorial on FEM modeling in SDT. Developer information is given in chapter [7]
Available elements are listed in chapter [0

A good part of the finite element analysis capabilities of the SDT are developed as part of the
OpenFEM project. OpenFEM is typically meant for developers willing to invest in a stiff learning
curve but needing an Open Source environment. SDT provides an integrated and optimized access
to OpenFEM and extends the library with

solvers for structural dynamics problems (eigenvalue (fe_eig]), component mode synthesis

(section ), state-space model building (fe2ss|), ... (seel|fe simul));

solvers capable of handling large problems more efficiently than MATLAB;

a complete set of tools for graphical pre/post-processing in an object oriented environment

(see section );

high level handling of FEM solutions using cases;

interface with other finite element codes through the [FEMLink extension to SDT.

Area 4: Advanced FE analysis (model reduction, component mode synthesis,
families of models)

Advanced model reduction methods are one of the key applications of SDT. To learn more about
model reduction in structural dynamics read section [6.2| . Typical applications are treated in sec-
tion .

Finally, as shown in section , the SDT supports many tools necessary for finite element model
updating.

1.2 Key notions in SDT architecture

functions, commands

To limit the number of functions SDT heavily relies on the use of string commands. Functions group
related commands (feutil|for mesh manipulation, for curve visualization, ...). Within each

functions commands (for example [iicom ImWritel), are listed with their options.



http://www.sdtools.com/openfem
http://www.sdtools.com/femlink.html

command string and structure options (CAM,Cam,R0)

Most SDT functions accept inputs of the form function(’command’,data, ...).

Command options can be specified within the command (parsed from the string). iicom(’ch+57)
is thus parsed to ask for a step of +5 channels. See for conventions linked to parsed
commands (case insensitive, ...).

When reading SDT source code, look for the CAM (original command) and Cam (lower case version
of the command). Section gives more details on SDT coding style.

While command parsing is very often convenient, it many become difficult to use in graphical user
interfaces or when to many options are required. SDT thus typically supports a mechanism to
provide options using either commands options, or option values as a data structure typically called
RO (for Run Options but any variable name is acceptable). Support for both string and structure
options is documented and is being generalized to many commands.

% Equivalent command an structure calls
figure(1);plot(sin(1:10));title(’Test’);legend(’sin’);
cd(sdtdef (’tempdir’)); % Use SDT temp dir

% Give options in string

comgui(’ImWrite -NoCrop Test.png’)

% Give options as structure (here allows dynamic generation of title)
RO=struct (’NoCrop’,1, ’FileName’,{{pwd,’@Title’,’@legend’,’ .png’}});
comgui (’ImWrite’,RO);

structures used for typical data

The SDT supports a number of data structures used to store common structures. The main struc-
tures are

° for FEM models and wire frame displays
o for responses at DOF
e [curvel for multi-dimensional data

e sens sensor definition, see section .
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Stack

When extensible and possibly large lists of mixed data are needed, SDT uses .Stack fields which
are N by 3 cell arrays with each row of the form {’type’, name’,val}. The purpose of these cell
arrays is to deal with unordered sets of data entries which can be classified by type and name.

stack_set and stack rm are low level functions used to get/set/remove single or multiple
entries from stacks.

Higher level pointer access to stacks stored in iiplot: (curve stacks) and (model and case
stacks) are described in section and section [4.5.3] .

GUI Graphical User Interfaces

GUI functions automatically generate views of data and associated parameters. The main GUI in
SDT are

° and the associated (commands to edit plots) to view frequency and time re-
sponses defined at multiple channels.

o and the associated (commands to edit plots) to view 3D FEM and test meshes
and responses.

o for experimental modal analysis.

. for test/analysis correlation.
o for project handling, parameter editing.

Graphically supported operations (interactions between the user and plots/ menus/mouse move-

ments/key pressed) are documented under

The policy of the GUI layer is to let the user free to perform his own operations at any point.
Significant efforts are made to ensure that this does not conflict with the continued use of GUI
functions. But it is accepted that it may exceptionally do so, since command line and script access
is a key to the flexibility of SDT. In most such cases, clearing the figure (using c1f) or in the worst
case closing it (use close or delete) and replotting will solve the problem.

pointers (and global variables)

Common data is preferably stored in the userdata of graphical objects. SDT provides two object
types to ease the use of userdata for information that the user is likely to modify

16



e |SDT handle| objects implement methods used to access data in the figure (see sec-
tion [4.4.3] ), the [iiplot|figure (see section [2.1.2]), or the menu.

° to allow editing of user data of any userdata.

For example in a figure, cf=feplot (5) retrieves the[SDT handle|object associated with the
figure, while cf.mdl is a|SDT" handle| method that retrieves the object where the model

data structure is stored.

global variables are no longer used by SDT, since that can easily be source of errors. The only
exceptions are [upcom which will use the global variable Up if a model is not provided as argument and
the user interface for finite element mesh handling mplements the same commands
without use of global variables), which uses the global variables shown below

FEnode main set of nodes (also used by D

FEnO selected set of nodes

FEn1 alternate set of nodes

FEelt main finite element model description matrix
FEelO selected finite element model description matrix
FEell alternate finite element model description matrix

By default, automatically use base workspace definitions of the standard global variables:
base workspace variables with the correct name are transformed to global variables even if you
did not dot it initially. When using the standard global variables within functions, you should
always declare them as global at the beginning of your function. If you don’t declare them as global
modifications that you perform will not be taken into account, unless you call ... from your
function which will declare the variables as global there too. The only thing that you should avoid is
to use clear and not clear global within a function and then reinitialize the variable to something
non-zero. In such cases the global variable is used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual
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courier
feplot
command
var

% comment
Italics

Bold

Small print
(1,2)
1,:)
(1,3:end)

blue monospace font : Matlab function names, variables

light blue monospace font: SDT function names

pink : strings and SDT

italic pink: part of command strings that have to be replaced by their value
green: comments in script examples

MATLAB Toolbox names, mathematical notations, and new terms when they are
defined

key names, menu names and items

comments

the element of indices 1, 2 of a matrix

the first row of a matrix

elements 3 to whatever is consistent of the first row of a matrix

Programming rules are detailed under section . Conventions used to specify string commands
used by user interface functions are detailed under

Usual abbreviations are

CMS
COMAC
DOF,DOF's
FE

MAC
MMIF
POC

Component Mode Synthesis (see section )
Coordinate Modal Assurance Criterion (see )
degree(s) of freedom (see section )

finite element

Modal Assurance Criterion (see |ii_mac|)
Multivariate Mode Indicator Function (see |iimmif[)
Pseudo-orthogonality check (see |ii mac))

For mathematical notations, an effort was made to comply with the notations of the International
Modal Analysis Conference (IMAC) which can be found in Ref. [I]. In particular one has



[E]NSXNA
[F}NSXNA
M,C,K
N,NM
NS,NA

Pt

b

AM,AC,AK

[T

Aj
[¢]N><NM
[\

[H]NXNM

[w]NxNM

matrix, vector

conjugate

input shape matrix for model with N DOFs and N A inputs (see section ).
{qﬁ?b} , {ijb} modal input matrix of the j** normal / complex mode

sensor output shape matrix, model with N DOFs and NS outputs (see sec-
tion ). {e¢;}, {cp;} modal output matrix of the j* normal / complex mode
correction matrix for high frequency modes (see section )

correction matrix for low frequency modes (see section )

mass, damping and stiffness matrices

numbers of degrees of freedom, modes

numbers of sensors, actuators

principal coordinate (degree of freedom of a normal mode model) (see section
)

degree of freedom of a finite element model

Laplace variable (s = iw for the Fourier transform)

= {cp} wfb} residue matrix of the j** complex mode (see section )

= {co;} gb]Tb} residue matrix of the 5% normal mode (used for proportionally
damped models) (see section )

inputs (coefficients describing the time/frequency content of applied forces)
outputs (measurements, displacements, strains, stresses, etc.)

dynamic stiffness matrix (equal to [Ms? + Cs + K])

dynamic compliance matrix (force to displacement transfer function)

design parameters of a FE model (see section )

additive modifications of the mass, damping and stiffness matrices (see sec-
tion )

non-diagonal modal damping matrix (see section )

complex pole (see section )

real or normal modes of the undamped system(NM < N)

modal stiffness (diagonal matrix of modal frequencies squared) matrices (see

section )

NM complex modes of a first order symmetric structural model (see section

)

NM complex modes of damped structural model (see section )

1.4 Other toolboxes from SDTools

SDTools also develops other modules that are distributed under different licensing schemes. These

19



1 Preface

20

modules are often much less documented and address specialized themes, so that only a technical
discussion of what you are trying to achieve will let us answer the question of whether the module
is useful for you.

Viscoelastic tools : an SDT extension for the analysis and design of viscoelastic damping. Beta
documentation at http://www.sdtools.com/help/visc.pdf.

Rotor tools : an SDT extension for rotor dynamics and cyclic symmetry. Beta documentation
at http://www.sdtools.com/help/rotor.pdf.

Contact tools : an SDT extension for contact/friction handling (generation observation ma-
trices, tangent coupling matrices, various post-treatments). Beta documentation at http:
//www.sdtools.com/help/contactm.pdf.

non linear vibration tools : an SDT extension for non-linear vibration and in particular time
and frequency domain simulation of problems with contact and friction.

OSCAR : a module for the study of pantograph/catenary interaction developed with SNCF.

Selected cross references to these other modules are listed here.

1.5

fevisco Range this command is part of the viscoelastic tools.
fe2xf this function is part of the viscoelastic tools.
fe cyclicb ShaftEig this command is part of the rotor tools.

Follow is part of the contact and rotor tools. nl_spring is the generic implementation of time
domain non-linearities in SDT.

ExtEghttp://www.sdtools.com/help/eq_dyn.html#eqg*ce_shell
ExtEqhttp://www.sdtools.com/help/eq_dyn.html#eq*pze_c

ExtEqghttp://www.sdtools.com/help/eq_dyn.html#Electrode

Licensing utilities


http://www.sdtools.com/help/visc.pdf
http://www.sdtools.com/help/rotor.pdf
http://www.sdtools.com/help/contactm.pdf
http://www.sdtools.com/help/contactm.pdf
http://www.sdtools.com/help/eq_dyn.html#eq*ce_shell
http://www.sdtools.com/help/eq_dyn.html#eq*pze_c
http://www.sdtools.com/help/eq_dyn.html#Electrode

1.5.1 Node locked licenses

For a node locked license. To obtain license information, download https://www.sdtools.com/
distrib/RLMmex.zip.

e For windows, save the mex file in sdt/804/sdtrlm.mexw64.

e For Linux, save the mex file in sdt/7.5/sdtrlm.mexw64

e To obtain configuration information for license generation, at the MATLAB prompt use

which sdtrlm % to check the mex is visible (possibly rehash toolboxreset may be ne
sdtrlm hostid

e Send the associated information by email to request@sdtools.com, so that we can generate a
license sdt.lic file. This will need to be saved in your MATLAB prefdir or in the directory
where the sdtrml mex is located.

e You will need to restart MATLAB to access your license.

1.5.2 Floating licenses

Floating SDT licenses can use the RLM license manager. To install the server, download https:
//www.sdtools.com/distrib/RLM. zip.

e For windows, save the RLM.zip/win64 directory to the target location of your server and start
a shell (cmd.exe)

e For Linux, save the RLM.zip/glnxa64 directory to the target location of your server and start
a shell.

e Obtain configuration information for the license generation (note the second line will fail if you
do not yet have a RLM server on that machine).

cd MyServerLocation
rlmutil rlmhostid
rlmutil rlmstat

e Send the associated information by email, so that we can generate a license sdt.1lic file for
your license server.
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e Once you have received the sdt.lic file and placed it in the server directory where you will
also find the sdt.set file. You can start the server using

cd MyServerLocation
rlm > outputfile
rlmutil rlmhostid

Note that you should NEVER run the RLM server as a priviledged user (root on unix or
administrator on Windows). You can also find more administration help at http://www.
reprisesoftware.com/RLM_License_Administration.pdf. In particular, the
-install_service option is useful for windows, and boot time init is described for Linux.

On the client side (local copies of SDT'), you will need to follow the procedure for SDT installation at
https://www.sdtools.com/fag/Release.html, you must in particular provide the license request
of the first installation matchine (further copies can then later be made as detailed below) and check
that your SDT

e has the sdtrlm mex file. Use which sdtrlm to verify where this is located.

e have a license file sdt.lic located in the MATLAB preference directory (prefdir).
sdtkey(’licfile’) returns the currently used location.

e That the license file is correct. Typically when a license server is used, the file only contains
two lines HOST specifying the server name and port, ISV sdt specifying the use of an SDT
server. The port specification on the second line may be necessary in configurations with
firewalls but may be deleted otherwise.

# type(fullfile(prefdir,’sdt.lic’)) % for display in MATLAB
HOST NameOfServer ANY 5053
ISV sdt port=50175

e To check the status of licenses used in your current MATLAB session use the following and
possibly send the result to SDTools for diagnostic
sdtcheck(’rlm’)

e For details on the server status sdtcheck(’rlmstat’).

e Please note that for multiple installations, you simply need to use a network location (windows
: windows server or Linux server with SAMBA, linux: NFS mount or equivalent) or copy the
full SDT directory and possibly the license file sdt.lic to the user preference directory using

copyfile(which(’sdt.lic’) ,prefdir);


http://www.reprisesoftware.com/RLM_License_Administration.pdf
http://www.reprisesoftware.com/RLM_License_Administration.pdf
https://www.sdtools.com/faq/Release.html

1.6 Release notes for SDT and FEMLink 7.1

1.6.1 Key features

SDT 7.1 is the only version fully compatible with MATLAB 9.4 (2018b) to 9.6 (2019a) mostly due
to changes in the representation of complex numbers in MATLAB. Key changes of this release are

e A continued effort in making the experimental modal analysis part of SDT section 2.2] fully
accessible without any script is nearly complete. Functions however obviously remain accessible
from the command line to users will to learn how to use them. The associated docks Id (for
experimental modal analysis see section ), CoTopo (topology correlation see section ) and
CoShape (test/FEM correlation see section ) have been extended and tutorials have been
introduced.

e A major effort was put on the documentation. The new structuration of demos into tutori-
als helps training. You can for example see tutorials in various files with d_ mesh(’tuto’),
gartid(tuto’), d.cor(’tuto’), d.cms(’tuto’), .... Equations are now shown as SVG files
which improves readabily, but may pose problems on some older versions of MATLAB where the
help browser does not support SVG.

e We are still working with the MathWorks on improving reliability of the help browser. To
bypass some bugs, you may have to change default location where the help is shown using
sdtdef (’browser-SetPref’,’-helpbrowser’) or sdtdef (’browser-SetPref’,’-webbrowser’).
For clickable areas of SVG figures, use Ctrl-Click to open in a new window or right-click and select
Open in a new tab.

Outside improved robustness of the femlink GUI, key changes for FEMLink are

° extended BDF reading in particular for orthotropic materials and substructure export (to
ease superelement import). Job submission integration is now supported as a consulting project
feature.

. compatibility with NX Nastran BGSET and BSURFS cards. Documentation of superele-
ment (see d_cms (’TutoNasCb’)). Performance of MAT9 and set reading.

) significant .inp reading improvements *distribution,*hyperelastic, set handling, ...
Performance of large .fil reading. Robustness and performance enhancements of resolve com-
mands. Introduction of a .dat reading framework for customer use, with complex modes output
reading support.

For MATLAB compatibility see section [1.6.3] .
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1.6.2

comgui

Iii III

emosdt

fe2ss

fecom

fesuper

Hh
=

euti

h

e_caseg|

fe_cyclic

fe_ei

e_eXx

I I
e} 09

fe_gmsh|

fe_mat

fe_mpc

fe_norm

i

Detail by function

improved robustness and performance of Java interfaces, dock handling,
menu_generation mechanism associated with OsDic.

Tutorials underwent a major rewrite. d_cms now documents direct NASTRAN su-
perelement import.

extended and improved documentation of damping handling strategies.
robustness of Show commands. In particular, ShowFi... now allows custom inits and
is automatically added to the context menu.

improvement of SE definition strategies with SEAdd, improved support of
definitions with SEinitCoef, and assembly calls with MatTyp -1 and -2. New com-
mand SeDofShow to display selected superelement active DOF on a full FE model in
Notable performance and generality improvements in the handling of sets. Support
of pyra elements.

Support of regular expression on sename searches selet eltname SE:#se[0-9]x,
introduction of exclusion type in node and element selection operations. New oper-
ator & to subtract a selection from a current result. Introduction of element set
exclusion using :exclude token following setname. Introduction of element selection
type safesetname that returns empty elements instead of an exception. Support of
setnames in double quotes for robust handling of setnames with special characters
and spaces.

Introduction of high level parametrization procedures for isotropic materials, any
structural element and superelement, with command series Par*

improved support for multi-dimensional periodicity. This can be used with the
support/fe_homo.m file which SDTools provides for free but with no support guar-
antee.

continued performance enhancements associated with memory management tech-
niques, introduction of an Out-Of-Core modal basis storage support for method 5
(Lanczos).

MDRE expansion has been significantly enhanced and an initial version of an expan-
sion tab is now provided.

introduced support for the new GMSH 4.0 format.

Improved robustness of unit conversion commands.

Extended Rbe3 and CleanUsed commands.

major performance improvement of MSeq procedure. Introduction of an option to
force vector collinearity tolerance estimation in the normalization procedure.



e_range

' I

e_reduc

Introduction of a Genetic algorithm framework with command GeneLoop. Introduc-
tion of an output data handling command Res that allows extracting and/or reformat-
ting output data. Improvement of data sampler object getXFslice and introduction
of an interpolation mode for coarse gridded data.

continued performance enhancements associated with memory management tech-
niques.

fe_shapeoptim partially supported function for mesh morphing field projection is now included

'
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in the distribution.

Extended CritFcn calls, support of piezoelectric volumes, and export of weighted
volumes associated with Gauss points in the .wjdet field.

all SDT mex files now properly support the new complex number storage of MATLAB.
major improvement of band selection and pole extraction in stabilization diagrams.
Improved dock functionality, performance and robustness. Menus for data manip-
ulation (permute 10, SvdCur, ...) are introduced. Keyboard interaction has been
improved.

performance and robustness of the Channel tab has been improved.
improvements of signal utilities dbsdt, filter, rms, a weights

improved file and dock reloading. Improved robustness of linked plots (magni-
tude/phase), keyboard interactions, java interaction.

the was notably extended and documented.

see sdtweb(’pz new’) for specific release notes.

This FEMLink function provides partial support of import of models exported by
MoldFlow in Nastran, Universal and ANSYS formats.

improved translation of metadata associated with measurements.

Merge commands have been extended for piezo applications.

Support for element by element changes of properties has been notable extended.

a new 5 node pyramid element is supported to ease mesh refining strategies in par-
ticular with level set strategies in

Utilities for sdtrootdir, rlmstat, rlm, patchfile were extended and robustified
for use in patching and demos.

Subcommand @sfield for advanced struct manipulations is now supported.

clear definition of preferences with session scope (by default) or permanent scope
(-setpref). Revision to alleviate preference file corruption with simultaneous
statups. New commands envSet, enviirite to allow preferences load/ in .env files
independently from the MATLAB session, compatible with deployed applications.
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sdtacx now supports section insertion in Word for easier report generation.

_tuto command provides generic support of tutorials the new base format for SDT
demos.

robustness enhancements. -39 exports matlab variables to Python script. Support
of nested string parsing with ””” tokens in -25 calls.

mkl _utils this mex file used to optimize time integration processes is now included in the base
SDT.

ofact sdtcheck(’ ’patchMkl’’’ can be used to install the Pardiso solver which now sup-

ports complex matrices and can be notably faster for solutions with few right hand
side solves. umfpack method is now properly supported for recent MATLAB.

1.6.3 Notes by MATLAB release

e MATLAB 8.0 (2012b) to 9.6 (2019a). SDT & FEMLink 7.0 are developed for these versions of
MATLAB and are fully compatible with them.

e For best performance, using MATLAB 9.0 (2016a) and higher is advised.
e For efficient FEM rendering, it is strongly advised to use HG2 : Matlab 8.4, R2014b and later.

e MATLAB 7.14 (2012a) to 8.3 (2014a) SDT & FEMLink 7.0 are being phased out but can
be used for a number of operations. Equations are not being shown correctly in the HTML
documentation.

e Earlier MATLAB releases are no longer supported.

e MATLAB 8.5 has known bugs in the handling of colorbar.
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1.7 Release notes for SDT and FEMLink 7.0

1.7.1 Key features

SDT 7.0 is the only version compatible with MATLAB 9.2 (2017a), 9.3 (2017b) and 9.4 (2018b)
mostly due to ongoing improvements of MATLAB graphics. Key changes of this release are

e A full rewrite and major extension of modal analysis graphical interfaces and documentation
detailed in section . Step-by-step tutorials, such as section , include buttons of the form
[> which you can use to execute a step. LSCF and stabilization diagrams are now supported.

e The new notion of docks corresponds to MATLAB docks where multiple figures are combined for
a typical use. Currently supported docks are
e Id : for experimental modal analysis see section

e TestFEM : topology correlation see section 3.1
e MAC : test/FEM correlation see

e A major update of SDT GUI with most existing tabs ported to Java mode and necessary in
docks. You can set the default tab to Java mode using sdtdef (> JavaUI’,1) or turn it off with
sdtdef (’JavaUI’,0). User documentation of tabs can be found in section [8.2] . Developer level
documentation of GUI functions is now included in section [§].

e Use sdtweb(’feplot’, ’webbrowser’) to bypass the not yet fixed MATLAB bug where the links
within pages are not called appropriately.

Key changes for FEMLink are

o improved import of .cdb and support of contacts.

. Direct import of EXTESOUT output to SDT superelement format. Continued enhance-
ments of bulk and op2 reading. Initial support of .op2 format writting of responses.

. continued enhancements of . INP reading in particular for composites and superelements,
contact, ... Significant writing enhancements.

e GUI import of models is supported with the FEMLink tab, section [8.2.2] .

For MATLAB compatibility see section|1.7.3].
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1.7.2 Detail by function

This list is not yet complete.
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fe_range

fe_reduc

fe_sens

Clarified error for repeated Basld. New methods for multibody transformations.
major rewrite of documentation and introduced support commands for non-linear
applications.

command clarifies robust opening of [feplot]| [iiplot| figures linked to

projects. Robustness in presence of mixed MATLAB/Java figures was improved.
robustness enhancements in name matching. getFixDof implemented as subfunction
to allow external calls.

compatibility with multi-physic periodic problems was enhanced.

Improved sweep generation and many minor improvements

many detail improvements on silent operation and robustness. SubResample com-
mand implements optimized resampling.

tolerance strategy was changed in solver 5 for improved convergence.

underwent a major revision allowing the use of MDRE and MDRE-WE algorithms
with the use of reduced models as well as proposing associated energy displays.
Improved generality of DofSet case entries.

Improved support of orientation maps in particular for stress computations.
introduced a clean command to clean meshes in particular by straightening edges.
major improvement of GUI operations and stat commands.

Improved compatibility with parametric models, performance for large models, static
correction in poorly conditionned cases.

Major rewrite of TestBas tab section and associated commands.

TdofTable now supports callbacks Distance view and SensorZoom selection.
GUI operation is now supported.
Corrected stress computation problems in baril elements.

SeRestit was enhanced for restitution of multibody results.

Robustness enhancements for QualTable, see section

new commands such as PermutelIO, ...

Significant enhancements of GUI, context menus and docked operations.
Robustness enhancements in particular for multi-figure interactivity used in docks
Continued extensions of orthotropic material support with orientation maps.
Official support of Polytec file access interfacing.

Bug correction in cases with material orientation.

Revised handling of 3D section views.

Robustness enhancements for project handling and export to Word/PowerPoint.
Evolution of Java tables with MATLAB changes.

Support of GUI operation.
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1.7.3 Notes by MATLAB release

e MATLAB 8.0 (2012b) to 9.3 (2017b). SDT & FEMLink 7.0 are developed for these versions
of MATLAB and are fully compatible with them. Minor incompatibilities with 9.4 (2018a) are
associated with the new complex number handling in MATLAB and and will be fixed with
SDT 7.1.

e For best performance, using MATLAB 9.0 (2016a) and higher is advised.
e For efficient FEM rendering, it is strongly advised to use HG2 (Matlab 8.4, R2014b).

e MATLAB 7.6 (2008a) to 7.14 (2012a). SDT & FEMLink 7.0 are being phased out but can be
used for a number of operations.

e Earlier MATLAB releases are no longer supported.

e MATLAB 8.5 has known bugs in the handling of colorbar.
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1.8 Release notes for SDT and FEMLink 6.8

1.8.1 Key features

SDT 6.8 is the only version compatible with MATLAB 8.6 (2015b) and 9.0 (2016a) mostly due to
ongoing improvements of MATLAB graphics. Key changes of this release are

e A continued upgrade for SDT GUI with additional interactive java tabs. Image generation,
described in section , illustrates definition of projects for output file generation and
handling of style sheets in The java library cinguj.jar must be on the static path (check
with sdtcheck(’PatchJavapath’)). Developer level documentation of GUI functions is now
included in section [8] .

e A major rewrite of numerical experiment handling capabilities in In particular uses as
scheduler of hierarchical parametric computations and post-processor for parametric results are
documented.

e Continued extension of file generation with capabilities to generate multiple movies
[fecom AnimMovie| save the figure in multiple formats (.fig, .png, see [comgui ImWritel), ...

e extensions Java based result tables with introduction of export capabilities, see

e continued development of the piezo manual. In particular extension of patch meshing in
sdtweb(’d piezo#MeshPlate’) and introduction of a shunt damping example (sdtweb(’shunt’))

Key changes for FEMLink are

. significant enhancements to CDB reading and writing with extended element and mate-
rial /section property support. Performance fixes for emat reading.

. fixed problems with multiple case importing, implementation of gravity translation.
Automated writing of superelements as DMIG.

° significant robustness enhancements of .INP reading. Robustness of the BuildUp com-
mand.

e GUI in femlink

For MATLAB compatibility see section |1.8.3].
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1.8.2 Detail by function

beam1 supports the Beam1In flag to avoid use of inertia correction.

fixed problems with use of node in element for local orientation definition and hys-
teretic damping computations.

major extensions of the image writing capabilities. Export to Word and PowerPoint

is now included with the project definition. Movie generation with the .gif exten-
sion and multi-extension (for example .png and .fig) are now included. Improved
cropping options. Improved file name generation and interaction with projects, see
[comgui PIotWd] Introduction of style sheets, see

robustness enhancements for enforced motion problems opt (1)=4.

enhanced support of long and double formats used to store solutions of cyclic and
periodic systems. See also the unsupported fe_homo function.

SubDef enhanced to support HDF formats and exports from results. SubCh
and SubDOF extensions. CurveJoin supports definition of interpolation functions.
Major rewrite to support all expansion methods based on a reduced superelement.
Notable extension of job writing call to GMSH capabilities.

Robustness of map merging.

Major extension of GUI for visualization of experiments and the command loop for
manipulating hierarchical computations.

Minor robustness enhancements and introduction of a Free float=2 option where
loads are orthogonalized with respect to known modes which improves conditioning.
Significant robustness and interactivity enhancements of GUI. Extension of
[tdof[rable.

GUI for mode computations.

Rewrite of follow timers to allow checks during time integration.

setMat "Steel" Rho=1e-9 is how accepted. Significant extensions of set manipula-
tion capabilities. Extended support of silent operation when using commands ending
with an ;. Major rewrite of Refine operations for improved performance. Fixes to
FixMpcMaster. GeomSmoothEdge places edge mid-node based on normals. Robust
operation of GetDD to recover constitutive properties. Node manipulation operators
(symmetry, shift, ...).

performance and robustness enhancements for matching and connectivity based al-
gorithms.
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|fecom AnimMovie| supports generation of a directory of animated shapes. ColorMatId
is documented. Synchronized figures are used in TextMatId places a label in
the middle of each material area.

provides a first documentation of criterion functions used to formalize ob-
jective functions with coloring and threshold strategies.

Robustness enhancements in SE generation, stack splitting, and handling of

QualTable sensor sets by mode and I/O pair.

Added new commands: PermuteI0 to ease handling of hammer tests, FlipdataSign
to handle sensors with flipped sign, Mass for low level implementation of modal mass
estimation.

Rewrite of generalized mass estimation. Rewrite of menu structure.

MacCo was extended with a ByMode option. Options .MinMAC, .Df documented for
pairing. Continued efforts in output formatting and export to Word/Excel/TeX.
ShowDock documented to obtain MAC and two deformations, PlotMacTick accessi-
ble from main menu Edit view, MacText accessible from context menu display text
values. MacError table supports navigation in modes.

robustness enhancements vel,acc, FFT properly detects spatial and time transforms.
Stats introduced to handle typical feature extraction, MMIF BylIn/Out.

plp supports significant extensions of line markers.

Extended export to word. Notable robustness and documentation enhancements to
all [comgui objSet|commands.

compatibility with recent evolutions of MATLAB. Improved datatip handling.
Rewrite of context menus. Support of ViewClone for multiple feplot figures. Sub-
function LinkedCh was extended to enhance table interactivity with more table types
(Java tables in particular). Docking commands how support topology definition.
improved parallel operations and compatibility with MATLAB 2016a (affects multiple
OpenFEM functions).

improved support of stress computations.

Robustness enhancements in the support of multiple consitutive law formats.
formulations 5x support rotation inertia for explicit time integration. SetThick can
be used to introduced variable thickness areas.

implementation of a zero thickness element family used to constrain normal and
tangential displacement on possibly curved interfaces.
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sdtcheck robustness enhancements in particular for PatchJavapath which is necessary for new
GUI operations.

has been notably extended with many new tabs, support floating tabs in GUI devel-
opment, ... Related changes affect sdt_locale, sdcedit, sdt._dialogs,

notable extensions of support commands _wd, find, ...

1.8.3 Notes by MATLAB release

e MATLAB 7.14 (2012a) to 9.0 (2016a). SDT & FEMLink 6.8 are developed for these versions
of MATLAB and are fully compatible with them.

e MATLAB 7.6 (2008a) to 7.13 (2011b). SDT & FEMLink 6.8 are being phased out but can be
used for a number of operations.

e On Linux MATLAB 8.1 (2013a) is required.
e Earlier MATLAB releases are no longer supported.
e MATLAB 8.5 has known bugs in the handling of colorbar.

e MATLAB 7.9 has known compatibility problems in its HDF library and should be avoided for
large FEM applications using
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1.9 Release notes for SDT and FEMLink 6.7

1.9.1 Key features

SDT 6.7 is the only version compatible with MATLAB 8.4 (2014b) and later. Key changes of this
release are

e A major revision of all the SDT interfaces for compatibility with the new graphical system of
MATLAB 8.4 (2014b).

e Major extensions legend/filename generation capabilities, see
e Significant enhancement of documentation with more readable links to be reused in calls.

e introduction of more readable Java based results tables in many functions.
Key changes for FEMLink are

° major extension of CDB reading capabilities and bug fixes associated to changes in
MATLAB R2013a behavior and 64 bit pointers in newer ANSYS versions. Reading of mapping
is now supported. Reading of stresses and other ESL output in .rst files.

. better handling of CROD cases that correspond to bari. Support of rectangular DMIG
writing. Enhanced PBEAM,PROD translation.

° more consistent reading of steps the BuildCase command allows setting-up the case
relative to a desired step. Revision of the resolve command to enhance handling of node and
element sets in general cases (compatibility with assembly of part instances). Translation of
contact (for the *CONTACT PAIR command) to the contact module or SDT/NL, see section ,
is now supported for most classical rules. *Orientation properly translated into

. improved multiple files with INPUT cards. Detailed improvement of .AEL, .FRA, .MCT,
.STI,

For MATLAB compatibility see section |1.9.3].
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1.9.2 Detail by function

comgui

cinguj

feplot
feutil

fe_loa

fe_mat
fe_mpc

I

e_sens

major revision of image (ImWrite)), filename (ImFtitle)) and legend (def .Legend))

generation utilities.

Major extensions of the grouped object setting commands used by SDT for
figure and object formatting. Name generation extended and properly documented
in

Export of java tables to LaTeX/csv/text formats.

major rewrite of the JAVA based GUI part of the toolbox with many bug fixes. A
static javapath is now desired and fixed with sdtcheck(’PatchJavaPath’).
introduced -cpx command option for complex mode state-space support where hys-
teretic damping models can be used. This complements the alternative -loss2C.
now support restitution of enforced displacement.

significant extensions of colormaps. Full rewrite of |fecom AnimMoviel

extended support for non OpenFEM face numbering schemes. OptimDegen trans-
forms degenerate elements to their lower node number counterpart. Extended support
of silent mode with ; at end of command.

provides commands CombineModel and SubModel to support combination of models
or extraction of submodels with clean handling of Stack, Mat/Pro, Case entries.
more robust handling of hysteretic damping assembly for interpolated materials. In-
troduced [fe_case SetCurve|commands to easier handling of time/frequency varying
loads.

first order correction is now supported with CeigMethod=2.

support of inertial loading on partial model.

GenMass command generates table of generalized masses.

major rewrite of function and documentation to support newer data structures and
optimize performance.

improved support of DofLoad.

robustness of unit handling, extensions of material law interpolation.

FixDofBas2mpc supports transform of local basis FixDof to MPC entries.
DofSetMerge combines multiple DOFSet into one, which is the only case supported
by most solvers.

tdofTable handling of sensor definitions as tables has been further documented and
robustified.



fe_range

fe_simul

fe_time

fe_time
fe_mknl|

fe_stress
iico
id_rc
id_rm|

iimouse

setlinesl

significantly extend commands previously in fe def (’range’) for DOE handling.
extended support of damping and enforced input entries in direct frequency
response.

support for enforced displacement with DOFSet entries has been introduced.
significant extensions and performance enhancements for explicit solvers.

optimized support for node numbers above 2e9. Robustness and documentation ex-
tensions for

computation of Von Mises stress is now compiled.

significant extension of support for 2D plots (contour, image, ...). Robustness and
documentation improvements of multiple image generation [TmWrite}

major rewrite for R2014b compatibility, interactivity with java tables 1|comstr —17|).
Support of docking and datatip interactivity. Additional keyboard callbacks (press ?
in [iiplot|or [feplot).

enhanced support of error and quality indicators of identification quality.

robustness and GUI enhancements.

significant GUI rewrite in particular for table generation.

robustness enhancements for signal processing capabilities.

major extensions of |Legend|, |TickFc introduction of new

support for a database of commercial piezo patches has been introduced. Materials
have been added and properties corrected.

fixed compatibility issues with the Control Toolbox and Simulink. Improved warnings.
introduced new commands to display model and material properties in a easily
readable forms.

improved support of anisotropic materials and composite shell.

notable rewrite and fixed compatibility issues with the Control Toolbox and Simulink.
significant robustness enhancements. Improved TagList. Introduction of _find
command for file search.

improved compatibility with |comgui ob jSetl

ufreaduufwrithhproved compatibility LMS-Testlab and performance enhancements.

cbushlcelas

;

improved support for gyroscopic matrices and loss factor.

1.9.3 Notes by MATLAB release

e MATLAB 7.6 (2008a) to 8.5 (2015a). SDT & FEMLink 6.7 are developed for these versions of
MATLAB and are fully compatible with them.

e MATLAB 7.9 has known compatibility problems in its HDF library and should be avoided for
large FEM applications using
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e Earlier MATLAB releases are no longer supported.
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[2.6.1 FEup : for a clean measurement with multiple poles| . . . . . . .. 91
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An experimental modal analysis project can be decomposed in following steps

e before the test, preparation and design (see section )
e after data acquisition, import into the SDT (see section [2.2])
e navigation through data in the iiplot figure (see section )

e identification procedure :

initialize the pole list (see section )

setup the identification options (see section )

identify the pole residues and evaluate the identification quality (see section [2.5])
e optimize poles to improve the identification quality (see section )

handling of MIMO tests and other model transformations (output of identified models to state-
space, normal mode, ... formats, taking reciprocity into account, ...) (see section )
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Prepare test Load data
Section 2.7 > Measurement ¥ Section [2.2]

v

Navigate through data
Section 2]

v

List of poles
Section 2.3

v

Identification options
Section [2.4]
Optimize v
Section

Residue estimation
Section

v

Identification quality
Section [2.5.2)

v

Impose constraints

Section 2.8

Figure 2.1: Modal test protocol with links to corresponding sections

Further steps (test/analysis correlation, shape expansion, structural dynamics modification) are
discussed in chapter section [3].

2.1 iiplot figure tutorial

is the response viewer used by SDT. It is essential for the identification procedures but can
also be used to visualize FEM simulation results.

As detailed in section , identification problems should be solved using the standard commands
for identification provided in while running the interface for data visualization. To
perform an identification correctly, you need to have some familiarity with the interface and in
particular with the commands that let you modify what you display.



2.1.1 The main figure

For simple data viewing you can open anﬁgure using ci=iiplot (or ci=iiplot(2) to specify
a figure number). For identification routines you should use ci=idcom (standard datasets are then

used see section [2.2] ).

To familiarize yourself with the interface, run demosdt (’demogartidpro’). Which opens
the iiplot figure and the associated iiplot(2) properties figure whose tabs are detailed in the

following sections.

Property ) liiplot(2) E]@E]
. File Edit View RIS Deskiop ‘Window Help L'l
flgure ‘ - + Text Arrow Select'
certitffl model in g Double Arrow datasets
w g TextBox . L : . L~ .
. :I-rtisr} Rectangle g: gggggl 1; Hg:} 1;:‘2&' tO dlSpIay
Scanning /[ |t e K i A
FRF- = Pik.. o
ol Subcommands P w1 Tes)
ED“ o Current Axis (2) ¥ v 2 IdFtf M
% » { : Titopt 10106 ¥ 3:Ixh : ;
10k 1 | vPoleLine 411 ; :
i ; Scale ... » 5 ! IdMain , :
= U L1 6ildak : :
A —
E D~ '
ﬁmn il . . R
= 10 20 30 40 80 a0
Frequency[Hz] \

\

Axes and line context menus

Figure 2.2: Display figure of the iiplot interface.
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Toolbar

Toggles the display or not of the property figure.

Previous channel/deformation, see

Next channel/deformation.

Fixed zoom on FRF, see Note that the variable zoom (drag box)
is always active, see

Start cursor, see |iimouse Cursorl

Refresh the displayed axes.

No subplot. See [1,1].

2 subplots. See [2, 1].

Amplitude and phase subplots. See agpha.
switch lin/log scale for x axis. See

switch lin/log scale for y axis. See

switch lin/log scale for z axis. See

Show absolute value. See bs.

ih Show phase. See[iicom Showpha.

MEINNNOE = =+ 1 [

Y|

)

st Show real part. Seefiicom Showrea.
30H) Show imaginary part. See|iicom Showfima.
w3 Show real and imaginary part. See |iicom Showlr&i.

(. Show Nyquist diagram. See w vq.
Py Show unwrapped phase. See hu.

C Snapshot. See |iicom ImWrite|

Mouse operation and keyboard shortcuts

Mouse and keypress operations are handled by [iimouse|within[iiplot| [feplot] and [ii mac|figures.
For a list of active keys press 7 in the current figure.

Drag your mouse on the plot to select a region of interest and see how you directly zoom to this
region. Double click on the same plot to go back to the initial zoom. On some platforms the double
click is sensitive to speed and you may need to type the i key with the axis of interest active. An
axis becomes active when you click on it.

Open the ContextMenu associated with any axis (click anywhere in the axis using the right mouse



button), select Cursor, and see how you have a vertical cursor giving information about data in the
axis. To stop the cursor use a right click or press the c key. Note how the left click gives you detailed
information on the current point or the left click history. In you can for example use that
to measure distances.

Click on pole lines (vertical dotted lines) and FRF's and see how additional information on what you
just clicked on is given. You can hide the info area by clicking on it.

Context menus

The axes ContextMenu (click on the axis using the right mouse button) lets you select , set axes
title options, set pole line defaults, ...

o tracks mouse movements and displays information about pointed object. For ODS
cursor see ficom odsl

o chooses what to display.

e Compute... [MMIF,CMIF...] chooses what to compute and display. The iicom(’show
[MMIF,CMIF...]’) command line is similar. Details on what can be computed are given in
i mmifl

e Variables in current axis... chooses which variable to display, see
e iiplot properties, same as iicom(’pro’), opens the property figure.

e Scale...[x lin, x log...] chooses the axis scale as the. See[iicom x1in|or use

iimouse(’axisscale[xlin,xlog...]’) commands.

° chooses the title, axis and legend labels-format.

e [Poleline| pole line selection.
e Views... chooses the views, see |[iimouse view|

e colorbar shows the colorbar and is equivalent to cingui(’ColorBarMenu’) command line.

e Zoom reset is the same as the iimouse(’resetvie’) command line to reset the zoom.

e [setTines] calls the associated function.

The line ContextMenu lets you can set line type, width, color ...

The title/label ContextMenu lets you move, delete, edit ... the text
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After running through these steps, you should master the basics of the interface. To learn
more, you should take time to see which commands are available by reading the Reference sections

for (general list of commands for plot manipulations), (mouse and key press support
for SDT and non SDT figures), (standard plots derived from FRFs and test results that are

supported).

2.1.2 The curve stack

considers data sets in the following format

e Response datalrelated to [UFF58| format

e (Curves generated by SDT]

e [Shapes at DOFs|related to [UFF55| format

This data is stored in figures as a Stack field (a cell array with the first column giving
’curve’ type entries, the second giving a name for each dataset and the last containing the data,

see|stack_get|). To allow easier access to the data,[SDT handle|objects are used. Thus the following

calls are equivalent ways to get access to the data

ci=iicom(’curveload’,’gartid’);
iicom(ci,’pro’);iicom(ci,’CurTab Stack’); % show stack tab

% Normal use : the figure pointer stack

ci.Stack % show content of iiplot stack

ci.Stack{’Test’} 9 a copy of the same data, selected by name
ci.Stack{1,3} i the same by index

% Use regular expresion (’II.*’ here) for multiple match
ci=stack_rm(ci,’curve’,’#II1.%x’)

% If you really insist on low level calls

gf=sdtdef (°cf’); ' recover current sdth handle, number may vary

ri=get(gf,’userdata’); % object containing the data (same as ci)

s=ci.vfields.Stack.GetData % get a copy of the stack (cell array with
% type,name,data where data is stored)

s{1,3} % the first data set

% Alternative use (obsolete) : the XF stack pointer



XFil=iicom(ci,’curvexf’);
XF1(°Test’) % still the same dataset, indexed by name
XF2=XF1.GetData; % Copy the data from the figure to variable XF2

The ci.Stack handler allows regular expression based access, as for cf.Stack. The text then begins
by the # character.

—ioix

File Desktop ‘Window Help u
EPNE
StaCk]ChanneI] Axes] IDupt] Ident] F'nst—pru]
| Compute Select o
FunType general or unknown
Response data 312424
H axis Frequency Hz
¥N AXIS Acceleration mfs2
yd axis Excit. farce M -
I

Figure 2.3: Stack tab of the iiplot interface.

The graphical representation of the stack shown in figure lets you do a number of manipulations
witch are available trough the context menu of the list of datasets in the stack

e Compute gives access to data processing commands in You perform the analysis
from the command line with iicom(ci,’sum’,’Test’). The list of available post processing
functions is given by ii mmif list.

e Load lets you load more data with iicom(ci,’curveload-append’,’gartid’), replace the
current data with iicom(ci,’curveload’,’gartid’)

Display lets you display one or more selected dataset in the iiplot figure (see corresponding

command |[iicom ITx|).

Save lets you save one or more dataset (see corresponding command [iicom CurveSave]).

Join combines selected datasets that have comparable dimensions (see corresponding command
[iicom CurveJoin]).

e Cat concatenates selected datasets along time or frequency dimension (see corresponding com-
mand [iicom CurveCat|).
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e Remove removes selected dataset (see corresponding command |[iicom CurveRemovel).

e NewId opens a new figure with the selected dataset (see corresponding command
CurveNewtd).

2.1.3 Handling what you display, axes and channel tabs

lets you display multiple axes see Information about each axis is show in the

axes tab.

J iiplot(2) properties - |EI|5|
|

File Desktop indow  Help
B
Stack] Channel] Axes ]IDopt] Ident] Post-pro
FZ’ Show  abs
=1 label  Label & Unit

v label  Label & Unit

“>d_”' title Channel lahel
]

IdM i legend  in legend

I Alt Foleline Imag

Fet Refresh |

Figure 2.4: Axes tabs of the iiplot interface.

For example open the interface with the commands below and see a few thing you can do

ci=idcom;iicom(ci,’Curveload sdt_id’);
ci.Stack{’curve’,’IdFrf’}=ci.Stack{’Test’}; % copy dataset
ci.Stack{’IdFrf’}.xf=ci.Stack{’Test’}.xf*2; % double amplitude
iicom(’CurTab Axes’);

e Sub Subplots : Type iicom submagpha to display a standard magnitude/phase plot. Open the
ITIplot:sub commands menu and see that you could have achieved the same thing using this
pull-down menu. Note that using ci=iiplot(2); iicom(ci,’SubMagPha’) gives you control
on which figure the command applies to.
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e Show Type iicom(’;caxl;showmmi’) ; to display the MMIF in the lower plot. Go back to the
phase, by making axis 1 active (click on it) and selecting phase(w) in the axis type menu
(which is located just on the right of the current axis button).

e IIx select sets you want to display using iicom(’ ;showabs;chl’);
iicom(’iix only’,{’Test’,’IdFrf’}). You could also achieve the same thing using the
IIplot:Variables menu.

e Note that when you print the figure, you may want to use the
comgui(’ImWrite’,’FileName.ext’) command or -noui switch so that the GUI is not printed.
It is the same command as for feplot image printing (see |[iicom ImWrite).

2.1.4 Channel tab usage

Once you have selected the datasets to be displayed, you can use the channel tab to scan trough the
data. Major commands you might want to know

e use the ™ * to scan trough different transfer functions. Note that you can also use the + or
- keys when a drawing axis is active.

e Go the Channel tab of the property figure (open with iicom(’InitChannel’)) and select one
more than one channel in the list. In the figure, the >10 is used to illustrate that the tab
supports channel selection. For datasets with string labels use 10%*.

e Note that you can also select channels from the command line using iicom(’ch 1 57).
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4 idcom(3) Properties — O x
Eile Desktop Window Help  liplot ]
3 A 2 [2 H

Stack X! Ident/X| Channel X

- Test w I Out w

Out In
10,01 111,03| »
11,01 111,03
12,01 111,03
13,01 111,03
1401 111,03
15,01 111,03
16,01 111,03
17.01 111,03
1801 111,03
19.01 111,03
20,01 111,03 ¥

Figure 2.5: Channel tabs of the iiplot interface.

2.1.5 Handling displayed units and labels

ci=iicom(’curveload gartid’);
ci.Stack{’Test’}.yn.unit="N";
ci.Stack{’Test’}.yd.unit="M";
iicom sub

2.1.6 SDT 5 compatibility

With SDT 6, global variables are no longer used and supports display of curves in other
settings than identification.

If you have saved SDT 5 datasets into a .mat file, iicom(’CurveLoad FileName’) will place the data
into an SDT 6 stack properly. Otherwise for an operation similar to that of SDT 5, where you use
XF(1) .xf rather than the new ci.Stack{’Test’}.xf, you should start in its identification

mode and obtain a pointer XF (SDT handle|object) to the data sets (now stored in the figure itself)
as follows

>> ci=iicom(’curveid’) ;XF=iicom(ci,’curveXF’)
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XF (curve stack in figure 2) =

XF(1)
XF(2)
XF(3)
XF(4)
XF(5)
XF(6)

[.
L.
[.
C.
[.
L

B = 5 5 =

o

.po

0x0, xf 0x0] ’Test’ : response (general or unknown)

0x0, xf 0x0] ’IdFrf’ : response (general or unknown)
0x0, xf 0x0] ’IIxh’ : response (general or unknown)

0x0, xf 0x0] ’IIxi’ : response (general or unknown)

0x0, res 0x0] ’IdMain’ : shape data

0x0, res 0x0] ’IdAlt’ : shape data

The following table lists the global variables that were used in SDT 5 and the new procedure to
access those fields which should be defined directly.

XFdof

IDopt

ITw
IIxf

IIxe
IIxh
IIxi
IIpo

IIres

described DOFs at which the responses/shapes are defined, see .dof field for
response and shape data in the section, was a global variable pointed at
by the ci.Stack{’name’}.dof fields.

which contains options used by identification routines, see is now stored
in ci.IDopt.

was a global variable pointed at by the ci.Stack{’name’}.w fields.

(main data set) was a global variable pointed at by the ci.Stack{’Test’}.xf
fields.

(identified model) was a global wvariable pointed at by the
ci.Stack{’IdFrf’}.xf fields.

(alternate data set) was a global variable pointed at by the
ci.Stack{’IIxh’}.xf fields.

(alternate data set) was a global wvariable pointed at by the
ci.Stack{’IIxi’}.xf fields.

(main pole set) was a global variable pointed at by the ci.Stack{’IdMain’}.po
fields.

(main residue set) was a global variable pointed at by the
ci.Stack{’IdMain’}.res fields.
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IIpol (alternate pole set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.po fields.

IIresl (alternate residue set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.res fields.

XF was a global variable pointed holding pointers to data sets (it was called a

database wrapper). The local pointer variable XF associated with a given
figure can be found using CurrentFig=2;ci=iiplot(CurrentFig);
XF=iicom(ci,’curveXF’).

The normalized datasets for use with are generated using
ci=idcom;XF=iicom(ci,’curvexf’). They contain four response datasets
(XF(’Test’) to XF(’IdFrf’)) and two shape datasets (XF(’IdMain’) and
XF(’IdAlt?)).

2.1.7 iiplot for signal processing
iiplot figure lets you perform standard signal processing operations (FFT, MMIF, filtering...)

directly from the GUI. Opening iiplot properties figure, they are accessible trough the contextual
menu compute (right click on the curve list in the Stack tab). Once an operation has been performed,
its parameters can be edited in the GUI, and it can be recomputed using the Recompute button.

Following example illustrates some signal processing commands.

[mdl,def]=fe_time(’demobariO-run’); % build mdl and perform time computation
cf=feplot(2); cf.model=mdl; cf.def=def;

ci=iiplot(3);
fecom(cf,’CursorOnIiplot’) % display deformations in iiplot

% all following operations can be performed directly in the GUI:

% see the list of curves contained in iiplot figure, Stack tab:

iicom(ci,’pro’);iicom(ci,’curtab Stack’);

% compute FFT of deformations. Name of entry ’feplot(2)_def(1)’

ename=ci.Stack(:,2); ename=ename{strncmp(ename,’feplot’,5)};

ii_mmif (’FFT’,ci,ename) J compute

fname=sprintf (’fft(%s)’,ename);

iicom(ci, ’curtab Stack’,fname); ’ show FFT options that are editable
% edit options & Recompute:

ci.Stack{fname}.Set={’fmax’,50};

iicom(ci,’curtab Stack’,fname,’Recompute’);
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% filter and display (the bandpass removes a lot of transient)
ii_mmif (°BandPass -fmin 40 -fmax 50°’,ci,ename) % compute
fname=sprintf (’bandpass (%s)’,ename) ;
ci.Stack{fname}.Set={’fmin’,10, fmax’,20};

iicom(ci,’curtab Stack’,fname,’Recompute’);
iicom(ci,’iix’,{ename,fname});

|4 iiplot(3) properties - m] %
File Desktop Window Help llplot ~
EENEN=N |

Slack] Channeﬂ Axes]

Tabinfo | cury
fepiot(2) def(1)

Dﬂndp’ﬂss('ep\nl Command
trmin
tmax
fmin
fmax

nostat

zp
Recompule Recompute

Figure 2.6: GUI for FFT computation

2.1.8 iiplot FAQ

This section lists various questions that were not answered elsewhere.

e How do I display a channel with an other channel in abscissa?
The low level call ci.ua.ob(1,11)=channel; defines the channel number channel of the
displayed curve as the abscissa of other channels.
ci.ua.ob(1,11)=3; J, define channel 3 as abscissa
iiplot; % display the changes
set(ci.ga,’XLim’, [0 1e-3]1); % redefine axis bounds

e Channel selection in multi-dimensional arrays

% sdtweb(’demosdt.m#DemoGartteCurve’) % FRF with 2 damping levels
ci=iiplot(demosdt(’demogarttecurve’))

ci.Stack{’New’}

iicom(ci,’ChAllzeta’)
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2 Modal test tutorial

2.2 Identification of modal properties (Id dock)

Identification is the process of estimating a parametric model (poles and modeshapes) that accurately
represents measured data. The identification process is typically performed using the dock shown
below opened with iicom(’dockId’).

TS LTI FrL T OECEY 1)

2.2.1 Opening and description of used data
The following procedure loads data from a .unv file but other way to open and load data are available.

e Open an empty dock iicom(’dockid’) and load data from the interface by selecting files
(see below). A list of acquisition software from which data have been successfully loaded is
described in section 2.2.3] .

e Reopen a dock previously saved in SDT format (.mat).

— For saving : in figure, use File:Save, chose the data that need to be saved (all
selected by default) and then chose the saving file name.

— For reloading: execute the command iicom(’curveLoad File.mat’)

e Load data from variables in the workspace. It is then possible to load data from files directly
into variables (see section , which is useful if data customization is required) or to deal
with user-built transfers (see section section [2.2.4] ) and finally pass the result to Id dock.

% Unv with wire-frame, transfer and poles

% Open empty dockid get pointer to feplot (cf) and iiplot (ci)
[ci,cf]l=iicom(’dockid’);

% Build gartid.unv file the first time, then provide file name
fname=demosdt (’build gartid.unv’);
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% Data are stored into a variable to help you build custom loading procedure
UFS=ufread(fname) ;

wire=UFS(1); % Test wireframe

XF=UFS(2); % Transfers

ID=UFS(3); % List of modes

cf.mdl=wire; ’ Store the wireframe in the feplot figure

% Put transfers to iiplot figure (Transfers named test are the ones
ci.Stack{’curve’,’Test’}=XF; concerned by the current identification)
ci.Stack{’curve’,’IdMain’}=ID; % Store the poles in the iiplot figure
iicom(’iix:TestOnly’); % Equivalent to : idcom figure, tab Stack,

% right click on Test and select ’Display selected data’

When manual assignation is performed, do not forget to click on [#] to refresh the tables (for
instance the pole list in idcom). Note that to perform identification, only the transfers are
needed: the wireframe allows visualizing the identified mode shapes and the list of poles is
helpful if previous identification has been performed.

On top of the Test and IdMain data discussed above, other useful data used throughout the iden-
tification process and stored in the iiplot are

e Test contains measured frequency response functions. See section [2.2.3] ways to initialize this
data set.

e IdFrf contains the synthesis of transfers associated with given set of transfers (shown in red
in the figure above).

e IdAlt contains the alternate set of modes (poles and residues). These are listed on the left list
of the Ident tab below.

e IdMain contains the main set of modes (poles and residues). These are listed on the right list
of the Ident tab.

[ci,cf]l=gartid; % Open dockid with stored data and performs identification
ci.Stack % Display list of stored data in the Stack of iiplot

Test=ci.Stack{’curve’,’Test’}; % Retrieve data from iiplot
IdFrf=ci.Stack{’curve’,’IdFrf’};
IdMain=ci.Stack{’curve’,’IdMain’};
IdAlt=ci.Stack{’curve’,’IdAlt’};

wire=cf.mdl.GetData; 7 GetData is used to retrieve a copy.
% Otherwise all modifications are propagated to feplot
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2 Modal test tutorial

Here is a tutorial for interactive data loading in DockId

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the adress https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the the folder SDTPath/sdtdemos.

1. [» Execute the command iicom(’dockid’) to open an empty dock.

Eile Edit VYiew llplot |nset Debug Desktop Window Help o

B -+ HARDOSENESHMH™ ™0 & HODEO
| idcom(2) Properties | iiplot{2)
Stack X Ident X Commands sent to idcom,icom
‘ \\:IAItl empty IdMaml empty
1F
->
0.8
‘-
06
1 AddPales e 0 ~  BandToPole| ~ 0.4
st Stab Autold
& Dopt w0 wmo | [0:0] (0. ~ 02
- Estimate est estLocalPole. Qual
E!-Opt\m\ze 0 I 1 1 I I 1 1 L L |
. Eopt eopt local ~ | eoptSeg | ., o 0.1 02 0.3 0.4 05 06 07 0.8 09 1
| feplot(3,'cax1?) | feplot(3,'mdl') |
1r
0.8
06 [
No element selection o plot 0.4
0.2
0 | L L | | L L | | ]
o 0.1 02 0.3 0.4 05 06 07 0.8 09 1
Dataset 1 is empty

The dock is divided in three parts:
e At right, the iiplot figure where are displayed all curves (measured transfers, synthesized
transfers, mode indicators...)

e At the top left hand corner, the idcom figure which is used to interact with the data in
iiplot, especially here using the Ident tab to perform the identification process

e At the bottom left hand corner, the feplot figure where the wireframe is displayed. It
lets you animate the identified modeshapes. The feplot(’mdl’) is accessible behind and
lets you visualize the information about the wireframe.
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2. [» The loading of .unv files can be realized from iiplot or feplot. Activate for instance the
idcom figure and select File:ImportData. . .

Here are the 4 possible menus in this order: iiplot, idcom, feplot and feplot(’mdl’).

Mew

Open...

Close

Load curve from file ...
Save curves ...
Save

Save As...
Generate Code...
Import Data...
Save Workspace
Export Setup...
Print Preview...
Print...

Exit MATLAB

Ctrl+0
Ctrl+W

Ctrl+5

Ctrl+P
Ctrl+Q

New >
Save Model
Export Model To...
MNew model ...
Close Ctrl+ W
Import data Saneiass
Close ChrleW Generate Code..,
Import Data...
Save Ctrl+5
Save Workspace
Generate Code...
Export Setup...
[ Print Preview...
Save Workspace Print.. Ctrl+P
Export Setup... Exit MATLAB Ctrl+Q
Exit MATLAB Ctrl+Q Load Model in... »

New >
Mew maodel Ctrl+0
Close Ctrl+W
Save Ctrl+S
Save As..

Generate Code...

Import Data...

Save Workspace
Preferences...

Export Setup...

Print Preview...

Ctrl+P
Ctrl+Q

Print...
Exit MATLAE

In the opening window, select the file to load. For this tutorial, the file is located at SDT-
Path/sdtdemos/gartid.unv.

Once selected, the Unv tab is displayed in the idcom or the feplot(’mdl’) figure (depending
the chosen menu for ImportData.

Stack /X Ident/X| Unv[X

Load Type MName Description

[ maodel GEN| [.Mode 24x...

[ response (gener... GEMN(1)| [.w  (UFF) 3124...

[ shape data GEN(2)|[.po 1242, .
Import in Dockld Import

It shows that three types of data are present in the file: a wireframe, transfers and identified
mode shapes. Select the three check boxes to load everything.

3. [» Click on Import (or Import in DockId which is used to build dockId if the loading is
performed in a feplot or an iiplot figure outside a dockid).
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File Debug Desktop Window Help liplot ]
PEIENE N | HOAHDO
[ idcom(@ properties | | iiploti2) IdFef 31 |
Stack %/ Ident X Unv X Commands sent to idcom,icom
[ A empty 1] 6,505 0946 % ~
2/ 8984 2077 %
-> 3| 16,392 1,235 %|
‘- 4 33496 0,742 %)
3| 33,992 1,196 %|
6 36,129 0,820 %/,
E-AddPoles [ e | .m ~ |BandToPole| ~
Lt z
@ Dopt Cwo [ wme | 3tz o g
Estimate | et |lestlocalPole|| Qual | E
=-Optimize :t‘j
Eopt | eopt | local ~ | eoptSeq | v -

| feplot(3'cax1) | feplot@'mdl) |

>

Dataset 1 is empty

3

phase (w) [deg]
=)

g

Frequency [Hz]

The data are loaded: transfers are shown in the iiplot figure, the wireframe in the feplot
figure and the list of poles in the tab Ident of the idcom figure.

4. [»» Once an identification is performed, click on Save in the idcom figure.
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Stack X Ident!X]  Uny[X

IdAIt| empty 1 6,505 0,946 % ~
2 8,984) 2,077 %
3 16,392 1,233 %
. 4 33,496 0,742 %
50 33,992 1,196 %
i 6 367120 0,820 %
7| 49,444 2217 %
8 50,202) 0,483 %
9 55,622 0,107 % ,
=-AddPeles e .01 ~ | BandToPole
" Lscf Stab Autold
- |Dopt wi wmo [1:3124] ... ~
[-Estimate est estlLocalPole Cual
=-Optimize
é----Eopt eopt local ~ eoptSeq
E----Eup eup local ~
--Analyze SVDCur 0oDs
(-Save save

A windows pops-up to ask what data must be saved. Save all (by default) to set all the data
and info on the dockid in the saving file.

Close the dock. A pop-up should appear to ask if you really want to close iiplot (this is to
ensure that no data is lost if no saving has been performed), click on Close without saving.

5. [ To reload the saved dock, two possibilities are available:

e Execute the command iicom(’curveload filename’)

e Open an empty iiplot figure and load the saved file with File:Import Data. ..

2.2.2 General process

The proposed identification process is outlined below. The main steps of the methodology are

e Initial pole estimates are placed in IdAlt using advanced pole picking, LSCF (see section
) or any other algorithm outside SDT.

e A user validated list of poles is kept in IdMain. The arrows between the two list in the interface
(which correspond to the @ and [er| commands) can be used to move poles between the two
lists: add missed poles, remove computational or undesired poles .

59
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e Shapes (pole/residue models] [residual terms| [modeshapes derived from residues) are then es-
timated for each pole given in IdMain. Several strategies exist and are more deeply explained

at section

— Broad band estimation on the whole frequency band : command/button
— Narrow band estimation on the selected band : [est[local command/button
— Iterative local estimation around each pole : ocalpole command /button

e Optimizing poles (and residues) of the current model depending on the quality obtained by the
previous passes. As for the estimation of shapes, there three strategies for the optimization:

— Broad band update : for high number of poles and for up to 2-3 poles
— Narrow band update on the selected band: [eupflocal and [eoptflocal
— Tterative local updates around each pole: [eoptfeq
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Section

’e’ Advanced pole picking

P ’ea’ addl

her al
LSCF Ot. er algo
providing poles

v v

Alternate set of poles
ci.Stack{’IdAlt’}

T ’er’ removed—

Main set of poles

ci.Stack{’IdMain’}

Section 24

Identification options:

e Freq band : ’wmin’,’wmO’...

e Model type

e Data type : [disp, vel, acc]/Force
e Collocated measurements

Section 2.6

Section 2.5]

NLLS Model tuning :

e broadband :’eup’,’eopt’,’ eup’

e narrowband :’wmo’+’eoptlocal’
e local bands :’eupSeq’,’eoptSeq’

Remove channel(s)

LS estimate of residues
’est’,’estlocal’,’estlocalpole’
give
ci.Stack{’IdMain’}
ci.Stack{’IdFRF’}

v

Visual and assisted

inspection using :

Needs tuning

e The iiplot interface
(FRF, MMIF, Sum...)

e The quality table

Section 228

Constraints on
ci.Stack{’IdMain’}
See next section

Numerical
mode

Figure 2.7: Modal identification process with links to corresponding sections

61



2 Modal test tutorial
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This process is handled through the Ident tab opened with iicom(’InitIdent’) or with the inter-
face by clicking on Tab : Ident from the iiplot or idcom figure.

Stack (X Ident|X

| Al empty 1 6,505 0,946 %
2| 8,984 2,077 %
3 16,392 1,235 %
4 33,496 0,742 %
5 33,992 1,196 %
B 36,129 0,820 %
= T 45,444 2217 %
e 8 50,202 0,483 %
g 55,622 0,107 %
10 64,155 1,217 %
E-AddPoles e 01 ~ | BandTcPole
oLk Stab Autold
E-Dopt wi wmo [1:3124] (4.... ~
F|t Pos Cphe ~ 0O none w
g""data 0 nene v
E""Ia"O ns 24 nal Met used o 4
El-Estimate est estlocalPole Qual
estLocal v
E-Optimize
Eo pt eopt local w eoptieq
E-"-Eu[;l eup local w
-Analyze SVDCur oDs
E-Save save
“-SaveCh

The main steps, associated with level 1 lines in the GUI tree are the topics of specific sections of the
documentation:

e |AddPoles|: use an initial algorithm to estimate poles (single pole estimator or selection in a
stabilization diagram LSCF).

e [[Dopt|: select frequency range and possibly define properties of transfers (displacement, ve-
locity, acceleration, MIMO,...)

¢ [Eistimate shapes| using a frequency domain output error method that builds a model in the
pole residue form (see section ). Theoretical details about the underlying algorithm are
given in section . Section [2.5.3] addresses its typical shortcomings.




o using one of the non-linear optimization algorithms.
o the output to a format dealing with MIMO constraints, reciprocity, ...

The gartid script gives real data and an identification result for the GARTEUR example. The
demo_id script analyses a simple identification example.

2.2.3 Importing FRF data

SDT stores transfer functions in the [Response data|(.w,.xf fields) or[curve| (.X, .Y fields) formats.
The following table gives a partial list of systems with which the SDT has been successfully interfaced.

Vendor
Bruel & Kjaer

LMS
Polytec
Dactron
MathWorks

MTS
Spectral Dynamics

Procedure used

Export data from Pulse to the UFF and read into SDT With or use
the Bridge To Matlab software and pulse2sdt.

Export data from LMS CADA-X to UFF or MATLAB format.

Install the Polytec File Access library on your computer and use the
function to import .svd files directly. Alternatively, export data
from PSV software to UFF.

Export data from RT-Pro software to the UFF. Use the Active-X API to
drive the Photon from MATLAB see photon.

Use Data Acquisition and Signal Processing toolboxes to estimate FRFs
and create a script to fill in SDT information (see sectionm ).

Export data from IDEAS-Pro software to UFF.

Create a Matlab script to format data from SigLab to SDT format.

o Universal files are easiest if generated by your acquisition system. Writing of an import script
defining fields used by SDT is also fairly simple and described below (you can then use
to generate universal files for export).

The ufread| and ufwrite] functions allow conversions between the xf format and files in the
Universal File Format which is supported by most measurement systems. A typical call would

be

% generate gartid.unv (or retrieve file name if already generated)
fname=demosdt (*build gartid.unv’);

UFS=ufread(fname); Y% read the unv file

UFS % This command display in the command window the content of the file
xf=UFS(2); % Read the transfers in the file and store in the variable xf
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%% Do everything needed with the data for customization if needed %%%
% For instance extract channels 1:4

xf=fe_def (’SubDofInd’ ,xf,1:4)

% Then pass to iiplot for view and ID purposes

ci=idcom; % For identification purposes open IDCOM

% Store transfers in ’Test’ which are transfers to be identified
ci.Stack{’curve’,’Test’ }=xf;

% To only view data in figure(11) the following would be sufficient
cj=iiplot(11); % open an iiplot in figure 11
iiplot(cj,UFS(1)); 7% show UFS(1) there

where you read the database wrapper UFS (see[xfopt)), initialize the[idcon]figure, assign dataset
2 of UFS to dataset "Test’ 1 of ci (assuming that dataset two represents frequency response
functions of interest).

Note that some acquisition systems write many universal files for a set of measurements (one

file per channel). This is supported by with a stared file name
UFS=ufread(’FileRoot*.unv’);

Polytec files need many options to extract data (Time/Transfers, Estimator H1/H2, Veloc-
ity /Force...). Please read the dedicated documentation to adapt the example below
to your needs. Note that the code below needs Polytec File Access to be installed.

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));
% Provide a cell array with all readable measured data
list=polytec(’ReadlList’,fname);

display(list);

% Extract the transfer function Vib/Refl

% with the estimator H1 Displacement/Voltage

RO=struct (’pointdomain’,’FFT’,’channel’,’Vib & Refl’,...
’signal’,’H1 Displacement / Voltage’);
XF=polytec(’ReadSignal’,fname,R0);

% alternative call using one row of the cell array "list"
XF=polytec(’ReadSignal’,fname,struct(’list’,{1ist(20,:)}));

To avoid the manual filling of the reading options, it is also possible to simply load data from
the interface : follow the tutorial in section section [2.2.1] ) but select the .svd file instead of
the .unv file and do right-click+Read selected on the line you want to read. Loaded transfers
can then be stored to variables with the command ci=iiplot;xf=ci.Stack{’Test’};



2.2.4 Write a script to build a transfer structure

When writing your own script to transcript data to format, you must have a MATLAB
structure composed at minimum of the fields

e .w : a column vector of frequencies

e .xf : a matrix of measured frequency responses (one row per frequency, one column per
measurement channel).

Other fields may be required to specify the type of data and the type of model to use for identification.
Two main optional fields are presented here:

e .dof field can be used to specify the meaning of each transfer (input and output DOF).
This field should be set for title/legend generation (this is a label).

For correct display of shapes in[feplot] the .dof may be a direct specification of direction
in simple cases where the sensors are really oriented in global axes, but in general is just a
label for the sensor orientation map stored in a field. See section for details
on geometry declaration.

In the example below one considers a MIMO test with 2 inputs and 4 outputs stored as columns
of field .xf with the rows corresponding to frequencies stored in field .w. You script will look
like

ci=idcom;
[XF1,cf]=demosdt (’demo2bay xf’);’% sample data and feplot pointer
out_dof=[3:6]+.02’; % output dofs for 4 sensors in y direction
in_dof=[6.02 3.01]; % input dofs for two shakers at nodes 1 and 10
out_dof=out_dof (:)*ones(1,length(in_dof));
in_dof=ones(length(out_dof),1)*in_dof(:)’;
XFil=struct(C’w’ ,XFl.w, ... % frequencies in Hz

'xf’ ,XF1.xf, ... ’, responses (size Nw x (40))

’dof’, [out_dof(:) in_dof(:)]);
XFi1=xfopt (’check’,XF1);
ci.Stack{’curve’,’Test’ }=XF1; % sets data
iicom(ci, ’submagpha’); % display
ci.Stack{’Test’}.idopt % field now points to ci.IDopt
ci.IDopt.nsna=size(out_dof,1); % Possibly correct number of outputs
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ci.IDopt.recip="mimo’;ci.IDopt % Set reciprocity to mimo

cf.def=ci.Stack{’Test’}; fecom(’ch35’); % frequency of first mode

You can check these values in the iicom(’InitChannel’) tab.

e .idopt field should also be filled for correct identification using [id rc|. For the main
data set called Test the .idopt field is that of the figure which is more easily accessed from
ci.IDopt. These correspond to the IDopt part of the Ident tab (see section ). You can
also edit these values in a script. For correct identification, you should set

ci=demosdt (’demogartid’);
ci.IDopt.Residual=’3";
ci.IDopt.DataType="Acc’;
ci.IDopt.Absci="Hz’;

ci.IDopt.PoleU="Hz’;

iicom(’wmin 6 40°) % sets ci.IDopt.Selected
ci.IDopt.Fit="Complex’;

ci.IDopt 7% display current options

For correct transformations using you should also verify ci.IDopt.NSNA (number of
sensors/actuators), ci.IDopt.Reciprocity and ci.IDopt.Collocated.

For correct labels using you should set the abscissa, and ordinate numerator/denominator
types in the data base wrapper. You can edit these values using the iiplot properties:channel
tab. A typical script would declare frequencies, acceleration, and force using (see list with xfopt
_datatype)

UFS(2) .x="Freq’;UFS(2) .yn="Acc’;UFS(2) .yd="Load’ ;UFS(2) .info

2.2.5 Data acquisition

The SDT does not intend to support the acquisition of test data since tight integration of acquisition
hardware and software is mandatory. A number of signal processing tools are gradually being
introduced in [iiplot| (see [ii_mmif FFT|or [fe_curve hih2)). But the current intent is not to use
SDT as an acquisition driver. The following example generates transfers from time domain data

frame=fe_curve(’Testacq’); % 3 DOF system response

% Time vector in .X field, measurements in .Y columns

frf=fe_curve(’hlh2 1’°,frame); J compute FRF
ci=iicom(’Curveid’);iicom(’curveinit’,’Test’,struct(’w’,frf.X, ’xf’,frf.H1))
iicom(’SubMagPha’) ;

You can find theoretical information on data acquisition for modal analysis in Refs. [2][3][4][5][6].



2.3 Pole initialization (IdAlt and IdMain filling)

- Analyze SVDCur 0oDs

The first step of the model identification (see the whole process at section section m ) is to build
an initial list of poles. This list can be provided from various ways:

e Using an external algorithm. The list of poles is then manually imported (section [2.3.1])
e Using the LSCF algorithm (section [2.3.2])

e By iteratively adding poles using a single pole estimator (section m)

In the GUI, algorithms linked to the pole initialization are grouped under AddPoles :

e ¢ + .01 : Perform single pole estimation around a given frequency with damping of the order

of 1%. (section )

e BandToPole : Sequential single pole estimation by band (to be implemented in further release

section )

e Stab : Open the tab associated to the LSCF algorithm to build a stabilization diagram and
extract poles. The button AutoId opens this tab and automatically performs a pole extraction
with default values of the algorithm. (section [2.3.2])

2.3.1 External pole estimation

The iteratively refined model is fully characterized by its poles (and the measured data). The
initialization of the model optimization process can thus easily be performed from any external
modal identification algorithm.

If the external software or script used to perform the identification is able to save the result in the
universal file format, simply load it like described in section section [2.2.1] .

Else, after storing the measured transfers as a curve named Test in a iiplot figure (see section m
), add poles with the command

ci.Stack{’IdMain’}.po =[...
1.1298e+02  1.0009e-02
1.6974e+02  1.2615e-02
2.3190e+02  8.9411e-03];
% ci is the pointer to the iiplot figure containing the Test curve
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where the array contains as many lines as poles : the first column provides the pole frequencies in
Hz and the second one the pole dampings.

With the list of poles and the measured transfers, you have all you need to recreate an identified
model (even if you delete the current one, see section section ) but it also lets you refine the
model by adding the line corresponding to a pole that you might have omitted.

2.3.2 LSCF

The LSCF algorithm is based a rational fraction description of the transfers. The interest of this
algorithm is that polynomials are expressed on the base of the z transform which deeply improves
the numerical conditioning (often problematic for high order models in the rational fraction form).
Moreover, classical stabilization diagram resulting from the identification at various model orders is
often very ”clean”: numerical modes which either compensate noise or residual terms have negative
damping and or thus easily removed from the diagram.

The following tutorial describes how to initialize the poles using the LSCF algorithm.

1. [» Execute the command iicom(’dockid’) to open an empty dock and load the wireframe and
the transfers contained in the file SDTPath/sdtdemos/gartid.unv (Do not load the identification
result because it will be performed in the following). See section for the data loading
procedure, or just click on Run in the html version of the documentation.
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2. [» In the tab Ident, click on the button Stab to open the Tab StabD which allows interaction
with the stabilization diagram built with the LSCF algorithm.

|. idcom(2) properties

Stack X Ident®X Channel (X Unv[X StabD X
[=-Generate Run

~arder 100.0

~-norder 50.0

~fmin 4,0039

~frnax 64.99983759999999

~band 1000.0
=-Display Display

~Ftol 0.1

- Dtol 10.0

- AutoldMain Renew
~DispMode StabDiag Only w
=-CurPele 0.0

i CurLocal Estirnate

The button AutoId open this StabD tab and directly performs diagram building and pole
extraction with default values of the algorithm. It is often useful for a quick evaluation.
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3. [» The StabD tab contains options to build the stabilization diagram in the sub-list under

Generate :

e order : Maximum order of the model. The order of the model equals the number of poles
used to fit the measured data. It is often necessary to select an order significantly higher
than the expected number of physical poles in the band because the identification results
in many numerical poles which compensate out-of-band modes and noise. Selecting at
least ten times the number of expected poles often gives good results according to our
experiment.

e norder : Minimum order to start the stabilization diagram (low model orders often show
very few stabilized poles)

e fmin : Minimum frequency defining the beginning of the band of interest
e fmax : Maximum frequency defining the end of the band of interest

e band : Sequential iteration can be performed by band of the specified frequency width.
The interest is that in presence of many modes, it is more efficient to perform several
identifications by band rather than increasing the model order.

The building of a stabilization diagram with a maximum order of 100 is not very costly and
should be used for most applications. We advise then to estimate the total number of poles in
the whole band of interest (fmax-fmin), to divide this total bandwidth by this number and to
multiply the result by 5 in order to find the band width which contains in average 5 expected
modes (20 times less than the maximum model order).

In our test case, we attempt to find 12 modes in a total bandwidth of 60Hz) : set the band
parameter to 60/12*5=25 Hz.

. [» Click on Generate to build the stabilization diagramm.

In the diagram, the status of the poles are marked by

e A red circle when a new poles with positive damping is found
e A yellow triangle when a consecutive poles are stable in frequency or damping
e A blue cross when consecutive poles are stable in frequency and damping for since at least

5 consecutive orders

Frequency and damping stability are defined by the parameters Ftol and Dtol under the
sub-list Display. If relative frequency or damping of poles from consecutive model orders are
below the parameter values (in %), they are considered stable.

In presence of very clean measurements of a very strictly linear system, these values could be
more restrictive. In the opposite, they should be increase for noisier data and/or in presence



of small non-linearities. When the values of Ftol and Dtol are modified, click on Display to
refresh the diagram.

To improve the analysis of the stabilization diagram, mode estimators can be displayed on
top of it : the list of all available mode estimators at the right of DispMode (see for
details)

The stabilization diagram displayed with the logSumI mode estimator leads to this picture.
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5. [» To automatically extract all stabilized poles (with a blue cross at the last model order),
click on Renew at the line AutoIdMain. The button specifies "Renew” because all current poles
in the fmin - fmax band will be deleted and replaced by the extracted ones from the diagram.

The extracted poles are displayed at the right table of the tab Ident. On the transfers, pole
locations are specified by the vertical lines.
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6. [ Back to the stabilization diagram, two columns are started but not stabilized around 12Hz
and 50Hz. For the column at 12Hz, the logSuml indicator shows almost no resonance. For the
column at 50Hz, the resonance is well visible but more damped than the close mode.

To evaluate the pertinence of the poles despite that they do not fully satisfy the stabilization

criteria, click on the icon "-E_ and select the last order of the column.

In the StabD tab, click on Estimate at the line CurLocal.

This action performs a local

estimation with the selected pole around its frequency. The channel presenting the highest
contribution for this mode is automatically selected and the synthesized transfer is superposed
to the measurement.
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The synthesized transfer does not exactly fit the measurements (which is very noisy around
this frequency) but is enough representative to be selected as initial pole prior to optimization.

7. [ The pole used to perform the local estimation is stored in the left table of the tab Ident
: the list of the alternate poles. Because it is representative enough to describe the mode, it
can be added to the list of main poles (the right table) by clicking on the arrow.

Do the same for the not stabilized column around 12Hz. The result is much more doubtful
because the mode is almost not visible and the measurement very noisy. More over the local
estimation does not fit very well. Nevertheless, add this pole to the main list: we will analyze
its pertinence in the following using Quality criteria and trying to optimize it.

Finally, the mode estimator on top of the stabilization diagram shows that a mode at the right of
the frequency band is probably there but not identified by the LSCF algorithm. This case can be
handled by manually adding a pole using the single pole estimator.
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2.3.3 Single pole estimate

Because getting an initial estimate of the poles of the model is the often tedious, algorithms like
LSCF or other broadband algorithms are very helpful to quickly extract most of the poles: dynamic
responses of structures typically show lightly damped resonances which are most of the time well
detected. Nevertheless, using such algorithm often leads to two issues that need to be handled:

e The poles from some modes visible in the transfer have not been extracted

e Some extracted poles do not correspond to physical modes

To deal with missing poles, the easiest way to enrich the initial estimate of the poles is to use a
narrow band single pole estimation near considered resonances of the response or minima of the

Multivariate Mode Indicator function (use i and see for a full list of mode

indicator functions).

The command (based on a call to the function) lets you to indicate a frequency

(with the mouse or by giving a frequency value) and seeks a single pole narrow band model near this
frequency (the pole is stored in ci.Stack{’IdAlt’}. Once the estimate found, the drawing
axes are updated to overlay ci.Stack{’Test’} (the measured transfers) and ci.Stack{’IdFrf’}
(the narrow band transfer synthesis).

Channel 1

-
(=]
o

data
- == Narrowband model

Amplitude (m/N)

a0 100 120 140 160 180 200 220
Frequency (Hz)

Figure 2.8: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the information
displayed by

LinlS: 1.563e-11, LogLS 8.974e-05, nw 10
mean(relE) 0.00, scatter 0.00
Found pole at 1.1299e+02  9.9994e-03

which indicates the linear and quadratic costs in the narrow frequency band used to find the pole,
the number of points in the band, the mean relative error (norm of difference between test and model



over norm of response which should be below 0.1), and the level of scatter (norm of real part over
norm of residues, which should be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in your current model, you can add the
estimated pole (add poles in ci.Stack{’IdAlt’} to those in ci.Stack{’IdMain’}) using the
@ command (or the associated button : arrow pointing to the right). If the fit is not appropriate
you can change the number of selected points/bandwidth and/or the central frequency.

Remark : In the interface or using command, an initial guess of the damping value is
used to search for the local mode. The algorithm sometimes fails if this value is too far from the
real damping.

In rare cases where the local pole estimate does not give appropriate results you can add a pole by
just indicating its frequency (f command) or you can use the polynomial , direct system
parameter , or any other identification algorithm to find your poles. You can also consider
the command which uses the MMIF to seek poles that are present in your data but not
in ci.Stack{’IdMain’}.

To deal with cases where you have added too many poles to your current model, use the
(or the associated button : arrow pointing to the left) command to remove certain poles.

This phase of the identification relies heavily on user involvement. You are expected to visualize the
different FRFs (use the +/- buttons/keys), check different frequency bands (zoom with the mouse
and use w commands), use Bode, Nyquist, MMIF, etc. (see commands). The
graphical user interface was designed to help you in this process and you should learn how
to use it (you can get started in section [2.1]).

gartid % Open interface with gartid demo
idcom(’e .1 67)

%idcom(’Est 0.1 6.0000); % does click
%LinLS: 2.110e+02, LogLS Inf, nw 63
% mean(relE) 0.03, scatter 0.16 : good
%Found pole at 6.4901e+00  8.7036e-03

Let’s go back to the previous tutorial to add the missing pole at the end of the frequency band.

If you have not performed previous tutorial (or if you closed everything at the end), click on [» in
the HTML version of the documentation to get ready for the following.

8. [ Click on the button e in the tab Ident. Then click approximatively at the location of
the resonance to start the single estimation algorithm at that frequency. Please note that,
especially in presence of very lightly damped structure, it is sometimes necessary to edit the
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value of the expected damping in the list on the right of the button e for the algorithm to find
the correct pole.

| iiplot(2) |dFrf | Figure 1: StabD |
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The fit is correct at the resonance: add the pole to the main list by clicking on the arrow — >
2.3.4 Band to pole estimate

A procedure allowing to add several poles by dragging the mouse to select a band for the single pole
estimator will be implemented in further release. Currently the procedure only takes the maximum
of the band and does not estimate damping.

2.3.5 Direct system parameter identification algorithm

(Obsolete) A class of identification algorithms makes a direct use of the second order parameteri-



zation. Although the general methodology introduced in previous sections was shown to be more
efficient in general, the use of such algorithms may still be interesting for first-cut analyses. A major
drawback of second order algorithms is that they fail to consider residual terms.

The algorithm proposed in is derived from the direct system parameter identification algo-
rithm introduced in Ref. [7]. Constraining the model to have the second-order form
[~w?I +iwCr + Kr] {p(w)} = [br] {u(w)}
{y(@)} = [er[{p(w)}
it clearly appears that for known [er], {yr}, {ur} the system matrices [Cr], [K7], and [br] can be
found as solutions of a linear least-squares problem.

(2.1)

For a given output frequency response {yr} =xout and input frequency content {ur} =xin,
determines an optimal output shape matrix [cr] and solves the least squares problem for [Cr|, [K7],

and [br]. The results are given as a state-space model of the form

(43[4 oo
(2.2)
{(®)} = ler 01{ ’ }

The frequency content of the input {u} has a strong influence on the results obtained with
Quite often it is efficient to use it as a weighting, rather than using a white input (column of ones)
in which case the columns of {y} are the transfer functions.

As no conditions are imposed on the reciprocity (symmetry) of the system matrices [Cr] and [K7]
and input/output shape matrices, the results of the algorithm are not directly related to the normal
mode models identified by the general method. Results obtained by this method are thus not directly
applicable to the prediction problems treated in section [2.8.2].

2.3.6 Orthogonal polynomial identification algorithm

(Obsolete) Among other parameterizations used for identification purposes, polynomial representa-
tions of transfer functions have been investigated in more detail. However for structures with
a number of lightly damped poles, numerical conditioning is often a problem. These problems are
less acute when using orthogonal polynomials as proposed in Ref. [8]. This orthogonal polynomial
method is implemented in which is meant as a flexible tool for initial analyses of frequency
response functions. This function is available as command.

2.4 Identification options
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Several options need to be defined in order to well specify the frequency domain on which data must
be identified, the type of mesured data, the model used to fit, informations on colocated measurents
and how to use them.

Identification options accessible from the Ident tab or from the command line through the pointer
ci.IDopt (see for the full documentation).

Description of the buttons line by line :

e Idopt The working frequency band selection specify on which frequencies must the data be
identified.

— w0 : Resets the working frequency band to the min-max boudaries. This button is
similar to clicking on the button H and double clicking on the measurements in the
iiplot window.

— wmo : Allows to specify min and max frequency by clicking two times at the minimum
and then the maximum frequency locations on the measurements in the iiplot window.
This button is similar to clicking on the button H

— bandwidth history : Each modification of the working frequency band is stored in this
history list and allows to quickly going back to previous selections.

e Fit : Several pole/residue models can be used to extract shapes from a list of identified poles,
whose complete description can be found in section section [5.6

— residue type : Specify which type of pole/residue model to use : complex mode residues
with symmetric pole structure, complex mode residues with asymmetric pole structure
or normal mode residues with symmetric pole structure.

— residual terms : To takes into account the influence of out of band modes, residual terms
should be used.

e data : Specify if the measured transfers are of type displacement/force, velocity/force or
acceleration/force

e I/0 : Information on colocated measurements are needed to enforce the constraint of reci-
procity (see section ) using the algorithm

— nsna : Display to check if the number of sensors and actuators is correct (if it is not
correct, the .dof table defining inputs and outputs of each transfers should be verified, see
|curve Response datal)
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— Recip : Specify how the colocated informations should be used (see section and
for more details)

2.5 Estimate shapes from poles

E!--Estimate est estlocalPole Qual

estlocal ~

Once a model is created (you have estimated a set of poles in IdMain), the residues need to be
computed. The classical way to do so in the litterature is to determine residues on the whole
frequency band for the synthesized FRF's stored in ci.Stack{’IdFrf’} to be as close as possible
to the measured data in the least square sense. This strategy and others using narrow bands are
detailed in section section 2.5.1] .

To analyze the quality of the identification, several criteria definined by mode and by transfer have
been developped to help navigate through the data. The quality table and its analysis are described
in section section [2.5.2) .

A non exhaustive list of classical issues using the algorithm is given in section section [2.5.3] .

2.5.1 Broadband, narrowband, ... selecting the strategy

The standard estimation of residues on the whole frequency band is performed with the command
(or the equivalent button in the interface).

This method can give good results if the measurements are very clean and the system very close
to a perfectly linear system. If noise, non-linear distorsion badly identified pole is present at some
frequency bands, especially if it worresponds to high amplitudes in the transfers, fitting all modes
together on the whole frequency band can engender strong bias in the identification of residue with
low amplitude.

In this case, and if a broadband model is not necessary, it is most of the time preferable to perform
a sequential identification with a narrow band arround each mode to extract the residuals. This
is automaticaly achived using the command ocalpole (or the equivalent button in the

interface).

An alternative way to handle these problems of bias for some modes is to perform local identifications
which update residues only on a smaller working frequency band. To do so, you need to select a

close frequency band inside which the residues are poorly identified with the button H and then
use the command [idcom estflocal (or the equivalent button in the interface).
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To highlight the differences between these strategies, the following tutorial uses the GARTEUR test
case with the initial poles identified in the previous section section [2.3].

1. [ Click on the link in the HMTL version to initialize the tutorial. Else, execute the command
sdtweb(’ _tuto’,’gartid’) to open the list of tutorials and execute the first step of the

tutorial Estimate.

2. [» In the Ident tab, click on the button est to identify the residues using the broadband
method.
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For some transfers the superposition seems quite good like for the first figure whereas it is
clearly bad for many modes for some others like the second figure.

3. [» In the Ident tab, click on the button estLocalPole to identify the residues using the
sequential narrowband method.
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Each local identification is clearly closer to the measurements than using the broadband strat-
egy. It should be noted that residues correspond to mode shapes and that consequences on
proper identification of shapes can be important. The figure below shows the MAC between
the set of mode shapes obtained with the est versus the estLocalPole algorithms.

MAC between mode shapes with est and estLocalPole

90

1 2 3 4 5 6 7 8 9 10 M 12
mode #

The two modes 3 and 5 which are very less excited (the physical meaning of these poles is
even still question for the moment) are very impacted. Modes 2 which is less excited is quite
different. Mode 10 is well visible but the pole seems badly identified as shown on the figure
below (zoom on modes 9 and 10) : the residues are differently biased to compensate in the
two strategies.
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2.5.2 Qual: Estimation of pole and shape quality

The need to add/remove poles is determined by careful examination of the match between the test
data ci.Stack{’Test’} and identified model ci.Stack{’IdFrf’}. For a very small amount of data,
you could take the time to scan through different sensors, look at amplitude, phase, Nyquist, ... but
when the number of sensors and the number of modes become high, the manual scanning is too
much time consuming.

Too help navigate through a large amount of data to efficiently analyze the quality of the measure-
ments, several criteria have be defined and can be used to sort sensors by mode. In the following,
each pair of sensor/actuator corresponding to a column of the measured transfers Hr.s associated
to a column of the synthesized transfers H;; will be indexed by c.

A perfect identification is obtained if measured and synthesized transfers are perfectly superposed.
Because the contribution of a mode is characterized by the fact that its amplitude is maximum
around the resonance frequency, a classical method to analyze the quality of the fit is to compare
the measurement and the identification around each mode. We thus define the identification error
for a mode j and input/output pair ¢ by

fo:jj((lj;éj)) |HTest,c(3) - I—Iid,C(s)‘2

ej,c - (1+ad;
fL:.J((I_SCJ.J)) |Hid,c(3)‘2

with w; the modal frequency and (; the modal damping. « is a scale factor of the frequency
bandwidth, with o = 1 corresponding to the classical bandwidth at -3dB and o = 5, a pertinent

(2.3)



value used here. This error criterion can be seen as a numerical evaluation of the quality of the
historical ”circle fit” method. The figure shows a simple case on the mode at 4050Hz. On the
left, the measurement in blue line is noisy so that the correspondence with the identification in red
dotted line is not good. This is coherent with the value of the error criterion evaluated at 30%. On
the right, the resonance of the mode is well visible and the superposition with the identification is
almost perfect. This visual analysis is well confirmed by the error criterion evaluated at 0.4%
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Figure 2.9: Transfer function examples with a high (30%, at left) and low (0.4%, at right) error
criterion

For most applications, high error is expected close to vibration nodes where the observability is
weak. To avoid taking into account such transfers as badly identified, the level criterion for a given
mode j and a given sensor/actuator pair c is defined as the ratio between the quadratic mean for
the channel ¢ around the resonance and the maximum quadratic mean on all the channels.

JEREo) | Hrear o(5)?

j,C = . 1+ .
maxe [0 [ Hreseels)]?

Problematic sensors are those presenting a high error despite a significant level. Thus, considering
the error criterion and the level criterion is often not appropriate. A new criterion called Noise
Over Signal (NOS) is obtained by multiplying both criteria together

L28505) | Hreor o) = Hiaels) P
NOS;j.=¢€jecx Lj.~— z
’ ’ ’ wji(1+ads) | oy 2

in order to highlight transfers where high error is associated to a un level, and thus critical. For a
reasonable identification, the approximation made on (2.5)) use the fact that Hrpes . et Hq . should
be close and so that
f:_j((llj;gj)) |Hrest o(8)|?/ f;_j((llj;g)) |H;q.(s)|?> ~ 1. This approximation illustrate that the product

J J J J
ejc X Lj. is close to the ratio of the identification error (hence a estimation of the noise) over the

L

(2.4)

(2.5)
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maximum response (hence the signal level), which explains the origin of the NOS terminology.

The figure (first) shows an example of a transfer function with a high NOS value (8.3%) : the
error is very high at 40.4% whereas the level is still significant at 20.5%. The mode is very badly
identified (barely visible on this transfer) but the amplitude of the identified residue is important
for the definition of the mode shape. The existence of sensor/actuator pairs with high noise level at
high amplitude, highlighted by NOS, is typical of weekly excited modes (the controllability is weak
for the chosen excitation location). On the second image, the transfer function also shows a high
NOS value (24.7%) and a high error (24.7%) but graphically, the mode is very visible. The high
NOS value is here due to a bad identification of the pole, which induces a bias in the residue to
compensate. This second example illustrates that this criterion is also well adapted to the detection
of problems of coherence between measurements (different settings between measurement systems,
behavior evolution of the system during measurement,...).
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Figure 2.10: Examples of transfer functions showing high NOS values induced by a weak excitation
(left) and a bad poles identification (right)

After manual analysis of many measurements, two intermediate cases are often found: the measure-
ment is noisy but still has a sufficient contribution to be identified with confidence or the contribution
of a mode is so weak that it cannot be separated from other modes without raising questions on a
more or less important estimation bias. To distinguish the two cases, a last contribution criterion
is introduced

w;(1+ac;)

C—1_ fwjj(l OZCJJ |HTestc - -E’id,j,c|2

Je = wj(14+ag;) 9 ‘
I

to measure the modal contribution of a specific mode j relatively to the global response of all the

other modes around its resonance frequency, thus giving an indication of its wvisibility (H;q ;. is the

transfer synthesis containing only the mode j). For highly noisy transfer functions, this indicator

can be negative and is then set to 0.

(2.6)




Figure shows transfer functions for which this kind of question is raised. On the first image,
around 4050Hz, the mode is well visible despite a relatively high noise level. It could be useful to
keep this channel to well interpret the correlation. On the second image, a transfer function is shown
where the error is very low but for which the resonance of the considered mode is not visible at all.

The capacity to identify the residue with confidence is low because the identification could clearly
be significantly biased
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Figure 2.11: Examples of transfer functions: High error of 18.7% with a high contribution of 73.5%
(left) and low error of 0.1% with a low contribution of 0% (right).

Proposed criteria allow decomposing identification error sources in contributions by mode and by
transfer function (sensor/actuator pair). For each mode, clearly problematic sensors showing high
error with low contribution and a low level can be automatically discarded and only results properly
identified can be kept with a high confidence on the quality.

Intermediate results can be analyzed in more details using sorting by level, contribution or NOS to
highlight problematic transfer functions, as illustrated in the following tutorial.

Let’s go back to the previous tutorial. If you have not performed it (or if you closed everything at
the end), click on [» in the HTML version of the documentation to get ready for the following.

4. [ In the Ident tab, click on est to perform an broad band identification of the residues.

Click then on the button Qual to open the tab Qual which synthesizes all the quality criteria
defined above.
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Stack X Ident/®] ChannelX  Unv[X Qual X

Maodes
Mode Nu...  Freg[Hz] Damp[%] Error[%] Contributi..  MPC[%] max (NOS)[...
1 6,504
2 8,978
3 12,197
4 16,390
5 21,240
B 33,497
7 33,992
8 36,174
9 49,402
10 50,208
1 55,615
12 63,726
1/0 Pairs
Mode Cut In Error Level Contrib MNOS
1 1011,03] 1012,09] 8,5%| 99,8% 89,2% 8,5%| A
1 1001,03] 1012,09] 8,4%| 98,0% 89,8% 8,2%|
1 2012,07 1012,09] 93,1% 1,6%) B,5% 1,5%|
1 1012,03] 1012,09] 8,8%) 97.3% 89,7% 8,5%|
1 2005,07 1012,09] 19,4% 2,3%| 79,6% 0,4%|
1 1005,03] 1012,09] 8,8%) 34.1%| 88,3% 3,0%|
1 1008,03] 1012,09] 9,3%| 4.1%| 74,4% 0,4%|
1 1111,03] 1012,09] 8,9%| 99,8% 91,0% 8,9%|
1 1101,03] 1012,09] 8,4%| 100,0% 91,5% 8,4%|
1 211207 1012,09] 89,0% 3,0% 10,6%| 2.7%|
1 1112,03] 1012,09] 8,3%| 99,5% 91,6% 8,2%|
1 2105,07 1012,09] 21,8% 1,3%| 78,2% 0,3%| w

The identification quality is globaly poor, with a mean error quite high arround most modes.
Two modes show a very low mean contribution (3 and 5), four modes show a bad MPC
whereas expected modes are real (2,3,5 and 10) and finally, three modes present a high
max(NOS) (9 10 and 12).

Clicking on a line of the first table Modes updates the second table I/0 Pairs with the four
quality criteria on all sensors for the selected mode. Each criterion can be sorted by clicking on
the corresponding column header and clicking on a line perfoms a zoom on the corresponding
transfer arround the mode frequency.

This way, we can for example easily zoom on the transfer with the highest contribution for
the mode 3 and the transfer with the highest NOS for the mode 10 :
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This highlight the bias in the identification of the residues.

5. [» Now click in the Ident tab on estlocalpole to perform a sequential identification by mode
with the same poles and click again on Qual to update the Qual tab.

Stack X Ident/X| ChannelX  Unv[X Qual [X]

Modes
Mode Nu..  Freg[Hz] Damp( %] Error[%)] Contributi... MPC[%] max(MNOs][...
6504
2 8,978
3 12,197
4 16,390/
5 21,240/
6 33,497
7l 33,992
E 36,174
9 49,402
10 50,208
1 535,615
12 63,726
1/ Pairs
Maode Qut In Error Level Contril NO5
1008,03 1012,09 51% 41% 73.8% 0.3%| A
1 2303,07 1012,09] 7,9%| 4 7%| 91,4% 0,4%)|
1 2201,08 1012,09] 58,1% 0,3%| 12,2% 0,2%)|
1 201207 1012,09] 92,5% 1,6%) 6,8%) 1,5%|
1 1111,03] 1012,09] 8,0%| 99,8% 91,2% 8,0%|
1 230,07 1012,09] 8.1%| 5,1%| 91,2% 0,4%)|
1 1012,03] 1012,09] 7.8%) 97,3% 90,0% 7.5%|
1 1206,03] 1012,09] 7,9%| 16,8% 9,1% 1,3%|
1 3201,03] 1012,09] 8.3%| 23,4% 9,1% 2,0%]
1 1205,08] 1012,09] 73.5% 0,4%)| 0,0%] 0,3%|
1 1005,03] 1012,09] 7.8%) 34.1% 87.6% 2,7%|
1 1302,08] 1012,09] 34.0% 0,1%| 1,3%| 0,0%] w

The identification quality is clearly better than using the brodband strategy : mean error is
improved everywhere. Nevertheless, modes 3 and 5 still show very low contribution and MPC
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and mode 10 presents a lower but still high max (NOS).

The zoom on the transfer with the highest contribution for the mode 3 and the transfer with
the highest NOS for the mode 10 can again be displayed :
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For mode 3, the resonance is not very visible and the measurement very noisy : this mode is
probably not well enough excited and is moreover visible very locally (2 sensors higher than
1% contibution). For mode 10, the high NOS do not highlight bad identification anymore
(measurement and synthesis are quite well superposed) but shows that the error due to the
high measurement noise is present even at sensors where the mode has a high level : a better
excitation of the mode should reduce the noise and improve the identification quality.

At this step, quality has been evaluated but we are aware that identified poles are possibly biased.
Indeed, the strategy of extraction of poles does not use the exact same model than the one used as a
second stage to identify the residues. Non-linear optimization of this initial state should be performed
and the impact of this optimization on the identification quality is analyzed in Section section

2.5.3 When id_rc fails

This section gives a few examples of cases where a direct use of id rc gave poor results. The
proposed solutions may give you hints on what to look for if you encounter a particular problem.
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Figure 2.12: Identification problem with low frequency error found for piezoelectric accelerometers

In many cases frequencies of estimated FRF's go down to zero. The first few points in these estimates
generally show very large errors which can be attributed to both signal processing errors and sensor
limitations. The figure above, shows a typical case where the first few points are in error by orders
of magnitude. Of two models with the same poles, the one that keeps the low frequency erroneous
points (- — -) has a very large error while a model truncating the low frequency range (- - -) gives
an extremely accurate fit of the data (—).
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Figure 2.13: Identification problem linked to the proximity of influent out of band modes

The fact that appropriate residual terms are needed to obtain good results can have significant
effects. The figure above shows a typical problem where the identification is performed in the band
indicated by the two vertical solid lines. When using the 7 poles of the band, two modes above the
selected band have a strong contribution so that the fit (- - -) is poor and shows peaks that are more
apparent than needed (in the 900-1100 Hz range the FRF should look flat). When the two modes

just above the band are introduced, the fit becomes almost perfect (- — -) (only visible near 750
Hz).

89



2 Modal test tutorial

90

Keeping out of band modes when doing narrow band pole updates is thus quite important. You may
also consider identifying groups of modes by doing sequential identifications for segments of your
test frequency band [9].

The example below shows a related effect. A very significant improvement is obtained when doing
the estimation while removing the first peak from the band. In this case the problem is actually
linked to measurement noise on this first peak (the Nyquist plot shown in the lower left corner is far
from the theoretical circle).
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Figure 2.14: Identification problem linked to measurement noise at a major resonance

Other problems are linked to poor test results. Typical sources of difficulties are
e mass loading (resonance shifts from FRF to FRF due to batch acquisition with displaced
sensors between batches),
e leakage in the estimated FRFs,

e significant non-linearities (inducing non-symmetric resonances or resonance shifts for various
excitation positions),

e medium frequency range behavior (the peaks of more than a few modes overlay significantly
it can be very hard to separate the contributions of each mode even with MIMO excitation).



2.6 Update poles

@--Optimize

eopt local ~ eoptSeq

eup local w

The various procedures used to build the initial pole set (see step 1 above) tend to give good but
not perfect approximations of the pole sets. In particular, they tend to optimize the model for a
cost that differs from the broadband quadratic cost that is really of interest here and thus result in
biased pole estimates.

It is therefore highly desirable to perform non-linear update of the poles in ci.Stack{’IdMain’}.
This update, which corresponds to a Non-Linear Least-Squares minimization[I0][9] which can be
performed using different algorithms below.

The optimization problem is very non linear and non convex, good results are thus only found when
improving results that are already acceptable (the result of phase 2 looks similar to the measured
transfer function).

2.6.1 Eup : for a clean measurement with multiple poles

[idcom eup| (id_rc| function) starts by reminding you of the currently selected options (accessible
from the figure pointer ci.IDopt) for the type of residual corrections, model selected and, when
needed, partial frequency range selected

Low and high frequency mode correction
Complex residue symmetric pole pattern

the algorithm then does a first estimation of residues and step directions and outputs

% mode#  dstep (%) zeta fstep (%) freq
1 10.000 1.0001e-02 -0.200 7.1043e+02
2 -10.000 1.0001e-02 0.200 1.0569e+03
3 10.000 1.0001e-02 -0.200 1.2176e+03
4 10.000 1.0001e-02 -0.200 1.4587e+03
Quadratic cost
4.6869e-09
Log-mag least-squares cost
6.5772e+01

how many more iterations? ([cr] for 1, 0 to exit) 30
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which indicates the current pole positions, frequency and damping steps, as well as quadratic and
logLLS costs for the complete set of FRFs. These indications and particularly the way they improve
after a few iterations should be used to determine when to stop iterating.

Here is a typical result after about 20 iterations

% mode# dstep (%) zeta fstep () freq
1 -0.001 1.0005e-02 0.000 7.0993e+02
2 -0.156 1.0481e-02 -0.001 1.0624e+03
3 -0.020 9.9943e-03 0.000 1.2140e+03
4 -0.039 1.0058e-02 -0.001 1.4560e+03

Quadratic cost

4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10
Log-mag least-squares cost

6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01
how many more iterations? ([cr] for 1, O to exit) O

Satisfactory convergence can be judged by the convergence of the quadratic and logLLS cost function
values and the diminution of step sizes on the frequencies and damping ratios. In the example,
the damping and frequency step-sizes of all the poles have been reduced by a factor higher than
50 to levels that are extremely low. Furthermore, both the quadratic and logLLS costs have been
significantly reduced (the leftmost value is the initial cost, the right most the current) and are now
decreasing very slowly. These different factors indicate a good convergence and the model can be
accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which generally corre-
sponds passing over the optimal value). Thus, you need to have all (or at least most) steps divided by
8 for an acceptable convergence. Upon exit from[id rc| the[idcom eup|command displays an overlay
of the measured data ci.Stack{’Test’} and the model with updated poles ci.Stack{’IdFrf’}.
As indicated before, you should use the error and quality plots to see if mode tuning is needed.

The optimization is performed in the selected frequency range wmnin and wmax indices). It
is often useful to select a narrow frequency band that contains a few poles and update these poles.
When doing so, model poles whose frequency are not within the selected band should be kept but
not updated (use the euplocal and eoptlocal commands). You can also update selected poles
using the eup ’ 4’ command (for example if you just added a pole that was previously missing).

2.6.2 Eopt : for a band with few poles

leopt| (id_rcopt|function) performs a conjugate gradient optimization with a small tolerance to allow
faster convergence. But, as a result, it may be useful to run the algorithm more than once. The




algorithm is guaranteed to improve the result but tends to get stuck at non optimal locations.

function) uses an ad-hoc optimization algorithm, that is not guaranteed to improve the
result but has been found to be efficient during years of practice.

You should use the eopt command when optimizing just one or two poles (for example using
eoptlocal or ’eopt ’ 7’ to optimize different poles sequentially) or if the eup command does
not improve the result as it could be expected.

2.6.3 EupSeq and EoptSeq : sequential narrowband pole updating

In many practical applications the results obtained after this first set of iterations are incomplete.
Quite often local poles will have been omitted and should now be appended to the current set of
poles (going back to step 1). Furthermore some poles may be diverging (damping and/or frequency
step not converging towards zero). This divergence will occur if you add too many poles (and these
poles should be deleted) and may occur in cases with very closely spaced or local modes where the
initial step or the errors linked to other poles change the local optimum for the pole significantly (in
this case you should reset the pole to its initial value and restart the optimization).

A way to limit the divergence issue is to perform sequential local updating arround each pole : one
pole is updated at a time so that it is more likely to converge. This sequential optimization as been
packaged for both

2.6.4 Example for practice

To pratice, the GARTEUR test case already used in previous sections is loaded with an initial set
of poles by clicking on [>.

Many strategies can be used to perform the optimization. In the following tutorial, we only propose
to guide you through the use of some optimization steps, but the reader is encouraged to test local,
broadband, narrowband strategies as he whish to better understand their strengths and weaknesses.

1. [» In the Ident tab, click on eopt to perform an broad band optimization (on the selected
bandwidth so here on the full bandwidth) using the eopt strategy. Because many poles are
present in the band, this algorithm is stuck in a local minimum and the result does not improve
much the result.

The figure below shows the transfer and the identification of the sensor 1001.03 (channel 2 in
iiplot).
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2. [» Click now on eup to use the other strategy, still on the whole bandwidth. The result deeply
improves the identification quality : the same transfer is shown below after the optimization.
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Nevertheless, some transfers still present a quite bad identification, like for instance sensors
2201.08 and 2301.07.
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An interesting observation is that if a smaller band is selected where the fit is poor, without

updating the poles, a new identification of the residues may lead to a better identification
quality.

. [» Select a narrow band with the button wmo between 8 and 18 Hz. Click then on the button
est to perform a new identification of the residues inside this band without updating the poles.
Looking at the same channels as before (sensors 2201.08 and 2301.07), the fitting quality is

clearly improved.
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This is due to the fact that taking into account the poles outside this frequency band (especially
the noisy first mode) leads to a bias of identification inside this band.

The difficulty is that it is not easy to define which frequency bands can be identified together.
To deal with this issue, the sequential local identification of residuals estlocalpole can be
used. T'wo version of this strategy have been developped to perform pole updating in addition
to residue identification on narrow bands arround each mode : eoptSeq and eupSegq.
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4. [» Click on eoptSeq to perform the sequential optimization. You can perform this optimization

several times until convergence if needed.
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The vizualisation of the identification on the same band than previously shows a very good fit

arround each mode.
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Once a good complex residue model obtained, one often seeks models that verify other properties
of minimality, reciprocity or represented in the second order mass, damping, stiffness form. These
approximations are provided using the [id_rm| and [id_nor| algorithms as detailed in section .

2.6.5 Background theory

The algorithm (see [I0][9]) seeks a non linear least squares approximation of the measured
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data

NS,NANW )
Pmodel = arg min Z (ajk(id) (wlvp) — Qjk(test) (wl)) (27)
gk l=1
for models in the nominal pole/residue form (also often called partial fraction expansion [I1])
[Rj] R; [F]
o) =y (L L) i B oy i e
jidentified \° Aj 8= Aj $

or its variants detailed under page

These models are linear functions of the residues and residual terms [R;, E, F] and non linear func-
tions of the poles A;. The algorithm thus works in two stages with residues found as solution of a
linear least-square problem and poles found through a non linear optimization.

The function (idcom eup|command) uses an ad-hoc optimization where all poles are optimized
simultaneously and steps and directions are found using gradient information. This algorithm is

usually the most efficient when optimizing more than two poles simultaneously, but is not guaranteed
to converge or even to improve the result.

The id_rcopt function command) uses a gradient or conjugate gradient optimization.
It is guaranteed to improve the result but tends to be very slow when optimizing poles that are
not closely spaced (this is due to the fact that the optimization problem is non convex and poorly
conditioned). The standard procedure for the use of these algorithms is described in section .
Improved and more robust optimization strategies are still considered and will eventually find their
way into the SDT.

2.7 Display shapes : geometry declaration, pre-test

Before actually taking measurements, it is good practice to prepare a wire frame-display (sec-
tion and section for other examples) and define the sensor configuration (section [2.7.2]

).
The information is typically saved in a specific .m file which should look like the d_ mesh (’ TutoPre-s3’)
demo without the various plot commands. The d_pre demo also talks about test preparation.

2.7.1 Modal test geometry declaration

A wire-frame model is composed of node and connectivity declarations.
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[ tast
analysis

Figure 2.15: Test analysis : wire-frame model.

Starting from scratch (if you have not imported your geometry from universal files). You can declare
nodes and wire frame lines using the editors. Test wire frames are simply groups of beam1
elements with an [EGID|set to -1. For example in the two bay truss (see section )

cf=feplot;cf.model="reset’;
% fecom(’AddNode’) would open a dialog box
fecom(’AddNode’,[0 1 0; O O 0]); % add nodes giving coordinates
fecom(’AddNode’,[3 1 1 0;4 1 0 0]); % Nodeld and xyz
fecom(’AddNode’, [5 000 2 0 0;

6 00O 21 01);
% fecom(’AddLine’) would add cursor to pick line (see below)
fecom(’AddLine’,[1 3 2 4 3]); % continuous line in first group
fecom(’AddLine’,[3 6 0 6 5 04 50 4 6]); % O for discontinuities
fecom(’Curtab:Model’,’Edit’)
hfecom(’save’) 7% will let you save the model to a mat file
feutilb(’write’,cf.mdl) % generates a script

Note that

e fecom(cf,’AddLine’), use after node declaration, starts a cursor letting you build the wire-frame
line graphically. Click on nodes continue the line, while the context menu allows breaks, last point
removal, exit, and display of the commands in the MATLAB command window. This procedure is
particularly useful if you already have a FEM model of your test article.

e fecom(cf,’AddE1t’) accessible in the Model:Edit tab can be used to add surface or volume
elements graphically.

e the curor:3DLinePick command in the feplot axis context menu is a general SDT mechanism
to pick node numbers.

e other GUI based mesh editing tools are described in section .



e [femesh ObjectBeamLine|and related commands are also typically used to define the experimental

mesh (see also [feutil]).

e If you have a FE mesh, you should define the wireframe as a set of sensors, see section [3.1.1].

The [feplot|and [fecom| functions provide a number of tools that are designed to help in visualizing
test results. You should take the time to go through the gartid, gartte and gartco demos to learn
more about them.

2.7.2 Sensor/shaker configurations

The geometry declaration defines fields .Node and .E1t. The next step is to declare sensors. Once
a sensor configuration defined and consistent with input/output pair declarations in measurements
(see sectionm ), you can directly animate measured shapes (called Operational Deflection Shapes)
as detailed in section [2.7.3|. Except for roving hammer tests, the number of input locations is usually
small and only used for MIMO identification (see section )

In the basic configuration with translation sensors, sensor declaration is simply done with a .tdof
field. Acceptable forms are

a DOF definition vector (see mdof)) allows the description of translation DOF's in global di-
rections. The convention that DOFs .07 to .09 correspond to translations in the —z, —y, —z
directions is implemented specifically for the common case where test sensors are oriented this
way.

e a 5 column format ([SensID NodeID tx ty tz] giving a sensor identifier (integer or real), a
node identifier (positive integer), and the measurement direction in the test mesh axes. This
format supports arbitrary orientation.

e a 2 column form DOF where each DOF is associated with a local basis, that must be defined in
TEST .bas.

e the tabular (cell array) definition of sensors and their position, which is more appropriate for
large configurations, and is described in section |4.6.2] .

The definition of sensors trough a .tdof field is the simplest configuration. For more general setups,
see section for sensor definitions and section for topology correlation.

For interpolation of unmeasured DOF's see section (3.3.2] .

The following illustrates the first two forms
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2 Modal test tutorial
TEST=demosdt (’DemoGartteWire’) ;

% simply give DOFs (as a column vector)

TEST.tdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03
1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 ...
2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 1303.03]°;

% Transfor to 5 column format, which allow arbitrary orientation
TEST.tdof=fe_sens(’tdof’,TEST) ; TEST. tdof

feplot(TEST) % With a .tdof field, a SensDof,Test is defined automatically
fecom(’curtab Cases’,’Test’) ;fecom(’ProViewOn’)

% You can now display FRFs or modes using

ci=iicom(’curveload gartid’); % load data

fecom(’ ;ProviewOff;Showline’)
% Display FRF

cf.def=ci.Stack{’Test’}; % automatically uses sensor definition ’Test’
% Identify and display mode

idcom(’e .05 6.5’)

cf.def=ci.Stack{’IdAlt’}; % automatically uses sensor definition ’Test’

This new example, mixes all 3 forms

cf=demosdt (’demogartteplot’) % Load data

% simply give DOFs

cf.mdl=fe_case(cf.mdl, ’sensdof’,’Test’,

[1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...
1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07]1°);

% Give DOF defined in a local basis
cf.mdl=fe_case(cf.mdl, ’sensdof append’,’Test’,
[2201.01 1; 3201.03 0; 1206.03 0; 1205.01 1; 1302.01 1]1);

% Give identifier, node and measurement direction
cf.mdl=fe_case(cf.mdl, ’sensdof append’,’Test’,

[1 2301 -1 0 0; 2 1301 0 0 1; 3 2303 -1 0 0; 4 1303 0 0 11);
fecom(’curtab Cases’,’Test’) ;fecom(’ProViewOn’)
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It is also fairly common to glue sensors normal to a surface. The sensor array table (see section m
) is the easiest approach for this objective since it allows mixing global, normal, triax, laser, ...
sensors. The following example shows how this can also be done by hand how to obtain normals to
a volume and use them to define sensors.

% This is an advanced code sample
model=demosdt (’demo ubeam’);

MAP=feutil (’getnormal node MAP’,model.Node, ...
feutil(’selelt selface’,model)); 7% select outer boundary for normal

il=ismember (MAP.ID, [360 365 327 137]); J nodes where sensors are placed
MAP.ID=MAP.ID(il1) ;MAP.normal=MAP.normal(il,:);
model=fe_case(model, ’sensdof’,’test’,

[(1:1length(MAP.ID))’ MAP.ID MAP.normal]);

% display the mesh and sensors

cf=clean_get_uf (’feplotcf’,model);
cf.sel(1)=’groupall’;cf.sel(2)="-test’;
cf.o(1)={’sel2ty7’,’edgecolor’,’r’,’linewidth’,2}

2.7.3 Animating test data, operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial relation of forced
vibration measured at two or more sensors. Time responses of simultaneously acquired measure-
ments, frequency responses to a possibly unknown input, transfer functions, transmissibilities, ...
are example of ODS.

When the response is known at global DOF's no specific information is needed to relate node
motion and measurements. Thus any deformation with DOFs will be acceptable. The two basic
displays are a wire-frame defined as a FEM model or a wire-frame defined as a [SensDof| entry.

% A wire frame and Identification results

[TEST,IdMain]=demosdt (’DemoGartteWire’)

cf=feplot(TEST); % wire frame

cf.def=IdMain; % to fill .dof field see sdtweb(’diiplot#xfread’)
% or the low level call : cf.def={IdMain.res.’,IdMain.dof,IdMain.po}

% Sensors in a model and identification results
cf=demosdt (’demo gartfeplot’); % load FEM
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TEST=demosdt (’demo garttewire’); 7 see sdtweb(’pre#presen’)
cf.mdl=fe_case(cf.mdl, ’sensdof’,’outputs’,TEST)

cf.sel="-outputs’; 7% Build a selection that displays the wire frame
cf.def=IdMain; % Display motion on sensors

fecom(’curtab Plot’);

When the response is known at sensors that need to be combined (non global directions,
non-orthogonal measurements, ...) a entry must really be defined.

When displaying responses with iiplot and a test geometry with feplot,[fiplot]supports an ODS
cursor. Run demosdt (’DemoGartteOds’) then open the context menu associated with any
axis and select 0DS Cursor. The deflection show in the figure will change as you move the

cursor in the window.

More generally, you can use [fecom InitDef|commands to display any shape as soon as you have a
defined geometry and a response at DOFs. The Deformations tab of the properties figure
then lets you select deformations within a set.

[cf,cil=demosdt (’DemoGarttelds’)

cf.def=ci.Stack{’Test’};

% or the low level call

% cf.def={ci.Stack{’Test’}.xf,ci.Stack{’Test’}.dof,ci.Stack{’Test’}.w}
fecom(’CurTab Plot’);

You can also display the actual measurements as arrows using

cf.sens=ci.Stack{’Test’}.dof; fecom ShowArrow; fecom sccl;

For a tutorial on the use of see section [£.4] .
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2.8 MIMO, Reciprocity, State-space, ...

The |pole/residue representation| is often not the desired format. Access to transformations is pro-
vided by the post-processing tab in the properties figure. There you can select the desired
output format and the name of the variable in the base MATLAB workspace you want the results to
be stored in.

<} idcom GUI figure M=l E3

Options | Identification | F'Dst—prncessing]
Desired output State-space ™™ Compute
Cutput variable sys
FAIMD Info

Figure 2.16: idcom interface

The algorithm is used for the creation of minimal and/or reciprocal pole/residue models (from
the command line use sys=id rm|(ci.Stack{’IdMain’})). For the extra step of state-space model

creation use sys=res2ss|(ci.Stack{’IdMain’}).
norgres2nor|(ci.Stack{’IdMain’}) or norsid nor|(ci.Stack{’IdMain’}) allow transformations

to the normal mode form. Finally direct conversions to other formats are given by
structdres2xf|(ci.Stack{’IdMain’},w) with w=ci.Stack’Test’.w, and

[num,den]<res2tf|(ci.Stack{’ IdMain’}).

These calls are illustrated in demo_id.

2.8.1 Multiplicity (minimal state-space model)
Theory

As mentioned under page the residue matrix of a mode can be written as the product of
the input and output shape matrices, so that the modal contribution takes the form

R, fewy {vlb}
S — )\j N S — )\j
For a single mode, the product {ct);} {Q,Z)JTb} has rank 1. Thus for a truly MIMO test (with more

than one input and output), the residue matrix found by usually has full rank and cannot
be written as shown in (2.9)). In some cases, two poles of a structure are so close that they can be

(2.9)
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considered as a multiple pole A\; = Aj;1, so that
Ry dews} {ulv}+ fewin} {whb}
S — )‘j a S — )‘j
In such cases, the residue matrix [R;] has rank two. Minimality (i.e. rank constraint on the

residue matrix) is achieved by computing, for each mode, the singular value decomposition of the
residue matrix R; = UxVT. By definition of the singular value decomposition

[Ritnssna = {U1}voxa o1 {Vityaa (2.11)
is the best rank 1 approximation (in the matrix norm sense) of R;. Furthermore, the ratio o2/01
is a measure of the relative error made by retaining only the first dyad. This ratio gives, for MIMO
tests, an indication of the coherence of estimated mode shapes and occasionally an indication of

the pole multiplicity if two poles are sufficiently close to be considered as identical (see the example
below).

(2.10)

Minimal pole/residue models are directly linked to a state-space model of the form
— |\, — |opT
(5 Mawsan = [\ ]) =[] ) (2.12)
{y} = [ev]{n}

which can then be transformed to a real valued state-space model (see or a second order
normal mode model (see section [2.8.3]).

Practice

builds a rank constrained approximation of the residue matrix associated to each pole. When
not enforcing reciprocity, the output of the call

ci=demosdt (’Demo demo_id’)

ci.IDopt.nsna=[5 2]; «ci.IDopt.reci=’no’;

RES = id_rm(ci.Stack{’IdMain’},[1 2 1 1]);

% or low level call

[pb,cp,new_res]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po,
ci.IDopt,[1 2 1 1]);

returns an output that has has the form

The system has 5 sensors and 2 actuators
FRF 7 (actuator 2 sensor 2) is collocated
Po # freq mul Ratio of sing. val. to max

1 7.10e+02 2 0.3000 k 0.0029
2 9.10e+02 1 0.1000 0.0002
3 1.20e+03 1 0.0050 0.0001
4 1.50e+03 1 0.0300 0.0000
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where the first three columns indicate pole number, frequency and retained multiplicity and the
following give an indication of the difference between the full rank residue matrix and the rank
constrained one (the singular value ratio should be much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between the full order
residue matrix and a rank 1 approximation is of the order of 30% while the difference with a rank 2
approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual multiplicity but more
often indicates poor identification or incoherent data. For poor identification the associated pole
should be updated as shown in section . For incoherent data (for example modes slightly modified
due to changing shakers during sequential SIMO tests), one should perform separate identifications
for each set of coherent measurements. The rank constrained approximation can then be a way to
reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try to update
the identification in the vicinity of the pole: select a narrow frequency range near this pole, then
create and optimize a two or more pole model as shown section [2.2.2] . True modal multiplicity
being almost impossible to design into a physical structure, it is generally possible to resolve such
problems. Keeping multiple poles should thus only remain an intermediate step when not having
the time to do better.

2.8.2 Reciprocal models of structures
Theory

In many cases, the structures tested are assumed to be reciprocal (the transfers force at A /response
at B and force at B/response at A are equal) and one wants to build a reciprocal model. For modal
contributions of the form , reciprocity corresponds to the equality of collocated input and output
shape matrices

([ccon] {wj})T = {¢j}T [beo1] (2.13)

For reciprocal structures, the residue matrix associated to collocated FRFs should be symmetric.

id_rm|thus starts computing the symmetric part of the collocated residues Rjco15 = (chol + R]-Twl) /2.

This matrix being symmetric, its singular value decomposition is given by Rjco1s = UcolﬁcolVCTol
which leads to the reciprocal input and output shape matrices

T
{Ccol¢j} - {wfbcol} = Vv 0Olcol {Ulcol} (2.14)

Typically, there are many more sensors than inputs. The decomposition (2.14)) is thus only used
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to determine the collocated input shape matrices and the output shape matrices at all sensors are

+
found as solution of a least square problem {cy;} = [R;] {LZ)JTbcol} which does require that all
inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the same as that
obtained with the analytical scaling condition (5.24]). The interest of using reciprocal models is to
predict non measured transfer functions.

Practice

106

When collocated transfer functions are declared and ci.[[Dopt] Reciprocity=’1 FRF’ or MIMO,
seeks a minimal and reciprocal approximation to the model. For the call

ci=demosdt (’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.Col=[1 7];

ci.IDopt.reci="mimo’;

RES = id_rm(ci.Stack{’IdMain’},[1 1 1 11);

ci.Stack{’curve’,’IIxh’}=res2xf (RES,ci.Stack{’Test’}.w); iicom(’IIxhOn’)

% or low level call

[pb,cp,new_res,new_po]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po,
ci.IDopt,[1 1 1 11);

ci.Stack{’curve’,’IIxh’} = ...

res2xf (struct ("res’ ,new_res, ’po’,new_po,’idopt’,ci.IDopt),ci.Stack{’Test’}.w);
iicom(’IIxhOn’)

[id_rml shows information of the form

The system has 5 sensors and 2 actuators

FRF 1 (actuator 1 semsor 1) is collocated
FRF 7 (actuator 2 sensor 2) is collocated
Reciprocal MIMO system

Po# freq mul sym. rel.e.

1 1.13e+02 1 : 0.0001 0.0002
2 1.70e+02 1 : 0.0020 0.0040
3 1.93e+02 1 : 0.0003 0.0005
4 2.32e+02 1 : 0.0022  0.0044

where the output indicates the number of sensors and actuators, the collocated FRFs, the fact the
resulting model will enforce MIMO reciprocity, and details the accuracy achieved for each mode.

The algorithm first enforces symmetry on the declared collocated transfer functions the symmetry
error sym. shows how asymmetric the original residue matrices where. If for a given mode this



number is not close to zero, the mode is poorly identified or the data is far from verifying reciprocity
and building a reciprocal model makes no sense.

The algorithm then seeks a rank constrained approximation, the relative error number rel. e.
shows how good an approximation of the initial residue matrix the final result is. If this number is
larger than .1, you should go back to identifying a minimal but non reciprocal model, determine
the actual multiplicity, and update the pole, if it is not very well identified, or verify that your data
is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the synthesized FRF's
(IIxh/ci.Stack{’IIxh’} in the example above). An alternate FRF generation call would be

[a,b,c,d]=res2ss(res,po,idopt);
IIxh=qgbode(a,b,c,d,IIu*2%*pi);

This more expensive computationally, but state-space models are particularly useful for coupled
system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer functions. For
example the response associated to a shaker placed at the uind sensor (not a collocated one) can be
computed using

ci=demosdt(’Demo demo_id’)
[psib,cpsil=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po,
ci.IDopt,[1 1 1 11);

uind=3; res_u = (cpsi*diag(cpsi(uind,:))).’;
RES=struct(’res’,res_u,’po’,ci.Stack{’IdMain’}.po, ’idopt’,ci.IDopt);

ci.Stack{’curve’,’IdFrf’}=res2xf (RES,ci.Stack{’Test’}.w);

iiplot
You should note that the res_u model does not contain any residual terms, since reciprocity does

not give any information on those. Good predictions of unmeasured transfers are thus limited to
cases where residual terms can be neglected (which is very hard to know a priori).

2.8.3 Normal mode form

Modal damping assumption

While the most accurate viscous damping models are obtained with a full damping matrix I (sup-
ported by [psi2nor| and [id nor| as detailed in the next section), modal damping (where I' is
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assumed diagonal which is valid assumption when ([2.19) is verified) is used in most industrial ap-
plications and is directly supported by [id_rc| [id_rm| and [res2nor] The use of this functionality is
demonstrated in demo_id.

For a modally damped model (diagonal modal damping matrix I'), the normal mode model (5.4])
can be rewritten in a rational fraction form (with truncation and residual terms)

T
W oo} {10 ) Ty
Jj= j=

This parameterization, called normal mode residue form, has a symmetric pole pattern and is sup-
ported by various functions (id rc||id rm| [res2xf|, ...) through the use of the option

ci .[IDopt| Fit="Normal’. As for the complex residues (5.30), the normal mode residue matrix given
by and used by other functions is stacked using one row for each pole or asymptotic correction
term and, as the FRFs (see the xf format), a column for each SISO transfer function (stacking N.S
columns for actuator 1, then NS columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue matrix 75 is
directly related to the true normal modes
T
(73] = {eay} {o] v} (2.16)
and the dyadic decomposition of the residue matrix can be used as in the complex mode case (see

section and the function to obtain a minimal and/or reciprocal models (as well as
scaled input and output shape matrices).

The scaling implied by equations (2.15) and (2.16) and used in the functions of the Toolbox is
consistent with the assumption of unit mass normalization of the normal modes (see details under
page [202)). This remains true even for multiple modes. A result rarely obtained by other
methods.

When a complex mode identification has been performed (ci.[IDopt|.Fit=’Complex’ or ’Posit’),
the function also provides a simple approximation of the complex residue model by a normal
mode residue model.

Non proportional damping assumption

Theory

The complex modes of a minimal/reciprocal model are related to the mass / damping / stiffness
matrices by (see Ref. [12])

M= (&A&T)*l, C = —MJA2)T™M, and K — @A—%T)*l (2.17)
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if and only if the complex modes are also proper. That is, they verify verify

2N 7 ) o
Z {%} {1/}3‘} - [T’b}NxQN [¢}N><2N = Olnuw (2.18)

j=1

The transformation is thus done in two stages. is used to find a minimal and reciprocal
approximation of the 1dent1ﬁed residue model of the form (2.12)). [psi2nor| then determines ¢ and
w such that the ¢ verify the condition and ¢y is “optimally” close to the ci resulting from
Using the complex modes 1/) and the identified poles A, the matrices are then computed and
the model transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered group of
modes is not significantly coupled to other modes by damping [12]. Groups of modes which can be
approximated by a second order non proportionally damped model can be easily detected using the
frequency separation criterion which must be verified between modes j in the group and modes k
outside the group
2
SHIkET (2.19)
WjiWi
If there does not exist a normal mode model that has complex modes close to the identification
result ¢, the algorithm may not work. This will happen in particular if cp AT el = eM 1! does
not have NQ positive eigenvalues (estimated mass not positive definite).

Practice

For comparisons with undamped FE models, it is essential to obtain estimates of normal modes.
The most accurate results are obtained using a non-proportionally damped normal mode model
obtained with A coarse approximation is given by (useful if the identification is not
good enough to build the minimal and reciprocal model used by id nor). In such cases you can also
consider using with the assumption of proportional damping which directly identifies normal
modes (see more details in section m ).

Scaling problems are often encountered when using the reciprocity to condition to scale the complex
modes in The function allows an optimization of collocated residues based on a
comparison of the identified residues and those linked to the normal mode model. You should be
aware that only works on very good identification results, so that trying it without spending
the time to go through the pole update phase of id rc makes little sense.

The use of this functionality is demonstrated in the following example.

ci=demosdt (’demodemo_id’) % load data and identify
f=ci.Stack{’Test’}.w;
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nor = id_nor(ci.Stack{’IdMain’});
nor2xf (nor,f,’hz iiplot "IdFrf"’); ’ Compute response

% compute residual effects and add normal model contributions

res2xf (ci.Stack{’IdMain’},f,ci.IDopt, [56 6], iiplot "Nor+Stat"’);’ residues
ci.Stack{’Nor+Stat’}.xf=ci.Stack{’Nor+Stat’}.xf+nor2xf (nor,f, hz’);
iicom(’chl’);

The normal mode input nor.pb and output nor.cp matrices correspond to those of an analytical

model with mass normalized modes. They can be compared or combined (fe_exp|) with
analytical models and the modal frequencies nor.freq and damping matrix nor.ga can be used for

predictions (see more details in section [3.4] ).

The [id nor| and [res2nor| algorithms only seek approximations the modes. For FRF predictions
one will often have to add the residual terms. The figure below (taken from demo_id) shows an
example where including residual terms tremendously improves the prediction. Out of band modes
and residual terms are here represented by the E(s) term. Second order models are said to be
complete when E(s) can be neglected [I3]. The addition of residual terms was illustrated in the
example above.

Channel 1

data
--- normal mode model
- = nor+static correction

Amplitude {(m/N)

80 100 120 140 160 180 200 220
Frequency (Hz)

Figure 2.17: FRF xx
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Modal testing differs from system identification in the fact that responses are measured at a number
of sensors which have a spatial distribution which allows the visualization of the measured motion.
Visualization is key for a proper assessment of the quality of an experimental result. One typically
considers three levels of models.

e Input/output models are defined at sensors. In the figure, one represents these sensors as arrows
corresponding to the line of sight measurements of a laser vibrometer. Input/output models are
the direct result of the identification procedure described in chapter

e Wire frame models are used to visualize test results. They are an essential verification tool for the
experimentalist. Designing a test well, includes making sure that the wire frame representation
is sufficiently detailed to give the experimentalist a good understanding of the measured motion.
With non-triaxial measurements, a significant difficulty is to handle the perception of motion
assumed to be zero.

e Finite element models are used for test/analysis correlation. In most industrial applications, test
and FEM nodes are not coincident so that special care must be taken when predicting FEM
motion at test nodes/sensors (shape observation) or estimating test motion at FEM DOFs (shape
expansion).

Figure 3.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are detailed in section [2.7]
. Topology correlation and sensor /shaker placement tools are details in section . A summary of
general tools used to compare sets of shapes is made in section . Shape expansion, which deals
with the transformations between the wire-frame and FE models, is introduced in section . The
results of correlation can be used for hybrid models combining experimental and analytical results
(see section [3.4]) or for finite element model updating (see section ).
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Figure 3.2: Modal identification process with links to corresponding sections

3.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical and sensor /shaker

configurations. Most of this effort is handled by with some use of

Starting with SDT 6.0, FEM sensors (see section ) can be associated with wire frame model, the
strategy where the two models where merged is thus obsolete.

As described in the following sections the three important phases of topology correlation are

e combining test and FEM model including coordinate system definition for the test nodes if

there is a coordinate system mismatch,

e building of an observation matrix allowing the prediction of measurements based on FEM

deformations,

e sensor and shaker placement.

¥ 90 iew
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3.1.1 Defining sensors in the FEM model : data handling
Two types of data are needed to properly associate a test wire frame model to a FEM :

e a FEM model (see section [4.5]). For this simple example, the FEM model (stored in cf.mdl in
the demo) must describe nodes, elements and DOF's

e a test wire-frame model (stored in TEST in the demo) with sensors in the .tdof field, as detailed
in section for the geometry and section for sensors

One then declares the wire frame (with sensors) as case entry as done below (see also the
gartte demo). The objective of this declaration is to allow observation of the FEM response at

sensors (see [sensor Sens)).

model=demosdt (’DemoGartFE’) ¥ load FEM

TEST=demosdt (’demo garttewire’); % see sdtweb(’pre#presen’)

% Store Test as SensDof (linked test wireframe) in the FEM
model=fe_case(model, ’sensdof’, ’sensors’,TEST);

cf=feplot(2); cf.mdl=model; % Display the model in feplot

% Display the superposition of the test wireframe over the FEM
fecom(cf,’ShowFiCoTopo’);

% Open the CoShape Dock from cf, already containing needed data
fecom(cf,’dockCoShape’) ;

Section gives many more details the sensor GUI : the available sensors (sensor trans| |sensor
laser, ...). Section discusses topology correlation variants in more details.

If the data come from files, it can be more convenient to load them directly from the GUIL.

Here is a tutorial for interactive data loading in DockCoTopo with the TestBas tab.

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom(’dockCoTopo’) to open an empty dock. You can also click on
the button CoTopo on the tree in SDT Root.
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2. Click on Select associated to MasterMesh. This will open the import model window. Select
the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart mdl.inp. Data

is loaded and displayed in the feplot figure.

3. Do the same for the SlaveMesh. The test mesh file is located at SDTPath/sdtdemos/gartid.unv.
Data is loaded and displayed in the feplot figure. Once selected, the Unv tab is displayed in
the feplot(’mdl’) figure : it shows the content of what is inside the Unv file.

Check the box corresponding to model and click on Import.

v model ..|GEN [.Mode 247, ...
response (general ... [GEN{1) [w (UFF) 3124x1....
shape data .|GEN(2) [.oo 12%2, re...

Import in Dockld Import

The test wireframe is loaded and displayed in the feplot figure in red.
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Depending on the loaded data for the the SlaveMesh, it contains already or not the sensor
definitions : they are shown as red arrows. It is not the case here.

4. To retrieve sensors definition from a Unv file, the mesured data need to be loaded.

Click on Select associated to DefineTDof. Select again the Unv file and in the Unv tab, check
this time the box corresponding to response and click on Import.

The arrows are then built depending on the measured channels (+X,+Y,+7,-X,-Y,-Z directions
associated to each nodes in the geometry), and displayed.
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The system coordinate is not the same between the test wireframe and the FEM : the test ge-
ometry needs to be moved and superposed to the FEM (this tutorial continues in the following
subsection).

3.1.2 Test and FEM coordinate systems

In many practical applications, the coordinate systems for test and FEM differ. supports
the use of a local coordinate system for test nodes with the basis command.

Interactive test mesh placement is available in the SDT GUI, using command [fe_sensfGuiTestBas.

% Loading the interactive test mesh placement GUI

cf=demosdt(’demo garttebasis’); % Load the demo data

cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe
fecom(cf,’setTestBas’); % Open interactive tab in feplot properties

Operations permitted through the GUI implementation are available in script commands. The
modus operandi considers a three steps process.

e Phase 1 is used get the two meshes oriented and coarsely aligned. The guess is more precise if
a list of paired nodes on the FEM and TEST meshes can be provided.

e In phase 2, the values displayed by in phase 1 are fine tuned to obtain the accurate
alignment.

e In phase 3, the local basis definition is eliminated thus giving a cf.CStack{’sensors’} entry
with both .Node and .tdof fields in FEM coordinates which makes checks easier.

In peculiar cases, the FEM and TEST mesh axes differ, and a correction in rotation in the Phase
2 may be easier to use. An additional rotation to apply in the TEST mesh basis can be obtained
by fulfilling the field rotation in Phase 2. The rotations are applied after other modifications so
that the user can directly interpret the current display. The rotation field corresponds to
a rotate call. The command string corresponding to a rotation of 10 degrees along axis y
is then *ry=10;’. Several rotations can be combined: ’ry=10; rx=-5;’ will thus first perform a
rotation along y of 10 degrees and a rotation along x of -5 degrees. These combinations are left to
the user’s choice since rotation operations are not symmetric (e.g. *rz=5;rx=10;’ is a different call
from ’rx=10;rz=5;").

The following example demonstrates the 3 phases in a script.

cf=demosdt(’demo garttebasis’); 7% Load the demo data
cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe
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% Phase 1: initial adjustments done once
% if the sensors are well distributed over the whole structure
fe_sens(’basis estimate’,cf,’sensors’);

% Phase 1: initial adjustments done once, when node pairs are given
% if a list of paired nodes on the TEST and FEM can be provided
% For help on 3DLinePick see sdtweb(’3DLinePick’)

cf.sel="reset’; % Use 3DLinePick to select FEM ref nodes
cf.sel="-sensors’; % Use 3DLinePick to select TEST ref
i1=[62 47 33 39; % Reference FEM Nodeld

2112 2012 2301 2303]°;% Reference TEST NodeId
cf.sel=’reset’; % show the FEM part you seek
fe_sens(’basis estimate’,cf,’sensors’,il);

%Phase 2 save the commands in an executable form

% The ’BasisEstimate’ command displays these lines, you can

% perform slight adjustments to improve the estimate
fecom(cf,’initTestBas’) J When you change a value script below displayed
fe_sens(’basis’,cf,’sensors’,

’x7, [010], ... % x_test in FEM coordinates
'y, [0 0 1], ... % y_test in FEM coordinates
’origin’,[-1 0 -0.005],... % test origin in FEM coordinates

’scale’, [0.01]1); % test/FEM length unit change

%Phase 3 : Force change of TEST.Node and TEST.tdof to FEM coordinates
fecom(’SetTestBas’,struct(’BasisToFEM’,’do’));

fe_case(cf.mdl, ’sensmatch’)

sens=fe_case(cf.mdl, ’sens’)

Note that FEM that use local coordinates for displacement are discussed in

Here is the continuation of the tutorial for interactive way to superpose and match sensors over the
FEM.

If you have not performed previous tutorial (or if you closed everything at the end), click on this
link in the HTML version of the documentation to get ready for the following.

5. To begin with, it is often useful, if the test geometry globally describes well the model geometry,
to perform an automatic initial guess for the superposition. To so so, click on the button run
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6. From this better relative position, one needs to iterate manually with small translations tx,
ty, tz and rotations rx, ry, rz until the optimum is reached.

| feplot(2,'cax1?) .|

current object info

7. Finally, click on the button Accept associated to BasisToFEM to apply the coordinate trans-
formation to the test wireframe and perform the compute the observation matrix of the FEM
at sensors.
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feplot(2,'cax1’)

current object info

8. Clicking on Finalize will save the result in the corresponding project.

Another strategy using Iterative Closest Point algorithm is also implemented (in the NodePairs
subtable). This will be documented in further release.

3.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test, it is good practice
to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

e Wire frame representations resulting from the placement should allow a good visualization of
test results without expansion. Achieving this objective, enhances the ability of people doing
the test to diagnose problems with the test, which is obviously very desirable.

e seen at sensors, it is desirable that modes look different. This is measured by the condition
number of [c@]” [c¢] (modeshape independence, see [I4]) or by the magnitude of off-diagonal
terms in the auto-MAC matrix (this measures orthogonality). Both independence and orthog-
onality are strongly related.

e sensitivity of measured modeshape to a particular physical parameter (parameter visibility)

Sensor placement capabilities are accessed using the function as illustrated in the

d_cor (’ TutoSensPlace’) demo. This function supports the effective independence [14] and max-
imum sequence algorithms which seek to provide good placement in terms of modeshape indepen-
dence.

It is always good practice to verify the orthogonality of FEM modes at sensors using the auto-MAC
(whose off-diagonal terms should typically be below 0.1)



cphi = fe_c(mdof,sdof)*mode; ii_mac(’cpa’,cphi,’mac auto plot’)

For shaker placement, you typically want to make sure that

e you excite a set of target modes,

e or will have a combination of simultaneous loads that excites a particular mode and not other
nearby modes.

The placement based on the first objective is easily achieved looking at the minimum controllability,
the second uses the Multivariate Mode Indicator function (see . Appropriate calls are
illustrated in the d_cor (’ TutoSensPlace’) demo.

3.2 Test/analysis correlation

Correlation criteria seek to analyze the similarity and differences between two sets of results. Usual
applications are the correlation of test and analysis results and the comparison of various analysis
results.

Ideally, correlation criteria should quantify the ability of two models to make the same predictions.
Since, the predictions of interest for a particular model can rarely be pinpointed precisely, one has
to use general qualities and select, from a list of possible criterion, the ones that can be computed
and do a good enough job for the intended purpose.

EL R o s LR

3.2.1 Shape based criteria

The[ii_mad|interface implements a number of correlation criteria. You should at least learn about the
Modal Assurance Criterion (MAC) and Pseudo Orthogonality Checks (POC) (theoretical description
can be found in . These are very popular and should be used first. Other criteria should be
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used to get more insight when you don’t have the desired answer or to make sure that your answer
is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific as to what you
are trying to do with your model. Since that rarely happens, you should know the possibilities and
stick to what is good enough for the job.

The following table gives a list of criteria implemented in the interface.

MAC Modal Assurance Criterion (10.32). The most popular criterion for correlating vectors.
Insensitive to vector scaling. Sensitive to sensor selection and level of response at each
sensor. Main limitation : can give very misleading results without warning. Main advan-
tage : can be used in all cases. A MAC criterion applied to frequency responses is called
FRAC.

pPOC Pseudo Orthogonality Checks (10.38). Required in some industries for model validation.
This criterion is only defined for modes since other shapes do verify orthogonality condi-
tions. Its scaled insensitive version corresponds to a mass weighted MAC and is
implemented as the MAC M commands. Main limitation: requires the definition of a mass
associated with the known modeshape components. Main advantage : gives a much more
reliable indication of correlation than the MAC.

Error = Modeshape pairing (based on the MAC or MAC-M) and relative frequency error and MAC
correlation.

Rel Relative error ((10.39)). Insensitive to scale when using the modal scale factor. Extremely
accurate criterion but does not tell much when correlation poor.

COMAC  Coordinate Modal Assurance Criteria (three variants implemented in compare
sets of vectors to analyze which sensors lead poor correlation. Main limitation : does not
systematically give good indications. Main advantage : a very fast tool giving more insight
into the reasons of poor correlation.

MACCO  What if analysis, where coordinates are sequentially eliminated from the MAC. Slower but
more precise than COMAC.

describes the low-level calls to shape based correlation tools implemented in SDT, but to
ease their practical usage, a dedicated MAC tab has been developed in the dock CoShape.

Here is a tutorial to present the classical GUI usage.

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom(’dockCoShape’) to open an empty dock. You can also click on
the button CoShape on the tree in SDT Root.



File Feplot Edit View Debug Desktop Window Help »

UE-+R O saa 2 cE P HD LO® EODEO
| Figure 1: MacPro | | feplot(2) \
MACx
EData

Erda b} empty

E-db L] empty

[Fsens k] empty

Ercfa oLl 3.0

i cfb L 20

Erci L.}
FMacParam
#MacPlot [ MAC Cross A-B v
[ MacError =l ErmB v
[F SensorSet
HSaveDock Save

urrent object info

| feplot(3,'caxT) |

No element selection to plot

current object info

2. Click on g associated to the line sens to open the file containing the result of the superpo-
sition between a test wireframe and a FEM. This will open the import model window. Select
the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart_CoTopo.mat
(it corresponds to the dock CoTopo saved file of the tutorial in section ). Data is loaded
and displayed in the two feplot figures. A brief description of the number of the observation
is given in the table providing the number of sensors Nsens and the number of FEM DOFs
NDof for the observation matrix.
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3. Click on g associated to the line da to load the identified modes. In the opening window,
select the file SDTPath/sdtdemos/gartid.unv. This will open the Unv tab in which you need
to select the line containing the shape data and click on import.

Do the same with the line db to load numerical modes. Select the file
SDTPath/sdtdemos/gart mdl.fil (mode computation result from abaqus).

The modeshapes are visible in both feplot figures.
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A brief description the data is displayed:

feplot(2,‘cax1) |

HOBO

Mode 1 at 4.931e-05 Hz

| feplot(3,'cax1?)

1@ 6.507 Hz 0.98 %

e for thee test da, the number of identified residues NsensNact and the number of shapes

Nshape

e for thee FEM db, the number of DOF Ndof and the number of shapes Nshape

4. Click on [::3' associated to the line MacPlot to open the MAC matrix in a new window.
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You can click on the square in the MAC matrix to interactively select the corresponding mode
shapes in the feplot figure.

5. To pair more modes, expand the row MacError and allow a frequency shift Df of 20%.
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Click then on [:D’ associated to the line MACError to open the MACError display in a new
window.

[“Figure 1: MacPro ¢ | MAC(1) | MAC-Eror(1) * |
VS. cpa :
‘ ‘
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Paired Mode A & B

06 & 11

09 & 14

10 & 16

5 10
A FIF [%]

70 80
MAG [%)]

You can see here on the left the MAC value and on the right the relative frequency shift
between the two sets of paired modes.

3.2.2 Energy based criteria
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The criteria that make the most mechanical sense are derived from the equilibrium equations. For
example, modes are defined by the eigenvalue problem ((6.95)). Thus the dynamic residual

{RJ} = [K - wgz‘idM] {iq;} (3.1)
should be close to zero. A similar residual (3.5)) can be defined for FRFs.

The Euclidean norm of the dynamic residual has often been considered, but it tends to be a rather
poor choice for models mixing translations and rotations or having very different levels of response
in different parts of the structure.

To go to an energy based norm, the easiest is to build a displacement residual

{Rj} - [K}il [K _W]zidM} {¢idj} (3-2)

and to use the strain |R;|x = R;FKRJ or kinetic |Rj|y = R;FMR] energy norms for comparison.

Note that [K } need only be a reference stiffness that appropriately captures the system behavior.
Thus for cases with rigid body modes, a pseudo-inverse of~ the stiffness (see section ), or a mass
shifted stiffness can be used. The displacement residual R; is sometimes called error in constitutive
law (for reasons that have nothing to do with structural dynamics).

This approach is illustrated in the gartco demo and used for MDRE in While much more
powerful than methods implemented in the development of standard energy based criteria
is still a fairly open research topic.

3.2.3 Correlation of FRFs

Comparisons of frequency response functions are performed for both identification and finite element
updating purposes.

The quadratic cost function associated with the Euclidean norm

Ji(@) = > [Hij(sk) — Hij(si)? (33)
1j measured, k€
is the most common comparison criterion. The main reason to use it is that it leads to linear
least-squares problem for which there are numerically efficient solvers. uses this cost function
for this reason).

The quadratic cost corresponds to an additive description of the error on the transfer functions and,
in the absence of weighting. It is mostly sensitive to errors in regions with high levels of response.



The log least-squares cost, defined by

O = Y g | ulok)

ij measured, k€N Hij(sk)

uses a multiplicative description of the error and is as sensitive to resonances than to anti-resonances.

While the use of a non-linear cost function results in much higher computational costs, this cost

tends to be much better at distinguishing physically close dynamic systems than the quadratic cost

(except when the difference is very small which is why the quadratic cost can be used in identification
phases).

The utility function computes these two costs for two sets of FRFs xf1 and x£2 (obtained
through test and FE prediction using for example). The evaluation of these costs provides
a quick and efficient way to compare sets of MIMO FRF and is used in identification and model
update algorithms.

B (3-4)

Note that you might also consider the complex log of the transfer functions which would give a
simple mechanism to take phase errors into account (this might become important for extremely
accurate identification sometimes needed for control synthesis).

If the response at a given frequency can be expanded to the full finite element DOF set, you should
consider an energy criterion based on the dynamic residual in displacement, which in this case takes
the form

(R} = [K] 7 11200)]) {ges (@)} — [b] {u(w)}] (3:5)

and can be used directly of test/analysis correlation and/or finite element updating.

Shape correlation tools provided by can also be used to compare frequency responses. Thus
the MAC applied to FRFs is sometimes called FRAC.

3.3 Expansion methods

Expansion methods seek to estimate the motion at all DOF's of a finite element model based on
measured information (typically modeshapes or frequency response functions) and prior, but not
necessarily accurate, information about the structure under test in the form of a reference finite
element model. As for all estimation techniques, the quality of expansion results is deteriorated by
poor test results and/or poor modeling, but good results can be obtained when one or both are
accurate.

The d_cor demonstration illustrates modeshape expansion in the SDT. This section summarizes the
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theory and you are encouraged to download [I5][16] from sdtools.com if you want more details.

3.3.1 Underlying theory for expansion methods

The unified perspective driving the SDT architecture is detailed in [I5][I6]. The proposed classifi-
cation is based on how various methods combine information about test and modeling errors.

Test results yres: and expanded shapes g, are related by the observation equation (4.1)). Test error
is thus measured by a norm of the difference between the test quantity and the observed expanded
shape

e = [{yrest} — [ {gea} g (3.6)

where the choice of the @ norm is an important issue. While the Euclidian norm (@ = I) is used

in general, a norm that takes into account an estimated variance of the various components of yrest
seems most appropriate. Various energy based metrics have also been considered in [17] although
the motivation for using a energy norm on test results is unclear.

The expanded vector is also supposed to verify an equilibrium condition that depends on its nature.
Since the model and test results don’t match exactly one does not expect the expanded vector
to verify this equation exactly which leads to the definition of a residual. Standard residuals are
R; = Z(wj;)¢; for modeshapes and R; = Z(w)q — F for frequency response to the harmonic load F'.

Dynamic residuals correspond to generalized loads, so they should be associated to displacement
residuals and an energy norm. A standard solution [I8] is to compute the static response to the
residual and use the associated strain energy, which is a good indicator of modeling error,

1R (gl = (BT [K] (R} (3.7)

where K is the stiffness of a reference FEM model and can be a mass-shifted stiffness in the presence
of rigid body modes (see section ). Variants of this energy norm of the dynamic residual can
be found in [I7].

like all estimation techniques, expansion methods should clearly indicate a trade-off between test and
modeling errors, since both test and model are subject to error. But modeling errors are not easily
taken into account. Common expansion techniques thus only use the model to build a subspace of
likely displacements.

Interpolation methods, the simplest form of subspace method are discussed in section . Stan-
dard subspace methods and their implementation are discussed in section section . Methods
taking modeling errors into account are discussed in section |3.3.4].



3.3.2 Basic interpolation methods for unmeasured DOF's

Translations are always measured in a single direction. By summing the measurements of all sensors
at a single physical node, it is possible for triaxial measurements to determine the 3-D motion.
Using only triaxial measurements is often economically /technically impossible and is not particularly
desirable. Assuming that all unmeasured motions are zero is however often not acceptable either
(often distorts the perception of test modeshapes in 3-D wire frame displays).

Historically, the first solutions to this problem used geometrical interpolation methods estimating
the motion in less important directions based on measurements at a few selected nodes.

Wire-frame displays can be considered as trivial interpolation methods since the motion between
two test nodes is interpolated using linear shape functions.

In the SDT, you can easily implement interpolation methods using matrices which give the relation
between measured DOF's tdof and a larger set of deformation DOF's ndof. The easiest approach is
typically a use of the [fe_sens WireExp|command as in the example below

% generate example, see sdtweb(’demosdt.m#Sleeper’)

cf=demosdt (’sleeper’);

TR=fe_sens (’wireexp’,cf.CStack{’Test’})
fe_sens(’WireExpShow’,cf,TR)

% display partial shapes as cell array

disp(TR)

r1=[{’’} fe_c(TR.adof([1 3 5]))’;

fe_def (’subdof-cell’,fe_def(’subdef’,TR,[1 3 5]),[1 2 46 48]°)]

Given an interpolation matrix TR, you can animate interpolated shapes using
cf.def={def,exp}. The interpolation (expansion) matrix TR has fields

e TR.DOF lists DOF's where the response is interpolated

e TR.adof lists input DOFs, these should match identifiers in the first column of a
field.

e TR.def give the displacement at all DOFs corresponding to a unit sensor motion. Note as
shown in the example above that a 1.08 (1 — y) measurement should lead to a negative value
on the 1.02 (1y) DOF. The same holds for measurements in arbitrary directions, TR.def should
be unity when projected in the measurement direction.

Thelfe_sens WireExp|command considers the wire frame as a coarse FEM model and uses expansion
(see section for details) to generate the interpolation. This is much more general than typical
geometric constructions (linear interpolations, spline), which cannot handle arbitrary geometries.
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Manual building of the interpolation matrix can be done by filling in the TR.def columns.
fe sens(’WireExpShow’,cf,TR) can then be used to verify the interpolation associated with each
sensor (use the 4 /- buttons to scan trough sensors).

Starting from a basis of vectors exp.def with non unit displacements at the measurement DOF's,
you can use

TR=exp;TR.adof=tdof (:,1);
TR.def=exp.def*pinv(fe_c(exp.DOF,tdof)*exp.def);

to minimize the norm of the test error (3.6]) for a response within the subspace spanned by exp.def
and thus generate a unmeasured DOF interpolation matrix.

3.3.3 Subspace based expansion methods

If one can justify that true motion can be well represented by a vector within the subspace char-
acterized by a basis T" with no more columns than there are sensors (one assumes that the true
displacement is of the form {qg,} = [T]{¢r}), an estimate of the true response simply obtained by
minimizing test error, that is solving the least-squares problem

{ar} = argmin || {yres:} — [¢] [T] {gr} I3 (3.8)

Modeshape expansion based on the subspace of low frequency modes is known as modal [19] or
SEREP [20] expansion. The subtle difference between the two approaches is the fact that, in
the original paper, modal expansion preserved test results on test DOFs (DOFs and sensors were
assumed to coincide) and interpolated motion on other DOFs. The SDT supports modal expansion
using

yExp = fe_exp(yTest,sens,T)

where yTest are the measured vectors, sens is the sensor configuration (see or an obser-
vation matrix c, and T is a set of target modes (computed using or imported from an other
FE code).

An advantage of the modal methods is the fact that you can select less target modes that you have
sensors which induces a smoothing of the results which can alleviate some of the problems linked to
measurement /identification errors.

The study presented in [I5] concludes that modal based methods perform very well when an ap-
propriate set of target modes is selected. The only but essential limitation seems to be the absence
of design/verification methodologies for target mode selection. Furthermore it is unclear whether a
good selection always exists.



Modeshape expansion based on the subspace of static responses to unit displacements at sensors is
known as static expansion or Guyan reduction [21].

When expanding modeshapes or FRFs, each deformation is associated to a frequency. It thus
seems reasonable to replace the static responses by dynamic responses to loads/displacements at
that frequency. This leads to dynamic expansion [22]. In general, computing a subspace for each
modeshape frequency is too costly. The alternative of using a single “representative” frequency for
all modes was proposed in [23] but suffers from the same limitations as choosing this frequency to
be zero (Guyan reduction).

The SDT supports full order static and dynamic expansion using
yExp=fe_exp(yTest,fTest,sens,m,k,mdof)

where fTest can a single frequency (0 for static) or have a value for each shape. In the later case,
computational times are usually prohibitive so that reduced basis solutions discussed below should
be used.

For tests described by observation matrices, the unit displacement problem defining static modes
can be replaced by a unit load problem [T] = [K] ™" [¢]”. For structures without rigid body modes
this generates the same subspace as the unit displacement problem. In other cases [K] is singular
and can be simply mass-shifted (replaced by K + oM with « usually taken small when compared
to the square of the first flexible frequency, see section ).

In practice, static expansion can be restated in the form where T' corresponds to constraint
or modes associated to the load collocated to the output shape matrix characterizing sensors (see
section ). Restating the problem in terms of minimization is helpful if you want to compute your
static responses outside the SDT (you won’t need to import your mass and stiffness matrices but
only the considered static responses).

The weakness of static expansion is the existence of a frequency limit found by computing modes of
the structure with all sensors fixed. In many practical applications, this frequency limit is not that
low (typically because of lack of sensors in certain areas/directions). You can easily compute this

frequency limit using

Full order dynamic expansion is typically too expensive to be considered for a full order model.
The SDT supports reduced basis dynamic expansion where you compute dynamic expansion on
a subspace combining modes and static responses to loads at sensors. A typical calling sequence
combining modeshape computations and static correction would be

[md0,f0,kd] = fe_eig(m,k, [105 30 1e2]);
T = [kd \ ((sens.ctn*sens.cna)’) mdO];
mdex = fe_exp(IIres.’,IIpo(:,1)*2*pi,sens,m,k,mdof,T);
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You should note however that the minimum dynamic residual expansion (MDRE) discussed in
the next section typically gives better results at a marginal computational cost increase, so that you
should only use dynamic expansion to expands FRFs (MDRE for FRFs is not currently implemented
in or operational deflection shapes (for which modeling error is hard to define).

3.3.4 Model based expansion methods

Given metrics on test (3.6) and modeling (3.7]) error, one uses a weighted sum of the two types of
errors to introduce a generalized least-squares problem

. 2
ming; ., || R(gj.ex) [ + i€ (3.9)

MDRE (Minimum Dynamic Residual Expansion) assumes test errors to be zero. MDRE-WE (MDRE
With test Error) sets the relative weighting (v, coefficient) iteratively until the desired bound on test
error is reached (this is really a way to solve the least-squares problem with a quadratic inequality
as proposed in [24]).

These methods are currently only implemented for modeshape expansion. When they can be used,
they are really superior to subspace methods. The proper strategy to choose the error bound in
MDRE-WE is still an open issue but it directly relates to the confidence you have in your model
and test results.

3.4 Structural dynamic modification

While test results are typically used for test/analysis correlation and update, experimental data have
direct uses. In particular,
e experimental damping ratios are often used for finite element model predictions;

e identified models can be used to predict the response after a modification (if this modification
is mechanical, one talks about structural modification, if it is a controller one does closed loop
response prediction);

e identified models can be used to generate control laws in active control applications;

e if some input locations of interest for structural modification have only been tested as output
locations, the reciprocity assumption (see section m) can be used to predict unmeasured



transfers. But these predictions lack residual terms (see section ) which are often impor-
tant in coupled predictions.

Structural modification and closed loop predictions are important application areas of SDT. For
closed loop predictions, users typically build state-space models with res2ss and then use control
related tools (Control Toolbox, SIMULINK). If mechanical modifications can be modeled with a
mass/damping/stiffness model directly connected to measured inputs/outputs, predicting the effect
of a modification takes the same route as illustrated below. Mass effects correspond to acceleration
feedback, damping to velocity feedback, and stiffness to displacement feedback.

The following illustrates on a real experimental dataset the prediction of a 300 g mass loading effect
at a locations 1012 — z and 1112 — 2z (when only 1012 — z is excited in the gartid dataset used
below).

ci=demosdt(’demo gartid est’);
ci.Stack{’Test’}.xf=-ci.Stack{’Test’}.xf;% driving 1012-z to 1012z
ci.Stack{’Test’}.dof(:,2)=12.03;

ci.IDopt.reci=’1 FRF’; idcom(ci,’est’);

ind=fe_c(ci.Stack{’IdMain’}.dof(:,1),[1012;1112],’ind’);
po_ol=ci.Stack{’IdMain’}.po;

% Using normal modes

NOR = res2nor(ci.Stack{’IdMain’}); NOR.pb=NOR.cp’;

S=nor2ss(NOR, ’hz’); % since NOR.idopt tells acc. SS is force to Acc

mass=.3; a_cl = S.a - S.b(:,ind)*S.c(ind, :)*mass;

po_cln=ii_pof (eig(a_cl)/2/pi,3,2)

if sdtdef (’UseControlToolbox-safe’,1) && any(exist(’ss’,’file’)==[2 6]);
SS=S;set(SS,’b’,S.b(:,4),°d’,8.d(:,4),’ InputName’,S. InputName(4))

else % Without CTbox
S$S=8;8S.b=8S.b(:,4);385.d=8S.d(:,4);SS.dof_out=SS.dof_out(4,:);

end

gbode (SS,ci.Stack{’Test’}.w*2*pi,’iiplot "Normal"’);

% Using complex modes

SA = res2ss(ci.Stack{’IdMain’},’A1110°);

a_cl = S.a - S.b(:,ind)*S.c(ind, :)*mass;

po_clx=ii_pof (eig(a_cl)/2/pi,3,2)

if sdtdef (’UseControlToolbox-safe’,1) && any(exist(’ss’,’file’)==[2 6]);
SS=SA;set(SS,’b’,S8.b(:,4),’d’,S.d(:,4)*0,’ InputName’,S. InputName(4))

else % Without CTbox
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SS=SA;SS.b=8SS.b(:,4);SS.d=8S.d(:,4)*0;SS.dof_out=S.dof_out(4,:);
end
gbode (SS,ci.Stack{’Test’}.w*2*pi, ’iiplot "Cpx"’);
iicom(’ch4’);

% Frequencies

figure(1);in1=1:8;subplot(211);

bar ([ po_clx(inl,1) po_cln(inl,1)]./po_ol(inl,[1 1]))
ylabel(’\Delta F / F’);legend(’Complex modes’,’Normal modes’)
set(gca,’ylim’,[.5 11)

% Damping

subplot (212) ;bar ([ po_clx(in1,2) po_cln(ini,2)]./po_ol(ini,[2 2]))
ylabel(’\Delta \zeta / \zeta’);legend(’Complex modes’,’Normal modes’)
set(gca,’ylim’,[.5 1.5])

Notice that the change in the sign of ci.Stack{’Test’}.xf needed to have a positive driving
point FRF's (this is assumed by . Reciprocity was either applied using complex (the *A1110°
command in returns all input/output pairs assuming reciprocity) or normal modes with
NOR.pb=NOR.cp’.

Closed loop frequency predictions agree very well using complex or normal modes (as well as with
FEM predictions) but damping variation estimates are not very good with the complex mode state-
space model.

There is much more to structural dynamic modification than a generalization of this example to
arbitrary point mass, stiffness and damping connections. And you can read [25] or get in touch with
SDTools for our latest advances on the subject.
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This chapter introduces notions needed to use finite element modeling in the SDT. It illustrates how
to define mechanical problems (model, boundary conditions, loads, etc.), compute and post-process
the response

e using the feplot Graphical User Interface,

e or using script commands.

The GUIs are described and the connections between graphical and low level data are detailed for

the model |[data structures,
the (i.e. DOFs, boundary conditions, loads, ...),

the to a specified

the results [post-processing] .

4.1 FE mesh declaration

This section gives a summary of FE mesh declaration with pointers to more detailed documentation.

4.1.1 Direct declaration of geometry (truss example)

Hand declaration of a model can only be done for small models and later sections address more
realistic problems. This example mostly illustrates the form of the model data structure.

L 3 ]

SONNNANN

Y
P
-

Figure 4.1: FE model.

In d mesh(’TutoBmesh-s1’) , the geometry is declared in the model.Node matrix (see section
and section ). In this case, one defines 6 nodes for the truss and an arbitrary reference node

to distinguish principal bending axes (see [beami))
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yA NodeID wunused x y z
model .Node=[ 1 000 01 0;
2 000 0 0 0;
3 000 11 0;
4 000 1 0 0;
5 000 2 0 0;
6 000 21 0;
7 000 11 1]; % reference node

The model description matrix (see section ) describes 4 longerons, 2 diagonals and 2 battens.
These can be declared using three groups of elements

model.Elt=[ ...
% declaration of element group for longerons
Inf abs(’beaml’) ;
Ynodel mnode2 MatID ProID nodeR, zeros to fill the matrix
1 3 1 1 7 0 ;
3 6 1 1 7 0 ;
2 4 1 1 7 0 ;
4 5 1 1 7 0 ;
% declaration of element group for diagonals
Inf abs(’beamil’) ;
2 3 1 2 7 0 ;
4 6 1 2 7 0 ;
% declaration of element group for battens
Inf abs(’beaml’) ;
3 4 1 3 7 0 .
5 6 1 3 7 01;

4.2 Building models with feutil

Declaration by hand is clearly not the best way to proceed in general[feutil] provides a number of
commands for finite element model creation[feutil]should be preferred to which is a lower
level command. One can find meshing examples through the feutil commands in

e d_truss : this demo builds a truss model using beam elements.

e d_ubeam : the beginning of the demo builds a volume model that is used is various examples
of this documentation.
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The principle of feutil meshing strategy is to build sub model parts using the feutil basic meshing
commands (extrusion, rotation, revolution, division, ...) and to assemble those models to form the
resulting model thanks to the [feutil AddTest|commands.

Following detailed example builds the GARTEUR model.

First the model data structure is initialized (see sdtweb model), with fields Node (that contains some
initial nodes that will be used to begin building of elements by elementary operations), E1t (which
is empty at this step), unit (that contains the unit of the mesh, that must be coherent with material
properties defined later. Here the SI system is used that means that node positions are defined in
meters.), and name (that contains model name that is used to identify the model in the assembly
steps for example).

%% Stepl : Initialize model
model=struct(’Node’,[1 0 0 O O 0 0; 20000 0 0.15;
3000 0.41.00.176; 4 00 0 0.4 0.9 0.176],...
’E1t’, [],’unit’,’SI’, name’,’GARTEUR’) ;

Now the fuselage is built by creating an initial beam between nodes 1 and 2 (see [feutil Object]
commands to easily create a number of elementary models). Then the beam is extruded with an
irregular spatial step in the x direction, to form quad4 elements that represents the fuselage.

%% Step2 Fuselage

model .Elt=feutil (’ObjectBeamlLine 1 2’ ,model);

model=feutil (’Extrude O 1.0 0.0 0.0’,model,...
[linspace(0,.55,5) linspace(.65,1.4,6) 1.5]);

The same strategy is used to mesh the quads corresponding to the plane tail. The extremities of
the initial beam to be extruded are not explicitely defined as previously, but are found in the nodes
created in the last step through the [feutil FindNode|command (that returns the Nodeld of nodes
found by FindNode). Here nodes are found at z position equal to .15, and x upper than 1.4. The
vertical tail is built in a temporary model named moO. Note that moO is first initialized with principal
model nodes (moO=model;) so that new nodes that will be added during the extrusion respect the
Nodeld numerotation of the main model. Then we can simply add the vertical tail moO to the
main model using the [feutil AddTestfCombine command (if node numerotation was not coherent
for the new part moO and the main model already defined nodes, we would have to use the [feutil]

AddTestMerge command that can be really time consuming).

%% Step3 vertical tail

nl=feutil (’FindNode z==.15 & x>=1.4’,model);
moO=model; mo0.Elt=feutil(’0bjectBeamlLine’,nl);
moO=feutil (’Extrude 3 0 O .1’,mo0);
model=feutil (’AddTestCombine-noori’ ,model,mo0);
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Then the vertical horizontal tail, the right and left drums, the wings and the connection plate are
built and added to main model using the same strategy:

%% Step4d Vertical horizontal tail

nl=feutil (’FindNode z==.45’,model)

moO=model; mo0.Elt=feutil(’0bjectBeamlLine’,nl);
moO=feutil (’Extrude 0 0.0 0.2 0.0’,mo0,[-1 -.5 0 .5 1]);
model=feutil (’AddTestCombine;-noori’,model,mo0) ;

%% right drum

moO=model; mo0.Elt=feutil(’0ObjectBeamlLine 3 47°);
moO=feutil (’Extrude 1 .4 0 0’,mo0);

moO=feutil (’Divide’ ,mo0, [0 2/40 15/40 25/40 1],[0 .7 11);
model=feutil (’AddTestCombine;-noori’ ,model,mo0) ;

%% left drum
moO=feutil(’SymSel 1 0 1 0’,mo0);
model=feutil (’AddTestCombine;-noori’,model,mo0) ;

%% wing

nl=feutil (’FindNode y==1 & x>=.55 & x<=.65’ ,model) ;

moO=model; mo0.Elt=feutil(’0bjectBeamlLine’,nl);

moO=feutil (’Divide’ ,mo0, [0 1-.762 1]);

moO=feutil (’Extrude 0 0.0 -1.0 0.0’,m00,[0 0.1 linspace(.15,.965,9)
linspace(1.035,1.85,9) 1.9 2.01);

model=feutil (’AddTestCombine;-noori’ ,model,mo0) ;

%% Connection plate

nl=feutil (’FindNode y==0.035 | y==-0.035 & x==.55’,model)

moO=model; mo0.Elt=feutil(’0bjectBeamlLine’,nl);

moO=feutil (’Divide 2’ ,mo0);

moO=feutil (’TransSel -.02 0 0’,mo0);

moO=feutil (’Extrude 0 1 0 0’,mo0,[0 .02 .12 .14]);

il=intersect(feutil (’FindNode group6’,model),feutil(’FindNode groupl’,mo0));
moO=feutil(’TransSel 0.0 0.0 -0.026’,mo0);

model=feutil (’AddTestCombine;-noori’ ,model,mo0) ;

The stiffness connecting the connection plate are built extruding a mass object to form a beam, and
then changing the name of the beam group as celas which are the spring elements in SDT.

%% Stepb Stiff links for the connection
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moO=model; mo0.Elt=feutil(’0Object mass’,il);
moO=feutil (’Extrude 1 0 0 -.026’,mo00);
mo0.Elt=feutil(’set groupl name celas’,mo0);

The celas properties are defined in the element matrix (see sdtweb celas for more details). First
row of moO is the header, the springs are stored as following rows (2nd row to the end). The springs
connect the master DOF (column 3) z, y, 2, 0, and 6, to the same DOF on the slave nodes (column
4, 0 that mean the same as master). The stiffness (column 7) is defined at 1e12. The 4 springs inmo0
are then added to the main model.

%% Step6 set connected DOFs and spring value

mo0.E1t(2:end,3)=12345; 7, master dof

mo0.E1t(2:end,4)=0; % same dof as master

mo0.E1t(2:end,7)=1e12; 7, stiffness

model=feutil (’AddTestCombine;-noori’,model,mo0); % add springs to main model

Then group 6 is divided in 2 groups to get the part covered by constraining layer in a separated
group (in order to help the later manipulations of this part, such as material identifier definition).

%% Step7 Make a group of the part covered by the constraining layer
model.Elt=feutil(’Divide group 6 InNode {x>.55 & y<=.85 & y>=-.85}’,model);

Then some masses are added through the ObjectMass command. Then all masses are regrouped in
a same group.

%% Step8 Tip masses

il=feutil (’FindNode y==0.93 | y==-0.93 & x==0.42’,model)
moO=model; mo0.Elt=feutil(’0Object mass’,il1,[0.2 0.2 0.2]); %200g
model=feutil (’AddTestCombine;-noori’ ,model,mo0) ;

il=feutil (’FindNode z==.45 & y==0’,model)

moO=model; mo0.Elt=feutil(’0Object mass’,i1l,[0.5 0.5 0.5]); %500g
model=feutil (’AddTestCombine;-noori’ ,model,mo0) ;
model=feutil(’Join massl’,model); % all mass in the same group

Then plates are oriented (see the [feutil Orient|command) so that offset in correct direction can
be defined. Offset (distances in the normal direction from element plane to reference plane) are
defined in element matrices in the 9th column for quad4 elements. The[feutil FindEIt|command
is used to find the indices of considered elements in the model element matrix model.Elt.

%% Step9 Orient plates that will need an off-set
model .Elt=feutil (’Orient 4:8 n 0 0 3’,model);
il=feutil (’FindElt group4:5’,model);
model.E1t(i1,9)=0.005; % drums (positive off-set)
il=feutil (’FindElt group6:7’ ,model);
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model.E1t(i1,9)=-0.005; % wing
il=feutil (’FindElt group8’,model);
model.E1t(i1,9)=0.008; % wing

Now ProId (element property identifier) and MatId (material identifier) are defined for each element.
In last meshing steps, elements have been added by group (or separated), so that we only attribute
a material and element property identifier for each group.

%% Stepl0 Deal with material and element properties identifier:
model .Elt=feutil (’Set groupl matl pro3’,model);

model .Elt=feutil (’Set group2:7 matl prol’,model);

model .Elt=feutil (’Set group8 mat2 pro2’,model);

model .Elt=feutil (’Set group6 pro4’,model);

And following lines define associated properties:

%% Stepll Define associated properties:
model.pl=[m_elastic(’dbval 1 aluminum’);
m_elastic(’dbval 2 steel’)];

model.il = [1 fe_mat(’p_shell’,’SI’,1) 2 10 .01

2 fe_mat(’p_shell’,’SI’,1) 2 10 .016

3 fe_mat(’p_shell’,’SI’,1) 210 .05

4 fe_mat(’p_shell’,’SI’,1) 210 .011];
The result is then displayed in feplot, coloring each material differently:

%% Stepl2 Display in feplot
cf=comgui(’guifeplot -project "SDT Root"’,3); % Robust open in figure(3)
cf.model=model; % display model
fecom(’;sub 1 1;view3; colordatamat-edgealpha.1’); % 1 subplot, specify view, color,

4.3 Building models with femesh

Declaration by hand is clearly not the best way to proceed in general[femesh]| provides a number of
commands for finite element model creation. The first input argument should be a string containing

a single command or a string of chained commands starting by a ; (parsed by
which also provides a command mode).

To understand the examples, you should remember that uses the following standard global
variables



FEnode main set of nodes

FEnO selected set of nodes

FEn1 alternate set of nodes

FEelt main finite element model description matrix
FEelO selected finite element model description matrix
FEell alternate finite element model description matrix

In the example of the previous section (see also the d_truss demo), you could use as follows:
initialize, declare the 4 nodes of a single bay by hand, declare the beams of this bay using the
objectbeamline command

%% Stepl Declare nodes and build single bay
FEelO=[]; FEelt=[];

FEnode=[1 0 0 0 00 0;2 000 010; ...
3000 100;4000 11 0];
femesh(’objectbeamline 1 3 024 03401 4%);

The model of the first bay in is now selected (stored in FEel0). You can now put it in the main
model, translate the selection by 1 in the x direction and add the new selection to the main model

%% Step2 Put in main model, translate seclection and add to main model
femesh(’;addsel;transsel 1 0 0O;addsel;info’);

model=femesh(’model’); ¥ export FEnode and FEelt geometry in model
cf=feplot; cf.model=model;

fecom(’ ;view2;textnode;triax;’);

You could also build more complex examples. For example, one could remove the second bay, make
the diagonals a second group of elements, repeat the cell 10 times, rotate the planar truss thus
obtained twice to create a 3-D triangular section truss and show the result (see d_truss)

%% Step3 Create a 3D struss based on a single 2D bay
femesh(’reset’);

femesh(’test2bay’);

femesh(’removeelt group2’);

femesh(’divide group 1 InNode 1 47);

femesh(’set groupl name barl’);

femesh(’;selgroup2 1;repeatsel 10 1 0 O;addsel’);
femesh(’ ;rotatesel 1 60 1 0 O;addsel;’);
femesh(’;selgroup3:4;rotatesel 2 -60 1 0 0;addsel;’);
femesh(’;selgroup3:8’);

model=femesh(’model0’); Y export FEnode and FEelO in model
cf=feplot; cf.model=model;

fecom(’ ;triaxon;view3;view y+180;view s-10’);
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allows many other manipulations (translation, rotation, symmetry, extrusion, generation
by revolution, refinement by division of elements, selection of groups, nodes, elements, edges, etc.)
which are detailed in the Reference section.

Other more complex examples are treated in the tutorial scripts listed using d_ mesh(’Tuto’) or in
scripts beambar, d_ubeam, gartfe.

4.3.1 Automated meshing capabilities

While this is not the toolbox focus, SDT supports some free meshing capabilities.

fe_gmsh|is an interface to the open source 3D mesher GMSH. Calls to this external program can be
used to generate meshes by direct calls from MATLAB. Examples are given in the function reference.

fe_tetgen is an interface to the open source 3D tetrahedral mesh generator. See help fe _tetgen
for commands.

fe fmesh(’gmesh’) implements a 2D quad mesher which meshes a coarse mesh containing triangles
or quads into quads of a target size. All nodes existing in the rough mesh are preserved. The
-noTest option removes the initial mesh.

% build rough mesh

model=feutil(’Objectquad 1 1’,[0 0 0;2 0 0; 2 3 0; 0 3 0],1,1);
model=feutil(’Objectquad 1 1’,model,[2 0 0;8 0 0; 8 1 0; 2 1 0],1,1);
% start the mesher with characteristic length of .1
model=fe_fmesh(’qmesh .1’,model.Node,model.Elt);

feplot(model);

Other resources in the MATLAB environment are initmesh from the PDE toolbox and the Mesh2D
package.

4.3.2 Importing models from other codes

The base SDT supports reading/writing of test related Universal files. All other interfaces are
packaged in the FEMLink extension. FEMLink is installed within the base SDT but can only be
accessed by licensed users.

To open the FEMLink GUI use sdtroot(’InitFEMLink’). for a reference on the FEMLink Tab,
see section . You will find an up to date list of interfaces with other FEM codes at
www.sdtools.com/tofromfem.html). Import of model matrices in discussed in section [4.3.3].

These interfaces evolve with user needs. Please don’t hesitate to ask for a patch even during an SDT
evaluation by sending a test case to info@sdtools. com.


http://www.sdtools.com/femlink.html
http://www.sdtools.com/tofromfem.html

Interfaces available when this manual was revised were

ans2sdt reads ANSYS binary files, reads and writes .cdb input (see FEMLink)

abaqus reads ABAQUS binary output .fil files, reads and writes input and matrix files
(.inp,.mtx) (see FEMLink)

reads the MSC/NASTRAN [26] .£06 output file (matrices, tables, real modes, dis-

placements, applied loads, grid point stresses), input bulk file (nodes, elements, prop-
erties). FEMLink provides extensions of the basic nasread, output2 to model format
conversion including element matrix reading, output4 file reading, advanced bulk
reading capabilities).

naswrite writes formatted input to the bulk data deck of MSC/NASTRAN (part of SDT),

FEMLink adds support for case writing.

This OpenFEM function reads MODULEF models in binary format.

perm2sdt reads PERMAS ASCII files (this function is part of FEMLink)

samcef reads SAMCEF text input and binary output .u18, .uil , .ul12 files (see FEMLink)

ufread reads results in the Universal File format (in particular, types: 55 analysis data at
nodes, 58 data at DOF, 15 grid point, 82 trace line). Reading of additional FEM
related file types is supported by [FEMLink through the uf 1link function.

ufwrite writes results in the Universal File format. SDT supports writing of test related
datasets. FEMLink supports FEM model writing.

B
[e]
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4.3.3 Importing model matrices from other codes

FEMLink handles importing element matrices for NASTRAN (nasread BuildUp|), ANSYS
[Build), SAMCEF and ABAQUS (abaqus read).
Reading of full matrices is supported for NASTRAN in the binary .op2 and .op4 formats (writing to

.op4 is also available). For ANSYS, reading of .matrix ASCII format is supported. For ABAQUS,
reading of ASCII .mtx format is supported.

Note that numerical precision is very important when importing model matrices. Storing matrices
in 8 digit ASCII format is very often not sufficient.

To incorporate full FEM matrices in a SDT model, you can proceed as follows. A full FEM model
matrix is most appropriately integrated as a superelement. The model would typically be composed
of

e a mass m and stiffness matrix k linked to DOFs mdof which you have imported with your own

code (for example, using output2 or outputéd and appropriate manipulations to create
mdof). Note that the object provides translation from skyline to sparse format.
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e an equivalent mesh defined using standard SDT elements. This mesh will be used to plot the
imported model and possibly for repeating the model in a periodic structure. If you have no
mesh, define nodes and associated mass elements.

fesuper provides functions to handle superelements. In particular, [fesuper SEAdd|lets you define a
superelement model, without explicitly defining nodes or elements (you can specify only DOFs and
element matrices), and add it to another model.

Following example loads ubeam model, defines additional stiffness and mass matrices (that could
have been imported) and a visualization mesh.

% Load ubeam model :
model=demosdt (’demo ubeam-pro’);
cf=feplot; model=cf.mdl;
% Define superelement from element matrices :
SE=struct(’DOF’,[180.01 189.01]7,...
K2, {{[.1 0; 0 0.1] 4el0x[1 -1; -1 11}},...
'Klab’,{{’m’,’k’}}, ...
'0pt’,[1 0;2 1]1); % Matrix types, sdtweb secms#SeStruct
% Define visualization mesh :
SE.Node=feutil (’GetNode 180 | 189’ ,model);
SE.Elt=feutil(’0ObjectBeamLine 180 189 -egid -1’);
% Add as a superelement to model :
model=fesuper (’SEadd -unique 1 1 selt’,model,SE);

You can easily define weighting coefficient associated to matrices of the superelement, by defining
an element property (see for more details). Following line defines a weighting coefficient of
1 for mass and 2 for stiffness (1001 is the MatId of the superelement).

% Define weighting coefficients for mass and stiffness matrices
model.il=[1001 fe_mat(’p_super’,’SI’,1) 1 2];

You may also want to repeat the superelement defined by element matrices. Following example
shows how to define a model, from repeated superelement:

% Define matrices (can be imported from other codes)
model=femesh(’testhexa8’);
[m,k,mdof]=fe_mk(model) ;
% Define the superelement:
SE=struct(’DOF’,[180.01 189.01]7,...
'k, {{[.1 0; 0 0.1] 4el0x[1 -1; -1 11}},...
'Klab’, {{’n’, k’}},...
Opt’, [1 0;2 11);



SE.Node=model.Node; SE.Elt=model.Elt;

% Add as repeated superelement:

% (need good order of nodes for nodeshift)

model=fesuper (’SEAdd -trans 10 0.0 0.0 1.0 4 1000 1000 cube’,[],SE);
cf=feplot(model)

Superelement based substructuring is demonstrated in d_cms2 which gives you a working example
where model matrices are stored in a generic superelement. Note that numerical precision is very
important when importing model matrices. Storing matrices in 8 digit ASCII format is very often
not sufficient.

4.4 The feplot interface

Three kinds of manipulations are possible using the GUI

e viewing the model and post-processing the responses,
e setting and displaying the mechanical problem (model properties and cases),

e setting the view properties.

4.4.1 The main feplot figure

feplot| figures are used to view FE models and hold all the data needed to run simulations. Data
in the model can be viewed in the property figure (see section m ). Data in the figure can be
accessed from the command line through pointers as detailed in section . The help
gives architecture information, while [feconlists available commands. Most demonstrations linked to
finite element modeling (see section for a list) give examples of how to use [feplot|and |[fecom|
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Figure 4.2: Main feplot figure.

The first step of most analyzes is to display a model in the main figure. Examples of possible
commands are (see for more details)

e cf=feplot(model) display the in a variable and returns a pointer object cf to the figure.

e cf=feplot(5);cf.model=model; do the same thing but in figure 5.
cf=feplot;cf.model={node,elt}; will work for just nodes and elements. Note that cf.model
is a method to define the model and is not a pointer. cf.mdl is a pointer to the model, see

section [4.4.3] .

e feplot(’load’,’File.mat’) load a model from a .mat file.

As an example, you can load the data from the gartfe demo, get cf a[SDT handle|for a[feplot]
figure, set the model for this figure and get the standard 3D view of the structure

model=demosdt (’demogartfe’)
cf=feplot; % open FEPLOT and define a pointer CF to the figure
cf .model=model;

The main capabilities the feplot figure are accessible using the figure toolbar, the keyboard short-
cuts, the right mouse button (to open context menus) and the menus.



Toolbar

List of icons used in GUIs

k| Model properties used to edit the properties of your model.

Eo Start/stop animation

- Previous Channel /Deformation

+ Next Channel/Deformation

- iimouse zoom

RN Orbit. Remaining icons are part of MATLAB cameratoolbar functionality.
L Snapshot. See |iicom ImWritel

Keyboard shortcuts

At this level note how you can zoom by selecting a region of interest with your mouse (double click
or press the i key to zoom back). You can make the axis active by clicking on it and then use any of
the u, U, v, V, w, W, 3, 2 keys to rotate the plot (press the ? key for a list of ey shortcuts).

Menus and context menu

The contextmenu associated with your plot may be opened using the right mouse button and select
See how the cursor allows you to know node numbers and positions. Use the left mouse
button to get more info on the current node (when you have more than one object, the n key is used
to go to the next object). Use the right button to exit the cursor mode.

Notice the other things you can do with the ContextMenu (associated with the figure, the axes and
objects). A few important functionalities and the associated commands are

e Cursor Node tracks mouse movements and displays information about pointed object. This
is equivalent to the iimouse(’cursor’) command line.

e Cursor...[Elt,Sel,0ff] selects what information to display when tracking the mouse. The
iimouse(’cursor[onElt,onSel,0ff]’) command lines are possible.

e Cursor... 3DLinePick (which can be started with fe fmesh(’3DLineInit’)) allows node
picking. Once started, the context menu gives access info (lists picked nodes and distances)
and done prints the list of picked nodes.

e [Textllode activates the node labeling. It is equivalent to the fecom(’TextNode’) command
line.
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o displays the orientation triax. It is equivalent to the fecom(’triax’) command line.

o shows the undeformed structure. Other options are accessible with the

fecom(’undef [dot,line]’) command line.

Views... [View n+x,...] selects default plot orientation. The
iimouse(’ [vn+x,...]’) command lines are available.

colorbar on shows the colorbar, for more accurate control see [fecom ColorBar]

Zoom Reset is the same as the iimouse(’resetvie’) command line to reset the zoom.

setlines is the same as the setlines command line.

The figure Feplot menu gives you access to the following commands (accessible by

Feplot:Feplot/Model properties opens the property figure (see section m ).

Feplot:Sub commands:Sub IsoViews (same as iicom(’subiso’)) gets a plot with four views
of the same mode. Use iicom(’sub2 2 step’) to get four views of different modes.

Feplot:Show menu generates standard plots. For FE analyses one will generally use surface
plots color-coded surface plots using patch objects) or wire-frame plots (use Feplot:Show
menu to switch).

Feplot:Misc shows a Triax or opens the channel selector.
Feplot:Undef is used to show or not the undeformed structure.
Feplot:Colordata shows structure with standard colors.
Feplot:Selection shows available selections.

Feplot:Renderer is used to choose the graphical rendering. Continuous animation in OpenGL
rendering is possible for models that are not too large. The SelReduce can be use to
coarsen the mesh otherwise.

Feplot:Anim chooses the animation mode.

Feplot:View defaults changes the orientation view.



4.4.2 Viewing stack entries

You can typically view stack entries by clicking on the associated entry and using ProViewOn (¥
icon). Handling of which deformation is shown in multi-channel entries is illustrated below

model=demosdt (’demo UbeamDofload’);cf=feplot;
fecom(’curtabCases’,’Point load 1’);fecom(’proViewOn’);

% Control channel in multi column DOFLoad
cf.CStack{’Point load 1’}.Sel.ch=2;fecom(’proViewln’);

4.4.3 Pointers to the figure and the model

cfi=feplot returns a pointer to the current figure. The handle is used to provide simplified
calling formats for data initialization and text information on the current configuration. You can
create more than one figure with cf=feplot (FigHandle). If many feplot figures are open,
one can define the target giving an feplot figure handle cf as a first argument to commands.

The model is stored in a graphical object. cf.model is a method that calls [fecom InitModel]
cf1.mdl is a method that returns a pointer to the model. Modifications to the pointer are reflected
to the data stored in the figure. However mol=cf.mdl;mol=model makes a copy of the variable
model into a new variable mo1.

cf .Stack gives access to the model as would cf .md1.Stack but allows text based access. Thus
cf.Stack{’EigOpt’} searches for a name with that entry and returns an empty matrix if it does not
exist. If the entry may not exist a type must be given, for example cf.Stack{’info’,’EigOpt’}=[5
10 1].

cf .CStack gives access to the as would calls of the form

Case=fe case(cf.mdl, ’getcase’) ;stack get(Case, ’FixDof’, ’base’) but it allows more conve-
nient string based selection of the entries.

cf.Stack and cf.CStack allow regular expressions text based access. First character of such a
text is then #. One can for example access to all of the stack entries beginning by the string test
with cf.Stack{ ’#test.*’}. Regular expressions used by SDT are standard regular expressions of
Matlab. For example . replaces any character, * indicates 0 to any number repetitions of previous
character...

4.4.4 The property figure
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Finite element models are described by a data structures with the following main fields (for a full
list of possible fields see section )

.Node nodes
.Elt clements

.pl material propertiesl
il element properties|
.Stack stack of entries containing additional information (boundary conditions,

loads, etc.), material names, etc.

The model content can be viewed using the feplot property figure. This figure is opened using the

M, .
ﬂ icon, or fecom(’ProInit’).

—ioix
) feplot(3,'mdl’) ;lglil File Edit Desktop Window Help L
File Edit Deskiop Window Help N E@ %E
E A
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Figure 4.3: Model property interface.

This figure has the following tabs

e Model tab gives general information on the model nodes and elements. You can declare those
by hand as shown in section , through structured mesh manipulations with see sec-
tion , or through import see sectionm. (see section and Figure. You can visualize
one or more groups by selecting them in the left group list of this tab.

e Mat tab lists and edits all the material. In the ® mode, associated elements in selection are shown.

See section 57 .
e ElProp tab lists and edits all the properties. See section [4.5.1].
e Stack tab lists and edits general information stored in the model (see section for possible
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ries). You can access the model stack with the cf.Stack method.

e Cases tab lists and edits load and boundary conditions (see section and Figure 4.9). You
can access the case stack with the cf.CStack method.

e Simulate tab allows to launch the static and dynamic simulation (see section[4.8] and Figure[4.12)).

The figure icons have the following uses

Model properties used to edit the properties of your model.

@ Active display of current group, material, element property, stack or case entry.
Activate with fecom(’ProViewOn’) ;
24 Open the iiplot GUI.
Open/close feplot figure
Refresh the display, when the model has been modified from script.
4.4.5 GUI based mesh editing

This section describes functionality accessible with the Edit list item in the Model tab. To force
display use fecom(’CurtabModel’,’Edit’).

AddNode opens a dialog that lets you enter nodes by giving their coordinates x y z, their node
number and coordinates NodeId x y z or all the node information NodeId CID DID GID x y
z.

AddNodeCG starts the 3D line picker. You can then select a group of nodes by clicking with
the left button on these nodes. When you select Done with the context menu (right click), a
new node is added at the CG of the selected nodes.

AddNodeOnEdge starts the 3D line picker to pick two nodes and adds nodes at the middle point
of the segment.

AddElt Name starts the 3D line picker and lets you select nodes to mesh individual elements.
With Done the elements are added to the model as a group.

AddRbe3 starts a line picker to define an RBE3 constraint. The first node picked is slave to
the motion of other nodes.

RemoveWithNode starts the 3D line picker. You can then select a group of nodes by clicking
with the left button on these nodes. When you select Done with the context menu (right click),
elements containing the selected nodes are removed.
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e RemoveGroup opens a dialog to remove some groups.

Below are sample commands to run the functionality from the command line.

model=demosdt (’demoubeam’) ;cf=feplot;
fecom(’CurtabModel’, ’Edit’)
fecom(cf,’addnode’)
fecom(cf,’addnodecg’)

fecom(cf, ’addnodeOnEdge’)
fecom(cf,’RemoveWithNode’)

fecom(cf, ’RemoveGroup’)
fecom(cf,’addElt tria3’)

fe_case(cf.mdl, ’rbe3’,’RBE3’,[1 97 123456 1 123 98 1 123 99]);

fe_case(cf.mdl, ’rbe3 -append’,’RBE3’,[1 100 123456 1 123 101 1 123 102]);
fecom addRbe3

4.4.6 Viewing shapes

feplot displays shapes and color fields at nodes. The basic data structure provides shapes in
the .def field and associates each value with a .DOF (see mdof|). For other inits see|fecom InitDef]|

[model,def]=demosdt (’Demo gartfe’); % Get example
cf=feplot(model,def); ¥ display model and shapes
fecom(’ch7’); % select channel 7 (first flex mode)
fecom(’pro’); % Show model properties

Scan through the various deformations using the +/- buttons/keys or clicking in the deformations
list in the Deformations tab. From the command line you can use commands.

Animate the deformations by clicking on the ‘= button. Notice how you can still change the current
deformation, rotate, etc. while running the animation. Animation properties can be modified with
commands or in the General tab of the feplot properties figure.

Modeshape scaling can be modified with the 1/L key, with commands or in the Axes
tab of the feplot properties figure.

You may also want to visualize the measurement at various sensors (see section and
using a stick or arrow sensor visualization (fecom| showsens or showarrow). On such plots,
you can label some or all degrees of freedom using the call (’doftext’,idof).

Look at the reference section to see what modifications of displayed plots are available.



Superposing shapes

Modeshape superposition is an important application (see plot of section ) which is supported by
initializing deformations with the two deformation sets given sequentially and a[fecom ch|command
declaring more than one deformation. For example you could compare two sets of deformations
using

[model,def]=demosdt (’demo gartfe’);cf=feplot(model); ’ demo init
cf.def(1)=def; Y First set of deformations

def .def=def.def+rand(size(def.def))/5;

cf.def(2)=def; % second set of deformations

fecom(’show2def’); fecom(’scalematch’);

where the scalematch command is used to compare deformations with unequal scaling. You could
also show two deformations in the same set

cf=demosdt(’demo gartfe plot’);
fecom(’ ;showline; ch7 10°’)

The -,+ buttons/commands will then increment both deformations numbers (overlay 8 and 11, etc.).

Element selections

Element selections play a central role in They allow selection of a model subpart (see
section ) and contain color information. The following example selects some groups and defines
color to be the z component of displacement or all groups with strain energy deformation (see

GoTorbaral commands)

cf=demosdt(’demo gartfe plot’);
cf.sel(1)={"group4:9 & group ~=8’,’colordata z’};
pause

cf.def=fe_eig(cf.mdl, [6 20 1e3]);
cf.sel(1)={’group all’,’colordata enerk’};
fecom(’colorbar’);

You can also have different objects point to different selections. This model has an experimental
mesh stored in element group 11 (it has EGID -1). The following commands define a selection for
the FEM model (groups 1 to 10) and one for the test wire frame (it has EGID<0). The first object
cf.o(1) displays selection 1 as a surface plot (ty1 with a blue edge color. The second object displays
selection to with a thick red line.

cf=demosdt(’demo gartfe plot’);
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cf.sel(1)={"groupl:10’}; cf.sel(2)=’egid<0’;
cf.o(1)={"tyl defl sell’,’edgecolor’,’b’}
cf.o(2)={’ty2sel2’,’edgecolor’,’r’,’linewidth’,2}

Note that you can use commands to display some node numbers. For example try
fecom(’textnode egid<0 & y>07).

Figure 4.4: Stress level plot.

4.4.7 Viewing property colors

For reference information on colors, see [fecom ColorDatal

When preparing a model, one often needs to visualize property colors.

cf=feplot(demosdt(’demogartfe’));

fecom(’ColorDataMat’); % Display color associated with MatId
% Now a partial selection with nicer transparency
cf.sel={’eltname~=mass’,’ColorDataPro-alpha.l-edgealpha .05’}

How do I keep group colors constant when I select part of a model?

One can define different types of color for selection using [fecom ColorDatal In particular one can
color by GroupId, by ProId or by MatId using respectively fecom colordatagroup, colordatapro
or colordatamat. Without second argument, colors are attributed automatically. One can define a
color map with each row of the form [ID Red Green Blue] as a second argument:
fecom(’colordata’,colormap). All ID do not need to be present in colormap matrix (colors for
missing ID are then automatically attributed). Following example defines 3 color views of the same
GART model:

cf=demosdt(’demo gartFE plot’);




% ID Red Green Blue
r1=[(1:10)’ [ones(3,1); zeros(7,1)]

[zeros(3,1); ones(7,1)] zeros(10,1)]; % colormap
fecom(’colordatagroup’,rl) % all ID associated with color
% redefine groups 4,5 color
cf.Stack{’GroupColor’}(4:5,2:4)=[0 0 1;0 0 1];
fecom(’colordatagroup’) ;

% just some ID associated with color
fecom(’colordatapro’,[1 1 0 0; 3 1 0 0])
fecom(’colordatamat’) % no color map defined
cf.Stack

4.4.8 Viewing colors at nodes

Color at nodes can be based on the current display. In particular, ColorDataEvalA, EvalX, ...
EvalRadZ, EvalTanZ use the information of current motion from initial position to generate a color
field dynamically. The advantage of this strategy is that no prior computation is needed.

Display of specific fields is another common application. Thus ColorDataDOF 19 displays DOF .19
(pressure). This the field is not needed to display the motion of nodes, prior extraction from the
deformations is needed.

4.4.9 Viewing colors at elements

Display of energies is a typical case of color at elements. Since computing energies for many defor-
mations can take time, it is considered best practice to compute energies first and display energies
next.

cf=demosdt (’demo gartFE plot’);

% If El1tId are not consistent you may need to fix them

% The ; in ’eltidfix;’ is used to prevent display of warning messages
[eltid,cf.mdl.Elt]=feutil (’eltidfix;’,cf.mdl);

Ek=fe_stress(’Enerk -curve’,cf.mdl,cf.def);
fecom(cf,’ColorDataElt’,Ek) % Values for each element

% Sum by group

fecom(cf,’ColorDataElt -bygroup -frac -colorbartitle "Frac %"’,Ek)

More details are given in [fe_stress feplot|
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4.4.10 feplot FAQ

feplot lets you define and save advanced views of your model, and export them as .png pictures.

e How do I display part of the model as wire frame? (Advanced object handling)

What is displayed in a figure is defined by a set of objects. Once you have plotted
your model with cf=feplot(model), you can access to displayed objects through cf.o(i)
(i is the number of the object). Each object is defined by a selection of model elements
(’selt’) associated to some other properties (see [fecom SetObject|). Selections are defined
as commands through cf.sel(i). Displayed objects or selections can be removed
using cf.o(i)=[] or cf.sel(i)=[].

Following example loads ubeam model, defines 2 complementary selections, and displays the
second as a wire frame (ty2):

model=demosdt (’demoubeam’); cf=feplot

% define visualisation

cf.sel(1)="WithoutNode{z>1 & z<1.5}’;
cf.sel(2)="WithNode{z>1 & z<1.5}’;

cf.o(1)={’sell tyl’,’FaceColor’,[1 0 0]}; % red patch
cf.o(3)={’sel2 ty2’,’EdgeColor’,[0 0 11}; % blue wire frame
% reinit visualisation :

cf.sel(1)="groupall’;

cf.sel(2)=[]; cf.o(3)=[1;

Is feplot able to display very large models?

There is no theoretical size limitation for models to be displayed. However, due to the use of
Matlab figures, and although optimization efforts have been done, can be very slow for
large models. This is due to the inefficient use of triangle strips by the Matlab calls to OpenGL,
but to ensure robustness SDT still sticks to strict Matlab functionality for GUI operation.

When encountering problems, you should first check that you have an appropriate graphics
card, that has a large memory and supports OpenGL and that the is set to opengl.
Note also that any X window forwarding (remote terminal) can result in very slow operation:
large models should be viewed locally since Matlab does not support an optimized remote
client.

To increase fluidity it is possible to reduce the number of displayed patches using
command SelReducerp where rp is the ratio of patches to be kept. Adjusting rp, fluidity can
be significantly improved with minor visual quality loss.

Following example draws a 50x50 patch, and uses fecom(’ReduceSel’) to keep only a patch
out of 10:



model=feutil (’ObjectQuad’,[-1 -1 0;-1 1 0;1 1 0;1 -1 0],50,50);
cf=feplot(model); fecom(cf,’showpatch’);
fecom(cf,’SelReduce .1’); % keep only 10% of patches.

If you encounter memory problems with consider using hdf.

How do I save figures?

You should not save [feplot] figures but models using

To save images shown in you should see ficom ImWrite|l If using the MATLAB
print, you should use the -noui switch so that the GUI is not printed. Example print -noui
-depsc2 FileName.eps.

MATLAB gives the warning Warning: RGB color data not yet supported in Painter’s
mode. This is due to the use of true colors for ColorDataMat and other flat colors. You
should save your figure as a bitmap or use the fecom ShowLine mode.

How do I define a colorbar scale and keep it constant during animation?

When using|fecom ColorDataEval commands (useful when displayed deformation is restituted
from reduced deformation at each step), color scaling is updated at each step.

One can use fecom(’ScaleColorOne’) to force the colorbar scale to remain constant. In that
case one can define the limit of the color map with set(cf.ga,’clim’,[-1 1]) where cf is a
pointer to target feplot figure, and -1 1 can be replaced by color map boundaries.

How do I make an animation based on my deformation field displayed in feplot 7

Several strategies are available depending on the user needs.

— The simplest way to do this is to generate an avi file using the figure menu:
Feplot > Anim > MakeAVI. Equivalent command line inputs with variants are provided

in[fecom AnimMoviel documentation.

— SDT allows generating animated gif from[feplot]animations using the convert function.
convert (’AnimMovie25’) will generate a 25 steps[feplot|animation as an animated gif.
To pilot a subsampling of steps, see Note that the convert function is a
gateway function to the convert function of ImageMagick, that should be installed on
your system. You can look up http://www.imagemagick.org for more information.

— Better avi results can be obtained in recent MATLAB by using the VideoWriter object
with lower level calls. The following code allows doing this
writerObj = VideoWriter ([’TEST2_ANIM.avi’]); %’Archival’);
writerObj.FrameRate=830; 7, fps
writerObj.Quality=100;
open(writer0bj);
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cf.ua.PostFcn=sprintf([’evalin(’’base’’,’ ...
»2 2 frame = getframe(gcf);writeVideo(writerObj,frame);’’)’]);
frame = getframe;

writeVideo(writerObj,frame); % frame will contain the film
close(writerObj) ;

4.5 Other information needed to specify a problem

Once the mesh defined, to prepare analysis one still needs to define

e material and element properties associated to the various elements.

e boundary conditions, constraints (see section ) and applied loads (see section )

Graphical editing of case properties is supported by the case tab of the model properties GUI
(see section ). The associated information is stored in a data structure which is an entry
of the .Stack field of the model data structure.

4.5.1 Material and element properties

You can edit material properties using the Mat tab of the Model Properties figure which lists
current materials and lets you choose new ones from the database of each material type.
is the only material function defined for the base SDT. It supports elastic materials, linear acoustic
fluids, piezo-electric volumes, etc.

%} Model: local to upcom: (=] 3

Flle Edt Window Help
Model | Materials |E. Prop. | Cases]

Use context menu <] Mame drucker 1 4]
to remove, duplicate, Matld 1

export, ... Type Drucker ‘ ‘
Uit system 81 € Edit values in table

Youngs Moduls 2.700000e;
Foiszon's ratio  0.382000

= L] Friction angle  0.000000
2 Cohesion 0.000000% %
Show

Figure 4.5: Material tab.

Select pre-defined
materials in the new table

Similarly the E1Prop tab lets you edit element properties. [p_beam| [p_shell|[p_solid|and [p_spring]
are supported element property functions.
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p_spring_10 : .
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Figure 4.6: Property tab.

When the view mode is selected ('-'E" icon pressed), you can see the elements affected by each material
or element property by selecting it in the associated tab.

You can edit properties using the Pro tab of the Model Properties figure which lists current
properties and lets you choose new ones from the database of each property type (Figure .

The properties are stored with one property per row in model.il (see section ) and model.il
(see section ). When using scripts, it is often more convenient to use low level definitions of the
material properties. For example (see demo fe), one can define aluminum and three sets of beam
properties with

femesh(’reset’);

model=femesh(’test 2bay plot’);
model.pl = m_elastic(’dbval 1 steel’)
model.il = [ ...

... % Prold SecType J I1 I2 A
1 fe_mat(’p_beam’,’SI’,1) 5e-9 5e-9 5e-9 2e-5 0 0 ;
p_beam(’dbval 2’,’circle 4e-3’) ; ... % circular section 4 mm

p_beam(’dbval 3’,’rectangle 4e-3 3e-3’)...% rectangular section
15

Unit system conversion is supported in property definitions, through two command options.

e —unit command option asks for a specific unit system output. It thus expects possible input
data in SI, prior to converting (and generating a proper typ value).
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e -punit command option tells the function that a specific unit system is used. It thus expects
possible input data in the specified unit system, and generates a proper typ value.

The 3 following calls are thus equivalent to define a beam of circular section of 4mm in the MM unit
system:

il = p_beam(’dbval -unit MM 2 circle 4e-3’); % given data in SI, output in MM
il = p_beam(’dbval -punit MM 2 circle 4’); % given data in MM, output in MM
il = p_beam(’dbval -punit CM -unit MM circle 0.4’); % given data in CM, output in MM

To assign a MatID or a ProID to a group of elements, you can use

e the graphical procedure (in the context menu of the material and property tabs, use the Select
elements and affect ID procedures and follow the instructions);

e the simple femesh set commands. For example femesh(’set groupl mat101 pro103’) will
set values 101 and 103 for element group 1.

e more elaborate selections based on [FindElt| commands. Knowing which column of the E1t
matrix you want to modify, you can use something of the form (see gartfe)

FEelt (femesh(’find EltSelectors’), IDColumn)=ID;

You can also get values with mpid=feutil (’mpid’,elt), modify mpid, then set values with
elt=feutil ("mpid’,elt,mpid).

4.5.2 Other information stored in the stack

The stack can be used to store many other things (options for simulations, results, ...). More details
are given in section [7.7]. You can get a list of current default entry builders with fe def (*new’).

info, EigOpt, sdtdef(’DefaultEigOpt-safe’,[5 20 1e3])
info, Freq, sdtdef (’DefaultFreq-safe’,[1:2])
sel, Sel, struct(’data’,’groupall’,’ID’,1)

4.5.3 Cases GUI



When selecting New

) feplot({3,'mdI')

File Edit Desktop ‘Window Help

=10l x|

ECE N
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infoctest cellars | 5 103
info:F ange 4 104
Ei 5 106 =l
; 1
info R aylsigh 0.5
info: TimeOpt
selselection_1 ¥
_>I_I 0 —
il 0 04 NE na 1
Figure 4.7: Stack tab.
il
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o FSurf Mews
B < Others
- ¢ SensDof Mew
Free-layer 113 = o | Park I @y

K I

Figure 4.8: Cases properties tab.

. in the case property list, as shown in the figure, you get a list of currently

supported case properties. You can add a new property by clicking on the associated new cell in the
table. Once a property is opened you can typically edit it graphically. The following sections show
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you how to edit these properties trough command line or .m files.
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Figure 4.9: Cases properties tab.

4.5.4 Boundary conditions and constraints

Boundary conditions and constraints are described in in Case.Stack using FixDof, Rigid, ... case
entries (see and section ). (KeepDof still exists but often leads to misunderstanding)

FixDof entries are used to easily impose zero displacement on some DOFs. To treat the two bay
truss example of section [£.1.1], one will for example use

femesh(’reset’);

model=femesh(’test 2bay plot’);

model=fe_case(model, ... % defines a new case
’FixDof’,’2-D motion’,[.03 .04 .05]°’,
’FixDof’,’Clamp edge’,[1 2]°);

fecom(’ProInit’) % open model GUI

When assembling the model with the specified Case (see section m ), these constraints will be
used automatically.
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Note that, you may obtain a similar result by building the DOF definition vector for your model
using a script. commands allow node selection and [fe_c| provides additional DOF selection
capabilities. Details on low level handling of fixed boundary conditions and constraints are given

in section [T.14] .

4.5.5 Loads

Loads are described in Case.Stack using DOFLoad, FVol and FSurf case entries (see and

section ).

To treat a 3D beam example with volume forces (x direction), one will for example use

femesh(’reset’);

model = femesh(’test ubeam plot’);
data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);
model = fe_case(model,’FVol’,’Volume load’,data);

Load = fe_load(model);
feplot(model,Load) ;fecom(’ ;undef;triax;Prolnit’);

To treat a 3D beam example with surface forces, one will for example use

femesh(’reset’);
model = femesh(’testubeam plot’);
data=struct(’sel’,’x==-.57,

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model, ’Fsurf’,’Surface load’,data);
Load = fe_load(model); feplot(model,Load);

To treat a 3D beam example and create two loads, a relative force between DOFs 207x and 241x
and two point loads at DOFs 207z and 365z, one will for example use

femesh(’reset’);
model = femesh(’test ubeam plot’);
data = struct(’DOF’,[207.01;241.01;207.03],’def’,[1 0;-1 0;0 1]1);

model = fe_case(model,’D0OFLoad’,’Point load 1’,data);
data = struct(’DOF’,365.03,’def’,1);
model = fe_case(model,’DOFLoad’,’Point load 2’,data);

Load = fe_load(model);
feplot(model,Load) ;
fecom(’textnode365 207 241°’); fecom(’ProInit’);

The result of fe_load contains 3 columns corresponding to the relative force and the two point loads.
You might then combine these forces, by summing them
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Load.def=sum(Load.def,2);
cf.def= Load;
fecom(’textnode365 207 2417);

4.6 Sensors

Sensors are used for test/analysis correlation and in analysis for models where one wants to post-
process partial information by using an observation equation {y} = [¢]{¢}. This general objective
is supported by the use of SensDof entries. This section addresses the following issues

e translation measurements associated simplified views (often wire-frame) is classical for modal
testing and FEM post-processing. These can be simply defined using a .tdof field, see also
section and section for wire frame geometry and sensor declaration. Commands
and laser provide simplified calls to generate the associated translation sensors.

e other sensor types typically used in analysis are

— relative displacement sensor.

— general sensor (low level).
— [fesultant] resultant force sensor.
— [strainl strain or stress sensor.

e topology correlation is the process in which sensor output is related to the DOFs of the
underlying FEM. This is implemented as the SensMatch command detailed section .
In the case of translation measurements, this is only needed for test/analysis correlation.

4.6.1 Sensor GUI, a simple example

Using the feplot properties GUI, one can edit and visualize sensors. The following example loads
ubeam model, defines some sensors and opens the sensor GUI.

model=demosdt (’demo ubeam-pro’);
cf=feplot; model=cf.mdl;

model=fe_case(model, ’SensDof append trans’,’output’,...
(1,0.0,0.5,2.5,0.0,0.0,1.0]); % add a translation sensor



model=fe_case(model, ’SensDof append triax’,’output’,8); % add triax sensor
model=fe_case(model, ’SensDof append strain’,’output’,...
[4,0.0,0.5,2.5,0.0,0.0,1.0]); % add strain sensor

model=fe_case(model, ’sensmatch radiusl’,’output’); ’% match sensor set ’output’

fecom(cf, ’promodelviewon’) ;
fecom(cf,’curtab Cases’,’output’); % open sensor GUI

Clicking on Edit Label one can edit the full list of sensor labels.

The whole sensor set can be visualized as arrows in the feplot figure clicking on the eye button on the
top of the figure. Once visualization is activated one can activate the cursor on sensors by clicking
on CursorSel. Then one can edit sensor properties by clicking on corresponding arrow in the feplot
figure.

The icons in the GUI can be used to control the display of wire-frame, arrows and links.

-l] feplot(3, mdl’} = | B )
File Edit Desktop Window Help L]
[Hl® 2

Model| Mat] ElProp| Stack] Cases |Simul] Plot]

E SN - | SensDof Test
g::e 24 sensors  (1011z) trans-1011z ¥ Edit Label
[1011.03,1011,0,0,1] | CursorSel
No match info
Edit properties Not Implemented
8.
L
&
o

Figure 4.10: GUI for sensor edition

4.6.2 Sensor definition from a cell array

Experimental setups can be defined with a cell array containing all the information relative to the
sensors (only displacement/velocity/acceleration sensors are currently supported). This array is
meant to be filled any table editor, possibly outside MATLAB. Using EXCEL you can read it with
data=sdtacx(’excel read filename’,sheetnumber).

The first row gives column labels (the order in which they are given is free). Each of the following
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rows defines a sensor. Known column headers are

’lab’ contains the names of the sensors. Providing a name for each sensor is mandatory.

’SensType’ contains optional information such as the name of the sensor manufacturer, their
types, etc.

’SensId’ contains the identification numbers of the sensors. Each sensor must have a unique
SensId. If the identification is non integer, the integer part is taken to be a NodeId. For
example 10.01 will be taken to be node 10.

’X?, ’Y’ and ’Z’ contain the cartesian coordinates of each sensor in the reference frame.
For cylindrical coordinates replace the column headers by ’R’, ’Theta’ and ’Z’ (mixing
both types of coordinates inside the cell array is not currently supported). Such columns are
mandatory except of localization is given by FEMId.

’FEMIA’ can be used to specify localization and help node matching.

’DirSpec’ contains a specification of the direction in which the measurement is done at each
sensor. A minus in front of any specification can be used to generate the opposite direction
(-TX for example). Available entries are



. Direction of measurement specified trough its components in global
dir 2 y | coordinates (the vector is normalized).
)
& [1 0 0], in the reference frame
Y’ [0 1 0], in the reference frame
VA [0 0 1], in the reference frame
normal to the element(s) to which the sensor is matched (automatically
N detected in the subsequent call to [SensMatchl)
tangent to matched surface in the N, X plane.
) TX J
tangent to matched surface in the N, Y plane
) TY J
tangent to matched surface in the N, Z plane
) TZ J
tangent orthogonal to the NV, X plane
’N-TX’
tangent orthogonal to the N, Y plane
’N-TY?
tangent orthogonal to the N, Z plane
’N~TZ’
where (xg,ys,2s) are the coordinates of the primary or secondary
)
laser source (when mirrors are used).
XS VS
zs’
associated FEM DOF
’FEM
10.01°

triax sensors are dealt with by defining three sensors with the same >1lab’ but different ’SensId’
and *DirSpec’. In this case, a straightforward way to define the measurement directions is to make
the first axis be the normal to the matching surface. The second axis is then forced to be parallel to
the surface and oriented along a preferred reference axis, allowed by the possibility to define *Tx*’.
The third axis is therefore automatically built so that the three axes form a direct orthonormal basis
with a specification such as N"T*. Note that there is no need to always consider the orthonormal
basis as a whole and a single trans sensor with either >T*’ or N™T* as its direction of measure can
be specified.

In the example below, one considers a pentahedron element and aims to observe the displacement
just above the slanted face. The first vector is the normal to that face whose coordinates are
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[—v/2/2,1/2/2,0]. The second one is chosen (i.) parallel to the observed face, (ii.) in the (x,%) plane
and (iii.) along x axis, so that its coordinates are [v/2/2,1/2/2,0]. Finally, the coordinates of the
last vector can only be [0,0, —1] to comply with the orthonormality conditions. The resulting sensor
placement is depicted in figure [£.11]

cf=feplot;cf.model=femesh(’testpentab’);fecom(’triax’);

% sensor definition as cell array

tcell={’lab’, ’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...
’sensor 1°,°7, 1.02,.4,.6,.5,’N’;

.01,.4,.6,.5,°TX’;

.01,.4,.6,1.,°dir 1 -1 1°;

.09, .4,.6,.5,’N"TX"

.01,(1,0,0],’FEM 5.01°

.02, 1, 0, 1,°Y’

’sensor 2’,°7,
’sensor 3°’,°7,
’sensor 4°,°7,
’sensor 5’,77,
’sensor 67,77,
};disp(tcell)

%sens=fe_sens(’tdoftable’,tcell);

cf.mdl=fe_case(cf.mdl, ’SensDof’,’Test’,tcell);

cf.mdl=fe_case(cf.mdl,’SensMatch radiusl’,’Test’,’selface’);

fecom(cf,’curtab Cases’,’Test’); fecom(cf,’ProViewOn’)% open sensor GUI

sens=fe_case(cf.mdl, ’sens’);

fe_sens(’tdoftable’,cf,’Test’) % see summary of match results

fname=fullfile(sdtdef (’tempdir’),’SensSpec.xls’);

if “isunix % Test write to excel to illustrate ability to reread

x1lswrite(fname,tcell,’Sensors’);

sdtweb(’_link’,sprintf(’open(’’%s’’)’,fname))

end

DS wWw R NN
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Figure 4.11: Typical axis definition of a triax sensor attached to a penta6

It is now possible to generate the experimental setup of the ubeam example described in the previous
section by the means of a single cell array containing the data relative to both the trans and triax
sensors.

model=demosdt (’demo ubeam-pro’);
cf=feplot; model=cf.mdl;
n8=feutil (’getnode NodelId 8’,model); % triax pos.
tdof={’lab’,’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...
’sensorl - tramns’,’’,1,0.0,0.5,2.5,’2;
’sensor2 - triax’,’’,2,n8(:,5),n8(:,6),n8(:,7),’X’;
’sensor?2 - triax’,’’,3,n8(:,5),n8(:,6),n8(:,7),’Y’;
’sensor2 - triax’,’’,4,n8(:,5),n8(:,6),n8(:,7),’Z’};
sens=fe_sens(’tdoftable’,tdof);
cf.mdl=fe_case(cf.mdl, ’SensDof’,’output’,sens);
cf.mdl=fe_case(cf.mdl,’SensMatch radiusl’);
fecom(cf,’curtab Cases’,’output’); % open sensor GUI

4.6.3 Sensor data structure and init commands

This is a reference section on [SensDof| case entries. A tutorial on the basic configuration with a test
wire frame and translation sensors is given in section . SensDof entries can contain the following
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fields

sens.Node (optional) node matrix for sensor nodes that are not in the model. When
defined, all node numbers in sens.tdof should refer to these nodes. The
order typically differs from that in .tdof, you can get the positions with
fe_sens(’tdofNode’ ,model,SensName).

sens.Elt element description matrix for a wire-frame display of the sensors (typically for
test wire-frames).

sens.bas Coordinate system definitions for sens.Node, see |fe,sens basis|

see details below.

sens.DOF DOF definition vector for the analysis (finite element model). It defines the
meaning of columns in sens.cta.

sens.cta is an observation matrix associated with the observation equation {y} = [c] {q}

sens.Stack

(where ¢ is defined on sens.DOF ). This is built using the sens command
illustrated below.

cell array with one row per sensor giving ’sens’,’SensorTag’,data with data
is a structure. SensorTag is obtained from SensId (first column of tdof) using
feutil(’stringdof’,SensId). It is used to define the tag uniquely and may
differ from the label that the user may want to associated with a sensor which
is stored in data.lab.

The sens.tdof field declares translation sensors and their directions

e nominally is 5 column matrix with rows containing [SensID NodeID nx ny nz] giving a sensor
identifier (integer or real), a node identifier (positive integer, if relevant), a direction.

can be single column DOF definition vector which can be transformed to 5 column format
using tdof = fe sens(’tdof’,sens.tdof)

SensId gives an identifier for each sensor. It should thus be unique and there may be conflicts
if it is not.

NodeId specifies a node identifier for the spatial localization of the sensor. If not needed
(resultant sensors for example), NodeId can be set for zero.
NodeId>0 corresponds is for use of model.Node locations and sens.Node should not be defined.

NodeId<O is used to look for the node position in sens.Node rather than model.Node. Mixed
definitions (some Nodeld positive and other negative) are not supported.

Most initialization calls accept the specification of a physical x y z position, a .vertO0 field is
then defined.

e nx ny nz specifies a measurement direction for sensors that need one.



All sensors are generated with the command

fe case(model, ’SensDof <append, combine> Sensor type’,Sensor,data,SensLab)

Sensor is the case entry name to which sensors will be added. data is a structure, a vector, or a
matrix, which describes the sensor to be added. The nature of data depends on Sensor_type as
detailed below. SensLab is an optional cell array used to define sensor labels. There should be as
much elements in SensLab as sensors added. If there is only one string in the cell array SensLab, it
is used to generate labels substituting for each sensor $id by its Sensld, $type by its type (trans,
strain ...), $j1 by its number in the set currently added. If SensLab is not given, default label
generation is $type_$id.

In the default mode (’SensDof’ command), new sensors replace any existing ones. In the append
mode (’SensDof append’), if a sensor is added with an existing SensID, the SensID of new sensor
will changed to a free SensID value. In the combine mode (’SensDof combine’), existing sensor
with the same SensID will be replaced by the new one.

rel

Relative displacement sensor or relative force sensor (spring load). Data passed to the command is
[NodeID1 NodeID2].

This sensor measures the relative displacement between NodeID1 and NodeID2, along the direction
defined from NodeID1 to NodeID2. One can use the command option -dof in order to measure along
the defined DOF directions (mandatory if the two nodes are coincident). As many sensors as DOF
are then added. For a relative force sensor, on can use the command option -coef to define the
associated spring stiffness (sensor value is the product of the relative displacement and the stiffness
of the spring).

If some DOF are missing, the sensor will be generated with a warning and a partial observation
corresponding to the found DOF only.

The following example defines 3 relative displacement sensors (one in the direction of the two nodes,
and two others along x and y):

model=demosdt (’demo ubeam-pro’)

data=[30 372];

model=fe_case(model, ’SensDof append rel’,’output’,data);
model=fe_case(model, ’SensDof append rel -dof 1 2’,’output’,data);

general

General sensors are defined by a linear observation equation. This is a low level definition that
should be used for sensors that can’t be described otherwise. Data passed to the command is a
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structure with field .cta (observation matrix), .DOF DOF associated to the observation matrix, and
possibly .lab giving a label for each row of the observation matrix.

The following example defines a general sensor

model=demosdt (’demo ubeam-pro’);
Sensor=struct(’cta’,[1 -1;0 1],’DOF’,[8.03; 9.03]);
model=fe_case(model, ’SensDof append general’,’output’,Sensor);

trans

Translation sensors (see also section m) can be specified by giving

[DOF]

[DOF, BasID]

[SensID, NodeID, nx, ny, nz]
[SensID, x, y, z, nx, ny, nz]

This is often used with wire frames, see section . The definition of test sensors is given
in section [3.1.1] .

The basic case is the measurement of a translation corresponding the main directions of a coordinate
system. The DOF format (1.02 for 1y, see section ) can then be simply used, the DOF values are
used as is then used as SensID. Note that this form is also acceptable to define sensors for other
DOFs (rotation, temperature, ...).

A number of software packages use local coordinate systems rather than a direction to define sensors.
SDT provides compatibility as follows.

If model.bas contains local coordinate systems and deformations are given in the global frame (DID
in column 3 of model.Node is zero), the directions nx ny nz (sens.tdof columns 3 to 5) must reflect
local definitions. A call giving [DOF, BasID] defines the sensor direction in the main directions of
basis BasID and the sensor direction is adjusted.

If FEM results are given in local coordinates, you should not specify a basis for the sensor definition,
the directions nx ny nz (sens.tdof columns 3 to 5) should be [1 0 0], ... as obtained with a
simple [DOF] argument in the sensor definition call.

When specifying a BasId, it the sensor direction nx ny nz is adjusted and given in global FEM
coordinates. Observation should thus be made using FEM deformations in global coordinates (with
a DID set to zero). If your FEM results are given in local coordinates, you should not specify a basis
for the sensor definition. You can also perform the local to global transformation with

cGL= basis(’trans E’,model.bas,model.node,def.DOF)
def.def=cGL*def.def



The last two input forms specify location as x y z or NodeID, and direction nx ny nz (this vector
need not be normalized, sensor value is the scalar product of the direction vector and the displace-

ment vector).

One can add multiple sensors in a single call fe_case(model, ’SensDof <append> trans’, Name,
Sensor) when rows of sensors contain sensor entries of the same form.

Following example defines a translation sensor using each of the forms

model=demosdt (’demo ubeam-pro’)

model .bas=basis(’rotate’, [],’r=30;n=[0 1 1]°,100);

model=fe_case(model, ’SensDof append trans’,’output’,...
(1,0.0,0.5,2.5,0.0,0.0,1.01);

model=fe_case(model,’SensDof append trans’,’output’,...
[2,8,-1.0,0.0,0.01);

model=fe_case(model, ’SensDof append trans’,’output’,...
[314.031);

model=fe_case(model, ’SensDof append trans’,’output’,...
[324.03 100]1);

cf=feplot;cf.sel(2)=’"-output’;cf.o(1)={’sel2 ty 7’,’linewidth’,2};

Sens.Stack entries for translation can use the following fields

.vertO0 physical position in global coordinates.

.ID
NodeId for physical position. Positive if a model node, negative if SensDof
entry node.

.match cell array describing how the corresponding sensor is matched to the refer-

ence model. Columns are ElenF,elt,rstj,StickNode.

dof

One can simply define a set of sensors along model DOFs with a direct SensDof call
model=fe _case(model, ’SensDof’, ’SensDofName’,DofList). There is no need in that case to pass
through SensMatch step in order to get observation matrix.

model=demosdt (’demo ubeam-pro’)
model=fe_case(model, ’SensDof’,’output’, [1.01;2.03;10.01]);
Sens=fe_case(model, ’sens’,’output’)
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triax, laser

A triax is the same as defining 3 translation sensors, in each of the 3 translation DOF (0.01, 0.02
and 0.03) of a node. Use fe _case(model,’SensDof append triax’, Name, NodeId) with a vector
NodeId to add multiple triaxes. A positive NodeId refers to a FEM node, while a negative refers to
a wire frame node.

For scanning laser vibrometer tests

fe sens(’laser pz py pz’,model,SightNodes,’SensDofName’)

appends translation sensors based on line of sight direction from the laser scanner position pz py pz
to the measurement nodes SightNodes. Sighted nodes can be specified as a standard node matrix
or using a node selection command such as ’NodeId>1000 & NodeId<1100’ or also giving a vector
of Nodeld. If a test wire frame exists in the SensDofName entry, node selection command or Nodeld
list are defined in this model. If you want to flip the measurement direction, use a call of the form

cf.CStack{’output’}.tdof(:,3:5)=-cf.CStack{’output’}.tdof(:,3:5)
The following example defines some laser sensors, using a test wire frame:

cf=demosdt (’demo gartfeplot’); model=cf.mdl;% load FEM
TEST=demosdt (’demo garttewire’); ¥ see sdtweb(’pre#presen’)
TEST.tdof=[];%Define test wire frame, but start with no tdof
model=fe_case(model,’SensDof’, ’test’,TEST)

model=fe_case(model, ’SensDof Append Triax’,’test’,-TEST.Node(1))

% Add sensors on TEST wire frame location
model=fe_sens(’laser 0 0 6’ ,model,-TEST.Node(2:end,1),’test’);
% Show result

fecom(’curtab Cases’,’output’); fecom(’proviewon’);

To add a sensor on FEM node you would use model=fe _sens(’laser 0 0 6’,model,20, test’);
but this is not possible here because SensDof entries do not support mixed definitions on test and
FEM nodes.

strain,stress

Note that an extended version of this functionality is now discussed in section [£.7] . Strain sensors
can be specified by giving

[SensID, NodeID]
[SensID, x, y, z]
[SensID, NodeID, nlix, nly, nlz]



[SensID, x, y, z, nlx, nly, niz]
[SensID, NodeID, nix, nly, nlz, n2x, n2y, n2z]
[SensID, x, y, z, nlx, nly, nlz, n2x, n2y, n2z]

when no direction is specified 6 sensors are added for stress/strains in the x, y, z, yz, zx, and
xy directions (SensId is incremented by steps of 1). With nlx nly niz (this vector need not be
normalized) on measures the axial strain in this direction. For shear, one specifies a second direction
n2x n2y n2z (this vector need not be normalized) (if not given ns is taken equal to n1). The sensor
value is given by {ns}” €] {n1}.

Sensor can also be a matrix if all rows are of the same type. Then, one can add a set of sensors
with a single call to the fe_case(model,’SensDof <append> strain’, Name, Sensor) command.

Following example defines a strain sensor with each possible way:

model=demosdt (’demo ubeam-pro’)

model=fe_case(model, ’SensDof append strain’,’output’,...
(4,0.0,0.5,2.5,0.0,0.0,1.01);

model=fe_case(model, ’SensDof append strain’,’output’,...
[6,134,0.5,0.5,0.5]);

model=fe_case(model, ’SensDof append strain’,’output’,...
(56,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.01);

model=fe_case(model,’SensDof append strain’,’output’,...
(7,370,0.0,0.0,1.0,0.0,1.0,0.01);

Stress sensor.
It is the same as the strain sensor. The sensor value is given by {ns}” [o] {ni}.
Following example defines a stress sensor with each possible way:

model=demosdt (’demo ubeam-pro’)

model=fe_case(model, ’SensDof append stress’,’output’,...
(4,0.0,0.5,2.5,0.0,0.0,1.01);

model=fe_case(model, ’SensDof append stress’,’output’,...
[6,134,0.5,0.5,0.5]1);

model=fe_case(model, ’SensDof append stress’,’output’,...
(5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]1);

model=fe_case(model, ’SensDof append stress’,’output’,...
(7,370,0.0,0.0,1.0,0.0,1.0,0.01);

Element formulations (see section ) include definitions of fields and their derivatives that are
strain/stress in mechanical applications and similar quantities otherwise. The general formula is
{e} = [B(r,s,t)] {q}. These (generalized) strain vectors are defined for all points of a volume and
the default is to use an exact evaluation at the location of the sensor.
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In practice, the generalized strains are more accurately predicted at integration points. Placing the
sensor arbitrarily can generate some inaccuracy (for example stress and strains are discontinuous
across element boundaries two nearby sensors might give different results). The -stick option can
be used to for placement at specific gauss points. —-stick by itself forces placement of the sensor and
the center of the matching element. This will typically be a more appropriate location to evaluate
stresses or strains.

To allow arbitrary positioning some level of reinterpolation is needed. The procedure is then to
evaluate strain/stresses at Gauss points and use shape functions for reinterpolation. The process
must however involve multiple elements to limit interelement discontinuities. This procedure is
currently implemented through the fe _caseg(’StressCut’) command, as detailed in section .

resultant

Resultant sensors measure the resultant force on a given surface. Note that the observation of
resultant fields is discussed in section [4.7.3]. They can be specified by giving a structure with fields

.ID sensor ID.

.E1ltSel FindElt| command that gives the elements concerned by the resultant.

.SurfSel [FindNode| command that gives the surface where the resultant is computed.

.dir with 3 components direction of resultant measurement, with 6 origin and direction of

resulting moment in global coordinates. This vector need not be normalized (scalar
product). For non-mechanical DOF, .dir can be a scalar DOF ( .21 for electric field
for example)

.type contains the string 'resultant’.

Following example defines a resultant sensor:

model=demosdt (’demo ubeam-pro’)

Sensor.ID=1;

Sensor.EltSel="WithNode{z==1.25} & WithNode{z>1.25}";
Sensor.SurfSel=’z==1.25";

Sensor.dir=[0.0 0.0 1.0];

Sensor.type=’resultant’;

model=fe_case(model, ’SensDof append resultant’,’output’,Sensor);

Resultant sensors are not yet available for superelements model.

4.6.4 Topology correlation and observation matrix



Sens, observation

This command is used after to build the observation equation that relates the response
at sensors to the response a DOFs

Y} nsx1 = sy 14} v (4.1)

where the ¢ matrix in stored in the sens.cta field and DOFs expected for g are given in sens.tdof.

After the matching phase, one can build the observation matrix with

SensFull=fe case(model, ’sens’,SensDofEntryName) or when using a reduced superelement model
SensRed=fe case(model, ’sensSE’,SensDofEntryName). Note that with superelements, you can
also define a field .UseSE=1 in the sensor entry to force use of the reduced model. This is needed
for the generation of reduced selections in (typically cf.sel=’-Test’).

The following example illustrates nominal strategies to generate the observed shape, here for a static
response.

model=demosdt (’demoUbeamSens’); def=fe_simul(’static’,model);

% Manual observation, using {y} = [c] {q}

sens=fe_case(model, ’sens’) ;

def=feutilb(’placeindof’,sens.DOF,def); 7 If DOF numbering differs

% could use sens=feutilb(’placeindof’,def.DOF,sens); if all DOF present
y=sens.ctaxdef.def

% Automated curve generation

Cl=fe_case(’sensObserve’ ,model, ’sensor 1’,def)

SensMatch

Once sensors defined (see ...), sensors must be matched to elements of the mesh. This is done
using
model = fe_case(model,’sensmatch’,SensDofEntryName) ;

You may omit to provide the name if there is only one sensor set. The command builds the observa-
tion matrix associated to each sensor of the entry Name, and stores it as a .cta field, and associated
.DOF, in the sensor stack.

Storing information in the stack allows multiple partial matches before generating the global obser-
vation matrix. The observation matrix is then obtained using
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Sens = fe case(model, ’sens’,SensDofEntryName) ;

The matching operation requires finding the elements that contain each sensor and the position
within the reference element shape so that shape functions can be used to interpolate the response.
Typical variants are

e a radius can be specified to modify the default sphere in which a match is sought. This is
typically needed in cases some large elements.

model=fe case(model, ’sensmatch radius1.0’,Name)

e clements on which to match can be specified as a string. In particular, matching
nodes outside volumes is not accepted. To obtain a match in cases where test nodes are
located outside volume elements, you must thus match on the volume surface using
fe_case(model, ’sensmatch radiusl.0’,Name,’selface’)
which selects external surface of volumes and allows a normal projection towards the surface
and thus proper match of sensors outside the model volume.

Note that this selection does not yet let you selected implicit elements within a superelement.

e Matching on elements is not always acceptable, one can then force matching to the closest
node. SensMatch-Near uses the motion at the matched node. SensMatch-Rigid uses a rigid
body constraints to account for the distance between the matched node and the sensor (but is
thus only applicable to cases with rotations defined at the nearby node).

In an automated match, the sensor is not always matched to the correct elements on which the
sensor is glued, you may want to ensure that the observation matrices created by these commands
only use nodes associated to a subset of elements. You can use a selection to define element subset
on which perform the match. If you want to match one or more specific sensors to specific element
subset, you can give cell array with Sensld of sensor to match in a first column and with element
string selector in a second column.

model=fe case(model,’SensMatch’,Name, {SensIdVector, ’FindEltString’});

This is illustrated below in forcing the interpolation of test node 1206 to use FEM nodes in the plane
where it is glued.

cf=demosdt(’demo gartte cor plot’);

fe_case(cf, ’sensmatch -near’)
fecom(’curtabCases’, ’sensors’) ;fecom(’promodelviewon’) ;

% use fecom CursorSelOn to see how each sensor is matched.
cf.CStack{’sensors’}.Stack{18,3}

% modify link to 1206 to be on proper surface



cf.mdl=fe_case(cf.mdl,’SensMatch-near’,...

’sensors’,{1206.02, ’withnode {z>.16}’});
cf.CStack{’sensors’}.Stack{18,3}
/» force link to given node (may need to adjust distance)
cf.mdl=fe_case(cf.mdl, ’SensMatch-rigid radius .5’,’sensors’,{1205.07,21});
cf.CStack{’sensors’}.Stack{19,3}

fecom(’showlinks sensors’);fecom(’textnode’,[1206 1205])

DofLoadSensDof

The generation of loads is less general than that of sensors. As a result it may be convenient to use
reciprocity to define a load by generating the collocated sensor. When a sensor is defined, and the
topology correlation performed with one can define an actuator from this sensor using
model=fe case(model, ’DofLoad SensDof’,Input Name,’Sens Name:Sens Nb’) or for model us-
ing superelements

model=fe case(model, ’DofLoad SensDofSE’,Input_Name,’Sens Name:Sens Nb’).

Sens Name is the name of the sensor set entry in the model stack of the translation sensor that
defines the actuator, and Sens_Nb is its number in this stack entry. Thus Sensors:1 2 5 will de-
fine actuators with sensors 1, 2 and 5 for SensDof entry Sensors. Input Name is the name of the
DofLoad entry that will be created in the model stack to describe the actuator.

Note that a verification of directions can be performed a posteriori using [feutilb GeomRB|

Animation of sensor wire-frame models

This is discussed in section 2.7.3! .

Obsolete

SDT 5.3 match strategies are still available. Only the arigid match has not been ported to SDT
6.1. This section thus documents SDT 5.3 match calls.

For topology correlation, the sensor configuration must be stored in the sens.tdof field and active
FEM DOFs must be declared in sens.DOF. If you do not have your analysis modeshapes yet, you
can use sens.DOF=feutil (’getdof’,sens.DOF). With these fields and a combined test/FEM model
you can estimate test node motion from FEM results. Available interpolations are

e near defines the projection based on a nearest node match.
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e rigid defines the projection based on a nearest node match but assumes a rigid body link
between the DOF's of the FE model and the test DOFs to obtain the DOF definition vector
adof describing DOF's used for FEM results.

e arigid is a variant of the rigid link that estimates rotations based on translations of other
nodes. This interpolation is more accurate than rigid for solid elements (since they don’t
have rotational DOFs) and shells (since the value of drilling rotations is often poorly related
to the physical rotation of a small segment).

At each point, you can see which interpolations you are using with
[fe_sens|(’info’,sens). Note that when defining test nodes in a local basis, the node selection
commands are applied in the global coordinate system.

The interpolations are stored in the sens.cta field. With that information you can predict the
response of the FEM model at test nodes. For example

[model,def]=demosdt(’demo gartte cor’);

model=fe_sens(’rigid sensors’,model); % link sensors to model
% display sensor wire-frame and animate FEM modes

cf=feplot; cf.model=model; cf.sel=’-sensors’;
cf.def=def;fecom(’;undefline;scd.5;ch7’)

4.7 Stress observation

Observation of stress and resultant fields is an application that requires specific tools for performance.
A number of commands are thus available for this purpose. The two main commands are
for generation of the observation and [fe_caseg StressObservelfor the generation of a
[curve Multi-dim curve|showing observations as a table.

This functionality has been significantly stabilized for SDT 6.5 but improvements and minor format
changes are still likely for future releases.

4.7.1 Building view mesh

Stresses can be observed at nodes of arbitrary meshes (view meshes that are very much related
to test wireframes). You should look-up feutil(’object’) commands for ways to build simple
shapes. A few alternate model generation calls are provided in [fe_caseg StressCut|as illustrated
below and in the example for resultant sensors.




% Build straight line by weighting of two nodes
VIEW=fe_caseg(’stresscut’,
struct(’Origin’, [0 0 0;0 0 11, ... % [nl1,n2]
’steps’,linspace(0,1,10)))

% Automated build of a cut (works on convex cuts)
model=demosdt (’demoubeam-pro’) ;cf=feplot;
RO=struct (’Origin’,[0 O .5],’axis’,[0 O 11);
VIEW=fe_caseg(’StressCut’,R0,cf);

feplot (VIEW) % note problem due to non convex cut

%View at Gauss points

model=demosdt (’demoubeam-pro’) ;cf=feplot;
cut=fe_caseg(’StressCut-SelOut’,struct(’type’,’Gauss’) ,model);
cuts= fe_caseg(’stresscutToStrain’,cut);

% Observe beam strains at Gauss points
[model,def]=beamlt(’testeig’)
mol=fe_caseg(’StressCut’,struct(’type’, ’BeamGauss’) ,model);
cut=fe_caseg(’StressCut -radius 10 -SelOut’,mol,model);
Cl=fe_caseg(’StressObserve -crit""’,cut,def) J, Observation as CURVE

Generic command is :

VIEW=fe caseg(’StressCut’,R0,model);

RO is a data structure defining the view mesh. Different views are available according to RO.type or
RO fields:

e RO.type=’conform’ When one wants to define a mesh that is a subpart of the model, there
is no need to perform the match step, and the type ’conform’ can be used. The selection of
the subpart of the model is performed through a FindElt command provided in RO.sel.

e RO.type=’gauss’ gauss points of the elements. A FindElt command can be provided in
RO.sel (if omitted, all Gauss point are computed). For mechanical problems, to obtain the
displacement gradient rather than the usual strain set 11(6)=100.

e RO.type=’beamgauss’ : gauss points of a beam model.

e Plane cut mesh. R0O.0Origin and RO.axis must be filled. Cut is done in the plane defined
by RO.0rigin and RO.axis. If RO.planes is defined, as many planes (orthogonal to axis) as
positions from the RO.0rigin are defined.
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e Cut line : RO.Origin defining line extremities (each row defines an extremity position, 3
columns for X Y and Z) and RO.steps defining the number of observation nodes must be
filled.

4.7.2 Building and using a selection for stress observation

The first use of StressCut is to build a selection to be used to view/animate stress fields on
the view mesh. A basic example is shown below.

% build model
model=demosdt (’volbeam’) ;cf=feplot(model);

% build view mesh
VIEW=fe_caseg(’stresscut’,
struct(’Origin’, [0 .05 .05;1 .05 .05], ... % [nl1,n2]
’steps’,linspace(1,0,10)))
% build stress cut view selection
sel=fe_caseg(’stresscut -selout’,VIEW,cf);cla(cf.ga);feplot % generation observation

cf.def=fe_eig(model, [6 10 0]);
fe_caseg(’stresscut’,sel,cf) % Overlay view and nominal mesh
fecom(’scc2’) ¥ Force equal scaling

The result of StressCut is found in sel.StressObs.cta which is an observation matrix giving
the linear relation between motion at DOF of the elements connected to target points, to stress
components at these target points. The procedure used to build this observation matrix in fe_caseg
is as follows

e match desired nodes to the interior of elements and keep the resulting element coordinates.
One then adds to the selected element set, one layer of elements with the same material and
property ID (all elements that have one node in common with the matched elements);

e generate stress observation at Gauss points of the selected elements;

e for each stress component compute the stress at nodes that would lead to the same values at
Gauss points. In other words one resolves

> (wy g {Ni(9)}" {Nj(9)} 05) = D _(wyJy {Ni(9)}" o) (4.2)

g g

e finally use the element shape functions to interpolate each stress component from nodal values
to values at the desired points using element coordinates found at the first step.
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Note that typically, a sel.StressObs.trans field gives the observation matrix associated with
translations at the target points to allow animation of positions as well as colors.

4.7.3 Observing resultant fields

StressCut sensors provide stress post-treatments in model cutoffs. The command interprets a data
structure with fields

.E1tSel FindElt| command that gives the elements concerned by the resultant.
.SurfSel FindNode| command that gives the selection where the resultant is computed.
.type contains the string ’resultant’.

Following example defines a StressCut call to show modal stresses in an internal surface of a volumic
model

demosdt (’demoubeam’)

cf=feplot;fecom(’showpatch’)

cf.mdl=feutil(’lin2quad’,cf.mdl); J better stress interpolation

def=fe_eig(cf.mdl, [5 10 1e3]);

cf.def=def;

rl=struct (’EltSel’,’withnode {z<2}’, ...
’SurfSel’,’inelt{innode{z==2}}", ...
>type’,’Resultant’);

fe_caseg(’stresscut’,rl,cf);

% adapt transparencies

fecom(cf,’SetProp sel(1l).fsProp’,’FaceAlpha’,0.01,’EdgeAlpha’,0.2);

The observation in is performed on the fly, with data stored in cf.sel(2).Stress0bs (for
the latter example).

Command option -SelOut allows recovering the observation data. Field .cta is here compatible
with general sensors, for customized observation.

cta=fe_caseg(’StressCut-SelOut’,rl,cf);

4.8 Computing/post-processing the response

4.8.1 Simulate GUI
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Access to standard solvers is provided through the Simulate tab of the Model properties figure.
Experienced users will typically use the command line equivalent to these tabs as detailed in the
following sections.

Launch

simulation
Type of
simulation
b feplot (2, Py I [=] &3]
Ok [dF Wndw Lep
1| atensls LA, Poop.| Stazk| Gazes 5 il ]
o Wode b= simeul
bl teckespinee Caszl i ate
f o vodes asz | Lz ate
@ o e esponze Casz L e
] Erp i FES
Name of
exported variable
Select
export/plotting

Figure 4.12: Simulation properties tab.

4.8.2 Static responses

The computation of the response to static loads is a typical problem. Once loads and boundary
conditions are defined in a case as shown in previous sections, the static response may be computed

using the function.

This is an example of the 3D beam subjected to various type of loads (points, surface and volume
loads) and clamped at its base:

model=demosdt (’demo ubeam vol’); % Initialize a test
def=fe_simul (’static’,model’);% Compute static response
cf=feplot; cf.def=def;} post-process
cf.sel={’Groupall’,’ColorDataStressMises’}

Low level calls may also be used. For this purpose it is generally simpler to create system matrices
that incorporate the boundary conditions.

(for point loads) and (for distributed loads) can then be used to define unit loads
(input shape matrix using SDT terminology). For example, a unit vertical input (DOF .02) on node
6 can be simply created by



model=demosdt (’demo2bay’); Case=fe_case(model,’gett’); %init
% Compute point load
b = fe_c(Case.DOF, [6.02],1)7;

In many cases the static response can be computed using Static=kr \b. For very large models, you
will prefer

kd=ofact(k); Static = kd\b; ofact(’clear’,kd);

For repeated solutions with the same factored stiffness, you should build the factored stiffness
kd=ofact (k) and then Static = kd \b as many times are needed. Note that can return the
stiffness that was used when computing modes (when using methods without DOF renumbering).

For models with rigid body modes or DOF's with no stiffness contribution (this happens when setting
certain element properties to zero), the user interface function gives you the appropriate
result in a more robust and yet computationally efficient manner

Static = fe_reduc(’flex’,m,k,mdof,b);

4.8.3 Normal modes (partial eigenvalue solution)

computes mass normalized normal modes.

The simple call def=fe_eig(model) should only be used for very small models (below 100 DOF).
In other cases you will typically only want a partial solution. A typical call would have the form

model = demosdt(’demo ubeam plot’);
cf.def=fe_eig(model,[6 12 0]); 7 12 modes with method 6
fecom(’colordata stress mises’)

You should read the reference section to understand the qualities and limitations of the
various algorithms for partial eigenvalue solutions.

You can also load normal modes computed using a finite element package (see section ). If the
finite element package does not provide mass normalized modes, but a diagonal matrix of generalized
masses mu (also called modal masses). Mass normalized modeshapes will be obtained using

ModeNorm = ModeIn * diag( diag(mu).~(-1/2) );

If a mass matrix is given, an alternative is to use mode = fe norm(mode,m). When both mass
and stiffness are given, a Ritz analysis for the complete problem is obtained using [mode,freq] =
fe norm(mode,m,k).

Note that loading modes with in ASCII format 8 digits is usually sufficient for good accuracy
whereas the same precision is very often insufficient for model matrices (particularly the stiffness).
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4.8.4 State space and other modal models

A typical application of SDT is the creation of input/output models in the normal mode nor,
state space ss or FRF xf form. (The SDT does not replicate existing functions for time response
generation such as 1sim of the Control Toolbox which creates time responses using a model in the
state-space form).

The creation of such models combines two steps creation of a modal or enriched modal basis; building
of input/output model given a set of inputs and outputs.

As detailed in section a modal basis can be obtained with or loaded from an external
FEM package. Inputs and outputs are easily handled using entries corresponding to loads

(DofLoad, DofSet, FVol, FSurf) and sensors (SensDof).

d 5

Figure 4.13: Truss example.

For the two bay truss examples shown above, the following script defines a load as the relative force
between nodes 1 and 3, and translation sensors at nodes 5 and 6

model=demosdt (’demo2bay’) ;
DEF=fe_eig(model, [2 5]); 7 compute 5 modes

% Define loads and sensors

Load=struct (’DOF’,[3.01;1.01],’def’,[1;-11);

Case=fe_case(’DofLoad’,’Relative load’,Load, ...
>SensDof’,’Tip sensors’,[5.01;6.02]);

% Compute FRF and display
w=linspace(80,240,200);
nor2xf (DEF, .01,Case,w, ’hz iiplot "Main" -reset’);

You can easily obtain velocity or acceleration responses using
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xf=nor2xf (DEF, .01,Case,w, ’hz vel plot’);
xf=nor2xf (DEF, .01,Case,w, ’hz acc plot’);

—  fix f3xto 6y
- fix faxto 5x | |

FRF Amplitudes
»
=1

" . L "
100 120 140 160 180 200 220 240
Frequency (Hz)

Figure 4.14: FRF synthesis : with and without static correction.

As detailed in section , it is desirable to introduce a static correction for each input. [fe2ss|builds
on to provide optimized solutions where you compute both modes and static corrections

in a single call and return a state-space (or normal mode model) and associated reduction basis.
Thus

model=demosdt (’demo ubeam sens -pro’);

model=stack_set(model,’info’,’Freq’,linspace(10,1e3,500)’);
model=stack_set(model,’info’,’DefaultZeta’,.01);

[SYS,Tl=fe2ss(’free 6 10’,model); %ii_pof(eig(S¥YS.a),3)

gbode (SYS,linspace(10,1e3,1500) > *#2xpi, ’iiplot "Initial" -reset’);
nor2xf (T, [.04] ,model,’hz iiplot "Damped" -po’);

computes 10 modes using a full solution (Eigopt=[6 10 0]), appends the static response to the
defined loads, and builds the state-space model corresponding to modal truncation with static cor-
rection (see section ). Note that the load and sensor definitions where now added to the case
in model since that case also contains boundary condition definitions which are needed in

The different functions using normal mode models support further model truncation. For example,
to create a model retaining the first four modes, one can use

model=demosdt (’demo2bay’) ;

DEF=fe_eig(model, [2 12]); 7 compute 12 modes

Case=fe_case(’DofLoad’,’Horizontal load’,3.01,
’SensDof’,’Tip sensors’,[5.01;6.02]);

SYS =nor2ss(DEF, .01,Case,1:4);

ii_pof (eig(SYS.a)/2/pi,3) ¥ Frequency (Hz), damping
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A static correction for the displacement contribution of truncated modes is automatically introduced
in the form of a non-zero d term. When considering velocity outputs, the accuracy of this model can
be improved using static correction modes instead of the d term. Static correction modes are added
if a roll-off frequency fc is specified (this frequency should be a decade above the last retained mode
and can be replaced by a set of frequencies)

SYS =nor2ss(DEF,.01,Case,1:4,[2e3 .2]);
ii_pof (eig(SYS.a)/2/pi,3,1) Y’ Frequency (Hz), damping

Note that always introduces a static correction for both displacement and velocity.

For damping, you can use uniform modal damping (a single damping ration damp=.01 for exam-
ple), non uniform modal damping (a damping ratio vector damp), non-proportional modal damping
(square matrix ga), or hysteretic (complex DEF.data). This is illustrated in demo fe.

4.8.5 Viewing shapes, stress, energy, ...

NEED TO INTRODUCE PROPER REFERENCES XXX

4.8.6 Time computation

To perform a full order model time integration, one needs to have a model, a load and a curve
describing time evolution of the load.

% define model and load
model=fe_time(’demo bar’);fe_case(model,’info’)
% Define curves stack (time integration curve will be chosen later):
% — step with ones from t=0 to t=1le-3, 0 after :
model=fe_curve(model,’set’,’input’,’TestStep tl=1e-3’);
% — ramp from t=.1 to t=2 with final value 1.1;
model=fe_curve(model,’set’, ’ramp’,’TestRamp t0=.1 tf=2 Yf=1.17);
% - Ricker curve from t=0 to t=1e-3 with max amplitude value 1:
model=fe_curve(model,’set’,’ricker’,’TestRicker t0=0 dt=1e-3 A=1’);
% - Sinus (with evaluated string depending on t time vector)
model=fe_curve(model,’set’,’sinus’, ...
’Test eval sin(2%pi*1000%t)’);

% — Another sinus definition, explicit curve (with time vector,
% it will be interpolated during the time integration if needed)
model=fe_curve(model,’set’,’sinus2’,...

struct(’X’,linspace(0,100,10)7,...



Y’ ,sin(linspace(0,100,10)’))); % tabulated
% - Have load named ’Point load 1’ reference ’input’
% curve (one can choose any of the model stack
b curve from it stack entry name)
model=fe_case(model,’SetCurve’,’Point load 1’,’input’);

cf=feplot(model) 7 plot the model

Once model is plotted in feplot one can edit each curve under the model properties Stack tab.
Parameters can be modified. Curve can be plotted in iiplot using the Show pop-up button. One
has to define the number of steps (NStep) and the total time to be displayed (Tf) and click Using
NStep & Tf. One can also display curve on the info TimeOpt time options by clicking on Using
TimeOpt.

) feplot(3,'mdl)

File Edit Desktop ‘Window Help - ) M
B A[AB
Model| Mat | EIProp] Stack | Cases | Simul] Plot |

LLrvE. CUrve_ 15
curvecurve_ 16 A curve RE
curvecurye_17 name | sweep
curve: R . :
curve R curvestr sprintf{Test Sweep %y %g %g %o’ 0 .
curve:gg . MStep 1000 Mumber of steps
CLIFVE: apente
= Tf 1 Tatal Time
curve Ry i 10 Bedini
L eqining frequency of the sweep
curve:R10 f1 100 End frequency of the sweep
curve:R20 o :
= ta 0 Elegln.mg time of the sweep
curve:R22 t1 1 End time of the sweep
curve:R23 f T
urve Rl | Show Using NStep & Tf Showe curve in iiplot
curve:R99 b Export To Base
< | [

Figure 4.15: GUI associated to a curve

One can change the curve associated to the load in the Case tab.

% Define time computation options : dt=le-4, 100 time steps
cf.Stack{’info’,’TimeOpt’}=...

fe_time(’timeopt newmark .25 .5 0 le-4 100’);
% Compute and store/display in feplot
cf.def=fe_time(cf.mdl);
figure;plot(cf.def.data,cf.def.def(cf.def.DOF==2.01,:)); % show 2.01 result
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Time domain responses can also be obtained by inverse transform of frequency responses as illus-
trated in the following example

model=demosdt (’demo ubeam sens’) ;DEF=fe_eig(model,[5 10 1e3]);

w=linspace(0,600,6000); % define frequencies
Ri=nor2xf (DEF, .001,model,w, ’hz struct’); % compute freq resp.
R2=ii_mmif (’ifft -struct’,R1);R2.name=’time’; % compute time resp.
iiplot(R2);iicom(’;sub 1 1 1 1 3;ylin’); % display

4.8.7 Manipulating large finite element models

The flexibility given by the MATLAB language comes at a price for large finite element computations.
The two main bottlenecks are model assembly and matrix inversion (static and modal computations).

During assembly compiled elements provided with OpenFEM allow much faster element matrix eval-
uations (since these steps are loop intensive they are hard to optimize in MATLAB). The .mex
function alleviates element matrix assembly and large matrix manipulation problems (at the cost of
doing some very dirty tricks like modifying input arguments).

Starting with SDT 6.1, model.Dbfile can be defined to let SDT know that the file can be used as a
database. In particular optimized assembly calls (see section ) make use of this functionality.
The database is a .mat file that uses the HDF5 format defined for MATLAB versions over 7.3.

For matrix inversion, the object allows method selection. Currently the easiest to use solver
(and default method) is the multi-frontal sparse solver spfmex. For very large models it is
recommended to use mklserv_utils (an implementation of IntelMKL pardiso solver), the spfmex
solver will perform perform poorly mainly because its current implementation is not parallelized.
These solvers automatically perform equation reordering so this needs not be done elsewhere. They
do not use the MATLAB memory stack which is more efficient for large problems but requires
ofact(’clear’) calls to free memory associated with a given factor.

With other static solvers, that should be used only for very specific cases, (MATLAB 1lu or chol,
or SDT true skyline sp_util method) you need to pay attention to equation renumbering. When
assembling large models, (obsolete compared to will automatically renumber DOFs
to minimize matrix bandwidth (for partial backward compatibility automatic renumbering is only
done above 1000 DOF).

As SDT is an in-core oriented program, the real limitation on size is linked to performance drops
when swapping. If the factored matrix size exceeds physical memory available to MATLAB in your
computer, performance tends to decrease drastically. The model size at which this limit is found is



very much model/computer dependent. It has to be noted that the most recent linux distributions
(Kernel versions 4.4 and above) handle swapping quite well for large amounts of memory.

Memory management can be optimized to some extent in SDT with dedicated preferences. There
is a distinction between blockwise in-core operations, where an intensive operation is performed by
blocks to avoid large memory duplications, and out-of-core operations where data is written on disc
to unload RAM and intensive operations involve reading file buffers and writing results buffers to
temporary files. The following SDT preferences are available (they should be set by command)

e BlasBufSize in GB, provides a block size for in-core operations, mainly matrix products with
large bases, used by [fe_eig| [fe norm| [feutilbl

e Eig00C in GB provides a global vector basis size to trigger out-of-core operations. If a vector
basis size is estimated over the specified value, it will be written to disc, used by
[fe_reduc] [fe_cyclic]

e Out0fCoreBufferSize in MB provides a buffer size for out-of-core and file database operations.
File database operations are common in FEMLink while handling results files. It is common
not to load large files in memory. This buffer provides the amount of RAM that will still be
used while in out-of-core mode, so this one should remain reasonable, and at least 10 times
smaller than the Eig00C value.

e KiKeMemSize in MB provides a buffer size for out-of-core matrix assemblies, this is mostly
used when exploiting FEMLink results files with matrices.

e MklServ0OC a 1x2 line with [00C_Mode MemSize(GB)]. Specific to the mklserv_utils solver
with allows specifying the out-of-core mode of the Pardiso solver and the associated
memory threshold. 00C_Mode can take values 0 to force in-core, 2 to force out-of-core, and 1
to let the solver decide depending on MemSize. MemSize in GB is the total amount of RAM
available for the solver, if the estimated factor size overcomes this value, the out-of-core mode
is triggered. Beware that the solver will still need a fair amount of RAM to work, so that
MemSize cannot be too small.

e MklServBufSize in GB provides a right hand size block size for in-core resolution with the
mklserv_utils solver. An optimum exists around 1 GB for reasonable workstations.

method 6 (IRA /Sorensen) uses low level BLAS code and thus tends to have the best memory
performance for eigenvalue computations.

For batch computations (in nodesktop mode) you may want to run MATLAB with the -nojvm option
turned on since it increases the memory addressable by MATLAB(version j=6.5).

For out-of-core operations (supported by [fe_mk| upcom| nasread| and other functions). SDT creates
temporary files whose names are generated with nas2up(’tempnameExt’). You may need to set
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sdtdef (’tempdir’,’your_dir’) to an appropriate location. The directory should be located on a
local disk or a high speed disk array. If you have a RAID array or FLASH array, use a directory
there.

4.8.8 Optimized assembly strategies

The handling of large models, often requires careful sequencing of assembly operations. While
[fe_mknl] [fe_Toad] and can be used for user defined procedures, SDT operations typically
use the an internal (closed source) assembly call to fe case Assemble . Illustrations of most calls

can be found in [fe_simull

[k,mdl,Case,Load]=fe _case(mdl,’assemble matdes 1 NoT loadback’,Case); return the stiff-
ness without constraint elimination and evaluates loads.

[SE,Case,Load,Sens]=fe_case(mdl, ’assemble -matdes 2 1 3 4 -SE NoTload Sens’) returns
desired matrices in SE.K, the associated case, load and sensors (as requested in the arguments).

Accepted command options for the assemble call are

e -fetime forces the nominal assembly using mass, viscous damping and stiffness, output in this
order: 2 3 1. If a reduced model is defined as an SE,MVR, the assembly is shortcut to output
MVR as the assembled model, and MVR.Case as the Case. If the field .Case is absent, the case
stacked in the base model is output.

e -reset forces reassembly even if the .X field is defined and filled.

e keep retains model.DOF even if some DOF are unused.

e load requires load assembly and output.

e sens requires sensor assembly and output.

e GetT outputs a struct containing Case.Stack, Case.T and Case.DOF.

e NoT is the usual option to prevent constraint elimination (computation of 77 KT). With NoT
DOFs are given in model.DOF or Case.mDOF. Without the option they are consistent with
Case.DOF.

e -lMatDes specifies the list of desired matrices. Basic types are 2 for mass and 1 for stiffness,

for a complete list see

— -1 is used separate matrices associated with parameters (see fupcom Parl)



— -1.1 removes the subparameters from the nominal matrix.

— -2 is used to obtain matrices associated with assembled superelements with a split based
on the matrix labels (.Klab) only. Matrices with common labels through SE are thus
assembled together. With a model having only SE, all matrices found in all SE are as-
sembled. When the model combines SE and standard elements, the non SE elements
are integrated in the first matrix of each type. To avoid this behavior specify a matrix
type 1, ... where all SE and non SE elements will be assembled, then followed by SE only
matrices by labels. Note that this strategy only works with a single matrix type at a time.
Possibly defined matrix coefficients with a entry are not taken into account in
the SE specific matrix types.

— -2.1 performs the same task than -2 but accounting for based SE matrix coef-
ficients.

— 5 (geometric stiffness) uses a predefined deformation stored as stack entry
’curve’,’StaticState’. Furthermore, the internal load is computed and added to re-
turned loads.

InitFcn allows pre-emptive behavior at the beginning of assembly. ExitFcn does the same at
exit.

-SE returns the assembled result as a superelement structure. One can use -SeCDof (superele-
ment Case DOF) to fill .DOF field with constrained DOF (Case.DOF).

-cell sets the first output as a cell array containing all assembled matrices.

-cfield keeps the Case.MatGraph to allow further reassembly.

197



4 FEM tutorial

198



Structural dynamic concepts

[5.1 TI/0 shape matrices| . . .. ... ... 200
.2 Normalmodemodels . . ... .................... 202
5.3 AMPING| ¢ o ¢ o o o o o o o o o o o o o o o o o o o s s o o v o e 203

[0.3.1  Viscous damping in the normal mode model form|. . . . . . . .. 203

[5.3.2 Viscous damping in finite element models| . . . . . . . . ... .. 205

[5.3.3  Hysteretic damping in finite element models|. . . . . . . . .. .. 206
[6.4  State space models| . . . . . . v i ittt e e e e e e 209
65 Complex mode models| . . . .. ... ... ..o veeeenn.. 210
[5.6 Pole/residue models|. . . . . . . ..o v it e 212
6.7 _Parametric transfer functionl. . . . . ... ... .......... 214

[5.8 Non-parametric transfer function|. . . . . ... ... ... .... 214




5 Structural dynamic concepts

200

This theoretical chapter is intended as a reference for the fundamental notions and associated vari-
ables used throughout the SDT. This piece of information is grouped here and hypertext reference
is given in the HTML version of the manual.

Models of dynamic systems are used for identification phases and links with control applications
supported by other MATLAB toolboxes and SIMULINK. Key concepts and variables are

b,c input /output shape matrices (b,c,pb,cp variables)
nor normal mode models (freq,damp, cp,pb variables)
damp damping for full and reduced models

Cpx complex mode models (lambda, psi variables)
res pole/residue model (res,po variables)

ss state space model (a,b,c,d variables)

tf parametric transfer function (num,den variables)
xf non-parametric transfer function (w,xf variables)

5.1 I/0 shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a product {F'} =
[b] {u(t)} where

e the input shape matrix [b] is time invariant and characterizes spatial properties of the applied
forces

e the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses, etc.) are
linearly related to the model coordinates {q} through the sensor output shape matrix ({y} =

[c]{q})-

Input and output shape matrices are typically generated with[fe _c|lor|fe_load] Understanding what
they represent and how they are transformed when model DOFs/states are changed is essential.

Linear mechanical models take the general forms

[M82+CS+K]NXN {Q(S)} = [b]NxNA {u(s)}NAxl (5 1)
{Y(8)}nsx1 = lelysxn 1a(8) v .

in the frequency domain (with Z(s) = Ms? + Cs+ K), and



in the time domain.

In the model form , the first set of equations describes the evolution of {¢}. The components of
q are called Degrees Of Freedom (DOFs) by mechanical engineers and states in control theory. The
second observation equation is rarely considered by mechanical engineers (hopefully the SDT may
change this). The purpose of this distinction is to lead to the block diagram representation of the
structural dynamics

{u(s)} {F(s)} {a(s)} {y(s)}
[b] [Ms?+Cs+ K]~ [c] -

which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ¢, the input shape matrix is equal to zero
except for DOF [ where it takes the value 1

0] =

—_
—~
ot
w0
~—

Since {g;} = [by]" {q}, the transpose this Boolean input shape matrix is often called a localization
matrix. Boolean input/output shape matrices are easily generated by (see the section on

page 70).

Input/output shape matrices become really useful when not Boolean. For applications considered
in the SDT they are key to

e distributed FEM loads, see

e test analysis correlation. Since you often have measurements that do not directly correspond to
DOFs (accelerations in non global directions at positions that do not correspond to finite element
nodes, see section [2.7.2] ).
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e model reduction. To allow the changes to the DOFs ¢ while retaining the physical meaning of the
I/0O relation between {u} and {y} (see section ).

5.2 Normal mode models

The spectral decomposition is a key notion for the resolution of linear differential equations and the
characterization of system dynamics. Predictions of the vibrations of structures are typically done
for linear elastic structures or, for non-linear cases, refer to an underlying tangent elastic model.

Spectral decomposition applied to elastic structures leads to modal analysis. The main objective is
to correctly represent low frequency dynamics by a low order model whose size is typically orders of
magnitude smaller than that of the finite element model of an industrial structure.

The use of normal modes defined by the spectral decomposition of the elastic model and corrections
(to account for the restricted frequency range of the model) is fundamental in modal analysis.

Associated models are used in the normal mode model format

[12] 5> + [T] s + [22)] {p(s)} = |670] {u(s)} (5.4)
{y(s)} = el {p(s)}
where the modal masses (see details below) are assumed to be unity.

Thepor2res| [por2ss| and [por2xf|functions are mostly based on this model form (see[por2ss|theory
section). They thus support a low level entry format with four arguments

om modal stiffness matrix Q2. In place of a full modal stiffness matrix om, a vector of modal
frequencies freq is generally used (in rad/s if Hz is not specified in the type string). It
is then assumed that om=diag(freq."2). om can be complex for models with structural
damping (see the section on page .

ga modal damping matrix I' (viscous). damping ratios damp corresponding to the modal fre-
quencies freq are often used instead of the modal damping matrix ga (damp cannot be used
with a full om matrix). If damp is a vector of the same size as freq, it is then assumed that
ga=diag(2*freq.*damp). If damp is a scalar, it is assumed that ga=2+damp*diag(freq).
The application of these models is discussed in the section on [damping| page 203).

pb modal input matrix {¢;}* [b] (input shape matrix associated to the use of modal coordi-
nates).

cp modal output matrix [c] {¢;} (output shape matrix associated to the use of modal coordi-
nates).

Higher level calls, use a data structure with the following fields



.freq frequencies (units given by .fsc field, 2*pi for Hz). This field may be empty if a non
diagonal nor.om is defined.

.om alternate definition for a non diagonal reduced stiffness. Nominally om contains
diag(freq.”2).

.damp modal damping ratio. Can be a scalar or a vector giving the damping ratio for each
frequency in nor.freq.

.ga alternate definition for a non diagonal reduced viscous damping.

.pb input shape matrix associated with the generalized coordinates in which nor.om and
nor.ga are defined.

.cp output shape matrix associated with the generalized coordinates in which nor.om
and nor.ga are defined.

.dof_in A six column matrix where each row describes a load by [SensID NodeID nx ny nz

Type] giving a sensor identifier (integer or real), a node identifier (positive integer),
the projection of the measurement direction on the global axes (if relevant), a Type.

.lab_in A cell array of string labels associated with each input.
.dof out A six column matrix describing outputs following the .dof _in format.
.lab_out A cell array of string labels associated with each output.

General load and sensor definitions are then supported using cases (see section m ).

Transformations to other model formats are provided using (state-space model),
(FRF's associated to the model in the xf format), and (complex residue model in the res
format). The use of these functions is demonstrated in demo fe.

Transformations from other model formats are provided by [fe2ss| |fe_eig] |[fe norn| ... (from
full order finite element model), [id nor| and [res2nor| (from experimentally identified pole/residue
model).

5.3 Damping

Models used to represent dissipation at the local material level and at the global system level should
typically be different. Simple viscous behavior is very often not appropriate to describe material
damping while a viscous model is appropriate in the normal mode model format (see details in Ref.
[27]). This section discusses typical damping models and discusses how piece-wise Rayleigh damping
is implemented in SDT.

5.3.1 Viscous damping in the normal mode model form

In the normal mode form, viscous damping is represented by the modal damping matrix I' which is
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typically used to represent all the dissipation effects at the system level.

Models with modal damping assume that a diagonal I' is sufficient to represent dissipation at
a system level. The non-zero terms of I' are then usually expressed in terms of damping ratios
I';; = 2¢jw;. The damping ratio (; are accepted by most SDT functions instead of a full I". The
variable name damp is then used instead of ga in the documentation.

For a model with modal damping, the matrices in are diagonal so that the contributions of
the different normal modes are uncoupled and correspond exactly to the spectral decomposition of
the model (see page or the definition of complex modes). The rational fraction expression
of the dynamic compliance matrix (transfer from the inputs {u} to displacement outputs {y}) takes
the form

T
{ea;} {70, }
— s? + 2Cjw;s + w

Z 2 NS><NA (55)

[s)] = + QCijs + w

where the contribution of each mode is characterized by the pole frequency w;, damping ratio (j,
and the residue matrix 7 (which is equal to the product of the normal mode output shape matrix

{c¢;} by the normal mode input shape matrix {qﬁfb})

Modal damping is used when lacking better information. One will thus often set a uniform damping
ratio (¢; = 1% or damp = 0.01) or experimentally determined damping ratios that are different for

each pole (pogii_pof|(po,3); damp=po(:,2);).

Historically, modal damping was associated to the proportional damping model introduced by
Lord Rayleigh which assumes the usefulness of a global viscously damped model with a dynamic
stiffness of the form

[Z(s)] = |Ms? + (aM + BK)s + K| (5.6)

While this model indeed leads to a modally damped normal mode model, the a and § coefficients
can only be adjusted to represent physical damping mechanisms over very narrow frequency bands.
The modal damping matrix thus obtained writes

= [\oz + Bwjz\} (5.7)

which leads to damping ratios



2, = j; + Buw; (5.8)

Mass coefficient « leads to high damping ratios in the low frequency range. Stiffness coefficient 3
leads to a damping ratio linearly increasing with the frequency.

Using a diagonal [I'] can introduce significant errors when normal mode coupling through the spatial
distribution of damping mechanisms is possible. The condition

2Gjw;/|wj — wi| <1 (5.9)
proposed by Hasselman [2§], gives a good indication of when modal coupling will not occur. One
will note that a structure with a group of modes separated by a few percent in frequency and levels

of damping close to 1% does not verify this condition. The un-coupling assumption can however
still be applied to blocks of modes [12].

A normal mode model with a full I' matrix is said to be non-proportionally damped and is clearly
more general/accurate than the simple modal damping model. The SDT leaves the choice between
the non-proportional model using a matrix ga and the proportional model using damping ratio for
each of the pole frequencies (in this case one has ga=2+diag(damp.*freq) or ga=2*damp*diag(freq)
if a scalar uniform damping ratio is defined).

For identification phases, standard approximations linked to the assumption of modal damping are
provided by (id rc| |id rm and [res2nor]), while provides an original algorithm of the deter-
mination of a full I' matrix. Theoretical aspects of this algorithm and details on the approximation
of modal damping are discussed in [12]).

5.3.2 Viscous damping in finite element models

Standard damped finite element models allow the incorporation of viscous and structural damping
in the form of real C' and complex K matrices respectively.

fe mk| could assemble a viscous damping matrix with user defined elements that would support
matrix type 3 (viscous damping) using a call of the form

fe mk (MODEL, ’options’,3) (see section for new element creation). Viscous damping models
are rarely appropriate at the finite element level [27], so that it is only supported by and cbush
elements. Piece-wise Rayleigh damping where the viscous damping is a combination of element mass
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and stiffness on element subsets
NS
_ SarS S 18
C=>"|afM} + B K7 (5.10)
j=1

is supported as follows. For each material or group that is to be considered in the linear combination

one defines a row entry giving GroupId MatId AlphaS BetaS (note that some elements may be
counted twice if they are related to a group and a material entry). One can alternatively define ProId
as a 5th column (useful for celas element that have no matid). Note that each line is separately
accounted for, so that duplicated entries or multiple references to same GroupId, MatId or Prold
will also be combined. For example

model=demosdt (’demogartfe’);
model=stack_set(model,’info’,’Rayleigh’,

[10 0 1le-5 0.0; ... % Elements of group 10 (masses)
90 0.0 1le-3; ... % Elements of group 9 (springs)
01 0.0 1le-4; ... % Elements with MatId 1
02 0.0 1le-4]); % Elements with MatId 2

% Note that DOF numbering may be a problem when calling ’Rayleigh’
% See sdtweb simul#feass for preferrred assembly in SDT
c=feutilb(’Rayleigh’ ,model); figure(1);spy(c);

dc=fe_ceig(model, [1 5 20 1e3]);cf=feplot(model,dc);

Such damping models are typically used in time integration applications. Info,Rayleigh entries
are properly handled by commands.

You can also provide model=stack set(model,’info’,’Rayleigh’, [alpha beta]).

Note that in case of Rayleigh damping, celas element viscous damping will also be taken into account.

5.3.3 Hysteretic damping in finite element models

Structural or hysteretic damping represents dissipation by giving a loss factor at the element level
leading to a dynamic stiffness of the form

NE
Z(s) = [Ms* + K +iB| = Ms* + 3 [K§| (1 + i) (5.11)
j=1
The name loss factor derives from the fact that n is equal to the ratio of energy dissipated for one
cycle E; = fOT oé'dt by 27 the maximum potential energy E, = 1/2E.

If dissipative materials used have a loss factor property, these are used by commands with
a desired matrix type 4. If no material damping is defined, you can also use DefaultZetalto set a



global loss factor to eta=2+DefaultZeta.

Using complex valued constitutive parameters will not work for most element functions. Hysteretic
damping models can thus be assembled using the Rayleigh command shown above (to assemble the
imaginary part of K rather than C or using (see section ). The following example defines
two loss factors for group 6 and other elements of the Garteur FEM model. Approximate damped
poles are then estimated on the basis of real modes (better approximations are discussed in [29])

Up=upcom(’load GartUp’); cf=feplot(Up);
Up=fe_case(Up, ’parReset’,
’Par k’,’Constrained Layer’,’group 6’,
’Par k’,’Main Structure’,’group”=6’);

/A type cur min max vtype

par =[1 1.00.13.0 1 ;
1 1.0 0.1 3.0 117;

Up=upcom(Up, ’ParCoef’ ,par) ;

% assemble using different loss factors for each parameter
B=upcom(Up, ’assemble k coef .05 .01’);

[m,k]=upcom(Up, ’assemble coef 1.0 1.07);

Case=fe_case(Up, ’gett’);

% Estimate damped poles on real mode basis
def=fe_eig({m,k,Case.DOF}, [6 20 1e3]);

mr=def.def’*m*def.def; 7, this is the identity
cr=zeros(size(mr));

kr=def .def’*kxdef.def+i*(def.def’*Bxdef.def) ;
dr=fe_ceig({mr,cr,kr, [1});dr.def=def.def*dr.def;dr.DOF=def.DOF;
cf.def=dr

Note that in this model, the poles A\; are not complex conjugate since the hysteretic damping model
is only valid for positive frequencies (for negative frequencies one should change the sign of the
imaginary part of K).

Given a set of complex modes you can compute frequency responses with or simply use the
modal damping ratio found with Continuing the example, above one uses

Up=fe_case(Up,’Dofload’,’Point loads’,[4.03;55.03],

’SensDof’, ’Sensors’,[4 55 30]’+.03);
Sens=feutilb(’placeindof’,def.DOF,fe_case(Up,’sens’));
Load=fe_load(Up);
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ind=find(dr.data(:,1)>5); % flexible modes

% Standard elastic response with modal damping
f=linspace(5,60,2048);

dl=def; dil.data(7:20,2)=dr.data(ind,?2);
nor2xf(d1,Up,f,’hz iiplot "Normal" -reset -po’);

% Now complex modes

RES=struct(’res’,[],’po’,dr.data(ind,:), ’idopt’,idopt ("new’));

RES.idopt.residual=2;RES.idopt.fitting=’complex’;

for jl=1:length(ind); % deal with flexible modes

Rj=(Sens.ctaxdr.def(:,ind(j1))) * ... % c psi
(dr.def(:,ind(j1)).’*Load.def); 7 psi"T b

RES.res(j1,:)=Rj(:).’;

end

% Rigid body mode residual

RES.res(end+1, :)=0;

for j1=1:6;
Rj=(Sens.ctaxdef.def(:,j1))*(def.def(:,j1) ’*Load.def);
RES.res(end, :)=RES.res(end, :)+Rj(:).’;

end

res2xf (RES,f, ’hz iiplot "Res2xf"’);

damp=dr.data(ind,?2);
d2=def;d2.data(7:20)=sqrt (real (d2.data(7:20).72)) .*sqrt (1+i*damp*2) ;
nor2xf (d2,Up,f, ’hz iiplot "Hysteretic"’);

iicom(’submagpha’) ;

Note that the presence of rigid body modes, which can only be represented as residual terms in
the pole/residue format (see section ), makes the example more complex. The plot illustrates
differences in responses obtained with true complex modes, viscous modal damping or hysteretic
modal damping (case where one uses the pole of the true complex mode with a normal mode shape).
Viscous and hysteretic modal damping are nearly identical. With true complex modes, only channels
2 and 4 show a visible difference, and then only near anti-resonances.

To incorporate static corrections, you may want to compute complex modes on bases generated by

rather than simple modal bases obtained with

The use of a constant loss factor can be a crude approximation for materials exhibiting significant
damping. Methods used to treat frequency dependent materials are described in Ref. [30].

208



5.4 State space models

While normal mode models are appropriate for structures, state-space models allow the represen-
tation of more general linear dynamic systems and are commonly used in the Control Toolbox or
SIMULINK. The standard form for state space-models is

{ﬂﬁﬂMWHEM% (5.12)

with inputs {u}, states {x} and outputs {y}. State-space models are represented in the SDT, as
generally done in other Toolboxes for use with MATLAB, using four independent matrix variables a,
b, ¢, and d (you should also take a look at the LTI state-space object of the Control Toolbox).

The natural state-space representation of normal mode models (5.4)) is given by

{§}=[_& jﬂ{g | gy [0

{y()} =[co 0] g}

Transformations to this form are provided by nor2ss|and|fe2ss| Another special form of state-space

models is constructed by

A state-space representation of the nominal structural model (j5.1)) is given by

{ g/// }: [ _MO—IK _MI—IC ‘| qq/ + M(llb ] {u(t)}
W=l 0§

The interest of this representation is mostly academic because it does not preserve symmetry (an
useful feature of models of structures associated to the assumption of reciprocity) and because M~ K
is usually a full matrix (so that the associated memory requirements for a realistic finite element
model would be prohibitive). The SDT thus always starts by transforming a model to the normal
mode form and the associated state-space model .

(5.13)

(5.14)

The transfer functions from inputs to outputs are described in the frequency domain by
{y(s)} = (IC)[s T = A]7* [B] + [D]) {u(s)} (5.15)
assuming that [A] is diagonalizable in the basis of complex modes, model (5.12) is equivalent to
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the diagonal model

(5111~ [ ]) ) = [oFt] ) 518)
{y} = [cOr] {n(s)}

where the left and right modeshapes (columns of [#r] and [f1]) are solution of

{00} 1A =X {60} and [A]{0;r) = A; {0;r) (5.17)
and verify the orthogonality conditions
6,17 0r) = 1] emd (0] [A][0g] = [\Aj] (5.18)

The diagonal state space form corresponds to the partial fraction expansion

{C% {¢Tb} X [Rilysxna

———en 5.19
(5)} = z ]y e (519
7j=1
where the contribution of each mode is characterlzed by the pole location A\; and the residue matrix

R; (which is equal to the product of the complex modal output {cf;} by the modal input {QJTb})

The partial fraction expansion ([5.19)) is heavily used for the identification routines implemented in
the SDT (see the section on the pole/residue representation page m

5.5 Complex mode models

The standard spectral decomposition discussed for state-space models in the previous section can
be applied directly to second order models of structural dynamics. The associated modes are called
complex modes by opposition to normal modes which are associated to elastic models of struc-
tures and are always real valued.

Left and right eigenvectors, which are equal for reciprocal structural models, can be defined by the
second order eigenvalue problem,
[MX2 4+ O + K] {1} = {0} (5.20)
In practice however, mathematical libraries only provide first order eigenvalue solvers to that a
transformation to the first order form is needed. Rather than the trivial state-space form , the
following generalized state-space form is preferred

C M q K 0 qg | _ |0
HEAIE R T TS H T

m=[co]{ 4}

q




The matrices M, C and K being symmetric (assumption of reciprocity), the generalized state-space
model (5.21]) is symmetric. The associate left and right eigenvectors are thus equal and found by

solving
cC M
M 0

Because of the specific block from of the problem, it can be shown that

{6;} —{ wﬁj } (5.23)

where it should be noted that the name complex modeshape is given to both #; (for applications
in system dynamics) and 1); (for applications in structural dynamics).

K

Y D {0, = {0} (5.22)

The initial model being real, complex eigenvalues A; come in conjugate pairs associated to conjugate
pairs of modeshapes {t;}. With the exception of systems with real poles, there are 2N complex
eigenvalues for the considered symmetric systems (Yn41..28) = ¥1..n) and Ay41..2n8] = Aj1.n))-

The existence of a set of 2N eigenvectors is equivalent to the verification of two orthogonality
conditions

01" z\i Aoi ] 0] =oTCy+ MTMY T MyYA = [\,
(5.24)
o ] 0] =T Ky — Ayt MyA =[],y

where in (5.24) the arbitrary diagonal matrix was chosen to be the identity because it leads to
a normalization of complex modes that is equivalent to the collocation constraint used to scale
experimentally determined modeshapes ([12] and section [2.8.2]).

Note that with hysteretic damping (complex valued stiffness, see section m ) the modes are not
complex conjugate but opposite. To use a complex mode basis one thus needs to replace complex
modes whose poles have negative imaginary parts with the conjugate of the corresponding mode
whose pole has a positive imaginary part.

For a particular dynamic system, one will only be interested in predicting or measuring how complex
modes are excited (modal input shape matrix {H;fFB} = {ijb}) or observed (modal output shape
matrix {C0;} = {c);}).

In the structural dynamics community, the modal input shape matrix is often called modal
participation factor (and noted L;) and the modal output shape matrix simply modeshape.

A different terminology is preferred here to convey the fact that both notions are dual and that
{ijbl} = {c1p;} for a reciprocal structure and a collocated pair of inputs and outputs (such that
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uy is the power input to the structure).

For predictions, complex modes can be computed from finite element models using Com-
puting complex modes of full order models is typically not necessary so that approximations on the
basis of real modes or real modes with static correction are provided. Given complex modes, you can
obtain state-space models with For further discussions, see Ref. [31] and low level examples
in section 533 .

For identification phases, complex modes are used in the form of residue matrices product [R;] =

{cp;} {d)ij} (see the next section). Modal residues are obtained by |[id rc| and separation of the
modal input and output parts is obtained using

For lightly damped structures, imposing the modal damping assumption, which forces the use of
real modeshapes, may give correct result and simplify your identification work very much. Refer to
section 2.8.3] for more details.

5.6 Pole/residue models

The spectral decomposition associated to complex modes, leads to a representation of the transfer
function as a sum of modal contributions

2N c; @/)]Tb 2N ’
[a(s)] = Z w :Z<[RJ]> (5.25)

S—Aj =1 S—)\j

For applications in identification from experimental data, one can only determine modes whose
poles are located in the test frequency range. The full series thus need to be truncated. The
contributions of out-of-band modes cannot be neglected for applications in structural dynamics.
One thus introduces a high frequency residual correction for truncated high frequency terms and,
when needed, (quite often for suspended test articles) a low frequency residual for modes below the
measurement frequency band.

j=1

These corrections depend on the type of transfer function so that the SDT uses ci.[IDopt] options
(see the reference section on the function) to define the current type. ci.IDopt.Residual
specifies which corrections are needed (the default is 3 which includes both a low and high frequency
residuals). ci.IDopt.Data specifies if the FRF is force to displacement, velocity or acceleration. For
a force to displacement transfer function with low and high frequency correction), the pole/residue
model (also called partial fraction expansion) thus takes the form

a(s)] = > ( LI >+[E]+[i] (5.26)

jeidentified \° Aj 5= $

The SDT always stores pole/residue models in the displacement/force format. The expression of



the force to acceleration transfer function is thus

) =y (SR

jcidentified \ & Aj

+ TR (527

The nominal pole/residue model above is used when ci.IDopt.Fit=’Complex’. This model as-
sumes that complex poles come in conjugate pairs and that the residue matrices are also conjugate
which is true for real system.

The complex residues with asymmetric pole structure (ci.IDopt.Fit=’Posit’) only keep
the poles with positive imaginary parts
[a(s)] = > <8[_Rji> + (B + [g (5.28)
j€Eidentified J
which allows slightly faster computations when using for the identification but not so much
so that the symmetric pole pattern should not be used in general. This option is only maintained
for backward compatibility reasons.

The normal mode residues with symmetric pole structure (ci.IDopt.Fit=’Nor’)
73] [F]
[a(s)] = ( + [E]+ = (5.29)
jEidgified s + 2Gjwjs + WJQ' s?
can be used to identify normal modes directly under the assumption of modal damping (see m

page [203)).

Further characterization of the properties of a given pole/residue model is given by a structure
detailed under the |[Shapes at DOFs|section.

The residue matrices res are stored using one row for each pole or asymptotic correction term and,
as for FRFs (see the xf format), a column for each SISO transfer function (stacking NS columns
for actuator 1, then NS columns for actuator 2, etc.).

Rijay Rjey -+ Rjaz) e
res = : . (5.30)
Eqq Esr ... Ep Ea9
| Fyy ... Fio Fy ]

The normal mode residues (ci.[IDopt|.Fit=’Normal’) are stored in a similar fashion with for only
difference that the T} are real while the R; are complex.

213



5 Structural dynamic concepts

214

5.7 Parametric transfer function

Except for the [id _poly|and [gbode| functions, the SDT does not typically use the numerous variants
of the ARMAX model that are traditional in system identification applications and lead to the ratio
of polynomials called transfer function format (tf) in other MATLAB Toolboxes. In modal analysis,
transfer functions refer to the functions characterizing the relation between inputs and outputs. The
tf format thus corresponds to the parametric representations of sets of transfer functions in the

form of a ratio of polynomials

CLjJSna*l + aj,gs”a’Z + ...+ Qjna
bj,lsnb—l + bj’2$nb—2 4+ ...+ bj,nb

Hj(s) = (5.31)

The SDT stacks the different numerator and denominator polynomials as rows of numerator and

denominator matrices
ail aiz ... b1 b2

num = | @21 @22 ... and den= | b2r b2z ... (5.32)

Other MATLAB toolboxes typically only accept a single common denominator (den is a single row).
This form is also accepted by which is used to predict FRFs at a number of frequencies in
the non-parametric xf format).

The function identifies polynomial representations of sets of test functions and
provides a transformation between the pole/residue and polynomial representations of transfer func-
tions.

5.8 Non-parametric transfer function

[Response datalstructures are the classical format to store non-parametric transfer functions.

[Multi-dim curvelcan also be used.

For a linear system at a given frequency w, the response vector {y} at NS sensor locations to a
vector {u} of NA inputs is described by the NS by N A rectangular matrix of Frequency Responses
(FRF)

y1(w) Hy(w) Hipg(w) ... up(w)
= [H]{u} = | H2a(w) Han(w) : (5.33)

yns(w) : " D vgena L uva(@)



The SDT stores frequencies at which the FRF are evaluated as a column vector w
w1

w= : (5.34)

WNW ) Nwxi

and SISO FRFs H;; are stored as columns of the matrix xf where each row corresponds to a different
frequency (indicated in w). By default, it is assumed that the correspondence between the columns
of xf and the sensors and actuator numbers is as follows. The N.S transfer functions from actuator
1 to the NS sensors are stored as the first NS columns of xf, then the NS transfer functions of
actuator 2, etc.
Hll(wl) Hgl(wl) e ng(wl) HQQ(wl) NN
xf = | Hi(w2) Hai(w2) ... Hig(w2) Haz(w2) ... (5.35)

NWXx(NSxNA)

Further characterization of the properties of a given set of FRFs is given by a structure detailed
under Response datalsection.

Frequency response functions corresponding to parametric models can be generated in the xf for-
mat using (transformation from ss and tf formats), por2xf| or [res2xf| These functions
use robustness/speed trade-offs that are different from algorithms implemented in other MATLAB
toolboxes and are more appropriate for applications in structural dynamics.
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6.1 FEM problem formulations

This section gives a short theoretical reminder of supported FEM problems. The selection of the
formulation for each element group is done through the material and element properties.

6.1.1 3D elasticity

Elements with a p_solid property entry with a non-zero integration rule are described under
They correspond exactly to the *b elements, which are now obsolete. These elements
support 3D mechanics (DOFs .01 to .03 at each node) with full anisotropy, geometric non-linearity,
integration rule selection, ... The elements have standard limitations. In particular they do not (yet)

e have any correction for shear locking found for high aspect ratios

e have any correction for dilatation locking found for nearly incompressible materials

With subtypes 1 and 3, deals with 3D mechanics with strain defined by

€z [ N,x 0 0
€y 0 Ny 0
u
€ _ 0 0 N,z v 6.1)
Vyz 0 N,z N,y w
Ve N,z 0 N,x
Yy | N,y N,z 0 |
where the engineering notation v,. = 2¢,., ... is used. Stress by
ox diiN,z+d1,5N,2+d1 6N,y di2N,y+di,aN,z+d1 ¢N,z di13N,z+d1,4aN,y+di 5N,z
oy do 1N,z+do 5N,z+d2 6N,y da2N,y+daaN,z2+ds N,z d23N,z+d2 4N,y+d2 5N,z w
oz d31N,z+d3 5N, z+d3,6N,y d32N,y+d3aN,z+d3 6N,z d33N,z+d3 4N, y+d3 5N,z » (6 2)
Oyz dg 1N, x+dg 5N, z4+dg 6N,y dgoN,y+dggN,z+dgeN,x dg3N,z+dg4N,y+dgsN,x w .
Ozax ds,1N,z+ds5 5N,z2+ds 6N,y ds2N,y+dsaN,z+d5 6N,z ds53N,z+d54N,y+ds 5N,z
Oxy de,1N,xz+de,5N,z+de 6N,y dg2N,y+deaN,z+ds N,z dgaN,z+deaN,y+desN,z

Note that the strain states are {€; €, €, Yy Vzz 7VYay} Which may not be the convention of other
software.

Note that NASTRAN, SAMCEF, ANSYS and MODULEF order shear stresses with .y, 0y,0.2
(MODULEF elements are obtained by setting integ value to zero). Abaqus uses 0y, 0z, 0y2

Inf[fe_stress|the stress reordering can be accounted for by the definition of the proper TensorTopology
matrix.

For isotropic materials
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1 lzll lzu
E(l—v v v
(1+V()(1—)2V) 1-v 1 1—v 0
v v 1
D = 1-v  1-v G o o (6 3)
0 0 G 0
i 00 G| |

with at nominal G = E/(2(1 + v)). For isotropic materials, interpolation of p,n, E,v,G,a with
temperature is supported.

For orthotropic materials, the compliance is given by

‘1/521 —4 —ZE—E 0 0 0
. AR
= -1 g _Eil _E 3 UZ
{6} [‘D] {U} 0 0 0 %% 0 0 ZZ; (64)
0 0 0 0 &
31
0 0 0 0 0
L 12 4

For constitutive law building, see Material orientation can be interpolated by defining
vl and v2 fields in the InfoAtNode. Interpolation of non isotropic material properties was only
implemented for of mk ;= 1.236.

6.1.2 2D elasticity

With subtype 4, deals with 2D mechanical volumes with strain defined by (see

g4p constants)

€x N,z 0
e v=| 0 Ny { :j } (6.5)
Yy N,y N,z
and stress by
O€x d1’1N7$+d173N,y dljgN,y—‘rdLgN,x
oey = | doaN,x +do3N,y doasN,y+dosN,x { } (6.6)
TYay dsaN,x +d33N,y d3oN,y+dssN,x
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For isotropic plane stress (p_solid|form=1), one has

1 v 0
E
Tl B
For isotropic plane strain (p_solid|form=0), one has
1 = 0

E(l1-v 1ov
D= = 1 0 6.8
L+ -20) | 1" 5 1= (65)

2(1—v)

6.1.3 Acoustics

With subtype 2, deals with 2D and 3D acoustics (see flui4 constants) where

3D strain is given by

p,x N, x
py o= Ny |{r} (6.9)
P,z N,z

This replaces the earlier f1ui4 ... elements.

The mass and stiffness matrices are given by
1
My = [ s (N () (6.10)

m—égwnwm (6.11)

The source associated with a enforced velocity on a surface

B, — /aQ (N} {V.) (6.12)

When an impedance Z = pCR(1 + in) is considered on a surface, the associated viscous damping
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matrix is given by

1
Cis = [, 7 1V} N (6.13)

6.1.4 Classical lamination theory
Both isotropic and orthotropic materials are considered. In these cases, the general form of the 3D
elastic material law is

o11 [ Ci1 Ci2 Ci3 0 0 0 €11
022 Cy Coz 0 0 0 €99
033 Csz 0 0 0 €33

— 6.14
T23 Ciua O 0 Y23 (6.14)
T13 (s) Cs5 0 713
T12 | Ces 1 | 712

Plate formulation consists in assuming one dimension, the thickness along xs, negligible compared
with the surface dimensions. Thus, vertical stress o33 = 0 on the bottom and upper faces, and
assumed to be neglected throughout the thickness,

1
033 =0 = €33 = “Cm (Ci13€11 + Cazean) (6.15)

and for isotropic material,
v

1—

033 = 0= €33 = — > (611 + 622) . (6.16)

By eliminating o33, the plate constitutive law is written, with engineering notations,

o11 Qu Q2 0 0 0 €11
022 Q12 Q2 0 0 0 €22
012 = 0 0 QGG 0 0 Y12 . (6.17)
023 0 0 0 Qu O V23
013 0 0 0 0 Qs 713

The reduced stiffness coefficients Q;; (i,j = 1,2,4,5,6) are related to the 3D stiffness coefficients Cj;
by
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CisCjs ...
Qij = i~ Cs3 =L (6.18)
if 1,j=4,5,6.

The reduced elastic law for an isotropic plate becomes,

J11 E 1 v 0 €11
022 = (1_7”2) v 1 0 €29 y (619)
T12 0 0 %~ T2
and
T | . F 10 Y23
{ Ti3 }_ 2(1+v) [ 01 } { 713 } (6.20)

Under Reissner-Mindlin’s kinematic assumption the linearized strain tensor is

w1+ 311 5(uig +u2a +a3(Bro+ B21)) (B +wy)
€= u2,2 + 3022 5(Ba+wya) |. (6.21)
(s) 0
So, the strain vector is written,
Eﬂ + T3K11
6% + T3K92
{e} =1 15 + a3k ¢, (6.22)
23
713
with €” the membrane, x the curvature or bending, and ~ the shear strains,
(| B1,1
em = U2.2 , K= B2,2 , Y= { gQ 152 } ) (6.23)
U2 + U1 Bi2+ B2 ! o1

Note that the engineering notation with 12 = w12+ w21 is used here rather than the tensor notation
with €19 = (u1,2 + u2,1)/2 . Similarly k12 = 812 + B2.1, where a factor 1/2 would be needed for the
tensor.
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The plate formulation links the stress resultants, membrane forces N,g, bending moments M,z and
shear forces (3, to the strains, membrane ¢, bending x and shearing ~,

N A B 0 €
M y=|B D 0 Koy (6.24)
Q 0 0 F ¥
The stress resultants are obtained by integrating the stresses through the thickness of the plate,
ht ht ht
Naﬂ = / Oap d$3, Maﬁ = / X3 Oap dl‘g, Qag = / Ja3 dl’g, (6.25)
hb hb hb

with o, 8 =1, 2.

Therefore, the matrix extensional stiffness matrix [A], extension/bending coupling matrix [B], and
the bending stiffness matrix [D] are calculated by integration over the thickness interval [hb ht]

ht ht
Ay = . Qij dx3,  Bij :/hb x3 Qij drs,

(6.26)
ht

ht
2
D;; = / x3 Qij dxs, Fjj = Qi dxs.
hb hb

An improvement of Mindlin’s plate theory with tranverse shear consists in modifying the shear
coefficients Fj; by

H;j = ki Fij, (6.27)
where k;; are correction factors. Reddy’s 37 order theory brings to kij = % Very commonly,

enriched 3"? order theory are used, and k;; are equal to % and give good results. For more details
on the assessment of the correction factor, see [32].

For an isotropic symmetric plate (hb = —ht = h/2), the in-plane normal forces Nii, Noo and shear
force N1 become

Ny 0 8 s (6.28)

22 U292 .
1—12 _ ’ ’

Ny v (s) —12” ur2 + Uz



the 2 bending moments M1, Moo and twisting moment Mo

My ER3 1 v 0 B1,1
M22 = 412(1 — VQ) 1 0 52,2 ) (629)
Mo (s) v B2+ P21
and the out-of-plane shearing forces Q23 and Q13,
Q23 Eh 10 B2+ we
=" : . 6.30
{ Q13 21+v)| 0 1 B1+ w1 ( )

One can notice that because the symmetry of plate, that means the reference plane is the mid-plane
of the plate (z3(0) = 0) the extension/bending coupling matrix [B] is equal to zero.

Using expression (6.26)) for a constant ();;, one sees that for a non-zero offset, one has
Ay =h[Qy]  By=x30h[Qi)  Ciy= (2300 +1*/12)[Qy]  Fij = h[Qy] (6.31)
where is clearly appears that the constitutive matrix is a polynomial function of h, h3, x3(0)%h

and z3(0)h. If the ply thickness is kept constant, the constitutive law is a polynomial function of
1,23(0), 23(0)2.

6.1.5 Piezo-electric volumes

A revised version of this information is available at http://www.sdtools.com/pdf/piezo.
pdf. Missing PDF links will be found there.

The strain state associated with piezoelectric materials is described by the six classical mechanical
strain components and the electrical field components. Following the IEEE standards on piezoelec-
tricity and using matrix notations, S denotes the strain vector and F denotes the electric field vector
(V/m) :

€x [ N,z 0 0 0
€y 0 Ny O 0
€y 0 0 N,z 0

g Yyz 0 N,z N,y 0 Z

{ 5 }: YVex ¢ =1| N,z 0 N,z 0 w (6.32)

Yoy N,y N,z 0 0
E, 0 0 0 —N,zx ¢
E, 0 0 0 —N,y
E, 0 0 0 —N,z

where ¢ is the electric potential

—~

V).
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The constitutive law associated with this strain state is given by

HEFEAIE

in which D is the electrical displacement vector (a density of charge in Cb/m?), T is the mechanical

stress vector (N/m?). C¥ is the matrix of elastic constants at zero electric field (E = 0, short-
circuited condition, see section for formulas (there C¥ is noted D). Note that using —F
rather than E makes the constitutive law symmetric.

Alternatively, one can use the constitutive equations written in the following manner :
S| st dr T (6.34)
D (| d & E '
In which s is the matrix of mechanical compliances, [d] is the matrix of piezoelectric constants
(m/V =Cb/N):
diy dip diz diga dis  dig

[d] = | dn da2 doz dos dos dog (6.35)
d31 d32 d3z d3s d3s dsg

Matrices [e] and [d] are related through
[e] = [d] [C] (6.36)

Due to crystal symmetries, [d] may have only a few non-zero elements.

Matrix [55 } is the matrix of dielectric constants (permittivities) under zero strain (constant volume)

given by
S S S
|:€ :| == 5@1 522 523 (637)

s S
€31 €32 €33

It is more usual to find the value of ¢7 (Permittivity at zero stress) in the datasheet. These two
values are related through the following relationship :

°] = [£"] - @) [a" (6.38)

For this reason, the input value for the computation should be {ST}.



Also notice that usually relative permittivities are given in datasheets:
€
Ep = — 6.39
= (6:39)
g0 is the permittivity of vacuum (=8.854e-12 F/m)
The most widely used piezoelectric materials are PVDF and PZT. For both of these, matrix {5T}
takes the form

el 0 0
=10 & o (6.40)
0 0 &

0 0 0 000
d=|0 0 0 000 (6.41)

and for PZT materials :

0 0 0 0 dis O
[d] = 0 0 0 dyg 0 O (6.42)
d31 ds2 dzgz 0 0 O

6.1.6 Piezo-electric shells

A revised version of this information is available at http://www.sdtools.com/pdf/piezo.
pdf|

Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field
components. It is assumed that in each piezoelectric layer ¢ = 1...n, the electric field takes the form
E = (0 0 E.). E; is assumed to be constant over the thickness h; of the layer and is therefore
given by F,; = —% where A¢; is the difference of potential between the electrodes at the top
and bottom of the pliezoelectric layer ¢. It is also assumed that the piezoelectric principal axes are
parallel to the structural orthotropy axes.

The strain state of a piezoelectric shell takes the form
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€xx

Eyy
265y

Rga

Kyy
2K gy

Yz
Yyz

— Lz

_Ezn

AZ
hp
— 5 — piezo
fﬂ?
S — e - mid-plane
[ N,z 0 0 0 0 0 0 |
0 Ny 0 0 0 0 0 U
N,y N,z 0 0 0 0 0 v
0 0 0 0 —-N,z 0 0 w
0 0 0 Ny 0 0 0 ru
0 0 0 Nax —N,y 0 0 rw
0 0 Nz 0 N 0 0 Ay
0 0 Ny —-N 0 0 0
0 0 0 0 0 —u 0 Ay
0 _ 1
hn

(6.43)

There are thus n additional degrees of freedom Ag¢;, n being the number of piezoelectric layers in

the laminate shell

The constitutive law associated to this strain state is given by :

N
M
Dzl

DZTL

_Gn ZmnGn Hn 0

A
B
0

G1

B
D
0

2m1G1

0 GT .. GT 1(
0  2muGT ZmnGE K
F o Hf H,; v
H1 —&1 0 —Ezl
0 0
—&n _Ezn

(6.44)

where D,; is the electric displacement in piezoelectric layer (assumed constant and in the z-direction),
Zms 18 the distance between the midplane of the shell and the midplane of piezoelectric layer i, and
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G;, H; are given by
Gi={e1 es 0} [R]; (6.45)

Hi={es e } [R]; (6.46)
where . denotes the direction of polarization. If the piezoelectric is used in extension mode, the
polarization is in the z-direction, therefore H; = 0 and G; = { ez1 ez 0 }Z . If the piezoelectric
is used in shear mode, the polarization is in the z or y-direction, therefore G; = 0, and H; = {0 e15};
or H; = {eyy O}Z- . It turns out however that the hypothesis of a uniform transverse shear strain

distribution through the thickness is not satisfactory, a more elaborate shell element would be
necessary. Shear actuation should therefore be used with caution.

[Rs]; and [R]; are rotation matrices associated to the angle § of the piezoelectric layer.

cos? 0 sin? 6 sin 6 cos 0
[Rs] = sin? cos? —sinf cos (6.47)
—2sinfcosh 2sinfcosh cos?h —sin? 6

(6.48)

R = [ cosf) —sind ]

sinf cosf

6.1.7 Geometric non-linearity

The following gives the theory of large transformation problem implemented in OpenFEM function
of mk pre.c Mecha3DInteg.

The principle of virtual work in non-linear total Lagrangian formulation for an hyperelastic medium
is
/ (pou”, 6v) + / S:de= fov You (6.49)
Qo Qo Qo

with p the vector of initial position, x = p + u the current position, and u the displacement vector.
The transformation is characterized by

Fij=1+uij=6;+{N;}" {a:} (6.50)
where the NV, j is the derivative of the shape functions with respect to Cartesian coordinates at the
current integration point and ¢; corresponds to field i (here translations) and element nodes. The
notation is thus really valid within a single element and corresponds to the actual implementation
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of the element family in elem0O and of mk. Note that in these functions, a reindexing vector is
used to go from engineering ({e11 e22 e33 2e23 2e31 2e12}) to tensor [e;;] notations ind ts_eg=[1
6 5;6 2 4;5 4 3];e_tensor=e_engineering(ind ts_eg);. One can also simplify a number of
computations using the fact that the contraction of a symmetric and non symmetric tensor is equal
to the contraction of the symmetric tensor by the symmetric part of the non symmetric tensor.

One defines the Green-Lagrange strain tensor e = 1/2(FTF — I) and its variation
= (T - ) AT
deiy = (FTdF) = (Fua (N {a) (6.51)

Thus the virtual work of internal loads (which corresponds to the residual in non-linear iterations)
is given by
/QS 1 0e = /Q {(qu}T {N}j}FkiSZ‘j (6.52)

and the tangent stiffness matrix (its derivative with respect to the current position) can be written
as

0*wW
Kg = / Sijou juy j + / de : Rk : de (6.53)
which using the notation u; j = {N;}* {¢;} leads to
82
Kt = [ (Gan} (V) ( ok, (it Su> (N} {day) (6.54)

The term associated with stress at the current pomt is generally called geometric stiffness or pre-

stress contribution.

In isotropic elasticity, the 2nd tensor of Piola-Kirchhoff stress is given by
oW

S=D:e(u) = ez e(u) = XTr(e)l + 2pue (6.55)

e

the building of the constitutive law matrix D is performed in BuildConstit for isotropic,

orthotropic and full anisotropic materials. of mk_pre.c nonlin elas then implements element level
2

computations. For hyperelastic materials 3861/2‘/ is not constant and is computed at each integration

point as implemented in hyper.c.

For a geometric non-linear static computation, a Newton solver will thus iterate with

K@ {a" =} = R = [ Fadv— [ S(): de (6.56)
Q Qo
where external forces f are assumed to be non following.

For an example see [staticNewtonl



6.1.8 Thermal pre-stress

The following gives the theory of the thermoelastic problem implemented in OpenFEM function
of mk pre.c nonlin elas.

In presence of a temperature difference, the thermal strain is given by [er] = [a] (T' — Tp), where in
general the thermal expansion matrix « is proportional to identity (isotropic expansion). The stress
is found by computing the contribution of the mechanical deformation

S=C:(e—er)=ATr(e)] +2ue— (C: [a])(T —Tp) (6.57)

This expression of the stress is then used in the equilibrium (6.49), the tangent matrix computa-
tion(6.53), or the Newton iteration (6.56). Note that the fixed contribution [o (—C : er) : de can
be considered as an internal load of thermal origin.

The modes of the heated structure can be computed with the tangent matrix.

An example of static thermal computation is given in ofdemos ThermalCube.

6.1.9 Hyperelasticity

The following gives the theory of the thermoelastic problem implemented in OpenFEM function
hyper.c (called by of mk.c MatrixIntegration).

For hyperelastic media S = 0W/0e with W the hyperelastic energy. hyper.c currently supports
Mooney-Rivlin materials for which the energy takes one of following forms

W =C1(J; —3) + Co(Jo — 3) + K(J3 — 1)2, (6.58)
W =Ci(J1 —3)+ Co(Ja —3)+ K(J3 — 1) — (C1 4+ 2Cs + K) In(J3), (6.59)

where (Ji, Ja, J3) are the so-called reduced invariants of the Cauchy-Green tensor
C =1+ 2e, (6.60)

linked to the classical invariants (I3, I3, I3) by
_1 _2
Jh=0413°%, Jo=1I1;?, J3s=1

Lol

, (6.61)
where one recalls that

L =txC, I,= {(trC’)2 - trCQ] , I3 =detC. (6.62)

DN | =
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Note : this definition of energy based on reduced invariants is used to have the hydrostatic pressure
given directly by p = —K(J3 — 1) (K “bulk modulus”), and the third term of W is a penalty on
incompressibility.

Hence, computing the corresponding tangent stiffness and residual operators will require the deriva-
tives of the above invariants with respect to e (or C). In an orthonormal basis the first-order

derivatives are given by:
ol 0l 013 1
— =05, —— =16;—Cy, —— =13C ", 6.63
aCy; — 7 acy YT acy T T (6.63)

where (Cigl) denotes the coefficients of the inverse matrix of (Cj;). For second-order derivatives we
have:

2 2 2
80(1516’“ =0, 30@@3;26'1:1 = —0;0;1 + 050k, % = Crn€ikmEjin, (6.64)
where the ¢;;, coefficients are defined by
€jk =0 when 2 indices coincide
=1  when (4,7, k) even permutation of (1,2, 3) (6.65)

= —1 when (4,7, k) odd permutation of (1,2,3)
Note: when the strain components are seen as a column vector (“engineering strains”) in the form
(e11, €22, €33, 2€23, 2€31, 2€12)’, the last two terms of (6.64]) thus correspond to the following 2 matrices

01 1 0 0 0
101 0 0 0
110 0 0 0
000 -1/2 0 0 ’ (6.66)
000 O -1/2 0
000 O 0 -1/2
0 Cs3  Co  —Chys 0 0
Cs3 0 Ci 0 —C3 0
Cyn Cn 0 0 0 —Ch2 (6.67)
—023 0 0 —011/2 012/2 013/2
0 —C13 0 012/2 —022/2 023/2
0 0 —C12 013/2 023/2 —033/2
We finally use chain-rule differentiation to compute
ow oW 0l
g2 N2k 6.68
Oe Zk:: 8Ik de ’ ( )

o*w oW 021, 0*W oI, 01,
D7~ 291, 02 T 22 9L,aT, de de (669




Note that a factor 2 arise each time we differentiate the invariants with respect to e instead of C.

The specification of a material is given by specification of the derivatives of the energy with respect

to invariants. The laws are implemented in the hyper.c EnPassiv function.

6.1.10 Gyroscopic effects

Written by Arnaud Sternchuss ECP/MSSMat.

In the fixed reference frame which is Galilean, the Eulerian speed of the particle in x whose initial

position is p is

%—@+Q/\(p+u)

ot ot
and its acceleration {;% o 5 5
b'e u Q u
— ===+ — A 20N — +QAQA
oz o tor NPTW NG (p+u)
Q is the rotation vector of the structure with
Wy
Q=] wy

Wz

in a (z,y, z) orthonormal frame. The skew-symmetric matrix [{2] is defined such that

0 —W, Wy
Q=1 w, 0 —wy
—Wy Wy 0
The speed can be rewritten
Jx Ou
—=—+1Q
5 — 5 TP+

and the acceleration becomes
9’x  0%u n 019
o2 ot? ot

In this expression appear

. . : 2
e the acceleration in the rotating frame %,

e the centrifugal acceleration ag = [ (p +u),

e the Coriolis acceleration ac = %(p +u)+2[Q] %—‘t‘.

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

S§ is an element of the mesh of the initial configuration Sy whose density is pg. [IN] is the matrix of
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shape functions on these elements, one defines the following elementary matrices

[Dg} = ng 200 [N]—r [Q] [N] dS§  gyroscopic coupling
[K¢] = fsg 00 [N]—r % [N] dS§ Coriolis acceleration

{Kﬂ = fsg po [N]T Q2 [N] dS§  centrifugal softening/stiffening

(6.76)

The traditional [fe_mknl MatType|lin SDT are 7 for gyroscopic coupling and 8 for centrifugal soften-

ing.

6.1.11 Centrifugal follower forces

This is the embryo of the theory for the future implementation of centrifugal follower forces.

(5Ww:/pw2R(x)5vR,
Q

(6.77)

where dvg designates the radial component (in deformed configuration) of dv. One assumes that

the rotation axis is along e,. Noting ng = 1/R{z1 22 0}7, one then has
dvp = ng - ov.

Thus the non-linear stiffness term is given by
_ AW, = — / po?(dRSvg + Rdbug).
Q

One has dR = np - dz(= dzg) and ddvg = dnpg - év, with

dR 1
dng = —EnR + E{dw1 dxo O}T.

Thus, finally
—doW,, = —/ pwz(duldvl + dugdvs).
Q

Which gives
duy vy + dugdvy = {6} {NHN} {dga},
with a =1, 2.

6.1.12 Poroelastic materials

The poroelastic formulation comes from [33], recalled and detailed in [34].

(6.78)

(6.79)

(6.80)

(6.81)



Domain and variables description:

Q) Poroelastic domain
0 Bounding surface of poroelastic domain

n Unit external normal of 92

U Solid phase displacement vector

uf Fluid phase displacement vector ul = = ¢ Vp — 212,
P2owW P22

P Fluid phase pressure

o Stress tensor of solid phase

Q

¢ Total stress tensor of porous material ol=0—9¢ (1 + %) pl

Weak formulation, for harmonic time dependence at pulsation w:

/Q() e(du) dQY — w/puéudQ /¢Vp5ud§2

/ 1 (1 + )pv.éu dQ — aQ(O’ (u).n).0u dS =0 You

(6.82)

2 2
/ Z) Vp.Vip d2 — / ¢—p op dQ) — / ?u Vép d)
Q Qpow

(6.83)
/ 1) <1+ )5pv.u dQ—/anb(u —u).n op dS =0 Yop

Matrix formulation, for harmonic time dependence at pulsation w:

K—w2M —Cl—CQ u o F;
[—CIT—CQT wlgF—Kpl{p}_{Ff (6.84)

where the frequency-dependent matrices correspond to:
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/ o(u) : e(ou) dQ = dul' Ku

0

/ p u.du dS2 = sul Mu
Q

2

/ N(Z) Vp.Vép = 6pTKpp
Q 0450

/ gp op = op' Fp
Q q}} (6.85)

/ =Vp.du dQ2 = oul'Cip
Qa .

/ é (1 + 9) PV.6u dQ = 5ulCap
Q R

/ (o' (u).n).0u dS = 6ul F!
Q

j p(ul" —u)m épdS = spT Fy
o0

N.B. if the material of the solid phase is homogeneous, the frequency-dependent parameters can be

eventually factorized from the matrices:
(1+in)K —w?pM  —4Cy— 61 u F
= s (6.86)
_ P Fy

_ A — 2 —
—¢CT -9 (1+4)Cf  LGF- 2K,

where the matrices marked with bars are frequency independent:

K=Q0+in)Kk  M=pM C =2C (6.87)
AN\ — 2 — 2 — .
Cr=0¢(1+9)Cr F=%F K,=LK,

Material parameters:



Porosity of the porous material

Resistivity of the porous material

Qoo Tortuosity of the porous material

A Viscous characteristic length of the porous material
A’ Thermal characteristic length of the skeleton

) Density of the skeleton

G Shear modulus of the skeleton

v Poisson coefficient of the skeleton

ns  Structural loss factor of the skeleton

po  Fluid density

~ Heat capacity ratio of fluid (= 1.4 for air)

n Shear viscosity of fluid (= 1.84 x 107> kg m~! s~! for air)

QS

Constants:

P,=1,01 x 10° Pa Ambient pressure
Pr=20.71 Prandtl number

Poroelastic specific (frequency dependent) variables:
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p11 Apparent density of solid phase
p22  Apparent density of fluid phase
p12 Interaction apparent density

D Effective density of solid phase
p11 Effective density of solid phase
poo  Effective density of fluid phase

p12  Interaction effective density

b Viscous damping coefficient
Y Coupling coefficient
Q  Elastic coupling coefficient
Biot formulation
Approximation from K,/ Ky << 1
R Bulk modulus of air in fraction volume

Biot formulation

Approximation from K,/ K, << 1
K, Bulk modulus of porous material in vacuo

Ky Bulk modulus of elastic solid
est. from Hashin-Shtrikman’s upper bound

K; Effective bulk modulus of air in pores

/

o/ Function in K s (Champoux-Allard model)

wr  Thermal characteristic frequency

To add here:

pi1=(1—¢)p—pi2
P22 = Ppo — P12
P12 = _¢P0(aoo - 1)

S ()’
p=piu ﬁ22
5112011+%
ﬁ22—p22+%
512—P12—%
~ 402 npow
_ 2= o
b= ¢“c 1+Z~6§j\2¢2
_ (b2 _Q
7—¢><22 R)

K,
e
Q: K, 5K8¢K5

l—¢p——+ o=
) K K
Q=(1-9¢)Ky
R = (bjg(s
l—¢— =L 4 o=t
K !
R=¢K;
_2G(1+v)
Kb_3(1—21/)
KS_%KZ,
iy = —Do
f—jf
va! )
’_ wT w2
wp = —167_
PrA”p,

e coupling conditions with poroelastic medium, elastic medium, acoustic medium

e dissipated power in medium
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6.1.13 Heat equation

This section is based on an OpenFEM contribution by Bourquin Frédéric and Nassiopoulos Alexandre
from Laboratoire Central des Ponts et Chaussées.

The variational form of the Heat equation is given by

/ (pch) (v) da + / (Kgrad)(gradv) dx + abvdy =
) Q o9

/Q fodz + /m(g + aleqt)v dy (6.88)
Vv e HY(Q)

with

p the density, ¢ the specific heat capacity.

K the conductivity tensor of the material. The tensor K is symmetric, positive definite, and
is often taken as diagonal. If conduction is isotropic, one can write K = k(x)Id where k(z) is
called the (scalar) conductivity of the material.

e Acceptable loads and boundary conditions are

— Internal heat source f
— Prescribed temperature (Dirichlet condition, also called boundary condition of first kind)

0=0., on 0N (6.89)
modeled using a DofSet case entry.

— Prescribed heat flux g (Neumann condition, also called boundary condition of second kind)

(Kgrad) -i=g on 0N (6.90)
leading to a load applied on the surface modeled using a FVol case entry.

— Exchange and heat flux (Fourier-Robin condition, also called boundary condition of third
kind)

(Kgrad) -+ a0 — Oezt) =g on 0N (6.91)
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leading to a stiffness term (modeled using a group of surface elements with stiffness
proportional to «) and a load on the associated surface proportional to g+ afey: (modeled
using FVol case entries).

Test case

One considers a solid square prism of dimensions L, Ly, L, in the three directions (Ox), (Oy) and
(Oz) respectively. The solid is made of homogeneous isotropic material, and its conductivity tensor
thus reduces to a constant k.

The faces, T';(i = 1..6, U?ZIF i = 09Q), are subject to the following boundary conditions and loads

e f =40 is a constant uniform internal heat source

e I'y (x =0) : exchange & heat flux (Fourier-Robin) given by oo = 1,91 = afent + aéﬁi =25

e I'y (z = L) : prescribed temperature : 0(L,,y, 2) = ey = 20

eI's(y =0), I'u(y = Ly), I's(z = 0), I'e (2 = L,): exchange & heat flux g + ablerr =
Aegy + (L2 —22) 4 g1 =25 - &

The problem can be solved by the method of separation of variables. It admits the solution

[ 9 fL2  g(x) z?
0 — 2, I g5 T
(@,9,2) = —5pa" + e + o °~ 50

The resolution for this example can be found in demo/heat_equation.
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Figure 6.1: Temperature distribution along the x-axis

6.2 Model reduction theory

Finite element models of structures need to have many degrees of freedom to represent the geo-
metrical detail of complex structures. For models of structural dynamics, one is however interested
in

e a restricted frequency range (s = iw € [w; wo))
e a small number of inputs and outputs (b, ¢)

e a limited parameter space a (updated physical parameters, design changes, non-linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models that accurately
represent the dynamics of the full order model in all the considered loading/parameter conditions.

Model reduction notions are key to many SDT functions of all areas: to motivate residual terms

in pole residue models [id_nox)), to allow fine control of model order (nor2ss| nor2xf)), to
create normal models of structural dynamics from large order models (fe2ss| [fe reduc|), for test

measurement expansion to the full set of DOFs (fe_exp|), for substructuring using superelements
(fesuper| [fe_coor]), for parameterized problems including finite element model updating (upcom)).

6.2.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they seek solutions in
the subspace generated by a reduction matrix 7. Assuming {q} = [T] {qr}, the second order finite
element model ([5.1)) is projected as follows
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[TTMTSQ + 70T + TTKT} NRxNR {ar(s)} = [TTb} NRxNA {u()tvaxa (6.92)
{y(s)}nsx1 = Tlnsxnr{ar()} nrx1

Modal analysis, model reduction, component mode synthesis, and related methods all deal with an
appropriate selection of singular projection bases ([T]y, yp With NR < N). This section summa-
rizes the theory behind these methods with references to other works that give more details.

The solutions provided by SDT making two further assumptions which are not hard limitations but
allow more consistent treatments while covering all but the most exotic problems. The projection is
chosen to preserve reciprocity (left multiplication by 77 and not another matrix). The projection
bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved for a given
frequency and parameter range

—1
(] [Z(s,0)) 7" ] =~ [e] [17 Z(s,0)T]  [17D) (6.93)

Traditional modal analysis, combines normal modes and static responses. Component mode synthe-
sis methods extend the selection of boundary conditions used to compute the normal modes. The
SDT further extends the use of reduction bases to parameterized problems.

A key property for model reduction methods is that the input/output behavior of a model only

depends on the vector space generated by the projection matrix 7. Thus range(7') = range(T")
implies that

[T {TTZTTl [TTb} = [CT} [TTZTF [TTb} (6.94)

This equivalence property is central to the flexibility provided by the SDT in CMS applications
(it allows the decoupling of the reduction and coupled prediction phases) and modeshape expansion
methods (it allows the definition of a static/dynamic expansion on sensors that do not correspond
to DOFs).

6.2.2 Normal mode models

Normal modes are defined by the eigenvalue problem

— (M) {¢j}? + [K]nun {05 s = {0} (6.95)



based on inertia properties (represented by the positive definite mass matrix M) and underlying
elastic properties (represented by a positive semi-definite stiffness K'). The matrices being positive
there are N independent eigenvectors {¢;} (forming a matrix noted [¢]) and eigenvalues w (forming

a diagonal matrix noted [\wj \})

As solutions of the eigenvalue problem ((6.95)), the full set of N normal modes verify two orthogo-
nality conditions with respect to the mass and the stiffness

(01" M) (8] = [ms |, and (8] (K] (6] = [\, | (6.96)

where p is a diagonal matrix of modal masses (which are quantities depending uniquely on the way
the eigenvectors ¢ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that [u] = [I] (im-
plying [¢]7 [M][¢] = [I] and [¢] [K][¢] = [\w \]) The mass normalization of modeshapes is
independent from a particular choice of sensors or actuators.

Another traditional normalization is to set a particular component of (;Sj to 1. Using an output shape

matrix this is equivalent to clqﬁj = 1 (the observed motion at sensor ¢; is unity). <Z>J, the modeshape
with a component scaled to 1, is related to the mass normalized modeshape by ¢; = ¢;/(c;¢;).

mj(a) = (a;) ™ (6.97)
is called the modal or generalized mass at sensor ¢;. A large modal mass denotes small output.
For rigid body translation modes and translation sensors, the modal mass corresponds to the mass
of the structure. If a diagonal matrix of generalized masses mu is provided and ModelIn is such that
the output ¢; is scaled to 1, the mass normalized modeshapes will be obtained by

ModeNorm = ModeIn * diag(diag(mu).~(-1/2));

Modal stiffnesses are are equal to

ki(a) = (ag)) 2 w] (6.98)

The use of mass-normalized modes, simplifies the normal mode form (identity mass matrix) and
allows the direct comparison of the contributions of different modes at similar sensors. From the
orthogonality conditions, one can show that, for an undamped model and mass normalized modes,
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the dynamic response is described by a sum of modal contributions

N {cg;} {47b}
[a(s)] =) —F5 5+ (6.99)
j=1 s+ wj
which correspond to pairs of complex conjugate poles \; = tiw;.

In practice, only the first few low frequency modes are determined, the series in is truncated,
and a correction for the truncated terms is introduced (see section [6.2.3] ).

Note that the concept of effective mass [35], used for rigid base excitation tests, is very similar to
the notion of generalized mass.

6.2.3 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition . In practice, one dis-
tinguishes modes that have a resonance in the model bandwidth and need to be kept and higher
frequency modes for which one assumes w < w;. This assumption leads to

[ 4 k] B~ S0 e 0 0 g o) {9} (6.100)
j=1 87+ wj j=Np+1 Wi
; E-;ﬂ:l;imm

Figure 6.2: Normal mode corrections.

For the example treated in the demo fe script, the figure shows that the exact response can be
decomposed into retained modal contributions and an exact residual. In the selected frequency
range, the exact residual is very well approximated by a constant often called the static correction.

The use of this constant is essential in identification phases and it corresponds to the E term in the
pole/residue models used by (see under page [212)).

For applications in reduction of finite element models, a little more work is typically done. From the



orthogonality conditions , one can easily show that for a structure with no rigid body modes
(modes with w; = 0)

N {o;} 470

-1 J J
[Ta] = [K]7 ] =) {2 } (6.101)

— w5

7=1 J
The static responses K~ 'b are called attachment modes in Component Mode Synthesis applica-
tions [36]. The inputs [b] then correspond to unit loads at all interface nodes of a coupled problem.

One has historically often considered residual attachment modes defined by

NE {; ij
[Tar] = [K]7'[b] - Z_: {eé}w{f} (6.102)

where N R is the number of normal modes retained in the reduced model.

The vector spaces spanned by [¢p1...0nr T4l and [¢1...¢nr Tar| are clearly the same, so that
reduced models obtained with either are dynamically equivalent. For use in the SDT, you are
encouraged to find a basis of the vector space that diagonalizes the mass and stiffness matrices

(normal mode form which can be easily obtained with .

Reduction on modeshapes is sometimes called the mode displacement method, while the addition
of the static correction leads to the mode acceleration method.

When reducing on these bases, the selection of retained normal modes guarantees model validity
over the desired frequency band, while adding the static responses guarantees validity for the spatial
content of the considered inputs. The reduction is only valid for this restricted spatial/spectral
content but very accurate for solicitation that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer. The standard,
but conservative, criterion (attributed to Rubin) is to keep modes with frequencies below 1.5 times
the highest input frequency of interest.

6.2.4 Static correction with rigid body modes

For a system with NB rigid body modes kept in the model, [K] is singular. Two methods are
typically considered to overcome this limitation.

The approach traditionally found in the literature is to compute the static response of all flexible
modes. For N B rigid body modes, this is given by
N {g}9b
(K"l = > {2 ) (6.103)

j=NB+1 wj
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This corresponds to the definition of attachment modes for free floating structures [36]. The
flexible response of the structure can actually be computed as a static problem with an iso-static
constraint imposed on the structure (use the flex solution and refer to [37] or [38] for
more details).

The approach preferred in the SDT is to use a mass-shifted stiffness leading to the definition of
shifted attachment modes as
Y {95} {o]b}

[TAS] [K + aM ]E:l (w i a)

(6.104)

While these responses don’t exactly span the same subspace as static corrections, they can be
computed using the mass-shifted stiffness used for eigenvalue computations. For small mass-shifts
(a fraction of the lowest flexible frequency) and when modes are kept too, they are a very accurate
replacement for attachment modes. It is the opinion of the author that the additional computational
effort linked to the determination of true attachment modes is not mandated and shifted attachment
modes are used in the SDT.

6.2.5 Other standard reduction bases

For coupled problems linked to model substructuring, it is traditional to state the problem in terms
of imposed displacements rather than loads.

Assuming that the imposed displacements correspond to DOF's, one seeks solutions of problems of
[ Z1(s)  Zic(s)

the form
< qr(s) > . R;(s)
ZC[(S) ch(s) { qc(s) } - { <0> } (6.105)

where < > denotes a given quantity (the displacement gy are given and the reaction forces Rj
computed). The exact response to an imposed harmonic displacement g (s) is given by

{a(s)} = l B ZCIé Zes ] {ar} (6.106)

The first level of approximation is to use a quasistatic evaluation of this response (evaluate at s = 0,
that is use Z(0) = K). Model reduction on this basis is known as static or Guyan condensation
[21].

This reduction does not fulfill the requirement of validity over a given frequency range. Craig and
Bampton [39] thus complemented the static reduction basis by fixed interface modes : normal
modes of the structure with the imposed boundary condition gy = 0. These modes correspond to
singularities Zoc so their inclusion in the reduction basis allows a direct control of the range over



which the reduced model gives a good approximation of the dynamic response.

The Craig-Bampton reduction basis takes the special form

{ o) }: [ K Ker o ] {ar} (6.107)

where the fact that the additional fixed interface modes have zero components on the interface
DOFs is very useful to allow direct coupling of various component models. provides a
solver that directly computes the Craig-Bampton reduction basis.

A major reason of the popularity of the Craig-Bampton reduction basis is the fact that the interface
DOFs qr appear explicitly in the generalized DOF vector gg. This is actually a very poor reason that
has strangely rarely been challenged. Since the equivalence property tells that the predictions of a
reduced model only depend on the projection subspace, it is possible to select the reduction basis
and the generalized DOF's independently. The desired generalized DOF's can always be characterized
by an observation matrix ¢;. As long as [cr] [T] is not rank deficient, it is thus possible to determine
a basis T of the subspace spanned by T such that

e [T] = [Wniswr Olwrxvr-no)] (6.108)

The function builds such bases, and thus let you use arbitrary reduction bases (loaded

interface modes rather than fixed interface modes in particular) while preserving the main interest
of the Craig-Bampton reduction basis for coupled system predictions (see example in section m

).
6.2.6 Substructuring

Substructuring is a process where models are divided into components and component models are
reduced before a coupled system prediction is performed. This process is known as Component
Mode Synthesis in the literature. Ref. [30] details the historical perspective while this section
gives the point of view driving the SDT architecture (see also [40]).

One starts by considering disjoint components coupled by interface component(s) that are physical
parts of the structure and can be modeled by the finite element method. Each component corresponds
to a dynamic system characterized by its I/O behavior H;(s). Inputs and outputs of the component
models correspond to interface DOFs.
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Figure 6.3: CMS procedure.

Traditionally, interface DOF's for the interface model match those of the components (the meshes are
compatible). In practice the only requirement for a coupled prediction is that the interface DOF's
linked to components be linearly related to the component DOFs gjin: = [¢;] [¢j]. The assumption
that the components are disjoint assures that this is always possible. The observation matrices c;
are Boolean matrices for compatible meshes and involve interpolation otherwise.

Because of the duality between force and displacement (reciprocity assumption), forces applied by
the interface(s) on the components are described by an input shape matrix which is the transpose
of the output shape matrix describing the motion of interface DOFs linked to components based on
component DOFs. Reduced component models must thus be accurate for all those inputs. CMS
methods achieve this objective by keeping all the associated constraint or attachment modes.

Considering that the motion of the interface DOF's linked to components is imposed by the compo-
nents, the coupled system (closed-loop response) is simply obtained adding the dynamic stiffness of
the components and interfaces. For a case with two components and an interface with no internal
DOFs, this results in a model coupled by the dynamic stiffness of the interface

([ 201 202 ] + l colT C% ] [Zsnt] [601 CZD{ 0 }: 8] {u(s)} (6.109)

The traditional CMS perspective is to have the dimension of the interface(s) go to zero. This can
be seen as a special case of coupling with an interface stiffness

l I I ]
T B " 1
[Zol ZO?]JF[(; OT][O O] {q }Z[b]{U(S)} (6.110)

Ch € C2 a2

where € tends to zero. The limiting case could clearly be rewritten as a problem with a displacement



constraint (generalized kinematic or Dirichlet boundary condition)

Z1 0 q1 . . e q1 _
[ 0 2 ] { 0 }— b {u(s)} with [c 2]{ 0 }—O (6.111)

Most CMS methods state the problem this way and spend a lot of energy finding an explicit method
to eliminate the constraint. The SDT encourages you to use[fe_coor] which eliminates the constraint
numerically and thus leaves much more freedom on how you reduce the component models.

In particular, this allows a reduction of the number of possible interface deformations [40]. But this
reduction should be done with caution to prevent locking (excessive stiffening of the interface).

6.2.7 Reduction for parameterized problems

Methods described up to now, have not taken into account the fact that in the dynamic
stiffness can depend on some variable parameters. To apply model reduction to a variable model,
the simplest approach is to retain the low frequency normal modes of the nominal model. This
approach is however often very poor even if many modes are retained. Much better results can be
obtained by taking some knowledge about the modifications into account [41].

In many cases, modifications affect a few DOFs: AZ = Z(a)) — Z(ayp) is a matrix with mostly zeros

[b;]7 with
NBxNB
N B much smaller than N. An appropriate reduction basis then combines nominal normal modes
and static responses to the loads by

on the diagonal and/or could be written as an outer product AZyxn = [by] {AZ}

T= [¢1...NR [K]_l [bl]] (6.112)

In other cases, you know a typical range of allowed parameter variations. You can combine normal
modes are selected representative design points to build a multi-model reduction that is exact at
these points

T = [¢1.Nr(c1) ¢é1.~NR(a2) ..] (6.113)

If you do not know the parameter ranges but have only a few parameters, you should consider a
model combining modeshapes and modeshape sensitivities [42] (as shown in the gartup demo)

T = |¢1.~nr(0) &bgi.o.j\m (6.114)

For a better discussion of the theoretical background of fixed basis reduction for variable models see
Refs. [41] and [42].
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6.3 Superelements and CMS

6.3.1 Superelements in a model

A superelement is a model that is included in another global model as an element. In general
superelements are reduced: the response at all DOFs is described by a linear combination of shapes
characterized by generalized DOFs. The use of multiple superelements to generate system predictions
is called Component Mode Synthesis (CMS). For a single superelement structure not included
in a larger model) simply use calls. This section addresses superelements integrated in a
model.

Starting with SDT 6, superelements are stored as ’SE’ entries in the model stack (of the form ’SE’,
SEname, SEmodel) with field detailed in section. Superelements are then referenced by element
rows in a group of SE elements in the global model. A group of superelements in the E1t matrix be-
gins by the header row [Inf abs(’SE’) 0]. Each superelement is then defined by a row of the form

[NameCode N1 Nend BasId Eltl El1tEnd MatId ProId El1tId].

e NameCode is an identifier encoding the superelement name using fesuper (’s name’). It is then
assumed that the model stack contains an ’SE’, name entry containing the model constituting
the superelement. The encoding uses base2dec and is limited to 8 alphabetic lower
case characters and numbers, you can use
NameCode = feval(fesuper(’@cleanSEname’) ,NameCode); to test the name compatibility.

e [N1 Nend] and [Elt1l E1tEnd] are ranges of implicit NodeId and E1tId of the superelement
nodes and elements in the global model. That is to say that each node or element of the
superelement is identified in the global model by an Id that can be different from the original
Id of the superelement model stored in the stack. For more details see

e BasId is the basis identifier in the bas field of the global model. It allows repositioning of the
superelement in the global model.

e E1t1,E1tEnd give the range of E1tId used to identify elements constituting the superelement.
These numbers are distinct from the superelement identifier itself.

e MatId,ProId,E1tId are used to associate properties to a given superelement. Superelements
support property entries. Material information can be used for selection purposes.



The d_cms demo illustrates the Component Mode Synthesis based on a superelement element strat-
egy. The model of this example (shown below) is composed by two stiffened plates. CMS here
consists in splitting the model into two superelement plates that will be reduced, before computa-
tion of the global model modes.

=

File Feplot Edit  Wiew Deskbop “Window Help N

current object info

Figure 6.4: CMS example: 2 stiffened plates.

e [ step 1 builds the simple model shown above
e [ in step 2 the two parts are separated and defined as super-elements

e [> now display

Other examples of superelement use are given in section [6.3.3] .

6.3.2 SE data structure reference

The superelement data is stored as a ’SE’ , Name,Data entry of the global model stack. The following
entries describe standard fields of the superelement Data structure (which is a standard SDT model
data structure with possible additional fields).

Opt

Options characterizing the type of superelement as follows:
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Opt(1,1) 1 classical superelements, 3 FE update unique superelements (see .
Opt(1,4) 1 for FE update superelement uses non symmetric matrices.
Opt(2,:) matrix types for the superelement matrices. Each non zero value on the

second row of Opt specifies a matrix stored in the field K{i} (where i is
the column number). The value of Opt(2,i) indicates the matrix type of
K{i}. For standard types see

Opt(3,:) is used to define the coefficient associated with each of the matrices declared
in row 2. An alternative mechanism is to define an element property in the
il matrix. If these coefficients are not defined they are assumed to be equal

to 1. See for high level handling.

Node

Nominal node matrix. Contains the nodes used by the unique superelement or the nominal generic
superelement (see section ). The only restriction in comparison to a standard model Node matrix
is that it must be sorted by NodeId so that the last node has the largest NodeId.

In the element row declaring the superelement (see above) one defines a node range N1 NEND. The
constraint on node numbers is that the defined range corresponds to the largest node number in the
superelement (NEND-N1+1=max (SE.Node(:,1))). Not all nodes need to be defined however.

Nodes numbers in the full model are given by
NodeId=SE.Node(:,1)-max(SE.Node(:,1))+NEND
N1 is really only used for coherence checking).

K{i},Klab{i},DOF

Superelement matrices. The presence and type of these matrices is declared in the Opt field (see
above) and should be associated with a label giving the meaning of each matrix.

All matrices must be consistent with the .DOF field which is given in internal node numbering. When
multiple instances of a superelement are used, node identifiers are shifted.

Elt, Node, il, pl

Initial model retrieval for unique superelements. E1t field contains the initial model description
matrix which allows the construction of a detailed visualization as well as post-processing operations.
.Node contains the nodes used by this model. The .pl and .il fields store material and element
properties for the initial model.

Once the matrices built, SE.E1t may be replaced by a display mesh if appropriate.



TR

TR field contains the definition of a possible projection on a reduction basis. This information is
stored in a structure array with fields

e .DOF is the model active DOF vector.

.def is the projection matrix. There is as many columns as DOFs in the reduced basis (stored
in the DOF field of the superelement structure array), and as many row as active DOFs (stored
in TR.DOF).

.adof, when appropriate, gives a list of DOF labels associated with columns of TR.def

.data, when appropriate, gives a list frequencies associated with columns of TR.def

.LargeDOF can be used to specify DOF's used to track the large rotation of frame where the
superelement is defined in multi-body systems.

.KeptDOF can be used to specify master DOFs not included TR.def but that should still be
used for display of the superelement.

6.3.3 An example of SE use for CMS

Following example splits the 2 stiffened plane models into 2 sub models, and defines a new model
with those 2 sub models taken as superelements.
First the 2 sub models are built

model=demosdt (’Tuto CMSSE -s1 model’);

SE1.Node=model.Node; SE2.Node=model.Node;

[ind,SE1.Elt]=feutil (’FindElt WithNode{x>0|z>0}’,model); 7 sel 1st plate
SE1l.Node=feutil (’OptimModel’,SE1); SEl=feutil(’renumber’,SE1l);
[ind,SE2.Elt]=feutil (’FindElt WithNode{x<0|z<0}’,model); % sel 2nd plate
SE2.Node=feutil (’OptimModel’,SE2); SE2=feutil(’renumber’,SE2);

Then mSE model is built including those 2 models as superelements

mSE.Node=[];
mSE.E1t=[Inf abs(’SE’) 0 0 0 0 0 O; 7 header row for superelements
fesuper(’s_sel’) 1 16 0 1 1 100 100 1 ; % SE1

fesuper(’s_se2’) 101 116 0 2 2 101 101 2]; % SE2
mSE=stack_set(mSE,’SE’,’sel’,SE1); mSE=stack_set(mSE,’SE’, ’se2’,SE2);
feplot(mSE); fecom(’promodelinit’)
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This is a low level strategy. [fesuper]|provides a set of commands to easily manipulate superelements.
In particular the whole example above can be performed by a single call to fesuper(’SelAsSE’)
command as shown in the CMS example in section [6.3.3] .

In this example one takes a full model split it into two superelements through element selections

model=demosdt (’Tuto CMSSE -sl1 model’); % get the full model

feutil (’infoelt’ ,model)

mSE=fesuper (’SESelAsSE-dispatch’,model,
{’WithNode{x>0|z>0}’; ’WithNode{x<0|z<0}’});

feutil(’infoelt’ ,mSE)

[eltid,mSE.Elt]=feutil ("eltidfix;’,mSE);

Then the two superelements are stored in the stack of mSE. Both of them are reduced using [fe_reduc]
(with command option -SE for superelement, and -UseDof in order to obtain physical DOFs) Craig-
Bampton reduction. This operation creates the .DOF (reduced DOFs), .K (superelement reduced
matrices) and .TR (reduction basis) fields in the superelement models.

Those operations can be performed with following commands (see |fesuper]

mSE=fesuper (mSE, *setStack’,’sel’,’info’, ’EiglOpt’, [6 20 1e3]);
mSE=fesuper (mSE, *settr’,’sel’,’CraigBampton -UseDof’);
mSE=fesuper (mSE, *setStack’,’se2’,’info’, ’EiglOpt’, [6 20 1e3]);
mSE=fesuper (mSE, *settr’,’se2’,’CraigBampton -UseDof’);

This is the same as following lower level commands

SEl=stack_get (mSE,’SE’,’sel’,’getdata’);
SEl=stack_set(SE1l,’info’, ’Eiglpt’,[5 50.1 1e3]);
SEl=fe_reduc(’CraigBampton -SE -UseDof’,SE1l);
mSE=stack_set (mSE,’SE’,’sel1’,SE1);

SE2=stack_get (mSE, SE’,’se2’,’getdata’);
SE2=stack_set(SE2,’info’, ’Eiglpt’,[5 50.1 1e3]);
SE2=fe_reduc(’CraigBampton -SE -UseDof’,SE2);
mSE=stack_set (mSE,’SE’, ’se2’,8E2);

Then the modes can be computed, using the reduced superelements
def=fe_eig(mSE, [5 20 1e3]); % reduced model
dfull=fe_eig(model, [56 20 1e3]); % full model

The results of full and reduced models are very close. The frequency error for the first 20 modes is
lower than 0.02 %.

provides a set of commands to manipulate superelements. fesuper (’SEAdd’) lets you
add a superelement in a model. One can add a model as a unique superelement or repeat it with
translations or rotations.



For CMS for example, one has to split a model into sub structure superelement models. It can be
performed by the [fesuper SESelAsSE| command. This command can split a model into superele-
ments defined by selections, or can build the model from sub models taken as superelements. The
[fesuper SEDispatch|command dispatches the global model constraints (FixDof, mpc, rbe3, DofSet
and rigid elements) into the related superelements and defines DofSet (imposed displacements) on
the interface DOFs between sub structures.

6.3.4 Obsolete superelement information

The following strategy is now obsolete and should not be used even though it is still tested.

Superelements are stored in global variables whose name is of the form SEName. ensures
that superelements are correctly interpreted as regular elements during model assembly, visualiza-
tion, etc. The superelement Name must differ from all function names in your MATLAB path. By
default these variables are not declared as global in the base workspace. Thus to access them from
there you need to use global SEName.

Reference to the superelements is done using element group headers of the form [Inf abs(’name’)].

The user interface provides standard access to the different fields (see for a list

of those fields). The following sections describe currently implemented commands and associated
arguments (see the help for hints on how to build commands and understand the variants
discussed in this help).

Warnings. In the commands superelement names must be followed by a space (in most other cases
user interface commands are not sensitive to spaces).

e Info QOutputs a summary of current properties of the superelement Name.

e Load, Save Load FilelName loads superelements (variables with name of the form SEName)
present in the file.
SaveFileName Namel NameZ ... saves superelements Namel, NameZ2 ... in the file.
Note that these commands are really equivalent to global SEName;save FileName SEName
and global SEName;load FileName SEName.

e Make elt=fesuper (’make Name generic’) takes a unique superelement and makes it generic
(see for details on generic superelements). Opt(1,1) is set to 2. SEName.DOF is
transformed to a generic DOF form. The output elt is a model description matrix for the
nominal superelement (header row and one element property row). This model can by used
by to build structures that use the generic superelement several times (see the d_cms2
demo).
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make complete adds zero DOF's to nodes which have less than 3 translations (DOFs .01 to
.03) or rotations (DOFs .04 to .06). Having complete superelements is important to be able
to rotate them (used for generic superelements with a Ref property).

e New New unique superelement declaration using the general format
(’New Name’ ,FEnode,FEelt). If a superelement called Name exists it is erased. The
Node and Elt properties are set to those given as arguments. The Patch property used by

for display is initialized.

Set calls of the form fesuper(’Set Name FieldOrCommand’, ’Value’) are obsolete and replaced
as follows

e ref field are now replaced by the definition of local bases for each instance of the superelement.

e patch simply replace the superelement .Elt field by another simplified model to be used for
viewing once the matrices have been defined.

e ki type fesuper(’set Name k % type’,Mat) sets the superelement matrix K{i} to Mat and
its type to type. The size of Mat must be coherent with the superelement DOF vector. type
is a positive integer giving the meaning of the considered matrix (see [MatType).

6.3.5 Sensors and superelements

All sensors, excepted resultant sensor, are supported for superelement models. One can therefore
add a sensor with the same way as for a standard model with fe_case (’SensDof’) commands:
fe case(model, ’SensDof [append, combine] SenType’, Name, Sensor). Name contains the
entry name in the stack of the set of sensors where Sensor will be added. Sensor is a struc-
ture of data, a vector, or a matrix, which describes the sensor (or sensors) to be added to model.
Command option append specifies that the Sensld of latter added sensors is increased if it is the
same as a former sensor Sensld. With combine command option, latter sensors take the place of
former same Sensld sensors. See section [4.6] for more details.

Following example defines some sensors in the last mSE model

% First two steps define model and split as two SE
mSE=demosdt (’tuto CMSSE -s2 mSE’);

mSE=fesuper (mSE, *setStack’,’sel’,’info’, ’Eiglpt’, [6 50 1e3]);
mSE=fesuper (mSE, *settr’,’sel’,’CraigBampton -UseDof’);
mSE=fesuper (mSE, *setStack’,’se2’,’info’,’Eiglpt’, [6 50 1e3]);



mSE=fesuper (mSE, *settr’,’se2’,’CraigBampton -UseDof’);

Sensors={[0,0.0,0.75,0.0,0.0,1.0,0.0]; % Id,x,y,z,nx,ny,nz
[0,10,0.0,0.0,1.0]; % Id,Nodeld,nx,ny,nz
[29.01]}; % DOF

for ji=1:length(Sensors);
mSE=fe_case (mSE, *SensDof append trans’,’output’,Sensors{jl});

end

mSE=fe_case(mSE, *SensDof append stress’,’output’,[111,22,0.0,1.0,0.0]);

fe case(’SensMatch’) command is the same as for standard models
mSE=fe_case(mSE, *SensMatch Radius2’,’output’);

Use fe_case(’SensSE’) to build the observation matrix on the reduced basis
Sens=fe_case(mSE, >SensSE’, ’output’);

For resultant sensors, standard procedure does not work at this time. If the resultant sensor only
relates to a specific superelement in the global model, it is however possible to define it. The
strategy consists in defining the resultant sensor in the superelement model. Then one can build the
observation matrix associated to this sensor, come back to the implicit nodes in the global model, and
define a general sensor in the global model with the observation matrix. This strategy is described
in following example.

One begins by defining resultant sensor in the related superelement

SE=stack_get (mSE,’SE’,’se2’,’GetData’); % get superelement
Sensor=struct(’ID’,0,

’E1tSel’, ’WithNode{x<-0.5}"); % left part of the plate
Sensor.SurfSel="x==-0.5"; % middle line of the plate
Sensor.dir=[1.0 0.0 0.0]; % x direction
Sensor.type=’resultant’; % type = resultant

SE=fe_case(SE,’SensDof append resultant’,...
’output’,Sensor); % add resultant sensor to SE

Then one can build the associated observation matrix

SE=fe_case(SE, ’SensMatch radius .6’,’output’); % SensMatch
Sens=fe_case(SE, ’Sens’, ’output’); % Build observation

Then one can convert the SE observation matrix to a mSE observation matrix, by renumbering DOF
(this step is not necessary here since the use of [fesuper SESelAsSE|command assures that implicit
numbering is the same as explicit numbering)

cEGI=feutil(’findelt eltname SE:se2’,mSE);
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% implicit nodes of SE in mSE
i1=SE.Node(:,1)-max(SE.Node(:,1))+mSE.E1t (cEGI,3);

% renumber DOF to fit with the global model node numbers:
NNode=sparse(SE.Node(:,1),1,i1);

Sens.DOF=full (NNode (fix(Sens.DOF)))+rem(Sens.DOF,1);

Finally, one can add the resultant sensor as a general sensor
mSE=fe_case(mSE, *SensDof append general’,’output’,Sens);
One can define a load from a sensor observation as following, and compute FRFs:

mSE=fe_case(mSE, ’DofLoad SensDofSE’,’in’,’output:2’) % from 2nd output sensor

def=fe_eig(mSE, [5 20 1e3]); % reduced model
nor2xf (def ,mSE, ’acc iiplot’); ci=iiplot;

6.4 Model parameterization

6.4.1 Parametric models, zCoef

Different major applications use families of structural models. Update problems, where a comparison
with experimental results is used to update the mass and stiffness parameters of some elements
or element groups that were not correctly modeled initially. Structural design problems, where
component properties or shapes are optimized to achieve better performance. Non-linear problems
where the properties of elements change as a function of operating conditions and/or frequency
(viscoelastic behavior, geometrical non-linearity, etc.).

A family of models is defined (see [41] for more details) as a group of models of the general second
order form (5.1) where the matrices composing the dynamic stiffness depend on a number of design
parameters p

Z(p,5)] = [M(p)s* + C(p)s + K (p)] (6.115)

Moduli, beam section properties, plate thickness, frequency dependent damping, node locations,
or component orientation for articulated systems are typical p parameters. The dependence on p
parameters is often very non-linear. It is thus often desirable to use a model description in terms of
other parameters v (which depend non-linearly on the p) to describe the evolution from the initial



model as a linear combination
NB
[Z(p,5)] = _ aj(p) [Zja(s)] (6.116)
j=1

with each [Z;4(s)] having constant mass, damping and stiffness properties.

Plates give a good example of p and « parameters. If p represents the plate thickness, one defines
three o parameters: t for the membrane properties, t3 for the bending properties, and t? for coupling
effects.

p parameters linked to elastic properties (plate thickness, beam section properties, frequency depen-
dent damping parameters, etc.) usually lead to low numbers of a parameters so that the « should be
used. In other cases (p parameters representing node positions, configuration dependent properties,
etc.) the approach is impractical and p should be used directly.

par

SDT handles parametric models where various areas of the model are associated with a scalar
coefficient weighting the model matrices (stiffness, mass, damping, ...). The first step is to define a
set of parameters, which is used to decompose the full model matrix in a linear combination.

The elements are grouped in non overlapping sets, indexed m, and using the fact that element
stiffness depend linearly on the considered moduli, one can represent the dynamic stiffness matrix
of the parameterized structure as a linear combination of constant matrices

(Z(Gimy 8)] = ° [M]+ Y pm [K] (6.117)

Parameters are case stack entries defined by using commands (which are identical to
commands for an superelement).

A parameter entry defines a lelement selection| and a type of varying matrix. Thus

model=demosdt (’demoubeam’) ;
model=fe_case(model,’par k 1 .1 10’,’Top’, ’withnode {z>1}’);
fecom(’proviewon’) ;fecom(’curtabCase’,’Top’) % highlight the area

zcoef

The weighting coefficients in (6.117]) are defined formally using the
cf.Stack{’info’, ’zCoef’} cell array viewed in the figure and detailed below.
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The columns of the cell array, which can be modified with the feplot interface, give

e the matrix labels Klab which must coincide with the defined parameters
e the values of coefficients in for the nominal mass (typically mCoef=[1 0 0
e the real valued coefficients zCoef0 in for the nominal stiffness K
e the values or strings zCoefFcn to be evaluated to obtain the coefficients for the dynamic

stiffness (6.117)).

Given a model with defined parameters/matrices, model=fe def (’zcoef-default’,model) defines
default parameters.

zcoef=fe def (’zcoef’,model) returns weighting coefficients for a range of values using the fre-

) feplot(2, mdl')

File Edit Desktop ‘Window Help k"
el

Model | Mat | EIProp | Stack | Cases | Simul]

%

nastranother ca & | 7 0pef help

info: MastrandakE
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info:Freg ;

i viscol O 1 par(1)
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< >
Remove ]

quencies (see and design point stack entries

Frequencies are stored in the model using a call of the form

model=stack set(model,’info’, ’Freq’,w hertz_colum). Design points (temperatures, optimiza-

1)

tion points, ...) are stored as rows of the *info’, ’Range’ entry, see|fevisco Range|for generation.

When computing a response, fe_def zCoef starts by putting frequencies in a local variable w (which
by convention is always in rd/s), and the current design point (row of >info’, ’Range’ entry or row of
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its .val field if it exists) in a local variable par. zCoef2:end,4 is then evaluated to generate weight-
ing coeflicients zCoef giving the weighting needed to assemble the dynamic stiffness matrix (6.117]).
For example in a parametric analysis, where the coefficient par(1) stored in the first column of
Range. One defines the ratio of current stiffness to nominal Kvcurrent = par(1) * Kv(nominal) as
follows

% external to fexf
zCoef={’K1ab’,’mCoef’,’zCoefO’,’zCoechn’;

M 1 0 T-w."27;
Ke? 0 1 1+i*fe_def (’DefEta’, [1);
Ky? 0 1 'par (1)’ };

model=struct ("K’,{cell(1,3)});

model=stack_set(model,’info’,’zCoef’,zCoef) ;

model=stack_set(model,’info’, ’Range’, .
struct(’val’,[1;2;3],’1lab’,{{’par’}}));

%Within fe2xf
w=[1:10]*2*pi; Y frequencies in rad/s
Range=stack_get(model,’info’, ’Range’,’getdata’);
for jPar=1:size(Range.val,1)
Range. jPar=jPar;zCoef=fe2xf (’zcoef’ ,model,w,Range) ;
disp(zCoef)
% some work gets done here ...
end

6.4.2 Reduced parametric models

As for nominal models, parameterized models can be reduced by projection on a constant reduction
basis T' leading to input/output models of the form

(772 (p, )T {ar} = [T70] {u(s)}

(6.118)
{y(s)} = [cT]{ar}

or, using the o parameters,
MR () [TTAZjo()T| {ar} = [T70] {u(s)} (6.119)
{y(s)} = [T {qr}

6.4.3 upcom parameterization for full order models
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Although superelements can deal with arbitrary models of the form (6.116f), the upcom| interface is
designed to allow easier parameterization of models. This interface stores a long list of mass M€ and
stiffness K¢ matrices associated to each element and provides, through the assemble command, a
fast algorithm to assemble the full order matrices as weighted sums of the form

NE NE
[M(p)] = Z ar(p) [Mg]  [K(p)] = zﬂk(p) (K] (6.120)

where the nominal model corresponds to ax(p) = Bk(p) = 1.

The basic parameterizations are mass p; and stiffness p; coefficients associated to element selections
ei, e; leading to coefficients
ag, =1 for ké¢e;
ap=p; for kee; (6.121)
Br =p; for kece;

Only one stiffness and one mass parameter can be associated with each element. The element
selections e; and e; are defined using commands. In some commands, one can
combine changes in multiple parameters by defining a matrix dirp giving the p;,p; coefficients in
the currently declared list of parameters.

Typically each element is only associated to a single mass and stiffness matrix. In particular prob-
lems, where the dependence of the element matrices on the design parameter of interest is non-linear
and yet not too complicated more than one submatrix can be used for each element.

In practice, the only supported application is related to plate/shell thickness. If p represents the
plate thickness, one defines three o, 3 parameters: ¢ for the membrane properties, ¢ for the bending
properties, and t? for coupling effects. This decomposition into element submatrices is implemented
by specific element functions, and g8up, which build element submatrices by calling and

Triangles are supported through the use of degenerate elements.

FElement matrix computations are performed before variable parameters are declared. In cases where
thickness variations are desired, it is thus important to declare which group of plate/shell elements
may have a variable thickness so that submatrices will be separated during the call to This
is done using a call of the form upcom(’set nominal t GroupID’,FEnode,FEelO,pl,il).

6.4.4 Getting started with upcom

Basic operation of the interface is demonstrated in gartup.

The first step is the selection of a file for the superelement storage using upcom(’load FileName’).
If the file already exists, existing fields of Up are loaded. Otherwise, the file is created.



If the results are not already saved in the file, one then computes mass and stiffness element matrices
(and store them in the file) using

upcom(’setnominal’ ,FEnode,FEelt,pl,il)

which calls You can of course eliminate some DOFs (for fixed boundary conditions) using a
call of the form

upcom(’setnominal’ ,FEnode,FEelt,pl,il, [],adof)

At any time, info will printout the current state of the model: dimensions of full/reduced
model (or a message if one or the other is not defined)

"Up’ superelement (stored in ’/tmp/tp425896.mat’)

Model Up.Elt with 90 element(s) in 2 group(s)
Group 1 : 73 quad4 MatId 1 Prold 3
Group 6 : 17 q4up MatId 1 Prold 4

Full order (816 DOFs, 90 elts, 124 (sub)-matrices, 144 nodes)
Reduced model undefined
No declared parameters

In most practical applications, the coefficients of various elements are not independent. The
par commands provide ways to relate element coefficients to a small set of design variables. Once
parameters defined, you can easily set parameters with the parcoef command (which computes
the coefficient associated to each element (sub-)matrix) and compute the response using the
compute commands. For example

upcom(’load GartUp’);

upcom(’ParReset’)

upcom(’ParAdd k’,’Tail’,’group3’);
upcom(’ParAdd t’,’Constrained Layer’,’group6’);
upcom(’ParCoef’,[1.2 1.1]);

upcom(’info’)

cf=upcom(’plotelt’)

cf.def (1)=upcom(’computemode full 6 20 1le3 11’)
fecom(’scd.37);

6.4.5 Reduction for variable models
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The interface allows the simultaneous use of a full and a reduced order model. For any
model in a considered family, the full and reduced models can give estimates of all the qualities
(static responses, modal frequencies, modeshapes, or damped system responses). The reduced model
estimate is however much less numerically expensive, so that it should be considered in iterative
schemes.

The selection of the reduction basis T is essential to the accuracy of a reduced family of models.
The simplest approach, where low frequency normal modes of the nominal model are retained, very
often gives poor predictions. For other bases see the discussion in section .

A typical application (see the gartup demo), would take a basis combining modes and modeshape
sensitivities, orthogonalize it with respect to the nominal mass and stiffness (doing it with
ensures that all retained vectors are independent), and project the model

upcom(’parcoef’,[1 1]1);

[fsen,mdsen,mode,freq] = upcom(’sens mode full’,eye(2),7:20);
[m,k]=upcom(’assemble’) ;T = fe_norm([mdsen mode] ,m,k);
upcom(’par red’, [T])

In the gartup demo, the time needed to predict the first 20 modes is divided by 10 for the reduced
model. For larger models, the ratio is even greater which really shows how much model reduction
can help in reducing computational times.

Note that the projected model corresponds to the currently declared variable parameters (and in
general the projection basis is computed based on knowledge of those parameters). If parameters
are redefined using Par commands, you must thus project the model again.

6.4.6 Predictions of the response using upcom

The interface provides optimized code for the computation, at any design point, of modes
(ComputeMode command), modeshape sensitivities (SensMode), frequency response functions using
a modal model (ComputeModal) or by directly inverting the dynamic stiffness (ComputeFRF). All
predictions can be made based on either the full or reduced order model. The default model can be
changed using upcom(’0OptModel[0,1] ) or by appending full or reduced to the main command.
Thus

upcom(’ParCoef’, [1 1]1);
[md1,£f1] = upcom(’compute mode full 105 20 1e3’);
[md2,f2] = upcom(’compute mode reduced’);

would be typical calls for a full (with a specification of the options in the command rather
than using the Opt command) and reduced model.



Warning: unlike [upcon] typically returns frequencies in Hz (rather than rd/s) as the default
unit option is 11 (for rd/s use upcom(’optunit22’))

Given modes you could compute FRFs using
IIxh = nor2xf(freq,0.01,mode’*b,c*mode, ITw*2*pi);

but this does not include a static correction for the inputs described by b. You should thus compute
the FRF using (which returns modes as optional output arguments)

[IIxh,mode,freq] = upcom(’compute modal full 105 20°’,b,c,IIw);

This approach to compute the FRF is based on modal truncation with static correction (see sec-
tion ). For a few frequency points or for exact full order results, you can also compute the
response of the full order model using

IIxh = upcom(’compute FRF’,b,c,IIw);

In FE model update applications, you may often want to compute modal frequencies and shape
sensitivities to variations of the parameters. Standard sensitivities are returned by the sens
command (see the Reference section for more details).

6.5 Finite element model updating

While the interface now provides a flexible environment that is designed for finite element
updating problems, integrated methodologies for model updating are not stabilized. As a result,
the SDT currently only intends to provide an efficient platform for developing model updating
methodologies. This platform has been successfully used, by SDTools and others, for updating
industrial models, but the details of parameter selection and optimization strategies are currently
only provided through consulting services.
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Figure 6.5: FE updating process.

The objective of finite element updating is to estimate certain design parameters (physical proper-
ties of the model) based on comparisons of test and analysis results. All the criteria discussed in
section [3.2] can be used for updating.

The correlation tools provided by [fe_sens|and [fe_exp|are among the best existing on the market and
major correlation criteria can easily be implemented. With SDT you can thus easily implement most
of the existing error localization algorithms. No mechanism is however implemented to automatically
translate the results of this localization into a set of parameters to be updated. Furthermore, the
updating algorithms provided are very basic.

6.5.1 Error localization/parameter selection

The choice of design parameters to be updated is central to FE update problems. Update parameters
should be chosen based on the knowledge that they have not been determined accurately from initial
component tests. Whenever possible, the actual values of parameters should be determined using
refined measurements of the component properties as the identifiability of the parameters is then
clear. If such refined characterizations are not possible, the comparison of measured and predicted
responses of the overall system provide a way to assess the probable value of a restricted set of
parameters.

Discrepancies are always expected between the model and test results. Parameter updates made
based on experimentally measured quantities should thus be limited to parameters that have an
impact on the model that is large enough to be clearly distinguished from the expected residual
error. Such parameters typically are associated to connections and localized masses.



In practice with industrial models, the FE model is initially divided into zones with one mass/stiffness
parameter associated with each zone. The [feutil FindElt|commands can greatly help zone defi-
nition.

Visualizing the strain/kinetic energy distribution of modeshapes is a typical way to analyze zones
where modifications will significantly affect the response. The gartup demo shows how the strain
energy of modeshapes and displacement residuals can be used in different phases of the error local-
ization process.

6.5.2 Update based on frequencies

As illustrated in demo_fe, once a set of update parameters chosen, you should verify that the proper
range is set (see min and max values in section ), make sure that Up.copt options are appro-
priately set to allow the computation of modes and sensitivities (see copt commands), and
define a sensor configuration matrix sens using

With test results typically stored in poles IIpo and residues IIres (see section ), the update
based on frequencies is then simply obtained by a call of the form

i2=1:8; % indices of poles used for the update
[coef,mdl,f1] = up_freq(’basic’,IIpo(i2,:),IIres(i2,:).’,sens);

The result is obtained by a sensitivity method with automated matching of test and analysis modes
using the MAC criterion. A non-linear optimization based solution can be found using
but computational costs tend to prevent actual use of this approach. Using reduced order models
(see section and start use with upcom(’opt model 1’)) can alleviate some of the difficulties

but the sensitivity based method (up_freq) is clearly better.

6.5.3 Update based on FRF

An update algorithm based on a non-linear optimization of the Log-Least-Squares cost comparing

FRFs is also provided with The call to takes the form
coef = up_ixf(’basic’,b,c,IIw,IIxf,indw)
Using up min for the optimization you will have messages such as

Step size: 1.953e-03
Cost Parameter jumps ...
3.9341e-01 -9.83e+00  4.05e+00
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which indicate reductions in the step size (Up.copt(1,7)) and values of the cost and update pa-
rameters at different stages of the optimization. With Up.copt(1,2) set to 11 you can follow the
evolution of predictions of the first FRF in the considered set. The final result here is shown in the
figure where the improvement linked to the update is clear.
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Figure 6.6: Updated FRF.

This algorithm is not very good and you are encouraged to use it as a basis for further study.
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6.6 Handling models with piezoelectric materials

This has been moved to the piezoelectric manual (see sdtweb(’piezo’)) and is no longer reproduced
here.

6.7 Viscoelastic modeling tools

The viscoelastic modeling tools are not part of the base SDT but licensed on an industrial basis
only. Their documentation can be found at http://www.sdtools.com/pdf/visc.pdf.

6.8 SDT Rotor

Work on the integration of cyclic symmetry capabilities into a complete SDT ROTOR package is
under progress. Their documentation can be found at http://www.sdtools.com/pdf/rotor.pdf.
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This chapter gives a detailed description of the formats used for variables and data structures. This
information is grouped here and hypertext reference is given in the HTML version of the manual.

7.1 Nodes

7.1.1 Node matrix

Nodes are characterized using the convention of Universal files. model.Node and FEnode are node
matrices. A node matrix has seven columns. Each row of gives

NodeId PID DID GID x y =z

where NodeId are node numbers (positive integers with no constraint on order or continuity), PID and
DID are coordinate system numbers for position and displacement respectively (zero or any positive
integer), GID is a node group number (zero or any positive integer), and x y z are the coordinates
. For cylindrical coordinate systems, coordinates represent r teta z (radius, angle in degrees, and
z axis value). For spherical coordinates systems, they represent r teta phi (radius, angle from
vertical axis in degrees, azimuth in degrees). For local coordinate system support see section .

A simple line of 10 nodes along the x axis could be simply generated by the command
node = [[1:10]’ zeros(10,3) linspace(0,1,10)’*[1 0 0]];

For other examples take a look at the finite element related demonstrations (see section ) and

the mesh handling utility

The only restriction applied to the NodeId is that they should be positive integers. The earlier
limit of round((2°31-1)/100) = 21e6 is no longer applicable.

In many cases, you will want to access particular nodes by their number. The standard approach is
to create a reindexing vector called NNode. Thus the commands

NNode=[] ;NNode(node(:,1))=1:size(node,1);
Indices_of_Nodes = NNode(List_of_NodeId)

gives you a simple mechanism to determine the indices in the node matrix of a set of nodes with iden-
tifiers List_of NodeId. Thel|feutil FindNode|commands provide tools for more complex selection
of nodes in a large list.
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Coordinate system handling

Local coordinate systems are stored in a model.bas field (see [NodeBas|). Columns 2 and 3 of
model.Node| define respectively coordinate system numbers for position and displacement.

Use of local coordinate systems is illustrated in section where a local basis is defined for test
results.

[feplot] [fe mK, [rigid] ... now support local coordinates. does when the model is described
by a data structure with the .bas field. assumes you are using global coordinate system
obtained with

[FEnode,bas] = basis(model.Node,model.bas)

To write your own scripts using local coordinate systems, it is useful to know the following calls:

[node,bas,NNode]=feutil (’getnodebas’,model) returns the nodes in global coordinate system,
the bases bas with recursive definitions resolved and the reindexing vector NNode.

To obtain, the local to global transformation matrix (meaning {qgopai} = [car] {@iocat }) use

cGL=basis(’trans 1’,model.bas,model.Node,model.DOF)

7.2 Model description matrices

A model description matrix describes the model elements. model.E1t and FEelt are, for example,
model description matrices. The declaration of a finite element model is done through the use of
element groups stacked as rows of a model description matrix elt and separated by header rows
whose first element is Inf in Matlab or %inf in Scilab and the following are the ASCII values for the
name of the element. In the following, Matlab notation is used. Don’t forget to replace Inf by %inf
in Scilab.

For example a model described by

elt = [Inf abs(’beamil’) 00
1 2 11 12 b5 000

2 3 11 12 5 00O

Inf abs(’massi’) 0 102

2 1e2 1le2 1le2 b5e-5 5e-5 5e-5 0 1;

has 2 groups. The first group contains 2 elements between nodes 1-2 and 2-3 with material
property 11, section property 12, and bending plane containing node 5. The second group contains
a concentrated mass on node 2.



Note how columns unused for a given type element are filled with zeros. The 102 declared for the
mass corresponds to an element group identification number EGID.

You can find more realistic examples of model description matrices in the demonstrations (see
section ).

’The general format for header rows is

[Inf abs(’ElementName’) 0 opt ]

The Inf that mark the element row and the 0 that mark the end of the element name are required
(the 0 may only be omitted if the name ends with the last column of elt).

For multi-platform compatibility, element names should only contain lower case letters and num-
bers. In any case never include blanks, slashes, ... in the element name. Element names reserved
for supported elements are listed in the element reference chapter |§| (or doc(’eltfun’) from the
command line) .

Users can define new elements by creating functions (.m or .mex in Matlab, .sci in Scilab) files
with the element name. Specifications on how to create element functions are given in section [7.16].

Element group options opt can follow the zero that marks the end of the element name. opt (1), if
used, should be the element group identification number EGID . In the example, the group of
elements is this associated to the EGID 102. The default element group identification number is
its order in the group declaration. Negative EGID are ignored in FEM analyzes (display only, test
information, ...).

Between group headers, each row describes an element of the type corresponding to the previous
header (first header row above the considered row).

’The general format for element rows is‘

[NodeNumbers MatId Prold El1tId OtherInfo]

where

e NodeNumbers are positive integers which must match a unique NodeId identifier in the first column
of the node matrix.

e MatId and ProId are material and element property identification numbers. They should be
positive integers matching a unique identifier in the first column of the material pl and element
il property declaration matrices.

e E1tId are positive integers uniquely identifying each element. See [feutil E1tId|for a way to
return the vector and verify/fix identifiers.
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e OtherInfo can for example be the node number of a reference node element). These
columns can be used to store arbitrary element dependent information. Typical applications
would be node dependent plate thickness, offsets, etc.

Note that the position of MatId, ProId and E1tId in the element rows are returned by calls of the
form ind=elemO(’prop’) (elemO is a generic element name, it can be barl, hexa8, ...).

Element property rows are used for assembly by[fe_mKk] display by [feplot] model building by [femesh]

7.3 Material property matrices and stack entries

This section describes the low level format for material properties. The actual formats are de-
scribed under m_ functions m_piezo, ... For Graphical edition and standard scripts see
section [£5.1] .

A material is normally defined as a row in the material property matrix pl. Such rows give a
declaration of the general form [MatId Type Prop] with

MatId a positive integer identifying a particular material property.

Type a positive real number built using calls of the form
[femat|(’m_elastic’,’SI’,subtype), the subtype integer is described in m-
functions.

Prop as many properties (real numbers) as needed (see [fe mat| m elastic|for details).

Additional information can be stored as an entry of type ’mat’ in the model stack which has data
stored in a structure with at least fields



.name Description of material.

.pl a single value giving the MatId of the corresponding row in the model.pl matrix or
row of values.
Resolution of the true .pl value is done by pl=fe mat(’getpl’,model). The prop-
erty value in .pl should be -1 for interpolation in GetPl, -2 for interpolation using
the table at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see [fe_mat Convert|and Unit
commands).

.type the name of the material function handling this particular type of material (for ex-
mplefeTeerid),

.fteld can be a structure allowing the interpolation of a value called field based on the

given table. Thus

mat.E=struct (°X’, [-10;20],’Xlab’,{{’T’}},’Y’, [10 20]*1e6) will interpolate
value E based on field T. The positions of interpolated variables within the pl row
are given by list=feval (mat.type, ’propertyunittype cell’, subtype).

7.4 Element property matrices and stack entries

This section describes the low level format for element properties. The actual formats are described
under p_ functions|p_shell] |p_solid| [p_beamn| [p_spring|l For Graphical edition and standard scripts

see section [£.5.1] .

An element property is normally defined as a row in the element property matrix il. Such rows
give a declaration of the general form [ProId Type Prop] with

Prold a positive integer identifying a particular element property.

Type a positive real number built using calls of the form ( ’p_beam’,’SI’,1), the
subtype integer is described in the p_ functions.

Prop as many properties (real numbers) as needed (see [fe mat} [p_solid|for details).

Additional information can be stored as an entry of type *pro’ in the model stack which has data
stored in a structure with fields
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.name description of property.
.il a single value giving the ProId of the corresponding row in the il matrix or row of
values

Resolution of the true .il value is done by il=fe mat(’getil’ ,model). The prop-
erty value in .1l should be -1 for interpolation in GetIl, -2 for interpolation using
the table at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see the [fe_mat Convert|and Unit
commands)

.type the name of the property function handling this particular type of element properties
(for example

.NLdata used to stored non-linear property information. See nl,springl

.MAP specifications of a field at node, see section @l ‘

.gstate specifications of a field at integration points, see section @

.field can be a structure allowing the interpolation of a value called field based on the

given table. Thus

pro.A=struct(’X’, [-10;20],’Xlab’,{{’x’}},’Y’,[10 20]*1e6) will interpolate
value A based on field x. The positions of interpolated variables within the il row
are given by list=feval(pro.type, ’propertyunittype cell’, subtype).

The handling of a particular type of constants should be fully contained in the p_* function. The
meaning of various constants should be defined in the help and TEX documentation. The subtype
mechanism can be used to define several behaviors of the same class. The generation of the integ
and constit vectors should be performed through a BuildConstit call that is the same for a full
family of element shapes. The generation of should similarly be identical for an element
family.

7.5 DOF definition vector

The meaning of each Degree of Freedom (DOF) is handled through DOF definition vectors typically
stored in .DOF fields (and columns of .dof in test cases where a DOF specifies an input/output
location). All informations defined at DOFs (deformations, matrices, ...) should always be stored
with the corresponding DOF definition vector. The function supports all standard DOF ma-
nipulations (extraction, conversion to label, ...)

Nodal DOFs are described as a single number of the form NodeId.DofId where DofId is an integer
between 01 and 99. For example DOF 1 of node 23 is described by 23.01. By convention

e DOFs 01 to 06 are, in the following order u, v, w (displacements along the global coordinate axes)



and 60, 0,, 0,, (rotations along the same directions)

e DOFs 07 to 12 are, in the following order —u, —v, —w (displacements along the reversed global
coordinate axes) and —6,,, —0,, —6,, (rotations along the same directions). This convention is
used in test applications where measurements are often made in those directions and not corrected
for the sign change. It should not be used for finite element related functions which may not all
support this convention.

While these are the only mandatory conventions, other typical DOFs are .19 pressure, .20 temper-
ature, .21 voltage, .22 magnetic field.

In a small shell model, all six DOFs (translations and rotations) of each node would be retained and
could be stacked sequentially node by node. The DOF definition vector mdof and corresponding
displacement or load vectors would thus take the form

[1.01 7 i (31 u9 1 i Ful Fu2 T
1.02 v Vo Foi Fi
1.03 w1 Wo Fo,i  Fuo
mdof = 1.04 ,qQ= Our Ou2 ... and F = My My ... (71)
1.05 01 Oyo My My
1.06 0w Ouwo M1 My

Typical vectors and matrices associated to a DOF definition vector are

e modes resulting from the use of or read from FE code results (see pasread| jufread).

¢ input and output shape matrices which describe how forces are applied and sensors are placed

(see e} [Fo_Toad) g page 00 ).

e system matrices : mass, stiffness, etc. assembled by

e FRF test data. If the position of sensors is known, it can be used to animate experimental
deformations (see [feplot| ,[xfopt| and [fe_sens|).

Note that, in Matlab version, the functions and for models with more than 1000
DOFs, renumber DOF internally so that you may not need to optimize DOF numbering yourself.
In such cases though, mdof will not be ordered sequentially as shown above.

Element DOF's are described as a single number of the form -E1tId.DofId where DofId is an
integer between 001 and 999. For example DOF 1 of the element with ID 23001 is described by
-23001.001. Element DOF's are typically only used by superelements (see section ). Due to the
use of integer routines for indexing operations, you cannot define element DOFs for elements with
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and E1tId larger than 2 147 484.

7.6 FEM model structure

Finite element simulations are best handled using standard data structures supported by OpenFEM.
The two main data structures are model which contains information needed to specify a FEM
problem, and DEF which stores a solution.

Finite element models are described by their topology (nodes, |elements| and possibly coordinate
systems), their properties (materialland element|). Computations performed with a model are further
characterized by a as illustrated in section [£.5.3] and detailed in section [7.7] .

Data structures describing finite element models have the following standardized fields, where only
nodes and elements are always needed.




.bas
.cta
.copt

.DOF
.E1t

.file
Lil

{1}

.mind
.Node
.Opt

.Patch

. TR
.unit

.wd

local |Coordinate System| definitions.

sensor observation matrix. Used by fe,sensl

solver options.  For use by Em]r This field is likely to disappear in favor of
defaults in [sdtdef]

IDOF definition vector]|for the matrices of the model. Boundary conditions can be
imposed using cases.

This field is mandatory.

Storage file name. Used by

element property description matrix. Can also be stored as ’pro’ entries in the
Stack.

cell array of constant matrices for description of model as a linear combination. In-
dices 7 match definitions in .0pt(2,:) and .0pt(3,:). Should be associated with
a .Klab field giving a string definition of each matrix. See details in the

reference.

element matrix indices. Used by
This field is mandatory.

options characterizing models that are to be used as superelements.

material property description matrix. Can also be stored as ’mat’ entries in the
Stack.

Patch face matrix. See

A cell array containing optional properties further characterizing a finite element
model. See for how to handle the stack and the next section for a list of
standardized entries.

projection matrix. See fe,superl

main model unit system (see [fe mat Convert|for a list of supported unit systems
and the associated two letter codes). Specifying this field let you perform conversion
from materials defined in US system unit from the GUI.

working directory

Obsolete fields are .Ref Generic coordinate transformation specification, .tdof test DOF field (now

in entries).

7.7 FEM stack and case entries

Various
feplot

feplot|).

information are stored in the model.Stack field. If you use a|SDT handle| refering to a
figure, modification of the model and case entries is often easier using cf.Stack calls (see
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case
curve
info
info,map
mat

pro

SE

sel

seln

set

defines a
curve to

case|: boundary conditions, loading, ...

be used for simulations (see |[fe_curve)).

non standard information used by solvers or meshing procedures (see below).
used to define a normal MAP, see |feutil GetNormal| for format

defines a |material| entry.

defines an element property| entry.

defines a
defines a

superelement| entry.

element selectionl

defines a [node selection] Typically a structure with fields .ID giving the reference
number and .data giving either node numbers or a node selection command.

defines a

set that is a structure with fields

e .ID (a reference number of the set),

e .data defines the data

e .type nature of the set.

The following set types are acceped:

NodeId data is a column of node numbers.

El1tId data is a column of element numbers.

Faceld, EdgeId datais two columns giving E1tId and face/edge number (as detailed
in[integrules| or resulting from (tetral0(’faces’), ...). Face sets are often used

to define

loaded surfaces.

e A third column can be added to specify subgroups within the set and a .NodeCon
sparse matrix can be used to specify nodes (rows) connected to each subgroup
(column).

e For Faceld sets, external code imports like used for [FEMLinkface identifiers
conventions may vary, so that read data may not be in coherence with SDT
notations. To alleviate the problem, one can add field ConvFcn to provide a
conversion function. The conversion function can be called depending on the
element type ElemF with the syntax

— feval(ConvFcn, [’conv faceNum.’ ElemF]); that should rethrow a

renumbering vector giving in sorted SDT face numbering order the cor-
responding face index of the external convention.

— feval(ConvFcn, [’conv face.’ ElemF]); that should rethrow the list

of nodes per face (by line) in the original external face convention (but

with SDT node numbering convention).
283
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Currently reserved names for info entries are

DefaultZeta

DefaultEta
EigOpt
FluidEta
Freq

NewNodeFrom

Omega

OrigNumbering

StressCritFcn

Rayleigh
MifDes
NasJobOpt

NastranJobEdit

TimeOpt
TimeOptStat

value to be used as default modal damping ratio (viscous damping). The
default loss factor if needed is taken to be twice that value.” Default damp-
ing is only used when no other damping information is available.
(discontinued) value to be used as default loss factor should be replaced by
DefaultZeta=eta/2.

gives real eigenvalue solver options (see .

Default loss factor for use in vibroacoustic fluid computations.
Frequencies given as a structure with field .data with frequency values and
.ID a integer identifier. A .unit field can specify rad/s,Hz,rev/mn,RPM.
f=fe def (’DefFreq’ ,model) is used to obtain the frequency vector in Hz.
integer giving the next NodeId to be used when adding nodes to the model
(used by some commands of .

rotation vector used for rotating machinery computations (see fe cyclic)
can be specified as a structure for unit selection. For example
ri=struct(’data’,250,’unit’,’RPM’) ;f _hz=fe def (’deffreq’,rl)
original node numbering (associated with [feutil Renumber| command).
Two int32 columns giving original and new node numbers.

string to be evaluated for a specific stress criterion, see

defines a |Rayleigh| damping entry.
defines the list of desired response output (see fe2xf).

structure with options to be used for automated job runs by the NASTRAN|

cell array giving a list of job editing commands to be used through a
pmaswrite EditBulk call.

gives time solver options (see |f e,timeli.
gives non-linear static solver options (see |fe,t imel).

Currently reserved names for curve entries are

e StaticState used to assemble prestressed matrices (type 5).

e g0 used to initialize time simulations and for non-linear analyses

A case type defines finite element boundary conditions, applied loads, physical parameters, ... The
associated information is stored in a case data structure with fields



Case.Stack

Case.T
Case.DOF

list of boundary conditions, constraints, parametric design point, and loading
cases that need to be considered. A table of accepted entries is given under
Each row gives {Type,Name,data}.

basis of subspace verifying fixed boundary conditions and constraints.

DOF definition vector|describing the columns of T, the rows of T are described
by the .DOF field of the model.

The various cases are then stored in the .Stack field of the model data structure (this is done by

a call to [fe_case). If you use a[SDT handle]referring to a figure, modification of the case

entries is often easier using cf.CStack calls (see [feplot)).

7.8 FEM result data structure

Deformations resulting from finite element computations (fe_eig] [fe load] ...) are described by
def structures with fields

.def
.DOF
.data

.X1ab
.defL

.1lab

.ImWrite

.LabFcn
.Legend
.label

.DofLab

.scale

deformations (NDOF by N Def matrix)

|DOF definition vector|

(optional) (NDef by Nj,f, vector or matrix) characterizing the content of each de-
formation (frequency, time step, ...)

(optional) {’DOF’,’Freq’;’Index’} cell array describing the columns of data.
displacement field corresponding to the left eigenmodes obtained from
function description [Model Analysis Field FieldType Format NDV]. This is
based on the UNV 55 format detailed below. Typically field with [0
fe curve(’TypeAnalysis’)]. This field is needed for proper automated display
setup.

(optional) cell array of strings characterizing the content of each deformation (columns
of .def). For large arrays, the use of a .LabFcn is preferable.

(optional) can be used to control automated multiple figure generation, see
callback for label generation see |f ecom Lachﬁl

data for legend generation, see |fecom Legend|

(optional) string describing the content

optional cell array of strings specifying a label for each DOF. This is used for display

in [P

field used by to store scaling information.
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The
0])

.fun field is a numeric row with values (a typical value for static responses is def.fun=[0 1

Model (0 Unknown, 1 Structural, 2 Heat Transfer, 3 Fluid Flow)

Analysis see list with fe_curve(’ TypeAnalysis’)

Field see list with 0: Unknown (or general SDT), 1: Scalar, 2: Tx Ty Tz, 3: Tx Ty Tz Rx
Ry Rz, 4: Sxx Sxy Syy Sxz Syz Szz, 5: Sxx Syx Szx Sxy Syy Szy Sxz Syz Szz

FieldType see list with fe_curve(’typefield’)

Format 0 default, 2 Real, 5 Complex

NDV Number Of Data Values Per Node (0 for variable number)

SDT provides a number of utilities to manipulate deformation structures. In particular you should

use

7.9

def=fe def (’subdef’,def,ind) extracts some deformations (columns of def.def). You can
select based on the data field, for example with ind=def.data(:,1)>100.

def=fe def (’ AppendDef’ ,def,defl) combines two sets of deformations

def=fe_def (’SubDof’,def,DOF) extracts some DOF (rows of def.def). To select based on
DOF indices, use def=fe_def (’SubDofInd’,def,ind).

def=feutilb(’placeindof’ ,DOF,def) is similar but DOF may be larger than def.DOF.

fe_def (’SubDofInd-Cell’ ,def,ind _dof,ind def) return clean display of deformation as a
cell array.

Curves and data sets

Curves are used to specify (for time or frequency domain simulation) and store results from
simulations. The basic formats are the Multi-dim curve|and FEM result For experimental
modal analysis, Response dataland [Shapes at DOFs|are also used.

All these formats can be displayed using the interface. For extraction see [fe_def SubC




Multi-dim curve

A curve is a data structure with fields
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X

.X1lab

.Ylab

.ID
.name
.type
.Interp

.Extrap

.PlotInfo
.DimPos

axis data. A cell array with as many entries as dimensions of .Y. Contents of
each cell can be

e a vector (for example vector of frequencies or time steps),

e a matrix with as many rows a steps in curve.Y. Each column then cor-
responds to a different definition of the same data (time and position for
example) and you can have as many rows in curve.Xlab{i} as colums.

e a cell array describing data vectors in .Y (for example response labels) with
as many rows as elements in corresponding dimension of .Y. In such a cell
array, column 2 is for units and 3 for unit type (see[fe_curve datatypel.
To use a specific curve.X{i} to generate labels for the data, specify the
index of the associated dimension in curve.Ylab.

.X giving x-axis data as a vector is obsolete and should be avoided.

a cell array giving the meaning of each entry in .X. Each cell can be a
string (giving the dimension name) or itself a cell array with columns giving
{’name’,’UnitString’,unitcode, ’fmt’}. Typical entries are obtained using
the [fe_curve datatypecell command. Multiple rows can be used to describe
multiple columns in the .X entry (matrix input for curve.X{i}).

fmt, if provided, gives a formatting instruction for example °’length=%i
m’. If more intricate formatting is needed a callback can be obtained with
\zs{’#st3{’}}=sprintf (’ ’PK=),.2fkm’’ ,r2(j2)*1e-3) ;.

response data with as many dimensions as the length of curve.X and
curve.Xlab. If a 2D matrix rows correspond to .X{1} values and columns
are called channels described by .X{2}.

describes content of .Y data. It can be a string, a 1x3 unit type cell array, or a
number that indicates which dimension (index in .X{i} field cell array) describes
the .Y unit.

Optional. It can be used to generate automatically vertical lines in iiplot. See
[iiplp Call from iiplot|for more details.

name of the curve used for legend generation.

Optional. ’fe_curve’.

optional interpolation method. Available interpolations are linear, log and
stair.

optional extrapolation method. Available extrapolations are flat, zero (default
for and exp.
indications for automated plotting, see|iiplot PlotInfo|
order of dimensions to be shown by iiplot}




The following gives a basis generation example.

t=linspace(0,10,100)’;lab={’ux’; uy’};

Cil=struct ("X’ ,{{t,lab}}, ’Xlab’,{{ Time’, ’DOF’}},
’Y? , [sin(t) cos(t)],’name’,’Test’);

iicom(’curveinit’,Cl.name,C1);iicom(’chl1:2°);

FEM Result

See section or sdtweb(’def’).

Inputs

Inputs for time or frequency simulations are stored as entries {’curve’, Name, data} in the model
stack or in the case of inputs in the load.curve cell array.

A curve can be used to define a time (or frequency) dependent load {F} = [B]{u}. [B] defines the
spatial distribution of the load on DOFs and its unit is the same as F. [B] is defined by a DOFLoad
entry in the Case. {u} defines the time (or frequency) dependency as a unitless curve. There should
be as many curves as columns in the matrix of a given load def. If a single curve is defined for a
multi-load entry, it will affect all the loads of this entry.

As an illustration, let us consider ways to define a time dependent load by defining a .curve field
in the load data structure. This field may contain a string referring to an existing curve (name is
’input’ here)

model=fe_time(’demo bar’) ;fe_case(model, ’info’)

% Define input curve structure (single input step)
% For examples see: sdtweb fe_curve#Test
model=fe_curve(model,’set’,’input’,’TestStep tl=1e-3’);

% define load.curve{l} to use that input
model=fe_case(model, ’setcurve’,’Point load 1’,’input’);

% Run a simulation

TimeOpt=fe_time(’timeopt newmark .25 .5 0 le-4 100’);
model=stack_set(model,’info’,’TimeOpt’,TimeOpt) ;
def=fe_time(model); feplot(model,def); fecom ColorDataAll

It is also possible to directly define the .curve field associated with a load
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model=fe_time(’demo bar’);fe_case(model,’info’)
model=fe_case(model, ’remove’,’fd’); % loads at both ends
data=struct(’DOF’,[1.01;2.01],°def’,lebxeye(2), ...
‘curve’ ,{{’test ricker dt=1e-3 A=1’,...
‘test ricker dt=2e-3 A=1’}});
model = fe_case(model, ’DOFLoad’,’Point load 1’,data);

TimeOpt=fe_time(’timeopt newmark .25 .5 0 le-4 100’);
model=stack_set(model,’info’,’TimeOpt’ ,TimeOpt) ;
def=fe_time(model); feplot(model,def); fecom ColorDataAll

Response data

Response data sets xfstruct correspond to groups of universal files of type that have the
same properties (type of measurement, abscissa, units, ...). They are used for identification with
while the newer format is used for simulation results. They are characterized by the
following fields

W abscissa values

.xf response data, one column per response, see section

characteristics of individual responses (one row per column in the response data as
detailed below)

.fun general data set options, contain [FunType DFormat NPoints XSpacing Xmin
XStep ZValue] as detailed in

.idopt options used for identification related routines (see

.header header (5 text lines with a maximum of 72 characters)

X abscissa description (see xfopt (’ _datatype’))

.yn numerator description (see xfopt (’ datatype’))

.yd denominator description (see xfopt (’_datatype’))

.z third axis description (see xfopt(’_datatype’))

.group (optional) cell array containing DOF group names. Get label with
c.group(c.dof (:,4)) for response and c.group(c.dof (:,5)) for excitation.

.load (optional) loading patterns used in the data set

The .w and .xf fields contain the real data while other fields give more precisions on its nature.

The .dof field describes DOF/channel dependent options of a MIMO data set. The dof field
contains one row per response/DOF with the following information (this corresponds to data in line

6 of ufread 58| except for address)

[RespNodeID.RespDOFID ExciNodeID.ExciDOFID Address ...



RespGroupID ExciGroupID FunID LoadCase ZaxisValue]

e Standard DOF definitions of the form NodeID.DOFID are introduced in section . When
considering sensors in general directions (see section ) the SensId should match
RespNodeID.RespDOFID.

e Addresses are integer numbers used to identify columns of xf matrices. They typically corre-
spond to a measurement number.

e Sensor / actuator groups are correspond to the group names given in the group field (this is

really only supported by jufread).

e Other columns are given in the universal format specification but unused in SDT.

The idopt field is used to point to identification options used on the data set. These should point
to the figure options ci.IDopt.

The .group field is used to associate a name to the group identification numbers RespGroupID
ExciGroupID defined in the .dof columns 4 and 5. These names are saved by and used for
geometry identification.

The load field describes loading cases by giving addresses of applied loads in odd columns and the
corresponding coefficients in even columns. This field is used in test cases with multiple correlated
inputs.

Shapes at DOFs

Shapes at DOF's is used to store modeshapes, time responses defined at all nodes, ... and are written
to universal file format 55 (response at nodes) by The fields used for such datasets are

.po pole values, time steps, frequency values ...
For poles, see which allows conversions between the different pole formats.
.res residues / shapes (one row per shape). Residue format is detailed in section .
characteristics of individual responses (follow link for description).
.fun function characteristics (see |
.header header (5 text lines with a maximum of 72 characters)
.idopt identification options. This is filled when the data structure is obtained as the result
of an call.
.label string describing the content
.lab_in optional cell array of names for the inputs
.lab_out optional cell array of names for the outputs
.group optional cell group names
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7.10 DOVF selection

is the general purpose function for manipulating DOF definition vectors. It is called by many
other functions to select subsets of DOFs in large DOF definition vectors. DOF selection is very
much related to building an observation matrix ¢, hence the name

For DOF selection, arguments are the reference DOF vector mdof and the DOF selection vector
adof. adof can be a standard DOF definition vector but can also contain wild cards as follows

NodeId.O means all the DOFs associated to node NodeId
0.DofId means DofId for all nodes having such a DOF
-E1tN.O means all the DOFs associated to element E1tId

Typical examples of DOF selection are

ind = fe_c(mdof,111.01,’ind’); returns the position in mdof of the x translation at node 111.
You can thus extract the motion of this DOF from a vector using mode (ind, :). Note that the same
result would be obtained using an output shape matrix in the command fe _c(mdof,111.01) *mode.

model = fe_mk(model,’FixDOF’,’2-D motion’,[.03 .04 .05])

assembles the model but only keeps translations in the xy plane and rotations around the z axis
(DOFs [.01 .02 .06]’). This is used to build a 2-D model starting from 3-D elements.

The[feutil FindNode|commands provides elaborate node selection tools. Thus femesh (’ findnode
x>07) returns a vector with the node numbers of all nodes in the standard global variable FEnode
that are such that their x coordinate is positive. These can then be used to select DOFs, as shown
in the section on boundary conditions section . Node selection tools are described in the next
section.




7.11 Node selection

feutil|FindNode supports a number of node selection criteria that are used by many functions. A
node selection command is specified by giving a string command (for example ’GroupAll’, or the
equivalent cell array representation described at the end of this section) to be applied on a model
(nodes, elements, possibly alternate element set).

Output arguments are the numbers NodeId of the selected nodes and the selected nodes node as a
second optional output argument. The basic commands are

e [NodeId,nodel=feutil([’findnode ...’],model) ornode=feutil([’getnode ...’],model)
this command applies the specified node selection command to a model structure. For exam-
ple, [NodeId,node] = feutil(’findnode x==0’,model);
selects the nodes in model.Node which first coordinate is null.

e [Nodeld,nodel=femesh([’findnode ...’])
this command applies the specified node selection command to the standard global matrices
FEnode, FEelt, FEelO, ... For example,
[NodeId,node] = femesh(’findnode x==0’); selects the node in FEnode which first coordi-
nate is null.

Accepted selectors are
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GID 2
Group 1

Groupa 1%
InElt{sel}

NodelId >%

NotIn{sel}

Plane == 7 nz ny nz

rad <=r z y 2

cyl <=7 % nz ny nz
z1 22

betweennl n2

Setname name

x>a

T Y 2

selects the nodes in the node group 7 (specified in column 4 of the node
matrix). Logical operators are accepted.

selects the nodes linked to elements of group(s) < in the main model. Same
as InElt{Group <}

selects nodes linked to elements of group(s) % of the alternate model
selects nodes linked to elements of the main model that are selected by the

|element selection| command sel.

selects nodes selects nodes based relation of NodeId to integer 7. The logical
operator >, <, >=, <= "= or == can be omitted (the default is then ==).

feutil(’findnode 1 2’,model) interprets the values as Nodeld
unless three values are given (then interpreted as x y z).
feutil (’findnode’ ,model,IdList) should then be used.

selects nodes not linked to elements of the main model that are selected by
the jelement selection command sel.

selects nodes on the plane containing the node number % and orthogonal to
the vector [nz ny nz]. Logical operators apply to the oriented half plane.
% can be replaced by string o zo yo zo specifying the origin.

selects nodes based on position relative to the sphere specified by radius
r and position z y z node or number z (if y and z are not given). The
logical operator >, <, >=, <= or == can be omitted (the default is then <=).
selects nodes based on position relative to the cylinder specified by radius
r and axis of direction nz ny nz and origin the node ¢ (Nodeld ¢ can
be replaced by string o zo yo zo). Optional arguments z1 and z2 define
bottom and top boundaries from origin along cylinder axis.

selects nodes located between the two planes of normal directed by n1-n2
and respectively passing through n1 and n2.

finds nodes based on a set defined in the model stack. Note that the name
must not contain blanks or be given between double quotes "name". Set can
be a NodeId or even an E1tId or Faceld, EdgeId "name:con IdList"
can be used to select a subset connected to nodes in the IdList.

selects nodes such that their x coordinate is larger than a. x y z r (where
the radius r is taken in the zy plane) and the logical operators >, <, >=, <=,
== can be used.

Expressions involving other dimensions can be used for the right hand side.
For example r>.01*z+10.

selects nodes with the given position. If a component is set to NaN it is
ignored. Thus [0 NaN NaN] is the same as x==0.



Element selectors EGID, E1tId, El1tName, MatId and ProId are interpreted as InElt selections.

Command option epsl walue can be used to give an evaluation tolerance for equality logical oper-
ators.

Different selectors can be chained using the following logical operations

e &, finds nodes that verify both conditions.
e |, finds nodes that verify one or both conditions.

e &~ finds nodes that verify the left condition and not the right condition (exclusion from
current selection state)

Condition combinations are always evaluated from left to right (parentheses are not accepted).

While the string format is typically more convenient for the user, the reference format for a node
selection is really a 4 column cell array :

{ Selector Operator Data
Logical Selector Operator Data

}

The first column gives the chaining between different rows, with Logical being either &, |, & , or
a bracket ( and ). The Selector is one of the accepted commands for node selection (or element
selection if within a bracket). The operator is a logical operator >, <, >=, <=, "= or ==. The data
contains numerical or string values that are used to evaluate the operator. Note that the meaning of
~= and == operators is slightly different from base MATLAB operators as they are meant to operate
on sets.

The |[feutil FindNodeStack command returns the associated cell array rather than the resulting
selection.
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7.12 Element selection

FindElt supports a number of element selection criteria that are used by many functions.
An element selection command is specified by giving a string command (for example ’GroupAll’)
to be applied on a model (nodes, elements, possibly alternate element set).

Basic commands are :

e [eltind,elt] = feutil(’findelt selector’,model);
or elt = feutil(’selelt selector’,model); this command applies the specified element
selection command to a model structure. For example,
[eltind,selelt] = feutil(’findelt eltname baril’,model) selects the elements in
model.E1lt which type is barl.

o [eltind,elt] = feutil(’findelt selector’,model);
this command applies the specified element selection command to the standard global matri-
ces FEnode, FEelt, FEelO, ... For example, [eltind,selelt] = feutil(’findelt eltname
barl’,model) selects the elements in FEelt which type is baril.

Output arguments are eltind the selected elements indices in the element description matrix and
selelt the selected elements.

Accepted selectors are



ConnectedTo <

EGID <
El1tId 2
EltInd <
EltName s

finds elements in a group that contains the nodes 7. This calls

[pivideInGroups|and thus only operates on groups of elements of a single type.

finds elements with element group identifier 7. Operators accepted.

finds elements with identifiers % in FEelt. Operators accepted.

finds elements with indices ¢ in FEelt. Operators accepted.

finds elements with element name s. E1tName flui will select all elements with
name starting with flui. EltName ~ = flui will select all elements with name
not starting with flui. Ome can select superelements from their name using
EltName SE:SEName. Selection of all elements but a single SE from its name is
obtained using EltName ~ = SE:SEName. Regular expressions on superelement
names are accepted, one then replaces token SEName by the prefix # followed by
the desired expression, e.g. EltName SE:#tgm#* to select all superlement whose
name starts with tgm.

Facing > cos z vy finds topologically 2-D elements whose normal projected on the direction from

z
Group %
InNode <
MatId <

Prold 2
WithNode <

Set 1

the element CG to z y 2z has a value superior to cos. Inequality operations are
accepted.

finds elements in group(s) 7. Operators accepted.

finds elements with all nodes in the set 2. Nodes numbers in % can be replaced
by a string between braces defining a [node selection command|l For example
feutil (’FindElt withnode {y>-230 & NodeId>1000}’,model).

finds elements with MatId equal to <. Relational operators are also accepted
(MatId =1:3, ...).

finds elements with ProId equal to 4. Operators accepted.

finds elements with at least one node in the set 4. < can be a list of node
numbers. Replacements for 7 are accepted as above.

finds elements in element set(s) based on the .ID field (see stack entries).
Elements belonging to any set of ID of value 7 will be selected.

297



7 Developer information

298

SetName s

WithoutNode 2

SelEdge type

SelFace type

finds elements in element set named s (see stack entries).

e By default an error is thrown if the set name does not exist in stack. Use
command SafeSetName to get empty results instead.

e By default no spaces in set names are allowed. For more complicated set-
names, place the name into double quotes: SetName "my set name with
spaces".

e Selection by exclusion is possible with token :exclude. FE.g. SetName
unused:exclude will return all elements excluding the elements present in
the set named unused.

e Alternative calls to more advanced sets based on connectivity are possible,

— SetName "name:con IdList" can be used to select a subset con-
nected to nodes in the IdList (assuming the .NodeCon field is de-
fined).

— SetName "name:subname" can be used to select a subset in the set
by connectivity format (see [set)).

finds elements without any of the nodes in the set 7. % can be a list of node
numbers. Replacements for 7 are accepted as above.

selects the external edges (lines) of the currently selected elements (any element
selected before the SelEdge selector), any further selector is applied on the model
resulting from the SelEdge command rather than on the original model. The
-A11 option skips the internal edge elimination step. It can be combined with
option -noUni to keep edge duplicates between elements.

Type g retains inter-group edges. m retains inter-material edges. Type p retains
inter-property edges. all retains all edges. The MatId for the resulting model
identifies the original properties of each side of the edge. The edge number is
stored in the column after E1tId.

selects the external faces (surfaces) of the currently selected elements. The face
number is stored in the column after E1tId to allow set generation. See more
details under SelEdge. The -All option skips the internal face elimination
step. Warning: the face number stored in the column after the E1tId column
interferes with the Theta property for shell elements (see [quad4lftria3d)). If the
selection output will be used as elements in a model, ensure that the Theta
property is properly set for your application, see p_shell setTheta]




SelFace -trim trims a surface selection to remove boundary elements that may overcome a

val sharp edge. The base application is thus to be able to select interior surfaces
with robustness regarding the surface edges in a volume, where it is classical to
end up with a layer of side elements. The sharp edges detection uses [feutilb
[SurfaceAsQuad|to whom the angle defined by val is passed. Sharp edge element
groups exclusively containing elements with nodes on the edge of the surface are
then removed from the selection.

Different selectors can be chained using the available logical operations

e & finds elements that verify both conditions.
e | finds elements that verify one or both conditions.

e &~ finds elements that verify the left condition and not the right condition (exclusion from
current selection state)

il=feutil (’FindEltGroup 1:3 & with node 1 8’,model) for example. Condition combinations
are always evaluated from left to right (parentheses are not accepted). Note that SelEdge and
SelFace selectors do not output elements of the mesh but new elements of respectively 1D or 2D
topology, so that some combinations may not be directly possible (e.g. if later combined to Group
selector).

Command option epsl walue can be used to give an evaluation tolerance for equality logical oper-
ators.

Numeric values to the command can be given as additional arguments. Thus the command above
could also have been written i1=feutil(’findelt group & withnode’,model,1:3,[1 8]).

7.13 Defining fields trough tables, expressions, ...

Finite element fields are used in four main formats

e [defl field at DOFs

o field at nodes of an element group can be built from a pro.MAP field which can
be an VectFromDir structure, a structure with fields .bas and .Eltld with E1tId=0 to define
material orientations.
info,EltOrient is an alternative to specify the orientation of all elements rather than asso-
ciate values for each property entry. The format is a structure with field .E1tId giving the
identifiers and .bas giving an orientation for each element in the format. To interpolate
constitutive properties as a function of temperature, ... see section .
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° field at integration points of an element group (can be built from a pro.gstate field).

e afield definition structure to be transformed to the other formats using a elem0(’VectFromDir’)
command as illustrated below.

The VectFromDir structure has fields

data.dir a cell array specifying the value of various fields. Each cell of data.dir can give
a constant value, a position dependent value defined by a string FcnName that is
evaluated using

fv(:,jDir)=eval (FcnName) or fv(:,jDir)=feval (FcnName,node) if the first fails.
Note that node corresponds to nodes of the model in the global coordinate system
and you can use the coordinates x,y,z for your evaluation.
data.lab cell array giving label for each field of an InfoAtNode or gstate structure.
data.DOF a vector defining the DOF associated with each .dir entry. The
transformation to a vector defined at model.DOF is done using
vect=elemO(’VectFromDirAtDof’ ,model,data,model.DOF).

For example

% Analytical expression for a displacement field

model=femesh(’testubeam’) ;

data=struct (’dir’,{{’ones(size(x))’,’y’, 1*x.73"}}, ...
’DOF’,[.01;.02;.03]1);

model .DOF=feutil (’GetDOF’ ,model) ;

def=elem0(’VectFromDirAtDof’ ,model,data,model.DOF)

% Orientation field at nodes

data=struct ("dir’,{{’x./sqrt(x. 2+y."2)’,’y./sqrt(x. 2+y."2)’,0}}, ...
Ylab’ {{’vix’,’viy’,’viz’ }});

pro=struct(’il’,1,’type’,’p_solid’,’MAP’,data);

model=stack_set(model, ’pro’,’WithMap’,pro);

Cl=fe_mknl (’init’,model) ; InfoAtNode=C1.GroupInfo{7}

feplot(model) ;fecom(’showMap’,’WithMap’) % display map

% Material field at node
sdtweb(’_eval’,’d_mesh.m#RVEConstitInterp’)
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7.14 Constraint and fixed boundary condition handling

7.14.1 Theory and basic example

links, FixDof, MPC entries, symmetry conditions, continuity constraints in CMS applications,
. all lead to problems of the form

[Ms® + Cs + K] {q(s)} = [b] {u(s)}
{y(s)} = [ {a(s)} (7.2)
[Cint] {q(s)} =0

The linear constraints [¢in] {g(s)} = 0 can be integrated into the problem using Lagrange multipliers
or constraint elimination. Elimination is done by building a basis T" for the kernel of the constraint
equations, that is such that
range([T]Nx(N—NC)) = ker([cint] y g« ) (7.3)

Solving problem

TTMTs? + TTCTs + TTKT| {gn(s)} = |T7b] {u(s)}

{y(s)} = [T {qr(s)}

is then strictly equivalent to solving (|7.2)).

(7.4)

The basis T is generated using [Case,NNode,model.DOF]=fe case(model,’gett’) where Case.T
gives the T basis and Case.DOF describes the active or master DOFs (associated with the columns
of T'), while model.DOF or the Case.mDOF field when it exists, describe the full list of DOFs.

The NoT command option controls the need to return matrices, loads, ... in the full of unconstrained
DOFs [M],{b} ... or constrained T* MT, TTb in [fe mknl| [fe Tload] ... .

For the two bay truss example, can be written as follows :

model = femesh(’test 2bay’);

model2=fe_case(model, ... % defines a new case
’FixDof’,’2-D motion’,[.03 .04 .05]’, ... % 2-D motion
’FixDof’,’Clamp edge’,[1 2]°); % clamp edge

Case=fe_case(’gett’,model) 7% Notice the size of T and

fe_c(Case.DOF) % display the list of active DOFs

model = fe_mknl (model)

% Now reassemble unconstrained matrices and verify the equality
% of projected matrices
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[m,k,mdof]=fe_mknl (model, ’NoT’);
norm(full (Case.T’*m*Case.T-model .K{1}))

norm(full(Case.T’*k*Case.T-model.K{2}))

To compute resultants associated with constraint forces further details are needed. One separates
active DOF ¢, which will be kept and slave DOF that will be eliminated ¢. so that the constraint is
given by

[ca ce]we{ o }=0 & |~(—cten) f]{ o }z[—G 1{q} =0 (7.5)

de e
The subspace with DOF's eliminated is spanned by
I I
_ | AN x(N-Ne) |
Tl nx(v=n) [ Gy (N, ] l e le, ] (7.6)

The problem that verifies constraints can also be written using Lagrange multipliers, which leads

to
-G
[Z(s)] [ ] g | _JF
I E (=) 0 (7.7)
-G I 0
The response can be computed using elimination (equation ([7.4)) and the forces needed to verify

the constraints (resultant forces) can be assumed to be point forces associated with the eliminated
DOF ¢, which leads to

Fo = [[Zeal()] + Zee(s) [G)] {a} — Fo = [TT Z(s)T | {qu} — TTF (78)

A common approximation is to ignore viscous and inertia terms in the resultant, that is assume
TIZ(s)T ~ TTKT.

7.14.2 Local coordinates

In the presence of local coordinate systems (non zero value of DID in node column 3), the Case.cGL
matrix built during the gett command, gives a local to global coordinate transformation

{dau,grovar} = [car] {qaiocar } (7.9)
Constraints (mpc, rigid, ...) are defined in local coordinates, that is they correspond to
{Qall,local} = [ﬂocal] {qmaster,local} (710)



with gmaster,iocal master DOFs (DOF's in Case.DOF) defined in the local coordinate system and the
Case.T corresponding to

{qgll,global} - [T] {Qmaster,local} - [CGL] [ﬂocal] {Qmaster,local} (711)
As a result, model matrices before constraint elimination (with NoT) are expected to be defined in
the global response system, while the projected matrix T7 M T are defined in local coordinates.

use local coordinate information for their definition. are defined in global coordinates
but allow definition of orientation through the element CID.

An example of rigid links in local coordinates can be found in se_gimbal (’ScriptCgl’).
7.14.3 Enforced displacement

For a DofSet entry, one defines the enforced motion in Case.TIn and associated DOFs in Case.DofIn.
The DOFs specified in Case.DofIn are then fixed in Case.T.

7.14.4 Resolution as MPC and penalization transformation

Whatever the constraint formulation it requires a transformation into an explicit multiple point
constraint during the resolution. This transformation is accessible for [RBE3| and [rigidkonstraints, a
cleaned resolution of constraints is also accessible using

e RBE3c provides the resolution for RBE3| constraints.
e RigidC provides the resolution for [rigidconstraints.

e MPCc provides the resolution for constraints.
The output is of the format struct with fields

e c the constraint matrix.
e DOF the DOF vector relative to the constraint.

e slave slave DOF indices in DOF.

Such format allows the user to transform a constraint into a penalization using the constraint matrix
as an observation matrix. One can indeed introduce for each constraint equation a force penalizing
its violation through a coefficient kc so that {f} = kc[c]y «n {4} yx1- This can be written by

penal
means of a symmetric stiffness matrix [kpena] v,y = ke (" 7] N.xN, [y« n added to the system
stiffness.
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% Transformation of a constraint into a penalty
% Generation of a screw model example
model=demosdt (’demoscrew layer 1 40 20 3 3 space .2 layer 2 40 20 4’);
% Model a screw connection with a RBE3 constraint
% see sdtweb fe_case.html#ConnectionScrew
ri=struct(’Origin’,[20 10 0],’axis’, [0 O 1],’radius’,3,
’planes’,[0 0 111 1 0;3 0 111 1 0; % [z0 type Prold zTol rTol]
5.2 01121 6; 7.2 0 112 1 6],
’MatProId’, [101 101],’rigid’, [Inf abs(’rigid’)],’NewNode’,0);
rl.planes(:,2)=1; % RBE3
mo2=fe_caseg(’ConnectionScrew’ ,model,’screwl’,rl);
% display the connection in feplot
cf=feplot(mo2) ;fecom(’colordatamat -alpha .1’);

% Replace RBE3 by a penalized coupling
% Get the constraint matrix
ri=fe_mpc(’rbe3c’,mo2, ’ screwl’);
% remove the RBE3 constraint
mo2=fe_case(mo2,’reset’);
% Generate the penalization stiffness with default kc
kc=sdtdef (’kcelas’);
SE=struct(°DOF’,r1.DOF,’0Opt’, [1;1],...

K2, {{feutilb(’tkt’,rl.c,kc*speye(length(rl.slave)))}});
% Instance the superelement in the model
mo2=fesuper (’seadd -unique 1 1 screwl’,mo2,SE,[1 11);

i Compute the system modes
def=fe_eig(cf.mdl, [5 20 1e3]);

7.14.5 Low level examples

A number of low level commands (feutil GetDof [FindNode] ...) and functions can be used
to operate similar manipulations to what GetT does, but things become rapidly complex.
For example

% Low level handling of constraints
femesh(’reset’); model = femesh(’test 2bay’);
[m,k,mdof]=fe_mknl (model)



il = femesh(’findnode x==0’);

adofl = fe_c(mdof,il,’dof’,1); % clamp edge
adof2 = fe_c(mdof,[.03 .04 .05]’,’dof’,1); % 2-D motion
adof = fe_c(mdof, [adofl;adof2],’dof’,2);

ind = fe_c(model.DOF,adof,’ind’);
mdof=mdof (ind) ; tmt=m(ind,ind); tkt=k(ind,ind);

Handling multiple point constraints (rigid links, ...) really requires to build a basis T for the
constraint kernel. For rigid links the obsolete function supports some constraint handling.
The following illustrates restitution of a constrained solution on all DOFs

% Example of a plate with a rigid edge
model=femesh(’testquad4 divide 10 10’);femesh(model)

% select the rigid edge and set its properties
femesh(’;selelt groupl & seledge & innode {x==0};addsel’);
femesh(’setgroup2 name rigid’);

FEelt (femesh(’findelt group2’),3)=123456;

FEelt (femesh(’findelt group2’),4)=0;

model=femesh;

% Assemble

model .DOF=feutil(’getdof’,model);% full list of DOFs

[tmt,tkt,mdof] = fe_mknl(model); % assemble constrained matrices
Case=fe_case(model,’gett’); % Obtain the transformation matrix

[mdl,f1]=fe_eig(tmt,tkt,[5 10 1e3]); % compute modes on master DOF

def=struct(’def’,Case.T*mdl, DOF’ ,model.DOF) 7 display on all DOFs
feplot(model,def); fecom(’;view3;ch7’)

7.15 Internal data structure reference

7.15.1 Element functions and C functionality
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Property tunction|:

fre‘t/ .1:])-05‘;' ) Element function : p-solid Resolve mate-
eutil,lemes nodes, face, [DOFY, ... rial constants Resolve

fe.case, femesh element integration rule

fe mknl init  re- Element function :

solves constitutive law [Element function :
DOF integ,constit, matrix building
Materials element constants

Element constants EltConst

of mk.c:

- of mk_subs.c MODULEF

- MatrixIntegration new el
ements

Element level
fe_mk

fe_mknl assemble

In OpenFEM, elements are defined by element functions. Element functions provide different pieces
of information like geometry, degrees of freedom, model matrices, ...

OpenFEM functions like the preprocessor the model assembler or the post-processor
call element functions for data about elements.

For example, in the assembly step, analyzes all the groups of elements. For each group, [fe_mk|
gets its element type (barl, hexa8, ...) and then calls the associated element function.

First of all, calls the element function to know what is the right call form to compute the
elementary matrices (eCall=elem0(’matcall’) or eCall=elem0O(’call’), see section for
details). eCall is a string. Generally, eCall is a call to the element function. Then for each
element, executes eCall in order to compute the elementary matrices.

This automated work asks for a likeness of the element functions, in particular for the calls and the
outputs of these functions. Next section gives information about element function writing.

7.15.2 Standard names in assembly routines



cEGI
def.def
EGID
elt
ElemF
ElemP

gstate
integ]

jE1t
jGroup

NNode

pointers

vector of element property row indices of the current element group (without the
group header)

real (double) valued constitutive information. The constit for each group is stored
in Case.GroupInfo{jGroup,4};.

vector of deformation at DOF's. This is used for non-linear, stress or energy compu-
tation calls that need displacement information.

Element Group Identifier of the current element group (different from jGroup if an
EGID is declared).

model description matrix. The element property row of the current element is given
by elt(cEGI(jElt),:) which should appear in the calling format eCall of your
element function.

name of element function or name of superelement

parent name (used by in particular to allow property inheritance)
real (double) valued element state information.

int32 valued constitutive information.

number of the current element in cEGI

number of the current element group (order in the element matrix).
[EGroup,nGroupl=getegroup(elt); finds the number of groups and group start
indices.

nodes of the current element. In the compiled functions, NodeId is stored in column
4, followed by the values at each node given in the The position of
known columns is identified by the InfoAtNode.lab labels (the associated integer
code is found with comstr(’lab’,-32)). Of particular interest are

e vix (first vector of material orientation, which is assumed to be followed by
vly,viz and for 3D orientation v2x,y,z), see stack entry info,E1tOrient

e v3x,v3y,v3z for normal maps

e T is used for temperature (stack entry info,RefTemp)

node identification reindexing vector. NNode(ID) gives the row index (in the node
matrix) of the nodes with identification numbers ID. You may use this to extract nodes
in the node matrix using something like node (NNode (elt (cEGI(jE1t),[1 21)),:)
which will extract the two nodes with numbers given in columns 1 and 2 of the current
element row (an error occurs if one of those nodes is not in node). This can be built
using NNode=sparse(node(:,1),1,1:size(node,1).

one column per element in the current group gives.
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7.15.3 Case.Grouplnfo cell array

The meaning of the columns of GroupInfo is as follows

DofPos Pointers Integ Constit gstate ElMap InfoAtNode EltConst

DofPos

pointers

int32 matrix whose columns give the DOF positions in the full matrix of the associ-
ated elements. Numbering is C style (starting at 0) and -1 is used to indicate a fixed
DOF.

int32 matrix whose columns describe information each element of the group. Pointers
has one column per element giving

[OutSizel OutSize2 u3 NdNRule MatDes IntegOffset ConstitOffset
StateOffset u9 ul0]

Outsizel size of element matrix (for elements issued from MODULEF), zero other-
wise.

MatDes type of desired output. See the section for a current list.
IntegOffset gives the starting index (first element is 0) of integer options for the
current element in

ConstitOffset gives the starting index (first element is 0) of real options for the
current element in constit.



integ

constit

gstate

ElMap

InfoAtNode

EltConst

int32 matrix storing integer values used to describe the element formulation of the
group. Meaning depends on the problem formulation and should be documented in
the property function BuildConstit for example).

The nominal content of an integ column (as return by the element integinfo call)
is

MatId,Prold,NDofPerElt,NNodePerElt,IntegRuleType

where [integrules|(ElemP,IntegRuleType) is supposed to return the appropriate
integration rule.

double matrix storing integer values used to describe the element formulation of the
group. Meaning depends on element family and should be documented in the element
property function BuildConstit for example).

a curve with field .Y describing the internal state of each element in the group. Typical
dimensions stress, integration points, elements so that .Y has size Nstrain x Nw X
NEIt. The labels in .X{1} can be used to find positions in the .Y matrix. The .X{2}
should contain the gauss point locations within the reference element. Automated
generation of initial states is discussed in section E .

Users are of course free to add any appropriate value for their own elements, a typical
application is the storage of internal variables. For an example of gstate initialization
see thermal.

the old format with a double matrix with one column per element is still supported
but will be phased out.

int32 element map matrix used to distinguish between internal and external element
DOF numbering (for example : hexa8 uses all z DOF, then all y ... as internal
numbering while the external numbering is done using all DOFs at node 1, then
node 2, ...). The element matrix in external sort is given by k_ext=ke(E1lMap).
EltConst.VectMap gives similar reordering information for vectors (loads, ...).

a structure with .NodePos (int32) with as many columns as elements in the group
giving column positions in a .data field. Each row in .data corresponds to a field
that should be described by a cell array of string in .lab used to identify fields in
assembly, see Initialization for a given element type is done the GroupInit
phase, which uses fields (see section ). Typical labels for orientation
are {’vix’,’vly’,’vlz’,’v2x’,’v2y’,’v2z’}

Obsolete format : double matrix whose rows describe information at element nodes
(as many columns as nodes in the model).

struct used to store element formulation information (integration rule, constitutive
matrix topology, etc.) Details on this data structure are given in section .

7.15.4 Element constants data structure
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The E1tConst data structure is used in most newer generation elements implemented in of mk.c.
It contains geometric and integration rule properties. The shape information is generated by calls

to [integrules| The formulation information is generated p_function const calls (see

p_heat] ...).

N
.Nr

.Ns
Nt

. NDN

.jdet
.bas
Nw
.Nnode
.X1i

.VectMap

.CTable
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nw x Nnode shape functions at integration points

nw X Nnode derivative of shape function with respect to the first reference coordinate
r

nw X Nnode derivative of shape function with respect to the second reference coor-
dinate s

nw X Nnode derivative of shape function with respect to the second reference coor-
dinate ¢

Nshape x nw(1 + Ndim) memory allocation to store the shape functions and their
derivatives with respect to physical coordinates [N N,x N,y N, z|. of mk currently
supports the following geometry rules 3 3D volume, 2 2D volume, 23 3D surface,
13 3D line (see BuildNDN for calling formats). Cylindrical and spherical
coordinates are not currently supported. In the case of rule 31 (hyperelastic elements),
the storage scheme is modified to be (1+ Ndim) x Nshape x nw which preserves data
locality better.

Nw memory allocation to store the determinant of the jacobian matrix at integration
points.

9 x Nw memory allocation to store local material basis. This is in particular used
for 3D surface rules where components 6:9 of each column give the normal.

number of integration points for output (inferior to size(EltConst.N,1) when dif-
ferent rules are used inside a single element)

number of nodes (equal to size (E1tConst.N,2)=size(EltConst.NDN,1))

Nnode x 3 reference vertex coordinates

index vector giving DOF positions in external sort. This is needed for RHS compu-
tations.

low level interpolation of constitutive relation based on field values.  Stor-
age as a double vector is given by [Ntables CurrentValues (Ntables x
7) tables] with CurrentValues giving [il xi si xstartpos Nx nodeEfield
constit(pos Matlab)]. Implementation is provided for to account for
temperature dependence, to generate interpolated properties.



7.16 Creating new elements (advanced tutorial)

In this section one describes the developments needed to integrate a new element function into
OpenFEM. First, general information about OpenFEM work is given. Then the writing of a new
element function is described. And at last, conventions which must be respected are given.

7.16.1 Generic compiled linear and non-linear elements

To improve the ease of development of new elements, OpenFEM now supports a new category of
generic element functions. Matrix assembly, stress and load assembly calls for these elements are
fully standardized to allow optimization and generation of new element without recompilation. All
the element specific information stored in the data structure.

Second generation volume elements are based on this principle and can be used as examples. These
elements also serve as the current basis for non-linear operations.

The adopted logic is to develop families of elements with different topologies. To implement a family,
one needs

e shape functions and integration rules. These are independent of the problem posed and grouped

systematically in

e topology, formatting, display, test, ... information for each element. This is the content of the
lelement function| (see hexa8, tetrad, ...) .

e a procedure to build the constit vectors from material data. This is nominally common to
all elements of a given family and is used in integinfo element call. For example

[p-solid/(’BuildConstit’).

e a procedure to determine constants based on current element information. This is nominally
common to all elements of a given family and is used in groupinit phase (see . The
GroupInit call is expected to generate an data structure, that will be stored in the
last column of Case .GroupInfol For example hexa8 constants which calls

[p-soIid|(’ConstSolid’).

e a procedure to build the element matrices, right hand sides, etc. based on existing informa-
tion. This is compiled in of mk MatrixIntegration and StressObserve commands. For
testing/development purposes is expected that for sdtdef (’diag’,12) an .m file implemen-
tation in elem0.m is called instead of the compiled version.

The following sections detail the principle for linear and non-linear elements.
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7.16.2 What is done in the element function

Most of the work in defining a generic element is done in the element property function (for initial-
izations) and the compile of mk function. You do still need to define the commands

e integinfo to specify what material property function will be called to build integ, constit

and elmap. For example, in hexa8, the code for this command command is

if comstr(Cam,’integinfo’)

%constit integ,elmap ID,pl,il
[out,outl,out2]= ...
p_solid("buildconstit’, [varargin{1};24;8],varargin{2},varargin{3});

input arguments passed from fe mknl are ID a unique pair of MatId and ProId in the current
element group. pl and il the material and element property fields in the model. Expected out-
puts are constit, integ and elmap, see Case.[GroupInfol Volume elements hexa8, gép,

are topology holders. They call p_solid BuildConstit which in turn calls as another prop-
erty function as coded in the type (column two of il coded with fe mat(’p_fun’,’SI’,1)).
When another property function is called, it is expected that constit(1:2)=[-1 TypeM] to
allow propagation of type information to parts of the code that will not analyze pl.

constants to specify what element property function will be called to initialize data
structure and possibly set the geometry type information in pointers(4,:). For example, in
hexa8, the code for this command is

elseif comstr(Cam,’constants’)
integ=varargin{2};constit=varargin{3};
if nargin>3; [out,idim]=p_solid(’const’,’hexa8’,integ,constit);
else; p_solid(’constsolid’,’hexa8’,[1 1 24 8],[]);return;
end
outl=varargin{1};out1(4,:)=idim; % Tell of mk(’MatrixInt’) this is IDIM

input arguments passed from fe mknl are pointers,integ,constit the output arguments
are E1tConst and a modified pointers where row 4 is modified to specify a 3D underlying
geometry.

If constit(1:2)=[-1 TypeM] p_solid calls the appropriate property function.

For elements that have an internal orientation (shells, beams, etc.) it is expected that orienta-
tion maps are built during this command (see beamlt, ...). Note, that the >info’,’EltOrient’
stack entry can also be used for that purpose.



p-fcn

e standard topology information (commands node, dof, prop, line, patch, face, edge, parent)
see section [£.16.6].

hexa8 provides a clean example of what needs to be done here.

7.16.3 What is done in the property function

Commands specific to p_* are associated to the implementation of a particular physical formulation
for all topologies.

BuidConstit

As shown in section and detailed under the FEM initialization phase needs to resolve

e constitutive law information from model constants (elem0 integinfo|call to the element func-
tions, which for all topology holder elements is forwarded to p_solid BuildConstit)

e and to fill-in integration constants and other initial state information (using groupinit to
generate the call and constant build the data).

Many aspects of a finite element formulation are independent of the supporting topology. Element
property functions are thus expected to deal with topology independent aspects of element constant
building for a given family of elements.

Thus the element integinfo call usually just transmits arguments to a property function that does

most of the work. That means defining the contents of [integ| and [constit| columns. For example

for an acoustic fluid, constit columns generated by [p_solid|BuildConstit contain {% n l}.
pC p

Generic elements ...) all call p solid BuildConstit. Depending on the property type
coded in column 2 of the current material, p_solid attempts to call the associated m_mat function
with a BuildConstit command. If that fails, an attempt to call p-mat is made (this allows to define
a new family of elements trough a single p_fcn p_heat is such an example).

nominally contains MatId,Prold,NDofPerElt,NNodePerElt,IntegRuleNumber.

313



7 Developer information

* fen

314

Const

Similarly, element constant generation of elements that support variable integration rules is per-
formed for an element family. For example, const supports for 3D elastic solids, for 2D
elastic solids and 3D acoustic fluid volumes. p heat supports 2D and 3D element constant building
for the heat equation.

Generic elements (hexa| ...) all use the call

[EltConst ,NDNDim] = p_solid(’Const’,ElemF, integ, constit).

User extendibility requires that the user be able to bypass the normal operation of p_solid const.
This can be achieved by setting constit(1)=-1 and coding a property type in the second value (for
example constit (1)=fe mat(’p_heat’,’SI’,1). The proper function is then called with the same

arguments as

Expected commands common to both p_* and m_* functions are the following

Subtype
With no argument returns a cell array of strings associated with each subtype (maximum is 9). With
a string input, it returns the numeric value of the subtype. With a numeric input, returns the string
value of the subtype. See for the reference implementation.

database
Returns a structure with reference materials or properties of this type. Additional strings can be
used to give the user more freedom to build properties.

dbval
Mostly the same as database but replaces or appends rows in model.il (for element properties) or
model.pl (for material properties).

PropertyUnitType

il=p_function(’PropertyUnitType’,SubType) returns for each subtype the units of each value in
the property row (column of pl).

This mechanism is used to automate unit conversions in [fe_mat Convertl




[list,repeat]=p_function(’PropertyUnitTypeCell’,SubType) returns a cell array describing
the content of each column, the units and possibly a longer description of the variable. When
properties can be repeated a variable number of times, use the repeat (example in for
composites). This mechanism is used to generate graphical editors for properties.

Cell arrays describing each subtype give

e a label. This should be always the same to allow name based manipulations and should not
contain any character that cannot be used in field names.

e a conversion value. Lists of units are given using fe mat (’ convertSITM’). If the unit is within
that list, the conversion value is the row number. If the unit is the ratio of two units in the
list this is obtained using a non integer conversion value. Thus 9.004 corresponds to kg/m (9
is kg and 4 is m).

e a string describing the unit

7.16.4 Compiled element families in of_mk

of mk is the C function used to handle all compiled element level computations. Integration rules
and shape derivatives are also supported as detailed in [BuildNDN|

Generic multi-physic linear elements

This element family supports a fairly general definition of linear multi-physic elements whose element
integration strategy is fully described by an EltConst data structure. hexa8 and p_solid serve
as a prototype element function. Element matrix and load computations are implemented in the
of mk.c MatrixIntegration command with StrategyType=1, stress computations in the of mk.c
StressObserve command.

EltConst=hexa8(’constants’,[],[1 1 24 8],[1);
integrules(’texstrain’ ,EltConst)
EltConst=integrules(’stressrule’ ,E1tConst) ;
integrules(’texstress’ ,EltConst)

Elements of this family are standard element functions (see section ) and the element functions
must thus return node, prop, dof, line, patch, edge, face, and parent values. The specificity is
that all information needed to integrate the element is stored in an E1tConst data structure that is
initialized during the fe mknl GroupInit phase.

315



7 Developer information

316

For DOF definitions, the family uses an internal DOF sort where each field is given at all nodes
sequentially 1x2x...8z1y...8y... while the more classical sort by node 1lzly...2x... is still used for
external access (internal and external DOF sorting are discussed in section [7.16.6| ).

Each linear element matrix type is represented in the form of a sum over a set of integration points

B = 33 [{Bii} Dy ju(w(iw)) (B} | J(w(w) W ((jw)) (7.12)
Ji.43 Jw
where the jacobian of the transformation from physical xyz to element rst coordinates is stored in
EltConst.jdet (jw) and the weighting associated with the integration rule is stored in

EltConst.w(jw,4).

The relation between the Case.GroupInfo constit columns and the D;; constitutive law matrix is
defined by the cell array E1tConst.ConstitTopology entries. For example, the strain energy of a
acoustic pressure formulation (p_solid|ConstFluid) is given by

constit(:,j1)=[1/rho/C2; eta ; 1/rho]

The integration rule for a given element is thus characterized by the strain observation matrix
Biji(r, s,t) which relates a given strain component €j; and the nodal displacements. The generic
linear element family assumes that the generalized strain components are linear functions of the
shape functions and their derivatives in euclidian coordinates (zyz rather than rst).

The first step of the element matrix evaluation is the evaluation of the E1tConst .NDN matrix whose
first Nw columns store shape functions, Nw next their derivatives with respect to x, then y and z
for 3D elements

[NDN] Nnodex Nuw(Ndims+1) = [[N(r,s,t)] F;JZ} Fgg\/[] [%]ZH (7.13)

To improve speed the E1tConst.NDN and associated EltConst.jdet fields are preallocated and
reused for the assembly of element groups.

For each strain vector type, one defines an int32 matrix

EltConst.StrainDefinition{jType} with each row describing row, NDNBloc, DOF, NwStart,
NwTot giving the strain component number (these can be repeated since a given strain component
can combine more than one field), the block column in NDN (block 1 is N, 4 is IN/0z, a nega-



tive number can be used to specify —N, ...), the field number, and the starting integration point
associated with this strain component and the number of integration points needed to assemble the
matrix. The default for NwStart NwTot is 1, Nw but this formalism allows for differentiation of the
integration strategies for various fields. The figure below illustrates this construction for classical
mechanical strains.

EltConst.StrainDefinition{1} = [1 2 1 1 8
€x "Nz 0 o0 1 B 2 Z g 1 :
€y 0 va 0 — e D
€z _ 0 0 N, z v //// tasile
"yyz O N bl z N 9 y w ///// 5 4 1 1 8
e | [Nz 0 N saiie
" Sy ’ 6 3118
p 6 22 18]

ON7 [ON] [ON 8

[NDN]NnodeXNw(Ndims+1) = |:[N(7’, S, t)] |:a$:| |:ay:| |:82’:|:| Z
Jw=1

To help you check the validity of a given rule, you should fill the

EltConst.Strainlabels{jType} and EltConst.DofLabels fields and use the
integrules( ’texstrain’, EltConst) command to generate a LATEX printout of the rule you
just generated.

The .StrainDefinition and .ConstitTopology information is combined automatically in[integrules]|
to generate .MatrixIntegration (integrules MatrixRule command) and .StressRule fields
(integrules StressRule command). These tables once filed properly allow an automated inte-
gration of the element level matrix and stress computations in OpenFEM.

Phases in of_mk.c matrix integration

The core of element computations is the matrixintegration command that computes and assembles
a group of elements.

After a number of inits, one enters the loop over elements.

The nodeE matrix, containing field at element nodes, is filled with information at the element nodes
as columns. The first 3 columns are positions. Column 4 is reserved for node numbers in case
a callback to MATLAB makes use of the information. The following columns are based on the
structure whos indexing strategy is compatible with both continuous and discontinuous
fields at each node. See sdtweb elemO(’get nodeE’) for details.
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Initialization of InfoAtNode is performed with [fe mknl|(’Init -gstate’) calls. The m elastic
AtNodeGState command is an illustration of init used to interpolate material properties in volume
elements.

The defe vector/matrix contains the values at the current element DOF of the provided deforma-
tion(s).

Generic RHS computations

Right hand side (load) computations can either be performed once (fixed set of loads) through
fe load which deals with multiple loads, or during an iterative process where a single RHS is
assembled by into the second column of the state argument dc.def (:,2) along with the
matrices when requiring the stiffness with MatDes=1 or MatDes=5 (in the second case, the forces are
assumed following if implemented).

There are many classical forms of RHS, one thus lists here forms that are implemented in of mk.c
MatrixIntegration. Computations of these rules, requires that the E1tConst|.VectMap field by
defined. Each row of E1tConst.RhsDefinition specifies the procedure to be used for integration.

Two main strategies are supported where the fields needed for the integration of loads are stored
either as columns of dc.def (for fields that can defined on DOF's of the model) or as columns.

Currently the only accepted format for rows of E1tConst.RhsDefinition is

101(1) InfoAtNodel(2) InStep(3) NDNOff1(4) FDof1(5) NDNCol(6)
NormalComp(7) w1(8) nwStep(9)

Where InfoAtNodel gives the first row index in storing the field to be integrated in InfoAtNode.
InStep gives the index step (3 for a 3 dimensional vector field), NDNOff1 gives the block offset in
the NDN matrix (zero for the nominal shape function). FDof1 gives the offset in force DOF's for the
current integration. NDNCol. If larger than -1, the normal component NormalComp designs a row
number in E1tConst.bas, which is used as a weighting coefficient. tt wl gives the index of the first
gauss point to be used (in C order starting at 0). nwStep gives the number of gauss points in the
rule being used.

e volume forces not proportional to density

/QO fo(x).du(e) = {Fo}y = > ({NkGw)HN;(Gw)} fo(@7)) TGu)W () (7.14)

Jw
are thus described by

opt.RhsDefinition=int32(



[101 0 3 0 00 -1 rule+[-1 0];
101 1 30 10 -1 rule+[-1 0];
101 230 20 -1 rule+[-1 011);

for 3D solids (see [p_solid)).

Similarly, normal pressure is integrated as 3 volume forces over 3D surface elements with
normal component weighting

Fu = o, P (2)-do(z) r.15)
= ij ({Nk(]w)} {NJ(]w)}p(x])nm) J(]w)W(]w) '
e inertia forces (volume forces proportional to density)
F= /Q o) fu(a) () (7.16)

e stress forces (will be documented later)

Large transformation linear elasticity

Elastic3DNL fully anisotropic elastic elements in geometrically non-linear mechanics problems. Ele-
ment matrix are implemented in the of mk.c MatrixIntegration command with StrategyType=2
for the linear tangent matrix (MatType=5). Other computations are performed using generic ele-
ments (section) (mass MatType=2). This formulation family has been tested for the prediction
of vibration responses under static pre-load.

Stress post-processing is implemented using the underlying linear element.

Hyperelasticity

Simultaneous element matrix and right hand side computations are implemented in the of mk.c
MatrixIntegration command with StrategyType=3 for the linear tangent matrix (MatType=5). In
this case (and only this case!!), the E1tConst .NDN matrix is built as follow:

for 1 < jw < Nw

[NDN](Ndims+1)x Nnode(Nw) = [[NDN]N} (7.17)
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with

[NDNJ?¥

(Ndims+1)x Nnode (718)

This implementation corresponds to case 31 of NDNSwitch function in of mk_pre.c. The purpose
is to use C-BLAS functions in element matrix and right hand side computations implemented in the
same file (function Mecha3DintegH) to improve speed.

Other computations are performed using generic elements (section [7.16.4] ) (mass MatType=2). This
formulation family has been tested for the RivlinCube test.

Stress post-processing is not yet implemented for hyperelastic media.
7.16.5 Non-linear iterations, what is done in of mk
Non linear problems are characterized by the need to perform iterations with multiple assemblies

of matrices and right hand sides (RHS). To optimize the performance, the nominal strategy for
non-linear operations is to

e perform an initialization (standard [of mkh1 init call)

e define a[deformation data structure]dc with two columns giving respectively the current state
and the non linear RHS.

At a given iteration, one resets the RHS and performs a single fe mknl call that returns the current
non-linear matrix and replaces the RHS by its current value (note that fe mknl actually modifies the
input argument dc which is not an normal MATLAB behavior but is needed here for performance)

% at init allocate DC structure

dc=struct (°DOF’ ,model.DOF, ’def’ ,zeros(length(model .DOF),2);

% ... some NL iteration mechanism here

dc.def(:,2)=0; % reset RHS at each iteration

k=fe_mknl (’assemble not’,model,Case,dc,5); 7 assemble K and RHS

Most of the work for generic elements is done within the of mk MatrixIntegration command that
is called by Each call to the command performs matrix and RHS assembly for a full group
of elements. Three strategies are currently implemented

e Linear multiphysics elements of arbitrary forms, see section



e Elastic3DNL general elastic elements for large transformation, see section [7.16.4]

e Hyperelastic elements for large transformation problems. see section . These elements
have been tested through the RivlinCube example.

7.16.6 Element function command reference

Nominally you should write topology independent element families, if hard coding is needed you can
however develop new element functions.

In Matlab version, a typical element function is an .m or .mex file that is in your MATLAB path. In
Scilab version, a typical element function is an .sci or .mex file that is loaded into Scilab memory
(see getf in Scilab on-line help).

The name of the function/file corresponds to the name of the element (thus the element is
implemented through the bari.m file)

General element information

To build a new element take g4p.m or g4p.sci as an example.

As for all Matlab or Scilab functions, the header is composed of a function syntax declaration and a
help section. The following example is written for Matlab. For Scilab version, don’t forget to replace
% by //. In this example, the name of the created element is elemO.

For element functions the nominal format is

function [out,outl,out2]=elem0(CAM,varargin);
%elem0 help section

The element function should then contain a section for standard calls which let other functions know
how the element behaves.

if isstr(CAM) Ystandard calls with a string command

[CAM,Cam]=comstr (CAM,1); % remove blanks

if comstr(Cam,’integinfo’)

% some code needed here

out= constit; % real parameter describing the constitutive law
outl=integ; % integer (int32) parameters for the element
out2=elmap;
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elseif comstr(Cam,’matcall’)
out=elem0(’call’);
outl=1; 7 SymFlag

elseif comstr(Cam,’call’); out = [’AssemblyCall’];

elseif comstr(Cam,’rhscall’); out = [’RightHandSideCall’];
elseif comstr(Cam,’scall’); out = [’StressComputationCall’];
elseif comstr(Cam,’node’); out = [NodeIndices];

elseif comstr(Cam, ’prop’); out = [PropertyIndices];

elseif comstr(Cam,’dof’); out = [ GenericDOF ];

elseif comstr(Cam,’patch’);
out = [ GenericPatchMatrixForPlotting ];

elseif comstr(Cam,’edge’); out = [ GenericEdgeMatrix ];
elseif comstr(Cam,’face’); out = [ GenericFaceMatrix ];
elseif comstr(Cam,’sci_face’); out = [ SciFaceMatrix ];

elseif comstr(Cam,’parent’); out [’ParentName’];
elseif comstr(Cam,’test’)

% typically one will place here a series of basic tests
end
return

end % of standard calls with string command
The expected outputs to these calls are detailed below.

call,matcall

Format string for element matrix computation call. Element functions must be able to give
the proper format to call them (note that superelements take precedence over element functions with
the same name, so avoid calling a superelement etc.).

matcall is similar to call but used by fe mknl. Some elements directly call the of mk mex function
thus avoiding significant loss of time in the element function. If your element is not directly supported
by fe_mknl use matcall=elem0O(’call’).

The format of the call is left to the user and determined by by executing the command
eCall=elem0(’call’). The default for the string eCall should be (see any of the existing element
functions for an example)

[k1,ml1]=elem0(nodeE,elt (cEGI(jE1t),:),...
pointers(:, jElt),integ,constit,elmap);



To define other proper calling formats, you need to use the names of a number of variables that are
internal to variables used as output arguments of element functions are

ki element matrix (must always be returned, for opt (1)==0 it should be the stiffness,
otherwise it is expected to be the type of matrix given by opt (1))
ml element mass matrix (optional, returned for opt (1)==0, see below)

[ElemF,opt,ElemP]=

zrfeutil (’getelemf’,elt (EGroup(jGroup),:),jGroup)

returns, for a given header row, the element function name ElemF, options opt, and parent name
ElemP.

and fe mknl variables that can be used as input arguments to element function are listed in
section [(.15.2] .

dof, dofcall

Generic DOF definition vector. For user defined elements, the vector returned by elemO(’dof’)
follows the usual DOF definition vector format (NodeId.DofId or -1.DofId) but is generic in the
sense that node numbers indicate positions in the element row (rather than actual node numbers)
and -1 replaces the element identifier (if applicable).

For example the element uses the 3 translations at 2 nodes whose number are given in position
1 and 2 of the element row. The generic DOF definition vector is thus
[1.01;1.02;1.03;2.01;2.01;2.03].

A dofcall command may be defined to bypass generic dof calls. In particular, this is used to
implement elements where the number of DOFs depends on the |element propertiess The com-
mand should always return out=elem0(’dofcall’);. The actual DOF building call is performed
in p_solid(’BuildDof’) which will call user p_*.m functions if needed.

Elements may use different DOF sorting for their internal computations.

edge,face,patch,line,sci_face

face is a matrix where each row describes the positions in the element row of nodes of the oriented

face of a volume (conventions for the orientation are described under |[integrules|). If some faces
have fewer nodes, the last node should be repeated as needed. [feutil] can consider face sets with
orientation conventions from other software.
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edge is a matrix where each row describes the node positions of the oriented edge of a volume or a
surface. If some edges have fewer nodes, the last node should be repeated as needed.

line (obsolete) is a vector describes the way the element will be displayed in the line mode (wire
frame). The vector is generic in the sense that node numbers represent positions in the element row
rather than actual node numbers. Zeros can be used to create a discontinuous line. line is now
typically generated using information provided by patch.

patch. In MATLAB version, surface representations of elements are based on the use of MATLAB
patch objects. Each row of the generic patch matrix gives the indices nodes. These are generic in the
sense that node numbers represent positions in the element row rather than actual node numbers.

For example the solid element has four nodes in positions 1:4. Its generic patch matrix is [1
2 3;2 3 4;3 4 1;4 1 2]. Note that you should not skip nodes but simply repeat some of them if
various faces have different node counts.

sci_face is the equivalent of patch for use in the SCILAB implementation of OpenFEM. The
difference between patch and sci_face is that, in SCILAB, a face must be described with 3 or 4
nodes. That means that, for a two nodes element, the last node must be repeated (in generality,
sci_face = [1 2 2];). For a more than 4 nodes per face element, faces must be cut in subfaces.
The most important thing is to not create new nodes by the cutting of a face and to use all nodes.
For example, 9 nodes quadrilateral can be cut as follows :

1 # 4 1 # 4
(T = 1) T T+ 1)
RN D4 7 - 3 (] e 1 7
& Z % , & % <

Figure 7.1: Lower order patch representation of a 9 node quadrilateral

but a 8 nodes quadrilaterals cannot by cut by this way. It can be cut as follows:



1 # 4 1 # 4
iy = 1) i 3 1)
3 7 —= 5 h o7
& % 2 , & = <

Figure 7.2: Lower order patch representation of a 8 node quadrilateral

integinfo, BuildConstit

integinfo, BuildConstit are commands to resolve constants in elements and p_function respec-
tively.

[constit,integ,elmapl=elem0(’integinfo’, [MatId ProId],pl,il,model,Case) issupposed to
search pl and il for rows corresponding to MatId and ProId and return a real vector de-
scribing the element constitutive law and an integer vector

is used to build the full matrix of an element which initially only gives it lower or upper
triangular part. If a structure is return, can do some group wise processing (typically
initialization of internal states).

In most elements, one uses
[constit,integ,elmapl=p solid(’buildconstit’, [varargin{1};Ndof;Nnodel],varargin{2:end})
since passes calls to other element property functions when needed.

elmap can also be used to pass structures and callbacks back to fe mknl.

node

Vector of indices giving the position of nodes numbers in the element row. In general this vector
should be [1:n] where n is the number of nodes used by the element.

prop
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Vector of indices giving the position of MatId, ProId and E1tId in the element row. In general this
vector should be n+[1 2 3] where n is the number of nodes used by the element. If the element
does not use any of these identifiers the index value should be zero (but this is poor practice).

parent

Parent element name. If your element is similar to a standard element (beaml| [tria3| |[quad4] |hexa8]
etc.), declaring a parent allows the inheritance of properties. In particular you will be able to use

functions, such as or parts of which only recognize standard elements.

rhscall

rhscall is a string that will be evaluated by When computing right hand side loads (volume
and surface loads). Like call or matcall, the format of the call is determined by by
executing the command eCall=elem0(’call’). The default for the string eCall should be :

be=elemO(nodeE,elt (cEGI(jElt),:),pointers(:,jElt),...
integ,constit,elmap,estate);

The output argument be is the right hand side load. The inputs arguments are the same as those
for matcall and call.

Matrix, load and stress computations

The calls with one input are followed by a section on element matrix assembly. For these calls the
element function is expected to return an element DOF definition vector idof and an element matrix
k. The type of this matrix is given in opt (1). If opt (1)==0, both a stiffness k and a mass matrix m
should be returned. See the MatType section for a current list.

Take a look at which is a very simple example of element function.

A typical element assembly section is as follows :

% elem0 matrix assembly section

% figure out what the input arguments are
node=CAM;  elt=varargin{1};
point=varargin{2}; integ=varargin{3};
constit=varargin{4}; elmap=varargin{5};
typ=point (5);



% outputs are [k,m] for opt(1l)==

yA [mat] for other opt(1l)
switch point(5)
case 0

[out,outl] = ... % place stiffness in out and mass in outl
case 1

out= ... 7 compute stiffness
case 2

out= ... 7 compute mass
case 100

out= ... 7% compute right hand side
case 200

out= ... % compute stress
otherwise

error (’Not a supported matrix type’);
end

Distributed load computations (surface and volume) are handled by Stress computations
are handled by

There is currently no automated mechanism to allow users to integrate such computations for their
own elements without modifying [fe_load| and |[fe_stress| but this will appear later since it is an
obvious maintenance requirement.

The mechanism that will be used will be similar to that used for matrix assembly. The element
function will be required to provide calling formats when called with elem0(’fsurf’) for surface
loads, elem0(’fvol’) for volume loads, and

elem0(’stress’) for stresses. [fe_load|land|[fe_stress|will then evaluate these calls for each element.

7.17 Variable names and programming rules (syntax)

The following rules are used in programming SDT and OpenFEM as it makes reading the source
code easier.

All SDT functions are segmented and tagged so that the function structure is clearly identified. Its
tree structure can be displayed and browsable through the [sdtweb taglist|interface. You should
produce code compatible with this browser including tags (string beginning by # in a comment), in
particular at each command of your function.
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In addition, input parsing section [7.17.3] and some utilities for directory handling section [7.17.4
, post-treatment display section [7.17.4] and figure formatting/capturing section |7.17.4] have been
standardized.

7.17.1 Variable naming conventions

Standardized variable names are

carg index of current argument. For functions with variable number of inputs, one
seeks the next argument with NewArg=varargin{carg};carg=carg+1;

CAM, Cam string command to be interpreted. Cam is the lower case version of CAM.

j1,32,33 ... loop indices.

jGroup, jE1t,jW indices for element groups, elements, integration points. For code samples use
help(’getegroup’)

i,j unit imaginary v/—1. i, j should never be used as indices to avoid any problem
overloading their default value.

i1,i2,13 ... integer values intermediate variables

rl,r2,r3 .. real valued variables or structures

ind,in2,in3 ... vectors of indices, cind is used to store the complement of ind when applicable.

out,outl,out2 ... output variables.

The following names are also used throughout the toolbox functions
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model, mol, mo2 SDT model structures.

node,FEnode, nl, nodes, FEnode is reserved as a global variable.

n2 ...

elt, FEelt, ell, elements, FEelt is reserved as a global variable.

el2 ...

EGroup, nGroup starting index of each group and number of groups in an element structure, see
help(’getegroup’).

cEGI index of elements for a given group in an element structure, see
help(’getegroup’).

NNode reindexing vector, verifies NodeInd=NNode(NodeId). Can be built using
NNode=sparse(node(:,1),1,1:size(node,1)).

nd reindexing object for DOF, verifies DofPos=feval (nd.getPosFcn,nd,DOF). Is
built using nd=feval (fe mknl (’@getPosFromNd’), [],DOF) ;

RunOpt run options, a structure used to store options that are used in a command. RO
can also be used.

adof current active DOF vector.

cf pointer to a figure.

gf, uf, ga, ua, respectively handle and userdata to a figure, handle and userdata to an axis,
go, uo handle and userdata to a graphics subobject.
gc, evt respectively active object and associated event in Java triggered callbacks.

7.17.2 Coding style
The coding styles convention are detailed in the example below.
e Tags for taglist are marked with the # token, not to interfere with pragma tokens, ensure that

it is not directly following a %, but leave at least one space.

— The tag level can be specified by placing -i at the end of the line, i being the level. If
not each tag is assumed to be level 1. Tags with lines finishing by - - - or after the
#SubFunc tag are assumed level 2.

— By default, the taglist will concatenate consecutive tags with the same starting letters,
the subsequent tags will thus be shifted.

e Code sections are usually delimited using the cell display %%.
e The first input argument should be a string whose parsing will determine the command to

execute and associated command options.
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e An error should be returned if the command is unknown.

e Access from the outside to subfunction handles should be made possible through a call
suf=my_func (’@my_sub_fun’).

e Subversion tags should be present to allow easy administration using cvs or svn, in a unique
command cvs, that will output a string containing the cvs or svn tags.

function [out,outl,out2,out3]=my_func(varargin);

% Here you should place your help
% SDT functions always use varargin for input and [out,outl, ...] for
% output.

% ask MATLAB to avoid some warnings the in the editor MLint
J#ok<*NASGU, *ASGLU, *CTCH, *TRYNC , *NOSEM>

% Get the command in varargin{l} and strip front/end blanks with comstr
% CAM is as input, Cam is lower case.
[CAM,Cam]=comstr (varargin{1},1);carg=2;

%% #Top : main level command Top -—-—-—-————————————————————————

% the %) is to use Matlab cell, while #Top is a sdtweb _taglist tag

% by default tags are set to level 1

% Now test that Cam starts by ’top’ and then strip 3 characters and trim (+1)
if comstr(Cam,’top’); [CAM,Cam]=comstr (CAM,4) ;

if comstr(Cam, ’manual’)

%% #TopLevel2 : subcommand level 2 - - - - - - - - - - 2

% - - - tells sdtweb this is a level 2 tag

% if sufficies to end the line with -2 in practice

% any other level can be used by adding a higher number at the end of the tag line

% recover other inputs

ri=varargin{carg}; carg=carg+l; J get input and increment counter
% get optionnal input arguments

if carg<=nargin; r2=carargin{carg}; carg=carg+l; else; r2=[]; end

hoo..
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%% #TopEnd -2

else; error(’Topls unknown’,CAM);

end

%% #End : typical commands placed at end of function
elseif comstr(Cam,’@’) ;out=eval (CAM);

elseif comstr(Cam,’cvs’)

out=’$Revision: 1.17 $ $Date: 2019/02/15 17:37:30 $’;
else; error(’my_func %s unknown’,CAM);

end

%% #SubFunc : indicates start of subfunctions to taglist parsing
%k #my_sub_fun - - ———————m—mm
function out=my_sub_fun(varargin)

7.17.3 Input parsing conventions

Passing command options is a critical feature to enable little behavior alteration as function of the
user needs although most of the functionality is the same. This allows in particular limiting code
duplication.

From the input CAM variable, command option parsing utilities have been defined and standardized.
The goal is to build a run option structure from the input command string while keeping the
possibility to provide it as an extra argument.

The command parsing code is then

% Usual run options handling

% first possible to recover in extra input

if carg>narginl| |~ isstruct(varargin{carg});RO=struct;

else;R0O=varargin{carg};carg=carg+1;

end

% then parse CAM for command options,

% and assign default values to unspecified options

% values declared prior to the paramedit call are not overriden
[RO,st,CAM]=cingui (’paramedit -DoClean’,[ ...
’param(val#l,g#"Description")’ .
>token (#3#"token modes does...")’
’-parS("string"#%s#"parS modes available...")’
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1,{R0,CAM}); Cam=lower (CAM);

The paramEdit call from cingui performs standard operations for each token in the second input
string of the command. Each token follows the format token(val#typ#"info"), and will generate a
case sensitive field token in the structure RO. val is a default value that is applied if the field token
is missing before the call. info is a string providing information on the token effect. typ tells the
type of input that should be parsed after the token, with the following rules:

e 3 Only checks for the presence of token in the command without any other value. Sets field
token to 1(double) if found, 0(as double) if not. val must remain empty. e.g. Top token, will
set RO.token=1.

e 31 Behaves as type 3 but also checks for an optional integer input. Sets field token to 1(double)
if found, O(as double) if not, or to the found integer if found. val must remain empty. e.g.
Top token 2 will set RO.token=2, and Top token will set RO.token=1.

e g Checks for token followed by a float. If found RO.token is set to the float, if no float is
found the field is left empty. If the token is not found, the default value val is set. e.g. Top
token 3.14 will set RO.token=3.14.

e i Checks for token followed by an integer. If found RO.token is set to the integer, if no integer
is found the field is left empty. If the token is not found, the default value val is set. e.g. Top
token 31 will set RO.token=31.

e /s Checks for token followed by a string (delimited by two "). If found RO.token is set to the
string, if no string is found the field is left empty. If the token is not found, the default value
val is set. e.g. Top token"test" will set RO.token="test’. Note that for this type if val is
not empty one defines the token as token("val"#%s#"info"), but if val is empty, one should
use token (#%s#"info").

The output CAM has been stripped from any parsed data.

The format -token(val#typ#"info") will require the presence of ~token in the command to gen-
erate the token field in RO.

By convention, to handle interferences between the extra input argument RO and default values
overriding, any field present in RO prior to calling paramEdit will be left unchanged by the command.

7.17.4 Commands associated to project application functions



The development of project application functions follow some must have such as project directory
handling section , post-treatment handling section [7.17.4] , image capture generation sec-
tion . Some of these steps have been standardized over the years, which are documented in
the present sections.

wd,fname

The files relative to a specific application are usually stored in a specific file arborescence. It is thus
useful to access standardly defined save directories in a robust manner, regardless of the operating
system or the user. Standard applications developed by SDTools usually involve a user defined root
directory from which the following subdirectories are defined

e m contains the project source code.
e tex contains the project documentation source code.

mat contains reference data files.

e plots contains the image captures.

doc contains other project support documentation.

Each of these directories may contain any further arborescence to class data as desired.

To allow efficient recovery of a specific subdirectory or file in the final project file architecture,

provides commands in its utilities (see [sdtweb Utils|) that should be used by the main

project function to search the project architecture subdirectories.

The wd command should package a search in its known subdirectories.

Dote HWA —————mmmmmmmmmm e
elseif comstr(Cam,’wd’)

if nargin==1 J, output the possible root directories

% assume this function is stored in root/m
out=fileparts(which(’my_func’));

% possibly add specific root dirs outside the project
% should be better handled with a preference
wd2={’/p/my_files’}; % add as many as needed

out=[out wd2];

else 7, get the subdirectory searched
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wdl=varargin{carg}; carg=carg+l;

% get the project root directory (several ones admitted)
wdO=my_func(’wd’) ;

% find the subdirectory

out=sdtweb(’_wd’,wd0,wd1) ;

end

The fname command should package a file search in the known subdirectories

%l #fname ————————————————m—
elseif comstr(Cam,’fname’)

fname=varargin{carg}; carg=carg+1;

% get the available root directories

wd=my_func(’wd’);

% search for the file

out=sdtweb(’_fname’,fname,wd);

view

The generation of displayed post-treatments should be handled by a command named View, that
will centralize the manipulations required to generate ad hoc displays. Variations of display
are handled in the command, first and second input should be the pointer and optionally a
deformation data.

e Handling of legend (location, labels, ...) can be performed by defining a Legend field to
deformation curves, see[comgui def.Legend| for more details.

e Handling of colorbars and their legends can be performed using [fecom ColorBar|and [fecom

[CoTorfegend commands.

e Stress post-treatments can be handled through a|fe_caseg StressCut|command.

e Energy post-treatment can be handled through |[fe_stress Ener|and their corresponding dis-
play through |[fe_stress feplot

e Handling of color scales can be handled with [fecom ColorScale|

A sample call to be handled by the view command could then be.

my_project (’ViewUpStress’,cf);
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im

The generation of image captures from figures (feplot||iiplot|or standard MATLAB figures) should
be handled by a command named im, that will centralize formatting and saving. This command
should

e Provide figure formatting data for implemented modes
e Perform figure formatting according to a required mode

e Perform figure capture and save to an appropriate directory

For details on figure formatting, see[comgui objSet] for details on figure naming strategy see[comgui]
for low level image capturing calls, see [comgui ImWritel

A suggested layout for the im command of a sample my_func function is then

%% #im : figure formatting ———-——————————————m—m
elseif comstr(Cam,’im’)
% sdt_table_generation(’Rep{SmallWide}’) ;comstr(ans,-30)

if nargin==2 Y, generate the calling string

pwO=pwd;

if isfield(varargin{2},’ch’) 7 multiple generation with imwrite ch
RO=varargin{2};cf=feplot;

% Create an possibly change to directory

sdtkey (’mkdircd’ ,my_func(’wd’,’plots’,sscanf (cf.mdl.name,’%s’,1)));
RO.RelPath=1; % Save links with path relative to current position
RO=iicom(cf,’imwrite’,R0O);

fid=fopen(’index.html’,’w’);fprintf (fid,’%s’,R0.0ut{:});fclose(fid);
cd (pw0) ;

elseif “ischar(varargin{2}); % Apply reshaping to figure
gf=varargin{2};if ~“ishandle(gf);figure(gf);plot([0 1]);end
cingui(’objset’,gf ,my_func(CAM))
% if feplot, center the display
if strcmpi(get(gf,’tag’),’feplot’);iimouse(’resetvie’);end

elseif strcmpi(varargin{2},’.’) % if ’.’ get automatic naming

st=sprintf (’imwrite-objSet"@my_func(’’Ys’’)"-ftitle’ ,varargin{1});
comgui (st);
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else
cd(my_func(’wd’,’plots’));
st=sprintf (’imwrite-objSet"@my_func(’’%s’’)"-ftitlels’,varargin{1:2});
comgui (st);
cd(pw0) ;
end

elseif comstr(Cam,’imwl’) % Figure formatting options for wl
out={’position’, [NaN,NaN,450%[1.5 2]],’paperpositionmode’,’auto’,

’@exclude’,{’legend.*’}, ’@text’,{’FontSize’,14}, ...
’Qaxes’,{’FontSize’,14,’box’,’on’}, ...
’@ylabel’,{’FontSize’, 14, ’units’, ’normalized’},
’@zlabel’,{’FontSize’,14,’units’, ’normalized’},
’@title’ ,{’FontSize’,14}, ...
’@line’,{’linewidth’,1}, ...
’@xlabel’,{’FontSize’,14, ’units’, ’normalized’}};

% elseif ... use as many commands as needed

else; error(’%s unknown’,CAM);
end

This way, the following tasks can be easily performed

% Im calls for figure capturing

gf=figure(1); plot([1 0]);

% Capture an image from figure 1 with formatting wl and named test.png
my_func(’imwl’,’test.png’);

% Capture an image from figure 1 with formatting wl with an automatic name
my_func(’imwl’,’.’);

% Format figure 1 according to wl options

my_func(’imwl’,gf);

% Get formatting options for wl

ri=my_func(’imwl’);

7.17.5 Commands associated to tutorials

In a training function or in any function where a tutorial could be executed, the syntax is the
following

336



elseif comstr(Cam,’tuto’)
%% #Tuto (implement standard behaviour of tuto command) -1
% Execute the tutorial with CAM commands or open the tuto tree if empty CAM
eval (sdtweb(’ _tuto’,struct(’file’,’current_function_name’,’CAM’,CAM)));
if nargout==0; clear out; end
elseif comstr(Cam,’tutoname’)
%% #TutoTutoname-2
% See sdtweb(’LinkToHTML’) % Open the HTML corresponding to the tutorial

%% Step 1 : Description of stepl
% See sdtweb(’LinkToHTML’) % Open HTML detailed doc related to this step

%% Step 1.1 : Description of substep 1.1
% Code to execute correponding to Step 1.1
%% Step 1.2 : Description of substep 1.1
% Code to execute correponding to Step 1.2

% Step 2 : Description of step2
% See sdtweb(’LinkToHTML’) % Open HTML detailed doc related to this step

% Code to execute correponding to Step 2
%% EndTuto
elseif comstr(Cam,’tutoname2’)

%% #TutoTutoname2-2
% See sdtweb(’LinkToHTML’) 7 Open the HTML corresponding to the tutorial

%% EndTuto

% elseif ... use as many commands as needed

This way, the following commands are usually executed :

% Open the tree containing all the tutorial and clickable buttons
my_func(’Tuto’);
% Execute the whole tutorial (useful for test auto)
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my_func(’ TutoTutoname’) ;

% Execute a tutorial up to a given step (here section 2.3)
my_func(’TutoTutoname -s2.3°);

7.18 Criteria with CritFcn

SDT supports the use of various criteria to be applied on data. The default CritFcn implementation
is present in fegui. The fields of a CritFcn structure are

e .cmap colormap.

.clevel levels associated with the colors (one more level than the number of colors). If not
present, the default is an equal spacing of colors in the [0,1] interval. This field is typically
used to color tables.

.cback default color if below the .clevel interval. Defaults to white.

.1level levels associated with line plots.

.Fecn handle to handling function, defaults to fegui (’@CritFcn’).

.imap alternative to .Fcn to specify color index by hand.

r1=(1:10)’; ri=[rl sin(rl/max(rl)*pi) cos(rl/max(rl)*pi) 1;

% Standard criterion

Rl=struct(’clevel’,linspace(0,1,4), cmap’,eye(3),’Fcn’,fegui(’@CritFcn’));
% Manual setting of color map

R2=struct (’cmap’,eye(3), ’imap’ ,round((r1(:,3)+1)*3/2));

ua=struct(’name’,’Crithn’,’ColumnName’,{{’#’,’val’,’ind’;”,”,”;
’0°,70.00°,7.0%’; ... % Column formatting (java)
R1,R1,R2}}, ... % Define a CritFcn for coloring

’setSort’,2); % use filter-sort
ua=menu_generation(’ jpropcontext’,ua,’Tab.ExportTable’);
%feval(R1.Fcn,’imap’,R1,rl)
comstr(rl,-17,’tab’ ,ua)

7.19 Legacy information

This section gives data that is no longer used but is important enough not to be deleted.
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7.19.1 Legacy 2D elements

These elements support isotropic and 2-D anisotropic materials declared with a material entry de-

scribed in Element property declarations are subtype 2 entries

[Prold fe_mat(’p_solid’,’SI’,2) f N 0]

Where

f Formulation : 0 plane stress, 1 plane strain, 2 axisymmetric.
N Fourier coefficient for axisymmetric formulations

Integ set to zero to select this family of elements.

The xy plane is used with displacement DOFs .01 and .02 given at each node. Element matrix
calls are implemented using .c files called by of mk subs.c and handled by the element function
itself, while load computations are handled by [fe_Load] For integration rules, see section )
The following elements are supported

e g4p (plane stress/strain) uses the et*2qld routines for plane stress and plane strain.

e g4p (axisymmetric) uses the et*aqld routines for axisymmetry. The radial v, and axial u,
displacement are bilinear functions over the element.

e g5p (plane stress/strain) uses the et*5noe routines for axisymmetry.

There are five nodes for this incompressible quadrilateral element, four nodes at the vertices
and one at the intersection of the two diagonals.

e 8p uses the et*2q2c routines for plane stress and plane strain and et*ag2c for axisymmetry.

e g9a is a plane axisymmetric element with Fourier support. It uses the e*ag2c routines to
generate matrices.

e t3p uses the et*2pld routines for plane stress and plane strain and et*apild routines for
axisymmetry.

The displacement (u,v) are assumed to be linear functions of (x,y) (Linear Triangular Element),
thus the strain are constant (Constant Strain Triangle).

e t6p uses the et*2p2c routines for plane stress and plane strain and et*ap2c routines for
axisymmetry.

7.19.2 Rules for elements in of mk_subs
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hexa8, hexa20

The [hexa8l and hexa20| elements are the standard 8 node 24 DOF and 20 node 60 DOF brick
elements.

The hexa8 element uses the et*3qld routines.

hexa8 volumes are integrated at 8 Gauss points
wi:%forizl,él

b; for i = 1,4 as below, with z = a3

b; for ¢ = 4,8 as below, with z = asg

hexa8 surfaces are integrated using a 4 point rule
wi:iforizl,él

by = (a1, 1) , ba = (a2,01) , bg = (a2, a2) and by = (a1, a2)
with a1 = § — 572 = 0.2113249 and a2 = § + ;= = 0.7886751.
The hexa20 element uses the et*3q2c routines.

hexa20 volumes are integrated at 27 Gauss points w; = w;w;wy, for i,5,k =1,3
with

wy = w3 = 35 and we = 73 by = (o, o, o) for 4,5,k =1,3

with
1—4/2 1 3
a1 = g/;,agz()ﬁandag: +2\/;
1—./3
a1 = 5/;,04220.5 and

hexa20 surfaces are integrated at 9 Gauss points wy, = w;w; for 7,5 = 1,3 with

w; as above and by = (a4, a5) for 4,5 =1,3

. 1—4/2 1 3
with a1 = g/g,a2:0.5anda3: +;/;

penta6, pentalb

Thelpentatland [pentalb|elements are the standard 6 node 18 DOF and 15 node 45 DOF pentahedral
elements. A derivation of these elements can be found in [43].

The penta6 element uses the et*3r1d routines.
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pentab6 volumes are integrated at 6 Gauss points

Points by, | x |y | 2
1 alalc
2 blalc
3 al|b]|ec
4 alald
5 blald
6 a|bl|d

f \f
pentab surfaces are integrated at 3 Gauss points for a triangular face (see and 4 Gauss
points for a quadrangular face (see hexa8)).
pentalb volumes are integrated at 21 Gauss points with the 21 points formula
q = 9=2VI5 p _ 942V15

=721 YT a1

with @ = ¢ = .16667, b = & = .66667, c = 5 — 21132, d = 5 + ;1= = 78868

C_6+\/15 d_G*\/lS
- 21 T 21 o

e=05(1-/2),

f=05and g=05(1+,/2)

_ 155-vV15
o= 35528 = 18’
155+v156 s _ 9 8
Y= "0 > 0= 80 and € = 5.

Positions and weights of the 21 Gauss point are
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Points by, | = | y | z | weight wg
1 d| d| e a.f
2 bl d| e a.f
3 d| b|e .
4 clale .8
) clc|e ~.B
6 al| cl|e ~.B
7 sl3le 5.3
8 dld|f Q€
9 bld|f o.€
10 d| b|f o.€
11 clalf v.€
12 clcel|f v.€
13 al| cl|f v.€
14 ERE 5.
15 dldl|yg a.f
16 bldlyg a.f
17 d| blyg a.p
18 clalg ~v.0
19 cl|lcl|g ~v.0
20 alcl|yg ~v.5
21 s3]y 5.8

pentalb surfaces are integrated at 7 Gauss points for a triangular face (see [tetral0)) and 9 Gauss
points for a quadrangular face (see nexa20|).

tetrad, tetrall

The element is the standard 4 node 12 DOF trilinear isoparametric solid element. tetral0
is the corresponding second order element.

You should be aware that this element can perform very badly (for poor aspect ratio, particular
loading conditions, etc.) and that higher order elements should be used instead.

The tetra4 element uses the et*3pld routines.

tetrad volumes are integrated at the 4 vertices w; = i for i = 1,4 and b; = S; the i-th element
vertex.

tetrad surfaces are integrated at the 3 vertices with w; = é for i = 1,3 and b; = S; the i-th vertex
of the actual face



The tetralO element is second order and uses the et*3p2c routines.

tetrall volumes are integrated at 15 Gauss points

Points b, | A1 | A2 | A3 | A\q | weight wy
1 ilal il 105
2 b| al| al| a «
3 al| b| al a «
4 al| a b| a «
5 al| al| a b «
6 d| c¢| c¢l| ¢ I3
7 c| d| c¢l| ¢ I}
8 c| c| d| ¢ B8
9 c| c| c| d I5)
10 el e| f| f %
11 fl el el f y
12 fl fl el e ¥
13 el f| f| e ¥
14 el f| el f ¥
15 fl el fl e 5

with a = T=¥15 = 0.0919711 , b = 13+3V15 — (.7240868 , ¢ = T¥15 = 0.3197936 ,
d = 1=3VI5 — 00406191 , e = 10=2V15 — (0563508 , f = 10215 — (4436492

2665+14+/15 ﬁ __ 2665—14+15 5
, B =

and a = S50 926800 °t Y = 567

Aj for j = 1,4 are barycentric coefficients for each vertex Sj :

tetral0 surfaces are integrated using a 7 point rule

Points by,

>
—
>
no
>
w

weight wy,

| O U x| W N
wWH o Qoo |0
RHQ | oSO | O | &
H o | o Qoo

LR DR DR|L R
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with v = & = 0.11250 , @ = 1534—0\65 — 0.06296959, B = % = 0.066197075 and a = 2=212 =

0.05961587 , b = S¥I5 — 0.47014206 , ¢ = S=Y15 — 0.10128651 , d = L2Y15 — 0.797427
Aj for j = 1,3 are barycentric coefficients for each surface vertex S; :

g4p (plane stress/strain)

The displacement (u,v) are bilinear functions over the element.
For surfaces, g4p uses numerical integration at the corner nodes with w; = % and b; = §; for i = 1,4.

For edges, g4p uses numerical integration at each corner node with w; = % and b; = .5; for i =1, 2.

g4p axisymmetric

For surfaces, g4p uses a 4 point rule with

owiziforizl,él

o by = (a1,0), by = (ag,a1) , b3 = (a2, x2) , by = (a1, 2)

with a; = § — 5= = 0.2113249 and a3 = § + ;1= = 0.7886751

For edges, q4p uses a 2 point rule with
o w; =3 fori=1,2

e by = a1 and by = ay the 2 gauss points of the edge.

g5p (plane stress/strain)

For surfaces, q5p uses a 5 point rule with b; = S; for ¢ = 1,4 the corner nodes and bs the node 5.

For edges, g5p uses a 1 point rule with w = % and b the midside node.

g8p (plane stress/strain)
For surfaces, q8p uses a 9 point rule with

® Wi = Ww;j fori,jzl,?;withwl:wg:%eth:fi8
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=, az = 0.5 and ag = —

o by = (a4, ) fori,j = 1,3 with oy =
For edges, q8p uses a 3 point rule with

owlzwgzéandwgzé

e b, =5; for i = 1,2 corner nodes of the edge et by the midside.

q8p axisymmetric
For surfaces, q8p uses a 9 point rule with
o wi = wyw; fori,j=1,3
Withwlz’wg:% andwgzl%
o by = (aj,q ) fori,j=1,3

1-,/2 1+4/3

with a1 = —=2 , a2 = 0.5 and a3 = —;

For edges, q8p uses a 3 point rule with

5 8
® W] =W3 = 1g W2 =13

1—

1+

3
V2 — 0.8872085

= 0.1127015, bg = 0.5 and b3 =

.blz 2

t3p (plane stress/strain)

For surfaces, t3p uses a 3 point rule at the vertices with w; = % and b; = S;.

For edges, t3p uses a 2 point rule at the vertices with w; = % and b; = 5;.

t3p axisymmetric

For surfaces, t3p uses a 1 point rule at the barycenter (by = G) with w; = % .

2 2

w

For edges, t3p uses a 2 point rule at the vertices with w; = % and by = % — % and by = % + 2.
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t6p (plane stress/strain)

For surfaces, t6p uses a 3 point rule with

o wy =3 fori=1,6

® b; = Si+3,+4 the three midside nodes.
For edges, t6p uses a 3 point rule

owlzwgzéandwgzé

e b; = 5;,i = 1,2 the i-th vertex of the actual edge and b3 = S; ;41 the midside.

t6p axisymmetric

For surfaces, t6p uses a 7 point rule

Points by | A\ | Ao | A3 | weight wy
L sl gl ] a
2 al B| B b
3 Bl B| « b
1 Bl a| B b
5 vyl vl o c
6 ol v 1| v c
7 o I c

with :

a= % =0.11250 , b= 1515 = 0.066197075 and

¢ = W5VI5 — (1,06296959

a=22Y15 — 005961587 , [ = % = 0.47014206
v =815 — 010128651 , § = L2V — (797427

Aj for j = 1,3 are barycentric coefficients for each vertex Sj :

For edges, t6p uses a 3 point rule with w; = w3 = % , Wy = 1%

_./3 3
by = - z\[’ = 0.1127015, by = 0.5 and bg = ”2\@ = 0.8872985
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This chapter aims at providing the details and procedures used to build a GUI with SDT. The GUI
is based on a formalism where the data and their display is decoupled.

The data considered is a set of parameters preliminary defined through the use of a csv file read by
quick definitions are supported by cingui ParamEdit.

This data is then transformed into a Java object stored as a v_handle in the GUI figure. The GUI
figure must be named and tagged appropriately to be accessed at any time. Its Name and Tag are
equal and define the figure as unique.

Access to the data parameters is always performed through a v_handle call and can be edited using
sdcedit. Layout of the data can be shaped as desired and displayed under the form of Tables in
the GUI figure, using sdt_dialogs and cinguj. The tables are interactive as the user can edit the
data parameter fields through the interface. Dependency handling of other parameters as function
of the edited one is possible.

8.1 Formatting MATLAB graphics and output figures

SDT implements single [comgui ImWrite| and multiple [iicom ImWrite| image generation mecha-
nisms. The basic process is to

e generate your figure,

e call [comgui objSet|for the initial formatting,

e use to define project information such as the plot output directory.

e use|comgui PlotWd|to predefine output options (directory, file name generation scheme, refor-
matting for image generation, insertion options for word, ...)




figure
intial

objSet,

ﬁgure TOFig
formatted | objSet
sdtroot
- Project +
- OsDic

8.1.1 Formatting operations with objSet

figure copy
formatted

Figure 8.1: Figure generation process

ImWrite
- print
- crop
- saveas
- crop
-insert

cingui(’objSet’,h,Prop) groups all formatting operations needed to obtain exactly the figure you

want (font size, axes positions, line sequencing, ...

) starting from a pointer to a MATLAB graphic

h and a style given as cell array of formatting instructions Prop. It is the base SDT mechanism to
generalize the MATLAB set command.

Prop is a cell array of tag-value pairs classical in MATLAB handle properties|[comgui objSet|allows
three types of modification

e recursion into objects or object search. Thus the property ’@axes’ of a figure is a handle to

all axes within this figure or *@1ine(2)’ is the second line object.

e expansion is the mechanism where a tag-value pairs is actually replaced by a larger list of tag-
value pairs. The definition of styles using [comgui objSet|entries leads to the use of expansion
in the form ’@0sDic(SDT Root)’,{’vall’,’val2’}. This mechanism is key to let the user

manage predefined styles.

e Value replacement /verification to enhance basic set commands used by MATLAB. Thus with
’Position’, [NaN NaN 500 300] the lower left corner values shown here as NaN are replaced
by their current value.

8.1.2 Persistent data in Project
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The Project tab is initialized using[sdtroot Set|commands. The most commonly used fields are the
project and plot directories and file name for export to Word, PowerPoint. Their use is illustrated
in the next section.

sdtroot (’SetProject’,struct(’ProjectWd’,sdtdef (’tempdir’),
’root’, ’MyTest’));

[#] SDT Root - O X
File Edit View Insert Tools Desktop Window Help k]
| SDTRoot Y Eset Project @

feplot

iiplot Param Value
FEMLink impert ProjectWd di/delfscratch

TagList
o @ EltSet PlotWd d:\del\scratch'\plots

- PlotWord d:\del\scratch\tmp_word.docx
1 Tab PlotExcel
[ History

LastWd d:/del/scratch

root root

| Preferences

name

Description

Figure 8.2: Basic project tab

8.1.3 0sDic dictionnary of names styles

The [comgui objSet| provides a basic mechanism to provide formatting instructions. As choosing
those takes time and for the sake of uniformity it is useful to introduce style sheets, which SDT does
using a list of named styles, as shown in figure [8.3]




Bl o root E=sEen

File Edit View Inset Tools Desktop Window Help L
;o7 Root I IETRE
- # feplot
# iiplot A B C D E F
FEML'_"k 1M || #-Ch : ColorBar -
: EgL'St -Cm : ColorMap B
2 --Cr: Cropping options
Fn: FileName

[ Preferences =I-Im : figure formatting
E-ImLW
H-ImLargeSquare
[#-ImLargeWide
E-ImMyStyle
- position MaN MalN 1087.0 3840
[+ @line
H-ImSmallHigh
[#-ImSmallSquare
ImSmallWide
E-ImWideBar
Lg : Legend generation —
4 am | 3 Wr : Insertion in WORD o

m

Figure 8.3: Hierarchical view of project styles sdtroot (’ InitOsDic’)

Basic implementations of most styles are provided in d_imw (see list with sdtweb(’ taglist’,’d imw’)).
The main categories of styles are

e Im: image formatting

— SmallWide for a wide picture (9:16) (landscape style) adapted to reports.
— SmallSquare for a square picture (4:3) adapted to reports.
— SmallHigh for a vertical rectangular picture (9:16) adapted to reports.
— LargeWide for a wide picture (landscape style) adapted to posters.
— LargeSquare for a square picture (4:3) adapted to posters.
— WideBar for a (4:3) landscape style picture. It has the same width than SmallWide but
is higher, this is mostly convenient for wide bar diagrams.
e Cb colorbar insertion
e Cm colormap definition

e Cr image cropping options

e Fn file naming strategy. Fn + a combination of Root (project root field), T(itle) (figure title),
xlabel, ylabel, zlabel (figure label), ii legend (see|ii_plp Legend)), Name (cf.data.name), Model
(cf.mdl.name)

e Pr figure configurations when opening project. See sdtweb(’d_imw’,’Pr’)
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e Fi feplot view initialization using a [comgui objSet|call.

e Ii iiplot view initialization using a|comgui objSet|call.

8.1.4 File name generation with objString

The ability to generate context based file names is obtained using [comgui objString] The principle
is to provide a cell array of strings where ’@command’ string are interpreted.

8.1.5 Image generation with ImWrite

8.2 SDT Tabs

This section presents the GUI of SDT, organized as tabs in the figure.

e The application tools breakdown is provided in an exploration tree placed at the figure left.
The buttons allow opening the corresponding interface tabs.

e The tab area displays interactive tables that allows parameter editing and procedure execution.
User interaction is associated with tabs implemented in the GUI,
— Project tab to handle the working environement, section section .
— FEMLink tab to handle model imports, section section [8.2.2] .
— Mode tab to handle modal computations, section section [8.2.3].
— TestBas tab to superpose two meshes, section section .
— Ident tab SDT identification tuning, section section [8.2.6|.
— StabD tab for stabilization diagrams, section section [8.2.5].

— MAC tab to handle MAC analysis, section section [8.2.7].

— 0sDic tab for [sdtroot 0sDic|editing, section section [8.1.3].




8.2.1 Project

The Project tab allows handling the working environment.

Project X

ProjectWd d:/del/scratch
PlotWd ddel\scratch'plots
PlotWord

PlotExcel

LastWd

root root

name

Description

This is a 2 column table allowing the definition of the following fields,

e ProjectWd A button defining the working directory used for the project. This is where models
and curves will be saved. Clicking on the button will open a dialog for interactive definition.

e PlotWd A button defining the directory where image captures will be saved. If not specified
the default will be ProjectWd/plots. Clicking on the button will open a dialog for interactive
definition.

e PlotWord A button defining an existing Word report to which captured images can be inserted.
Clicking on the button will open a dialog for interactive definition.

e PlotExcel This is not currently used, but could allow the specification of a different file for
table export.

e LastWd The last chosen directory, used as a starting point for the next directory selection
dialogs.

e root A short name that will be used to identify saved files in the project working directory,
every saved file will start with this root.

e name A longer name version that is used for human description of the project name.

e Description An optionnal text that can provide further details on the current project.

8.2.2 FEMLink
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The FEMLink tab allows handling model import from external codes.

FEMLink |X
~Parent model
- Code quess w
- FileMame E
- Unit auto ~
E-lmportType All w
é----BuiIdListGen O File Combinatien seq.
é""BuiIdStepGen [l Select Step
.BuildCh O
E-Postimport set options
“PostCh
E""FeplotFig [l
é--SaveMode J auto -
"-SavePut Save FMName
- Import/Reset X Import
-~ Cancel Cancel

This is a three column table allowing interactive definition of the fields described below. The second
column allows activating specific options.

354

Parent string name used to identify the model in further post-processing operations.

Code allows selecting the code from which files will be imported. If code is unknown femlink
will try guessing it from the file extension. This is a popup button providing a specified list of
options. This is set by default to unknown.

FileName Provides the base file for import. This file will be imported first and constitute
the base model for the output. The second column button allows an interactive file selection
through a dialog. The third column is an editable text cell.

Unit allows defining a unit system with the model, that can be used for post treatments where
output units are required. Some codes do not use it so that an external defintion is needed.
This is set by default to auto.

ImportType Provides model building options based on complementary files

— A1l imports model, results, ...

— Model just imports the model, material properties, boundary conditions, ...

— Result import result.

UPCOM SE import element matrices in a type 3 superelement handled with

BuildListGen allows generating a file list sequentially built, by successive file selection.
These files then appear under the BuildListGen button and can be removed from the list



by clicking on }{ This is illustrated in figure This option conditions the activation
of BuildStepGen and BuildCb below.

— BuildStepGen : Should be updated with a capture of the window for step selection.
Allows defining model Case resolution for a specific results step. By default femlink
imports all data in the model. To recover specific boundary conditions relative to a
specific computation step (if defined in the input and supported by the femlink function),
one can either provide the step number or ask for last to let femlink find the last step
defined in the model load case. The third column button allows selecting a step in an
interactive way. By default, this option not is activated.

— BuildCb Allows defining further Build commands that may depend on the Original
Code selected. The second column activates the option. The third column button provides
a series of comma separated calls that will be applied to the model generated by femlink
through the FEMLink function defined by the Code.

e PostImport is used to define steps performed after the base import.

— PostCb callback performed after import (for custom applications using FEMLink).

— FeplotFig Allows direct model loading into a feplot figure for visualization. The second
column button activaftges the option. The third column button allows interactive selec-
tion a feplot figure, like for the Project tab. By default, this option is not activated.

— Save allows defining model saving strategy once imported. The second column button
activates the option. The third column button allows defining a saving mode. This is a
popup button proposing either :

* auto that will perform an automatic saving of the model based on the Mesh File
name with a _import.mat extension

* Link to Project that will use the Project tab data to generate a file name. In
this case the saving file name will be Project.root _ date _ Mesh File name _
import.mat

*x Custom fname allows defining a user specific name in the second line button. The
Save FName button can then be clicked on to provide a file name that will be used
as verbatim.

By default the save option is activated and set to Link to Project.

e Import/Reset Import executes the import proecdure. The cross resets the tab to its original
state.
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8.2.3 Mode

FEMLink [X
~Parent model
- Code quess w
- FileMame g
- Unit aute v
E-lmportType All e
I_%I"BuiIdLi:tGen [l File Combinaticn seq.
: 5----Bui|dListIt... >< Chmartin\sdt.curihelphdemo_squeal_abqg\brake_squeal fil
BuildStepGen [] Select Step
- BuildCh [l
[-Postimport set options
~Import/Reset =X Import
- Cancel Cancel

Figure 8.4: The FEMLink tab, filled with input files

The Mode tab allows handling modal computations.
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Mode (X

E=l-Real modes

El-Solve

=)-Solver options

“Put a save filename

- Default Use default
Resolution methed 5 Lanczos+It
=l Target number of modes 25
Minimum frequency
“Maximum frequency
=l-Mass shift 1e3
E----Target maximum frequency
~Set EigOpt in model Set
ECoemplex modes
£l Resolution method Redl
Subspace 1st order
= Convergence check None
“Tolerance le-6
“Max iterations 2
- keepT 0
Iy D
~5Set CEigOpt in model Set

ofact mklsery_utils -silent
- Matrix assembly auto
“-RSel O
nitial state [ none
Post treatment O
~Mode set label modes
[=-Save mode O auto

Save FMame

~Real modes Compute RModes
- Cpx modes Compute CModes
- Display Display

cf

This is a three column tree-table allowing various choices to perform a wide range of modal compu-
tations, parametered by the fields below,

e Real modes This section and the associated subtree provides options on the computation of
real modes
— Default Resets parameters of the real mode subtree to default values

— Resolution method The real mode solver (resolution method) choice (also used for re-
duced complex mode computations). Choices are packaged in a popup cell :

* Lanczos+It : set by default and recommended

*x Lanczos : same as the previous without convergence check and correction, be used
once parameters are calibrated
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*

IRA/Sorensent : quicker but less robust

— Target number of modes To provide a number of modes to compute, set to 25 by default.

*

*

Minimum frequency To provide a minimum frequency of interest (not packaged yet).
Maximum frequency To provide a maximum frequency of interest.

— Mass shift To provide a mass shift used for the factorization. This is set to 1e3 by
default.

*

Target maximum frequency To provide clues on the expected bandwidth (will influ-
ence the mass shift).

— Set EigOpt in model

e Complex modes This section and the associated subtree provides options on the computation
of complex modes

— Resolution method The complex mode solver (resolution method) choice. Choices are
packaged in a popup cell either :

*

*

Red1 : complex modes on the real mode subspace (default)

Red2: complex modes on the real mode subspace enhanced with the imaginary part
of the stiffness

Full : direct without reduction
Subspace 1st order The choice of the matrix types to be used for the subspace
enhancement. The visc option is only available with SDT-visco licenses.
Convergence check Not packaged yet.

- Tolerence

- Max iteratioms

— keepT

— 1r

— Set CEigOpt in model

e Solve This section and the associated subtree provides options on the solver to use and po-
tential post treatment or saving strategies.

— Solver options

*

*

ofact The choice of the matrix factorization solver, set by default to mklserv_utils
-silent. This is recommended for very large models.

Matrix assembly A text cell providing the matrix types to be assembled for the
computation. This is either the keyword auto to let the solver decide the assembly
strategy, or a series of matrix types (see sdtweb mattyp) to be assembled. By default
this is set to auto, corresponding to 2 1 for real modes and 2 3 1 4 for complex
modes.



- RSeA

* Initial state This is activated by the second column. The third column provides
a callback to initialize the system state. (not packaged yet).

x Post treatment Allows performing a callback after mode computation. The second
column activates the option. The third column is a text cell providing a callback to
perform. Not packaged yet.

— Mode set label A curve name used to store the deformation curve in the model stack.
This is a text cell, set by default to modes.

— Save mode allows automatic curve saving once imported. The second column button
activates the option. The third column button allows defining a saving mode. This is a
popup button proposing either :

x auto that will perform an automatic saving of the curve based on the base model
name with a _def.mat extension.

x Link to Project that will use the Project tab data to generate a file name. In this
case the saving file name will be Project.root _ date _ model name _ Mode set
label _ def.mat

* Custom fname allows defining a user specific name in the second line button.

x Put a save filename The Save FName button can then be clicked on to provide a
file name that will be used as verbatim.

— Real modes Executes the real mode computation
— Cpx modes Executes the complex mode computation

— Display Displays the model stack entry named after Mode set label.

e cf A button allowing an interactive defintion of the feplot figure that will hold the working
model. Clicking on the button opens a dialog interface proposing the selection of an existing
feplot figure or to open a new one. By default, this is set to the one specified in the Project
tab.

8.2.4 TestBas : position test versus FEM

The TestBas tab is used to superpose two meshes. For examples see section [3.1] .

359



8 GUI and reporting tools

360

Model 2 Mat/X  ElProp X  Stack[X Cases|x TestBas X

SensDof SENSOrS ~
=-NodePairs Init Side by Side
~Hidden Remowve
--nListFEM
-nListTEST
= InitPasOnly Run
-|CP Run
-Radius 5.0
E-Tune Init Owverlay
--basEst run
KaxNls [0-10]
-yaxis [oo]
--scale 1
E «<o0 >l
= “<o0 >H
SE “<4o0 pH
“transStep 1.0
e «<doo H
= «<oc >l
= «<o0 >Nl
--BasisToFEM Accept
E=l-MatchDo Match
é-"-MatchSel selface
"-Radius 5.0
El-View
-MatchD MatchD
E-ViewMatch Display
“DefLen 5.0
-Restore Do
[=I-Finalize Finalize
“-SaveCh fe_sens ChSavetest_geom

This is a tree-table used for mesh superposition. The base mesh is called FEM and the mesh to be
placed is called TEST even when you are superposing different things (TEST/TEST, FEM,FEM,
...). The NodePair section uses a strategy providing corresponding points, while the Tune section
allows manual tuning of the relative position.

e SensDof selects the second mesh (stored in as a SensDof case entry in the first mesh) to be
superposed on the first one.

e NodePairs is used to initialize the FemTest dock in side by side mode. In this mode, the left
tile shows the feplot promodel, the center tile shows the reference mesh and the right tile
the SensDof mesh.

The first step in this mode is to provide two list of paired nodes for the two meshes. To select
the nodes, select a feplot figure and press the space bar: clicking on the mesh will select



nodes and add them to the list. Doing so in the two feplot figures provides two sets on paired
nodes that can be used superpose with this information only (InitPosOnly) or with the help
of an automatic algorithm after the initial positioning (ICP : Iterative Closest Points).

Hidden To ease selecting only visible nodes on each mesh, this button removes hidden
elements from the camera point on view. (Useful when selecting the paired node lists)

nListFEM list of nodes selected in the main mesh feplot in center tile.
nListTEST list of nodes in SensDOF mesh (right tile).

InitPosOnly superpose the two meshes by minimization the Euclidian distance between
the previously filled lists of paired nodes. This is helpful in presence of geometries with
symmetries for which the ICP algorithm cannot converge (plate or cylinder for instance).

ICP, using paired node lists, performs first the InitPosOnly action and then starts the
optimization with the algorithm ICP which seeks to minimize the point-to-plane distance
between each automatically paired nodes (closest nodes in the range of Radius).

Radius search radius for node pairing (this is the same value as the Radius in MatchDo)

e Tune opens the FemTest dock inTune mode. The left timeshows the feplot promodel while
the right feplot overlays the reference mesh (in blue) and the test mesh in its current position
(in red)

basEst : starting guess : if no InitPosOnly has been performed, the two meshes are au-
tomatically superposed using the gravity center and the three main directions of the point
clouds formed by each node mesh. This is helpful to be closer to the good superposition
before beginning to tune manually

xaxis This is an informative display which gives the orientation of the x-axis test coor-
dinate system in the base model. This is updated when rotating the second mesh

yaxis orientation of test y-axis in FEM coordinates.

scale scale applied between the two coordinate systems (for FEM in mm and test in
meters use 0.001).

tx Translation of test in the x-direction. The single arrows correspond to a low displace-
ment step and the double arrow to a higher displacement step

ty Translation of test in the y-direction
tz Translation of test in the z-direction
* transStep This is the translation step used by the single arrow.

rx Rotation of the second mesh around the x-axis. This rotation does not increase the
angle which is always zero, but updates the orientation of the xaxis and the yaxis. The
text is used for using input of large changes 90 (degrees) for example.
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— ry Rotation of the second mesh around the y-axis
— rz Rotation of the second mesh around the z-axis
— BasisToFEM Modify the SensDof mesh by applying the transformation. The node coor-

dinates are modified and all Tune fields set to identity.

MatchDo Match is automatically performed after ICPPosOnly, ICP and BasisToFEM. This but-
ton can be used to redo the match with new options below.

— MatchSel Selection on the FEM before performing the Match. selface is classically used
to force the match on the surface of the model instead of in the volume.

— Radius Search radius for node pairing (this is the same value as the Radius in NodePairs)
View List of different views to evaluate the quality of the superposition

— MatchD displays the table showing the gap between each node of the second mesh and
the matched surface. It also shows this information as a colormap on the test.
— ViewMatch Displays the test mesh over the FEM with the options listed below
x DefLen Length of arrows if displayed
Restore uses the .basO0 field to reset all the modifications since the last BasisToFem (performed

after clicking on InitPosOnly, ICP and BasisToFEM) and put the second mesh at this previous
location.

Finalize Performs the SensMatch (i.e. the observation of the first mesh at sensors)

— SaveCb Callback executed with the Finalize action

8.2.5 StabD : stabilization diagram

The StabD tab is used create a stabilization diagram with the algorithm LSCF and provide tools to
extract poles from it.



Stack X Ident/X StabD|X

=l-Generate Run
-~order 100.0
~norder 50.0
~frmin -Inf
~frax Inf
-band 1000.0
=-Display Display
- Ftol 0.1
Dol 10.0
- AutoldMain Renew
~DispMode StabDiag Only v
=-CurPole 0.0
“Curlocal Estimate

This is tab is used for LSCF handling (see section [2.3.2]).

e Generate click on button to generate stabilization diagram.

order : Maximum order of the model. The order of the model equals the number of poles
used to fit the measured data. It is often necessary to select an order significantly higher
than the expected number of physical poles in the band because the identification results
in many numerical poles which compensate out-of-band modes and noise. Selecting at
least ten times the number of expected poles often gives good results according to our
experiment.

norder : Minimum order to start the stabilization diagram (low model orders often show
very few stabilized poles)

fmin : Minimum frequency defining the beginning of the band of interest
fmax : Maximum frequency defining the end of the band of interest

band : Sequential iteration can be performed by band of the specified frequency width.
The interest is that in presence of many modes, it is more efficient to perform several
identifications by band rather than increasing the model order.

e Display : display result

Ftol : tolerance for frequency convergence
Dtol : tolerance for damping convergence

AutomIdMain : fill IdMain set of poles from current data.

e DispMode

e CurPole : info based on click.

CurLocal
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8.2.6 Ident : pole tuning

The TabIdent tab is

Stack (X ldent X

IdAl empty| 1 £,505 0,946 %)
2 8,984 2,077 %
3 16,392 1,235 %
4 33,496 0,742 %
5 33,992 1,196 %
6 36,129 0,820 %
- 7 45 444 2217 %
.- 8 50,202 0,483 %
9 55,622 0,107 %
10 64,155 1,217 %
=-AddPoles e 0 w BandTcPole
foLscf Stab Autold
E-Dopt wi WMo [1:3124] (4.... -~
Fit Pos Cple « 0Onone w
-data 0 none v
E----I;"Cl ns 24 nal Mot used w d
[=I-Estimate est estLocalPole Qual
estLocal ~
=-Optimize
5----Eopt eopt local ~ eoptseq
“Eup eup local -
-Analyze SVDCur oDs
[=-Save save
"SaveCh

The upper part is a list of alternate poles on the left and retained poles on the right. The arrows
let you move poles and associated shapes from one list to the other.

The lower part as the main sections

e AddPoles see section

— Lscf LSCF algorithm see section [2.3.2]
e IDopt section [2.4]

— Fit
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— data
— I/0

Estimate section

Optimize section [2.0]
— Eup

Analyze section [2.§

Save

— SaveCb allows customization of saving strategy

MAC x

~indb

~5ENS
UseMass
- Pair

=MacPlot

“Combine

=+MacError

= MinMAC

(7

=+SensorSet
§""MacErr

EFMacCo

““MacCoN

~CoMac

=FShowDock3
-cfb

-selb

cfa

—

e

HH

8.2.7 MAC : Modal Assurance Criterion display

The MAC tab allows handling display of variants of Modal Assurance Criterion.

empty
all
empty
all

a

MNo
none
MAC Cross A-B
0

ErrB

5

10

Compute MACErr
TableBvMode
10
Table
Open Dock

<
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This is a three column tree-table allowing various choices to perform a wide range Modal Assurance
Criterion variants, parametered by the fields below

e Data Options to properly define input data

— da provides indications on the number of sensors and the number of modes of
— inda

— db

— indb

— sens

— UseMass

— Pair

MacPlot

— Combine

e MacError

— MinMAC
— Df

SensorSet

— MacCo
* MacCoN

— CoMac

ShowDock3

— cfb
— selb
— cfa
— sela

— ci
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8.3 Non java SDT Tabs (obsolete)

In the obsolete non java rendering mode (iicom(’;projava0;curtabChannel’)) the channel tab
shown below is used to scan through the data.

) iiplot{2) propetties o =]
~

File Deskfop Window Help
ER

Stack] Channel ]Axea] |D0pﬂ \dent] Pust-pro]

Marne MODE DOF
Ot FOME 1011 3
In FIONE 12 9

Header :

FRF (H1-estimator) for gart:201: 4/ for 1120 +2
response £ load
95-Oct-12 11:52:48
Rec 100 of test "base_50"
MNOMNE

1105z LI
icom ch e

Figure 8.5: Channel tabs of the iiplot interface.
Major commands you might want to know

e use the ™ # to scan trough different transfer functions. Note that you can also use the + or
- keys when a drawing axis is active.

e Go the Channel tab of the property figure and select more than one channel in the list. Note
that you can also select channels from the command line using iicom(’ch 1 57).

8.4 Handling data in the GUI format

8.4.1 Parameter/button structure

The initialization of GUI button/cells is performed using a but structure with fields .type, .name,
... Available types (string in but.type) are
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o A free input as a string or a number
e [pop| An input chosen in a predefined list

° An assisted input triggered with a click on the button, or an action to execute

o An on/off input, that can be equivalent to pop with two entries, but in a checkbox shape
rather than a list

Each parameter or action is thus associated to a button of the types presented above. The parameter
definition then depends on the type, as presented.

e For a string type, following fields are accessible and mandatory (if not stated otherwise)

name The button name, explicited as family.param, that defines the parameter and its
accessibility.

format The data format, either %s for a real string or %g for numeric (double) values.
value The parameter current value.

enable (Optional) A logical, or either >on’ or ’off’. That allows deactivation of the
parameter edition.

ToolTip A string briefly defining the parameter.

SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (°’). Field .name is necessary and field
.parent may be needed to access the containing table.

type A fixed string defining the parameter type, here string.

ContextMenu a JPopupMenu that will be active in Java rendering of the cell. This field
applies to all types.

e For a pop type, following fields are accessible and mandatory (if not stated otherwise)

name The button name, as family.param, that defines the parameter and its accessibility.
choices A cell array defining the choices available to the user. All choices are strings.

choicesTag (Optional) A cell array defining the choices available to the user. All choices
are strings. For localization matters, the language displayed in field choices may vary.
This entry is thus a constant cell generally corresponding to the coding language. It
is then possible to test the choice string parameter in the code with a fixed language
independently from the display.

value An integer providing the current choice.



enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

ToolTip A string briefly defining the parameter.

SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (’’). A name must be defined.

type A fixed string defining the parameter type, here pop.

e For a push type, following fields are accessible and mandatory (if not stated otherwise)

name The button name, given as family.param, that defines the parameter and its ac-
cessibility.
value A string containing the parameter value, or the action name to be displayed.

enable (Optional) A logical, or either >on’ or ’off’. That allows deactivation of the
parameter edition.

ToolTip A string briefly defining the parameter.
callback A function to be executed when triggering the edition.
SetFcn not normaly used. Since push cannot be edited, no dependencies can occur.

type A fixed string defining the parameter type, here push.

e For a check type, following fields are accessible and mandatory (if not stated otherwise)

8.4.2

name The button name, given as family.param, that defines the parameter and its ac-
cessibility.

value An integer being 0 or 1 depending on the parameter state.

enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

ToolTip A string briefly defining the parameter.

SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (’ ).

type A fixed string defining the parameter type, here check.

DefBut : parameter/button defaults

To ease the development of GUIs, buttons are stored in DefBut structures. Initialization of the
DefBut is usually done in using a file see section [8.4.3| .

DefBut.MyField will usually group all buttons needed for a given part of the interface. Notable
exceptions are
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e .Tab used to store information associated with floating tabs. In particular . Tab. (field) . jProp
stores properties for java initialization.
.InitFen={’fun’,’command’}. .SetFcn={’fun’,’command’}.

e .j used to store volatile java objects that should not be reinitialized too often.

e .fmt is a cell array containing the OsDic style sheet (text keys in first column and values in
second).

The set of parameters is divided into families and defined by a keyword and a type. Each family
can be easily displayed in separated tabs of the GUI, and constitute relevant sets of parameters
regarding human readability.

For generalization purposes, execution actions follow the same definition as parameters, and are
linked to a family, keyword and type.

The families and keywords are left free as long as they are compatible with the definition of MATLAB
struct fields. The parameter type allows defining which kind of action the user is provided for
edition. This is realized in the display by adapted buttons.

Each parameter can be defined as a structure, nested in a structure containing the parameter families
as fields. The generation of such structure is handled by so that the definition consists
in the generation of a csv file in ASCII format.

8.4.3 Reference button file in CSV format

The input csv file layout allows defining a parameter, or button with a header line starting with
h; defining its type and the fields to be provided, and an instance line starting with n; providing
the fields value. Fields that are invariant for the whole class can be defined in the header line.
Comments are possible with lines starting with c;.

The following example illustrates the definition of each type of buttons
c; Sample definition of each class

c; sample string buttons, with dependencies handled by function my_ui
h;type=string;name;format;value;ToolTip;SetFcn=""’

n;Family.SampleStrS;¥%s;"stl";"a string input button with no dependencies"

n;Family.SampleStrG;’%g;1;"a numeric input button with no dependencies"

c; sample pop button

h;type=pop;name;value;choices;choicesTag;ToolTip;SetFcn=""’



n;Familiy.SamplePop;1;{’choicel’,’choice2’};{’c1’,’¢c2’};"2 choice menu with default choicel"

c; sample push button
h;type=push;name;callback;value;ToolTip;
n;Family.SamplePush;my_fun(’exec’);"Push this button";"push button triggering my_fun"

c; sample check button
h;type=check;name;value;enable;ToolTip;SetFcn=""

n;Famimty.SampleCheck;0;"on";"check button, set O, with conditional enabling and no dependencies"

The csv file should be named after the GUI handling function my_ui, a standard language identifier
and extension .csv. Here for example my_ui_en-us.cvs for english-US or my ui_fr-fr.cvs for
french.

Generation of the parameter structure classically named DefBut can then be obtained by
DefBut=sdt_locale(’defCSV’,’my_ui_en-us.csv’);

At this state of definition, DefBut is a standard MATLAB struct corresponding to the documented
fields. To transform it into a java object linked to the GUI figure of handle GuiGF, command cinguj
ObjEditJ must be used

[r1j,r1]=cinguj(’objEditJ’ ,DefBut.Family,GuiGF) ;

The first output is r1j, which is an EditT Java object. This object will be used for dependencies
handling and can be edited using sdcedit. The second output ri contains copies of each parameters
in a struct with fields the parameter names. The parameters are in their Java form that is to say
editable buttons of class CinCell.

8.4.4 Data storage and access

Initializing the GUI figure

After generating the Java objects containing the parameters, one can store them in the GUI figure
for further access. The data are stored in the GUI figure that is initialized by cinguj ObjFigInit.

GuiGF=cinguj(’objFigInit’,...
struct(’tag’,’my_ui’,’noMenu’,1,’name’,’my_ui’));
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The handle should be stored UI.gf field of persistent variable UI in my ui. One can also recover
this pointer at any time by using GuiGF=findall(0,’tag’,’my ui’). It is thus critical to ensure
the unicity of the GUI figure tag.

Efficient data storage in a figure is handled in SDT through the use of v_ handle uo object. Access
to this pointer is possible at any time using

uo = v_handle(’uo’,GuiGF);

It is recommended to package the access to the java data pointer in a command uo=my_ui(’vh’).

Handling the data java pointer

Automatic storage of the data pointer is performed at display. The pointer is handled as a MATLAB
struct with fields corresponding to the parameter families. The objects stored are then either the
EditT containing the full parameter family or a struct of CinCell, respectively corresponding to the
first and second outputs of the ObjEditJ command.

A very low level way of storing invisible data is to edit the uo object directly by doing

rl=get (GuiGF, ’UserData’);
rl.(family)=rilj;
set (GuiGF, ’UserData’, [],’UserData’,rl);

where family is the parameter family, r1j the EditT object generated by ObjEditJ and GuiGF the
handle to the GUI figure. It is however recommended to let it be stored automatically at display.

Recovering data from java objects

To recover data in a RunOpt MATLAB struct format from EditT or CinCell objects, command

leanEntry must be used.

e For an EditT object the output of CleanEntry will be a structure with as many fields as
parameters stored in the EditT assigned with their value converted to the proper format
provided. When an EditT is displayed in a tab, obj.Peer should be the numeric handle to
the matlab figure so that clean get uf can retrieve tab data.

e For a CinCell object, the output of CleanEntry will be the underlying structure of the but-
ton, as documented. Each CinCell object can/should have a EditT parent obtained with
obj.get(’parent’).



e For pop objects CinCell or struct, the value is taken to be the choicesTag string if it exists
or the choices string otherwise.

leanEntry no longer returns the full structure for a button, so that the command
ri=cinguj (’0bjToStruct’,ob); should be used.

To get the current data (.data{.val} of pop button, one uses
ril=feval(sdtroot (’@obGet’),ob,’data’) ;.

It is recommended to build a call my_ui(’GetTab’) that will rethrow the RunOpt structure corre-
sponding to a Tab from the GUI figure.

% get Java pointer and desired tab field
out=my_ui(’vh’); tab=varargin{carg}; carg=carg+1;
% convert to a RunOpt structure

out=fe_def (’cleanentry’,out. (tab));

Direct access to a parameter can also be usefully packaged in my_ui(’GetTab.Param’), with

% get Java pointer and desired tab field

out=my_ui(’vh’); tab=varargin{carg}; carg=carg+1;

% parse tab to see if subfields are desired
tab=textscan(tab,’%s’,’Delimiter’,’.’); tab=tab{1l};

% convert to a RunOpt structure

out=fe_def (’cleanentry’,out. (tab{1}));

% output only the desired subfield if it was specified

if length(tab)>1; tab(1)=[];

while “isempty(tab)&&~isempty(out); out=out.(tab{1}); st(1)=[]; end
end

Displaying data in the GUI figure

To display the parameters in the GUI figure, one has to generate a structure that will be interpreted
as a JTable that will be included to the JTabbedPane object, that is to say the tabbed area of the
GUI figure. This structure contains the fields

e name The name of the object that will be display. It is recommended to use the family name
of the parameter family displayed.

e table A cell array containing the buttons in the CinCell. The JTable will have the same
size as the table provided.
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e ToolTip A string allowing to display some explanations on the tab.

e ParentPanel The handle to the GUI figure.

Generation of the table field can be done automatically with a call to sdt_dialogs uatable
ua.table=sdt_dialogs(’uatable-end0’,’info’ ,name,rlj);

with name the field relative to ua.name and ri1j the EditT object (with .Peer defined). This will
yield a tab with three columns, the first one being the parameter names, the second one the editable
buttons as CinCell objects and the third one being the parameter ToolTip.

More complex layouts can be obtained by generating the table manually, exploiting the second
output of the ObjEditJ command to fill in table positions. This allows generating the table by
directly positioning the CinCell objects called by their names.

By adding a field 1evel to ua, and calling cingujTabbedPaneAddTree a tree will be displayed instead
of a table in the GUI figure. Field level has two columns and as many lines as the table. The first
column provides the level of the table line in the tree as an integer. The second column indicates
whether the line has to be expanded is set to 1, or not if set to 0.

Once ua is filled display is performed using cinguj TabbedPaneAdd
[ua,gal=cinguj(’TabbedPaneAdd’, ’my_ui’,ua);

Command TabbedPaneAdd outputs ua that contains the displayed objects and their information.
This can be accessed any time using field tStack of the GUI figure userdata, uf=clean_get_uf (GuiGF),
and ga that is the handle to the figure axis containing the tab.

8.4.5 Tweaking display

Display can be tuned to the user will by editing the displayed objects. All display information is
accessed through a call to clean get uf, using GuiGF the GUI figure handle as input argument.
uf = clean_get_uf (GuiGF);

uf is a user data structure with fields

e ParentFigure The GUI figure handle. This should be equal to GuiGF.
e p The handle to the uipannel displaying the data.

e tStack A cell array of 7 columns and as many lines as tabs generated. Column 1 contains the
tab names and column 7 contains the tab userdata object.
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tab the index in tStack corresponding to the tab currently displayed.
java set to 1. Ensures that the userdata handles java objects for cingui.

JPeer A pointer to the Java object containing the display, either a JTabbedPane if only tabs
are displayed, or a JScrollPane if only a tree is displayed, or a JSplitPane if the display
contains several Panes.

pcontainer The handle to the hgjavacomponent that contains the display.

toolbarRefresh (Optional) A function handle that can be called at refresh to perform toolbar
dependencies (e.g. uicontrol enabling as function of the GUI state.

tag The GUI figure tag.
Explo If an exploration tree is present, the JScrollPane java object containing the tree.

EJPeer If an exploration tree is present, JSplitPane java object containing the global display.

The seventh column of uf.tStack contains information relative to each of the tab objects of the
JTabbedPane. It is commonly named ub and contains the following fields

name The tab name, that should be corresponding to the parameter family.
table A cell array containing the objects of each cell of the JTable
ToolTip A string providing a tool tip if the mouse cursor if over the tab tip.
ParentPannel The handle to the GUI figure.

type A string providing the table objects type, commonly CinCell.

JTable The JTable java object.

JPeer pointer to the JScrollPane typically used for display.

NeedClose value set to force use of a close button on the tab.

Each tabbed pane can be tweaked regarding the displayed column dimensions.

In the case of a GUI displaying user input objects the table itself does not need to be interactive.
(This is different from a results table that will be analyzed by the user). It is thus recommended to
deactivate the table selection interactivity using

ub.JTable.setRowSelectionAllowed(false);
ub.JTable.setColumnSelectionAllowed(false);
ub.JTable.setCellSelectionEnabled(false);
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Columns width can be set using a line array with as many columns as columns in the table and
providing in pixels the minimal width a column should have to cingujtableColWidth. The value
can be set to -1 if the user wishes to let free the width of a column.

% for 3 columns table, last one left free
ColWidth=[150 300 -1];
cinguj (’tableColWidth’ ,ub.JTable,ColWidth);

Row height can be set (same for all lines) by calling the setRowHeight method of JTable. The
value is in pixel.

% getting the intial row height

rl = ub.JTable.getRowHeight

% setting a new row height to 22px
ub.JTable.setRowHeight (22)

8.4.6 Defining an exploration tree

To ease up navigation between tabs, one can use an exploration tree in the GUI figure. Tabs can
then be opened by clicking in the tree that should list all available tabs (or parameter families).

The exploration tree is commonly named PTree, and has to be defined in the .csv file. It should
contain push type buttons with callbacks triggering the opening of the desired tab.

c; sample PTree defintion
h;type=push;name;callback;value;ToolTip;
n;PTree.Family;my_ui(’InitFamily’);"Family";"Open corresponding family tab"

To properly handle an exploration tree, one has to initialize it when the GuiGF figure is opened,
that is to say after the cinguj 0bjFigInit call. The initialization should be handled by a call of
the type mu_ui(’InitPTree’).

Low level access to the exploration tree is handled by a subfunction of cinguj named treeF. The
subfunction handle can be accessed using treeF=cinguj(’@treeF’) ;. It is recommended to store
the variable treeF containing the subfunction handle in a persistent variable of the GUI function
my_ui.

% option initialization

RunOpt=struct (’NoInit’,0,’lastname’,’’);

% for all fields of DefBut.PTree, sort the buttons
ri=fieldnames(DefBut.PTree); table=cell(length(rl),2);

for jl=1:length(rl);table(jl,:)={DefBut.PTree.(r1{j1}) [1 1]1}; end



% generate clean table and corresponding levels
level=vertcat(table{:,2}); table=table(:,1);
% generate the tree ua
ua=struct(’table’,{table},’level’,level, ’name’,’my_ui’,...
’ParentPanel’ ,GuiGF, >ToolTip’,’The GUI exploration tree’,’NeedClose’,2);
% display the tree in the GUI figure
[tree,gfl=cinguj(’tabbedpaneAddTree’,’my_ui’,ua);
% tweak the tree to enable selected tab field highlighting
tree.getSelectionModel.setSelectionMode (
javax.swing.tree.TreeSelectionModel.SINGLE_TREE_SELECTION)
% refresh
cingui(’resize’ ,GuiGF) ;

The exploration tree thus defined highlights its node corresponding to the currently displayed tab.
This tasks is performed automatically by cinguj when clicking on a button of a tree.

To access the tree object and its highlighted field, one can do
[RunOpt.lastname,tree]=treeF(’explolastname’,GuiGF);

To switch the highlighted field to a new name newname and get the tree node object, one can
do

node=treeF (’scrollToNameSelect’ ,tree,newname) ;
8.4.7 Finding CinCell buttons in the GUI with getCell

To quickly find CinCell buttons in an interface, subfunction getCell of sdcedit can be used.
getCell=sdcedit(’QgetCell’);
[obj,tab,name]=getCell(rlj, propi’,’vali’,...,st0pt)
e rjlis a GuiGF, or an UIVH, or a java/EdiT, or figure Tag, or vector of handles or 0 for all
MATLAB figures.
e propi, vali are pairs of properties (fields of the buttons) and their desired values.
e stOpt is an option that allows a constant output in cell format if set to >cell’.

Actions to check or get specific fields of a cell array of CinCell buttons are also available using
commands

% ri=getCell(’getfield st’,obj); % outputs field st of obj (CinCell) or {obj}
% ri=getCell(’isfield st’,obj); % outputs logical checking presence of field st in obj
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8.5 Interactivity

8.5.1 Handling tabs

To initialize tabs, it is recommended to use a call of type my_ui (’InitTab’), that handles the tab
generation using the standard button definitions.

To get information on the existing tabs, one can access to uf, with clean get uf.

It is possible to switch the display to an existing tab using cinguicurtabTab command, with Tab
the tab name to switch to.

To close a tab, one should use a call to subfunction tabChage of cinguj. Handle to the subfunction
can be accessed with cinguj(’@tabChange’). One must then provide the close command, the
GUI figure tag, and the tab name to close.

e One can use _cur instead of a tab name to close the current tab.

e One can use command closeAll instead of close to close all tabs at once.

% close current tab:
feval(cinguj(’@tabChange’),’close’,’my_ui’,’_cur’)
% close tab ’tab’
feval(cinguj(’@tabChange’),’close’,’my_ui’,tab)

% close all tabs
feval(cinguj(’@tabChange’),’closeAll’, ’my_ui’)

8.5.2 Handling dependencies

Dependencies define the set of actions performed consequently to the edition of a given parameter.
They should be handled by a call of type my_ui(’set’). Classically dependencies are handled
through the SetFcn definition relative to each parameter. In the .csv definition, most SetFcn fields
should be set to my_ui(’set’).

For the exclusive case of push buttons, dependencies or actions have to be passed to the callback
field.



The set function call must be able to be called from script in the same manner than from CinCell
callbacks. Calls of the form my_ui(’set’,struct(’Tab.Par’,val,...)); should then edit the
parameters and execute dependencies.

A typical entry to the set command can then be

if carg<=nargin; % from script mode

rl=varargin{carg}; carg=carg+l; r2=fieldnames(rl);

if length(r2)>1 7 allow multiple fields input at once
for ji=1:length(r2); % loop to assign each field

my_ui(’Set’,struct(r2{j1},r1.(x2{j1})));

end
return % get out after having assigned each parameter
else J, one parameter provided, carry on
obj=r1j.(CAM) . (r2{1}); val=r1.(r2{1}); gf=GuiGF;
uo=struct (’FromScript’,1); % build the data
end

else % callback from CinCell
[RO,uo0,CAM,Cam]=clean_get_uf (’getuo’, [’SetStruct’ CAM]);

obj=uo.ob; val=fieldnames(RO); gf=GuiGF; val=R0.(val{1l});
end
% robustness check regarding object existence
if isempty(obj)

ri=fieldnames(rl); ri=ri{1};

sdtw(’_nb’,’Property %s does not exist in %s, skipped’,r1,CAM); return
else; CAM=sdcedit(obj,’_get’,’name’); Cam=lower (CAM);
end

A robust recuperation of the active CinCell is performed through a clean get ufgetuo call. Re-
cuperation of the parameter name can be performed with a sdcedit call. Note that obj should be
an EditT java object or a CinCell.

To edit or get parameter values it is recommended to use sdcedit that implements robust parameter
assignations.

To get values, if the object is an EditT, one should use 4 argument calls of the type

rl = sdcedit(obj,’field’,’_get’, ’prop’), with field the parameter name, and prop the prop-
erty to get, which is one of the fields defined in the button. A shortcut command to get the property
value can be used used ri=sdcedit(obj,’_get’,’field’).

If the object is a CinCell, one can use direct get commands with ri=obj.get (’prop’) ;.
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In the case of pop buttons, the current value can be expressed either as the index in the choices
list (or ChoicesTag if defined) or the value in the choices list directly. To ensure the type of data
accessed, one can use st1 = sdcedit(rlj,’field’,’_popvalue’, []) to get the value in the choice
list, or il=sdcedit(rlj,’field’,’_popindex’, []) to get the index in the choice list.

To assign properties, if the object is an EditT, one can use 4 argument calls of the type

rl = sdcedit(obj,’field’,’’prop’,value), with field the parameter name, and prop the prop-
erty to set to value. A shortcut command to set the property value to val for both EditT and
CinCell objects can be used obj=sdcedit(obj,’field’,val).

If the object is a CinCell, one can use direct set commands with ri=obj.set (’prop’,val);.

8.5.3 Dialogs

Interaction through dialog windows is possible, and standard sdt_dialogs calls are accessible. Spe-
cific dialogs using java objects with interactivity is also possible, but the dialog figure should always
be the same and be closed after the dialog to control the number of opened figures.

File input dialog

The most classical dialog is to ask for a file or directory input. If the input file is a parameter in
a push button, the user input is handled using a callback with sdt dialogsEEdit, and the field
SetFcn to handle the dependencies.

One can thus define such interactivity with a csv definition like

h;type=push;name;callback;value;ToolTip;SetFcn=my_ui(’Set’)
n;Familiy.FileInput;sdt_dialogs(’EEdit_File’);"Click to input file";"Specify a file"

Call EEdit of sdt_dialogs has several variants,
e EEdit File to ask for an existing file.
e EEdit Dir to ask for a directory.
e EEdit_FPut to ask for a file that can possibly be created.

e EEdit_prompt to ask for an input defined through a set of parameters defined in a
PropertyUnitTypeCell format.

sdt_dialogs(’EEdit_prompt m_elastic 27’);
sdt_dialogs(’EEdit_prompt -eval'my_fun(’’proptypecell’’);"’,indRequired,val);



Selection in a tree dialog

When performing design of experiment analyses with saved results, one can use a tree representation
of the parameter grid using |[fe_defRangeTree with a standard SDT parameter structure.

It is possible to implement callbacks in the tree to trigger actions for a specific point, such as loading
the selected data set or displaying the selected results.

Using a standard SDT RangeGrid structure here named par, one can display in a dialog figure
named my_uidlg the RangeTree that will call a specific loading function with

gf=cinguj (’0bjFiglnit’,struct(’Tag’, ’my_uidlg, 'name’,my_uidlg’, ’noMenu’,1));
ua=fe_def ([’rangetree-outgf-minName-root"DOE"-push-getUA"my_uidlg"’...

’-callback"sprintf (’’my_ui(’’’’load’’’’,%%1i);’’,R0.vallink(j1));"’],par);
cinguj (’tabbedpaneAddTree’ ,ua.ParentPanel ,ua,’my_uidlg’);

In the [fe_defRangeTree call,

e —outgf Activated the display mode of RangeTree that will generate the java tree object.

e -minName Asks to generate node names to display only with the sub name corresponding to
the node level.

e —root’’st’’ Allows specifying a tab root name in the my_uidlg figure.

e -push Activates the generation of push buttons with callbacks for the tree nodes. By default
the callback displays in the command window the index in the Range.val list corresponding
to the clicked point.

e —getUA’’tag’’ Asks to output the tree object for customized external display. tag allows
specifying to which parent figure the tree will be displayed.

e —callback’’ fen’’ Allows defining a customized callback. The fecn input must in fact be a
string that will be evaluated to generate the callback call itself, so that the user can exploit
the index in the Range.val list corresponding to the clicked node. Since the displayed nodes
are not in the same order than the initial list, [fe_defRangeTree uses the internal variable
RO.valLink to make the conversion between the displayed node order and the initial val list.
The callbacks are generated in a loop in the node order, indexed by j1. In the example, the
callback to be generated is my_ui(’load’,il) with input i1 being the index of the clicked
node in the initial val list.

For such behavior to be relevant, one expects the Range variable par to be accessible at any time
by the function my ui. Saving par in the GUI file arborescence or making it a persistent variable of
my_ui are to easy solutions to this issue.
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This mechanism can be used to handle a project results file arborescence. In this case the DefBut
variable should contain the Range structure that will have to be incremented on the fly when saving
a file.

Check list dialog

sdt_dialogs provides a check list functionality handling based on keywords. The associated button
is valued as the list of keywords separated with commas. Its edition is then based on a list to check.

The following code demonstrates the use of such button, through a complete definition

% Use of buttons associated to a check list
% Define a tab with simple DefBut
r1=[’Post (", "#push#"define post list")’]; % DefBut
% interpet DefBut
Rl=cingui (’paramedit’,rl);
% Specifc check list definition
R1.Post.callback={’sdt_dialogs’,’EEdit_CheckList’}; % callback
% associate a keyword list
R1.Post.list=["FcA(#3#"Fc stats unfiltered")’...
’Fc20 (#3#"Fc stats filtered 20Hz")’
’UpA (#3#"Uplifts unfiltered")’
>SubPto (#3#pantograph displacements")’];
R1.Post.SetFcn="";
% Now display tab with functional button
gf=cinguj (’tabbedpanefig’,’demo_checkList’) ;
Ri=cinguj(’ObjEditJ’,R1,gf);
ua=struct (’name’,’demo_checkList’,’ParentPanel’,gf,’table’,...
{sdt_dialogs(’uatable-end0’,’info’,’Post’,R1)});
cinguj(’tabbedpaneadd’,gf,ua,ua.name, [1);



Element reference

barl

beaml, beamlt

celas,cbush

dktp

fsc

hexa8, penta6, tetra4, and other 3D volumes _____| . .

integrules

massl,mass2

m_elastic

m_heat

m_hyper

m_piezo

p_beam

p_heat

p_shell

p-solid

p_spring

p_super

P_piezo

..............

..............

...............

quad4, quadb, mitc4

q4p, q8p, t3p, t6p and other 2D volumes _______ |

rigid

tria3, tria6




Element functions supported by OpenFEM are listed below. The rule is to have element families
(2D and 3D) with families of formulations selected through element properties and implemented for
all standard shapes

3-D VOLUME ELEMENT SHAPES

hexa8| 8-node 24-DOF brick
hexa20 20-node 60-DOF brick
hexa27 27-node 81-DOF brick

6-node 18-DOF pentahedron
15-node 45-DOF pentahedron
4-node 12-DOF tetrahedron
10-node 30-DOF tetrahedron

2-D VOLUME ELEMENT SHAPES

q4p 4-node quadrangle

q5p 5-node quadrangle

q8p 8-node quadrangle

q9%a 9-node quadrangle

t3p 3-node 6-DOF triangle
t6p 6-node 12-DOF triangle

Supported problem formulations are listed in section [6.1] , in particular one considers 2D and 3D
elasticity, acoustics, hyperelasticity, fluid/structure coupling, piezo-electric volumes, ...

Other elements, non generic elements, are listed below

3-D PLATE/SHELL ELEMENTS
dltp| 3-node 9-DOF discrete Kirchoff plate
mitc4 4-node 20-DOF shell
quadb] quadrilateral 4-node 20/24-DOF plate/shell
quad9 (display only)
quadb| quadrilateral 8-node 40/48-DOF plate/shell
tria3 3-node 15/18-DOF thin plate/shell element
triaf 6-node 36DOF thin plate/shell element




OTHER ELEMENTS

standard 2-node 6-DOF bar

standard 2-node 12-DOF Bernoulli-Euler beam
pretensionned 2-node 12-DOF Bernoulli-Euler beam
(display only)

scalar springs and penalized rigid links
concentrated mass/inertia element

concentrated mass/inertia element with offset
handling of linearized rigid links

UTILITY ELEMENTS

fe_super] element function for general superelement support
integrules FEM integration rule support

fsc| fluid /structure coupling capabilities
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barl

Purpose

Element function for a 6 DOF traction-compression bar element.

Description

The element corresponds to the standard linear interpolation for axial traction-compression.
The element DOF's are the standard translations at the two end nodes (DOFs .01 to .03).

In a model description matrix, element property rows for elements follow the standard format

(see section ).

[n1 n2 MatID ProID E1tID]

Isotropic elastic materials are the only supported (see .

For supported element properties see[p_beaml Currently, only uses the element area A with the
format

[ProID Type O 0O O Al

See also

m_elasticl [p_beaml [fe_mk| [feplot]




beaml, beamlt

Purpose

Element functions for a 12 DOF beam element. beamit is a 2 node beam with pretension available
for non-linear cable statics and dynamics.

Description

beaml

In a model description matrix, element property rows for elements follow the format

[n1 n2 MatID ProID nR O O E1tID pl p2 x1 yl zl x2 y2 z2]

where

nl,n2
MatID
ProID
nr 0 O

VX Vy vz

pl,p2

x1,...

X2,...

node numbers of the nodes connected

material property identification number

element section property identification number

number of node not in the beam direction defining bending plane 1 in this case {v}
is the vector going from n1 to nr. If nr is undefined it is assumed to be located at
position [1.5 1.5 1.5].

alternate method for defining the bending plane 1 by giving the components of a vector
in the plane but not collinear to the beam axis. If vy and vz are zero, vx must be
negative or not an integer. MAP=beamlt(’map’,model) returns a normal vector
MAP giving the vector used for bending plane 1. This can be used to check your
model.

pin flags. These give a list of DOF's to be released (condensed before assembly). For
example, 456 will release all rotation degrees of freedom. Note that the DOFS are
defined in the local element coordinate system.

optional components in global coordinate system of offset vector at node 1 (default
is no offset)

optional components of offset vector at node 2



beaml, beamlt

Isotropic elastic materials are the only supported (see n_elastic|. [p_beam| describes the section
property format and associated formulations.

Failure to define orientations is a typical error with beam models. In the following example, the
definition of bending plane 1 using a vector is illustrated.

cf=feplot(femesh(’test2bay’));

% Map is in very variable direction due to undefined nr
% This is only ok for sections invariant by rotation
beamlt(’map’,cf.mdl) ;fecom(’view3’);

% Now define generator for bending plane 1

il=feutil(’findelt eltname beaml’,cf.mdl); % element row index
cf.mdl.E1t(i1,5:7)=ones(size(il))*[-.1 .9 0]; % vx vy vz
beamlt (*map’,cf.mdl) ;fecom(’view2’);

beaml adds secondary inertia effects which may be problematic for extremely short beams and
beamlt may then be more suitable.

beamlt

For the bending part, this element solves

0? 0*w 0 ow
. 2
with boundary conditions in transverse displacement
3
w = given or F = T‘;—w - Elyg—lg (9.2)
x x
and rotation
0 0?
a—: = given or M = Elya—;; (9.3)

This element has an internal state stored in a structure where each column of
Case.GroupInfo{7}.data gives the local basis, element length and tension [bas(:);L;ten]. Initial
tension can be defined using a .MAP field in the element property.

This is a simple example showing how to impose a pre-tension :

model=femesh(’TestBeaml divide 107);

model=fe_case(model, ’FixDof’,’clamp’,[1;2;.04;.02;.01;.05]);
model .Elt=feutil (’SetGroup 1 name beamlt’,model);
dil=fe_eig(model, [5 10]);

model=feutil(’setpro 112’ ,model, ’MAP’,
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struct (’dir’,{{’1.5e6°}},’1lab’ ,{{’ten’}}));
d2=fe_eig(model, [5 10]);

figure(l);plot([d2.data./dl.data-1]);
xlabel(’Mode index’);ylabel(’Frequency shift’);

Strains in a non-linear Bernoulli Euler section are given by

(o1 (ow?)) o
= ox 2\ Oz Z(‘?ﬂ:Q

See also

[p-beaml m_elastic| [fe_mk] [feplot]
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Purpose

element function for scalar springs and penalized rigid links

Description

celas

In an model description matrix a group of celas elements starts with a header row [Inf abs(’celas’)
0 ...] followed by element property rows following the format

[n1 n2 DofID1 DofID2 ProID E1tID Kv Mv Cv Bv]
with



celas,cbush

nl,n2

DofID

ProID
Kv

Bv

node numbers of the nodes connected. Grounded springs are obtained by setting n1
or n2 to 0.

Identification of selected DOFss.

For rigid links, the first node defines the rigid body motion of the other extremity slave
node. Motion between the slave node and the second node is then penalized. DofID
(positive) defines which DOF's of the slave node are connected by the constraint. Thus
[1 2 123 0 0 O 1e14] will only impose the penalization of node translations 2 by
motion of node 1, while [1 2 123456 0 0 0 1lei14] will also penalize the difference
in rotations.

For scalar springs, DofID1 (negative) defines which DOFs of node 1 are connected
to which of node 2. DofID2 can be used to specify different DOFs on the 2 nodes.
For example [1 2 -123 231 0 O 1e14] connects DOFs 1.01 to 2.02, etc. Use of
negative DofID1 will only activate additional DOF if explicitly given.

z

Optional property identification number (see format below)

Optional stiffness value used as a weighting associated with the constraint. If Kv is
zero (or not given), the default value in the element property declaration is used. If
this is still zero, Kv is set to 1e14.

Optional stiffness hysteretic damping value : stiffness given by K, +iB, (rather than

Kwv(1+in) when using [p_spring]).

[p_spring] properties for celas elements take the form [ProID type KvDefault m c eta S]
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By default a element will activate all 6 mechanical DOF in the model. If the element
is not linked to other elements using these DOF (e.g. 3D elements do not use DOF 4-6), there will
be a risk of null stiffness occurrence at assembly. To alleviate this problem use negative DofID1
that will only activate additional DOF in the specified list. One can also fix the spurious DOF as a
boundary condition.

Below is the example of a 2D beam on elastic supports.

model=femesh(’Testbeaml divide 107);
model=fe_case(model,’FixDof’,’2D’,[.01;.02;.04]);
model.Elt(end+1,1:6)=[Inf abs(’celas’)]; % spring supports

model .Elt(end+[1:2],1:7)=[1 0 -13 0 0 0 1e5;2 0 -13 0 0 0 1e5];
def=fe_eig(model, [5 10 0]); feplot(model,def);

When using local displacement bases (non zero DID), the stiffness is defined in the local basis and
transformed to global coordinates.

cbush

The element property row is defined by

[n1 n2 MatId Prold E1tId x1 =x2 x3 EDID S 0CID S1 S2 S3]
[n1 n2 MatId ProId E1tId NodeIdRef O O EDID S OCID S1 S2 S3]

The orientation of the spring (basis x., y., ze) can be specified by

e EDID>0 specifies a coordinate system for element orientation. This behaviour is pre-emptive.

e For coincident nl,n2, orientation vector given as x1,x2,x3 can be used to specify x. (this
differs from figure and is not compatible with NASTRAN). To specify y, for coincident nodes,
you must use classically defined EDID, otherwise set the EDID to -1.

e For distinct n1,n2, default default orientations are in the global framework. Local directions
require a non-null EDID to be activated. If one wants to use local directions defined in the
element entry, on can use EDID=-1. Then, element x. is along ny — n;, other directions are
defined as follows

— giving orientation vector v as x1,x2,x3 specifies y. in the plane given by x. and v. Note
x1 should not be an integer if x2 and x3 are zero to distinguish from the NodeIdRef case.

— NodeIdRef,0,0 specifies the use of a node number to create v = n,.y — n1.

The spring/damper is located at a position interpolated between nl and n2 using S, such that
x; = Sny+ (1 — S)ny. The midpoint is used by default, that-is-to-say S is taken at 0.5 if left to zero.
To use other locations, specify a non-zero 0CID and an offset S1,52,S3.
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It is possible to set n2 to 0 to define a grounded [cbush]

See also

[pspring Figid
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dktp

Purpose

2-D 9-DOF Discrete Kirchhoff triangle

Description

o =53
A FT E P'I .»rf \\\
3 N p ’ K\\
Y. ~ T
."'l.l r‘\;l'?"‘——\____ “\\
j 1 TT— \\E
A/ )
T 2
i 5

In a model description matrix, element property rows for dktp elements follow the standard
format

[n1 n2 n3 MatID ProID E1tID Thetal

giving the node identification numbers ni, material MatID, property ProID. Other optional infor-
mation is E1tID the element identifier, Theta the angle between material x axis and element x axis
(currently unused)

The elements support isotropic materials declared with a material entry described in
Element property declarations follow the format described in [p_shell

The element uses the et*dktp routines.

There are three vertices nodes for this triangular Kirchhoff plate element and the normal deflection
W (z,y) is cubic along each edge.

We start with a 6-node triangular element with a total D.O.F = 21

e five degrees of freedom at corner nodes :

W(z,y) , aa—zv , (Z‘;V , 0z, 0y (deflection W and rotations 6) (9.5)

e two degrees of freedom 6, and 6, at mid side nodes.



dktp

Then, we impose no transverse shear deformation v,, = 0and 7,., = 0 at selected nodes to reduce
the total DOF =21 —-6%x2=9:

e three degrees of freedom at each of the vertices of the triangle.
ow ow
w Op=(——), 0,=(—— 9.6

The coordinates of the reference element’s vertices are S;(0.,0.), Sz(1.,0.) and S3(0., 1.).

Surfaces are integrated using a 3 point rule wy = % and by mid side node.

See also

[fe_mat] m_elastic| p-shell] [fe_mk] [feplot]
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fsc

Purpose

Fluid structure/coupling with non-linear follower pressure support.

Description

Elasto-acoustic coupling is used to model structures containing a compressible, non-weighing fluid,
with or without a free surface.

The FE formulation for this type of problem can be written as [44]

o M 0 K(s) —C Feat
da sl Ty e

with ¢ the displacements of the structure, p the pressure variations in the fluid and F¢** the external
load applied to the structure, where

Jog 7ij(w)ei;(ou)de = 5q"Kq
Jog psu.dudz = dq" Mg
/%F Ja, VpVipdz = spT Fp (9.8)
pF% fQF popdx = (5pTKpp
Js, pou.ndx = 5¢"Cp



fsc

To assemble fluid /structure coupling matrix you should declare a set of surface elements (any topol-
ogy) with property p_solid(’dbval 1 fsc’). The C matrix (solid forces induced by pressure field)
is assembled with the stiffness (matrix type 1), while the CT matrix (fluid pressure due to normal
velocity of solid) is assembled with the mass (matrix type 2).

Some formulations, consider a surface impedance proportional to the pressure. This matrix can be

computed by defining a group of surface elements with an acoustic material (seem_elastic 2| and
a standard surface integration rule (p_solid(’dbval 1 d2 -3’)). This results in a mass given by

1
opT Kpp = —— / Sppdzx 9.9
PR =5 ), P (9.9)
Follower force
One uses the identity
Jxr Oz
pu— [ — — '1
ndS r A s drds, (9.10)

where (r,s) designate local coordinates of the face (assumed such that the normal is outgoing).

Work of the pressure is thus:

W,=—[ 1I (% A %) v drds. (9.11)

On thus must add the non-linear stiffness term:

_dde:/ H(ﬁdg or Oz Odu

- W A E + 81" VAN g) . (SQd’I"dS. (912)

Using % ={x1, x2, "12’377«}T (idem for s), and also

0  —z,3 @2 0 —ZTs T
[Azr]=| z,3 0 —zp |, [Azs]=| zs 0 —za [, (9-13)
—Tgp2  Tp1 0 “Ts2 Tl 0
this results in
odx ox Oz Odz
(TFA£+07;AT;)'5Q: (9.14)

{6qie}T {Ni} (Azri i {Ny s }T — Aws; i { Ny, }7){dg;}.

Tests : fsc3 testsimple and fsc3 test.

In the RivlinCube test , the pressure on each free face is given by
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II; = —W@EH on face (x1=1)
L =~ te on fae (o=0) (915)
I3 = —ngg on face (x3=1I3).

Non-conform

SDT supports non conforming element for fluid /structure coupling terms corresponding to the struc-
ture are computed using the classical elements of the SDT, and terms corresponding to the fluid are
computed using the fluid elements (see [f1ui4)).

The coupling term C' is computed using fluid /structure coupling elements (|fsc|elements).
Only one integration point on each element (the center of gravity) is used to evaluate C.

When structural and fluid meshes do not match at boundaries, pairing of elements needs to be done.
The pairing procedure can be described for each element. For each fluid element F;, one takes the
center of gravity G; (see figure), and searches the solid element .S; which is in front of the center
of gravity, in the direction of the normal to the fluid element F;. The projection of Gs; on the solid
element, P;, belongs to S;, and one computes the reference coordinate r and s of P; in S; (if \S; is
a quad4, —1 < r < 1and —1 < s < 1). Thus one knows the weights that have to be associated
to each node of S;. The coupling term will associate the DOF's of F; to the DOFs of S;, with the
corresponding weights.

Fluid

£,1

Solid

See also

[fluid) m elastic|
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hexa8, penta6, tetra4, and other 3D volumes

Purpose

Topology holders for 3D volume elements.

Description

The fhexag] hexa27,[pentab| [pentalb| [tetrad] and [tetrall] elements are standard topology
reference for 3D volume FEM problems.

In a model description matrix, element property rows for hexa8|and [hexa20| elements follow the
standard format with no element property used. The generic format for an element containing 4
nodes is [n1 ... ni MatID Prold E1tId]. For example, the hexag| format is [n1 n2 n3 n4 n5
n6 n7 n8 MatID ProIld EltId].

These elements only define topologies, the nature of the problem to be solved should be specified
using a property entry, see section [6.1] for supported problems and [p_solid] [p_heat] ... for formats.

Integration rules for various topologies are described under Vertex coordinates of the
reference element can be found using an command containing the name of the element
such as ri=integrules(’g4p’);rl.xi.

Backward compatibility note : if no element property entry is defined, or with a p_solid entry

with the integration rule set to zero, the element defaults to the historical 3D mechanic elements
described in section [7.19.2] .

See also

[fe_mat] m_elastic| [fe_mk] [feplot]




integrules

Purpose

Command function for FEM integration rule support.

Description

This function groups integration rule manipulation utilities used by various elements. In terms of
notations, a field w is interpolated within an element by shapes functions N; and values of the field
at nodes u;

u(z,y, z) = ZNi(T,s,t)ui (9.16)

The relation between physical coordinates z,y, z and element coordinates r, s, ¢ is itself described by
a mapping associated with shape functions. When computing an integral, one selects a number of
Gauss points rg, s4,t, and associated weights w, leading to an approximation of the integral as

/V [, 2)dV & 3 F(rg, 5g,tg)Jwg (9.17)
g

where J is the determinant of the Jacobian of the transform from reference to physical coordinates.
The field .wjdet is used to denote the local value of the product Jw,. The following calls generate
the reference E1tConst data structure, see section [7.15.4] .

Gauss

This command supports the definition of Gauss points and associated weights. It is called with
integrules(’Gauss Topology’,RuleNumber). Supported topologies are 1d (line), q2d (2D quad-
rangle), t2d (2D triangle), t3d (3D tetrahedron), p3d (3D prism), h3d (3D hexahedron).
integrules(’Gauss q2d’) will list available 2D quadrangle rules.

e Integ -3 is always the default rule for the order of the element.
e -2 a rule at nodes.

e -1 the rule at center.

[ -3] [ 0x1 double] ’element dependent default’
[ -2] [ 0x1 double] ’node’
[ -1] [ 1x4 double] ’center’

[102] [ 4x4 double] ’gefdyn 2x2°



integrules

[ 2] [ 4x4 double] ’standard 2x2°
[109] [ 9x4 double] Q4AWT’

[103] [ 9x4 double] ’gefdyn 3x3’
[104] [16x4 double] ’gefdyn 4x4’

[ 9] [ 9x4 double] ’9 point’

[ 3] [ 9x4 double] ’standard 3x3’
[ 2] [ 4x4 double] ’standard 2x2’
[ 13] [13x4 double] ’2x2 and 3x3’

barl,beaml,beam3

For integration rule selection, these elements use the 1D rules which list you can find using

integrules(’Gaussid’).
Geometric orientation convention for segment is ® (1) — (2)

One can show the edge using elt_name edge (e.g. beaml edge).

t3p,t6p

Vertex coordinates of the reference element can be found using ri=integrules(’tria3’);rl.xi.

3
A FT E P:I.-rz o - 1\\‘,
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i 3

Figure 9.1: t3p reference element.

Vertex coordinates of the reference element can be found using ri=integrules(’tria6’);rl.xi.
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Figure 9.2: t6p reference element.

For integration rule selection, these elements use the 2D triangle rules which list you can find using

integrules(’Gausst2d’).

Geometric orientation convention for triangle is to number anti-clockwise in the two-dimensional
case (in the three-dimensional case, there is no orientation).

e edge [1]: (1) — (2) (nodes 4, 5,... if there are supplementary nodes) e edge [2]: (2) — (3) (...) ®
edge [3]: (3) = (1) (...)

One can show the edges or faces using elt_name edge or elt_name face (e.g. t3p edge).

q4p, 95p, q8p

Vertex coordinates of the reference element can be found using ri=integrules(’quad4’) ;ril.xi.
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Figure 9.3: g4p reference element.
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Figure 9.4: g5p reference element.

Vertex coordinates of the reference element can be found using the ri=integrules(’quadb’) ;rl.xi.
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Figure 9.5: g8p reference element.

For integration rule selection, these elements use the 2D quadrangle rules which list you can find

using integrules(’Gaussqg2d’).
Geometric orientation convention for quadrilateral is to number anti-clockwise (same remark as for

the triangle)
e edge [1]: (1) — (2) (nodes 5, 6, ...) o edge [2]: (2) — (3) (...) @ edge [3]: (3) — (4) e edge [4]: (4)

— (1)
One can show the edges or faces using elt_name edge or elt_name face (e.g. g4p edge).

tetrad,tetrall
3D tetrahedron geometries with linear and quadratic shape functions. Vertex coordinates of the
reference element can be found using ri=integrules(’tetrad’);rl.xi (or command ’tetral0’).
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Figure 9.7: tetral0 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find
using integrules(’Gausst3d’).

— —

Geometric orientation convention for tetrahedron is to have trihedral (12, 13, 14) direct (z_j designates
the vector from point i to point j).

e edge [1]: (1) — (2) (nodes 5, ...) o edge [2]: (2) — (3) (...) e edge [3]: (3) — (1)

e edge [4]: (1) — (4) e edge [5]: (2) — (4) e edge [6]: (3) — (4) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise:
e face [1]: (1) (3) (2) (nodes p+1, ...) e face [2]: (1) (4) (3) (...)
o face [3]: (1) (2) (4) e face [4]: (2) (3) (4)

One can show the edges or faces using elt_name edge or elt_name face (e.g. tetralO face).
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penta6, pentaldb

3D prism geometries with linear and quadratic shape functions. Vertex coordinates of the reference
element can be found using ri=integrules(’penta6’);rl.xi (or command ’pental5’).

Figure 9.9: pentalb reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find
using integrules(’Gaussp3d’).

Geometric orientation convention for pentahedron is to have trihedral (1 12,13,1
e edge [1]: (1) — (2) (nodes 7, ...) o edge [2]: (2) — (3) (...) o edge [3]: (3)
e edge [4]: (1) — (4) e edge [5]: (2) — (5) e edge [6]: (3) — (6)

e edge [7]: (4) — (5) e edge [8]: (5) — (6) e edge [9]: (6) — (4) (nodes ..., p)

14) direct
(1)
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All faces, seen from the exterior, are described anti-clockwise.
e face [1] : (1) (3) (2) (nodes p+1, ...) e face [2] : (1) (4) (6) (3) e face [3] : (1) (2) (5) (4)
o face [4] : (4) (5) (6) e face [5] : (2) (3) (5) (6)

One can show the edges or faces using elt_name edge or elt_name face (e.g. pentalb face).

hexa8, hexa20, hexa2l, hexal27

3D brick geometries, using linear hexa8, and quadratic shape functions. Vertex coordinates of the
reference element can be found using ri=integrules(’hexa8’);rl.xi (or command ’hexa20’,
’hexal27’).
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Figure 9.11: hexa20 reference topology.

For integration rule selection, these elements use the 3D hexahedron rules which list you can find
using integrules(’Gaussh3d’).

— —

Geometric orientation convention for hexahedron is to have trihedral (12,14, 1_5) direct
e edge [1]: (1) — (2) (nodes 9, ...) o edge [2]: (2) — (3) (...) e edge [3]: (3) — (4)
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e edge [4]: (4) — (1) e edge [5]: (1) — (5) e edge [6]: (2) — (6)
e edge [7]: (3) — (7) e edge [8]: (4) — (8) e edge [9]: (5) — (6)
e edge [10]: (6) — (7) e edge [11]: (7) — (8) e edge [12]: (8) — (5) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise.

o face [1] : (1) (4) (3) (2) (nodes p+1, ...) e face [2] : (1) (5) (8) (4)
o face [3] : (1) (2) (6) (5) e face [4] : (5) (6) (7) (8)

e face [5] : (2) (3) (7) (6) e face [6] : (3) (4) (8) (7)

One can show the edges or faces using elt_name edge or elt_name face (e.g. hexa8 face).

BuildNDN

The commands are extremely low level utilities to fill the .NDN field for a given set of nodes. The
calling format is of mk (’BuildNDN’,type,rule,nodeE) where type is an int32 that specifies the
rule to be used : 2 for 2D, 3 for 3D, 31 for 3D with xyz sorting of NDN columns, 23 for surface in a
3D model, 13 for a 3D line. A negative value can be used to switch to the .m file implementation in
integrules.

The 23 rule generates a transformation with the first axis along N, r, the second axis orthogonal in
the plane tangent to N,r, N, s and the third axis locally normal to the element surface. If a local
material orientation is provided in columns 5 to 7 of nodeE then the material x axis is defined by
projection on the surface. One recalls that columns of nodeE are field based on the field
and the first three labels should be *vix’,’viy’,’viz’.

With the 32 rule if a local material orientation is provided in columns 5 to 7 for  and 8 to 10 for y
the spatial derivatives of the shape functions are given in this local frame.

The rule structure is described earlier in this section and node has three columns that give the
positions in the nodes of the current element. The rule.NDN and rule.jdet fields are modified.
They must have the correct size before the call is made or severe crashes can be experienced.

If a rule.bas field is defined (9 x Nw), each column is filled to contain the local basis at the
integration point for 23 and 13 types. If a rule.J field with (4 x Nw), each column is filled to
contain the jacobian at the integration point for 23.

model=femesh(’testhexa8’); nodeE=model.Node(:,5:7);
opt=integrules(’hexa8’,-1);

nodeE(:,5:10)=0; nodeE(:,7)=1; nodeE(:,8)=1; % xe=z and ye=y
integrules(’buildndn’,32,0pt,nodeE)

model=femesh(’testquad4’); nodeE=model.Node(:,5:7);
opt=integrules(’q4p’,-1) ;opt.bas=zeros(9,opt.Nw) ;opt.J=zeros(4,opt.Nw);
nodeE(:,5:10)=0; nodeE(:,5:6)=1; 7 xe= along [1,1,0]
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integrules(’buildndn’,23,o0pt,nodeE)

See also

lelemO
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massl,mass2

Purpose

Concentrated mass elements.

Description
Loz Lo

Fom
e}
[a
7

102105

places a diagonal concentrated mass and inertia at one node.

In a model description matrix, element property rows for elements follow the format
[NodeID mxx myy mzz ixx iyy izz E1tID]

where the concentrated nodal mass associated to the DOFs .01 to .06 of the indicated node is given
by

diag([mxx myy mzz ixx iyy izz])

Note [feutill GetDof eliminates DOFs where the inertia is zero. You should thus use a small but
non zero mass to force the use of all six DOFs.

For elements, the element property rows follow the format
[n1 M I11 I21 I22 I31 I32 I33 E1tID CID X1 X2 X3 MatId Prold]

which, for no offset, corresponds to matrices given by

[ M symmetric i [ [ pdV symmetric ]
M M
M M
— 9.18
I [ pla® + y2)av (0.18)
—Iy I —1I 1o
L —1I31 —1I32 133 | . —1I3 —1I39 I33 |

Note that local coordinates CID are not currently supported by elements.

See also

[femesh] [feplot|




m_elastic

Purpose

Material function for elastic solids and fluids.
Syntax

mat= m_elastic(’default’)
mat= m_elastic(’database name’)
mat= m_elastic(’database -therm name’)

pl = m_elastic(’dbval MatId name’);

pl = m_elastic(’dbval -unit TM MatId name’);

pl = m_elastic(’dbval -punit TM MatId name’);

pl = m_elastic(’dbval -therm MatId name’);
Description

This help starts by describing the main commands of m_elastic : Database and Dbval. Materials
formats supported by m_elastic are then described.

Database, Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials. See section [7.3]
for material property interface.

m elastic(’database Steel’) returns a the data structure describing steel.
m_elastic(’dbval 100 Steel’) only returns the property row.

% List of materials in data base

m_elastic info

% examples of row building and conversion

pl=m_elastic([100 fe_mat(’m_elastic’,’SI’,1) 210e9 .3 7800],
’dbval 101 aluminum’,
’dbval 200 lamina .27 3e9 .4 1200 0 790e9 .3 1780 0°);

pl=fe_mat (’convert SITM’,pl);

pl=m_elastic(pl,’dbval -unit TM 102 steel’)

Command option -unit asks the output to be converted in the desired unit system. Command
option -punit tells the function that the provided data is in a desired unit system (and generates
the corresponding type). Command option -therm asks to keep thermal data (linear expansion
coefficients and reference temperature) if existing.
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You can generate orthotropic shell properties using the Dbval 100 lamina VolFrac Ef nu f rho f
G_f Eom num Rhom G.m command which gives fiber and matrix characteristics as illustrated above
(the volume fraction is that of fiber).

The default material is steel.

To orient fully anisotropic materials, you can use the following command

% Behavior of a material grain assumed orthotropic

C11=168.4e9; C12=121.4e9; C44=75.4e9; ' GPa

C=[C11 C12 C12 0 0 0;C12 C11 C12 0 O 0;C12 C12 C11 0 O O;
0 00 C44 0 O; 000 0 C44 0; 0000 0 C44];

pl=[m_elastic(’formulaPlAniso 1’,C,basis(’bunge’,[5.175 1.3071 4.2012]));
m_elastic(’formulaPlAniso 2’,C,basis(’bunge’, [2.9208 1.7377 1.3921]1))];

Subtypes m elastic supports the following material subtypes

1 : standard isotropic

Standard isotropic materials, see section [6.1.1] and section [6.1.2] , are described by a row of the
form

[MatID typ E nu rho G Eta Alpha TOl]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,1) command, E (Young’s
modulus), v (Poisson’s ratio), p (density), G (shear modulus, set to G = E/2(1 + v) if equal to
zero). n loss factor for hysteretic damping modeling. « thermal expansion coefficient. Ty reference
temperature. G = E/2(1+v)

By default £ and G are interdependent through G = E/2(1 4 v). One can thus define either F and
G to use this property. If E or GG are set to zero they are replaced on the fly by their theoretical
expression. Beware that modifying only E or G, either using [feutilBetMat or by hand, will not
apply modification to the other coeflicient. In case where both coefficients are defined, in thus has
to modify both values accordingly.

2 : acoustic fluid

Acoustic fluid , see section [6.1.3] ,are described by a row of the form

[MatId typ rho C eta RI]
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with typ an identifier generated with the fe mat(’m elastic’,’SI’,2) command, p (density), C
(velocity) and 1 (loss factor). The bulk modulus is then given by K = pC?2.

For walls with an impedance (see form 8), the real part of the impedance, which cor-
responds to a viscous damping on the wall is given by Z = pCR. If an imaginary part is to be

present, one will use Z = pCR(1 + in). In an acoustic tube the absorbtion factor is given by
_ 4R
T R D*+E?)

3-D anisotropic solid

3-D Anisotropic solid, see section [6.1.1], are described by a row of the form
[MatId typ Gij rho eta Al A2 A3 A4 A5 A6 TO]

with typ an identifier generated with the fe mat(’m_elastic’,’SI’,3) command, rho (density),
eta (loss factor) and Gij a row containing

[G11 G12 G22 G13 G23 G33 G14 G24 G34 G44 ...
G15 G25 G35 G45 G55 G16 G26 G36 G46 G56 G66]

Note that shear is ordered gyz, 9.7, g,y which may not be the convention of other software.

SDT supports material handling through

e material bases defined for each element xx

e orientation maps used for material handling are described in section . It is then expected
that the six components vix,vly,vliz,v2x,v2y,v2z are stored sequentially in the interpolation
table.It is then usual to store the MAP in the stack entry info,EltOrient.

2-D anisotropic solid

2-D Anisotropic solid, see section [6.1.2], are described by a row of the form
[MatId typ E11 E12 E22 E13 E23 E33 rho eta al a2 a3 TO]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,4) command, rho (density),
eta (loss factor) and Fij elastic constants and ai anisotropic thermal expansion coefficients.

shell orthotropic material

shell orthotropic material, see section [6.1.4] corresponding to NASTRAN MATS, are described by
a row of the form
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[MatId typ E1 E2 nul2 G12 Glz G2z Rho Al A2 TO Xt Xc Yt Yc S Eta ...
F12 STRN]

with typ an identifier generated with the fe mat(’m_elastic’,’SI’,5) command, rho (density),
... Seem_elastic Dbvalllamina for building.

6 : Orthotropic material

3-D orthotropic material, see section , are described by a set of engineering constants, in a row
of the form

[MatId typ E1 E2 E3 Nu23 Nu31l Nul2 G23 G31 G12 rho al a2 a3 TO eta]

with typ an identifier generated with the fe mat (*m_elastic’,’SI’,6) command, Fi (Young mod-
ulus in each direction), vij (Poisson ratio), Gij (shear modulus), rho (density), ai (anisotropic ther-
mal expansion coefficient), Ty (reference temperature), and eta (loss factor). Care must be taken
when using these conventions, in particular, it must be noticed that

(9.19)

See also

Section [£.5.1] section [7.3], [fe_mat] [p_shel]
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Purpose

Material function for heat problem elements.

Syntax

mat= m_heat(’default’)
mat= m_heat(’database name’)

pl = m_heat(’dbval MatId name’);

pl = m_heat(’dbval -unit TM MatId name’);

pl = m_heat(’dbval -punit TM MatId name’);
Description

This help starts by describing the main commands of m_heat : Database and Dbval. Materials
formats supported by m_heat are then described.

Database,Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials. See section
for material property interface.

m_heat (’DataBase Steel’) returns a the data structure describing steel.
m_heat (’DBVal 100 Steel’) only returns the property row.

% List of materials in data base
m_heat info
% examples of row building and conversion
pl=m_heat(’DBVal 5 steel’);
pl=m_heat(pl,...

’dbval 101 aluminum’,

’dbval 200 steel’);
pl=fe_mat(’convert SITM’,pl);
pl=m_heat(pl,’dbval -unit TM 102 steel’)

Subtypes m_heat supports the following material subtype

1 : Heat equation material
[MatId fe_mat(’m_heat’,’SI’,2) k rho C Hf]
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e k conductivity

rho mass density

C heat capacity

Hf heat exchange coefficient

See also

Section [.5.1] section [7.3], [fe_mat] [p_heat]
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Purpose

Material function for hyperelastic solids.
Syntax
mat= m_hyper(’default’)

mat= m_hyper(’database name’)
pl = m_hyper(’dbval MatId name’);

pl = m_hyper(’dbval -unit TM MatId name’);
pl = m_hyper(’dbval -punit TM MatId name’);
Description

Function based on m_elastic function adapted for hyperelastic material. Only subtype 1 is currently
used:

1 : Nominal hyperelastic material

Nominal hyperelastic materials are described by a row of the form
[MatID typ rho Wtype C_1 C_2 K]

with typ an identifier generated with the fe mat(’m hyper’,’SI’,1) command, rho (density),
Witype (value for Energy choice), C, Co, K (energy coefficients).
Possible values for Wtype are:

0: W=0C1(J1—3)+Ca(Jy —3) + K(J3 — 1)?

1: W=Ci(J1 —=3)+Ca(J2—3)+ K(Js—1) — (C1 +2Cy + K) In(J3)
Other energy functions can be added by editing the hyper.c Enpassiv function.
In RivlinCube test, m_hyper is called in this form:
model.pl=m_hyper(’dbval 100 Ref’); % this is where the material is defined
the hyperelastic material called “Ref” is described in the database of m hyper.m file:

out.pl=[MatId fe_mat(’type’,’m_hyper’,’SI’,1) 1e-06 0 .3 .2 .3];
out.name=’Ref’;

out.type=’m_hyper’;

out.unit=’SI’;
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Here is an example to set your material property for a given structure model:

model.pl = [MatID fe_mat(’m_hyper’,’SI’,1) typ rho Wtype C_1 C_2 K];
model.E1t(2:end,length(feval (ElemF, 'node’)+1)) = MatID;
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Purpose

Syntax

Material function for piezoelectric solids

mat= m_piezo(’database name’)
pl = m_piezo(’dbval MatId -elas 12 Name’);

See section for tutorial calls. Accepted commands are

[ Database, Dbval] [-unit TY] [,MatiD]] Name

m_piezo contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.

Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric
properties and contains a reference ElasMatId to an elastic material used for the elastic properties

of the material (see for input formats).

m_piezo(’info’) % List of materials in data base
% database piezo and elastic properties
pl=m_piezo(’dbval 3 -elas 12 Sample_ULB’)

Theoretical details on piezoelectric materials are given in chapter The m piezo Const and
BuildConstit commands support integration constant building for piezo electric volumes integrated
in the standard volume elements. Element properties are given by entries, while materials
formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option
structure with fields

e .name of the form ProIdval+patchName. For example ProIdl+SmartM.MFC-P1.2814.

e MatId value for the initial MatId.

m_piezo(’patch’) lists currently implemented geometries. In particular
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e Noliac.Material.Geometry is used for circular patches by Noliac. Fields for the geometry
are

— 0D outer diameter (mm).

— TH Thickness (mm). To specify a milimiter fraction replace the . by and _. For example
THO_7 is used for TH=0.7 mm.

— ID inner diameter (mm) (optional for piezo rings).
e SmartM.Material.Geometry is used for circular patches by Noliac. The geometry is coded

assuming a rectangle in mm. Thus 2814 corresponds to an 28 x 14 mm active rectangle.

The piezoelectric constants can be declared using the following sub-types
1 : Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 epsliT eps2T eps3T EDType]

These simplified piezoelectric properties (1.4) can be used for PVDF, but also for PZT if shear mode
actuation/sensing is not considered (de2y = dij5 = 0). For EDType==0 on assumes d is given. For
EDType==1, e is given. Note that the values of e/ (permitivity at zero stress) should be given (and
not ).

2 : General 3D piezo

[ProId Type ElasMatId d.1:18 epsT_1:9]

d_1:18 are the 18 constants of the [d] matrix (see section ), and epsT_1:9 are the 9 constants
of the [ET} matrix. One reminds that strains are stored in order zx,yy, 2z, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e_1:18 epsT_1:9]

e_1:18 are the 18 constants of the [d] matrix, and epsT_1:9 are the 9 constants of the {5T} matrix
in the constitutive law (see section ).

See also
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Purpose

Element property function for beams

Syntax

il = p_beam(’default’)

il = p_beam(’database’,’name’)

il = p_beam(’dbval ProId’,’name’);

il = p_beam(’dbval -unit TM Prold name’);
il = p_beam(’dbval -punit TM Prold name’);
i12= p_beam(’ConvertTol’,il)

Description

This help starts by describing the main commands : p_beam Database and Dbval. Supported p_beam
subtypes and their formats are then described.

Database,Dbval,

p_beam contains a number of defaults obtained with p_beam(’database’) or
p.beam(’dbval MatId’). You can select a particular entry of the database with using a name
matching the database entries. You can also automatically compute the properties of standard

beams
circle r beam with full circular section of radius .
rectangle b h beam with full rectangular section of width b and height h. See

for orientation (the default reference node is 1.5, 1.5, 1.5 so
that orientation MUST be defined for non-symmetric sections).

Type r1 72 ... other predefined sections of subtype 3 are listed wusing
p-beam(’info’).

For example, you will obtain the section property row with ProId 100 associated with a circular
cross section of 0.05m or a rectangular 0.05 x 0.01m cross section using

% ProId 100, rectangle 0.05 m by 0.01 m

pro = p_beam(’database 100 rectangle .05 .01’)

% ProId 101 circle radius .05

il = p_beam(pro.il,’dbval 101 circle .05’)
p_beam(’info’)

% ProId 103 tube external radius .05 internal .04
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il = p_beam(il,’dbval -unit SI 103 tube .05 .04’)
% Transform to subtype 1
i12=p_beam(’ConvertTol’,il)
il(end+1,1:6)=[104 fe_mat(’p_beam’,’SI’,1) 0 0 O le-5];
il = fe_mat(’convert SITM’,il);
% Generate a property in TM, providing data in SI
il = p_beam(il,’dbval -unit TM 105 rectangle .05 .01’)
% Generate a property in TM providing data in TM
il = p_beam(il,’dbval -punit TM 105 rectangle 50 10’)

Show3D,MAP ...

format description and subtypes

1

Element properties are described by the row of an element property matrix or a data structure
with an .1l field containing this row (see section ). Element property functions such as p_beam
support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section . For a programmers reference
on formats used to describe element properties see section [7.4] .

standard
[ProID type J I1 I2 A k1 k2 lump NSM]
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ProID element property identification number.

type identifier obtained with fe mat(’p_beam’,’SI’,1).

J torsional stiffness parameter (often different from polar moment of inertia
I11+12).

I1 moment of inertia for bending plane 1 defined by a third node nr or the

vector vx vy vz (defined in the element). For a case with a beam
along x and plane 1 the zy plane I1 is equal to Iz = [ y2ds.

12 moment of inertia for bending plane 2 (containing the beam and orthogonal
to plane 1.

A section area.

k1 (optional) shear factor for motion in plane 1 (when not 0, a Timoshenko
beam element is used). The effective area of shear is given by k1 A.

k2 (optional) shear factor for direction 2.

lump (optional) request for lumped mass model. 1 for inclusion of inertia terms.
2 for simple half mass at node.

NSM (optional) non structural mass (density per unit length).

elements only use the section area. All other parameters are ignored.

elements use all parameters. Without correction factors (k1 k2 not given or set to 0), the
element is the standard Bernoulli-Euler 12 DOF element based on linear interpolations for
traction and torsion and cubic interpolations for flexion (see Ref. [37] for example). When non
zero shear factors are given, the bending properties are based on a Timoshenko beam element with
selective reduced integration of the shear stiffness [45]. No correction for rotational inertia of sections
is used.

Cross section database

This subtype can be used to refer to standard cross sections defined in database. It is particularly
used by when importing NASTRAN PBEAML properties.

[ProID type O Section Dim(i) ... ]
ProID element property identification number.
type identifier obtained with fe mat(’p_beam’,’SI’,3).
Section identifier of the cross section obtained with comstr (’ SectionName’ ,-32°
where Sectionlame is a string defining the section (see below).
Diml ... dimensions of the cross section.

Cross section, if existing, is compatible with NASTRAN PBEAML definition. Equivalent moment
of inertia and tensional stiffness are computed at the centroid of the section. Currently available
sections are listed with p beam(’info’). In particular one has ROD (1 dim), TUBE (2 dims), T (4
dims), T2 (4 dims), I (6 dims), BAR (2 dims), CHAN1 (4 dims), CHAN2 (4 dims).
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For NSM and Lump support ConverTol is used during definition to obtain the equivalent subtype 1
entry.

See also

Section [4.5.1] section [7.4],
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p_heat

Purpose

Formulation and material support for the heat equation.
Syntax

il = p_heat(’default’)

Description

This help starts by describing the main commands : p_heat Database and Dbval. Supported p_heat
subtypes and their formats are then described. For theory see section [6.1.13].

Database,Dbvall]

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section ). Element property functions such as p_solid
support graphical editing of properties and a database of standard properties.

p-heat database
il=p_heat(’database’);

Accepted commands for the database are

e d3 Integ SubType: integration rule for 3D volumes (default -3).

e d2 Integ SubType : integration rule for 2D volumes (default -3).

For fixed values, use p_heat (’info’).

Example of database property construction

il=p_heat([100 fe_mat(’p_heat’,’SI’,1) 0 -3 3],...
’dbval 101 d3 -3 2’);

Heat equation element properties

Element properties are described by the row of an element property matrix or a data structure
with an .il field containing this row. Element property functions such as p_beam support graphical
editing of properties and a database of standard properties.
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1 Volume element for heat diffusion (dimension DIM)
[ProId fe_mat(’p_heat’,’SI’,1) CoordM Integ DIM]
ProID element property identification number
type identifier obtained with fe mat(’p_beam’,’SI’,1)
Integ is rule number in integrules
DIM is problem dimension 2 or 3 D
2 Surface element for heat exchange (dimension DIM-1)
[ProId fe_mat(’p_heat’,’SI’,2) CoordM Integ DIM]
ProID element property identification number
type identifier obtained with fe mat(’p_beam’,’SI’,2)
Integ is rule number in integrules
DIM is problem dimension 2 or 3 D
SetFace

This command can be used to define a surface exchange and optionally associated load. Surface
exchange elements add a stiffness term to the stiffness matrix related to the exchange coefficient
Hf defined in corresponding material property. One then should add a load corresponding to the
exchange with the source temperature at T through a convection coefficient Hf which is Hf . T_0. If
not defined, the exchange is done with source at temperature equal to 0.

model=p heat(’SetFace’ ,model,SelElt,pl,il);

e SelElt is a findelt command string to find faces that exchange heat (use ’SelFace’ to select
face of a given preselected element).

e pl is the identifier of existing material property (MatId), or a vector defining an m_heat prop-
erty.

e il isthe identifier of existing element property (ProId), or a vector defining an p_heat property.

Command option -load T can be used to defined associated load, for exchange with fluid at tem-
perature T. Note that if you modify Hf in surface exchange material property you have to update
the load.

Following example defines a simple cube that exchanges with thermal source at 55 deg on the bottom
face.
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model=femesh(’TestHexa8’); % Build simple cube model

model.pl=m_heat (’dbval 100 steel’); J define steel heat diffusion parameter
model.il=p_heat(’dbval 111 d3 -3 1’); % volume heat diffusion (1)
model=p_heat (’SetFace-1load55’,... % exchange at 55 deg

model, ...
’SelFace & InNode{z==0}’,... % on the bottom face
100, ... % keep same matid for exchange coef

p_heat(’dbval 1111 d3 -3 2’)); % define 3d, integ-3, for surface exchange (2)
cf=feplot(model); fecom colordatapro
def=fe_simul(’Static’,model); 7 compute static thermal state
mean (def .def)

2Dvalidation
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Consider a bi-dimensional annular thick domain  with radii r. = 1 and r; = 0.5. The data are
specified on the internal circle I'; and on the external circle I'.. The solid is made of homogeneous
isotropic material, and its conductivity tensor thus reduces to a constant k. The steady state
temperature distribution is then given by

—kAO(x,y) = f(x,y) in Q. (9.20)

The solid is subject to the following boundary conditions

e I'; (r =r;) : Neumann condition

0
gn(rc, y) =g(z,y) (9.21)
e I'. (r =r.) : Dirichlet condition
Q(IE, y) = eext(x7 y) (922)

In above expressions, f is an internal heat source, 0.,; an external temperature at r = 7., and g a
function. All the variables depend on the variable x and y.

The OpenFEM model for this example can be found in ofdemos (’ AnnularHeat’).
Numerical application : assuming k = 1, f = 0, Hf = 1le7 % 0.4(z,y) = exp(x)cos(y) and
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g(z,y) = —%Z_(x) (cos(y)z — sin(y)x), the solution of the problem is given by 0(x,y) = exp(z) cos(y)

See also

section [6.1.13], section [4.5.1],
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Purpose

Element property function for shells and plates (flat shells)

Syntax
il = p_shell(’default’);
il = p_shell(’database Prold name’);
il = p_shell(’dbval Prold name’);
il = p_shell(’dbval -unit TM ProId name’);
il = p_shell(’dbval -punit TM ProId name’);
il = p_shell(’SetDrill 0’,il);

Description

This help starts by describing the main commands : p_shell Database and Dbval. Supported
p-shell subtypes and their formats are then described.

Database,Dbvall

p_shell contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.

You can also automatically compute the properties of standard shells with

kirchhoff e Kirchhoff shell of thickness e.

mindlin e Mindlin shell of thickness e.

laminate MatIdi Tt Thetaz Specification of a laminate property by giving the different ply
MatId, thickness and angle. By default the z values are counted
from -thick/2, you can specify another value with a z0.

You can append a string option of the form -f % to select the appropriate shell formulation. For
example, you will obtain the element property row with ProId 100 associated with a .1 thick Kirchhoff
shell (with formulation 5) or the corresponding Mindlin plate use

il = p_shell(’database 100 MindLin .17°)

il = p_shell(’dbval 100 kirchhoff .1 -£f5’°)

il = p_shell(’dbval 100 laminate z0=-2e-3 110 3e-3 30 110 3e-3 -30’)

il = fe_mat(’convert SITM’,il);

il = p_shell(il,’dbval -unit TM 2 MindLin .1’) % set in TM, provide data in SI
il = p_shell(il,’dbval -punit TM 2 MindLin 100’) % set in TM, provide data in TM
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For laminates, you specify for each ply the MatId, thickness and angle.

Shell format description and subtypes

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section ). Element property functions such as p_shell
support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section m . For a reference on formats
used to describe element properties see section [7.4] .

currently only supports two subtypes

1 : standard isotropic
[ProID type f d 0 h k MID2 RatI12_T3 MID3 NSM Z1 Z2 MID4]

type identifier obtained with fe mat(’p_shell’,’SI’,1).

f 0 use default of element. For other formulations the specific help for each element (quad4
triad] ...), each formulation specifies integration rule.
d -1 no drilling stiffness. The element DOF's are the standard translations and rotations at all

nodes (DOFs .01 to .06). The drill DOF (rotation .06 for a plate in the xy plane) has
no stiffness and is thus eliminated by if it corresponds to a global DOF direction.
The default is d=1 (d is set to 1 for a declared value of zero).

d  arbitrary drilling stiffness with value proportional to d is added. This stiffness is often
needed in shell problems but may lead to numerical conditioning problems if the stiffness
value is very different from other physical stiffness values. Start with a value of 1. Use
il=p_shell(’SetDrill d’,il) to set to d the drilling stiffness of all p_shell subtype 1
rows of the property matrix il.

h plate thickness.

k  k  shear correction factor (default 5/6, default used if k is zero). This correction is not used
for formulations based on triangles since is a thin plate element.

RatI12 TRatio of bending moment of inertia to nominal T3/I12 (default 1).

NSM Non structural mass per unit area.

MID2 material property for bending. Defauts to element MatId if equal to O.
MID3 material property for transverse shear.

z1,z2  (unused) offset for fiber computations.

MID4 material property for membrane/bending coupling.

Shell strain is defined by the membrane, curvature and transverse shear

429



p_shell

(display with p_shell(’ConstShell’)).

€xx [ N,z 0 0 0 0

€yy 0 Ny 0 0 0 "

2€.y N,y N,x 0 0 0 v

Kz - 0 0 0 0 N,z

kyy (| O 0 0 =Ny 0 v (9:23)

rU

262y 0 0 0 —N,x N,y -

Vaz 0 0 N, x 0 —-N

Yyz | 0 0 N,y N 0 |

2 : composite
[ProID type Z0 NSM SB FT TREF GE LAM MatIdl T1 Thetal SOUT1 ...]

ProID Section property identification number.
type Identifier obtained with fe mat(’p_shell’,’SI’,2).
Z0 Distance from reference plate to bottom surface.
NSM Non structural mass per unit area.
SB Allowable shear stress of the bonding material.
FT Failure theory.
TREF Reference temperature.
Eta Hysteretic loss factor.
LAM Laminate type.
MatId<
MatId for ply <, see |1n,e1astic 1|7 |m,e1astic 5|,
T4 Thickness of ply 4.
Theta< Orientation of ply <.
S0UT+% Stress output request for ply <.

Note that this subtype is based on the format used by NASTRAN for PCOMP and the formulation used
for each topology is discussed in each element (see [triad)). You can use the DbvallLaminate
commands to generate standard entries.

N A B 0 €
MbY=|B D o0|{x (9.24)
Q 0 0 F 0%
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setTheta

When dealing with laminated plates, the classical approach uses a material orientation constant per
element. OpenFEM also supports more advanced strategies with orientation defined at nodes but
this is still poorly documented.

The material orientation is the reference for plies. Any angle defined in a laminate command is an
additional rotation. In the example below, the element orientation is rotated 30 degrees, and the ply
another 30. The fibers are thus oriented 60 degrees in the xy plane. Stresses are however given in the
material orientation thus with a 30 degree rotation. Per ply output is not currently implemented.

The element-wise material angle is stored for each element. In column 7 for [tria3] 8 for |quad4] ...
The setTheta command is a utility to ease the setting of these angles. By default, the orientation
is done at element center. To use the mean orientation at nodes use command option -strategy 2.

model=ofdemos (’ composite’);
model.il = p_shell(’dbval 110 laminate 100 1 30’); % single ply

% Define material angle based on direction at element
MAP=feutil(’getnormalElt MAP -dirl’,model);
bas=basis(’rotate’,[],’rz=30;",1);
MAP.normal=MAP.normal*reshape(bas(7:15),3,3)’;
model=p_shell(’setTheta’ ,model,MAP);

% Obtain a MAP of material orientations
MAP=feutil (’getnormalElt MAP -diril’,model);
feplot(model) ;fecom(’showmap’ ,MAP)

% Set elementwise material angles using directions given at nodes.
% Here a global direction
MAP=struct (’normal’,ones(size(model.Node,1),1)*bas(7:9),
’ID’ ,model.Node(:,1),’0opt’,2);
model=p_shell (’setTheta’,model,MAP);

% Using an analytic expression to define components of

% material orientation vector at nodes
data=struct(’sel’,’groupall’,’dir’,{{’x-0’,’y+.01’,0}},’DOF’,[.01;.02;.03]);
model=p_shell (’setTheta’,model,data);

MAP=feutil (’getnormalElt MAP -diril’,model);

feplot(model) ;fecom(’showmap’,MAP)

model=p_shell(’setTheta’ ,model,0) is used to reset the material orientation to zero.
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Technically, shells use the of mk(’BuildNDN’) rule 23 which generates a basis at each integration
point. The first vector vix,vly,v1z is built in the direction of r lines and v2x,v2y,v2z is tangent

to the surface and orthogonal to v1. When a|InfoAtNode| map provides vix,vly,vlz, this vector is
projected (NEED TO VERIFY) onto the surface and v2 taken to be orthogonal.

See also

Section [4.5.1] section [74],
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Purpose

Syntax

Element property function for volume elements.

il=p_solid(’database Prold Value’)
il=p_solid(’dbval ProId Value’)
il=p_solid(’dbval -unit TM ProId name’);
il=p_solid(’dbval -punit TM ProId name’);
model=p_solid(’default’,model)

Description

This help starts by describing the main commands : p_solid Database and Dbval. Supported
p-solid subtypes and their formats are then described.

Database,Dbval,Default]

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section ). Element property functions such as p_solid
support graphical editing of properties and a database of standard properties.

Accepted commands for the database are

e d3 Integ: Integ integration rule for quadratic 3D volumes. For information on rules available
see |integrules Gauss| Examples are d3 2 2x2x2 integration rule for linear volumes (hexa8
... ); d3 -3 default integration for all 3D elements, ...

e d2 Integ: Integ integration rule for quadratic 2D volumes. For example d2 2 2x2x2 inte-
gration rule for linear volumes (q4p ... ). You can also use d2 1 0 2 for plane stress, and d2
2 0 2 for axisymmetry.

e fsc Integ: integration rule selection for fluid/structure coupling.

For fixed values, use p_solid(’info’).

For a tutorial on material/element property handling see section . For a reference on formats
used to describe element properties see section [7.4] .

Examples of database property construction
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il=p_s01id([100 fe_mat(’p_solid’,’SI’,1) 0 3 0 2],
’dbval 101 Full 2x2x2’,’dbval 102 d3 -3’);

il=fe_mat (’convert SITM’,il);

il=p_solid(il,’dbval -unit TM 2 Reduced shear’)

% Try a smart guess on default

model=femesh(’TestHexa8’) ;model.il=[];

model=p_solid(’default’,model)

1 : 3D volume element
[ProID fe_mat(’p_solid’,’SI’,1) Coordm In Stress Isop ]

ProID Property identification number.

Coordm Identification number of the material coordinates system. Warning not imple-
mented for all material formulations.

In Integration rule selection (see|[integrules Gauss|). 0 selects the legacy 3D me-
chanics element (of mk_pre.c), -3 the default rule.

Stress Location selection for stress output (NOT USED).

Isop Integration scheme (will be used to select shear protection mechanisms).

The underlying physics for this subtype are selected through the material property. Examples are

3D mechanics with piezo electric volumes (see m_piezo), heat equation (p_heat]).

2 : 2D volume element
[Prold fe_mat(’p_solid’,’SI’,2) Form N In]

ProID Property identification number.

Type Identifier obtained with fe mat(’p_solid,’SI’,2).

Form Formulation (0 plane strain, 1 plane stress, 2 axisymmetric), see details in
N Fourier harmonic for axisymmetric elements that support it.

In Integration rule selection (see|integrules Gauss|). 0 selects legacy 2D element,

-3 the default rule.

The underlying physics for this subtype are selected through the material property. Examples are
2D mechanics with _elastid

3 : ND-1 coupling element
[ProId fe_mat(’p_solid’,’SI’,3) Integ Form Ndofl ...]
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ProID
Type
Integ

Form

See also

Property identification number.

Identifier obtained with fe mat(’p_solid,’SI’,3).

Integration rule selection (see [integrules Gauss|). 0 or -3 selects the default
for the element.

1 volume force, 2 volume force proportional to density, 3 pressure, 4:
fluid /structure coupling, see 5 2D volume force, 6 2D pressure. 8 Wall
impedance (acoustics), then uses the R parameter in fluid.

Section section [7.4]
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Purpose

Syntax

Element property function for spring and rigid elements

il=p_spring(’default’)
il=p_spring(’database MatId Value’)
il=p_spring(’dbval MatId Value’)
il=p_spring(’dbval -unit TM ProId name’);
il=p_spring(’dbval -punit TM ProlId name’);

Description

This help starts by describing the main commands : p_spring Database and Dbval. Supported
p_spring subtypes and their formats are then described.

Database,Dbval]

Element properties are described by the row of an element property matrix or a data structure with
an .1il field containing this row (see section ).

Examples of database property construction
il=p_spring(’database 100 lel2 1e4 0’)
il=p_spring(’dbval 100 1lel2’);
il=fe_mat(’convert SITM’,il);
il=p_spring(il,’dbval 2 -unit TM 1lel12’) ¥ Generate in TM, provide data in SI
il=p_spring(il,’dbval 2 -punit TM 1e9’) % Generate in TM, provide data in TM

currently supports 2 subtypes

standard
[ProID type k m c Eta S]

ProID property identification number.

type identifier obtained with fe mat(’p_spring’,’SI’,1).
k stiffness value.

m mass value.

c viscous damping value.

eta loss factor.

S Stress coeflicient.



p-spring

2 : bush

Note that type 2 is only functional with elements.

[ProId Type k1:k6 cl:c6 Eta SA ST EA ET m v]

ProID property identification number.
type identifier obtained with fe mat(’p_spring’,’SI’,2).
ki stiffness for each direction.
ci viscous damping for each direction.
SA stress recovery coef for translations.
ST stress recovery coef for rotations.
EA strain recovery coef for translations.
ET strain recovery coef for rotations.
m mass.
v volume.

See also

Section section [7.4], [fe_mat] [celas] [cbush]
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Purpose

Element property function for superelements.
Syntax

il=p_super(’default’)
il=p_super(’database MatId Value’)
il=p_super(’dbval MatId Value’)
il=p_super(’dbval -unit TM Prold name’);
il=p_super(’dbval -punit TM Prold name’);

Description

If ProID is not given, will see if SE.Opt (3, :) is defined and use coefficients stored in this
row instead. If this is still not given, all coefficients are set to 1. Element property rows (in
a standard property declaration matrix i1) for superelements take the forms described below with
ProID the property identification number and coefficients allowing the creation of a weighted sum
of the superelement matrices SEName.K{i}. Thus, if K{1} and K{3} are two stiffness matrices and
no other stiffness matrix is given, the superelement stiffness is given by coef1*K{1}+coef3+K{3}.

Database,Dbvall

There is no database call for p_super entries.

1 : simple weighting coefficients
[ProId Type coefl coef2 coef3 ... ]

ProID Property identification number.

Type Identifier obtained with fe mat(’p_super’,’SI’,1).

coefl Multiplicative coefficient of the first matrix of the superelement (K{1}). Su-
perelement matrices used for the assembly of the global model matrices will be
{coef1*K{1}, coef2+K{2}, coef3*K{3}, ...}. Type of the matrices (stiff-
ness, mass ...) is not changed. Note that you can define parameters for superele-

ment using fe_case(model, ’par’), see

2 : matrix type redefinition and weighting coefficients
[ProId Type Form typel coefl type2 coef2 ...]
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ProID
Type
typel

coefl

See also

Property identification number.

Identifier obtained with fe mat (’p_super’,’SI’,2).

Type redefinition of the first matrix of the superelement (K{1}) according to
SDT standard type (1 for stiffness, 2 for mass, 3 for viscous damping... see
[fe_mknl MatType|).

Multiplicative coefficient of the first matrix of the superelement (K{1}). Su-
perelement matrices used for the assembly of the global model matrices will be
{coef1*K{1}, coef2+K{2}, coef3*K{3}, ...}. Type of the matrices (stiff-
ness, mass ...) is changed according to typel, type2, ... . Note that you can
define parameters for superelement using fe case(model, ’par’), see

section 3
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Purpose

Property function for piezoelectric shells and utilities associated with piezoelectric models.
Syntax

mat= m_piezo(’database name’)
pl = m_piezo(’dbval MatId -elas 12 Name’);

See section for tutorial calls. Accepted commands are

ElectrodeMPC

[model, InputDOF (end+1,1)]=p piezo(’ElectrodeMPC Name’ ,model,’z==5e-5); defines the isopo-
tential constraint as a case entry Name associated with command z==5e-5. An illustration
is given in section [6.1.5] .

Accepted command options are

e -Ground defines a fixed voltage constraint FixDof,V=0 on Name.
e —Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.

e MatId< is used to define a resultant sensor to measure the charge associated with the electrode.
Note that the electrode surface must not be inside the volume with MatId<. If that is the case,
you must arbitrarily decompose your mesh in two parts with different MatId. You can also
generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the
MatId? based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSens 1682 (-Base’,model); adds a charge sensor (resultant|) called
Q-Base on node 1682. (See (1.4]) for theory).

For shells, the node number is used to identify the shell property and thus the associated
elements. It is reminded that entries must be duplicated when multiple patches are used.
For volumes, the [p_piezo ElectrodeMPC|should be first defined, so that it can be used to obtain
the electrode surface information.

Note that the command calls fe _case(’SensMatch’) so that changes done to material properties
after this call will not be reflected in the observation matrix of this sensor.
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To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify
a data structure with observation .cta at multiple .DOF as illustrated below.

For a voltage sensor, you can simply use a DOF sensor
model=fe_case(model, ’SensDof’,’V-Base’,1682.21).

model=d_piezo(’meshULBPlate cantilever’); 7 creates the model
% If you don’t remember the electrode node numbers
p_piezo(’ElectrodeDOF’ ,model)

% Combined charge

ri=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21, name’,’QS2+3’);
model=p_piezo(’ElectrodeSens(Q’ ,model,rl);
sens=fe_case(model, ’sens’);

% Combined voltage

ril=struct(’cta’,[1 1],’DOF’, [1684;1685]+.21, name’,’VS2+3°);
model=fe_case(model,’SensDof’,rl.name,rl);
sens=fe_case(model, ’sens’) ;sens.lab

ElectrodeDOF

p-piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode. With no name
for selection p_piezo(’ElectrodeDof’,model) the command returns the list of electrode DOF's
based on MPC defined using the ElectrodeMPC command or[p_piezo|shell entries. Use ElectrodeDof . *
to get all DOF's.

ElectrodeView

p-piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a clear text summary
of electrode information. To only get the summary, pass a model model rather than a pointer cf to
a|feplot|figure.

p-piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the visualization of
charge density. You should be aware that only resultant charges at nodes are known. For proper
visualization a transformation from charge resultant to charge density is performed, this is known
to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to gener-
ate appropriate case entries : V_In for enforced voltage actuators, V_Out for voltage measurements,
Q_Out for charge sensors.
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Electrodelnit

Electrodelnit analyses the model to find electric master DOF's in piezo-electric shell properties or
in MPC associated with volume models.

Tab

Tab commands are used to generate tabulated information about model contents. The calling format
is p_piezo(’TabDD’,model). With no input argument, the current figure is used. Currently
generated tabs are

e TabDD constitutive laws

e TabPro material and element parameters shown as java tables.

View
p-piezo(’ViewDD’ ,model) displays information about piezoelectric constitutive laws in the current
model.

p-piezo(’ViewElec ...’,model) is used to visualize the electrical field. An example is given
in section . Command options are DefLenwval to specify the arrow length, E1tSelwval for the
selection of elements to be viewed, Reset to force reinit of selection.

ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a
layered composite, see [p_shell 2| and an electrode definition with element property rows of the
form

[ProId Type MecaProld ElNodeIdl LayerIdl UNU1 ElNodeId2...]

e Type typically fe mat(’p_piezo’,’SI’,1)

e MecaProld : Prold for mechanical properties of element [p_shell 2| composite entry. The
MatIds for piezo layers must be associated with piezo electric material properties.

e E1NodIdl : NodeId for electrode 1. This needs to be a node declared in the model but its
position is not used since only the value of the electric potential (DOF 21) is used. You may
use a node of the shell but this is not necessary.
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e LayerId : layer number as declared in the composite entry.

e UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section [6.1.5] . The following gives a

sample declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110

% MatId 1 : steel, MatId 12 : PZT elastic prop
model.pl=m_elastic(’dbval 1 Steel’);

% Sample ULB piezo material, sdtweb m_piezo(’sample_ULB’)
model.pl=m_piezo(model.pl,’dbval 3 -elas 12 Sample_ULB’);

% ProId 111 : 3 layer composite (mechanical properties)
model.il=p_shell(model.il, [’dbval 111 laminate ’

’3 1e-3 0 > ... % MatID 3 (PZT), 1 mm piezo, O
’1 2¢-3 0 ’ ... % MatID 1 (Steel), 2 mm
’3 1e-3 0°1); % MatID 3 (PZT), 1 mm piezo, O

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683
model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’ ,model) % Details about the constitutive law
p_piezo(’ElectrodeInfo’,model) % Details about the layers
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quad4, quadb, mitc4

Purpose

4 and 8 node quadrilateral plate/shell elements.

Description

ml

In a model description matrix, element property rows for and elements

follow the standard format
[n1 ... ni MatID ProID E1tID Theta Zoff T1 ... Ti]

giving the node identification numbers ni (1 to 4 or 8), material MatID, property ProID. Other
optional information is E1tID the element identifier, Theta the angle between material x axis and
element x axis, Zoff the off-set along the element 2 axis from the surface of the nodes to the reference
plane (use [feutil Orient|command to check z-axis orientation), Ti the thickness at nodes (used
instead of il entry, currently the mean of the Ti is used).

If n3 and n4 are equal, the element is automatically used in place of the

Isotropic materials are currently the only supported (this may change soon). Their declaration fol-
lows the format described in Element property declarations follow the format described

quad4

Supported formulations (f value stored in 11(3) [p_shell|entries for isotropic materials and element
default for composites) are

e 0 element/property dependent default. This is always used for composites (p_shell subtype
2).
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5 Q4CS is a second implementation MITC4 elements that supports classical laminated plate
theory (composites) as well as the definition of piezo-electric extension actuators. This is the
default for SDT. Non flat shell geometries are supported with interpolation of normal fields.

1 4 tria3d thin plate elements with condensation of central node. Old and not very efficient
formulation implemented in quad4.

2 QA4WT for membrane and Q4gamma for bending (implemented in quad4). This is only
applicable if the four nodes are in a single plane. When not, formulation 1 is called.

4 MITCA4 calls the MITC4 element below. This implementation has not been tested extensively,
so that the element may not be used in all configurations. It uses 5 DOFs per node with the
two rotations being around orthogonal in-plane directions. This is not consistent for mixed
element types assembly. Non smooth surfaces are not handled properly because this is not
implemented in the [feutil GetNormal|l command which is called for each group of mitc4

elements.

The definition of local coordinate systems for composite fiber orientation still needs better documen-
tation. Currently, g4cs the only element that supports composites, uses the local coordinate system
resulting from the 23 rule. A temporary solution for uniform orientation is provided with
model=feutilb(’shellmap -orient dx dy dz’,model).

quadb

i )

Supported formulations 1(3) for isotropic materials and element default for composites)

are

1 8 triad thin plate elements with condensation of central node.

e 2 isoparametric thick plate with reduced integration. For non-flat elements, formulation 1 is

used.
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See also

m_elastic) [p-shelll [fe_mk] [feplot|
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q4p, q8p, t3p, t6p and other 2D volumes

Purpose

2-D volume elements.

Description
The q5p, 98p, q9a, t3p, t6p elements are topology references for 2D volumes and 3D surfaces.

In a model description matrix, element property rows for this elements follow the standard format
[n1 ... ni MatID ProID E1tID Theta]

giving the node identification numbers n1, .. .ni, material MatID, property ProID. Other optional
information is E1tID the element identifier, Theta the angle between material x axis and element x
axis (material orientation maps are generally preferable).

These elements only define topologies, the nature of the problem to be solved should be specified
using a property entry, see section for supported problems and [p_solid] [p_heat] ... for formats.

Integration rules for various topologies are described under Vertex coordinates of the
reference element can be found using an command containing the name of the element
such as ri=integrules(’g4p’);rl.xi.

Backward compatibility note : if no element property entry is defined, or with a p_solid entry
with the integration rule set to zero, the element defaults to the historical 3D mechanic elements
described in section [7.19.2] .

These volume elements are used for various problem families.

See also

[fe_mat] [fe_mk]| [feplot]




rigid

Purpose

Linearized rigid link constraints.

Description

Rigid links are often used to model stiff connections in finite element models. One generates a set
of linear constraints that relate the 6 DOFs of master M and slave S nodes by

u 100 0 ZMS  —YMS |

v 0 1 0 —zys 0 TS v

w 10 0 1 yms —wums 0 w

T 10 00 1 0 0 Ty (9.25)
Ty 0 00 0 1 0 Ty

T, 0 0 0 0 0 1 2 )y

S L .

Resolution of linear constraints is performed using or model assembly (see section m )
calls. The theory is discussed in section . Note that the master node of a rigid link has 6 DOF,
even if the model may only need less (3 DOF for volumes).

If coordinate systems are defined in field model.bas (see |pasis|), PID (position coordinate system)
and DID (displacement coordinate system) declarations in columns 2 and 3 of model.Node are prop-
erly handled.

Although rigid are linear constraints rather than true elements, such connections can be declared
using an element group of rigid connection with a header row of the form [Inf abs(’rigid’)]
followed by as many element rows as connections of the form

[ n1 n2 DofSel MatId Prold EltId]

where node n2 will be rigidly connected to node n1 which will remain free. DofSel lets you specify
which of the 3 translations and 3 rotations are connected (thus 123 connects only translations while
123456 connects both translations and rotations). The rigid elements thus defined can then be
handled as standard elements.

With this strategy you can use penalized rigid links element) instead of truly rigid connec-
tions. This requires the selection of a stiffness constant but can be easier to manipulate. To change
a group of elements into elements and set a stiffness constant Kv, one can do

model=feutil (’SetGroup rigid name celas’,model);
model .Elt(feutil(’findelt group i’,model),7) = Kv; % celas in group i
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The other rigid definition strategy is to store them as a case entry. rigid entries are rows of the
Case.Stack cell array giving {’rigid’, Name, Elt}.

The syntax is

model=fe_case(model, ’rigid’ ,Name,Elt);

where Name is a string identifying the entry. E1t is a|fmodel description matrix|containing rigid ele-
ments. Command option Append allows concatenating a new list of rigid constraints to a preexisting
list in Case.Stack.

The call model=fe_case(model,’rigidAppend’,’Name’,E1t1); would thus concatenate the pre-
viously defined list Name with the new rigid element matrix E1t1.

Using the call to implement rigid allows an alternative rigid constraint input that can be
more comprehensive in some applications. You may use a list of the form [MasterNode slaveDOF
slaveNode 1 slaveNode 2 ... slaveNode i] instead of the element matrix. Command option
Append is also valid.

The following sample calls are thus equivalent, and consists in implementing a rigid link between
nodes 1 and 2, and 1 and 3 (with 1 as master) for all six DOF in a sample model:

model=fe_case(model,’rigid’,’Rigid edge’,...

[Inf abs(’rigid’);

1 2 123456 0 0 O;

1 3 123456 0 0 0]);

% or

model=fe_case(model,’rigid’,’Rigid edge’, [1 123456 2 3]);

In some cases, interactions with visualization may transform the E1t matrix into a structure
with fields E1t that contains the original data, and Sel that is internally used by to display
the rigid constraint on the mesh.

The following example generates the mesh of a square plate with a rigid edge, the rigid constraint
is here declared as rigid elements

% generate a sample plate model
model=femesh(’testquad4 divide 10 10’);

% generate beaml elements based on the edge

% of the underlying 2D model at x=0
elt=feutil(’selelt seledge & innode{x==0}’,model);
% remove element header from selection,
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% we only use the node connectivity

elt=elt(2:end,:);

% assign the rigid element property
elt(2:end,3)=123456; % all 6 DOF are slave

% remove old data from the previous element selection
elt(2:end,4:end)=0;

% add rigid elements to the model
model=feutil(’addelt’,model,’rigid’,elt);

% % alternative possible: define as a case entry

% model=fe_case(model,’rigid’,’Rigid edge’, [Inf abs(’rigid’); elt]);

% Compute and display modes
def=fe_eig(model, [6 20 1e3]);
feplot(model,def);fecom(’;view3;ch8;scd.1);

The rigid function itself is only used for low level access by generating the subspace T that verifies
rigid constraints

[T,cdof]
[T, cdof]

rigid(node,elt,mdof)
rigid(Up)

See also

Section

450



tria3, tria6

Purpose

Element functions for a 3 node/18 DOF and 6 nodes/36 DOF shell elements.

Description

1

In a model description matrix, element property rows for elements follow the standard
format

[n1 n2 n3 MatID ProID E1tID Theta Zoff T1 T2 T3]

giving the node identification numbers ni, material MatID, property ProID. Other optional infor-
mation is E1tID the element identifier, Theta the angle between material x axis and element x axis
(currently unused), Zoff the off-set along the element z axis from the surface of the nodes to the
reference plane, Ti the thickness at nodes (used instead of il entry, currently the mean of the T1i is
used).

The element only supports isotropic materials with the format described in

The supported property declaration format is described in Note that only supports
thin plate formulations.

[tria3|: [p_shellformulation is not used, the single implemented formulation uses a T3 triangle for
membrane properties and a DKT for bending (see [46] for example).

[tria6|jp_shellformulation is not used since the currently the only implementation is a call to g4cs
(formulation 5).

See also

[quad4} |quadb] [fe_mat} [p_shell] m_elastic] [fe_mk] [feplot]
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Function reference

abaqus

ans2sdt

basis

comgul,cingui

commode

comstr

curvemodel

db, phaseb

ex2sdt

fe2ss

fecom

femesh

feutil

feutila

tfeutilb

feplot

fesuper

tjlock

fe_c

fe_case

fe_caseg

fe_ceig

fe_coor

fe_curve

te_cyclic

fe_def

fe_eig

..............

..............

..............

..............
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...............

..............
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This section contains detailed descriptions of the functions in Structural Dynamics Toolbox. It
begins with a list of functions grouped by subject area and continues with the reference entries in
alphabetical order. From MATLAB short text information is available through the help command
while the HTML version of this manual can be accessed through doc.

For easier use, most functions have several optional arguments. In a reference entry under syntax,
the function is first listed with all the necessary input arguments and then with all possible input
arguments. Most functions can be used with any number of arguments between these extremes, the
rule being that missing, trailing arguments are given default values, as defined in the manual.

As always in MATLAB, all output arguments of functions do not have to be specified, and are then
not returned to the user.

As indicated in their synopsis some functions allow different types of output arguments. The different
output formats are then distinguished by the number of output arguments, so that all outputs must
be asked by the user.

Typesetting conventions and mathematical notations used in this manual are described in section|l.3]

Element functions are detailed in chapter [9}

A list of demonstrations is given in section .



USER INTERFACE (UI) AND GRAPHICAL USER INTERFACE (GUI) TooLs

fecon UI command function for deformations created with [feplot
femesh UI command function for mesh building and modification
feplot GUI for 3-D deformation plots

f esuper| UI commands for superelement manipulations

idcom) UI commands for standard identification procedures

idopt manipulation of identification options

iicom UI commands for measurement data visualization

ii mac GUI for MAC and other vector correlation criteria

‘iiplot GUI for the visualization of frequency response data

EXPERIMENTAL MODEL IDENTIFICATION

ii_poest
psi2nor]
res2nor]

UI commands linked to identification

manipulation of options for identification related functions
broadband pole/residue model identification

alternate optimization algorithm for

minimal and reciprocal MIMO model creation

optimal normal mode model identification

weighted least square orthogonal polynomial identification
direct system parameter identification algorithm
narrow-band single pole model identification
transformations between pole representation formats
optimal complex/normal mode model transformation
simplified complex to normal mode residue transformation

UI aND GUI UTILITIES

general purpose functions for the graphical user interfaces
general purpose parser for Ul command functions

general purpose string handling routine

mouse related callbacks (zooming, info, ...)

mesh handling utilities

overplot vertical lines to indicate pole frequencies

line style and color sequencing utility

FREQUENCY RESPONSE ANALYSIS TOOLS

db
ii_cost

ii mmif

phaseb
rms

amplitude in dB (decibels)

FRF comparison with quadratic and logLS cost
Multivariate Mode Indicator Function

phase (in degrees) with an effort to unwrap along columns
Root Mean Square response

tria3, tria6
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TEST/ANALYSIS CORRELATION TOOLS

fe_exp experimental shape expansion

[fe_sens sensor configuration declaration and sensor placement tools
ii_comac obsolete (supported by

ii mac GUI for MAC and other vector correlation criteria

FINITE ELEMENT ANALYSIS TOOLS

methods to build ss models from full order FEM
DOF selection and I/O matrix creation

Cases (loads, boundary conditions, etc.) handling
computation and normalization of complex modes
transformation matrices for Component Mode Synthesis
partial and full eigenvalue computations

assembly of distributed load vectors

material property handling utilities

assembly of full and reduced FE models
orthonormalization and collinearity check

utilities for finite element model reduction

element energies and stress computations

generic element function for superelement support
projection matrix for linearized rigid body constraints

MoDEL FORMAT CONVERSION

nor2res| normal mode model to complex mode residue model
nor2ss assemble state-space model linked to normal mode model
nor2xf compute FRF associated to a normal mode model

qbode] fast computation of FRF of a state-space model

res2ss pole/residue to state space model

res2tf pole/residue to/from polynomial model

res2xf compute FRF associated to pole/residue model

ss2res state-space to pole/residue model

FINITE ELEMENT UPDATE TOOLS

user interface for finite element update problems
semi-direct update by comparison modal frequencies
iterative update by comparison of modal frequencies
iterative update based on FRF comparison
minimization algorithm for FE update algorithms
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INTERFACES WITH OTHER SOFTWARE

ans2sdt

nasread

naswrite

mas2up|
ufread|

ufwrite|

reading of ANSYS binary files (FEMLink)

read from MSC/NASTRAN .dat, .f06, .02, .04 files (some with FEM-
Link)

write data to MSC/NASTRAN bulk data deck (some with FEMLink)
extended reading of NASTRAN files

read Universal File Format (some with FEMLink)

write Universal File Format (some with FEMLink)

OTHER UTILITIES

basis

coordinate transformation utilities

ffindstr find string in a file

order sorts eigenvalues and eigenvectors accordingly
remi integer rem function (remi(6,6)=6 and not 0)
setlines line type and color sequencing

[sdth) SDT handle objects

ofact| creation and operators on |ofact| matrix objects
sdtcheck| installation handling and troubleshooting utilities

tria3, tria6
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abaqus

Purpose Interface between ABAQUS and SDT (part of FEMLink) Warning this function requires

Syntax

MATLAB 7.1 or later.

abaqus(’read FileName’);
abaqus(’job’);

read[*.fil, *.inp, *.mtx, *.dat]

By itself the read command imports the model from a .inp ASCII input or .fil binary output file.
Support for .dat read is very partial, but provides a framework for users to parse desired tokens.

Models created by an *Assembly command using several instances and/or additional nodes or ele-
ments are treated with superelements. Each part instance (called by *Instance...*end instance)
becomes then a specific superelement in the SDT model. A packaged call allows to get a full model
back

model=abaqus(’read Job-1.inp’);
model=abaqus (’ResolveModel’ ,model);

% both calls at once:

model=abaqus (’read-resolve Job-1.inp’);

The ResolveModel command has a limited robustness in the general case due to the difficulty to
handle heterogeneous Stack data while renumbering parts of a model. Most cases should be properly
handled. One can use command read-resolve to perform both operations at once.

When reading deformations, sdtdef (’OutOfCoreBufferSize’) is used to determine whether the
vectors are left in the file or not. When left, def.def is a object that lets you access
deformations with standard indexing commands. Use def.def=def.def(:,:) to load all. If a
modal basis is read, it is stored in the model stack, as curve,Mode. If static steps are present all
associated deformation are concatenated in order of occurrence in the model stack as curve,step(1).

Command option -wd allows to save the model generated in a directory different from the one in
which the abaqus files are saved.

You can request the output of element matrices which will then be read into an model. To
do so, you need to define an element set. To read matrices, you have to provide some information
before running the job in order to select which matrices you want to write and read. In the .inp
input file you may enter the following line
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*ELSET, ELSET=ALL ELT FOR SDT
THIN SHELL1 , THIN SHELL1_1

(second line contains all the ABAQUS defined sets) just before the *STEP line and

*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, STIFFNESS=YES
*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, MASS=YES

just after the *STEP line.

Note that this information are automatically generated using the following command
abaqus(’elementmatrices model.inp’);

Running the Abaqus job generates outputs specified by the user, with *OUTPUT commands in the
Abaqus job input file. Current default use generates an odb file, using commands of the type *NODE
OUTPUT. The odb format however requires the use of Abaqus libraries to be read.

Imports are thus handled in SDT using the .fil output binary file. This file is readable without
Abaqus, and its reading has been optimized in [FEMLink] This type of output is generated using
commands of the type *NODE FILE. A sample command to obtain nodal deformation a the end of a
step is then

** general command to .fil and ask for nodal deformation field
*0UTPUT, FIELD

*NODE FILE

U

All nodal variable keywords should be expressed on separated lines. This must be repeated in all
steps of interest in an ABAQUS computation file input .inp.

Most common and general nodal variables keywords of interest are the following (this is not applicable

to all ABAQUS procedures)

e U, V, A respectively for nodal displacement, velocity and acceleration output

e RF,CF, VF, TF respectively for nodal reaction forces, constrained forces, viscous forces, and total
forces output

e GU, GV, GA respectively for generalized displacement, velocity ad acceleration (when reduction
is involved)

Since not all information (materials, set names, ...) can be found in the .fil, you may want to

combine two reads into an model
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abaqus(’read file.inp’, ’buildup file.fil’);.

Abaqus features a matrix sparse output starting from version 6.7-1. Their generation is performed
in a dedicated step as follows

*STEP
*MATRIX GENERATE, STIFFNESS, MASS
*END STEP

The output is one ASCII file .mtx by matrix requested, which can be read by

Reading a .dat file should be avoided in general as the ASCII storage format and variation between
ABAQUS versions makes it unpractical. There are however cases where such reading is the easiest
way; A framework adapted to such parsing is provided with support to read complex mode shapes
(that cannot be stoed in the .fil file).

One can call data=abaqus(’Read’,fdat,1i); with fdat a .dat file and 1i an optionnal Nx2 cell
array providing a list of tokens to detect and and associated callback. The supported tokens are used
if 11 is omitted, it is separately accessible with li=abaqus(’DatList’); if users wish to combine
supported features with customized ones.

If a token is detected in the file, a callback will be fired as outi=feval (cbkl,fid,evt,cbk2:end);
with cbk the callback cell array provided in the second column of 1i, £id the valid opened file object
set a the starting position of the currently detected token, evt a structure with fields . p0 the starting
position of the scanned text buffer (not the current position to be recovered by pcur=ftell(fid) ;,
.p1 the file length, .bufs a buffer size to be exploited. The callback command must rethrow a
structure whose field will be incremently added to the global output structure.

Build[model,case,contact]

462

Thise set of high level commands aims at transforming a raw imported model into a functional model
in SDT. It exploits in particular the lower level [abaqus Resolve| commands.

e BuildCase step tstep
model=abaqus(’BuildCase stepl’,model); This command prepares the model case loading
corresponding to a given step index istep. Raw model reading imports indiferently all bound-
ary conditions and loading into the Case Stack. The loading sequence is stored in the stack
entry info,BSHist and is exploited by BuildCase to generate the loading relative to a given
step. One can ask for the last step by using token steplast instead of step istep. Command
options

— all restores all case entries in the Case Stack.
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— -noResolve asks not to perform the [abaqus Resolve| call if this was previously per-
formed.

e BuildModel step istep
model=abaqus(’BuildModel stepl’,model); This command generates the model global state
at a given step specified by step index istep. In addition to the BuildCase functionalities, this
function looks for a static response result corresponding to the given set to define a curve,q0
entry, thus declaring a static state in the SDT model. One can ask for the last step by using
token steplast instead of step 4step. Command options

— -noResolve asks not to perform the [abaqus Resolve| call if this was previously per-
formed.

— —contactCAMlink to a call to the BuildContact command with forwarding of additionnal
command options given in CAM. This feature is only accessible with a valid SDT-
Contact module license.

— -getStatic to only resolve the static state. The output is then the static state. It
is possible to specifiy in intial set of static deformations in an additional argument.
g0=abaqus (’buildModel-steplast-getStatic’,model,...
stack_get(mol,’curve’,’step(1)’,’get’)).

e BuildContact step <step

model=abaqus (’BuildContact stepl’,model); This command packages the generation of
SDT contact elements and laws based on the ABAQUS definition. This feature is only
accessible with a valid SDT-Contact module license. The import generates con-
tact elements based on master surfaces with penalized contact laws. Hard contact laws are
thus automatically penalized with a calibrated stiffness density. Support for the *CONTACT
PATR, *MOTION, *CLEARANCE, *CHANGEFRICTION commands is provided and integrates *SURFACE
BEHAVIOR and *FRICTION law inputs.

The step definition is mostly usefull for *MOTION and *CHANGE FRICTION commands.One can
ask for the last step by using token steplast instead of step 4step. Command options

— -module has to be used for users with no access to the SDT-NL tools outside SDT-Contact.

— Command option -useRes asks to initialize contact states based on static force resultants
on surface rather than by observing gaps on the static deformation field. This can be
usefull to alleviate contact state import discrepancies due to different contact implemen-
tations between ABAQUS and SDT.

— -optim is used to remove curves from the model that are not usefull for further anlysis
after the BuildContact step is performed.

— —tgStickNoMotion can be used to define tangential sticking property for contact with
friction and no motion.
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— -moRot is used to specify the local definition of contacts : tangent and normal directions

% —moRot’’cyl’’ defines a cylindrical contact (for example the sliding contact of a
drum brake)

Resolve

This set of commands transforms a raw model import by read into en exploitable SDT
model. This is for example useful when the ABAQUS model has been generated with *PART and
*INSTANCE. In such case, the representation of an ABAQUS model becomes very far from an SDT
model. The raw reading obtained by read will thus interpret parts as superelements, and leave the
instance data, and some internal information not translated. Some other advanced definitions need
special care and are thus handled in this section.

Some adaptations, performed by ResolveModel are thus needed. In particular, renumbering can
occur, however all sets definitions are maintained.

e ResolveModel
This command will create the elements conforming to the instance information. Commands
ResolveSet, ResolveMass, AssembleUserElements, ResolveCase and ResolveShellC will also
be called, to generate a fully exploitable SDT model.

e ResolveSet
This command transforms each ABAQUS implicitly defined sets into explicit SDT sets. This
is very useful if some sets have been defined in ABAQUS using internal part numerotations.
This command is also usefull to distinguich sets of different types but with initially the same
name. This behavior is not available in SDT and special care is taken not to mixup set names
and types. Called by ResolveModel.

e ResolveCase
This command aims at resolving all implicitly defined case entries in the model, including
*MODEL CHANGE, and some connector calls. This also handles the multiple slave resolution in
the manner of ABAQUS, and should thus be performed before assembling models if multiple
slave error occur.

e ResolveMass
This command handles the model stack entry info,UnResolvedMasses that may have been
created during the read call, and assigns mass values missing in mass elements. This is
necessary when masses have been defined in an ABAQUS part, such that the attribution of
the mass amplitude by *MASS is not directly retrievable. Called by ResolveModel.
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e ResolveShellC
Continuum shell elements (SC8R and SC6R) have no direct counterparts in SDT. A base res-
olution just ignores the shell declaration and declare these elements as solids with reduced
integration (this may not work for stacked layers of continuum shells). The following com-
mand options are available

— -shellSE will generate a superelement embedding shells in SDT format from the neutral
fiber of the continuum shells, within the 3D topology. In that way a behavior equivalent
to ABAQUS is expected.

— —order?2 in combination with —shel1SE uses second ordr shells instead of first order ones.

write

abaqus (write Name.inp’,model); writes and ABAQUS input file.

abaqus (’BwMTX’ ,model) ; writes all matrices stored in model.K in the abaqus sparse output format.
Each matrix file is named after the model.file entry and model.Klab. For a model stored in
model .mat containing a matrix ’k’, the file output will be named model k.mat.

BwMat ; BwMp ; BwSet ; Bwbas ; BwStepEig are implemented.

JobOpt

JobOpt = abaqus(’Job0Opt’,0pt); This command returns a filled JobOpt structure to be run by
sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and
OutList must be filled. Further options concern the fields Input when the input file is different
from the job name, RunOptions to append the usual option to the Abaqus command, RemoveFile
to remove files from the remote directory when needed.

conv

This command lists conversion tables for elements, topologies, face topologies. You can redefine
(enhance) these tables by setting preferences of the form

sd_pref (’set’,’FEMLink’,’abaqus.list’,value), but please also request enhancements so that
the quality of our translators is improved.

splitcelas
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model=abaqus(’SplitCelas’,model) splits all SDT celas elements to one dimension celas ele-
ments that can be handled by Abaqus. This command can change the E1tId so it must be used
when meshing the model.

uniquematpro

Merges duplicated pl/il instances.

AssembleUserElements

Returns a matrix and its corresponding DOF, from the assembly of all USER, ELEMENT instances
in an ABAQUS model. This command is exploited in [abaqus Resolve]| calls.

[K,dof] = abaqus(’AssembleUserElements’,model);

Command option -inModel directly sets a SDT functional superelement named usere in the model.
In this case, element matrices are removed from the stack. They can be kept with command option
—-keep.

Command option -disjsplit splits the assembled SE into disjoint SE regarding DOF connectivit,
resulting SE are named uei with ¢ a 6 digit fixed index.

model=abaqus (’AssembleUserElements-inModel’ ,model) ;

odb2sdt

Utility functions to transfer Abaqus .odb file data into a format similar to MATLAB 6 binary .mat
file and readable by [sdthdf]l The changes in the format are introduced to support datasets larger
than 2GB.

Abaqus outputs are commonly written in .odb files, using a non documented format. The only way
to access its data is to use Abaqus CAE or Abaqus Python. These utility functions are to be used
with Abaqus Python to extract data from the output database for further use outside Abaqus. The
modules used are

e odbAccess. Abaqus access libraries.
e abaqusConstants. Common output values dictionary, such as *U’, *UR’
e Numeric. Module for array handling utilities.

e struct. Module to pack data into binary strings.
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For the moment, only nodal data transfer is completely implemented. More information can be
found on Python at http://www.python.org. Note that def is a reserved word in Python for the
function definition command; remember not to use it in another way!

The following script is a quick example of what can be done with these functions. It can be launched
directly if written in a .py file read0DB. py for example, by abaqus python readODB.py

from odb2sdt import * # import read functions

jobName="my_abaqus_job’
odb=open0db (jobName + ’.odb’)
allNodal2mat (odb)

This second script will only write the DOF set in a .mat binary file

from odb2sdt import * # import read functions

jobName=’my_abaqus_job’

odb=open0db(jobName + ’.odb’) #open the database
stepName=odb.steps.keys () [0] #get the name of the first step
fieldItem=["U’] #I want the ’U’ displacement field

# get the fieldOutputs instances list from the first frame:
fieldOutputs=odb.steps.__getitem__(stepName) .getFrame(0).fieldOuputs

f=matFile(jobName + ’_dof.mat’) # Initialize the file
dof2mat (f,fieldOutputs,fieldItem, stepName) # write the DOF array to it
f.close()

Once a file_allNodal.mat file has been generated, it is possible to load the deformation structure
fields using

def=abaqus(’read file_allNodal.mat’)

def output is here a cell array containing all def structures found in the allNodal.mat file. Only
simple cases of .odb outputs are supported. The rest of the data is not automatically read, it can
nevertheless be attained using

r1=sdthdf (’open’,file_allNodal.mat) ;

where r1 is a cell array containing all the fields contained in the allNodal.mat file.
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odb2sdt.py reference

The following lists the main subfunctions in odb2sdt.py

matFile(fname)

dof2mat (f, fields
,fieldItems, stepName)

defSet2mat (f, step,
fieldList)

nodalScalarValues2mat (f,
field, stepName, frameName)

allNodal2mat (odb)

Creation of a the file fname, with the standard .mat
header.f=matFile (fname)

Writes the DOF array in SDT format to file £. fields is the
list of fieldOutput instances from the step named stepName.
fieldItems is the sorted list containing the displacement field-
Outputs present in the fieldOuputs list. It must contain in that
order, and at least one entry of the list [’U’> , °UR’ , °UT’].
It is a direct call with no output.

Writes a fieldOutput set for all frames of a step, contiguously
into file £. step is a step instance, fieldList is the list of field-
Outputs to be output from the frame object. All kind of nodal
vector output can be treated although this was designed to treat
displacement fields linked to the dof2mat function. It is a di-
rect call with no output. In case of a modal deformation set, the
EIGIMAG, EIGFREQR, EIGREAL and DAMPRATIO historyOutput data
are also output.

Outputs an array of scalar nodal values to file £, for a particular
fieldOutput instance field. stepName is the name of the step
considered, frameName the name of the frame. However, since
the fieldOutput is given the last two arguments are strings only
needed to compose the array name in £.It is a direct call with no
output.

This function combines the lower level nodal output function to
create and fill directly a .mat file containing DOF's, deformations
sets, and nodal scalar values form an odb instance, created with
openOdb. It is a direct call with no output.

The following are lower level calls, and alternative calls, with output in the workspace.
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sortFieldList( fieldList)

rmFromList (1listl, list2)

arrayHead2mat (f, nValSize,
isCpx, diml,dim2, arrayName)

getNodes (frame)

getLabels(frame, fieldKeys)

setDOF (nodeld, field,
fieldKeys)

readData(value)

readNodalValues(field,
outList)

Returns a field keys list in which the existing displacement field
keys have been sorted at the list beginning, in the order *U’,
UR’> , ’UT’. fieldList=sortFieldList(fieldList).

Returns 1ist1 in which the items in 1ist2 have been removed.

Low level command. Initialization of an array entry into the file
f. The corresponding header is written such that the array values
can be written right after. nValSize is the space needed to store
the values form the array in Bytes. isCpx takes the value 0 if the
data to store are real, or 16 if the values to store are complex.
diml and dim2 are the dimensions of the array in direction 1 and
2. arrayName is the name given to the array. It is a direct call
with no output.

Returns a nodeld array in the workspace, taken in a frame in-
stance.nodeId=getNodes (frame)

Returns the list of componentLabels contained in all the
fieldKeys list, in a frame instance. It also generates a list in
which the field keys are repeated to match the componentLabels
list. 1abels,labelField=getLabels(frame,fieldKeys)

Returns a DOF array interpreted from a fieldOuputs
list, a nodeld array and fieldKeys giving the
fieldOutput displacement keys  relevant in field.
DOF=setDOF (nodeId,fieldOutputs, [’U’])

A way to output a data member of a value instance
regardless of the precision used during the computation.
data=readData(value)

Returns optionally the nodeld array, the corresponding data
array and the componentLabels lists found, from a fieldOut-
put instance. OutList is a list of length 3 being [1,1,1] for
a complete output, [0,1,0] to output only the data array, and
[1,1,0] to output the combo nodeld array and data array.
nodeld,data=readNodalValues(fieldOutput, [1,1,0])
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Examples

See also [FEMLinkl
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Purpose

Interface between ANSYS and SDT (part of FEMLink)

Syntax
ans2sdt(’read FileName’) % .rst, .cdb, .matrix, .mode files
ans2sdt (’write FileName’) % .cdb file
ans2sdt (’BuildUp FileName’) % .rst and .emat files
. = ans2sdt(’def FileName.rst’)% .rst or .mode files
Description

Build [Up,ContactMPC]

e Command BuildUp reads the binary files FileName . rst for model definition and FileName.emat
for element matrices. The result is stored in Up (a type 3 superelement handled by .
FileName.mat is used to store the superelement.

General syntax is ans2sdt (’BuildUp FileName’); valid calls are

Up=ans2sdt (*buildup file’);
[m,k]=upcom(Up, ’assemble not’);

For recent versions of ANSYS, you will have to manually add the ematwrite,yes command
to the input file to make sure that all element matrices are written. This command is not
accessible from the ANSYS menu.

There is a partial attempt to fill in element properties in Up.il. You can also use
data=stack get (model,’info’,’RealConstants’,’getdata’) to obtain the cell array con-
taining the ANSYS real constants for various elements. The index in this cell array corresponds
to element ProId values.

e Command BuildContactMPC interprets ANSYS contact elements (CONTA171-175), and slave
elements TARGE170 to generate MPCs in the form of [fe_caseg ConnectionSurface| This is
thus close to bonded contact formulations.

model=ans2sdt (’Read file.cdb’); % read base file
% transform contact info into bonded coupling
model=ans2sdt (’BuildContactMPC’ ,model) ;
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def

def=ans2sdt(*read’,’file.mode’) reads deformations in .mode files.

To read responses .rst files you should use

model=ans2sdt (’readdef’,’test.rst’); % read all data
def=stack_get (model, ’curve’,’NSL’);
% Partial read of only specific entries
model=ans2sdt (’rstdef’,’sdtforced.rst’,
struct (’DefUse’ ,{{’NSL’}})); % give the block names to be read

Since multiple blocks can be read, the results is saved in the model stack and can be retrieved
by name using stack_get(model,’curve’,’NSL’); or similar calls. The standard names used by
ANSYS are NSL (displacement), VSL (velocity response), RF (reaction forces), ESL (element solution,
see [ans2sdt ESLread)). If you are interested in reading other results, please send a test case.

conv

This command lists conversion tables for elements, topologies, face topologies. You can redefine
(enhance) these tables by setting preferences of the form

sd_pref (’set’,’FEMLink’, ’ansys.elist’,value), but please also request enhancements so that
the quality of our translators is improved.

read

This command reads files based on their standard ANSYS extension.

e .matrix files are read assuming ASCII Harwell Boeing format obtained with
HBMAT, Fname,Ext,--,ASCII,STIFF. RHS vectors or binary matrices are not read yet. You
can read the mapping file at the same time using ans2sdt (’matrix’,’k.txt’, ’k.mapping’);
or DOF=ans2sdt ("mapping’, ’k.mapping’).

e .mode files contain deformations which are read into the usual SDT format.

e .rst files contains model information topology, some material/element properties and bound-
ary conditions (but these are more consistently read in the .cdb), ...

— When an .emat file is present, the read call attempts to run the BuildUp command.

— Responses are read using a call of the form ans2sdt (’readdef’,’file.rst’), seefans2sd}
defl
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e .cdb input files also written by ANSYS using the CDWRITE ALL,FileName,cdb command.
Please also request enhancements on the support of this format so that the quality of our
translators is improved.

ANSYS does not store boundary conditions in the .rst files so that these can only be imported
from .cdb file. If you only have fixed boundary conditions, you can easily generate those with

model=ans2sdt (’buildup test’); % read model

def=ans2sdt (’def test.rst’); % read deformations

model = fe_case(model,’fixdof’,’Fixed_Dofs’,
fe_c(model.DOF,def .DOF, *dof’,2));

cf=feplot; cf.model=model; cf.def=def; 9’ display

Def

def=ans2sdt(’def FileName.rst’) or def=ans2sdt(’def FileName.mode’) reads deformations
in .rst or .mode files

ESLread

To read element output data if any, that were detected during the reading of an output file (.rst).

model=ans2sdt (’ESLread’’ ,model); will generate a stack entry named ESL: token in the model
that will contain the element data.

token is an element output data identifier as documented by ANSYS, and mentioned in the model
stack entry info,ptrESL.

Command option groups allows generating the output for a given group number 7

JobOpt

JobOpt = ans2sdt(’JobOpt’,0pt); This command returns a filled JobOpt structure to be run by
sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and
OutList must be filled. Further options concern the fields Input when the input file is different
from the job name, RunOptions to append the usual option to the Ansys command, RemoveFile to
remove files from the remote directory when needed.

Write
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ans2sdt (Cwrite FileName.cdb’,model) is the current prototype for the ANSYS writing capability.
In ANSYS .cdb files are written with the CDWRITE ALL, FileName, cdb command. This does not
currently write a complete .CDB file so that some manual editing is needed for an ANSYS run after

the write.

See also

[FEMLInK]
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Purpose

Coordinate system handling utilities
Syntax

P = basis(x,y)

[bas,x] = basis(node)

[ ... 1] = basis(’Command’, ... )
Description

nodebas [nodeGlob,bas]=basis(’nodebas’,model)

NodeBas performs a local to global node transformation with recursive transformation of coor-
dinate system definitions stored in bas. Column 2 in nodeLocal is assumed give displacement
coordinate system identifiers PID matching those in the first column of bas. [nodeGlobal,bas]=
basis(nodelocal,bas) is an older acceptable format. -force is a command option used to resolve
all dependencies in bas even when no local coordinates are used in node.

Coordinate systems are stored in a matrix where each row represents a coordinate system using any
of the three formats

% different type of coordinate defintition

CorID Type RefID A1 A2 A3 B1B2B3C1C2C30 0 0 s
CorID Type O NIdA NIdB NIdC O 0 0 O O O O O O s
CorID Type O Ax Ay Az Ux Uy Uz Vx Vy Vz Wx Wy Wz s

Supported coordinate types are 1 rectangular, 2 cylindrical, 3 spherical. For these types, the nodal
coordinates in the initial nodeLocal matrix are x y z, r teta z, r teta phi respectively.

' [ ] '}
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Figure 10.1: Coordinates convention.
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The first format defines the coordinate system by giving the coordinates of three nodes A, B, C as
shown in the figure above. These coordinates are given in coordinate system RefID which can be 0
(global coordinate system) or another CordId in the list (recursive definition).

The second format specifies the same nodes using identifiers NIdA, NIdB, NIAC of nodes defined in
node.

The last format gives, in the global reference system, the position Ax Ay Az of the origin of the
coordinate system and the directions of the x, y and z axes. When storing these vectors as columns
one thus builds the x¢ = [cgL] x1, transform.

The s scale factor can be used to define position of nodes using two different unit systems. This is
used for test/analysis correlation. The scale factor has no effect on the definition of displacement
coordinate systems.

trans[ ,t][ ,1][,e] cGL= basis(’trans [ ,t][ ,1][,e]’,bas,node,DOF)

The transformation basis for displacement coordinate systems is returned with this call. Column 3
in node is assumed give displacement coordinate system identifiers DID matching those in the first
column of bas.

By default, node is assumed to be given in global coordinates. The 1 command option is used to
tell basis that the nodes are given in local coordinates.

Without the DOF input argument, the function returns a transformation defined at the 3 translations
and 3 rotations at each node. The t command option restricts the result to translations. With the
DOF argument, the output is defined at DOFs in DOF.

The e command option (for elimination) returns a square transformation matrix. Warning: use of
the transE command and the resulting transformation matrix can only be orthogonal for translation
DOF if all three translation DOF are present.

gnode :nodeGlobal = basis(’gnode’,bas,nodelLocal)

476

Given a single coordinate system definition bas, associated nodes nodeLocal (with coordinates x y
z, r teta z, r teta phi for Cartesian, cylindrical and spherical coordinate systems respectively)
are transformed to the global Cartesian coordinate system. This is a low level command used for
the global transformation [node,bas] = basis(node,bas).

bas can be specified as a string compatible with a basis(’rotate’ call. In such case, the actual
basis is generated on the fly by basis(’rotate’) before applying the node transformation.
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[p,nodel] = basis(node)

Element basis computation With two output arguments and an input node matrix, computes
an appropriate local basis bas and node positions in local coordinates x. This is used by some
element functions (quad4]) to determine the element basis.

rotate

bas=basis(’rotate’,bas,’command’,basId); is used to perform rotations on coordinate systems
of bas given by their basId. command is a string to be executed defining rotation in degrees (rx=45;
defines a 45 degrees rotation along x axis). One can define more generally rotation in relation to
another axis defining angle r=angle and axis n=[nz, ny,nz]. It is possible to define translations (an
origin displacement) by specifying in command translation values under names tx, ty and tz, using
the same formalism than for rotations.

For example, one can define a basis using

% Sample basis defintion commands

bas=basis(’rotate’, [],’rz=30;",1); % 30 degrees / z axis
bas=basis(’rotate’,[],’r=30;n=[0 1 1]°,1); % 30 degrees / [0 1 1] axis
bas=basis(’rotate’, [],’tx=12;’,1); ' translation of 12 along x
bas=basis(’rotate’,[],’ty=24;r=15;n=[1 1 1];°,1); % trans. of 24 along y and rot.

p = basis(x,y)

Basis from nodes (typically used in element functions to determine local coordinate systems). x and
y are two vectors of dimension 3 (for finite element purposes) which can be given either as rows or
columns (they are automatically transformed to columns). The orthonormal matrix p is computed
as follows

¥ IXg)

P= TS e TE= (10.1)
] 7l (12
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If x and y are collinear y is selected along the smallest component of x. A warning message is passed
unless a third argument exists (call of the form [pasis|(x,y,1)).

p = basis([2 0 0],[1 1 1]) gives the orthonormal basis matrix p

% Generation of an orthonormal matrix
p = basis([2 0 0],[1 1 11)

p =
1.0000 0 0
0 0.7071 -0.7071
0 0.7071 0.7071
See also

section [7.1] ,section [7.2]

Note : the name of this function is in conflict with basis of the Financial Toolbox.
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Purpose
General utilities for graphical user interfaces and figure formatting. Figure formatting documentation
can be found in section [Rl
Syntax
comgui(’Command’, ...)
cingui(’Command’, ...)

comgui is an open source function that the user is expected to call directly while cingui is closed
source and called internally by SDT.

ImCrop
Image cropping utilities. This function allows cropping uniform borders and uniform rows or columns
in an image.
Syntax is a=comgui (’ ImCrop’,a)’

Image a can be either

an image defined by an m-by-n-by 3 matrix, or a line cell array of such images

a structure from getFrame with fields cdata containing m-by-n-by 3 matrices

a file name or a line cell array of file names. By default if a file name is given the file is replaced
by saving the cropped image.

e a composite cell array line with file names and images. By default if a file name is given the
file is replaced by saving the cropped image.

The following command options are available

e Borders To only crop image from the first border.
e AllBorders To only crop image from all borders.
e BorderNum To only crop image from the first N borders, given as parameter.

e UpToBorder To crop until a border is found in the limit of 20 pix from the edges of the original
image. (Useful for java capture of figures)
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e A1l To remove all rows/columns with equal colors throughout the image.

e Equal To apply the same cropping to all images in the cell array input, by intersecting cropping
rows and columns.

e -noSave Not to erase images provided in file names.

e Rot90 can be used to rotate the image by £+ 90 degrees before cropping

You can include cropping options within an ImWrite call by defining a .CropOpt field in the option
structure.
ImWrite,

InwriteFzleName. ext does a clean print of the current figure. The preferred strategy is to predefine
options, so that comgui (’ ImWrite’) alone is sufficient to generate a figure. This can be done by

e predefining properties in a [comgui PlotWd| call (including the file name as illustrated under
[comgul Imbtitlel

e or using the obsolete strategies of setting ua.ImWrite in the [iiplot PlotInfo| so that the

proper data is used when a is displayed in or setting ImWrite in
def.Legend| so that the proper configuration is used when a is displayed in

comgui(’ImWrite’,gf ,R0) with a figure handle given in gf and options stored in the RO structure,
is the most general. gf can be omitted and will be taken to be gcf.

RO can be omitted if options are given as strings in the command. Thus ImWrite-NoCrop is the
same as using RO.NoCrop=1.

For details for multi-image capture strategies (for example a set of modeshapes), seeliicom ImWrite|

Acceptable options are detailed below.
e .FileName The default extension is .png. With no file name a dialog opens to select one.
RO.FileName can be a cell array for a ImFtitle call.

e .NoCrop=1 avoids the default behavior where white spaces are eliminated around bitmap im-
ages.

e .FTitle=1 uses the title/legend information to generate a file name starting with the provided
filename.
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A typical example would be comgui (’imwrite-FTitle plots/root’) which will generate a
root_detail.png file in local directory plots.

For a given plot, comgui (’imFTitle’) can be used to check the target name.

Using a cell .FileName calls [comgui ImFtitle|to let you build the file name from elements
within the figure.

.LaTeX=1 displays LATEX commands to be used to include the figure in a file.

.objSet provides an|comgui objSet|style. You can also combine predefined styles using a cell
of the form {’@0sDic(SDT Root)’,{’fmtl1’,’fmt2’}}. The ’@ToFig’ can be used to clone
the figure before printing to avoid modifying its appearance.

.clipboard copies to clipboard.

.Java To use screenshot strategies of the system current monitor display using java. This
implies in particular that the content to capture is visible on screen when the command is
used.

— .Java=1 uses java to do a screen capture of the figure content (undocked figure).

— .Java=2 captures the figure with the figure border (undocked figure). Use 2.2 to perform
a clean crop arround the figure (if windows in your OS are surrounded by an unicolor
rectangle)

— .Java=3 captures the dock containing the current figure.

— .Java=4 captures the content of the current tab in a tabbed pane without column headers.
— .Java=5 captures the pane containing the current tab (add the tab layout).

— .Java=6 captures the content of the current tab in a tabbed pane with column headers.
— .Java=7 captures the content of the tile containing the figure (figure + figure headers).

— .Java=8 captures the ExploTree of the UL
.JavaT To capture figures contents using java object methods (works for tables only)

.open=1 opens the image in a browser.

.Crop="all’ modifies the cropping option, see [comgui ImCropl Use ’no’ to avoid cropping.

MultiExt={’.png’,’.fig’} will allow saving of multiple versions of the same image.

.wobjSet is used to insert the image into the current Microsoft Word file directly.
d_imw(’get’,’WrW49C’) gives a sample format.
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It is also possible to directly capture a graphical java object which contains getVisibleRect and
getLocationOnScreen properties. Simply provide the java object as instead of a figure handle.

sdtweb sdt % Open sdt.html in the help browser

pause(2); 7 Wait for the display

desktop = com.mathworks.mde.desk.MLDesktop.getInstance;
rl=desktop.getGroupContainer(’Help’) % Get the java container of the help browser
% Save the HelpBrowser capture in the tempdir with name testjavacapture.png
comgui (’imwrite testjavacapture’,rl);

ImFtitle,

ImFtitle generates a file name for the figure based on current displayed content. Text is searched in
objects with tags legend, ii_legend, in the axes title. By default all the text is concatenated and
that can generate excessively long names so finer control is achieved by providing the FileName as a
cell array in the [comgui PlotWd|call. The underlying mechanism to generate the string is described
in [comgui objString]

figure(1);clf; t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));
legend(’a’,’b’,’c’);title(’MyTit’);

% Define target plot directory in the figure
cingui(’objset’,1,{’@PlotWd’,sdtdef (’tempdir’)})

% Check name generation, from string
comgui(’imftitle’,1,{’@PlotWd’,’@title’,’ .png’})

% Do a direct call with name building
comgui(’imwrite’,struct(’FileName’,{{’@PlotWd’,’@title’,’.png’}}))

% Predefine the figure save name in the userdata.Imwrite of current axis

comgui(’PlotWd’,1,’FileName’,
{’@Plotwd’,’@title’, ... % Search for plotwd, use title name
’@legend(1:2)’,’ .png’}); % use first legend entry

comgui(’imInfo’) % See parameters

% check image name, display clickable link for image generation

comgui (’imftitle’)

sdtweb(’_link’,’comgui(’’Imwrite’’)’,’Generate’);

d_imw(’Fn’) % Standard names styles for tile name generation
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dock

SDT uses some docking utilities that are not supported by MATLAB. The actual implementation
is thus likely to undergo changes.

gf=11;figure(gf) ;clf; t=linspace(0,2*pi);h=plot(t, [1:3]’*sin(t));
figure(12);plot(rand(3));figure(13) ;mesh(peaks);

% set the dock name and position

comgui(’objset’, [11 12 13],{’@dock’,{’name’, ’MAC’,

’arrangement’,[1 1 2;1 1 3], ... 7 Automated tile merging
’position’, [0 O 600 400],...
’tileWidth’,[.4 .6], ... % Fraction of columns

tileHeight’,[.3 .71}}); % Fraction of rows
pos=feval (iimouse (’@getGroupPosition’),’MAC’); % group screen position
figure(14); 7% Add a new figure in specified tile
cingui(’objset’,14,{’@Dock’,{’Name’,’MAC’,’Tile’,11}});

feval(iimouse(’@deleteGroup’),’MAC’) ¥ Delete group (and figures)

Capture of a dock group figure is possible with comgui imwrite-Java3

guifeplot,iiplot
cf=comgui(’guifeplot -reset -project "SDT Root"’,2);
comgui(’iminfo’,cf) % View what was set

Is used to force a clean open of an feplot figure. The option -reset is used to force emptying of
the figure. The option -project is used to combine a call to [comgui PlotWd]to define the project.

Formatting styles [sdtroot OsDic|are also stored in the project.

objSet (handle formatting)

cingui(’objSet’,h,Prop) is the base SDT mechanism to generalize the MATLAB set command.
It allows recursion into objects and on the fly replacement. Prop is a cell array of tag-value pairs
classical in MATLAB handle properties with possible modifications. Three base mechanisms are
object search, expansion and verification.

Object search ’0@tag’,value applies property/values pairs stored in value to an object to deter-
mined on the fly. For example *@xlabel’ applies to the xlabel of the current axis.
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@xlabel accepts a value that is a cell array that will be propagated for all x labels. A typical
example would be {’@xlabel’,{’FontSize’,12}}. Other accepted components are @ylabel,
@zlabel, O@title, Qaxes, Otext,

Oaxes, @figure will search for parent or child axes objects

@tag is assumed to search for object with the given tag, so that its properties can be set.
For example {’0ii legend’,{’FontSize’,12}} will set the fontsize of an object with tag
ii_legend.

@tag(val) allows the selection of a specific object by index when multiple objects with the
same tag are found.

@ImFtitle is used to store the cell array for image name generation see [comgui ImFtitle]
This must be set after displaying title and legend entries, since the information is stored in
these objects.

@legend generates the usual MATLAB legend

@ii legend allows a tick generation callback, see|ii_plp Legend)

@TickFcn allows a tick generation callback, see|ii_plp TickFcnl|

@ColorBar allows handles properties of colorbar. This is illustrated under [fecom ColorBar]
but can be used for any figure.

@dock handles docking operations, see

@ToFig replicate the figure before applying operations. Property {’cf’,val} can be used to
force replication into figure val (use NaN for a new figure). Property {’PostFcn’,val} can
be used to allow execution of a callback after the figure replication. Property {’leg’,1} uses
the iiplot ii_legend object, while 2 transforms to a MATLAB legend.

@PlotInfo calls [iicom PlotInfo| to initialize how data is displayed in an feplot/iiplot

figure.

Expansion modifies the current property/value list by replacing a given entry.

e ’00sDic(SDT Root)’,{’vall’,’val2’} seeks objset values in the [sdtroot 0sDic|

e ’’ ’Qtag’ is first expanded by inserting a series of tag-value pairs resulting from the replace-

ment of Gtag.

The two uses are illustrated below
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% Define OsDic entries in project

sdtroot (’Set0sDic’,{’feplotA’,{’Position’, [NaN NaN 500 300]};
>font12’,{’@axes’,{’fontsize’,12},’0title’,{’fontsize’,12}}
‘grid’,{’0@axes’,{’xgrid’,’on’,’ygrid’,’on’,’zgrid’,’on’}}

DE

sdtroot(’set0sDic’, ... % Define a line sequence

{’LiMarker’,setlines(jet(5),{’-’,’-=’,’~-."}, ’+ox*sdv"><ph’) })

% Example of apply call

figure(1) ;plot(sin(linspace(0,4*pi)’*[1:3]))

cingui(’objset’,1,{’@0sDic(SDT Root)’,{’feplotA’,’grid’,’LiMarker’}})

% Get 0OsDic data for given entry

sdtroot (’cbosdicget’, []1,’ImLW75°) % in project

cingui(’fobjset’, ’RepRef’,{’@0sDic’,{’feplotA’,’grid’}})

cingui(’fobjset’, ’RepRef’,{’’,’ORep{SmallWide}’})

Value replacement /verification performs checks/callbacks to determine the actual value to be
used in the MATLAB set.

e position accepts NaN for reuse of current values. Thus [NaN NaN 300 100] only sets width
and height.

e @def The value is a default stored in sdt_table generation(’Command’). One can search
values by name within a cell array. This is in particular used for preset report formats
ORep{SmallWide} in|comgui ImWrite}

e xlim, ... clim accept callbacks for the setting of limits.
'set(ga,”clim”,[-1 1]*max(abs(get(ga,”’clim”))))’ is a typical example setting symmetric color
limits.

e ’Osetlines(’’marker’’)’ or ’Qout=setlines(’’marker’’);’ are two variants where the
value is obtained as the result of a callback. Note that the variant with @out must end with a
semicolumn. This is illustrated in the example below.

figure(1);t=linspace(0,2*pi);h=plot(t,[1:3] *sin(t));
cingui(’objset’,1, ... % Handle to the object to modify
{’?,’@GRep{SmallWide}’, ... % Predefined figure type
’@line’,’@setlines(’’marker’’)’}) % Line sequencing
cingui(’fobjset’,’RepRef’,{’’,’O@Rep{SmallWide}’})
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objString (string generation for title and file)

cingui(’objString’,h,SCell) is a mechanism to generate strings based on a set of properties.
Elements of SCell are replaced when starting by an @, with implemented methods being

e Q@PlotWd is the base mechanism to find the plotting directory, see [comgui PlotWdl

@PlotWd/relpath is accepted in name generation to allow simple generation of relative paths.

e Otag(1:2) allows selection of a subset of objects when multiple exist. Typical are @1legend (1)
to select the first string of a MATLAB legend, or @ii legend(1) for an SDT [ii_plp Legend|
entry. Cheadsub for the text used by to display titles.

e Qcolorbar seeks the string associated with a colorbar

e Qcf.mdl.name or any variant based on @cf can be used to retrieve data in an [SD'I" handle
pointer.

This is used by |comgui ImFtitle|to generate figure names, but can also be used elsewhere (fe_range
...). For example in title generation.

figure(1);clf;
t=linspace(0,2*pi) ;h=plot(t, [1:3]’*sin(t));title(’MyTit’)
legend(’a’,’b’,’c’);
SCell=  {’@Plotwd/plots’, ... % Search for plotwd/plot
’@title’, ... % use title name
>.png’}; % extension
cingui(’objstring’,1,3Cell) % Handle of base object

ParamEdit

cingui (’ParamEdit’) calls are used to clarify filling of options data structures as detailed in sec-
tion [(.17.3] .

def.Legend

The def .Legend field is used to control dynamic generation of text associated with a given display.
It is stored using the classical form of property/value pairs stored in a cell array, whose access can
be manual or more robustly done with sdsetprop.

Accepted properties any text property (see doc text) and the specific, case sensitive, properties
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e set gives the initialization command in a string. This command if of the form ’legend
-corner .01 .01 -reset’ with

— cornerz y gives the position of the legend corner with respect to the current axis.
— -reset option deletes any legend existing in the current axis.

e string gives a cell array of string whose rows correspond to lines of the legend. $title

is replaced by the string that would classically be displayed as label by Individ-
ual formatting of rows can be given as a cell array in the second column. For example

{’\eta_1’,{’interpreter’, ’tex’}}.

[model,def]=hexa8(’testeig’) ;cf=feplot(model) ;
cf.data.root="\it MyCube’;

def.Legend={’set’,’legend -corner .1 .9 -reset’, ... % Init
’string’,{’$title’;’@cf.data.root’}, ... % The legend strings
’FontSize’,12} % Other test properties
cf.def=def;
PlotWd

A key aspect of image generation is to define meta-data associated with a figure. These include,
directory where the image will be saved, file name, possible inclusion in Word, PowerPoint, ... The

tab defines the plot directory and possibly a file for inclusion. Other properties are set
using the PlotWd command cingui(’plotwd’,gf,’@0sDic(SDT Root)’) as illustrated below.

When initializing in a figure, use cf=comgui(’guifeplot -project "SDT Root"’,2) to
set the project information. Note that the older strategy using cf.def .PlotWd, cf.mdl.PlotWd are
still used first if they exist. Similarly use cf=comgui(’guiiiplot -project "SDT Root"’,2) to

set the project information of figures.

When refining formatting beyond specifying directory, insertion file, accepted property/value pairs
(a structure can also be used but this is not the norm)

e ’00sDic(SDT Root)’,list is used to extract property/values from the dictionnary. The (SDT
Root) is the name of the figure from which dictionnary and project information is to be
obtained from. The Project values is set.

e Project tag of project interface. Default would be SDT Root

e FileName cell array describing file name generation, see example in [comgui ImFtitlel Note
that the Fn. . entries allow generation of names from text present in the figure (labels,
titles, ...).
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e objSet cell array of objset commands to be performed before generating an image
typically begins by a @ToFig to avoid modifying the original figure.

This

e wobjSet cell array of commands for insertion of the resulting image into MicroSoft Word,

Powerpoint,Excel, LaTex, ... A sample entry is given by d_imw (’wrw49c’).

e ’MultiExt’,{’.png’,’.fig’} cell array of extensions to save mutiple versions of given figure.

t=linspace(0,pi); % basic plot

gf=1;figure(gf) ;clf;plot(t,sin(t));
title(’TestFigure’);legend(’a’);

% Define the project directory

sdtroot (’SetProject’,struct(’PlotWd’,sdtdef (’tempdir’)))
% Prepare for image generation.

list={ ... ¥ List of OsDic entries, implemented in d_imw
>ImToFigN’, ... % Duplicate to new figure before ImWrite
’FnTitle’, ... 7% Generate file name based on Title
YWrW49cC’ % Insert in word with 49% wide centered

}s
% Associate figure gf with project SDT Root
cingui(’plotwd’,gf,’@0sDic(SDT Root)’,list)
comgui(’iminfo’,gf) % View what was set
comgui (’imwrite’,gf) % Actually insert image

A variety of predefined formats is available (and can be customized) with

FitLabel

comgui(’fitlabel’) attempts to replace axes of the current figure so that xlabel, ylabel, .

not cropped.

.. are
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Purpose

General purpose command parser for user interface command functions.

Syntax

Commode (’CommandFcn’,’Chain0fCommands’)

Description

Commands and options are central to SDT. These strings are passed to functions to allow multi-
ple variations in behavior. Accepted commands are listed in the help (text) and (html)
documentations (see |iicom| [fecom| [feutil] etc.).

commands are case insensitive, thus FindNode and findnode are equivalent. The uppercase is
used to help reading.

options can be separated by blanks : >ch1’ or ch 1’ are the same.

option values (that must be provided) are indicated 7talzc in the HTML help and in brackets
() in the text help.

For example ch 7 indicates that the command ch expects an integer. ch 14 is valid, but ch
or ch i are not.

in the help alterative options are indicated by [c1,c2] (separated by commas).

For example ch[,c] [7,+,-,+7,-%] means as a first alternative that ch and chc are possible.
Then alternatives are ¢ a number, + for next, - for previous, +% for shift by 4. ch 14, chc
12:14, chc+, ch-2 are all valid commands.

Commands are text strings so that you can use fecom ch[1,4], fecom *ch 14’ or fecom(’ch
1 4’) but not fecom ch 1 4 where ch, 1 and 4 are interpreted by MATLAB as 3 separate
strings.

; placed at the end of a command requests a silent operation as in MATLAB.

When building complex commands you may need to compute the value used for an option.
Some commands actually let you specify an additional numeric argument
(feplot(’textnode’,[1 2 3]) and feplot(’textnode 1 2 3’) are the same) but in other
cases you will have to build the string yourself using calls of the form feplot([’textnode’
sprintf(’ %i’,[1 2 31)])
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The UI command functions only accept one command at a time, so that was introduced to
allow

e command chaining: several commands separated by semi-columns ;. The parsing is then done by

[commodel
e scripting: execute all commands in a file.

e command mode: replace the MATLAB prompt >> by a CommandFcn> which directly sends com-
mands to the command function(s).

Most command functions send a command starting by a *;’ to[commode] for parsing. Thus
(’iicom’,’caxl; abs’) is the same as[iicom (’;caxl;abs’)

The following commands are directly interpreted by (and not sent to the command func-

tions)
q,quit exits the command mode provided by |commode' but not MATLAB .
script FName reads the file FName line by line and executes the lines as command strings.

The following syntax rules are common to and MATLAB

%comment all characters after a 7% and before the next line are ignored.
(] brackets can be used to build matrices.
; separate commands (unless within brackets to build a matrix).

See also

|comstr] [11com| [fecom] [femesh]|
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Purpose

String handling functions for the Structural Dynamics Toolbox.

Syntax

See details below

Description

The user interfaces of the Structural Dynamics Toolbox have a number of string handling needs
which have been grouped in the function. The appropriate formats and usual place of use
are indicated below.

Cam,string istrue=comstr(Cam,’string’)

String comparison. 1 is returned if the first characters of Cam contain the complete *string’. 0 is
returned otherwise. This call is used extensively for command parsing. Note that istrue is output
in format double and not logical. See also strncmp.

Cam,string,format [opt,CAM,Cam]=comstr (CAM, ’string’,’format’)

Next string match and parameter extraction. finds the first character where lower (CAM)
differs from string. Reads the remaining string using the sscanf specified format. Returns opt
the result of sscanf and CAM the remaining characters that could not be read with the given format.

[opt,CAM,Cam]=comstr (CAM, ’string’,’%c’) is used to eliminate the matching part of string.

CAM,ind [CAM,Cam] = comstr (CAM,ind)

Command segmentation with removal of front and tail blanks. The first ind characters of the string
command in capitals CAM are eliminated. The front and tail blanks are eliminated. Cam is a lowercase
version of CAM. This call to is used in all UI command functions for command segmentation.

-1 opt = comstr(CAM, [-1 default])

Option parameter evaluation. The string CAM is evaluated for numerical values which are output in
the row vector opt. If a set of default values default is given any unspecified value in opt will be
set to the default.
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-3 date = comstr(CAM, [-3])

Return the standard date string. Used by [ufwrite| paswrite] etc. See also date, datenum.

-4 CAM = comstr(CAM, [-4 nc 1)

Fills the string CAM with blanks up to nc characters.

-5 comstr(Matrix, [-5 fid],’format’)

Formatted output of Matrix, the format is repeated as many times as Matrix has columns and a
formatted output to fid (default is 1 standard output). For example you might use
comstr(ii_mac(mdl,md2)*100,[-5 1],°%6.0f”)

-7 stl=comstr(stl,-7,’string’)

used for dynamic messaging on the command line. On UNIX platforms (the backspace does not
work properly on Windows), the string st1 is erased before ’string’ is displayed.

-17 Tab , comstr(tt,-17,’type’)

This is used to generate tabular output of the cell array tt to various supported types : tab (opens
a java tab containing the table), excel (Microsoft Excel only available on windows), html, csv
(comma separated values, readable by excel), tex (latex formatting), text printout to the command
window.

% A sample table

tab=num2cell (reshape(1:10,[1,2));tab(1,:)={"cl’,’c2’};

tname=nas2up (’tempname o.html’);

% RO option structure to format a table for HTML or java output

RO=struct(’fmt’ ,{{’%3i’,’%.1£f’}}, ... % Formatting for each column
’HasHead’,1); % a header is provided as strings

RO.fopen={tname,’a+’}; % Opening information

RO.OpenOnExit=0;

RO.Legend=sprintf (’<p>Y,s</p>’,’My HTML legend’);

% comstr(tab,-17,[],R0.fmt)

comstr(tab,-17, html’ ,R0);

sdtweb(’_link’,sprintf (’web(’’%s’’)’ ,tname))

% Show the table in JAVA tab
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comstr(tab,-17,’tab’,R0);

% Generate tex output of java tabs
comstr(struct(’FigTag’,’SDT Root’),-17,’tex’);
comstr(gef,-17, tex’);

Accepted fields for the options structure are

e .fmt cell array of column formatting instructions. These can be strings %.1f,%1i,%.2g which are
passed to sprintf. They can also be java strings java.lang.String(’0.007%’) which are then
parsed using java.text.DecimalFormat.

e .ColumnName cell array with first row giving column names. .ColumnName(:,3) can also be used
to store the column format. .ColumnName(:,4) can also be used to store cell coloring data,
see section [7.18§] .

e .HasHead if non zero, skips lines of strings
Fields specific for HTML generation are

e .name is used to define a title for the table.

e .fopen used for HTML generation. For example {tname,’a+’}; is for append. .0OpenOnExit
asks to open the file in the web browser.

Fields specific for JAVA tabs are

e .setSort activates row sorting in java tables. 1 : basic sort, 2: selectable sort. 3 : tree table.
e .name is used to define a tab name.

e .FigTag tag or handle for figure where the tab should be displayed.

e .ColWidth vector of column width in pixels.

e .groupable used with .setSort=3 to specify columns that will be used to generate the tree.

e jProp accepts tag,value pairs. ’ResizelMode’,’0ff’ to fix colums for example.
’MousePressed’ ,data gives a cell array used to store events that should be handled by the table
(see menu_generation(’ jpropcontext’,ua,’Tab.ExportTable’)).

.ColumnName second row can give alignment ’right’. Third row can give column formatting
(alternatively, the .RowFmt can be used). Row 4 can be used to define a color based on a

-38 [i0,st2]=comstr(st1,-38)

Checks whether provided string st1 is valid to be a structure field. Output i0 is a boolean, true
if valid, false otherwise. Output st2 is equal to input st1 if the string is valid. If not, st2 is an
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alternative valid suggestion based on st1.

See also

[commode]
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curvemodel

Purpose

Syntax

Handle object for implicit representation of curves.

h=curvemodel (’Source’,rl,’yRef’,fun,’getXFcn’,{fun,fun,fun}, ...
’DimPos’, [1 3 21);

Description

Multi-dim curve|are multi-dimensional arrays (.Y field) with information about the various dimen-
sions (.X,.X1lab fields). curvemodel store similar data sets but provide methods to generate the
.X, .X1ab, .Y fields content dynamically from an information source.

curvemodel objects are derived from MATLAB handle objects. If you copy an object’s handle,
MATLAB copies only the handle and both the original and copy refer to the same object data.

The principle of curve models is that the computation only occurs when the user seeks the required
data.

Important fields are

e .Source contains the data to be used as source. The source can be a pointer. For example
cf.v_handle.Stack{’def1’} can be used to point to a set of deformations stored in a
or stack.

e .DimPos is used to allow permutations of the array dimensions (implicit equivalent of
permute(c.Y,c.DimPos).

e .xRef is a cell array of length the number of dimensions in .Y allowing the extraction from
the source.

Documented methods are
e .GetData : creates a copy of the full implicit data.

This functionality mostly undocumented. Support functions are process_r that handles delayed

signal processing requests, ii_signal that supports commands associated with signal
processing. The following is an example for users willing to dig into the code.



curvemodel

Cl=d_signal (’RespsweepSpec’) % Create a spectrogram model
C2=C1.GetData; % create a copy where the spectrogram is computed
C2.PlotInfo=ii_plp(’plotinfo 2D’);
iicom(’curveinit’,’Spectro’,C2);
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Purpose

Compute the decibel magnitude.
Compute the unwrapped phase in degrees.phase

Syntax

m = db(xf)

p = phaseb(xf)
Description

computes the decibel magnitude of each element of the matrix xf. An equivalent would be

m = 20%1logl0(abs(xf))

is an extension to the case of multiple FRF stacked as columns of a matrix xf of the phase
routine available in the System Identification Toolbox. It computes the phase in degrees with an
effort to keep the phase continuous for each column.

Example

Here is an example that generates the two FRF of a SIMO system and plots their magnitude and
phase.

a=[0 1;-1 -.01];b=[0;1];c=[1 0;0 1];d=[0;0];
w=linspace(0,2,100)’; xf=gbode(a,b,c,d,w);
clf;

subplot (211) ;plot (w,dbsdt (xf)); title(’dB magnitude’)
subplot(212) ;plot(w,phaseb(xf));title(’Unwrapped phase in degrees’)

See also

The [xf| format,
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Purpose

Interface between EXCITE and SDT (part of FEMLink).

Syntax

ex2sdt(’read’ ,FileName) ;
ex2sdt ("post’);

read[*.cff, *.gid]

ex2sdt (’Read’,’fname.cff’) % Read .cff file and display in feplot

This command can be used to read some Excite specific output files :

e .cff file can be used to export model geometry. Model is read and displayed in feplot.

e .gid file can be used to export time curve at a current DOF. A full directory can be read :
ex2sdt (’Read’,’Directory.gid’). Curves are displayed in iiplot.

ConvertAsMat

ex2sdt (’ConvertAsMat’) This command aims to convert all Excite results of a given directory as
SDT mat files (typically RO md1l and def variables) that can be explorated and post treated through

the lex2sdt UIScan| command.

sdtroot (’SetProject’,struct(’ProjectWd’, ’projectpath’,’root’, ’resultroot’))
ex2sdt (’Post’)

First a root project must be opened, defining at least :

e ProjectWd : the main project directory that contains the results of the time simulation.

e 100t : the root of the filenames where model and results are stored.
The result folder must contains

e the model file, and if needed the associated reduction basis file. The model file should be (in
preference order):
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— a root.0UT2 nastran output?2 file from the DMAP condensation step.
— a root.NAS nastran bulk file.

— a root.cff excite file (to be implemented).

e if needed, the file that contains the restitution matrix in the case of meshed part reduced using

UIScan

the AVL DMAP. This file is read and lead to a model.TR reduction basis, that can be used to
expand the displacement form the reduced model to the full displacement field (and so animate
the time deformation in feplot).

— a matlab file, root_X20A.mat, that is obtained by the [ex2sdt TextOp4] command, that
converts the original export text OUT4 file to a Matlab binary file that is more convenient
to use (it can be read as an HDF handle to save memory).

— directly the original root_X20A.0UT4 export, which is a text file. This case is only suitable
for files that are lower than 300 MB.

as many subfolders as simulation results. For the moment each simulation typically corresponds
to a specific rotation speed (so each subfolder name should end by the rotation velocity in RPM,
for example study.2000 for the 2000 RPM speed case) : this will be generalized to obtain
simulation information and build a simulation parameter data structure R0, in order to perform
dirscan in the generic SDT process (see sdtweb fe range) (XXX need to find way to recover
those parameters from Excite ouputs...). The result files should be, by order of preferences:

— a root_SOL109.INP4 nastran input4 text file that contains displacements, velocities and
acceleration at each (reduced) DOF. This is the more compact and usable output. Cor-
responding time and angle are then read in the util _batch list.out log file.

— a number of root-NodeID-DOFID-REL.GID files, each one containing the displacement,
velocity and acceleration in a given of the 6 directions at a node of the model. Some
developpements are needed to use this strategy (INP4 should be prefered), that is beside
very time-consumming.

The input parameters can be get from 2 different files:

— summary.xml : that can be read with RO=feval (ex2sdt (’@parseXVML’) ,’summary.xml’).
Developpement must be done.

— simulation report.out : a text log file that can be read with
RO=feval (ex2sdt (’@readReportOut’),’simulation_report.out’).
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ex2sdt ("UIScan’) This command can be used to scan a given directory (defined in the Project tab)
and then perform some post-treatment (compute campbell diagrams and animate displacements or
velocities as color map,...) and explorate data through UL

Text0Op4

This command is experimental.

ex2sdt (’TextOp4’,’filename X20A.0UT4’)

It aims to convert an ascii X20A.0OUT4 file, to a binary HDF .mat file. This operation is bufferized
so that the 2 GB memory limitation of old 32 bits Matlab can be bypassed.

See also

[EEMLInK
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Purpose

Build state-space or normal mode form from FE model.

Syntax
[sys,TR] = fe2ss(’command [options]’,MODEL)
[sys,TR] = fe2ss(’command [options]’,MODEL,C)
[nor,TR] = fe2ss(’command -nor’, ...)
TR = fe2ss(’command -basis’, ...)
Description

is meant to allow users to build state-space (see section [5.4]) and normal mode models from
full order model matrices. Accepted commands are detailed below. Accepted command options

e -nor outputs the normal mode model data structure (see section )

e -basis outputs the reduction basis is the structure TR

e —se outputs a reduced superelement

e -loss2c performs estimates viscous damping based on hysteretic models

e -cpx 1 computes complex modes and uses a call to to compute the state space model.

-cpx 2 uses first order correction in the call before using to build the state-
space model. This is currently only available for a Free command.

e —dterm includes static correction as a D term rather than additional modes. The associated
full order shapes are stored in TR.bset.

e -ind specifies indices of modes to be kept. Others are included as a D term.

The procedure is always decomposed in the following steps

e call build a reduction basis given in TR.def (see section ). This usually includes a
call to with options Eig0pt provided in the command

e call to orthonormalize the basis with respect to mass and stiffness (obtain a model in the
normal mode form (5.4)), see section ) and eliminate collinear vectors if any

e call or project model matrices depending on the number of outputs
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The TR output argument, contains the modeshapes followed by residual vectors, is given so that the
user can display modeshapes in[fepIlot]with cf.def=TR or callpor2ss|repeatedly without computing
the basis again. The later is in particular useful for changes in the sensor configuration which have
no effect on the retained basis. -nor and -basis can be used to generate the corresponding outputs.

High level input arguments are a MODEL (see section ) with a defined in the model which
must contain load and sensor entries (see [fe_casé]).

Damping can be specified multiple ways.

e modal damping of viscous form can be given in the model (using a [DefaultZetal case entry as
shown below) or as an additional argument C which can be a system damping matrix, a scalar

uniform damping ratio or a vector of damping ratios.

e defining modal damping using an inline function. For example to set 1% below 3000 Hz and 5%
above use

model=stack_set(model,’info’,’DefaultZeta’,
@(f)double(£/2/pi<3000) *.01+double (£/2/pi>=3000) *.05) ;

e using material loss factors and adding the -loss2c option described above.

in the model (using a case entry for example), or given as an additional argument
C which can be a system damping matrix, a scalar uniform damping ratio or a vector of damping

ratios.
The following example compares various damping models.

mdl=demosdt (’demo ubeam mix’);cf=feplot;

mdl=fe_case(mdl, ’SensDof’,’0ut’, [343.01 343.02 347.03]°’,
>FixDof’,’base’,’z==0’)

freq=linspace(10,1e3,2500) ’ ;mdl=stack_set (mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);

[sys,T] = fe2ss(’free 6 10’,mdl);

gbode (sys,freq*2*pi,’iiplot "Modal"’);

% Rayleigh damping with 1 % viscous at 200 Hz, see sdtweb(’damp’)

mdl=stack_rm(mdl,’info’,’DefaultZeta’);

mdl=stack_set(mdl,’info’,’Rayleigh’, [0 .01%2/(200%2xpi)]);

[sys2,T] = fe2ss(’free 6 10’,mdl);

gbode (sys2,freq*2*pi,’iiplot "Rayleigh"’);

% Estimate viscous from hysteretic damping

[sys3,T] = fe2ss(’free 6 10 -loss2c’,mdl);
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gbode (sys3,freq*2*pi,’iiplot "Loss"’);
iicom(’iix’,{’Modal’,’Rayleigh’,’Loss’});

% display full response

RB=struct (’f’,cf.Stack{’Freq’},’u’,eye(5,1))

cf.def=fe2ss(’sysdef’,sys,T,RB);
% use iimouse(’cursorOnFeplot’) to see deformations at various freq.

SysDef

The command is used to generate a restitution of a forced response on all DOF in TR. The calling
format is fe2ss(’sysdef’,sys,TR,RB) with fields of the option structure being

e .f frequency in Hz. or .w frequency in rad/s.

e .u input possibly a vector that should be consistent with sys.b.

Free [ , Float] [ , -dterm] EigOpt

See [fe_reduc Free| for calling details, this generates the classical basis with free modes and static
correction to the loads defined in the model case (see . With the -dterm option, the static
correction is given as a D term rather than additional modes.

CraigBampton nm

It is really a companion function to[fe_reduc|CraigBampton command. The retained basis combines
fixed interface attachment modes and constraint modes associated to DOFs in bdof.

This basis is less accurate than the standard modal truncation for simple predictions of response to
loads, but is often preferred for coupled (closed loop) predictions. In the example below, note the
high accuracy up to 200 Hz.

mdl=demosdt (’demo ubeam’);cf=feplot;

mdl=fe_case(mdl,’SensDof’,’0ut’, [343.01 343.02 347.03]°,
’FixDof’,’Base’,’z==0’)

freq=linspace(10,400,2500) ’ ;mdl=stack_set(mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);
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[sys,T] = fe2ss(’CraigBampton 5 10’7,
fe_case(mdl,’DofSet’,’IN’,314.01));
gbode (sys,freq*2*pi,’iiplot "Craig"’);

% Same with free modes
[sys2,T2] = fe2ss(’Free 5 10’,

fe_case(mdl, ’Remove’,’IN’,’DofLoad’,’IN’,314.01));
gbode(sys2,freq*2*pi,’iiplot "Free" -po’);

iicom(’iixOnly’,{’Craig’,’Free’});iicom(’;sub 1 1;ylog’)

Low level input format

The obsolete low level input arguments are those of with the additional damping and
output shape matrix information.

[sys,TR] = fe2ss(’command’,m,k,mdof,b,rdof,C,c)

m, k
mdof
b

bdof
rdof

symmetric real mass and stiffness matrix

associated DOF definition vector describing DOFs in m and k

input shape matrix describing unit loads of interest. Must be coherent with mdof.
alternate load description by a set of DOFs (bdof and mdof must have different length)
contains definitions for a set of DOF's forming an isostatic constraint (see details below).
When rdof is not given, it is determined through an LU decomposition done before the
usual factorization of the stiffness. This operation takes time but may be useful with
certain elements for which geometric and numeric rigid body modes don’t coincide.
damping model. Can specify a full order damping matrix using the same DOFs as the
system mass M and stiffness K or a scalar damping ratio to be used in a proportional
damping model.

output shape matrix describing unit outputs of interest (see section). Must be coherent
with mdof.

Standard bases used for this purpose are available through the following commands.

See also
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Purpose

UI command function for the visualization of 3-D deformation plots
Syntax

fecom

fecom CommandString
fecom(cf,’CommandString’)
fecom(’CommandString’ ,AdditionalArgument)

Description

provides a number of commands that can be used to manipulate 3-D deformation plots are
handled by the interface. A tutorial is given section . Other examples can be

found in gartfe, gartte and other demos. Details on the interface architecture are given under

This help lists all commands supported by the interface (calling |[fecom| or [feplot|is insensitive to
the user).

e cfl=feplot returns a pointer to the current figure (see section ). The handle is used
to provide simplified calling formats for data initialization and text information on the current
configuration. You can create more than one[feplot|figure with cf=feplot (FigHandle). If many
feplot figures are open, one can define the target giving an feplot figure handle cf as a first
argument.

e without input arguments, [fecom| calls [commode| which provides a command mode for entering

different possibly chained commands.

e the first input argument should be a string containing a single command, or a chain of
semi-column separated commands starting with a semi-column (’ ;coml;com2’)). Such
commands are parsed by

e some commands, such as TextNode, allow the use of additional arguments

AddNode,Line

These commands start to implement direct model modification in the feplot figure. Sample calls are
illustrated in section 2.7.1] .
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Anim[,One] [,Time,Freq] [,col] [nCycle <%, Start %, Step]

Deformed structure animation. The animation is not movie based so that you can actively rotate,
change mode, ... without delay. The AnimStep command is only used when you really want to create
movies.

The animation is started/interrupted using the animation button Er.-' which calls the AnimStart
command. You can set animation properties in the General tab of the feplot properties figure.

To control animation speed and replay you can use fecom(’AnimTime nStep tStep tStart’)
which specifies the number of times that you want the animation to run (0 to run continuously),
the minimum time spent at each time step (default zero), and the wait time between successive
runs of the same animation (default 0, only works with time mode animation). You can also use
fecom(’AnimTime StepInc’) to define the step increment of the animation. You may need to fix
the color limits manually using cf.ua.clim=[0 1e3].

demosdt (’demobartime’); fecom AnimeTime5;
Accepted Anim options are
e Freq the default animation (use of AnimFreq to return to the default) adds a certain phase

shift (2*pi/nCycle) to the amplification factor of the deformations currently displayed and
updates the plot. The default nCycle value is obtained using feplot AnimnCycle25.

e Time starts the animation in a mode that increments deformations while preserving the am-
plification. This is appropriate for animation of time responses.

e One animates the current axis only rather than the default (all).

e Col sets color animation to dual sided (alternates between a max value and its opposite) rather
than the default of no animation. You can animate colors without deformations if you define
colors for the current selection without defining a deformation.

e Slider On,0ff,Tog opens an slider to select deformation.

Animation speed is very dependent on the figure renderer. See the [fecom Renderer|command.

AnimMovie step
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Command option -crop calls [comgui ImCrop|to crop borders, ... You can use the .Movie field in
[iicom ImWrite|to generate multiple files.

Typical uses are illustrated below

cf=demosdt (’DemoGartfePlot’); fecom(’ColordataEvalZ-edgeAlpha.1’);% Load an example
fecom(’MovieProfiles’) % List profiles (supported file types)

tname=nas2up (’tempname.gif’);
Ril=fecom(’AnimMovie’,tname) 7 Base give a name
R2=fecom(’AnimMovie-CropEqual’,tname) 7 ask to crop all white

% More advanced specify properties and shapes

R2=struct (’FileName’,{{sdtdef (’tempdir’),’Gart’,’@ii_legend’,’.gif’}}, ...
'prop’,{{’Quality’,100, ’FrameRate’,10}}, ... % VideoWriter properties
’CropFen’ ,{{’comgui’,’imCropEqual’}}, ... % Do cropping
’PostFcn’, ’camorbit(5,0)’); % Callback after each step

% R2=fecom(’AnimMovie 10°’,R2); % Here save 10 animation steps

R2=fecom(’ImWrite’,struct(’ch’,7:8,’Movie’,R2)); ) Generate two movies

% Use a Matlab Movie
R3=struct (’Profile’,{{’’,’Matlab’, ’movie’}});
R3=fecom(’AnimMovie 10’,R3); % Get a Matlab Movie in R3.M

caxi, cat
Change current azes. cax ¢ makes the axis ¢ (an integer number) current. ca+ makes the next axis
current.

For example, fecom(’ ;sub2 1;caxl;show line;ca+;show sensor’) displays a line plot in the first
axis and a sensor plot in the second.

See also the Axes tab in the feplot properties figure and the sub command. In particular
SubStep is used to increment the deformation numbers in each subplot.

chl,cl [4,+,-,+i,-4], [= 4

Displayed deformation control. is generally used to initialize a number of deformations (as
many as columns in mode). ch % selects the deformation(s) ¢ to be displayed (for example ch 1 2
overlays deformations 1 and 2). By default the first deformation is displayed (for line and sensor plots
with less than 5 deformations, all deformations are overlaid). You can also increment/decrement
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using the ch+ and ch- commands or the + and - keys when the current axis is a plot axis. ch+%
increments by % from the current deformation.

You can also select deformations shown in the Deformations tab in the feplot properties figure.

When using more than one axis (different views or deformations), the ch commands are applied to
all axes while the chc commands only apply to the current axis.

The SubStep command is useful to obtain different deformations in a series of axes. Thus to display
the first 4 modes of a structure you can use: fecom(’;sub 1 1;chl;sub 2 2 step’) where the
sub 1 1 is used to make sure that everything is reinitialized. You can then see the next four using
fecom(’ch+4’).

For line and sensor plots and multiple channels, each deformation corresponds to an object and is
given a color following the ColorOrder of the current axis is used. line and sensor plots

compatible with the use of for line type sequences.

ColorData [,sels] [Typel [,-alphat]
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Color definitions Color information is defined for element selections (see the commands)
and should be defined with the selection using a call of the form,
cf.sel(i)={’SelectionString’,’ColorData’, ...}. fecom(’colordata selsi ...’,...) is
the corresponding low level call. See also [fecom ColorBar|and [fecom Color[egend commands.

Accepted options for the command are

e -alpha val can be used to set face transparency. This is only valid using OpenGL rendering
and is not compatible with the display of masses (due to a MATLAB rendering bug).

e —edgealpha val is used for edge transparency

e —ColorBarTitle "val" is used to open a colorbar with the appropriate title (see ColorBar
and ColorScale commands). A .ColorBar field can be used for calls with a data structure
input.

Accepted ColorData commands are listed below



fecom

Eval

Ener

Group, Mat,
Pro, i

Stress

X, ¥V, 2,
all, DOF

Uniform

Elt

Node

fecom(’ColorData EvalZ’) does dynamic evaluation of the color field based on cur-
rent displacements. Accepted eval options are x,y, z, a for single axis translations or
translation amplitudes. RadZ,TanZ for radial and tangential displacement (assumed
cylindrical coordinates with z axis).

the preferred method is now to compute energies and display using ColorDataElt
as detailed in|fe_stress feplot| The old command fecom(’ColorData EnerK’) is
considered obsolete.

fecom(’ColorDataGroup’) defines a color for each element group, Mat for each
MatId, and Pro for each ProId. ColorDatal gives a color for each separate triplet.
A color map can be given as a second argument.

ColorData Group -edge affects colors to nodes rather than surfaces and displays a
colored wire-frame.

fecom(’ColorMatId’, [100 O O 1]) lets you control colors associated with materials
by setting RGB color value associated to MatId=100 in the info,MatColor case entry.
Similar behavior is obtained for ColorProId and ColorGroupId
The color animation mode is set to ScaleColorQOne.
the ColordataStressi command defines the selection color by calling
with command Stress<. The color animation mode is set to ScaleColorOne. This
requires material and element properties to be defined with
fecom(’ColorDataZ’) defines a color that is proportional to motion in the z direction,
. ColorDatal9 will select DOF 19 (pressure). The color animation mode is set to
ScaleColorDef. fecom(’ColorDataALL’) defines a color that is proportional to
motion norm.

in this mode the deformation/object index is used to define a uniform color following
the axis ColorOrder.

fecom(’ColorDataElt’,data) specifies element colors. Nominal format is a curve
(see|fe_stress Ener|and|[fe_stress feplot| or a struct with .data .E1tId. Older
formats are a struct with fields .data .IndInElt or two arguments data, IndInElt.
low level call to set a color defined at nodes fecom(’ColorData’,cmode) where cmode
is a size(node, 1) by size(mode,2) matrix defining nodal colors for each deforma-
tion (these are assumed to be consistent with the current deformation set). Values
are scaled, see the ScaleColor command. [fecom|(’ColorDatalNode’,mode,mdof)
defines nodal colors that are proportional to the norm of the nodal displacement.
You can obtain nodal colors linked to the displacement in a particular direction us-
ing il=fe_c(mdof,.03,’ind’) ;fecom(’ColorDataNode’, md0(il,:), mdof(il))
even though for displacements in the xyz directions fecom(’ColorDataZ’) is shorter.
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Note: When displaying results colors are sometimes scaled using the amplification factor used for
deformations. Thus, to obtain color values that match your input exactly, you must use the
ScaleColorOne mode. In some animations you may need to fix the color limits manually using
cf.ua.clim=[0 1e3].

Color [,sels] [Edge ..., Face ..., Legend]

Default EdgeColor and FaceColor properties of the different patches can be set to none, interp,
flat, white, ... using fecom(’ColorEdgeNone’), ...

fecom(’ColorEdge’ ,ColorSpec) where ColorSpec is any valid MATLAB color specification, is also
acceptable.

EdgeColor and FaceColor apply to the current selection. The optional Sel< argument can be used
to change the current selection before applying the command.

You can also modify the properties of a particular object using calls of the form
set(cf.o(%),’edgecolor’,ColorSpec) (see go commands and illustrations in gartte).

fecom(’ColorLegend’) uses the MATLAB legend command to create a legend for group, mate-
rial or property colors. Of course, the associated selection must have such colors defined with a
Colordatal[M,P,G] command.

ColorBar, ColorMap
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fecom(’colorbar’) calls the MATLAB colorbar to display a color scale to the left of the figure.
updates this scale when you change the deformation shown. Editing of display is done with
additional arguments fecom(’colorbar’,’CustomField’ ,NewVal,...), where CustomField is a
standard colorbar field, and NewVal the custom value to set. See |[comgui objSet|for details on
this generic SDT procedure.

ColorBar0ff is used to reinitialize a subplot without a color bar.

fecom(’colorMap’) calls ii plp(’ColormapBand’) to generate specialized color maps. See[ii_plp
for details.

In the following example, one plots the actual z displacement using a custom colorbar.

cf=demosdt (’DemoGartfePlot’);

fecom(’colordataEvalZ -edgealpha .1°)

% Disp in CM (*100), 2sided ([-cmax cmax]), instant (updated scale)
fecom(’ColorScale Unit 100 2Sided Instant’);
fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’z [mm]’));

% sdtweb d_imw(’cbTr’) % To see code of typical colorbar styles
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fecom(’colormapjet(9)’);

A .ColorBar field can be used for ColorData calls with a data structure input.

ColorAlpha

fecom ColorAlpha starts a specific coloring mode where the transparency is indexed on the colormap
level. This can be used to highlight high strain areas in volume models. -EdgeAlpha val may be
used to make the edges transparent.

Uniform transparency of faces and edges is obtained using the FaceEdgeAlpha entry in the object
context menu or with a command of the form below.

d_ubeam; cf=feplot;
% Use Value based alpha and Set the edges to be 10% transparent
fecom(’ColorAlpha -edgealpha .1°);

ColorScale

Once colors defined With ColorData, multiple scaling modes are supported. fecom(’ColorScale’)
displays current mode. For calling examples, see|[fecom ColorBar| The modes are accessible through

the feplot:Anim menu.

e Tight corresponds to a value of [cmin cmax]. cf.ua.clim can be used to force values.
e 1Sided corresponds to a value of [0 cmax]. This is typically used for energy display.

e 2Sided corresponds to a value of [-cmax cmax]. This is typically used for translations, stresses,

e Fixed the color limits set in cf.ua.clim are used.

e 0ff the values are set at during manual refreshes (calls to fecom(’ch’) but not during ani-
mation. This mode is useful to limit computation costs but the color may get updated at the
end of an animation.

e Instant the values of cmin, cmax are obtained using the current deformation.

e Transient the values are obtained using a range of deformations. For time domain animation,
estimation is done dynamically, so that you may have to run your animation cycle once to find
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the true limit.

e One does not scale color deformations (default starting with SDT 6.4)

e Unit coef defines a fixed color scaling coefficient. This is typically used to provide more
convenient units (le-6 to have stress colors in MPa rather than Pa for example).

e Def uses the amplification coefficient set for the associated deformation.

Cursor

If a time deformation is defined in the feplot figure, one can see time curve at a specific node
using fecom CursorNodeIiplot command. A node cursor then appears on the feplot displayed
model, and clicking on a node shows corresponding curve in the iiplot figure. Reciprocally one can
show a cursor on the iiplot curve to show corresponding time deformation in feplot using
[CursorPnFeplot command. Note that this functionality should only be used for small models.

Following example let you test this functionality.

model=femesh(’testhexa8’); cf=feplot(model); model=cf.mdl; % simple cube
data=struct(’def’,[1 1 1 1]’,°DOF’,[5 6 7 8]°+.03,...

>curve’ ,fe_curve(’test sin 10e-2 5000 1 5000e-4’));
model=fe_case(model, ’DofLoad’,’topload’,data); % sin load
model=fe_case(model,’FixDof’,’basefix’,’z==0); % fix base
model=fe_time(’timeopt newmark .25 .5 0 le-4 5000’ ,model); % time computation
cf.def=fe_time(model); % show time animation

fecom CursorNodeliplot 7 display cursor on feplot
ci=iiplot;iicom(ci,’ch’,{’NodeId’,5}) % Test the callback

iicom CursorOnFeplot 7 display cursor on iiplot

% Cursor following animation
fecom(sprintf (’AnimCursor’%i Start100’,ci.opt(1)))
ga

fecom(’ga 7’) or cf.ga(4) gets pointers to the associated axes. See details under the same
command. A typical application would be to set multiple axes to the same view using
iimouse(’view3’,cf.ga(:)).
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7

Get handles to[fecom objects. This provides and easy mechanism to modify MATLAB properties of
selected objects in the plot (see also the set command).

For example, set(fecom(’go2’),’linewidth’,2) will use thick lines for object 2 (in the
current axis).

You will probably find easier to use calls of the form cf=feplot (to get a handle to the current
figure) followed by set (cf.o(2),’linewidth’,2). If the object is associated to

more than one MATLAB object (as for text, mixed plate/beam, ...) you can access separate pointers
using cf.o0(2,1). The gartte demo gives examples of how to use these commands.

LabFcn

Titles for each deformation should be generated dynamically with the def.LabFcn callback.
def=fe_def (’lab’,def) attempts to provide a meaningful default callback for the data present in
the def structure.

The callback string is interpreted with a call to eval and should return a string defining the label
for each channel. Local variables for the callback are ch (number of the channel currently displayed

in|feplot|) and def (current deformation).

For example def .LabFcn="sprintf (’’t=}.2f ms’’,def.data(ch)*1000)’ can be used to display
times of a transient response in ms.

fecom(’TitOpt111’) turns automatic titles on (see . fecom(’TitOpt0’) turns them off.

Legend, Head, ImWrite

Placing a simple title over the deformation can be to coarse. Defining a[comgui def.Legend| field
provides a more elaborate mechanism to dynamic generation of multi-line legends and file name (to
be used in|iicom ImWrite]).

The commands can be used to place additional titles in the figure. cf.head returns
a pointer to the header axis. Mode titles are actually placed in the header axis in order to bypass
inappropriate placement by MATLAB when you rotate/animate deformations.

Info

Displays information about the declared structure and the objects of the current plot in the command

window. This info is also returned when displaying the [SDT handle| pointing to the figure.
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Thus cf=feplot returns

ctf

FEPLOT in figure 2

Selections: cf.sel(1)=’groupall’;
cf.sel(2)="WithNode {x>.5}";

Deformations: [ {816x20} ]
Sensor Sets: [ 0 (current 1)]
Axis 3 objects:

cf.o(1)="sel 2 def 1 ch 9 tyl’; 7 mesh
cf.o(2) 7 title

which tells what data arrays are currently defined and lists objects in the current axis.
fecom(’pro’) opens the feplot properties figure which provides an interactive GUI for
manipulations.

InitDef[ , Back]

Initialization of deformations. You can (re)declare deformations at any point using cf .def (7)=def.
Where cf a SDT handle to the figure of interest and % the deformation set you which to modify (if
only one is defined, cf.def is sufficient). Acceptable forms to specify the deformation are

def is a structure with fields .def, .DOF, .data. Note that .Legend and .LabFcn can be used
to control associated titles, see [comgui def.Legend|

{mode,mdof ,data} a set of vectors, a vector of DOFs. For animation of test results, mdof can
be given using the 5 column format used to define arbitrary sensor directions in The
optional data is a vector giving the meaning of each column in mode. fecom head is used to
generate the label.

ci.Stack{’IdMain’}, see section for identification procedures and section for the
pole residue format

[1 resets deformations

{def, ’sensors’} defines sensor motion in a case where sensors are defined in the case (that
can be accessed through cf.CStack{’sensors’}). It is then expected that def.DOF matches
the length of the sensor tdof field).

{def,TR} supports automatic expansion/restitution, see illustrated in the WireExp
command. The same result can be obtained by defining a def.TR field.

feplot(cf,’InitDef’,data) is an alternate calling format that defines the current deformation.
InitDef updates all axes. InitDefBack returns without updating plots.
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load, InitModel

Initialization of structure characteristics. The preferred calling format is

cf.model=model where the fields of model are described in section [.6] . This makes sure that all
model information is stored in the [feplot]figure. cf.mdl then provides a handle that lets you modify
model properties in scripts without calling InitModel again.

Lower level calls are cf.model={node,elt,bas}

(or[feplot|(’ InitModel’ ,node,elt,bas) (see[basis|for bas format information). InitModelBack
does not update the plot (you may want to use this when changing model before redefining new
deformations).

The command is also called when using femesh plotelt, or upcom plotelt (which is equivalent to
cf.model=Up). Note that cf.model=UFS(1) for a data stack resulting from ufread and cf .model=Up
for type 3 superelement.

Load from file fecom(’Load’,’FileName’) will load the model from a binary FileName.mat file.
By default the variable model is searched in the file. fecom(’FileImportInfo’) lists supported
import formats.

The following variables are looked for in the .mat file

e model amodell structure.
e def a structure that will be loaded by default in cf.def

e cf_sels, with < a number, a sel selection structure that will be loaded and stored in cf.sel ().
The following command options apply to command load for specific applications

e -back is used to load, but not display the model (this is used for very large model reading).

e -Hdf loads a model from a HDF5 .mat file but retains most data at pointers to the
file.

e -sLin loads a model and generates a display using cf.sel=’-linface’. This is needed for
larger models.

e -—noDef skips loading deformation curves when present.

e -skipFSE skips HDF loading of external data stored in model.fileSE
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InitSens

Initialization of sensors. You can declare sensors independently of the degrees of freedom used to
define deformations (this is in particular useful to show measurement sensors while using modeshape
expansion for deformations). Sensor and arrow object show the sensor sets declared using initsens.

Translation sensors in global coordinates can be declared using a DOF definition vector
cf.sens(4)={mdof} or feplot(’initsens’,mdof). In the first calling format, the current sensor
set is first set to %.

Sensors in other directions are declared by replacing mdof by a 5 column matrix following the format
SensorId NodeId nx ny nz

with SensorId an arbitrary identifier (often 101.99 for sensor of unknown type at node 101), NodeId
the node number of the sensor position, [nx ny nz] a unit vector giving the sensor direction in
global coordinates (see section [3.1] ).

provides additional tools to manipulate sensors in arbitrary directions. Examples are given
in the gartte demo.

Plot

feplot(’plot’), the same as feplot without argument, refreshes axes of the current figure. If
refreshing the current axis results in an error (which may occasionally happen if you modify the plot
externally), use c1f;iicom(’sub’) which will check the consistency of objects declared in each axis.
Note that this will delete Text objects as well as objects created using the SetObject command.

Pro

feplot ("pro’) initializes or refreshes the feplot property GUI. You can also use the Edit:Feplot
Properties ... menu. A description of this GUI is made in section [£.4] .

feplot (’ProViewOn’) turns entry viewing on.

Renderer [Opengl,zBuffer,Painters] [,default]
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This command can be used to switch the renderer used by Animation speed is very depen-
dent on the figure renderer. When creating the figure tries to guess the proper renderer to
use (painters, zbuffer, opengl), but you may want to change it (using the Feplot:Render menu
or set(gcf, ’renderer’, ’painters’), ...). painters is still good for wire frame views, zbuffer
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has very few bugs but is very slow on some platforms, opengl is generally fastest but still has some
significant rendering bugs on UNIX platforms.

To avoid crashes when opening feplot in OpenGL mode use cingui (’Renderer zbuffer default’)
in your MATLAB startup file.

Save, FileExport
Save the model to a .mat file or export it to supported formats.
fecom(’FileExportInfo’) lists supported export formats.

fecom(’Save -savesel file.mat’ also saves the selection(s) which allows faster reload of large
models. fecom(’Save -savedef file.mat’ also saves the deformations(s).

Scale [ ,Defs, Doft, equal, match, max, one]

Automatic deformation scaling. Scaling of deformations is the use of an amplification factor very
often needed to actually see anything. A deformation scaling coefficient is associated with each
deformed object. The Scale commands let you modify all objects of the current axis as a group.

You can specify either a length associated with the maximum amplitude or the scaling coefficient.

The base coefficient scc for this amplification is set using fecom(’ScaleCoef scc’), while
fecom(’ScaleDef scd’) sets the target length. fecom(’scd 0.01’) is an accepted shortcut. If
scd is zero an automatic amplitude is used. You can also modify the scaling deformation using the

1 or L keys (see[iimouse].

supports various scaling modes summarized in the table below. You can set this modes with
fecom(’scalemax’) ... commands.
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Scaling | Scaling of 1st deformation Scaling of other deformations
mode
max Amplitude of Max DOF set to scd. Amplitude of Max DOF set to scd.
equal Amplitude of Max DOF set to scd. Amplitude of other deformations equal to
the first one, and amplitude of other ob-
jects equal to the first one.
match Amplitude of Max DOF set to scd. Amplitude of other deformations set to op-
timize superposition. When using two de-
formation sets, rather than two modes in
the same set, their DOFs must be compat-
ible.
coef Deformation amplitude multiplied by scd. | Same as first deformation.
one Sets scd to 1 and uses coef mode (so fur- | Same as first deformation.
ther changes to scd lead to amplification
that is not equal to 1).

Warning : using ScaleMax or AnimFreq can lead to negative or complex amplification factors which
only makes sense for frequency domain shapes.

fecom(’scalecoef’) will come back to positive amplification of each object in the current
axis.

ScaleDof 1 is used to force the scaling DOF to be <. As usual, accepted values for < are of the form
NodeId.DofId (1.03 for example). If 4 is zero or not a valid DOF number an automatic selection
is performed. ScaleDof can only be used with a single deformation set.

You can change the scale mode using the FEplot:Scale menu or in the Axes tab of the feplot
properties figure.

Sel [ElementSelectors, GroupAll, Reset]

Selection of displayed elements. What elements are to be displayed in a given object is based on the
definition of a selection (see section ).

The default command is ’GroupAll’ which selects all elements of all element groups (see section[7.2]
for details on model description matrices). cf.sel(1)=’Groupl 3:5’ will select groups 1, 3, 4 and 5.
cf.sel(1)="Groupl & Prold 2 & WithNode {x>0}’ would be a more complex selection example.

To define other properties associated with the selection (fecom ColorDatalin particular), use a call
of the form cf.sel(i)={’SelectionString’, ’OtherProp’,0therPropData}.

To return to the default selection use fecom(’SelReset’).

fecom(’Sel ... -linface’) can be used to generate first order faces for second order elements,
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which allows faster animation.

Callbacks to customized selections is also available. One can then provide a selection starting with
@, the output will be evaluatued on-the-fly. The function must rethrow in order i1, €10 and i2 as

e i1 the indices of the selected elements in cf.mdl.

e ¢10 the elements selected in cf.mdl. This can be the result of a transformation, e.g. face
elements from a selface based selection.

e il
the indices of the selected elements in cf.mdl, including the element header rows. The function is
called as [i1,e10,i2]=eval (CAM(2:end));
SetObjectcf.o(1)= ... fecomSetObjset 7 [,ty 7l

Set properties of object i. Plots generated by are composed of a number of objects with
basic properties

e ty 1 (surface view), 2 (wire frame view), 3 (stick view of sensors), 4 (undeformed structure),
5 (node text labels), 6 (DOF text labels), 7 (arrow view of sensors).

e def k index of the deformation set, stored in cf.def (i), sedfecom InitDef]

e ch k channel (column of deformation)
e sel k index of display selection. See [fecom Sel]

e scc k scaling coefficient for the deformation.

The following example illustrates how the SetObject can be used to create new objects or edit
properties of existing ones.

cf=feplot(femesh(’testquad4 divide 2 2’));
cf.sel(2)=’withnode {x==0}’;

% Display objects in current axis
cf

% Copy and edit one of the object lines to modify properties
cf.o(1)="sel 1 def 1 ch O tyl’; % make type 1 (surface)

% Set other MATLAB patch properties
cf.o(1)={’sel 2 def 1 ch O tyl’,’marker’,’o’}
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% Multiple object set, object index is row in cell array
fecom(cf,’setobject’,{’tyl sel 2 ty’,’ty2 sel 1°})
% remove second object by empty string

cf.o(2)=""

Show [patch,line,sensor,arrow, ...]

Basic plots are easily created using the show commands which are available in the FEplot:Show ...

menu).
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patch

line
sens
arrow
DefArrow
Fi...

Bas

FEM
test

map

NodeMark

Traj

2def

DockXYZ

surface view with hidden face removal and possible color coding (initialized by
fecom(’ShowPatch’)). cf.o(1) object type is 1. For color coding, see colordata
commands.

wire frame plot of the deformed structure (initialized by fecom(’ShowLine’)).
cf.o(2) object type is 2.

Sensor plots with sticks at sensor locations in the direction and with the amplitude
of the response (initialized by fecom(’ShowSen’)). cf.o(2) object type is 3.
Sensor plots with arrows at sensor locations in the direction and with the amplitude
of the response (initialized by fecom(’ShowArrow’)). cf.o(2) object type is 7.
Deformation plots with lines connecting the deformed and undeformed node positions.
(initialized by fecom(’ShowDef’)). cf.o(2) object type is 8.

Thelsdtroot 0sDic|utilities are now used to allow customization of plot initialization.
d_imw(’Fi’) lists predefined init sequencees.

shows triaxes centered a the position of each local basis. The length of the triax
arrow is specified by option -deflenlen. Option DID places the origin of each triax
at a node using this displacement frame.

only shows FEM element groups for models mixing test and FEM information

only shows test element groups for models mixing test and FEM information

shows a standard plot with the test and FEM meshes as well as links used for topo-
logical correlation (see .

fecom(’ShowlMap’ ,MAP) displays the vector map specified in MAP (see
ap). Nota : to see the real orientation, use the fecom(’scaleone’);
instruction. fecom(’ShowUndef’ ,MAP) also displays the underlying struc-
ture. MAP can also be a stack entry containing orientation informa-
tion (see [pro.MAP) or an element selection, as in the example below
demosdt (’demogartfeplot’) ;fecom(’ShowMap’, ’EltName quad4’)
fecom(’shownodemark’,1:10,’color’,’r’, ’marker’,’o’) displays the node po-
sitions of given NodeId (here 1 to 10) as a line. Here a series of red points
with a o marker. You can also display positions with fecom(’shownodemark’, [x
y z],’marker’,’x’). Command option -noclear allows to overlay several
shownodemark plots, e.g. to show distinct sets of nodes with different colors at once.
This can also be obtained by providing a cell array of node numbers.
fecom(’ShowTraj’, (1:10)’) displays the trajectories of the node of Nodelds 1 to
10 for current deformation. Command option -axis is used to display axis node
trajectories.

is used for cases where you want to compare two deformations sets. The first two
objects only differ but the deformation set they point to (1 and 2 respectively).
A typical call would be cf.def(1)={mdl,mdof,f1}; cf.def(2)={md2,mdof,f2};
fecom(’show2def’).

generates a dock with 3 subplots showing colors in the x, y and z directions.
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Once the basic plot created, you can add other objects or modify the current list using the and
commands.

Sub [z 7 ], SubIso, SubStep

Drawing figure subdivision (see for more details). This lets you draw more than one view
of the same structure in different axes. In particular the SubIso command gives you four different
views of the same structure/deformation.

SubStep or Sub % 5 Step increments the deformation shown in each subplot. This command
is useful to show various modeshapes in the same figure. Depending on the initial state of the
figure, you may have to first set all axes to the same channel. Use fecom(’chl;sub 2 2 step’) for
example.

Text [off, Node [,Select], Dof dJ

Node/DOF text display. Text0ff removes all text objects from the current axis. TextNode
displays the numbers of the nodes in FEnode. You can display only certain node numbers by anode]
[selection command] Select. Or giving node numbers in [fecom|(’ textnode’, 3). Text properties can
be given as extract arguments, for example fecom(’textnode’, 4, ’FontSize’,12,’Color’,’r’).
One can customize specific text display attached to nodal positions by directly providing a structure
with fields .vert0, a 3 column matrix of nodal positions (that can be independent from the mesh)
and .Node a 1 column cell array with as many lines as .vertO containing strings to be displayed.

TextDOF displays the sensor node and direction for the current sensor.

TextDOF Name displays sensor labels of a cf.CStack{’Name’} SenDof entry. Additional arguments
can be used to modify the text properties. fecom(’textdof’) displays text linked to currently
declared sensors, see InitSens command (note that this command is being replaced by the
use of SensDof entries).

TextMatId places a label in the middle of each material area. TextProId does the same for properties.

TitOpt [ ,c] 4

Automated title/label generation options. TitOpt 4 sets title options for all axes to the value 3.
7 is a three digit number with units corresponding to title, decades to xlabel and hundreds to
ylabel. By adding a c after the command (TitOptC 111 for example), the choice is only applied
to the current axis.

The actual meaning of options depends on the plot function (see . For titles are
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shown for a non zero title option and not shown otherwise. Title strings for axes are defined
using the head command.

Triax [ , On, Off]

Orientation triax. Orientation of the plotting axis is shown using a small triax. Triax initializes
the triax axis or updates its orientation. Triax0ff deletes the triax axis (in some plots you do not
want it to show). Each triax is associated to a given axis and follows its orientation. The triax is
initially positioned at the lower left corner of the axis but you drag it with your mouse.

Finally can use fecom(’triaxc’) to generate a triax in a single active subplot.

Undef [ , Dot, Line, None]

Undeformed structure appearance. The undeformed structure is shown as a line which is made
visible/invisible using UnDef (UnDefNone forces an invisible mesh). When visible, the line can show
the node locations (use UnDefDot) or link nodes with dotted lines (use UnDefLine).

View [...]

Orientation control. See iimouse(’viewclone’, [cf.opt(1) cg.opt(1)]) can be

used to link animation and orientation of two [feplot]figures. This is in particular used in [fimad]

See also

[feplot] [fe_exp| [feutil]
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Purpose

Syntax

Finite element mesh handling utilities.

femesh CommandString
femesh(’CommandString’)
[out,outl] = femesh(’CommandString’,inl,in2)

Description

You should use function that provides equivalent commands to femesh but using model data
structure.

femesh provides a number of tools for mesh creation and manipulation. femesh uses global variables
to define the proper object of which to apply a command. femesh uses the following standard global
variables which are declared as global in your workspace when you call

FEnode main set of nodes

FEnO selected set of nodes

FEn1 alternate set of nodes

FEelt main finite element model description matrix
FEelO selected finite element model description matrix
FEell alternate finite element model description matrix

By default, femesh automatically uses base workspace definitions of the standard global variables
(even if they are not declared as global). When using the standard global variables within functions,
you should always declare them as global at the beginning of your function. If you don’t declare
them as global modifications that you perform will not be taken into account, unless you call femesh
from your function which will declare the variables as global there too. The only thing that you
should avoid is to use clear (instead of clear global) within a function and then reinitialize the
variable to something non-zero. In such cases the global variable is used and a warning is passed.

Available femesh commands are

Command chaining. Commands with no input (other than the command) or output argument, can
be chained using a call of the form femesh(’;Comi;Com2’). is then used for command
parsing.
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Add FEel? FEelj, AddSel

Combine two FE 