Structural Dynamics Toolbox \& FEMLink

For Use with MATLAB®

How to Contact SDTools

```
33+144246371 Phone
SDTools
Mail
4 4 \text { rue Vergniaud}
7 5 0 1 3 \text { Paris (France)}
```

http://www.sdtools.com	Web
http://support.sdtools.com	Technical support
info@sdtools.com	Sales, pricing, and general information

Structural Dynamics Toolbox User's Guide on February 24, 2019
(C) Copyright 1991-2019 by SDTools

The software described in this document is furnished under a license agreement.
The software may be used or copied only under the terms of the license agreement.
No part of this manual in its paper, PDF and HTML versions may be copied, printed, or reproduced in any form without prior written consent from SDTools.

[^0]
Contents

1 Preface 11
1.1 Key areas 12
1.2 Key notions in SDT architecture 14
1.3 Typesetting conventions and scientific notations 17
1.4 Other toolboxes from SDTools 19
1.5 Licensing utilities 20
1.5.1 Node locked licenses 21
1.5.2 Floating licenses 21
1.6 Release notes for SDT and FEMLink 7.1 23
1.6.1 Key features 23
1.6.2 Detail by function 24
1.6.3 Notes by MATLAB release 26
1.7 Release notes for SDT and FEMLink 7.0 27
1.7.1 Key features 27
1.7.2 Detail by function 28
1.7.3 Notes by MATLAB release 30
1.8 Release notes for SDT and FEMLink 6.8 31
1.8.1 Key features 31
1.8.2 Detail by function 32
1.8.3 Notes by MATLAB release 34
1.9 Release notes for SDT and FEMLink 6.7 35
1.9.1 Key features 35
1.9.2 Detail by function 36
1.9.3 Notes by MATLAB release 37
2 Modal test tutorial 39
2.1 iiplot figure tutorial 42
2.1.1 The main figure 43
2.1.2 The curve stack 46
2.1.3 Handling what you display, axes and channel tabs 48
2.1.4 Channel tab usage 49
2.1.5 Handling displayed units and labels 50
2.1.6 SDT 5 compatibility 50
2.1.7 iiplot for signal processing 52
2.1.8 iiplot FAQ 53
2.2 Identification of modal properties (Id dock) 54
2.2.1 Opening and description of used data 54
2.2.2 General process 59
2.2.3 Importing FRF data 63
2.2.4 Write a script to build a transfer structure 65
2.2.5 Data acquisition 66
2.3 Pole initialization (IdAlt and IdMain filling) 67
2.3.1 External pole estimation 67
2.3.2 LSCF 68
2.3.3 Single pole estimate 74
2.3.4 Band to pole estimate 76
2.3.5 Direct system parameter identification algorithm 76
2.3.6 Orthogonal polynomial identification algorithm 77
2.4 Identification options 77
2.5 Estimate shapes from poles 79
2.5.1 Broadband, narrowband, ... selecting the strategy 79
2.5.2 Qual: Estimation of pole and shape quality 82
2.5.3 When id_rc fails 88
2.6 Update poles 91
2.6.1 Eup : for a clean measurement with multiple poles 91
2.6.2 Eopt : for a band with few poles 92
2.6.3 EupSeq and EoptSeq : sequential narrowband pole updating 93
2.6.4 Example for practice 93
2.6.5 Background theory 96
2.7 Display shapes : geometry declaration, pre-test 97
2.7.1 Modal test geometry declaration 97
2.7.2 Sensor/shaker configurations 99
2.7.3 Animating test data, operational deflection shapes 101
2.8 MIMO, Reciprocity, State-space 103
2.8.1 Multiplicity (minimal state-space model) 103
2.8.2 Reciprocal models of structures 105
2.8.3 Normal mode form 107
3 Test/analysis correlation tutorial 111
3.1 Topology correlation and test preparation 113
3.1.1 Defining sensors in the FEM model : data handling 114
3.1.2 Test and FEM coordinate systems 117
3.1.3 Sensor/shaker placement 120
3.2 Test/analysis correlation 121
3.2.1 Shape based criteria 121
3.2.2 Energy based criteria 127
3.2.3 Correlation of FRFs 128
3.3 Expansion methods 129
3.3.1 Underlying theory for expansion methods 130
3.3.2 Basic interpolation methods for unmeasured DOFs 131
3.3.3 Subspace based expansion methods 132
3.3.4 Model based expansion methods 134
3.4 Structural dynamic modification 134
4 FEM tutorial 137
4.1 FE mesh declaration 139
4.1.1 Direct declaration of geometry (truss example) 139
4.2 Building models with feutil 140
4.3 Building models with femesh 144
4.3.1 Automated meshing capabilities 146
4.3.2 Importing models from other codes 146
4.3.3 Importing model matrices from other codes 147
4.4 The feplot interface 149
4.4.1 The main feplot figure 149
4.4.2 Viewing stack entries 153
4.4.3 Pointers to the figure and the model 153
4.4.4 The property figure 153
4.4.5 GUI based mesh editing 155
4.4.6 Viewing shapes 156
4.4.7 Viewing property colors 158
4.4.8 Viewing colors at nodes 159
4.4.9 Viewing colors at elements 159
4.4.10 feplot FAQ 160
4.5 Other information needed to specify a problem 162
4.5.1 Material and element properties 162
4.5.2 Other information stored in the stack 164
4.5.3 Cases GUI 164
4.5.4 Boundary conditions and constraints 166
4.5.5 Loads 167
4.6 Sensors 168
4.6.1 Sensor GUI, a simple example 168
4.6.2 Sensor definition from a cell array 169
4.6.3 Sensor data structure and init commands 173
4.6.4 Topology correlation and observation matrix 180
4.7 Stress observation 184
4.7.1 Building view mesh 184
4.7.2 Building and using a selection for stress observation 186
4.7.3 Observing resultant fields 187
4.8 Computing/post-processing the response 187
4.8.1 Simulate GUI 187
4.8.2 Static responses 188
4.8.3 Normal modes (partial eigenvalue solution) 189
4.8.4 \quad State space and other modal models 190
4.8.5 Viewing shapes, stress, energy, 192
4.8.6 Time computation 192
4.8.7 Manipulating large finite element models 194
4.8.8 \quad Optimized assembly strategies 196
5 Structural dynamic concepts 199
5.1 I/O shape matrices 200
5.2 Normal mode models 202
5.3 Damping 203
5.3.1 Viscous damping in the normal mode model form 203
5.3.2 Viscous damping in finite element models 205
5.3.3 Hysteretic damping in finite element models 206
5.4 State space models 209
5.5 Complex mode models 210
5.6 Pole/residue models 212
5.7 Parametric transfer function 214
5.8 Non-parametric transfer function 214
6 Advanced FEM tools 217
6.1 FEM problem formulations 219
6 6.1.1 3D elasticity 219
6.1.2 2D elasticity 220
6.1.3 Acoustics 221
6.1.4 Classical lamination theory 222
6.1.5 Piezo-electric volumes 225
6.1.6 Piezo-electric shells 227
6.1.7 Geometric non-linearity 229
6.1.8 Thermal pre-stress 231
6.1.9 Hyperelasticity 231
6.1.10 Gyroscopic effects 233
6.1.11 Centrifugal follower forces 234
6.1.12 Poroelastic materials 234
6.1.13 Heat equation 239
6.2 Model reduction theory 241
6.2.1 General framework 241
6.2.2 Normal mode models 242
6.2.3 Static correction to normal mode models 244
6.2.4 Static correction with rigid body modes 245
6.2.5 Other standard reduction bases 246
6.2 .6 Substructuring 247
6.2.7 Reduction for parameterized problems 249
6.3 Superelements and CMS 250
6.3.1 Superelements in a model 250
6.3.2 SE data structure reference 251
6 6.3.3 An example of SE use for CMS 253
6.3.4 Obsolete superelement information 255
6.3.5 Sensors and superelements 256
6.4 Model parameterization 258
6.4.1 Parametric models, zCoef 258
6.4.2 Reduced parametric models 261
6.4.3 upcom parameterization for full order models 261
6.4.4 Getting started with upcom 262
6.4.5 Reduction for variable models 263
6.4.6 Predictions of the response using upcom 264
6.5 Finite element model updating 265
6.5.1 Error localization/parameter selection 266
6.5.2 Update based on frequencies 267
6.5.3 Update based on FRF 267
6.6 Handling models with piezoelectric materials 269
6.7 Viscoelastic modeling tools 269
6.8 SDT Rotor 269
7 Developer information 271
7.1 Nodes 273
7.1.1 Node matrix 273
7.2 Model description matrices 274
7.3 Material property matrices and stack entries 276
7.4 Element property matrices and stack entries 277
7.5 DOF definition vector 278
7.6 FEM model structure 280
7.7 FEM stack and case entries 281
7.8 FEM result data structure 285
7.9 Curves and data sets 286
7.10 DOF selection 292
7.11 Node selection 293
7.12 Element selection 296
7.13 Defining fields trough tables, expressions, 299
7.14 Constraint and fixed boundary condition handling 301
7.14.1 Theory and basic example 301
7.14.2 Local coordinates 302
7.14.3 Enforced displacement 303
7.14.4 Resolution as MPC and penalization transformation 303
7.14.5 Low level examples 304
7.15 Internal data structure reference 305
7.15.1 Element functions and C functionality 305
7.15.2 Standard names in assembly routines 306
7.15.3 Case.GroupInfo cell array 308
7.15.4 Element constants data structure 309
7.16 Creating new elements (advanced tutorial) 311
7.16.1 Generic compiled linear and non-linear elements 311
7.16.2 What is done in the element function 312
7.16.3 What is done in the property function 313
7.16.4 Compiled element families in of_mk 315
7.16.5 Non-linear iterations, what is done in of $m k$ 320
7.16.6 Element function command reference 321
7.17 Variable names and programming rules (syntax) 327
7.17.1 Variable naming conventions 328
7.17.2 Coding style 329
7.17.3 Input parsing conventions 331
7.17.4 Commands associated to project application functions 332
7.17.5 Commands associated to tutorials 336
7.18 Criteria with CritFcn 338
7.19 Legacy information 338
7.19.1 Legacy 2D elements 339
7.19.2 Rules for elements in of mk_subs 339
8 GUI and reporting tools 347
8.1 Formatting MATLAB graphics and output figures 348
8.1.1 Formatting operations with objSet 349
8.1.2 Persistent data in Project 349
8.1.3 OsDic dictionnary of names styles 350
8.1.4 \quad File name generation with objString 352
8.1.5 Image generation with ImWrite 352
8.2 SDT Tabs 352
8.2.1 Project 353
8.2.2 FEMLink 353
8.2.3 Mode 356
8.2.4 TestBas : position test versus FEM 359
8.2.5 StabD : stabilization diagram 362
8.2.6 Ident : pole tuning 364
8.2.7 MAC : Modal Assurance Criterion display 365
8.3 Non java SDT Tabs (obsolete) 367
8.4 Handling data in the GUI format 367
8.4.1 Parameter/button structure 367
8.4.2 DefBut : parameter/button defaults 369
8.4.3 Reference button file in CSV format 370
8.4.4 Data storage and access 371
8.4.5 Tweaking display 374
8.4.6 Defining an exploration tree 376
8.4.7 Finding CinCell buttons in the GUI with getCell 377
8.5 Interactivity 378
8.5.1 Handling tabs 378
8.5.2 Handling dependencies 378
8.5.3 Dialogs 380
9 Element reference 383
\square bar1 386

beam1, beam1t
celas,cbush

390
dktp 394
fsc 396
hexa8, penta6, tetra4, and other 3D volumes 399
integrules 400
mass1,mass2 409
m_elastic 410
m heat 414

m_piezo 418
p_beam 420
p_heat 424
p_shell 428
p_solid 433
p_spring 436
p_super 438
p_piezo 440
quad4, quadb, mitc4 444
q4p, q8p, t3p, t6p and other 2D volumes 447
rigid 448
tria3, tria6 451
10 Function reference 453
abaqus 460
ans2sdt \longrightarrow 471
basis 475
comgui,cingui 479
commode 489
comstr 491
curvemodel 495
db, phaseb 497
ex2sdt 498
fe2ss 501
fecom 505
femesh 524
feutil 538
feutila 570
feutilb 571
feplot 589
fesuper 594
fjlock 603
fe_c 609
fe_case 612
fe_caseg 627
fe_ceig 631
fe_coor 633
fe_curve 635
fe_cyclic 643

Preface

1.1 Key areas 12
1.2 Key notions in SDT architecture 14
1.3 Typesetting conventions and scientific notations 17
1.4 Other toolboxes from SDTools 19
1.5 Licensing utilities 20
1.5.1 Node locked licenses 21
1.5.2 Floating licenses 21
1.6 Release notes for SDT and FEMLink 7.1 23
1.6.1 Key features 23
1.6.2 Detail by function 24
1.6.3 Notes by MATLAB release 26
1.7 Release notes for SDT and FEMLink 7.0 27
1.7.1 Key features 27
1.7.2 Detail by function 28
1.7.3 Notes by MATLAB release 30
1.8 Release notes for SDT and FEMLink 6.8 31
1.8.1 Key features 31
1.8.2 Detail by function 32
1.8.3 Notes by MATLAB release 34
1.9 Release notes for SDT and FEMLink 6.7 35
1.9.1 Key features 35
1.9.2 Detail by function 36
1.9.3 Notes by MATLAB release 37

1.1 Key areas

This section is intended for people who don't want to read the manual. It summarizes what you should know before going through the $S D T$ demos to really get started.

You can find a primer for beginners at http://www.sdtools.com/help/primer.pdf.
Self contained code examples are distributed throughout the manual. Additional demonstration scripts can be found in the sdt/sdtdemos directory which for a proper installation should be in your Matlab path. If not, use sdtcheck path to fix your path.

The MATLAB doc command no longer supports non MathWorks toolboxes, documentation access is thus now obtained with sdtweb FunctionName.

The $S D T$ provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification (data acquisition and signal processing, followed parametric identification) with information about the spatial position of multiple sensors and actuators.

An experimental modal analysis project can be decomposed in following steps

- before the test, preparation and design (see section 2.7)
- acquisition of test data, import into the SDT, direct exploitation of measurements (visualization, operational deflection shapes, ...) (see section 2.1)
- identification of modal properties from test data (see section 2.2)
- handling of MIMO tests and other model transformations (output of identified models to statespace, normal mode, ... formats, taking reciprocity into account, ...) (see section 2.8)

The series of gart. . demos cover a great part of the typical uses of the SDT. These demos are based on the test article used by the GARTEUR Structures \& Materials Action Group 19 which organized a Round Robin exercise where 12 European laboratories tested a single structure between 1995 and 1997.

Figure 1.1: GARTEUR structure.

- gartfe builds the finite element model using the femesh pre-processor
- gartte shows how to prepare the visualization of test results and perform basic correlation
- gartid does the identification on a real data set
- d_cor('TutoSensPlace') discusses sensor/shaker placement

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation for modal tests. Chapter 3 addresses topology correlation, test preparation, correlation criteria, modeshape expansion, and structural dynamic modification. Details on the complete range of sensor definitions supported by SDT can be found in 4.6. Indications on how to use SDT for model updating are given in section 6.5.

- gartco shows how to use fe_sens and fe_exp to perform modeshape expansion and more advanced correlation
- gartup shows how the upcominterface can be used to further correlate/update the model

Area 3: Basic finite element analysis

Chapter 4 gives a tutorial on FEM modeling in $S D T$. Developer information is given in chapter 7 . Available elements are listed in chapter 9 .

A good part of the finite element analysis capabilities of the $S D T$ are developed as part of the OpenFEM project. OpenFEM is typically meant for developers willing to invest in a stiff learning curve but needing an Open Source environment. SDT provides an integrated and optimized access to OpenFEM and extends the library with

- solvers for structural dynamics problems (eigenvalue fe_eig, component mode synthesis (section 6.3), state-space model building fe2ss), ... (seefe_simul);
- solvers capable of handling large problems more efficiently than Matlab;
- a complete set of tools for graphical pre/post-processing in an object oriented environment (see section 4.4);
- high level handling of FEM solutions using cases;
- interface with other finite element codes through the FEMLink extension to SDT.

Area 4: Advanced FE analysis (model reduction, component mode synthesis, families of models)

Advanced model reduction methods are one of the key applications of SDT. To learn more about model reduction in structural dynamics read section 6.2. Typical applications are treated in section 6.3.

Finally, as shown in section 6.4, the $S D T$ supports many tools necessary for finite element model updating.

1.2 Key notions in SDT architecture

functions, commands

To limit the number of functions SDT heavily relies on the use of string commands. Functions group related commands feutil for mesh manipulation, iiplot for curve visualization, ...). Within each functions commands (for example iicom ImWrite), are listed with their options.
command string and structure options (CAM,Cam,RO)
Most SDT functions accept inputs of the form function('command', data, ...).
Command options can be specified within the command (parsed from the string). iicom('ch+5') is thus parsed to ask for a step of +5 channels. See commode for conventions linked to parsed commands (case insensitive, ...).

When reading SDT source code, look for the CAM (original command) and Cam (lower case version of the command). Section 7.17 gives more details on SDT coding style.

While command parsing is very often convenient, it many become difficult to use in graphical user interfaces or when to many options are required. SDT thus typically supports a mechanism to provide options using either commands options, or option values as a data structure typically called RO (for Run Options but any variable name is acceptable). Support for both string and structure options is documented and is being generalized to many commands.

```
% Equivalent command an structure calls
figure(1);plot(sin(1:10));title('Test');legend('sin');
cd(sdtdef('tempdir')); % Use SDT temp dir
% Give options in string
comgui('ImWrite -NoCrop Test.png')
% Give options as structure (here allows dynamic generation of title)
RO=struct('NoCrop',1,'FileName',{{pwd,'@Title','@legend','.png'}});
comgui('ImWrite',RO);
```

structures used for typical data
The SDT supports a number of data structures used to store common structures. The main structures are

- model for FEM models and wire frame displays
- def for responses at DOF
- curve for multi-dimensional data
- sens sensor definition, see section 4.6.3.

When extensible and possibly large lists of mixed data are needed, SDT uses . Stack fields which are N by 3 cell arrays with each row of the form \{'type', 'name', val\}. The purpose of these cell arrays is to deal with unordered sets of data entries which can be classified by type and name.
stack_get, stack_set and stack_rm are low level functions used to get/set/remove single or multiple entries from stacks.

Higher level pointer access to stacks stored in iiplot (curve stacks) and feplot (model and case stacks) are described in section 2.1.2 and section 4.5.3.

GUI Graphical User Interfaces

GUI functions automatically generate views of data and associated parameters. The main GUI in SDT are

- iiplot and the associated iicom (commands to edit plots) to view frequency and time responses defined at multiple channels.
- feplot and the associated fecom (commands to edit plots) to view 3D FEM and test meshes and responses.
- idcom for experimental modal analysis.
- ii mac for test/analysis correlation.
- sdtroot for project handling, parameter editing.

Graphically supported operations (interactions between the user and plots/ menus/mouse movements/key pressed) are documented under iimouse

The policy of the GUI layer is to let the user free to perform his own operations at any point. Significant efforts are made to ensure that this does not conflict with the continued use of GUI functions. But it is accepted that it may exceptionally do so, since command line and script access is a key to the flexibility of SDT. In most such cases, clearing the figure (using clf) or in the worst case closing it (use close or delete) and replotting will solve the problem.

```
pointers (and global variables)
```

Common data is preferably stored in the userdata of graphical objects. SDT provides two object types to ease the use of userdata for information that the user is likely to modify

- SDT handle objects implement methods used to access data in the feplot figure (see section 4.4.3), the iiplot figure (see section 2.1.2), or the ii_mac menu.
- v_handle to allow editing of user data of any userdata.

For example in a feplot figure, $c f=f$ eplot (5) retrieves the $S D T$ handle object associated with the figure, while cf.mdl is a SDT handle method that retrieves the v_handle object where the model data structure is stored.
global variables are no longer used by SDT, since that can easily be source of errors. The only exceptions are upcom which will use the global variable Up if a model is not provided as argument and the femesh user interface for finite element mesh handling feutilmplements the same commands without use of global variables), which uses the global variables shown below

FEnode main set of nodes (also used by feplot)
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix
By default, femesh automatically use base workspace definitions of the standard global variables: base workspace variables with the correct name are transformed to global variables even if you did not dot it initially. When using the standard global variables within functions, you should always declare them as global at the beginning of your function. If you don't declare them as global modifications that you perform will not be taken into account, unless you call femesh, ... from your function which will declare the variables as global there too. The only thing that you should avoid is to use clear and not clear global within a function and then reinitialize the variable to something non-zero. In such cases the global variable is used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual

courier	blue monospace font: Matlab function names, variables
feplot	light blue monospace font: SDT function names
command	pink : strings and SDT Commands
var	italic pink: part of command strings that have to be replaced by their value
$\%$ comment	green: comments in script examples
Italics	MatLAB Toolbox names, mathematical notations, and new terms when they are
	defined
Bold	key names, menu names and items
Small print	comments
$(1,2)$	the element of indices 1, 2 of a matrix
$(1,:)$	the first row of a matrix
$(1,3:$ end	elements 3 to whatever is consistent of the first row of a matrix

Programming rules are detailed under section 7.17. Conventions used to specify string commands used by user interface functions are detailed under commode.

Usual abbreviations are

CMS	Component Mode Synthesis (see section 6.3.3)
COMAC	Coordinate Modal Assurance Criterion (see ii mac)
DOF,DOFs	degree(s) of freedom (see section 7.5)
FE	finite element
MAC	Modal Assurance Criterion (see ii_mac
MMIF	Multivariate Mode Indicator Function (see ii_mmif
POC	Pseudo-orthogonality check (see ii_mac)

For mathematical notations, an effort was made to comply with the notations of the International Modal Analysis Conference (IMAC) which can be found in Ref. [1]. In particular one has
$\left.\begin{array}{ll}{[],\{ \}} & \begin{array}{l}\text { matrix, vector } \\ \text { conjugate }\end{array} \\ \text { input shape matrix for model with } N \text { DOFs and } N A \text { inputs (see section } 5.1 \text {). }\end{array}\right\}$

1.4 Other toolboxes from SDTools

SDTools also develops other modules that are distributed under different licensing schemes. These
modules are often much less documented and address specialized themes, so that only a technical discussion of what you are trying to achieve will let us answer the question of whether the module is useful for you.

- Viscoelastic tools : an SDT extension for the analysis and design of viscoelastic damping. Beta documentation at http://www.sdtools.com/help/visc.pdf.
- Rotor tools : an SDT extension for rotor dynamics and cyclic symmetry. Beta documentation at http://www.sdtools.com/help/rotor.pdf.
- Contact tools : an SDT extension for contact/friction handling (generation observation matrices, tangent coupling matrices, various post-treatments). Beta documentation at http: //www.sdtools.com/help/contactm.pdf
- non linear vibration tools : an SDT extension for non-linear vibration and in particular time and frequency domain simulation of problems with contact and friction.
- OSCAR : a module for the study of pantograph/catenary interaction developed with SNCF.

Selected cross references to these other modules are listed here.

- fevisco Range this command is part of the viscoelastic tools.
- fe2xf this function is part of the viscoelastic tools.
- fe_cyclicb ShaftEig this command is part of the rotor tools.
- Follow is part of the contact and rotor tools. nl_spring is the generic implementation of time domain non-linearities in SDT.
- ExtEqhttp://www.sdtools.com/help/eq_dyn.html\#eq*ce_shell
- ExtEqhttp://www.sdtools.com/help/eq_dyn.html\#eq*pze_c
- ExtEqhttp://www.sdtools.com/help/eq_dyn.html\#Electrode

1.5 Licensing utilities

1.5.1 Node locked licenses

For a node locked license. To obtain license information, download https://www.sdtools.com/ distrib/RLMmex.zip.

- For windows, save the mex file in sdt/804/sdtrlm.mexw64.
- For Linux, save the mex file in sdt/7.5/sdtrlm.mexw64
- To obtain configuration information for license generation, at the MATLAB prompt use which sdtrlm \% to check the mex is visible (possibly rehash toolboxreset may be ne sdtrlm hostid
- Send the associated information by email to request@sdtools.com, so that we can generate a license sdt.lic file. This will need to be saved in your MATLAB prefdir or in the directory where the sdtrml mex is located.
- You will need to restart MATLAB to access your license.

1.5.2 Floating licenses

Floating SDT licenses can use the RLM license manager. To install the server, download https: //www.sdtools.com/distrib/RLM.zip.

- For windows, save the RLM.zip/win64 directory to the target location of your server and start a shell (cmd.exe)
- For Linux, save the RLM.zip/glnxa64 directory to the target location of your server and start a shell.
- Obtain configuration information for the license generation (note the second line will fail if you do not yet have a RLM server on that machine).
cd MyServerLocation
rlmutil rlmhostid
rlmutil rlmstat
- Send the associated information by email, so that we can generate a license sdt.lic file for your license server.
- Once you have received the sdt.lic file and placed it in the server directory where you will also find the sdt.set file. You can start the server using
cd MyServerLocation
rlm > outputfile
rlmutil rlmhostid
Note that you should NEVER run the RLM server as a priviledged user (root on unix or administrator on Windows). You can also find more administration help at http://www. reprisesoftware.com/RLM_License_Administration.pdf. In particular, the -install_service option is useful for windows, and boot time init is described for Linux.

On the client side (local copies of SDT), you will need to follow the procedure for SDT installation at https://www.sdtools.com/faq/Release.html, you must in particular provide the license request of the first installation matchine (further copies can then later be made as detailed below) and check that your SDT

- has the sdtrlm mex file. Use which sdtrlm to verify where this is located.
- have a license file sdt.lic located in the MATLAB preference directory (prefdir). sdtkey('licfile') returns the currently used location.
- That the license file is correct. Typically when a license server is used, the file only contains two lines HOST specifying the server name and port, ISV sdt specifying the use of an SDT server. The port specification on the second line may be necessary in configurations with firewalls but may be deleted otherwise.

```
# type(fullfile(prefdir,'sdt.lic')) % for display in MATLAB
HOST NameOfServer ANY 5053
ISV sdt port=50175
```

- To check the status of licenses used in your current MATLAB session use the following and possibly send the result to SDTools for diagnostic

```
sdtcheck('rlm')
```

- For details on the server status sdtcheck('rlmstat').
- Please note that for multiple installations, you simply need to use a network location (windows : windows server or Linux server with SAMBA, linux: NFS mount or equivalent) or copy the full SDT directory and possibly the license file sdt.lic to the user preference directory using copyfile(which('sdt.lic'), prefdir);

1.6 Release notes for SDT and FEMLink 7.1

1.6.1 Key features

SDT 7.1 is the only version fully compatible with MATLAB 9.4 (2018b) to 9.6 (2019a) mostly due to changes in the representation of complex numbers in MATLAB. Key changes of this release are

- A continued effort in making the experimental modal analysis part of SDT section 2.2 fully accessible without any script is nearly complete. Functions however obviously remain accessible from the command line to users will to learn how to use them. The associated docks Id (for experimental modal analysis see section 2.2), CoTopo (topology correlation see section 3.1) and CoShape (test/FEM correlation see section 3.2) have been extended and tutorials have been introduced.
- A major effort was put on the documentation. The new structuration of demos into tutorials helps training. You can for example see tutorials in various files with d_mesh('tuto'), gartid('tuto'), d_cor('tuto'), d_cms('tuto'), Equations are now shown as SVG files which improves readabily, but may pose problems on some older versions of MATLAB where the help browser does not support SVG.
- We are still working with the MathWorks on improving reliability of the help browser. To bypass some bugs, you may have to change default location where the help is shown using sdtdef('browser-SetPref', '-helpbrowser') or sdtdef ('browser-SetPref ', '-webbrowser'). For clickable areas of SVG figures, use Ctrl-Click to open in a new window or right-click and select Open in a new tab.

Outside improved robustness of the femlink GUI, key changes for FEMLink are

- ans2sdt extended BDF reading in particular for orthotropic materials and substructure export (to ease superelement import). Job submission integration is now supported as a consulting project feature.
- nasread compatibility with NX Nastran BGSET and BSURFS cards. Documentation of superelement (see d_cms ('TutoNasCb')). Performance of MAT9 and set reading.
- abaqus significant .inp reading improvements *distribution,*hyperelastic, set handling, ... Performance of large .fil reading. Robustness and performance enhancements of resolve commands. Introduction of a . dat reading framework for customer use, with complex modes output reading support.

For Matlab compatibility see section 1.6 .3 .

1.6.2 Detail by function

comgui improved robustness and performance of Java interfaces, dock handling, menu_generation mechanism associated with OsDic.
demosdt Tutorials underwent a major rewrite. d_cms now documents direct NASTRAN superelement import.
fe2ss extended and improved documentation of damping handling strategies.
fecom
fesuper improvement of SE definition strategies with SEAdd, improved support of p_super definitions with SEinitCoef, and assembly calls with MatTyp -1 and -2 . New command SeDofShow to display selected superelement active DOF on a full FE model in feplot.
feutil Notable performance and generality improvements in the handling of sets. Support of pyra elements.
Support of regular expression on sename searches selet eltname SE:\#se[0-9]*, introduction of exclusion type in node and element selection operations. New operator $\& \sim$ to subtract a selection from a current result. Introduction of element set exclusion using :exclude token following setname. Introduction of element selection type safesetname that returns empty elements instead of an exception. Support of setnames in double quotes for robust handling of setnames with special characters and spaces.
fe_caseg Introduction of high level parametrization procedures for isotropic materials, any structural element and superelement, with command series Par*
fe_cyclic improved support for multi-dimensional periodicity. This can be used with the support/fe_homo.m file which SDTools provides for free but with no support guarantee.
fe_eig continued performance enhancements associated with memory management techniques, introduction of an Out-Of-Core modal basis storage support for method 5 (Lanczos).
fe_exp MDRE expansion has been significantly enhanced and an initial version of an expansion tab is now provided.
fe_gmsh introduced support for the new GMSH 4.0 format.
fe_mat Improved robustness of unit conversion commands.
fe_mpc Extended Rbe3 and CleanUsed commands.
fe_norm major performance improvement of MSeq procedure. Introduction of an option to force vector collinearity tolerance estimation in the normalization procedure.
fe_range Introduction of a Genetic algorithm framework with command GeneLoop. Introduction of an output data handling command Res that allows extracting and/or reformatting output data. Improvement of data sampler object getXFslice and introduction of an interpolation mode for coarse gridded data.
fe_reduc continued performance enhancements associated with memory management techniques.
fe_shapeoptim partially supported function for mesh morphing field projection is now included in the distribution.
fe_stress Extended CritFcn calls, support of piezoelectric volumes, and export of weighted volumes associated with Gauss points in the .wjdet field.
mex

```
idcom
```

p_shell
p_solid
pyra5 sdtdef
id_rc improvements of signal utilities dbsdt, filter, rms, a weights
iicom improved file and dock reloading. Improved robustness of linked plots (magnitude/phase), keyboard interactions, java interaction.
ii_mac the dockCoShape was notably extended and documented.
m_piezo see sdtweb('pz_new') for specific release notes.
moldflow This FEMLink function provides partial support of import of models exported by MoldFlow in Nastran, Universal and ANSYS formats.
polytec improved translation of metadata associated with measurements.
sdtcheck Utilities for sdtrootdir, rlmstat, rlm, patchfile were extended and robustified for use in patching and demos.
sdtroot Subcommand @sfield for advanced struct manipulations is now supported.
all SDT mex files now properly support the new complex number storage of MATLAB. major improvement of band selection and pole extraction in stabilization diagrams. Improved dock functionality, performance and robustness. Menus for data manipulation (permute IO, SvdCur, ...) are introduced. Keyboard interaction has been improved. performance and robustness of the Channel tab has been improved. Merge commands have been extended for piezo applications. Support for element by element changes of properties has been notable extended. a new 5 node pyramid element is supported to ease mesh refining strategies in particular with level set strategies in 1sutil. clear definition of preferences with session scope (by default) or permanent scope (-setpref). Revision to alleviate preference file corruption with simultaneous statups. New commands envSet, envWrite to allow preferences load/ in .env files independently from the MATLAB session, compatible with deployed applications.
sdtacx now supports section insertion in Word for easier report generation.
sdtweb _tuto command provides generic support of tutorials the new base format for SDT demos.
comstr robustness enhancements. -39 exports matlab variables to Python script. Support of nested string parsing with """ tokens in -25 calls.
mkl_utils this mex file used to optimize time integration processes is now included in the base SDT.
ofact sdtcheck(''patchMkl''' can be used to install the Pardiso solver which now supports complex matrices and can be notably faster for solutions with few right hand side solves. umf pack method is now properly supported for recent MATLAB.

1.6.3 Notes by MATLAB release

- Matlab 8.0 (2012b) to 9.6 (2019a). SDT \& FEMLink 7.0 are developed for these versions of Matlab and are fully compatible with them.
- For best performance, using MATLAB 9.0 (2016a) and higher is advised.
- For efficient FEM rendering, it is strongly advised to use HG2 : Matlab 8.4, R2014b and later.
- Matlab 7.14 (2012a) to 8.3 (2014a) SDT \& FEMLink 7.0 are being phased out but can be used for a number of operations. Equations are not being shown correctly in the HTML documentation.
- Earlier Matlab releases are no longer supported.
- Matlab 8.5 has known bugs in the handling of colorbar.

1.7 Release notes for SDT and FEMLink 7.0

1.7.1 Key features

SDT 7.0 is the only version compatible with MATLAB 9.2 (2017a), 9.3 (2017b) and 9.4 (2018b) mostly due to ongoing improvements of MATLAB graphics. Key changes of this release are

- A full rewrite and major extension of modal analysis graphical interfaces and documentation detailed in section 2.2. Step-by-step tutorials, such as section 2.2.1, include buttons of the form D which you can use to execute a step. LSCF and stabilization diagrams are now supported.
- The new notion of docks corresponds to MATLAB docks where multiple figures are combined for a typical use. Currently supported docks are
- Id : for experimental modal analysis see section 2.2
- TestFEM : topology correlation see section 3.1
- MAC : test/FEM correlation see ii mac.
- A major update of SDT GUI with most existing tabs ported to Java mode and necessary in docks. You can set the default tab to Java mode using sdtdef ('JavaUI',1) or turn it off with sdtdef ('JavaUI', 0). User documentation of tabs can be found in section 8.2 . Developer level documentation of GUI functions is now included in section 8 .
- Use sdtweb('feplot', 'webbrowser') to bypass the not yet fixed MATLAB bug where the links within pages are not called appropriately.

Key changes for FEMLink are

- ans2sdt improved import of .cdb and support of contacts.
- nasread Direct import of EXTESOUT output to SDT superelement format. Continued enhancements of bulk and op2 reading. Initial support of .op2 format writting of responses.
- abaqus continued enhancements of .INP reading in particular for composites and superelements, contact, ... Significant writing enhancements.
- GUI import of models is supported with the FEMLink tab, section 8.2.2.

For Matlab compatibility see section 1.7.3.

1 Preface

1.7.2 Detail by function

This list is not yet complete.

basis	Clarified error for repeated BasId. New methods for multibody transformations. major rewrite of documentation and introduced support commands for non-linear applications.
cbush	
comgui gui command clarifies robust opening of feplot, iiplot figures linked to	
projects. Robustness in presence of mixed MATLAB/Java figures was improved.	
robustness enhancements in name matching. getFixDof implemented as subfunction	
to allow external calls.	
compatibility with multi-physic periodic problems was enhanced.	

1.7.3 Notes by MATLAB release

- Matlab 8.0 (2012b) to 9.3 (2017b). SDT \& FEMLink 7.0 are developed for these versions of Matlab and are fully compatible with them. Minor incompatibilities with 9.4 (2018a) are associated with the new complex number handling in MATLAB and and will be fixed with SDT 7.1.
- For best performance, using MATLAB 9.0 (2016a) and higher is advised.
- For efficient FEM rendering, it is strongly advised to use HG2 (Matlab 8.4, R2014b).
- Matlab 7.6 (2008a) to 7.14 (2012a). SDT \& FEMLink 7.0 are being phased out but can be used for a number of operations.
- Earlier Matlab releases are no longer supported.
- Matlab 8.5 has known bugs in the handling of colorbar.

1.8 Release notes for SDT and FEMLink 6.8

1.8.1 Key features

SDT 6.8 is the only version compatible with MATLAB 8.6 (2015b) and 9.0 (2016a) mostly due to ongoing improvements of MATLAB graphics. Key changes of this release are

- A continued upgrade for SDT GUI with additional interactive java tabs. Image generation, described in section 8.1, illustrates definition of projects Project for output file generation and handling of style sheets in OsDic. The java library cinguj.jar must be on the static path (check with sdtcheck('PatchJavapath')). Developer level documentation of GUI functions is now included in section 8 .
- A major rewrite of numerical experiment handling capabilities in fe_range. In particular uses as scheduler of hierarchical parametric computations and post-processor for parametric results are documented.
- Continued extension of file generation with capabilities to generate multiple movies fecom AnimMovie, save the figure in multiple formats (.fig, .png, see comgui ImWrite, ...
- extensions Java based result tables with introduction of export capabilities, see comstr -17.
- continued development of the piezo manual. In particular extension of patch meshing in sdtweb('d_piezo\#MeshPlate') and introduction of a shunt damping example (sdtweb('shunt'))

Key changes for FEMLink are

- ans2sdt significant enhancements to CDB reading and writing with extended element and material/section property support. Performance fixes for emat reading.
- nasread fixed problems with multiple case importing, implementation of gravity translation. Automated writing of superelements as DMIG.
- abaqus significant robustness enhancements of .INP reading. Robustness of the BuildUp command.
- GUI in femlink

For Matlab compatibility see section 1.8.3.

1.8.2 Detail by function

beam1 supports the Beam1In flag to avoid use of inertia correction.
cbush fixed problems with use of node in element for local orientation definition and hysteretic damping computations.
comgui major extensions of the image writing capabilities. Export to Word and PowerPoint is now included with the project definition. Movie generation with the .gif extension and multi-extension (for example .png and .fig) are now included. Improved cropping options. Improved file name generation and interaction with projects, see comgui PlotWd. Introduction of style sheets, see OsDic.
fe_coor
enhanced support of long and double formats used to store solutions of cyclic and periodic systems. See also the unsupported fe_homo function.

SubDef enhanced to support HDF formats and exports from fe_time results. SubCh and SubDOF extensions. CurveJoin supports definition of interpolation functions. Major rewrite to support all expansion methods based on a reduced superelement. Notable extension of job writing call to GMSH capabilities.
Robustness of map merging.
Major extension of GUI for visualization of experiments and the command loop for manipulating hierarchical computations.
fe_reduc
fe_sens
fe_simul
fe_time feutil
\square

Minor robustness enhancements and introduction of a Free float=2 option where loads are orthogonalized with respect to known modes which improves conditioning.
Significant robustness and interactivity enhancements of GUI. Extension of fe_sens tdofrable.
GUI for mode computations.
Rewrite of follow timers to allow checks during time integration.
setMat "Steel" Rho=1e-9 is how accepted. Significant extensions of set manipulation capabilities. Extended support of silent operation when using commands ending with an ;. Major rewrite of Refine operations for improved performance. Fixes to FixMpcMaster. GeomSmoothEdge places edge mid-node based on normals. Robust operation of GetDD to recover constitutive properties. Node manipulation operators (symmetry, shift, ...).
performance and robustness enhancements for matching and connectivity based algorithms.

fecom	fecom AnimMovies supports generation of a directory of animated shapes. ColorMatId is documented. Synchronized figures are used in ii_mac. TextMatId places a label in the middle of each material area.
CritFcn provides a first documentation of criterion functions used to formalize ob-	
jective functions with coloring and threshold strategies.	
Robustness enhancements in SE generation, stack splitting, and handling of v_handle,	

sdtcheck robustness enhancements in particular for PatchJavapath which is necessary for new GUI operations.
sdtroot has been notably extended with many new tabs, support floating tabs in GUI development, ... Related changes affect sdt_locale, sdcedit, sdt_dialogs, sdtweb notable extensions of support commands _wd, _find, ...

1.8.3 Notes by MATLAB release

- Matlab 7.14 (2012a) to 9.0 (2016a). SDT \& FEMLink 6.8 are developed for these versions of Matlab and are fully compatible with them.
- Matlab 7.6 (2008a) to 7.13 (2011b). SDT \& FEMLink 6.8 are being phased out but can be used for a number of operations.
- On Linux MATLAB 8.1 (2013a) is required.
- Earlier Matlab releases are no longer supported.
- Matlab 8.5 has known bugs in the handling of colorbar.
- Matlab 7.9 has known compatibility problems in its HDF library and should be avoided for large FEM applications using sdthdf

1.9 Release notes for SDT and FEMLink 6.7

1.9.1 Key features

SDT 6.7 is the only version compatible with MATLAB 8.4 (2014b) and later. Key changes of this release are

- A major revision of all the SDT interfaces for compatibility with the new graphical system of MATLAB 8.4 (2014b).
- Major extensions legend/filename generation capabilities, see comgui.
- Significant enhancement of documentation with more readable links to be reused in sdtweb calls.
- introduction of more readable Java based results tables in many functions.

Key changes for FEMLink are

- ans2sdt major extension of CDB reading capabilities and bug fixes associated to changes in MATLAB R2013a behavior and 64 bit pointers in newer ANSYS versions. Reading of mapping is now supported. Reading of stresses and other ESL output in .rst files.
- nasread better handling of CROD cases that correspond to bar1. Support of rectangular DMIG writing. Enhanced PBEAM, PROD translation.
- abaqus more consistent reading of steps the BuildCase command allows setting-up the case relative to a desired step. Revision of the resolve command to enhance handling of node and element sets in general cases (compatibility with assembly of part instances). Translation of contact (for the $*$ CONTACT PAIR command) to the contact module or SDT/NL, see section 1.4 , is now supported for most classical rules. *Orientation properly translated into pro.MAP.
- samcef improved multiple files with INPUT cards. Detailed improvement of .AEL, .FRA, .MCT, .STI, ...

For Matlab compatibility see section 1.9 .3 .

1.9.2 Detail by function

comgui major revision of image ImWrite, filename ImFtitle and legend def.Legend generation utilities.
Major extensions of the grouped object setting objSet commands used by SDT for figure and object formatting. Name generation extended and properly documented in objString
Export of java tables to LaTeX/csv/text formats.
cinguj major rewrite of the JAVA based GUI part of the toolbox with many bug fixes. A static javapath is now desired and fixed with sdtcheck('PatchJavaPath').
fe2ss introduced -cpx command option for complex mode state-space support where hysteretic damping models can be used. This complements the alternative -loss2C. fe2ss SysDef now support restitution of enforced displacement.
feplot
feutil significant extensions of colormaps. Full rewrite of fecom AnimMovie.
extended support for non OpenFEM face numbering schemes. OptimDegen transforms degenerate elements to their lower node number counterpart. Extended support of silent mode with ; at end of command.
feutilb provides commands CombineModel and SubModel to support combination of models or extraction of submodels with clean handling of Stack, Mat/Pro, Case entries.
fe_case more robust handling of hysteretic damping assembly for interpolated materials. Introduced fe_case SetCurve commands to easier handling of time/frequency varying loads.
fe_ceig first order correction is now supported with CeigMethod=2.
fe_cyclic
fe_eig
fe_exp
fe_mpc
fe_sens
fe_load improved support of DofLoad.
fe_mat robustness of unit handling, extensions of material law interpolation.
support of inertial loading on partial model.
GenMass command generates table of generalized masses. major rewrite of function and documentation to support newer data structures and optimize performance.

FixDofBas2mpc supports transform of local basis FixDof to MPC entries. DofSetMerge combines multiple DOFSet into one, which is the only case supported by most solvers.
tdofTable handling of sensor definitions as tables has been further documented and robustified.
fe_range
fe_time support for enforced displacement with DOFSet entries has been introduced.
fe_time
fe_mknl
fe_stress
iicom
iimouse
id_rc enhanced support of error and quality indicators of identification quality.
id_rm
ii_mac
ii mmif
ii_plp
m_piezo
nor2ss
p_piezo
p_solid
res2ss
sdtweb
significantly extend commands previously in fe_def ('range') for DOE handling. extended support of damping and enforced input DofSet entries in direct frequency response.
significant extensions and performance enhancements for explicit solvers.
optimized support for node numbers above 2 e 9 . Robustness and documentation extensions for pro.MAP.
computation of Von Mises stress is now compiled.
significant extension of support for 2D plots (contour, image, ...). Robustness and documentation improvements of multiple image generation ImWrite.
imouse
major rewrite for R2014b compatibility, interactivity with java tables comstr -17). Support of docking and datatip interactivity. Additional keyboard callbacks (press ?
in iiplot or feplot. robustness and GUI enhancements.
significant GUI rewrite in particular for table generation.
robustness enhancements for signal processing capabilities.
major extensions of Legend, TickFcn, introduction of new ColorMap
support for a database of commercial piezo patches has been introduced. Materials have been added and properties corrected.
fixed compatibility issues with the Control Toolbox and Simulink. Improved warnings. introduced new Tab commands to display model and material properties in a easily readable forms.
setlines improved compatibility with comgui objSet
ufreadufwritipproved compatibility LMS-Testlab and performance enhancements.

| cbush celas | improved support for gyroscopic matrices and loss factor. |
| :---: | :---: | :---: |

1.9.3 Notes by MATLAB release

- Matlab 7.6 (2008a) to 8.5 (2015a). SDT \& FEMLink 6.7 are developed for these versions of Matlab and are fully compatible with them.
- Matlab 7.9 has known compatibility problems in its HDF library and should be avoided for large FEM applications using sdthdf.
- Earlier Matlab releases are no longer supported.

Modal test tutorial

2.1 iiplot figure tutorial 42
2.1.1 The main figure 43
2.1.2 The curve stack 46
2.1.3 Handling what you display, axes and channel tabs 48
2.1.4 Channel tab usage 49
2.1.5 Handling displayed units and labels 50
2.1.6 SDT 5 compatibility 50
2.1.7 iiplot for signal processing 52
2.1.8 iiplot FAQ. 53
2.2 Identification of modal properties (Id dock) 54
2.2.1 Opening and description of used data 54
2.2.2 General process 59
2.2.3 Importing FRF data 63
2.2.4 Write a script to build a transfer structure 65
2.2.5 Data acquisition 66
2.3 Pole initialization (IdAlt and IdMain filling) 67
2.3.1 External pole estimation 67
2.3.2 LSCF 68
2.3.3 Single pole estimate 74
2.3.4 Band to pole estimate 76
2.3.5 Direct system parameter identification algorithm 76
2.3.6 Orthogonal polynomial identification algorithm 77
2.4 Identification options 77
2.5 Estimate shapes from poles 79
2.5.1 Broadband, narrowband, ... selecting the strategy 79
2.5.2 Qual: Estimation of pole and shape quality 82
2.5.3 When id_rc fails 88
2.6 Update poles 91
2.6.1 Eup : for a clean measurement with multiple poles 91
2.6.2 Eopt: for a band with few poles 92
2.6.3 EupSeq and EoptSeq : sequential narrowband pole updating 93
2.6.4 Example for practice 93
2.6.5 Background theory 96
2.7 Display shapes : geometry declaration, pre-test 97
2.7.1 Modal test geometry declaration 97
2.7.2 Sensor/shaker configurations 99
2.7.3 Animating test data, operational deflection shapes 101
2.8 MIMO, Reciprocity, State-space, 103
2.8.1 Multiplicity (minimal state-space model) 103
2.8.2 Reciprocal models of structures 105
2.8.3 Normal mode form 107

An experimental modal analysis project can be decomposed in following steps

- before the test, preparation and design (see section 2.7)
- after data acquisition, import into the SDT (see section 2.2)
- navigation through data in the iiplot figure (see section 2.1)
- identification procedure :
- initialize the pole list (see section 2.3)
- setup the identification options (see section 2.4)
- identify the pole residues and evaluate the identification quality (see section 2.5)
- optimize poles to improve the identification quality (see section 2.6)
- handling of MIMO tests and other model transformations (output of identified models to statespace, normal mode, ... formats, taking reciprocity into account, ...) (see section 2.8)

Figure 2.1: Modal test protocol with links to corresponding sections

Further steps (test/analysis correlation, shape expansion, structural dynamics modification) are discussed in chapter section 3 .

2.1 iiplot figure tutorial

iiplot is the response viewer used by SDT. It is essential for the identification procedures but can also be used to visualize FEM simulation results.

As detailed in section 2.2 , identification problems should be solved using the standard commands for identification provided in idcom while running the iiplot interface for data visualization. To perform an identification correctly, you need to have some familiarity with the interface and in particular with the iicom commands that let you modify what you display.

2.1.1 The main figure

For simple data viewing you can open an iiplot figure using ci=iiplot (or ci=iiplot (2) to specify a figure number). For identification routines you should use ci=idcom (standard datasets are then used see section 2.2).

To familiarize yourself with the iiplot interface, run demosdt('demogartidpro'). Which opens the iiplot figure and the associated iiplot(2) properties figure whose tabs are detailed in the following sections.

Figure 2.2: Display figure of the iiplot interface.

Mouse operation and keyboard shortcuts
Mouse and keypress operations are handled by iimouse within iiplot, feplot, andiimac figures. For a list of active keys press ? in the current figure.

Drag your mouse on the plot to select a region of interest and see how you directly zoom to this region. Double click on the same plot to go back to the initial zoom. On some platforms the double click is sensitive to speed and you may need to type the i key with the axis of interest active. An axis becomes active when you click on it.

Open the ContextMenu associated with any axis (click anywhere in the axis using the right mouse
button), select Cursor, and see how you have a vertical cursor giving information about data in the axis. To stop the cursor use a right click or press the c key. Note how the left click gives you detailed information on the current point or the left click history. In iiplot you can for example use that to measure distances.

Click on pole lines (vertical dotted lines) and FRFs and see how additional information on what you just clicked on is given. You can hide the info area by clicking on it.

Context menus

The axes ContextMenu (click on the axis using the right mouse button) lets you select, set axes title options, set pole line defaults, ...

- Cursor tracks mouse movements and displays information about pointed object. For ODS cursor see iicom ods.
- Show chooses what to display.
- Compute... [MMIF, CMIF...] chooses what to compute and display. The iicom('show [MMIF, CMIF...]') command line is similar. Details on what can be computed are given in ii mmif.
- Variables in current axis... chooses which variable to display, see iicom IIx.
- iiplot properties, same as iicom('pro'), opens the property figure.
- Scale...[x lin, x log...] chooses the axis scale as the. See iicom xlin or use iimouse('axisscale[xlin,xlog...]') commands.
- Tit0pt chooses the title, axis and legend labels-format.
- PoleLine pole line selection.
- Views... chooses the views, see iimouse view.
- colorbar shows the colorbar and is equivalent to cingui('ColorBarMenu') command line.
- Zoom reset is the same as the iimouse('resetvie') command line to reset the zoom.
- setlines calls the associated function.

The line ContextMenu lets you can set line type, width, color ...
The title/label ContextMenu lets you move, delete, edit ... the text

After running through these steps, you should master the basics of the iiplotinterface. To learn more, you should take time to see which commands are available by reading the Reference sections for iicom (general list of commands for plot manipulations), iimouse (mouse and key press support for SDT and non SDT figures), iiplot (standard plots derived from FRFs and test results that are supported).

2.1.2 The curve stack

iiplot considers data sets in the following format

- Response data related to UFF58 format
- Curves generated by SDT
- Shapes at DOFS related to UFF55 format

This data is stored in iiplot figures as a Stack field (a cell array with the first column giving ' curve' type entries, the second giving a name for each dataset and the last containing the data, see stack_get. To allow easier access to the data, SDT handle objects are used. Thus the following calls are equivalent ways to get access to the data

```
ci=iicom('curveload','gartid');
iicom(ci,'pro');iicom(ci,'CurTab Stack'); % show stack tab
% Normal use : the figure pointer stack
ci.Stack % show content of iiplot stack
ci.Stack{'Test'} % a copy of the same data, selected by name
ci.Stack{1,3} % the same by index
% Use regular expresion ('II.*' here) for multiple match
ci=stack_rm(ci,'curve','#II.*')
% If you really insist on low level calls
gf=sdtdef('cf'); % recover current sdth handle, number may vary
r1=get(gf,'userdata'); % object containing the data (same as ci)
s=ci.vfields.Stack.GetData % get a copy of the stack (cell array with
    % type,name,data where data is stored)
s{1,3} % the first data set
% Alternative use (obsolete) : the XF stack pointer
```

```
XF1=iicom(ci,'curvexf');
XF1('Test') % still the same dataset, indexed by name
XF2=XF1.GetData; % Copy the data from the figure to variable XF2
```

The ci.Stack handler allows regular expression based access, as for cf. Stack. The text then begins by the \# character.

Figure 2.3: Stack tab of the iiplot interface.

The graphical representation of the stack shown in figure 2.3 lets you do a number of manipulations witch are available trough the context menu of the list of datasets in the stack

- Compute gives access to data processing commands in iimmif You perform the analysis from the command line with iicom(ci,'sum' , 'Test'). The list of available post processing functions is given by iimmif list.
- Load lets you load more data with iicom(ci,'curveload-append', 'gartid'), replace the current data with iicom(ci,'curveload', 'gartid')
- Display lets you display one or more selected dataset in the iiplot figure (see corresponding command iicom IIx.
- Save lets you save one or more dataset (see corresponding command iicom CurveSave).
- Join combines selected datasets that have comparable dimensions (see corresponding command iicom CurveJoin).
- Cat concatenates selected datasets along time or frequency dimension (see corresponding command iicom CurveCat.
- Remove removes selected dataset (see corresponding command iicom CurveRemove).
- NewId opens a new idcom figure with the selected dataset (see corresponding commandiicom CurveNewId).

2.1.3 Handling what you display, axes and channel tabs

iiplot lets you display multiple axes see iicom Sub. Information about each axis is show in the axes tab.

Figure 2.4: Axes tabs of the iiplot interface.

For example open the interface with the commands below and see a few thing you can do

```
ci=idcom;iicom(ci,'CurveLoad sdt_id');
ci.Stack{'curve','IdFrf'}=ci.Stack{'Test'}; % copy dataset
ci.Stack{'IdFrf'}.xf=ci.Stack{'Test'}.xf*2; % double amplitude
iicom('CurTab Axes');
```

- Sub Subplots: Type iicom submagpha to display a standard magnitude/phase plot. Open the IIplot:sub commands menu and see that you could have achieved the same thing using this pull-down menu. Note that using ci=iiplot(2) ; iicom(ci,'SubMagPha') gives you control on which figure the command applies to.
- Show Type iicom('; cax1; showmmi') ; to display the MMIF in the lower plot. Go back to the phase, by making axis 1 active (click on it) and selecting phase(w) in the axis type menu (which is located just on the right of the current axis button).
- IIx select sets you want to display using iicom(';showabs;ch1');
iicom('iix only',\{'Test','IdFrf'\}). You could also achieve the same thing using the IIplot:Variables menu.
- Note that when you print the figure, you may want to use the comgui('ImWrite', 'FileName. ext') command or -noui switch so that the GUI is not printed. It is the same command as for feplot image printing (see iicom ImWrite).

2.1.4 Channel tab usage

Once you have selected the datasets to be displayed, you can use the channel tab to scan trough the data. Major commands you might want to know

- use the $\boldsymbol{-}$ to scan trough different transfer functions. Note that you can also use the + or - keys when a drawing axis is active.
- Go the Channel tab of the property figure (open with iicom('InitChannel')) and select one more than one channel in the list. In the figure, the >10 is used to illustrate that the tab supports channel selection. For datasets with string labels use 10*.
- Note that you can also select channels from the command line using iicom('ch 1 5').

Figure 2.5: Channel tabs of the iiplot interface.

2.1.5 Handling displayed units and labels

```
ci=iicom('curveload gartid');
ci.Stack{'Test'}.yn.unit='N';
ci.Stack{'Test'}.yd.unit='M';
iicom sub
```


2.1.6 SDT 5 compatibility

With SDT 6, global variables are no longer used and iiplot supports display of curves in other settings than identification.

If you have saved SDT 5 datasets into a .mat file, iicom('CurveLoad FileName') will place the data into an SDT 6 stack properly. Otherwise for an operation similar to that of $S D T 5$, where you use XF(1). xf rather than the new ci.Stack\{'Test'\}.xf, you should start iiplot in its identification mode and obtain a pointer XF SDT handle object) to the data sets (now stored in the figure itself) as follows

```
>> ci=iicom('curveid');XF=iicom(ci,'curveXF')
```

XF (1)	[. w	0x0, xf	0x0]	'Test'	response (general or unknown)
XF (2)	[.w	0x0, xf	$0 \mathrm{x} 0]$	'IdFrf'	: response (general or unknown)
XF (3)	[.w	0x0, xf	$0 \mathrm{x} 0]$	'IIxh'	: response (general or unknown)
XF (4)	[.w	0x0, xf	$0 \mathrm{x} 0]$	'IIxi'	: response (general or unknown)
XF (5)	[.po	0x0, res	$0 \mathrm{x} 0]$	'IdMain'	: shape data
XF (6)	[.po	0x0, res	$0 \mathrm{x} 0]$	'IdAlt'	: shape data

The following table lists the global variables that were used in $S D T 5$ and the new procedure to access those fields which should be defined directly.

XFdof	described DOFs at which the responses/shapes are defined, see . dof field for response and shape data in the xfopt section, was a global variable pointed at by the ci.Stack\{'name'\}. dof fields.
which contains options used by identification routines, see idopt) is now stored	
in ci.IDopt.	

IIpo1 (alternate pole set) was a global variable pointed at by the ci.Stack\{'IdAlt'\}.po fields.

IIres1 (alternate residue set) was a global variable pointed at by the ci. Stack\{'IdAlt'\}. res fields.

XF
was a global variable pointed holding pointers to data sets (it was called a database wrapper). The local pointer variable XF associated with a given iiplot figure can be found using CurrentFig=2;ci=iiplot(CurrentFig); XF=iicom(ci,'curveXF').
The normalized datasets for use with idcom are generated using ci=idcom; XF=iicom(ci,'curvexf'). They contain four response datasets (XF('Test') to XF('IdFrf')) and two shape datasets (XF('IdMain') and XF('IdAlt')).

2.1.7 iiplot for signal processing

iiplot figure lets you perform standard signal processing operations (FFT, MMIF, filtering...) directly from the GUI. Opening iiplot properties figure, they are accessible trough the contextual menu compute (right click on the curve list in the Stack tab). Once an operation has been performed, its parameters can be edited in the GUI, and it can be recomputed using the Recompute button.

Following example illustrates some signal processing commands.

```
[mdl,def]=fe_time('demobar10-run'); % build mdl and perform time computation
cf=feplot(2); cf.model=mdl; cf.def=def;
ci=iiplot(3);
fecom(cf,'CursorOnIiplot') % display deformations in iiplot
% all following operations can be performed directly in the GUI:
% see the list of curves contained in iiplot figure, Stack tab:
iicom(ci,'pro');iicom(ci,'curtab Stack');
% compute FFT of deformations. Name of entry 'feplot(2)_def(1)'
ename=ci.Stack(:,2); ename=ename{strncmp(ename,'feplot',5)};
ii_mmif('FFT',ci,ename) % compute
fname=sprintf('fft(%s)',ename);
iicom(ci,'curtab Stack',fname); % show FFT options that are editable
    % edit options & Recompute:
ci.Stack{fname}.Set={'fmax',50};
iicom(ci,'curtab Stack',fname,'Recompute');
```

```
% filter and display (the bandpass removes a lot of transient)
ii_mmif('BandPass -fmin 40 -fmax 50',ci,ename) % compute
fname=sprintf('bandpass(%s)', ename);
ci.Stack{fname}.Set={'fmin', 10,'fmax', 20};
iicom(ci,'curtab Stack',fname,'Recompute');
iicom(ci,'iix',{ename,fname});
```


Figure 2.6: GUI for FFT computation

2.1.8 iiplot FAQ

This section lists various questions that were not answered elsewhere.

- How do I display a channel with an other channel in abscissa?

The low level call ci.ua.ob $(1,11)=$ channel; defines the channel number channel of the displayed curve as the abscissa of other channels.

```
ci.ua.ob(1,11)=3; % define channel 3 as abscissa
iiplot; % display the changes
set(ci.ga,'XLim',[0 1e-3]); % redefine axis bounds
```


- Channel selection in multi-dimensional arrays

```
% sdtweb('demosdt.m#DemoGartteCurve') % FRF with 2 damping levels
ci=iiplot(demosdt('demogarttecurve'))
ci.Stack{'New'}
iicom(ci,'ChAllzeta')
```


2.2 Identification of modal properties (Id dock)

Identification is the process of estimating a parametric model (poles and modeshapes) that accurately represents measured data. The identification process is typically performed using the dock shown below opened with iicom('dockId').

2.2.1 Opening and description of used data

The following procedure loads data from a .unv file but other way to open and load data are available.

- Open an empty dock iicom('dockid') and load data from the interface by selecting files (see below). A list of acquisition software from which data have been successfully loaded is described in section 2.2.3.
- Reopen a dock previously saved in SDT format (.mat).
- For saving : in idcom figure, use File:Save, chose the data that need to be saved (all selected by default) and then chose the saving file name.
- For reloading: execute the command iicom('curveLoad File.mat')
- Load data from variables in the workspace. It is then possible to load data from files directly into variables (see section 2.2 .3 , which is useful if data customization is required) or to deal with user-built transfers (see section section 2.2 .4) and finally pass the result to Id dock.
\% Unv with wire-frame, transfer and poles
\% Open empty dockid get pointer to feplot (cf) and iiplot (ci) [ci,cf]=iicom('dockid');
\% Build gartid.unv file the first time, then provide file name fname=demosdt('build gartid.unv');

```
% Data are stored into a variable to help you build custom loading procedure
UFS=ufread(fname);
wire=UFS(1); % Test wireframe
XF=UFS(2); % Transfers
ID=UFS(3); % List of modes
cf.mdl=wire; % Store the wireframe in the feplot figure
% Put transfers to iiplot figure (Transfers named test are the ones
ci.Stack{'curve','Test'}=XF; concerned by the current identification)
ci.Stack{'curve','IdMain'}=ID; % Store the poles in the iiplot figure
iicom('iix:TestOnly'); % Equivalent to : idcom figure, tab Stack,
% right click on Test and select 'Display selected data'
```

When manual assignation is performed, do not forget to click on to refresh the tables (for instance the pole list in idcom). Note that to perform identification, only the transfers are needed: the wireframe allows visualizing the identified mode shapes and the list of poles is helpful if previous identification has been performed.

On top of the Test and IdMain data discussed above, other useful data used throughout the identification process and stored in the iiplot Stack are

- Test contains measured frequency response functions. See section 2.2.3 ways to initialize this data set.
- IdFrf contains the synthesis of transfers associated with given set of transfers (shown in red in the figure above).
- IdAlt contains the alternate set of modes (poles and residues). These are listed on the left list of the Ident tab below.
- IdMain contains the main set of modes (poles and residues). These are listed on the right list of the Ident tab.
[ci,cf]=gartid; \% Open dockid with stored data and performs identification ci.Stack \% Display list of stored data in the Stack of iiplot

Test=ci.Stack\{'curve', 'Test'\}; \% Retrieve data from iiplot
IdFrf=ci.Stack\{'curve', 'IdFrf'\};
IdMain=ci.Stack\{'curve', 'IdMain'\};
IdAlt=ci.Stack\{'curve', 'IdAlt'\};
wire=cf.mdl.GetData; \% GetData is used to retrieve a copy.
\% Otherwise all modifications are propagated to feplot

Here is a tutorial for interactive data loading in DockId
You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these files are not present, click on the first step on the following tutorial in the HTML version of the documentation or download the patch at the adress https://www.sdtools.com/contrib/garteur.zip and unzip the content in the the folder SDTPath/sdtdemos.

1. D Execute the command iicom('dockid') to open an empty dock.

The dock is divided in three parts:

- At right, the iiplot figure where are displayed all curves (measured transfers, synthesized transfers, mode indicators...)
- At the top left hand corner, the idcom figure which is used to interact with the data in iiplot, especially here using the Ident tab to perform the identification process
- At the bottom left hand corner, the feplot figure where the wireframe is displayed. It lets you animate the identified modeshapes. The feplot('mdl') is accessible behind and lets you visualize the information about the wireframe.

2. D The loading of .unv files can be realized from iiplot or feplot. Activate for instance the idcom figure and select File:ImportData. . .

Here are the 4 possible menus in this order: iiplot, idcom, feplot and feplot('mdl').

In the opening window, select the file to load. For this tutorial, the file is located at $S D T$ Path/sdtdemos/gartid.unv.

Once selected, the Unv tab is displayed in the idcom or the feplot('mdl') figure (depending the chosen menu for ImportData.

Stack	Ident \mathbf{X} Unv \mathbf{X}		
Load	Type	Name	Description
\square	model	GEN	[.Node 24x...
\square	response (gener...	GEN(1)	[.w (UFF) 3124...
\square	shape data ...	GEN(2)	[.po 12x2, ...
		Import in Dockld	Import

It shows that three types of data are present in the file: a wireframe, transfers and identified mode shapes. Select the three check boxes to load everything.
3. D Click on Import (or Import in DockId which is used to build dockId if the loading is performed in a feplot or an iiplot figure outside a dockid).

The data are loaded: transfers are shown in the iiplot figure, the wireframe in the feplot figure and the list of poles in the tab Ident of the idcom figure.
4. D Once an identification is performed, click on Save in the idcom figure.

A windows pops-up to ask what data must be saved. Save all (by default) to set all the data and info on the dockid in the saving file.

Close the dock. A pop-up should appear to ask if you really want to close iiplot (this is to ensure that no data is lost if no saving has been performed), click on Close without saving.
5. To reload the saved dock, two possibilities are available:

- Execute the command iicom('curveload filename')
- Open an empty iiplot figure and load the saved file with File:Import Data...

2.2.2 General process

The proposed identification process is outlined below. The main steps of the methodology are

- Initial pole estimates are placed in IdAlt using advanced pole picking, LSCF (see section 2.3) or any other algorithm outside SDT.
- A user validated list of poles is kept in IdMain. The arrows between the two list in the interface (which correspond to the ea and er commands) can be used to move poles between the two lists: add missed poles, remove computational or undesired poles.
- Shapes pole/residue models, residual terms, modeshapes derived from residues) are then estimated for each pole given in IdMain. Several strategies exist and are more deeply explained at section 2.5
- Broad band estimation on the whole frequency band : est command/button
- Narrow band estimation on the selected band : estlocal command/button
- Iterative local estimation around each pole : esthocalpole command/button
- Optimizing poles (and residues) of the current model depending on the quality obtained by the previous passes. As for the estimation of shapes, there three strategies for the optimization:
- Broad band update : eup for high number of poles and eopt for up to 2-3 poles
- Narrow band update on the selected band: euplocal and eoptlocal
- Iterative local updates around each pole: eoptseq

Figure 2.7: Modal identification process with links to corresponding sections

This process is handled through the Ident tab opened with iicom('InitIdent') or with the interface by clicking on Tab: Ident from the iiplot or idcom figure.

The main steps, associated with level 1 lines in the GUI tree are the topics of specific sections of the documentation:

- AddPoles: use an initial algorithm to estimate poles (single pole estimator or selection in a stabilization diagram LSCF).
- IDopt : select frequency range and possibly define properties of transfers (displacement, velocity, acceleration, MIMO, ...)
- Estimate shapes using a frequency domain output error method that builds a model in the pole residue form (see section 5.6). Theoretical details about the underlying algorithm are given in section 2.6.5. Section 2.5.3 addresses its typical shortcomings.
- Adjust poles using one of the non-linear optimization algorithms.
- Transform the output to a format dealing with MIMO constraints, reciprocity, ...

The gartid script gives real data and an identification result for the GARTEUR example. The demo_id script analyses a simple identification example.

2.2.3 Importing FRF data

SDT stores transfer functions in the Response data (.w, .xf fields) or curve (.X, .Y fields) formats. The following table gives a partial list of systems with which the $S D T$ has been successfully interfaced.

Vendor	Procedure used Export data from Pulse to the UFF and read into SDT with ufread or use the Bridge To Matlab software and pulse2sdt.
LMS	Export data from LMS CADA-X to UFF or MATLAB format. Install the Polytec File Access library on your computer and use the
Polytec	polytec function to import . svd files directly. Alternatively, export data from PSV software to UFF. Export data from RT-Pro software to the UFF. Use the Active-X API to drive the Photon from MATLAB see photon.
MathWorks	Use Data Acquisition and Signal Processing toolboxes to estimate FRFs and create a script to fill in SDT information (see section 2.2.3).
Export data from IDEAS-Pro software to UFF.	

- Universal files are easiest if generated by your acquisition system. Writing of an import script defining fields used by SDT is also fairly simple and described below (you can then use ufwrite to generate universal files for export).
The ufread and ufwrite functions allow conversions between the xf format and files in the Universal File Format which is supported by most measurement systems. A typical call would be

```
% generate gartid.unv (or retrieve file name if already generated)
    fname=demosdt('build gartid.unv');
    UFS=ufread(fname); % read the unv file
    UFS % This command display in the command window the content of the file
    xf=UFS(2); % Read the transfers in the file and store in the variable xf
```

```
%% Do everything needed with the data for customization if needed %%%
% For instance extract channels 1:4
xf=fe_def('SubDofInd',xf,1:4)
% Then pass to iiplot for view and ID purposes
ci=idcom; % For identification purposes open IDCOM
% Store transfers in 'Test' which are transfers to be identified
ci.Stack{'curve','Test'}=xf;
% To only view data in figure(11) the following would be sufficient
cj=iiplot(11); % open an iiplot in figure 11
iiplot(cj,UFS(1)); % show UFS(1) there
```

where you read the database wrapper UFS (see xfopt), initialize the idcomfigure, assign dataset 2 of UFS to dataset 'Test' 1 of ci (assuming that dataset two represents frequency response functions of interest).

Note that some acquisition systems write many universal files for a set of measurements (one file per channel). This is supported by ufread with a stared file name UFS=ufread('FileRoot*.unv');

- Polytec files need many options to extract data (Time/Transfers, Estimator H1/H2, Velocity/Force...). Please read the dedicated polytec documentation to adapt the example below to your needs. Note that the code below needs Polytec File Access to be installed.

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
% Provide a cell array with all readable measured data
list=polytec('ReadList',fname);
display(list);
% Extract the transfer function Vib/Ref1
% with the estimator H1 Displacement/Voltage
RO=struct('pointdomain','FFT','channel','Vib & Ref1',...
'signal','H1 Displacement / Voltage');
XF=polytec('ReadSignal',fname,RO);
% alternative call using one row of the cell array "list"
XF=polytec('ReadSignal',fname,struct('list',{list(20,:)}));
```

To avoid the manual filling of the reading options, it is also possible to simply load data from the interface : follow the tutorial in section section 2.2.1) but select the .svd file instead of the .unv file and do right-click + Read selected on the line you want to read. Loaded transfers can then be stored to variables with the command ci=iiplot; xf=ci.Stack\{'Test'\};

2.2.4 Write a script to build a transfer structure

When writing your own script to transcript data to xfstruct format, you must have a MATLAB structure composed at minimum of the fields

- .w : a column vector of frequencies
- .xf : a matrix of measured frequency responses (one row per frequency, one column per measurement channel).

Other fields may be required to specify the type of data and the type of model to use for identification. Two main optional fields are presented here:

- .dof field can be used to specify the meaning of each transfer (input and output DOF). This field should be set for title/legend generation (this is a label).

For correct display of shapes in feplot, the . dof may be a direct specification of direction in simple cases where the sensors are really oriented in global axes, but in general is just a label for the sensor orientation map stored in a sens.tdof field. See section 2.7 for details on geometry declaration.
In the example below one considers a MIMO test with 2 inputs and 4 outputs stored as columns of field . xf with the rows corresponding to frequencies stored in field . w. You script will look like

```
ci=idcom;
[XF1,cf]=demosdt('demo2bay xf');% sample data and feplot pointer
out_dof=[3:6]+.02'; % output dofs for 4 sensors in y direction
in_dof=[6.02 3.01]; % input dofs for two shakers at nodes 1 and 10
out_dof=out_dof(:)*ones(1,length(in_dof));
in_dof=ones(length(out_dof),1)*in_dof(:)';
XF1=struct('W',XF1.w, ... % frequencies in Hz
    'xf',XF1.xf, ... % responses (size Nw x (40))
    'dof',[out_dof(:) in_dof(:)]);
XF1=xfopt('check',XF1);
ci.Stack{'curve','Test'}=XF1; % sets data
iicom(ci,'submagpha'); % display
ci.Stack{'Test'}.idopt % field now points to ci.IDopt
ci.IDopt.nsna=size(out_dof,1); % Possibly correct number of outputs
```

```
ci.IDopt.recip='mimo';ci.IDopt % Set reciprocity to mimo
cf.def=ci.Stack{'Test'}; fecom('ch35'); % frequency of first mode
```

You can check these values in the iicom('InitChannel') tab.

- .idopt field should also be filled for correct identification using id_rc. For the main data set called Test the .idopt field is that of the figure which is more easily accessed from ci. IDopt. These correspond to the IDopt part of the Ident tab (see section 2.4). You can also edit these values in a script. For correct identification, you should set

```
ci=demosdt('demogartid');
ci.IDopt.Residual='3';
ci.IDopt.DataType='Acc';
ci.IDopt.Absci='Hz';
ci.IDopt.PoleU='Hz';
iicom('wmin 6 40') % sets ci.IDopt.Selected
ci.IDopt.Fit='Complex';
ci.IDopt % display current options
```

For correct transformations using id_rm, you should also verify ci.IDopt.NSNA (number of sensors/actuators), ci.IDopt.Reciprocity and ci.IDopt.Collocated.

For correct labels using iiplot you should set the abscissa, and ordinate numerator/denominator types in the data base wrapper. You can edit these values using the iiplot properties:channel tab. A typical script would declare frequencies, acceleration, and force using (see list with xfopt _datatype)

```
UFS(2).x='Freq';UFS(2).yn='Acc';UFS (2).yd='Load';UFS(2).info
```


2.2.5 Data acquisition

The SDT does not intend to support the acquisition of test data since tight integration of acquisition hardware and software is mandatory. A number of signal processing tools are gradually being introduced in iiplot (see ii mmif FFT or fe_curve h1h2). But the current intent is not to use SDT as an acquisition driver. The following example generates transfers from time domain data

```
frame=fe_curve('Testacq'); % 3 DOF system response
% Time vector in .X field, measurements in .Y columns
frf=fe_curve('h1h2 1',frame); % compute FRF
ci=iicom('Curveid');iicom('curveinit','Test',struct('w',frf.X,'xf',frf.H1))
iicom('SubMagPha');
```

You can find theoretical information on data acquisition for modal analysis in Refs. (2) 34 (4) [5] 6].

2.3 Pole initialization (IdAlt and IdMain filling)

Analyze \quad SVDCur \square ODS

The first step of the model identification (see the whole process at section section 2.2 .2) is to build an initial list of poles. This list can be provided from various ways:

- Using an external algorithm. The list of poles is then manually imported (section 2.3.1)
- Using the LSCF algorithm (section 2.3.2)
- By iteratively adding poles using a single pole estimator (section 2.3.3)

In the GUI, algorithms linked to the pole initialization are grouped under AddPoles :

- e +.01 : Perform single pole estimation around a given frequency with damping of the order of 1%. (section 2.3.3)
- BandToPole : Sequential single pole estimation by band (to be implemented in further release section 2.3.4)
- Stab: Open the tab associated to the LSCF algorithm to build a stabilization diagram and extract poles. The button AutoId opens this tab and automatically performs a pole extraction with default values of the algorithm. (section 2.3 .2)

2.3.1 External pole estimation

The iteratively refined model is fully characterized by its poles (and the measured data). The initialization of the model optimization process can thus easily be performed from any external modal identification algorithm.

If the external software or script used to perform the identification is able to save the result in the universal file format, simply load it like described in section section 2.2.1.
Else, after storing the measured transfers as a curve named Test in a iiplot figure (see section 2.2.1), add poles with the command

```
    ci.Stack{'IdMain'}.po = [...
    1.1298e+02 1.0009e-02
    1.6974e+02 1.2615e-02
    2.3190e+02 8.9411e-03];
% ci is the pointer to the iiplot figure containing the Test curve
```

where the array contains as many lines as poles: the first column provides the pole frequencies in Hz and the second one the pole dampings.

With the list of poles and the measured transfers, you have all you need to recreate an identified model (even if you delete the current one, see section section 2.5) but it also lets you refine the model by adding the line corresponding to a pole that you might have omitted.

2.3.2 LSCF

The LSCF algorithm is based a rational fraction description of the transfers. The interest of this algorithm is that polynomials are expressed on the base of the z transform which deeply improves the numerical conditioning (often problematic for high order models in the rational fraction form). Moreover, classical stabilization diagram resulting from the identification at various model orders is often very "clean": numerical modes which either compensate noise or residual terms have negative damping and or thus easily removed from the diagram.

The following tutorial describes how to initialize the poles using the LSCF algorithm.

1. D Execute the command iicom('dockid') to open an empty dock and load the wireframe and the transfers contained in the file SDTPath/sdtdemos/gartid.unv (Do not load the identification result because it will be performed in the following). See section 2.2 .1 for the data loading procedure, or just click on Run in the html version of the documentation.

2. D In the tab Ident, click on the button Stab to open the Tab StabD which allows interaction with the stabilization diagram built with the LSCF algorithm.

The button AutoId open this StabD tab and directly performs diagram building and pole extraction with default values of the algorithm. It is often useful for a quick evaluation.
3. D The StabD tab contains options to build the stabilization diagram in the sub-list under Generate :

- order : Maximum order of the model. The order of the model equals the number of poles used to fit the measured data. It is often necessary to select an order significantly higher than the expected number of physical poles in the band because the identification results in many numerical poles which compensate out-of-band modes and noise. Selecting at least ten times the number of expected poles often gives good results according to our experiment.
- norder : Minimum order to start the stabilization diagram (low model orders often show very few stabilized poles)
- fmin : Minimum frequency defining the beginning of the band of interest
- fmax : Maximum frequency defining the end of the band of interest
- band : Sequential iteration can be performed by band of the specified frequency width. The interest is that in presence of many modes, it is more efficient to perform several identifications by band rather than increasing the model order.

The building of a stabilization diagram with a maximum order of 100 is not very costly and should be used for most applications. We advise then to estimate the total number of poles in the whole band of interest (fmax-fmin), to divide this total bandwidth by this number and to multiply the result by 5 in order to find the band width which contains in average 5 expected modes (20 times less than the maximum model order).

In our test case, we attempt to find 12 modes in a total bandwidth of 60 Hz) : set the band parameter to $60 / 12^{*} 5=25 \mathrm{~Hz}$.
4. D Click on Generate to build the stabilization diagramm.

In the diagram, the status of the poles are marked by

- A red circle when a new poles with positive damping is found
- A yellow triangle when a consecutive poles are stable in frequency or damping
- A blue cross when consecutive poles are stable in frequency and damping for since at least 5 consecutive orders

Frequency and damping stability are defined by the parameters Ftol and Dtol under the sub-list Display. If relative frequency or damping of poles from consecutive model orders are below the parameter values (in \%), they are considered stable.

In presence of very clean measurements of a very strictly linear system, these values could be more restrictive. In the opposite, they should be increase for noisier data and/or in presence
of small non-linearities. When the values of Ftol and Dtol are modified, click on Display to refresh the diagram.

To improve the analysis of the stabilization diagram, mode estimators can be displayed on top of it : the list of all available mode estimators at the right of DispMode (see ii mmif for details)

The stabilization diagram displayed with the logSumI mode estimator leads to this picture.

5. Do automatically extract all stabilized poles (with a blue cross at the last model order), click on Renew at the line AutoIdMain. The button specifies "Renew" because all current poles in the fmin - fmax band will be deleted and replaced by the extracted ones from the diagram. The extracted poles are displayed at the right table of the tab Ident. On the transfers, pole locations are specified by the vertical lines.

6. Back to the stabilization diagram, two columns are started but not stabilized around 12 Hz and 50 Hz . For the column at 12 Hz , the logSumI indicator shows almost no resonance. For the column at 50 Hz , the resonance is well visible but more damped than the close mode.

To evaluate the pertinence of the poles despite that they do not fully satisfy the stabilization criteria, click on the icon and select the last order of the column.

In the StabD tab, click on Estimate at the line CurLocal. This action performs a local estimation with the selected pole around its frequency. The channel presenting the highest contribution for this mode is automatically selected and the synthesized transfer is superposed to the measurement.

The synthesized transfer does not exactly fit the measurements (which is very noisy around this frequency) but is enough representative to be selected as initial pole prior to optimization.
7. D The pole used to perform the local estimation is stored in the left table of the tab Ident : the list of the alternate poles. Because it is representative enough to describe the mode, it can be added to the list of main poles (the right table) by clicking on the arrow.
Do the same for the not stabilized column around 12 Hz . The result is much more doubtful because the mode is almost not visible and the measurement very noisy. More over the local estimation does not fit very well. Nevertheless, add this pole to the main list: we will analyze its pertinence in the following using Quality criteria and trying to optimize it.

Finally, the mode estimator on top of the stabilization diagram shows that a mode at the right of the frequency band is probably there but not identified by the LSCF algorithm. This case can be handled by manually adding a pole using the single pole estimator.

2.3.3 Single pole estimate

Because getting an initial estimate of the poles of the model is the often tedious, algorithms like LSCF or other broadband algorithms are very helpful to quickly extract most of the poles: dynamic responses of structures typically show lightly damped resonances which are most of the time well detected. Nevertheless, using such algorithm often leads to two issues that need to be handled:

- The poles from some modes visible in the transfer have not been extracted
- Some extracted poles do not correspond to physical modes

To deal with missing poles, the easiest way to enrich the initial estimate of the poles is to use a narrow band single pole estimation near considered resonances of the response or minima of the Multivariate Mode Indicator function (use iicom Shownmi and see iimmif for a full list of mode indicator functions).

The idcom e command (based on a call to the ii_poest function) lets you to indicate a frequency (with the mouse or by giving a frequency value) and seeks a single pole narrow band model near this frequency (the pole is stored in ci.Stack $\{$ 'IdAlt' $\}$. Once the estimate found, the iiplot drawing axes are updated to overlay ci.Stack\{'Test'\} (the measured transfers) and ci.Stack\{'IdFrf'\} (the narrow band transfer synthesis).

Figure 2.8: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the information displayed by ii_poest

```
LinLS: 1.563e-11, LogLS 8.974e-05, nw 10
mean(relE) 0.00, scatter 0.00
Found pole at 1.1299e+02 9.9994e-03
```

which indicates the linear and quadratic costs in the narrow frequency band used to find the pole, the number of points in the band, the mean relative error (norm of difference between test and model
over norm of response which should be below 0.1), and the level of scatter (norm of real part over norm of residues, which should be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in your current model, you can add the estimated pole (add poles in ci.Stack\{'IdAlt'\} to those in ci.Stack $\{$ 'IdMain' $\}$) using the idcom ea command (or the associated button : arrow pointing to the right). If the fit is not appropriate you can change the number of selected points/bandwidth and/or the central frequency.

Remark : In the interface or using idcom e command, an initial guess of the damping value is used to search for the local mode. The algorithm sometimes fails if this value is too far from the real damping.

In rare cases where the local pole estimate does not give appropriate results you can add a pole by just indicating its frequency (f command) or you can use the polynomial id_poly), direct system parameter (id_dspi), or any other identification algorithm to find your poles. You can also consider the idcom find command which uses the MMIF to seek poles that are present in your data but not in ci.Stack\{'IdMain'\}.

To deal with cases where you have added too many poles to your current model, use the idcom er (or the associated button : arrow pointing to the left) command to remove certain poles.

This phase of the identification relies heavily on user involvement. You are expected to visualize the different FRFs (use the $+/-$ buttons/keys), check different frequency bands (zoom with the mouse and use iicom w commands), use Bode, Nyquist, MMIF, etc. (see iicom Show commands). The iiplot graphical user interface was designed to help you in this process and you should learn how to use it (you can get started in section 2.1).

```
gartid % Open interface with gartid demo
```

idcom('e . 1 6')
\%idcom('Est 0.1 6.0000); \% does click
\%LinLS: 2.110e+02, LogLS Inf, nw 63
$\%$ mean(relE) 0.03, scatter 0.16 : good
\%Found pole at 6.4901e+00 8.7036e-03

Let's go back to the previous tutorial to add the missing pole at the end of the frequency band.
If you have not performed previous tutorial (or if you closed everything at the end), click on D in the HTML version of the documentation to get ready for the following.
8. D Click on the button e in the tab Ident. Then click approximatively at the location of the resonance to start the single estimation algorithm at that frequency. Please note that, especially in presence of very lightly damped structure, it is sometimes necessary to edit the
value of the expected damping in the list on the right of the button e for the algorithm to find the correct pole.

The fit is correct at the resonance: add the pole to the main list by clicking on the arrow $->$

2.3.4 Band to pole estimate

A procedure allowing to add several poles by dragging the mouse to select a band for the single pole estimator will be implemented in further release. Currently the procedure only takes the maximum of the band and does not estimate damping.

2.3.5 Direct system parameter identification algorithm

(Obsolete) A class of identification algorithms makes a direct use of the second order parameteri-
zation. Although the general methodology introduced in previous sections was shown to be more efficient in general, the use of such algorithms may still be interesting for first-cut analyses. A major drawback of second order algorithms is that they fail to consider residual terms.

The algorithm proposed in id_dspi is derived from the direct system parameter identification algorithm introduced in Ref. [7. Constraining the model to have the second-order form

$$
\begin{gather*}
{\left[-\omega^{2} I+i \omega C_{T}+K_{T}\right]\{p(\omega)\}=\left[b_{T}\right]\{u(\omega)\}} \tag{2.1}\\
\{y(\omega)\}=\left[c_{T}\right]\{p(\omega)\}
\end{gather*}
$$

it clearly appears that for known $\left[c_{T}\right],\left\{y_{T}\right\},\left\{u_{T}\right\}$ the system matrices $\left[C_{T}\right],\left[K_{T}\right]$, and $\left[b_{T}\right]$ can be found as solutions of a linear least-squares problem.

For a given output frequency response $\left\{y_{T}\right\}=$ xout and input frequency content $\left\{u_{T}\right\}=x i n$,id_dspi determines an optimal output shape matrix $\left[c_{T}\right]$ and solves the least squares problem for $\left[C_{T}\right],\left[K_{T}\right]$, and $\left[b_{T}\right]$. The results are given as a state-space model of the form

$$
\begin{gather*}
\left\{\begin{array}{c}
q^{\prime} \\
q^{\prime \prime}
\end{array}\right\}=\left[\begin{array}{cc}
0 & I \\
-K_{T} & -C_{T}
\end{array}\right]\left\{\begin{array}{c}
q \\
q^{\prime}
\end{array}\right\}+\left[\begin{array}{c}
0 \\
b_{T}
\end{array}\right]\{u(t)\} \tag{2.2}\\
\{y(t)\}=\left[\begin{array}{ll}
c_{T} & 0
\end{array}\right]\left\{\begin{array}{c}
q \\
q^{\prime}
\end{array}\right\}
\end{gather*}
$$

The frequency content of the input $\{u\}$ has a strong influence on the results obtained with id_dspi. Quite often it is efficient to use it as a weighting, rather than using a white input (column of ones) in which case the columns of $\{y\}$ are the transfer functions.

As no conditions are imposed on the reciprocity (symmetry) of the system matrices $\left[C_{T}\right]$ and $\left[K_{T}\right]$ and input/output shape matrices, the results of the algorithm are not directly related to the normal mode models identified by the general method. Results obtained by this method are thus not directly applicable to the prediction problems treated in section 2.8.2.

2.3.6 Orthogonal polynomial identification algorithm

(Obsolete) Among other parameterizations used for identification purposes, polynomial representations of transfer functions (5.31) have been investigated in more detail. However for structures with a number of lightly damped poles, numerical conditioning is often a problem. These problems are less acute when using orthogonal polynomials as proposed in Ref. 8]. This orthogonal polynomial method is implemented in id_poly, which is meant as a flexible tool for initial analyses of frequency response functions. This function is available as idcom poly command.

2.4 Identification options

Several options need to be defined in order to well specify the frequency domain on which data must be identified, the type of mesured data, the model used to fit, informations on colocated measurents and how to use them.

Identification options accessible from the Ident tab or from the command line through the pointer ci.IDopt (see idopt for the full documentation).

Description of the buttons line by line :

- Idopt The working frequency band selection specify on which frequencies must the data be identified.
- $w 0$: Resets the working frequency band to the min-max boudaries. This button is similar to clicking on the button and double clicking on the measurements in the iiplot window.
- wmo : Allows to specify min and max frequency by clicking two times at the minimum and then the maximum frequency locations on the measurements in the iiplot window. This button is similar to clicking on the button .N.
- bandwidth history : Each modification of the working frequency band is stored in this history list and allows to quickly going back to previous selections.
- Fit : Several pole/residue models can be used to extract shapes from a list of identified poles, whose complete description can be found in section section 5.6
- residue type : Specify which type of pole/residue model to use : complex mode residues with symmetric pole structure, complex mode residues with asymmetric pole structure or normal mode residues with symmetric pole structure.
- residual terms : To takes into account the influence of out of band modes, residual terms should be used.
- data : Specify if the measured transfers are of type displacement/force, velocity/force or acceleration/force
- I/O : Information on colocated measurements are needed to enforce the constraint of reciprocity (see section 2.8.2) using the id_rm algorithm
- nsna : Display to check if the number of sensors and actuators is correct (if it is not correct, the .dof table defining inputs and outputs of each transfers should be verified, see curve Response data

- Recip : Specify how the colocated informations should be used (see section 2.8.2 and idopt for more details)

2.5 Estimate shapes from poles

| - estimate | estLocalPole | \square Qual |
| :---: | :---: | :---: | :---: |
| | estLocal | \checkmark |

Once a model is created (you have estimated a set of poles in IdMain), the residues need to be computed. The classical way to do so in the litterature is to determine residues on the whole frequency band for the synthesized FRFs stored in ci.Stack\{'IdFrf'\} to be as close as possible to the measured data in the least square sense. This strategy and others using narrow bands are detailed in section section 2.5.1.

To analyze the quality of the identification, several criteria definined by mode and by transfer have been developped to help navigate through the data. The quality table and its analysis are described in section section 2.5.2.

A non exhaustive list of classical issues using the id_rc algorithm is given in section section 2.5.3.

2.5.1 Broadband, narrowband, ... selecting the strategy

The standard estimation of residues on the whole frequency band is performed with the command idcom est (or the equivalent button in the interface).
This method can give good results if the measurements are very clean and the system very close to a perfectly linear system. If noise, non-linear distorsion badly identified pole is present at some frequency bands, especially if it worresponds to high amplitudes in the transfers, fitting all modes together on the whole frequency band can engender strong bias in the identification of residue with low amplitude.

In this case, and if a broadband model is not necessary, it is most of the time preferable to perform a sequential identification with a narrow band arround each mode to extract the residuals. This is automaticaly achived using the command idcom est ocalpole (or the equivalent button in the interface).

An alternative way to handle these problems of bias for some modes is to perform local identifications which update residues only on a smaller working frequency band. To do so, you need to select a close frequency band inside which the residues are poorly identified with the button . 1 and then use the command idcom est ocal (or the equivalent button in the interface).

To highlight the differences between these strategies, the following tutorial uses the GARTEUR test case with the initial poles identified in the previous section section 2.3 .

1. D Click on the link in the HMTL version to initialize the tutorial. Else, execute the command sdtweb('_tuto', 'gartid') to open the list of tutorials and execute the first step of the tutorial Estimate.
2. D In the Ident tab, click on the button est to identify the residues using the broadband method.

For some transfers the superposition seems quite good like for the first figure whereas it is clearly bad for many modes for some others like the second figure.
3. D In the Ident tab, click on the button estLocalPole to identify the residues using the sequential narrowband method.

Each local identification is clearly closer to the measurements than using the broadband strategy. It should be noted that residues correspond to mode shapes and that consequences on proper identification of shapes can be important. The figure below shows the MAC between the set of mode shapes obtained with the est versus the estLocalPole algorithms.

The two modes 3 and 5 which are very less excited (the physical meaning of these poles is even still question for the moment) are very impacted. Modes 2 which is less excited is quite different. Mode 10 is well visible but the pole seems badly identified as shown on the figure below (zoom on modes 9 and 10) : the residues are differently biased to compensate in the two strategies.

2.5.2 Qual: Estimation of pole and shape quality

The need to add/remove poles is determined by careful examination of the match between the test data ci.Stack $\{$ 'Test'\} and identified model ci.Stack $\{$ 'IdFrf' $\}$. For a very small amount of data, you could take the time to scan through different sensors, look at amplitude, phase, Nyquist, ... but when the number of sensors and the number of modes become high, the manual scanning is too much time consuming.

Too help navigate through a large amount of data to efficiently analyze the quality of the measurements, several criteria have be defined and can be used to sort sensors by mode. In the following, each pair of sensor/actuator corresponding to a column of the measured transfers $H_{\text {Test }}$ associated to a column of the synthesized transfers $H_{i d}$ will be indexed by c.

A perfect identification is obtained if measured and synthesized transfers are perfectly superposed. Because the contribution of a mode is characterized by the fact that its amplitude is maximum around the resonance frequency, a classical method to analyze the quality of the fit is to compare the measurement and the identification around each mode. We thus define the identification error for a mode j and input/output pair c by

$$
\begin{equation*}
e_{j, c}=\frac{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}(s)-H_{i d, c}(s)\right|^{2}}{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}(1+\alpha)}\left|H_{i d, c}(s)\right|^{2}} \tag{2.3}
\end{equation*}
$$

with ω_{j} the modal frequency and ζ_{j} the modal damping. α is a scale factor of the frequency bandwidth, with $\alpha=1$ corresponding to the classical bandwidth at -3 dB and $\alpha=5$, a pertinent
value used here. This error criterion can be seen as a numerical evaluation of the quality of the historical "circle fit" method. The figure 2.9 shows a simple case on the mode at 4050 Hz . On the left, the measurement in blue line is noisy so that the correspondence with the identification in red dotted line is not good. This is coherent with the value of the error criterion evaluated at 30%. On the right, the resonance of the mode is well visible and the superposition with the identification is almost perfect. This visual analysis is well confirmed by the error criterion evaluated at 0.4%

Figure 2.9: Transfer function examples with a high (30\%, at left) and low (0.4%, at right) error criterion

For most applications, high error is expected close to vibration nodes where the observability is weak. To avoid taking into account such transfers as badly identified, the level criterion for a given mode j and a given sensor/actuator pair c is defined as the ratio between the quadratic mean for the channel c around the resonance and the maximum quadratic mean on all the channels.

$$
\begin{equation*}
L_{j, c}=\frac{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}(s)\right|^{2}}{\max _{c} \int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}(s)\right|^{2}} \tag{2.4}
\end{equation*}
$$

Problematic sensors are those presenting a high error despite a significant level. Thus, considering the error criterion and the level criterion is often not appropriate. A new criterion called Noise Over Signal (NOS) is obtained by multiplying both criteria together

$$
\begin{equation*}
N O S_{j, c}=e_{j, c} \times L_{j, c} \approx \frac{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}(s)-H_{i d, c}(s)\right|^{2}}{\max _{c} \int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}(s)\right|^{2}} \tag{2.5}
\end{equation*}
$$

in order to highlight transfers where high error is associated to a un level, and thus critical. For a reasonable identification, the approximation made on 2.5) use the fact that $H_{T e s t, c}$ et $H_{I d, c}$ should be close and so that $\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{\text {Test }, c}(s)\right|^{2} / \int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{i d, c}(s)\right|^{2} \approx 1$. This approximation illustrate that the product $e_{j, c} \times L_{j, c}$ is close to the ratio of the identification error (hence a estimation of the noise) over the
maximum response (hence the signal level), which explains the origin of the NOS terminology.
The figure 2.10 (first) shows an example of a transfer function with a high NOS value (8.3\%) : the error is very high at 40.4% whereas the level is still significant at 20.5%. The mode is very badly identified (barely visible on this transfer) but the amplitude of the identified residue is important for the definition of the mode shape. The existence of sensor/actuator pairs with high noise level at high amplitude, highlighted by NOS, is typical of weekly excited modes (the controllability is weak for the chosen excitation location). On the second image, the transfer function also shows a high NOS value (24.7%) and a high error $(24.7 \%$) but graphically, the mode is very visible. The high NOS value is here due to a bad identification of the pole, which induces a bias in the residue to compensate. This second example illustrates that this criterion is also well adapted to the detection of problems of coherence between measurements (different settings between measurement systems, behavior evolution of the system during measurement,...).

Figure 2.10: Examples of transfer functions showing high NOS values induced by a weak excitation (left) and a bad poles identification (right)

After manual analysis of many measurements, two intermediate cases are often found: the measurement is noisy but still has a sufficient contribution to be identified with confidence or the contribution of a mode is so weak that it cannot be separated from other modes without raising questions on a more or less important estimation bias. To distinguish the two cases, a last contribution criterion is introduced

$$
\begin{equation*}
C_{j, c}=1-\frac{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\alpha \zeta_{j}\right)}\left|H_{T e s t, c}-H_{i d, j, c}\right|^{2}}{\int_{\omega_{j}\left(1-\alpha \zeta_{j}\right)}^{\omega_{j}\left(1+\zeta_{j}\right)}\left|H_{T e s t, c}\right|^{2}} . \tag{2.6}
\end{equation*}
$$

to measure the modal contribution of a specific mode j relatively to the global response of all the other modes around its resonance frequency, thus giving an indication of its visibility ($H_{i d, j, c}$ is the transfer synthesis containing only the mode j). For highly noisy transfer functions, this indicator can be negative and is then set to 0 .

Figure 2.11 shows transfer functions for which this kind of question is raised. On the first image, around 4050 Hz , the mode is well visible despite a relatively high noise level. It could be useful to keep this channel to well interpret the correlation. On the second image, a transfer function is shown where the error is very low but for which the resonance of the considered mode is not visible at all. The capacity to identify the residue with confidence is low because the identification could clearly be significantly biased

Figure 2.11: Examples of transfer functions: High error of 18.7% with a high contribution of 73.5% (left) and low error of 0.1% with a low contribution of 0% (right).

Proposed criteria allow decomposing identification error sources in contributions by mode and by transfer function (sensor/actuator pair). For each mode, clearly problematic sensors showing high error with low contribution and a low level can be automatically discarded and only results properly identified can be kept with a high confidence on the quality.

Intermediate results can be analyzed in more details using sorting by level, contribution or NOS to highlight problematic transfer functions, as illustrated in the following tutorial.

Let's go back to the previous tutorial. If you have not performed it (or if you closed everything at the end), click on D in the HTML version of the documentation to get ready for the following.
4. D In the Ident tab, click on est to perform an broad band identification of the residues. Click then on the button Qual to open the tab Qual which synthesizes all the quality criteria defined above.

Stack \mathbf{X} Iden	Channel \times	\mathbf{X} Unv \mathbf{X}	Qual \times			
Modes						
Mode Nu...	Freq[Hz]	Damp[\%]	Error[\%]	Contributi...	MPC[\%]	$\max ($ NOS $)[\ldots$
1	6,504	0,91	24	71	100	9
2	8,978	1,97	17	26	51	5
3	12,197	0,06	26	2	52	4
4	16,390	1,24	7	84	100	3
5	21,240	0,18	25	5	12	3
6	33,497	0,73	2	14	98	1
7	33,992	1,19	3	65	97	1
8	36,174	0,76	7	41	99	2
9	49,402	1,36	18	31	99	17
10	50,208	0,34	19	42	78	7
11	55,615	0,11	11	50	99	8
12	63,726	1,53	18	59	100	14
1/O Pairs						
Mode	Out	In	Error	Level	Contrib	OS
	1011,03	1012,09	8,5\%	99,8\%	89,2\%	8,5\% \uparrow
	1001,03	1012,09	8,4\%	98,0\%	89,8\%	8,2\%
	2012,07	1012,09	93,1\%	1,6\%	6,5\%	1,5\%
	1012,03	1012,09	8,8\%	97,3\%	89,7\%	8,5\%
	2005,07	1012,09	19,4\%	2,3\%	79,6\%	0,4\%
	1005,03	1012,09	8,8\%	34,1\%	88,3\%	3,0\%
	1008,03	1012,09	9,3\%	4,1\%	74,4\%	0,4\%
	1111,03	1012,09	8,9\%	99,8\%	91,0\%	8,9\%
	1101,03	1012,09	8,4\%	100,0\%	91,5\%	8,4\%
	2112,07	1012,09	89,0\%	3,0\%	10,6\%	2,7\%
	1112,03	1012,09	8,3\%	99,5\%	91,6\%	8,2\%
	2105,07	1012,09	21,8\%	1,3\%	78,2\%	0,3\% \downarrow

The identification quality is globaly poor, with a mean error quite high arround most modes. Two modes show a very low mean contribution (3 and 5), four modes show a bad MPC whereas expected modes are real ($2,3,5$ and 10) and finally, three modes present a high $\max ($ NOS) (9 10 and 12).
Clicking on a line of the first table Modes updates the second table I/O Pairs with the four quality criteria on all sensors for the selected mode. Each criterion can be sorted by clicking on the corresponding column header and clicking on a line perfoms a zoom on the corresponding transfer arround the mode frequency.

This way, we can for example easily zoom on the transfer with the highest contribution for the mode 3 and the transfer with the highest NOS for the mode 10 :

This highlight the bias in the identification of the residues.
5. Dow click in the Ident tab on estlocalpole to perform a sequential identification by mode with the same poles and click again on Qual to update the Qual tab.

Stack \mathbf{X} Iden	Channel \mathbf{X}	X Unv \times	Qual \times			
Modes						
Mode Nu...	Freq[Hz]	Damp[\%]	Error[\%]	Contributi...	MPC[\%]	$\max (\mathrm{NOS})[.$.
1	6,504	0,91	23	69	100	8
2	8,978	1,97	3	23	100	0
3	12,197	0,06	2	0	49	0
4	16,390	1,24	6	85	100	3
5	21,240	0,18	3	2	81	0
6	33,497	0,73	2	14	98	1
7	33,992	1,19	3	67	97	1
8	36,174	0,76	5	40	99	2
9	49,402	1,36	10	35	95	4
10	50,208	0,34	11	37	95	0
11	55,615	0,11	5	41	100	8
12	63,726	1,53	6	46	100	4
1/O Pairs						
Mode	Out	In	Error	Level	Contrib N	NOS
1	1008,03	1012,09	8,1\%	4,1\%	73,8\%	0,3\% \wedge
1	2303,07	1012,09	7,9\%	4,7\%	91,4\%	0,4\%
1	2201,08	1012,09	58,1\%	0,3\%	12,2\%	0,2\%
1	2012,07	1012,09	92,5\%	1,6\%	6,8\%	1,5\%
1	1111,03	1012,09	8,0\%	99,8\%	91,2\%	8,0\%
1	2301,07	1012,09	8,1\%	5,1\%	91,2\%	0,4\%
1	1012,03	1012,09	7,8\%	97,3\%	90,0\%	7,5\%
1	1206,03	1012,09	7,9\%	16,8\%	91,1\%	1,3\%
1	3201,03	1012,09	8,3\%	23,4\%	91,1\%	2,0\%
1	1205,08	1012,09	73,5\%	0,4\%	0,0\%	0,3\%
1	1005,03	1012,09	7,8\%	34,1\%	87,6\%	2,7\%
1	1302,08	1012,09	34,0\%	0,1\%	1,3\%	0,0\%

The identification quality is clearly better than using the brodband strategy : mean error is improved everywhere. Nevertheless, modes 3 and 5 still show very low contribution and MPC
and mode 10 presents a lower but still high max (NOS).
The zoom on the transfer with the highest contribution for the mode 3 and the transfer with the highest NOS for the mode 10 can again be displayed :

For mode 3 , the resonance is not very visible and the measurement very noisy : this mode is probably not well enough excited and is moreover visible very locally (2 sensors higher than 1% contibution). For mode 10, the high NOS do not highlight bad identification anymore (measurement and synthesis are quite well superposed) but shows that the error due to the high measurement noise is present even at sensors where the mode has a high level : a better excitation of the mode should reduce the noise and improve the identification quality.

At this step, quality has been evaluated but we are aware that identified poles are possibly biased. Indeed, the strategy of extraction of poles does not use the exact same model than the one used as a second stage to identify the residues. Non-linear optimization of this initial state should be performed and the impact of this optimization on the identification quality is analyzed in Section section 2.6

2.5.3 When id_rc fails

This section gives a few examples of cases where a direct use of id_rc gave poor results. The proposed solutions may give you hints on what to look for if you encounter a particular problem.

Figure 2.12: Identification problem with low frequency error found for piezoelectric accelerometers

In many cases frequencies of estimated FRFs go down to zero. The first few points in these estimates generally show very large errors which can be attributed to both signal processing errors and sensor limitations. The figure above, shows a typical case where the first few points are in error by orders of magnitude. Of two models with the same poles, the one that keeps the low frequency erroneous points (- -) has a very large error while a model truncating the low frequency range (---) gives an extremely accurate fit of the data (-).

Figure 2.13: Identification problem linked to the proximity of influent out of band modes

The fact that appropriate residual terms are needed to obtain good results can have significant effects. The figure above shows a typical problem where the identification is performed in the band indicated by the two vertical solid lines. When using the 7 poles of the band, two modes above the selected band have a strong contribution so that the fit (---) is poor and shows peaks that are more apparent than needed (in the $900-1100 \mathrm{~Hz}$ range the FRF should look flat). When the two modes just above the band are introduced, the fit becomes almost perfect (- - -) (only visible near 750 Hz).

Keeping out of band modes when doing narrow band pole updates is thus quite important. You may also consider identifying groups of modes by doing sequential identifications for segments of your test frequency band [9].

The example below shows a related effect. A very significant improvement is obtained when doing the estimation while removing the first peak from the band. In this case the problem is actually linked to measurement noise on this first peak (the Nyquist plot shown in the lower left corner is far from the theoretical circle).

Figure 2.14: Identification problem linked to measurement noise at a major resonance

Other problems are linked to poor test results. Typical sources of difficulties are

- mass loading (resonance shifts from FRF to FRF due to batch acquisition with displaced sensors between batches),
- leakage in the estimated FRFs,
- significant non-linearities (inducing non-symmetric resonances or resonance shifts for various excitation positions),
- medium frequency range behavior (the peaks of more than a few modes overlay significantly it can be very hard to separate the contributions of each mode even with MIMO excitation).

2.6 Update poles

The various procedures used to build the initial pole set (see step 1 above) tend to give good but not perfect approximations of the pole sets. In particular, they tend to optimize the model for a cost that differs from the broadband quadratic cost that is really of interest here and thus result in biased pole estimates.

It is therefore highly desirable to perform non-linear update of the poles in ci.Stack\{'IdMain'\}. This update, which corresponds to a Non-Linear Least-Squares minimization [10] (9] which can be performed using different algorithms below.

The optimization problem is very non linear and non convex, good results are thus only found when improving results that are already acceptable (the result of phase 2 looks similar to the measured transfer function).

2.6.1 Eup : for a clean measurement with multiple poles

idcom eup id_rc function) starts by reminding you of the currently selected options (accessible from the figure pointer ci.IDopt) for the type of residual corrections, model selected and, when needed, partial frequency range selected

```
Low and high frequency mode correction
Complex residue symmetric pole pattern
```

the algorithm then does a first estimation of residues and step directions and outputs

which indicates the current pole positions, frequency and damping steps, as well as quadratic and logLS costs for the complete set of FRFs. These indications and particularly the way they improve after a few iterations should be used to determine when to stop iterating.

Here is a typical result after about 20 iterations

```
    % mode# dstep (%) zeta fstep (%) freq
        1 -0.001 1.0005e-02 0.000 7.0993e+02
        2 -0.156 1.0481e-02 -0.001 1.0624e+03
        3 -0.020 9.9943e-03 0.000 1.2140e+03
        4 -0.039 1.0058e-02 -0.001 1.4560e+03
Quadratic cost
    4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10
Log-mag least-squares cost
    6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01
how many more iterations? ([cr] for 1, 0 to exit) 0
```

Satisfactory convergence can be judged by the convergence of the quadratic and logLS cost function values and the diminution of step sizes on the frequencies and damping ratios. In the example, the damping and frequency step-sizes of all the poles have been reduced by a factor higher than 50 to levels that are extremely low. Furthermore, both the quadratic and logLS costs have been significantly reduced (the leftmost value is the initial cost, the right most the current) and are now decreasing very slowly. These different factors indicate a good convergence and the model can be accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which generally corresponds passing over the optimal value). Thus, you need to have all (or at least most) steps divided by 8 for an acceptable convergence. Upon exit fromid_rc, the idcom eup command displays an overlay of the measured data ci.Stack\{'Test'\} and the model with updated poles ci.Stack\{'IdFrf'\}. As indicated before, you should use the error and quality plots to see if mode tuning is needed.

The optimization is performed in the selected frequency range idopt wmin and wmax indices). It is often useful to select a narrow frequency band that contains a few poles and update these poles. When doing so, model poles whose frequency are not within the selected band should be kept but not updated (use the euplocal and eoptlocal commands). You can also update selected poles using the 'eup ' i ' command (for example if you just added a pole that was previously missing).

2.6.2 Eopt : for a band with few poles

eopt id_rcopt function) performs a conjugate gradient optimization with a small tolerance to allow faster convergence. But, as a result, it may be useful to run the algorithm more than once. The
algorithm is guaranteed to improve the result but tends to get stuck at non optimal locations.
eup id_rc function) uses an ad-hoc optimization algorithm, that is not guaranteed to improve the result but has been found to be efficient during years of practice.

You should use the eopt command when optimizing just one or two poles (for example using eoptlocal or 'eopt ' i ' to optimize different poles sequentially) or if the eup command does not improve the result as it could be expected.

2.6.3 EupSeq and EoptSeq : sequential narrowband pole updating

In many practical applications the results obtained after this first set of iterations are incomplete. Quite often local poles will have been omitted and should now be appended to the current set of poles (going back to step 1). Furthermore some poles may be diverging (damping and/or frequency step not converging towards zero). This divergence will occur if you add too many poles (and these poles should be deleted) and may occur in cases with very closely spaced or local modes where the initial step or the errors linked to other poles change the local optimum for the pole significantly (in this case you should reset the pole to its initial value and restart the optimization).

A way to limit the divergence issue is to perform sequential local updating arround each pole : one pole is updated at a time so that it is more likely to converge. This sequential optimization as been packaged for both

2.6.4 Example for practice

To pratice, the GARTEUR test case already used in previous sections is loaded with an initial set of poles by clicking on D.

Many strategies can be used to perform the optimization. In the following tutorial, we only propose to guide you through the use of some optimization steps, but the reader is encouraged to test local, broadband, narrowband strategies as he whish to better understand their strengths and weaknesses.

1. D In the Ident tab, click on eopt to perform an broad band optimization (on the selected bandwidth so here on the full bandwidth) using the eopt strategy. Because many poles are present in the band, this algorithm is stuck in a local minimum and the result does not improve much the result.

The figure below shows the transfer and the identification of the sensor 1001.03 (channel 2 in iiplot).

2 Modal test tutorial

2. D Click now on eup to use the other strategy, still on the whole bandwidth. The result deeply improves the identification quality : the same transfer is shown below after the optimization.

Nevertheless, some transfers still present a quite bad identification, like for instance sensors 2201.08 and 2301.07.

An interesting observation is that if a smaller band is selected where the fit is poor, without updating the poles, a new identification of the residues may lead to a better identification quality.
3. D Select a narrow band with the button wmo between 8 and 18 Hz . Click then on the button est to perform a new identification of the residues inside this band without updating the poles. Looking at the same channels as before (sensors 2201.08 and 2301.07), the fitting quality is clearly improved.

This is due to the fact that taking into account the poles outside this frequency band (especially the noisy first mode) leads to a bias of identification inside this band.
The difficulty is that it is not easy to define which frequency bands can be identified together. To deal with this issue, the sequential local identification of residuals estlocalpole can be used. Two version of this strategy have been developped to perform pole updating in addition to residue identification on narrow bands arround each mode : eoptSeq and eupSeq.
4. D Click on eoptSeq to perform the sequential optimization. You can perform this optimization several times until convergence if needed.

The vizualisation of the identification on the same band than previously shows a very good fit arround each mode.

Once a good complex residue model obtained, one often seeks models that verify other properties of minimality, reciprocity or represented in the second order mass, damping, stiffness form. These approximations are provided using the id_rm and id_nor algorithms as detailed in section 2.8 .

2.6.5 Background theory

The id_rc algorithm (see [10 9]) seeks a non linear least squares approximation of the measured
data

$$
\begin{equation*}
p_{\text {model }}=\arg \min \sum_{j, k, l=1}^{N S, N A, N W}\left(\alpha_{j k(\mathrm{id})}\left(\omega_{l}, p\right)-\alpha_{j k(\text { test })}\left(\omega_{l}\right)\right)^{2} \tag{2.7}
\end{equation*}
$$

for models in the nominal pole/residue form (also often called partial fraction expansion [11])

$$
\begin{equation*}
[\alpha(s)]=\sum_{j \text { identified }}\left(\frac{\left[R_{j}\right]}{s-\lambda_{j}}+\frac{\left[\bar{R}_{j}\right]}{s-\bar{\lambda}_{j}}\right)+[E]+\frac{[F]}{s^{2}}=\left[\Phi\left(\lambda_{j}, s\right)\right]\left[R_{j}, E, F\right] \tag{2.8}
\end{equation*}
$$

or its variants detailed under res page 212 ,
These models are linear functions of the residues and residual terms $\left[R_{j}, E, F\right]$ and non linear functions of the poles λ_{j}. The algorithm thus works in two stages with residues found as solution of a linear least-square problem and poles found through a non linear optimization.

The id_rcfunction idcom eup command) uses an ad-hoc optimization where all poles are optimized simultaneously and steps and directions are found using gradient information. This algorithm is usually the most efficient when optimizing more than two poles simultaneously, but is not guaranteed to converge or even to improve the result.

The id_rcopt function idcom eopt command) uses a gradient or conjugate gradient optimization. It is guaranteed to improve the result but tends to be very slow when optimizing poles that are not closely spaced (this is due to the fact that the optimization problem is non convex and poorly conditioned). The standard procedure for the use of these algorithms is described in section 2.2 .2 . Improved and more robust optimization strategies are still considered and will eventually find their way into the $S D T$.

2.7 Display shapes : geometry declaration, pre-test

Before actually taking measurements, it is good practice to prepare a wire frame-display (section 2.7.1 and section 4.1.1 for other examples) and define the sensor configuration (section 2.7.2).

The information is typically saved in a specific .m file which should look like the d_mesh ('TutoPre-s3') demo without the various plot commands. The d_pre demo also talks about test preparation.

2.7.1 Modal test geometry declaration

A wire-frame model is composed of node and connectivity declarations.

Figure 2.15: Test analysis : wire-frame model.

Starting from scratch (if you have not imported your geometry from universal files). You can declare nodes and wire frame lines using the fecom Add editors. Test wire frames are simply groups of beam1 elements with an EGID set to -1. For example in the two bay truss (see section 4.1.1)

```
cf=feplot;cf.model='reset';
% fecom('AddNode') would open a dialog box
fecom('AddNode',[0 1 0; 0 0 0}])\mathrm{ ); % add nodes giving coordinates
fecom('AddNode',[[3 1 1 0;4 1 0 0}]); % % NodeId and xy
fecom('AddNode',[5 0 0 0 2 0 0;
    6 0 0 0 2 1 0]);
% fecom('AddLine') would add cursor to pick line (see below)
fecom('AddLine',[1 3 2 4 3]); % continuous line in first group
fecom('AddLine',[3 6 0 6 5 0 4 5 0 4 6]); % O for discontinuities
fecom('Curtab:Model','Edit')
%fecom('save') % will let you save the model to a mat file
feutilb('write',cf.mdl) % generates a script
```

Note that

- fecom(cf, 'AddLine'), use after node declaration, starts a cursor letting you build the wire-frame line graphically. Click on nodes continue the line, while the context menu allows breaks, last point removal, exit, and display of the commands in the Matlab command window. This procedure is particularly useful if you already have a FEM model of your test article.
- fecom(cf,'AddElt') accessible in the Model:Edit tab can be used to add surface or volume elements graphically.
- the curor:3DLinePick command in the feplot axis context menu is a general SDT mechanism to pick node numbers.
- other GUI based mesh editing tools are described in section 4.4.5.
- femesh ObjectBeamLine and related commands are also typically used to define the experimental mesh (see also feutil).
- If you have a FE mesh, you should define the wireframe as a set of sensors, see section 3.1.1.

The feplot and fecom functions provide a number of tools that are designed to help in visualizing test results. You should take the time to go through the gartid, gartte and gartco demos to learn more about them.

2.7.2 Sensor/shaker configurations

The geometry declaration defines fields .Node and .Elt. The next step is to declare sensors. Once a sensor configuration defined and consistent with input/output pair declarations in measurements (see section 2.2 .3), you can directly animate measured shapes (called Operational Deflection Shapes) as detailed in section 2.7.3. Except for roving hammer tests, the number of input locations is usually small and only used for MIMO identification (see section 2.8).

In the basic configuration with translation sensors, sensor declaration is simply done with a .tdof field. Acceptable forms are

- a DOF definition vector (see mdof) allows the description of translation DOFs in global directions. The convention that DOFs .07 to .09 correspond to translations in the $-x,-y,-z$ directions is implemented specifically for the common case where test sensors are oriented this way.
- a 5 column format ([SensID NodeID tx ty tz] giving a sensor identifier (integer or real), a node identifier (positive integer), and the measurement direction in the test mesh axes. This format supports arbitrary orientation.
- a 2 column form DOF where each DOF is associated with a local basis, that must be defined in TEST.bas.
- the tabular (cell array) definition of sensors and their position, which is more appropriate for large configurations, and is described in section 4.6.2.

The definition of sensors trough a .tdof field is the simplest configuration. For more general setups, see section 4.6 for sensor definitions and section 4.6.4 for topology correlation.

For interpolation of unmeasured DOFs see section 3.3.2.
The following illustrates the first two forms

```
TEST=demosdt('DemoGartteWire');
% simply give DOFs (as a column vector)
TEST.tdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...
    1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 \ldots..
    2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 1303.03]';
% Transfor to 5 column format, which allow arbitrary orientation
TEST.tdof=fe_sens('tdof',TEST);TEST.tdof
feplot(TEST) % With a .tdof field, a SensDof,Test is defined automatically
fecom('curtab Cases','Test');fecom('ProViewOn')
% You can now display FRFs or modes using
    ci=iicom('curveload gartid'); % load data
    fecom(';ProviewOff;Showline')
% Display FRF
cf.def=ci.Stack{'Test'}; % automatically uses sensor definition 'Test'
% Identify and display mode
idcom('e . 05 6.5')
cf.def=ci.Stack{'IdAlt'}; % automatically uses sensor definition 'Test'
This new example, mixes all 3 forms
cf=demosdt('demogartteplot') % Load data
% simply give DOFs
cf.mdl=fe_case(cf.mdl,'sensdof','Test', ...
[1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...
1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07]');
% Give DOF defined in a local basis
cf.mdl=fe_case(cf.mdl,'sensdof append','Test', ...
[2201.01 1; 3201.03 0; 1206.03 0; 1205.01 1; 1302.01 1]);
% Give identifier, node and measurement direction
cf.mdl=fe_case(cf.mdl,'sensdof append','Test', ...
[1 2301 -1 0 0; 2 1301 0 0 1; 3 2303 -1 0 0; 4 1303 0 0 1]);
fecom('curtab Cases','Test');fecom('ProViewOn')
```

It is also fairly common to glue sensors normal to a surface. The sensor array table (see section 4.6.2) is the easiest approach for this objective since it allows mixing global, normal, triax, laser, ... sensors. The following example shows how this can also be done by hand how to obtain normals to a volume and use them to define sensors.

```
% This is an advanced code sample
model=demosdt('demo ubeam');
MAP=feutil('getnormal node MAP',model.Node, ...
    feutil('selelt selface',model)); % select outer boundary for normal
i1=ismember(MAP.ID,[360 365 327 137]); % nodes where sensors are placed
MAP.ID=MAP.ID(i1);MAP.normal=MAP.normal(i1,:);
model=fe_case(model,'sensdof','test', ...
    [(1:length(MAP.ID))' MAP.ID MAP.normal]);
% display the mesh and sensors
cf=clean_get_uf('feplotcf',model);
cf.sel(1)='groupall';cf.sel(2)='-test';
cf.o(1)={'sel2ty7','edgecolor','r','linewidth',2}
```


2.7.3 Animating test data, operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial relation of forced vibration measured at two or more sensors. Time responses of simultaneously acquired measurements, frequency responses to a possibly unknown input, transfer functions, transmissibilities, ... are example of ODS.

When the response is known at global DOFs no specific information is needed to relate node motion and measurements. Thus any deformation with DOFs will be acceptable. The two basic displays are a wire-frame defined as a FEM model or a wire-frame defined as a SensDof entry.

```
% A wire frame and Identification results
[TEST,IdMain]=demosdt('DemoGartteWire')
cf=feplot(TEST); % wire frame
cf.def=IdMain; % to fill .dof field see sdtweb('diiplot#xfread')
% or the low level call : cf.def={IdMain.res.',IdMain.dof,IdMain.po}
% Sensors in a model and identification results
cf=demosdt('demo gartfeplot'); % load FEM
```

```
TEST=demosdt('demo garttewire'); % see sdtweb('pre#presen')
cf.mdl=fe_case(cf.mdl,'sensdof','outputs',TEST)
cf.sel='-outputs'; % Build a selection that displays the wire frame
cf.def=IdMain; % Display motion on sensors
fecom('curtab Plot');
```

When the response is known at sensors that need to be combined (non global directions, non-orthogonal measurements, ...) a SensDof entry must really be defined.

When displaying responses with iiplot and a test geometry with feplot, iiplot supports an ODS cursor. Run demosdt('DemoGartteOds') then open the context menu associated with any iiplot axis and select ODS Cursor. The deflection show in the feplot figure will change as you move the cursor in the iiplot window.

More generally, you can use fecom InitDef commands to display any shape as soon as you have a defined geometry and a response at DOFs. The Deformations tab of the feplot properties figure then lets you select deformations within a set.

```
[cf,ci]=demosdt('DemoGartteOds')
cf.def=ci.Stack{'Test'};
% or the low level call :
% cf.def={ci.Stack{'Test'}.xf,ci.Stack{'Test'}.dof,ci.Stack{'Test'}.w}
fecom('CurTab Plot');
```

You can also display the actual measurements as arrows using

```
cf.sens=ci.Stack{'Test'}.dof; fecom ShowArrow; fecom scc1;
```

For a tutorial on the use of feplot see section 4.4.

2.8 MIMO, Reciprocity, State-space, ...

The pole/residue representation is often not the desired format. Access to transformations is provided by the post-processing tab in the idcom properties figure. There you can select the desired output format and the name of the variable in the base MATLAB workspace you want the results to be stored in.

Figure 2.16: idcom interface

The id_rmalgorithm is used for the creation of minimal and/or reciprocal pole/residue models (from the command line use sys=id_rm(ci.Stack\{'IdMain'\})). For the extra step of state-space model creation use sys=res2ss (ci.Stack\{'IdMain'\}). nor $=$ res2nor (ci.Stack\{'IdMain'\}) or nor=id_nor (ci.Stack\{'IdMain'\}) allow transformations to the normal mode form. Finally direct conversions to other formats are given by
struct $=$ res2xf(ci.Stack\{'IdMain'\},w) with w=ci.Stack'Test'.w, and [num, den] $=$ res2tf(ci.Stack\{'IdMain'\}).
These calls are illustrated in demo_id.

2.8.1 Multiplicity (minimal state-space model)

Theory

As mentioned under res page 212, the residue matrix of a mode can be written as the product of the input and output shape matrices, so that the modal contribution takes the form

$$
\begin{equation*}
\frac{R_{j}}{s-\lambda_{j}}=\frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}} \tag{2.9}
\end{equation*}
$$

For a single mode, the product $\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}$ has rank 1. Thus for a truly MIMO test (with more than one input and output), the residue matrix found by id_rc usually has full rank and cannot be written as shown in (2.9). In some cases, two poles of a structure are so close that they can be
considered as a multiple pole $\lambda_{j}=\lambda_{j+1}$, so that

$$
\begin{equation*}
\frac{R_{j}}{s-\lambda_{j}}=\frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}+\left\{c \psi_{j+1}\right\}\left\{\psi_{j+1}^{T} b\right\}}{s-\lambda_{j}} \tag{2.10}
\end{equation*}
$$

In such cases, the residue matrix $\left[R_{j}\right]$ has rank two. Minimality (i.e. rank constraint on the residue matrix) is achieved by computing, for each mode, the singular value decomposition of the residue matrix $R_{j}=U \Sigma V^{T}$. By definition of the singular value decomposition

$$
\begin{equation*}
\left[R_{j 1}\right]_{N S \times N A}=\left\{U_{1}\right\}_{N S \times 1} \sigma_{1}\left\{V_{1}\right\}_{N A \times 1}^{T} \tag{2.11}
\end{equation*}
$$

is the best rank 1 approximation (in the matrix norm sense) of R_{j}. Furthermore, the ratio σ_{2} / σ_{1} is a measure of the relative error made by retaining only the first dyad. This ratio gives, for MIMO tests, an indication of the coherence of estimated mode shapes and occasionally an indication of the pole multiplicity if two poles are sufficiently close to be considered as identical (see the example below).

Minimal pole/residue models are directly linked to a state-space model of the form

$$
\begin{gather*}
\left(s[I]_{2 N \times 2 N}-\left[\lambda_{j}\right]\right)\{\eta\}=\left[\psi^{T} b\right]\{u\} \tag{2.12}\\
\{y\}=[c \psi]\{\eta\}
\end{gather*}
$$

which can then be transformed to a real valued state-space model (see res2ss) or a second order normal mode model (see section 2.8.3).

Practice

id_rmbuilds a rank constrained approximation of the residue matrix associated to each pole. When not enforcing reciprocity, the output of the call

```
ci=demosdt('Demo demo_id')
ci.IDopt.nsna=[5 2]; ci.IDopt.reci='no';
RES = id_rm(ci.Stack{'IdMain'},[\begin{array}{llll}{1}&{2}&{1}&{1}\end{array}]);
% or low level call
[pb, cp,new_res]=id_rm(ci.Stack{'IdMain'}.res,ci.Stack{'IdMain'}.po, ...
    ci.IDopt,[1 2 1 1]);
```

returns an output that has has the form

```
The system has 5 sensors and 2 actuators
FRF 7 (actuator 2 sensor 2) is collocated
        Po # freq mul Ratio of sing. val. to max
            1 7.10e+02 2 : 0.3000 k 0.0029
            2 9.10e+02 1 : 0.1000 0.0002
            3 1.20e+03 1 : 0.0050 0.0001
            4 1.50e+03 1 : 0.0300 0.0000
```

where the first three columns indicate pole number, frequency and retained multiplicity and the following give an indication of the difference between the full rank residue matrix and the rank constrained one (the singular value ratio should be much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between the full order residue matrix and a rank 1 approximation is of the order of 30% while the difference with a rank 2 approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual multiplicity but more often indicates poor identification or incoherent data. For poor identification the associated pole should be updated as shown in section 2.6 . For incoherent data (for example modes slightly modified due to changing shakers during sequential SIMO tests), one should perform separate identifications for each set of coherent measurements. The rank constrained approximation can then be a way to reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try to update the identification in the vicinity of the pole: select a narrow frequency range near this pole, then create and optimize a two or more pole model as shown section 2.2 .2 . True modal multiplicity being almost impossible to design into a physical structure, it is generally possible to resolve such problems. Keeping multiple poles should thus only remain an intermediate step when not having the time to do better.

2.8.2 Reciprocal models of structures

Theory

In many cases, the structures tested are assumed to be reciprocal (the transfers force at A/response at B and force at $\mathrm{B} /$ response at A are equal) and one wants to build a reciprocal model. For modal contributions of the form (2.9), reciprocity corresponds to the equality of collocated input and output shape matrices

$$
\begin{equation*}
\left(\left[c_{\mathrm{col}}\right]\left\{\psi_{j}\right\}\right)^{T}=\left\{\psi_{j}\right\}^{T}\left[b_{\mathrm{col}}\right] \tag{2.13}
\end{equation*}
$$

For reciprocal structures, the residue matrix associated to collocated FRFs should be symmetric. id_rm thus starts computing the symmetric part of the collocated residues $R_{j \text { cols }}=\left(R_{j \mathrm{col}}+R_{j \mathrm{col}}^{T}\right) / 2$. This matrix being symmetric, its singular value decomposition is given by $R_{j \mathrm{cols}}=U_{\mathrm{col}} \Sigma_{\mathrm{col}} V_{\mathrm{col}}^{T}$ which leads to the reciprocal input and output shape matrices

$$
\begin{equation*}
\left\{c_{\mathrm{col}} \psi_{j}\right\}=\left\{\psi_{j}^{T} b_{\mathrm{col}}\right\}^{T}=\sqrt{\sigma_{1 \mathrm{col}}}\left\{U_{1 \mathrm{col}}\right\} \tag{2.14}
\end{equation*}
$$

Typically, there are many more sensors than inputs. The decomposition (2.14) is thus only used
to determine the collocated input shape matrices and the output shape matrices at all sensors are found as solution of a least square problem $\left\{c \psi_{j}\right\}=\left[R_{j}\right]\left\{\psi_{j}^{T} b_{\mathrm{col}}\right\}^{+}$which does require that all inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the same as that obtained with the analytical scaling condition (5.24). The interest of using reciprocal models is to predict non measured transfer functions.

Practice

When collocated transfer functions are declared and ci.IDopt. Reciprocity='1 FRF' or MIMO, id_rm seeks a minimal and reciprocal approximation to the model. For the call

```
ci=demosdt('Demo demo_id')
ci.IDopt.nsna=[5 2]; ci.IDopt.Col=[l1 7];
ci.IDopt.reci='mimo';
RES = id_rm(ci.Stack{'IdMain'},[\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}]);
ci.Stack{'curve','IIxh'}=res2xf(RES,ci.Stack{'Test'}.w); iicom('IIxhOn')
% or low level call
[pb, cp,new_res,new_po]=id_rm(ci.Stack{'IdMain'}.res,ci.Stack{'IdMain'}.po, ...
    ci.IDopt,[\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}]);
ci.Stack{'curve','IIxh'} = ...
    res2xf(struct('res',new_res,'po',new_po,'idopt',ci.IDopt),ci.Stack{'Test'}.w);
iicom('IIxhOn')
```

id.rm shows information of the form

```
The system has 5 sensors and 2 actuators
FRF 1 (actuator 1 sensor 1) is collocated
FRF 7 (actuator 2 sensor 2) is collocated
Reciprocal MIMO system
\begin{tabular}{rcccc} 
Po\# & freq & mul & sym. & rel.e. \\
1 & \(1.13 e+02\) & \(1:\) & 0.0001 & 0.0002 \\
2 & \(1.70 e+02\) & \(1:\) & 0.0020 & 0.0040 \\
3 & \(1.93 e+02\) & \(1:\) & 0.0003 & 0.0005 \\
4 & \(2.32 e+02\) & 1 & \(:\) & 0.0022
\end{tabular} 0.0044
```

where the output indicates the number of sensors and actuators, the collocated FRFs, the fact the resulting model will enforce MIMO reciprocity, and details the accuracy achieved for each mode.

The algorithm first enforces symmetry on the declared collocated transfer functions the symmetry error sym. shows how asymmetric the original residue matrices where. If for a given mode this
number is not close to zero, the mode is poorly identified or the data is far from verifying reciprocity and building a reciprocal model makes no sense.

The algorithm then seeks a rank constrained approximation, the relative error number rel. e. shows how good an approximation of the initial residue matrix the final result is. If this number is larger than . 1, you should go back to identifying a minimal but non reciprocal model, determine the actual multiplicity, and update the pole, if it is not very well identified, or verify that your data is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the synthesized FRFs (IIxh/ci.Stack\{'IIxh'\} in the example above). An alternate FRF generation call would be

```
[a,b,c,d]=res2ss(res,po,idopt);
IIxh=qbode(a, b, c, d,IIw*2*pi);
```

This more expensive computationally, but state-space models are particularly useful for coupled system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer functions. For example the response associated to a shaker placed at the uind sensor (not a collocated one) can be computed using

```
ci=demosdt('Demo demo_id')
[psib,cpsi]=id_rm(ci.Stack{'IdMain'}.res,ci.Stack{'IdMain'}.po, ...
    ci.IDopt,[1 [1 1 1 1]);
uind=3; res_u = (cpsi*diag(cpsi(uind,:))).';
RES=struct('res',res_u,'po',ci.Stack{'IdMain'}.po,'idopt',ci.IDopt);
    ci.Stack{'curve','IdFrf'}=res2xf(RES, ci.Stack{'Test'}.w);
iiplot
```

You should note that the res_u model does not contain any residual terms, since reciprocity does not give any information on those. Good predictions of unmeasured transfers are thus limited to cases where residual terms can be neglected (which is very hard to know a priori).

2.8.3 Normal mode form

Modal damping assumption

While the most accurate viscous damping models are obtained with a full damping matrix Γ (supported by psi2nor and id_nor as detailed in the next section), modal damping (where Γ is
assumed diagonal which is valid assumption when (2.19) is verified) is used in most industrial applications and is directly supported by id_rc, id_rm and res2nor. The use of this functionality is demonstrated in demo_id.

For a modally damped model (diagonal modal damping matrix Γ), the normal mode model (5.4) can be rewritten in a rational fraction form (with truncation and residual terms)

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{N M} \frac{\left\{c \phi_{j}\right\}\left\{b^{T} \phi_{j}\right\}^{T}}{s^{2}+2 \zeta_{j} \omega_{j} s+\omega_{j}^{2}}+[E]+\frac{[F]}{s^{2}}=\sum_{j=1}^{N M} \frac{\left[T_{j}\right]_{N S \times N A}}{s^{2}+2 \zeta_{j} \omega_{j} s+\omega_{j}^{2}}+E(s) \tag{2.15}
\end{equation*}
$$

This parameterization, called normal mode residue form, has a symmetric pole pattern and is supported by various functions (id_rc, id_rm, res2xf, ...) through the use of the option
ci. IDopt. Fit= 'Normal'. As for the complex residues (5.30), the normal mode residue matrix given by id_rc and used by other functions is stacked using one row for each pole or asymptotic correction term and, as the FRFs (see the xf format), a column for each SISO transfer function (stacking $N S$ columns for actuator 1, then $N S$ columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue matrix T_{j} is directly related to the true normal modes

$$
\begin{equation*}
\left[T_{j}\right]=\left\{c \phi_{j}\right\}\left\{\phi_{j}^{T} b\right\} \tag{2.16}
\end{equation*}
$$

and the dyadic decomposition of the residue matrix can be used as in the complex mode case (see section 2.8.1 and the function id_rm to obtain a minimal and/or reciprocal models (as well as scaled input and output shape matrices).

The scaling implied by equations (2.15) and 2.16 and used in the functions of the Toolbox is consistent with the assumption of unit mass normalization of the normal modes (see details under nor page 202). This remains true even for multiple modes. A result rarely obtained by other methods.

When a complex mode identification has been performed (ci.IDopt. Fit='Complex' or 'Posit'), the function res2nor also provides a simple approximation of the complex residue model by a normal mode residue model.

Non proportional damping assumption

Theory

The complex modes of a minimal/reciprocal model are related to the mass / damping / stiffness matrices by (see Ref. [12])

$$
\begin{equation*}
M=\left(\tilde{\psi} \Lambda \tilde{\psi}^{T}\right)^{-1}, \quad C=-M \tilde{\psi} \Lambda^{2} \tilde{\psi}^{T} M, \quad \text { and } \quad K=\left(\tilde{\psi} \Lambda^{-1} \tilde{\psi}^{T}\right)^{-1} \tag{2.17}
\end{equation*}
$$

if and only if the complex modes are also proper. That is, they verify verify

$$
\begin{equation*}
\sum_{j=1}^{2 N}\left\{\tilde{\psi}_{j}\right\}\left\{\tilde{\psi}_{j}\right\}^{T}=[\tilde{\psi}]_{N \times 2 N}[\tilde{\psi}]_{N \times 2 N}^{T}=[0]_{N \times N} \tag{2.18}
\end{equation*}
$$

The transformation id_nor is thus done in two stages. id_rm is used to find a minimal and reciprocal approximation of the identified residue model of the form 2.12 . psi2nor then determines c and $\tilde{\psi}$ such that the $\tilde{\psi}$ verify the condition 2.18 and $c \tilde{\psi}$ is "optimally" close to the $c \psi$ resulting from id_rm. Using the complex modes $\tilde{\psi}$ and the identified poles λ, the matrices are then computed and the model transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered group of modes is not significantly coupled to other modes by damping [12]. Groups of modes which can be approximated by a second order non proportionally damped model can be easily detected using the frequency separation criterion which must be verified between modes j in the group and modes k outside the group

$$
\begin{equation*}
\frac{\zeta_{j} \omega_{j} \zeta_{k} \omega_{k}^{2}}{\omega_{j} \omega_{k}} \ll 1 \tag{2.19}
\end{equation*}
$$

If there does not exist a normal mode model that has complex modes close to the identification result $c \psi$, the algorithm may not work. This will happen in particular if $c \psi \Lambda \psi^{T} c^{T}=c M^{-1} c^{T}$ does not have $N Q$ positive eigenvalues (estimated mass not positive definite).

Practice

For comparisons with undamped FE models, it is essential to obtain estimates of normal modes. The most accurate results are obtained using a non-proportionally damped normal mode model obtained with id_nor. A coarse approximation is given by res2nor useful if the identification is not good enough to build the minimal and reciprocal model used by id_nor). In such cases you can also consider using id_rc with the assumption of proportional damping which directly identifies normal modes (see more details in section 2.8.3).

Scaling problems are often encountered when using the reciprocity to condition to scale the complex modes in id_rm. The function id_nor allows an optimization of collocated residues based on a comparison of the identified residues and those linked to the normal mode model. You should be aware that id_nor only works on very good identification results, so that trying it without spending the time to go through the pole update phase of id_rc makes little sense.

The use of this functionality is demonstrated in the following example.
ci=demosdt('demodemo_id') \% load data and identify
f=ci. Stack\{'Test'\}.w;

```
nor = id_nor(ci.Stack{'IdMain'});
nor2xf(nor,f,'hz iiplot "IdFrf"'); % Compute response
% compute residual effects and add normal model contributions
res2xf(ci.Stack{'IdMain'},f,ci.IDopt,[5 6],'iiplot "Nor+Stat"');% residues
ci.Stack{'Nor+Stat'}.xf=ci.Stack{'Nor+Stat'}.xf+nor2xf(nor,f,'hz');
iicom('ch1');
```

The normal mode input nor.pb and output nor.cp matrices correspond to those of an analytical model with mass normalized modes. They can be compared (ii_mac) or combined fe_exp) with analytical models and the modal frequencies nor.freq and damping matrix nor. ga can be used for predictions (see more details in section 3.4).

The id_nor and res2nor algorithms only seek approximations the modes. For FRF predictions one will often have to add the residual terms. The figure below (taken from demo_id) shows an example where including residual terms tremendously improves the prediction. Out of band modes and residual terms are here represented by the $E(s)$ term. Second order models are said to be complete when $E(s)$ can be neglected [13]. The addition of residual terms was illustrated in the example above.

Figure 2.17: FRF xx

Test/analysis correlation tutorial

3.1 Topology correlation and test preparation 113
3.1.1 Defining sensors in the FEM model : data handling 114
3.1.2 Test and FEM coordinate systems 117
3.1.3 Sensor/shaker placement. 120
3.2 Test/analysis correlation 121
3.2.1 Shape based criteria 121
3.2.2 Energy based criteria 127
3.2.3 Correlation of FRFs 128
3.3 Expansion methods 129
3.3.1 Underlying theory for expansion methods 130
3.3.2 Basic interpolation methods for unmeasured DOFs 131
3.3.3 Subspace based expansion methods 132
3.3.4 Model based expansion methods 134
3.4 \quad Structural dynamic modification 134

Modal testing differs from system identification in the fact that responses are measured at a number of sensors which have a spatial distribution which allows the visualization of the measured motion. Visualization is key for a proper assessment of the quality of an experimental result. One typically considers three levels of models.

- Input/output models are defined at sensors. In the figure, one represents these sensors as arrows corresponding to the line of sight measurements of a laser vibrometer. Input/output models are the direct result of the identification procedure described in chapter 2,
- Wire frame models are used to visualize test results. They are an essential verification tool for the experimentalist. Designing a test well, includes making sure that the wire frame representation is sufficiently detailed to give the experimentalist a good understanding of the measured motion. With non-triaxial measurements, a significant difficulty is to handle the perception of motion assumed to be zero.
- Finite element models are used for test/analysis correlation. In most industrial applications, test and FEM nodes are not coincident so that special care must be taken when predicting FEM motion at test nodes/sensors (shape observation) or estimating test motion at FEM DOFs (shape expansion).

Figure 3.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are detailed in section 2.7 . Topology correlation and sensor/shaker placement tools are details in section 3.1. A summary of general tools used to compare sets of shapes is made in section 3.2 . Shape expansion, which deals with the transformations between the wire-frame and FE models, is introduced in section 3.3. The results of correlation can be used for hybrid models combining experimental and analytical results (see section 3.4) or for finite element model updating (see section 6.5).

Figure 3.2: Modal identification process with links to corresponding sections

3.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical and sensor/shaker configurations. Most of this effort is handled by fe_sens with some use of femesh.

Starting with SDT 6.0, FEM sensors (see section 4.6) can be associated with wire frame model, the strategy where the two models where merged is thus obsolete.
As described in the following sections the three important phases of topology correlation are

- combining test and FEM model including coordinate system definition for the test nodes if there is a coordinate system mismatch,
- building of an observation matrix allowing the prediction of measurements based on FEM deformations,
- sensor and shaker placement.

3.1.1 Defining sensors in the FEM model : data handling

Two types of data are needed to properly associate a test wire frame model to a FEM :

- a FEM model (see section 4.5). For this simple example, the FEM model (stored in cf.mdl in the demo) must describe nodes, elements and DOFs
- a test wire-frame model (stored in TEST in the demo) with sensors in the .tdof field, as detailed in section 2.7.1 for the geometry and section 2.7 .2 for sensors

One then declares the wire frame (with sensors) as SensDof case entry as done below (see also the gartte demo). The objective of this declaration is to allow observation of the FEM response at sensors (see sensor Sens).

```
model=demosdt('DemoGartFE') % load FEM
TEST=demosdt('demo garttewire'); % see sdtweb('pre#presen')
% Store Test as SensDof (linked test wireframe) in the FEM
model=fe_case(model,'sensdof','sensors',TEST);
cf=feplot(2); cf.mdl=model; % Display the model in feplot
% Display the superposition of the test wireframe over the FEM
fecom(cf,'ShowFiCoTopo');
% Open the CoShape Dock from cf, already containing needed data
fecom(cf,'dockCoShape');
```

Section 4.6 gives many more details the sensor GUI : the available sensors sensor trans, sensor triax, laser, ...). Section 4.6.4 discusses topology correlation variants in more details.

If the data come from files, it can be more convenient to load them directly from the GUI.
Here is a tutorial for interactive data loading in DockCoTopo with the TestBas tab.
You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these files are not present, click on the first step on the following tutorial in the HTML version of the documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom('dockCoTopo') to open an empty dock. You can also click on the button CoTopo on the tree in SDT Root.

2. Click on Select associated to MasterMesh. This will open the import model window. Select the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart_mdl.inp. Data is loaded and displayed in the feplot figure.
3. Do the same for the SlaveMesh. The test mesh file is located at SDTPath/sdtdemos/gartid.unv. Data is loaded and displayed in the feplot figure. Once selected, the Unv tab is displayed in the feplot ('mdl') figure : it shows the content of what is inside the Unv file.

Check the box corresponding to model and click on Import.

The test wireframe is loaded and displayed in the feplot figure in red.

3 Test/analysis correlation tutorial

Depending on the loaded data for the the SlaveMesh, it contains already or not the sensor definitions : they are shown as red arrows. It is not the case here.
4. To retrieve sensors definition from a Unv file, the mesured data need to be loaded.

Click on Select associated to DefineTDof. Select again the Unv file and in the Unv tab, check this time the box corresponding to response and click on Import.
The arrows are then built depending on the measured channels ($+\mathrm{X},+\mathrm{Y},+\mathrm{Z},-\mathrm{X},-\mathrm{Y},-\mathrm{Z}$ directions associated to each nodes in the geometry), and displayed.

The system coordinate is not the same between the test wireframe and the FEM : the test geometry needs to be moved and superposed to the FEM (this tutorial continues in the following subsection).

3.1.2 Test and FEM coordinate systems

In many practical applications, the coordinate systems for test and FEM differ. fe_sens supports the use of a local coordinate system for test nodes with the basis command.
Interactive test mesh placement is available in the SDT GUI, using command fe_sensfuiTestBas.

```
% Loading the interactive test mesh placement GUI
    cf=demosdt('demo garttebasis'); % Load the demo data
    cf.CStack{'sensors'} % contains a SensDof entry with sensors and wireframe
    fecom(cf,'setTestBas'); % Open interactive tab in feplot properties
```

Operations permitted through the GUI implementation are available in script commands. The modus operandi considers a three steps process.

- Phase 1 is used get the two meshes oriented and coarsely aligned. The guess is more precise if a list of paired nodes on the FEM and TEST meshes can be provided.
- In phase 2, the values displayed by fe_sens, in phase 1 are fine tuned to obtain the accurate alignment.
- In phase 3, the local basis definition is eliminated thus giving a cf.CStack\{'sensors'\} entry with both .Node and .tdof fields in FEM coordinates which makes checks easier.

In peculiar cases, the FEM and TEST mesh axes differ, and a correction in rotation in the Phase 2 may be easier to use. An additional rotation to apply in the TEST mesh basis can be obtained by fulfilling the field rotation in Phase 2. The rotations are applied after other modifications so that the user can directly interpret the current feplot display. The rotation field corresponds to a basis rotate call. The command string corresponding to a rotation of 10 degrees along axis y is then ' $r y=10$;'. Several rotations can be combined: ' $r y=10$; $r x=-5$;' will thus first perform a rotation along y of 10 degrees and a rotation along x of -5 degrees. These combinations are left to the user's choice since rotation operations are not symmetric (e.g. ' $r z=5 ; r x=10 ;$ ' is a different call from ' $r x=10 ; r z=5 ; ')$.

The following example demonstrates the 3 phases in a script.

```
cf=demosdt('demo garttebasis'); % Load the demo data
cf.CStack{'sensors'} % contains a SensDof entry with sensors and wireframe
```

```
% Phase 1: initial adjustments done once
    % if the sensors are well distributed over the whole structure
    fe_sens('basis estimate',cf,'sensors');
% Phase 1: initial adjustments done once, when node pairs are given
    % if a list of paired nodes on the TEST and FEM can be provided
    % For help on 3DLinePick see sdtweb('3DLinePick')
    cf.sel='reset'; % Use 3DLinePick to select FEM ref nodes
    cf.sel='-sensors'; % Use 3DLinePick to select TEST ref
    i1=[62 47 33 39; % Reference FEM NodeId
        2112 2012 2301 2303]';% Reference TEST NodeId
    cf.sel='reset'; % show the FEM part you seek
    fe_sens('basis estimate',cf,'sensors',i1);
%Phase 2 save the commands in an executable form
% The 'BasisEstimate' command displays these lines, you can
% perform slight adjustments to improve the estimate
    fecom(cf,'initTestBas') % When you change a value script below displayed
    fe_sens('basis',cf,'sensors', ...
        ' X', [0 1 0], ... % x_test in FEM coordinates
        'y', [0 0 1], ... % y_test in FEM coordinates
        'origin',[-1 0 -0.005],... % test origin in FEM coordinates
        'scale', [0.01]); % test/FEM length unit change
%Phase 3 : Force change of TEST.Node and TEST.tdof to FEM coordinates
fecom('SetTestBas',struct('BasisToFEM','do'));
fe_case(cf.mdl,'sensmatch')
sens=fe_case(cf.mdl,'sens')
```

Note that FEM that use local coordinates for displacement are discussed in sensor trans.
Here is the continuation of the tutorial for interactive way to superpose and match sensors over the FEM.

If you have not performed previous tutorial (or if you closed everything at the end), click on this link in the HTML version of the documentation to get ready for the following.
5. To begin with, it is often useful, if the test geometry globally describes well the model geometry, to perform an automatic initial guess for the superposition. To so so, click on the button run
associated to basEst.

6. From this better relative position, one needs to iterate manually with small translations $t x$, ty, tz and rotations $r x, r y, r z$ until the optimum is reached.

7. Finally, click on the button Accept associated to BasisToFEM to apply the coordinate transformation to the test wireframe and perform the compute the observation matrix of the FEM at sensors.

8. Clicking on Finalize will save the result in the corresponding project.

Another strategy using Iterative Closest Point algorithm is also implemented (in the NodePairs subtable). This will be documented in further release.

3.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test, it is good practice to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

- Wire frame representations resulting from the placement should allow a good visualization of test results without expansion. Achieving this objective, enhances the ability of people doing the test to diagnose problems with the test, which is obviously very desirable.
- seen at sensors, it is desirable that modes look different. This is measured by the condition number of $[c \phi]^{T}[c \phi]$ (modeshape independence, see [14]) or by the magnitude of off-diagonal terms in the auto-MAC matrix (this measures orthogonality). Both independence and orthogonality are strongly related.
- sensitivity of measured modeshape to a particular physical parameter (parameter visibility)

Sensor placement capabilities are accessed using the fe_sens function as illustrated in the d_cor ('TutoSensPlace') demo. This function supports the effective independence [14] and maximum sequence algorithms which seek to provide good placement in terms of modeshape independence.

It is always good practice to verify the orthogonality of FEM modes at sensors using the auto-MAC (whose off-diagonal terms should typically be below 0.1)

```
cphi = fe_c(mdof,sdof)*mode; ii_mac('cpa',cphi,'mac auto plot')
```

For shaker placement, you typically want to make sure that

- you excite a set of target modes,
- or will have a combination of simultaneous loads that excites a particular mode and not other nearby modes.

The placement based on the first objective is easily achieved looking at the minimum controllability, the second uses the Multivariate Mode Indicator function (see ii_mmif). Appropriate calls are illustrated in the d_cor('TutoSensPlace') demo.

3.2 Test/analysis correlation

Correlation criteria seek to analyze the similarity and differences between two sets of results. Usual applications are the correlation of test and analysis results and the comparison of various analysis results.

Ideally, correlation criteria should quantify the ability of two models to make the same predictions. Since, the predictions of interest for a particular model can rarely be pinpointed precisely, one has to use general qualities and select, from a list of possible criterion, the ones that can be computed and do a good enough job for the intended purpose.

3.2.1 Shape based criteria

The ii mad interface implements a number of correlation criteria. You should at least learn about the Modal Assurance Criterion (MAC) and Pseudo Orthogonality Checks (POC) (theoretical description can be found in ii_mac). These are very popular and should be used first. Other criteria should be
used to get more insight when you don't have the desired answer or to make sure that your answer is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific as to what you are trying to do with your model. Since that rarely happens, you should know the possibilities and stick to what is good enough for the job.

The following table gives a list of criteria implemented in the ii_mac interface.
MAC Modal Assurance Criterion 10.32). The most popular criterion for correlating vectors. Insensitive to vector scaling. Sensitive to sensor selection and level of response at each sensor. Main limitation : can give very misleading results without warning. Main advantage : can be used in all cases. A MAC criterion applied to frequency responses is called FRAC.
POC Pseudo Orthogonality Checks 10.38). Required in some industries for model validation. This criterion is only defined for modes since other shapes do verify orthogonality conditions. Its scaled insensitive version (10.33) corresponds to a mass weighted MAC and is implemented as the MAC M commands. Main limitation: requires the definition of a mass associated with the known modeshape components. Main advantage : gives a much more reliable indication of correlation than the MAC.
Error Modeshape pairing (based on the MAC or MAC-M) and relative frequency error and MAC correlation.
Rel Relative error 10.39). Insensitive to scale when using the modal scale factor. Extremely accurate criterion but does not tell much when correlation poor.
COMAC Coordinate Modal Assurance Criteria (three variants implemented in iimac compare sets of vectors to analyze which sensors lead poor correlation. Main limitation : does not systematically give good indications. Main advantage : a very fast tool giving more insight into the reasons of poor correlation.
MACCO What if analysis, where coordinates are sequentially eliminated from the MAC. Slower but more precise than COMAC.
ii_mac describes the low-level calls to shape based correlation tools implemented in SDT, but to ease their practical usage, a dedicated MAC tab has been developed in the dock CoShape.
Here is a tutorial to present the classical GUI usage.
You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these files are not present, click on the first step on the following tutorial in the HTML version of the documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom('dockCoShape') to open an empty dock. You can also click on the button CoShape on the tree in SDT Root.

2. Click on associated to the line sens to open the file containing the result of the superposition between a test wireframe and a FEM. This will open the import model window. Select the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart_CoTopo.mat (it corresponds to the dock CoTopo saved file of the tutorial in section 3.1.1). Data is loaded and displayed in the two feplot figures. A brief description of the number of the observation is given in the table providing the number of sensors Nsens and the number of FEM DOFs NDof for the observation matrix.

3 Test/analysis correlation tutorial

3. Click on associated to the line da to load the identified modes. In the opening window, select the file SDTPath/sdtdemos/gartid.unv. This will open the Unv tab in which you need to select the line containing the shape data and click on import.
Do the same with the line db to load numerical modes. Select the file SDTPath/sdtdemos/gart_mdl.fil (mode computation result from abaqus).
The modeshapes are visible in both feplot figures.

A brief description the data is displayed:

- for thee test da, the number of identified residues NsensNact and the number of shapes Nshape
- for thee FEM db, the number of DOF Ndof and the number of shapes Nshape

4. Click on D associated to the line MacPlot to open the MAC matrix in a new window.

3 Test/analysis correlation tutorial

You can click on the square in the MAC matrix to interactively select the corresponding mode shapes in the feplot figure.
5. To pair more modes, expand the row MacError and allow a frequency shift Df of 20%.

Click then on associated to the line MACError to open the MACError display in a new window.

You can see here on the left the MAC value and on the right the relative frequency shift between the two sets of paired modes.

3.2.2 Energy based criteria

The criteria that make the most mechanical sense are derived from the equilibrium equations. For example, modes are defined by the eigenvalue problem 6.95). Thus the dynamic residual

$$
\begin{equation*}
\left\{\hat{R}_{j}\right\}=\left[K-\omega_{j \mathrm{id}}^{2} M\right]\left\{\phi_{\mathrm{id} j}\right\} \tag{3.1}
\end{equation*}
$$

should be close to zero. A similar residual (3.5) can be defined for FRFs.
The Euclidean norm of the dynamic residual has often been considered, but it tends to be a rather poor choice for models mixing translations and rotations or having very different levels of response in different parts of the structure.

To go to an energy based norm, the easiest is to build a displacement residual

$$
\begin{equation*}
\left\{R_{j}\right\}=[\hat{K}]^{-1}\left[K-\omega_{j \mathrm{id}}^{2} M\right]\left\{\phi_{\mathrm{id} j}\right\} \tag{3.2}
\end{equation*}
$$

and to use the strain $\left|\tilde{R}_{j}\right|_{K}=\tilde{R}_{j}^{T} K \tilde{R}_{j}$ or kinetic $\left|\tilde{R}_{j}\right|_{M}=\tilde{R}_{j}^{T} M \tilde{R}_{j}$ energy norms for comparison.
Note that $[\hat{K}]$ need only be a reference stiffness that appropriately captures the system behavior. Thus for cases with rigid body modes, a pseudo-inverse of the stiffness (see section 6.2.4), or a mass shifted stiffness can be used. The displacement residual \tilde{R}_{j} is sometimes called error in constitutive law (for reasons that have nothing to do with structural dynamics).

This approach is illustrated in the gartco demo and used for MDRE in fe_exp. While much more powerful than methods implemented in ii_mac, the development of standard energy based criteria is still a fairly open research topic.

3.2.3 Correlation of FRFs

Comparisons of frequency response functions are performed for both identification and finite element updating purposes.

The quadratic cost function associated with the Euclidean norm

$$
\begin{equation*}
J_{i j}(\Omega)=\sum_{i j \text { measured }, k \in \Omega}\left|\hat{H}_{i j}\left(s_{k}\right)-H_{i j}\left(s_{k}\right)\right|^{2} \tag{3.3}
\end{equation*}
$$

is the most common comparison criterion. The main reason to use it is that it leads to linear least-squares problem for which there are numerically efficient solvers. id_rcuses this cost function for this reason).
The quadratic cost corresponds to an additive description of the error on the transfer functions and, in the absence of weighting. It is mostly sensitive to errors in regions with high levels of response.

The log least-squares cost, defined by

$$
\begin{equation*}
J_{i j}(\Omega)=\sum_{i j \text { measured }, k \in \Omega}|\log | \frac{\hat{H}_{i j}\left(s_{k}\right)}{H_{i j}\left(s_{k}\right)}| |^{2} \tag{3.4}
\end{equation*}
$$

uses a multiplicative description of the error and is as sensitive to resonances than to anti-resonances. While the use of a non-linear cost function results in much higher computational costs, this cost tends to be much better at distinguishing physically close dynamic systems than the quadratic cost (except when the difference is very small which is why the quadratic cost can be used in identification phases).

The utility function ii_cost computes these two costs for two sets of FRFs xf1 and xf2 (obtained through test and FE prediction using nor2xf for example). The evaluation of these costs provides a quick and efficient way to compare sets of MIMO FRF and is used in identification and model update algorithms.

Note that you might also consider the complex log of the transfer functions which would give a simple mechanism to take phase errors into account (this might become important for extremely accurate identification sometimes needed for control synthesis).

If the response at a given frequency can be expanded to the full finite element DOF set, you should consider an energy criterion based on the dynamic residual in displacement, which in this case takes the form

$$
\begin{equation*}
\left\{R_{j}\right\}=[\hat{K}]^{-1}\left[[Z(\omega)]\left\{q_{e x}(\omega)\right\}-[b]\{u(\omega)\}\right] \tag{3.5}
\end{equation*}
$$

and can be used directly of test/analysis correlation and/or finite element updating.
Shape correlation tools provided by ii mac can also be used to compare frequency responses. Thus the MAC applied to FRFs is sometimes called FRAC.

3.3 Expansion methods

Expansion methods seek to estimate the motion at all DOFs of a finite element model based on measured information (typically modeshapes or frequency response functions) and prior, but not necessarily accurate, information about the structure under test in the form of a reference finite element model. As for all estimation techniques, the quality of expansion results is deteriorated by poor test results and/or poor modeling, but good results can be obtained when one or both are accurate.

The d_cor demonstration illustrates modeshape expansion in the $S D T$. This section summarizes the
theory and you are encouraged to download [15] [16] from sdtools. com if you want more details.

3.3.1 Underlying theory for expansion methods

The unified perspective driving the $S D T$ architecture is detailed in [15] [16]. The proposed classification is based on how various methods combine information about test and modeling errors.

Test results $y_{T e s t}$ and expanded shapes $q_{e x}$ are related by the observation equation (4.1). Test error is thus measured by a norm of the difference between the test quantity and the observed expanded shape

$$
\begin{equation*}
\epsilon=\left\|\left\{y_{\text {Test }}\right\}-[c]\left\{q_{e x}\right\}\right\|_{Q}^{2} \tag{3.6}
\end{equation*}
$$

where the choice of the Q norm is an important issue. While the Euclidian norm $(Q=I)$ is used in general, a norm that takes into account an estimated variance of the various components of $y_{\text {Test }}$ seems most appropriate. Various energy based metrics have also been considered in [17] although the motivation for using a energy norm on test results is unclear.

The expanded vector is also supposed to verify an equilibrium condition that depends on its nature. Since the model and test results don't match exactly one does not expect the expanded vector to verify this equation exactly which leads to the definition of a residual. Standard residuals are $R_{j}=Z\left(\omega_{j}\right) \phi_{j}$ for modeshapes and $R_{j}=Z(\omega) q-F$ for frequency response to the harmonic load F.

Dynamic residuals correspond to generalized loads, so they should be associated to displacement residuals and an energy norm. A standard solution [18] is to compute the static response to the residual and use the associated strain energy, which is a good indicator of modeling error,

$$
\begin{equation*}
\left\|R_{j}\left(q_{e x}\right)\right\|_{K}^{2}=\left\{R_{j}\right\}^{T}[\hat{K}]^{-1}\left\{R_{j}\right\} \tag{3.7}
\end{equation*}
$$

where \hat{K} is the stiffness of a reference FEM model and can be a mass-shifted stiffness in the presence of rigid body modes (see section 6.2.4). Variants of this energy norm of the dynamic residual can be found in [17].
like all estimation techniques, expansion methods should clearly indicate a trade-off between test and modeling errors, since both test and model are subject to error. But modeling errors are not easily taken into account. Common expansion techniques thus only use the model to build a subspace of likely displacements.

Interpolation methods, the simplest form of subspace method are discussed in section 3.3.2 . Standard subspace methods and their implementation are discussed in section section 3.3.3. Methods taking modeling errors into account are discussed in section 3.3.4.

3.3.2 Basic interpolation methods for unmeasured DOFs

Translations are always measured in a single direction. By summing the measurements of all sensors at a single physical node, it is possible for triaxial measurements to determine the 3-D motion. Using only triaxial measurements is often economically/technically impossible and is not particularly desirable. Assuming that all unmeasured motions are zero is however often not acceptable either (often distorts the perception of test modeshapes in 3-D wire frame displays).

Historically, the first solutions to this problem used geometrical interpolation methods estimating the motion in less important directions based on measurements at a few selected nodes.

Wire-frame displays can be considered as trivial interpolation methods since the motion between two test nodes is interpolated using linear shape functions.

In the $S D T$, you can easily implement interpolation methods using matrices which give the relation between measured DOFs tdof and a larger set of deformation DOFs ndof. The easiest approach is typically a use of the fe_sens WireExp command as in the example below

```
% generate example, see sdtweb('demosdt.m#Sleeper')
cf=demosdt('sleeper');
TR=fe_sens('wireexp',cf.CStack{'Test'})
fe_sens('WireExpShow',cf,TR)
% display partial shapes as cell array
disp(TR)
r1=[{''} fe_c(TR.adof([1 3 5]))';
fe_def('subdof-cell',fe_def('subdef',TR,[1 3 5]),[[1 2 46 48]')]
```

Given an interpolation matrix TR, you can animate interpolated shapes using $c f . \operatorname{def}=\{\operatorname{def}, \exp \}$. The interpolation (expansion) matrix TR has fields

- TR.DOF lists DOFs where the response is interpolated
- TR.adof lists input DOFs, these should match identifiers in the first column of a sens.tdof field.
- TR.def give the displacement at all DOFs corresponding to a unit sensor motion. Note as shown in the example above that a $1.08(1-y)$ measurement should lead to a negative value on the $1.02(1 y)$ DOF. The same holds for measurements in arbitrary directions, TR. def should be unity when projected in the measurement direction.

The fe_sens WireExp command considers the wire frame as a coarse FEM model and uses expansion (see section 3.3.3 for details) to generate the interpolation. This is much more general than typical geometric constructions (linear interpolations, spline), which cannot handle arbitrary geometries.

Manual building of the interpolation matrix can be done by filling in the TR.def columns.
fe_sens('WireExpShow', cf,TR) can then be used to verify the interpolation associated with each sensor (use the $+/-$ buttons to scan trough sensors).

Starting from a basis of vectors exp.def with non unit displacements at the measurement DOFs, you can use

```
TR=exp;TR.adof=tdof(:,1);
TR.def=exp.def*pinv(fe_c(exp.DOF,tdof)*exp.def);
```

to minimize the norm of the test error (3.6) for a response within the subspace spanned by exp.def and thus generate a unmeasured DOF interpolation matrix.

3.3.3 Subspace based expansion methods

If one can justify that true motion can be well represented by a vector within the subspace characterized by a basis T with no more columns than there are sensors (one assumes that the true displacement is of the form $\left\{q_{E x}\right\}=[T]\left\{q_{R}\right\}$), an estimate of the true response simply obtained by minimizing test error, that is solving the least-squares problem

$$
\begin{equation*}
\left\{q_{R}\right\}=\arg \min \left\|\left\{y_{\text {Test }}\right\}-[c][T]\left\{q_{R}\right\}\right\|_{2}^{2} \tag{3.8}
\end{equation*}
$$

Modeshape expansion based on the subspace of low frequency modes is known as modal [19] or SEREP [20] expansion. The subtle difference between the two approaches is the fact that, in the original paper, modal expansion preserved test results on test DOFs (DOFs and sensors were assumed to coincide) and interpolated motion on other DOFs. The SDT supports modal expansion using

```
yExp = fe_exp(yTest,sens,T)
```

where yTest are the measured vectors, sens is the sensor configuration (seefe_sens) or an observation matrix c, and T is a set of target modes (computed using fe_eig or imported from an other FE code).

An advantage of the modal methods is the fact that you can select less target modes that you have sensors which induces a smoothing of the results which can alleviate some of the problems linked to measurement/identification errors.
The study presented in [15] concludes that modal based methods perform very well when an appropriate set of target modes is selected. The only but essential limitation seems to be the absence of design/verification methodologies for target mode selection. Furthermore it is unclear whether a good selection always exists.

Modeshape expansion based on the subspace of static responses to unit displacements at sensors is known as static expansion or Guyan reduction [21].

When expanding modeshapes or FRFs, each deformation is associated to a frequency. It thus seems reasonable to replace the static responses by dynamic responses to loads/displacements at that frequency. This leads to dynamic expansion [22]. In general, computing a subspace for each modeshape frequency is too costly. The alternative of using a single "representative" frequency for all modes was proposed in [23] but suffers from the same limitations as choosing this frequency to be zero (Guyan reduction).
The $S D T$ supports full order static and dynamic expansion using

```
yExp=fe_exp(yTest,fTest,sens,m,k,mdof)
```

where f Test can a single frequency (0 for static) or have a value for each shape. In the later case, computational times are usually prohibitive so that reduced basis solutions discussed below should be used.

For tests described by observation matrices, the unit displacement problem defining static modes can be replaced by a unit load problem $[T]=[K]^{-1}[c]^{T}$. For structures without rigid body modes this generates the same subspace as the unit displacement problem. In other cases $[K]$ is singular and can be simply mass-shifted (replaced by $K+\alpha M$ with α usually taken small when compared to the square of the first flexible frequency, see section 6.2.4).
In practice, static expansion can be restated in the form (3.8) where T corresponds to constraint or modes associated to the load collocated to the output shape matrix characterizing sensors (see section 6.2). Restating the problem in terms of minimization is helpful if you want to compute your static responses outside the SDT (you won't need to import your mass and stiffness matrices but only the considered static responses).

The weakness of static expansion is the existence of a frequency limit found by computing modes of the structure with all sensors fixed. In many practical applications, this frequency limit is not that low (typically because of lack of sensors in certain areas/directions). You can easily compute this frequency limit using fe_exp.

Full order dynamic expansion is typically too expensive to be considered for a full order model. The $S D T$ supports reduced basis dynamic expansion where you compute dynamic expansion on a subspace combining modes and static responses to loads at sensors. A typical calling sequence combining modeshape computations and static correction would be

```
[md0,f0,kd] = fe_eig(m,k,[105 30 1e2]);
T = [kd \ ((sens.ctn*sens.cna)') md0];
mdex = fe_exp(IIres.',IIpo(:,1)*2*pi,sens,m,k,mdof,T);
```

You should note however that the minimum dynamic residual expansion (MDRE) discussed in the next section typically gives better results at a marginal computational cost increase, so that you should only use dynamic expansion to expands FRFs (MDRE for FRFs is not currently implemented in fe_exp or operational deflection shapes (for which modeling error is hard to define).

3.3.4 Model based expansion methods

Given metrics on test (3.6) and modeling (3.7) error, one uses a weighted sum of the two types of errors to introduce a generalized least-squares problem

$$
\begin{equation*}
\min _{q_{j, e x}}\left\|R\left(q_{j, e x}\right)\right\|_{K}^{2}+\gamma_{j} \epsilon_{j} \tag{3.9}
\end{equation*}
$$

MDRE (Minimum Dynamic Residual Expansion) assumes test errors to be zero. MDRE-WE (MDRE With test Error) sets the relative weighting (γ_{j} coefficient) iteratively until the desired bound on test error is reached (this is really a way to solve the least-squares problem with a quadratic inequality as proposed in [24]).

These methods are currently only implemented for modeshape expansion. When they can be used, they are really superior to subspace methods. The proper strategy to choose the error bound in MDRE-WE is still an open issue but it directly relates to the confidence you have in your model and test results.

3.4 Structural dynamic modification

While test results are typically used for test/analysis correlation and update, experimental data have direct uses. In particular,

- experimental damping ratios are often used for finite element model predictions;
- identified models can be used to predict the response after a modification (if this modification is mechanical, one talks about structural modification, if it is a controller one does closed loop response prediction);
- identified models can be used to generate control laws in active control applications;
- if some input locations of interest for structural modification have only been tested as output locations, the reciprocity assumption (see section 2.8.2) can be used to predict unmeasured
transfers. But these predictions lack residual terms (see section 6.2.3) which are often important in coupled predictions.

Structural modification and closed loop predictions are important application areas of SDT. For closed loop predictions, users typically build state-space models with res2ss and then use control related tools (Control Toolbox, Simulink). If mechanical modifications can be modeled with a mass/damping/stiffness model directly connected to measured inputs/outputs, predicting the effect of a modification takes the same route as illustrated below. Mass effects correspond to acceleration feedback, damping to velocity feedback, and stiffness to displacement feedback.

The following illustrates on a real experimental dataset the prediction of a 300 g mass loading effect at a locations $1012-z$ and $1112-z$ (when only $1012-z$ is excited in the gartid dataset used below).

```
ci=demosdt('demo gartid est');
ci.Stack{'Test'}.xf=-ci.Stack{'Test'}.xf;% driving 1012-z to 1012z
ci.Stack{'Test'}.dof(:,2)=12.03;
ci.IDopt.reci='1 FRF'; idcom(ci,'est');
ind=fe_c(ci.Stack{'IdMain'}.dof(:,1),[1012;1112],'ind');
po_ol=ci.Stack{'IdMain'}.po;
% Using normal modes
NOR = res2nor(ci.Stack{'IdMain'}); NOR.pb=NOR.cp';
S=nor2ss(NOR,'hz'); % since NOR.idopt tells acc. SS is force to Acc
mass=.3; a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;
po_cln=ii_pof(eig(a_cl)/2/pi,3,2)
if sdtdef('UseControlToolbox-safe',1) && any(exist('ss','file')==[2 6]);
    SS=S;set(SS,'b',S.b(:,4),'d',S.d(:,4),'InputName',S.InputName(4))
else % Without CTbox
    SS=S;SS.b=SS.b(:,4);SS.d=SS.d(:,4);SS.dof_out=SS.dof_out(4,:);
end
qbode(SS,ci.Stack{'Test'}.w*2*pi,'iiplot "Normal"');
% Using complex modes
SA = res2ss(ci.Stack{'IdMain'},'AllIO');
a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;
po_clx=ii_pof(eig(a_cl)/2/pi,3,2)
if sdtdef('UseControlToolbox-safe',1) && any(exist('ss','file')==[2 6]);
    SS=SA;set(SS,'b',S.b(:,4),'d',S.d(:,4)*0,'InputName',S.InputName(4))
else % Without CTbox
```

3 Test/analysis correlation tutorial

```
    SS=SA;SS.b=SS.b(:,4);SS.d=SS.d(:,4)*0;SS.dof_out=S.dof_out(4,:);
end
qbode(SS,ci.Stack{'Test'}.w*2*pi,'iiplot "Cpx"');
iicom('ch4');
% Frequencies
figure(1);in1=1:8;subplot(211);
bar([ po_clx(in1,1) po_cln(in1,1)]./po_ol(in1,[1 1]))
ylabel('\Delta F / F');legend('Complex modes','Normal modes')
set(gca,'ylim',[.5 1])
% Damping
subplot(212);bar([ po_clx(in1,2) po_cln(in1,2)]./po_ol(in1,[2 2]))
ylabel('\Delta \zeta / \zeta');legend('Complex modes','Normal modes')
set(gca,'ylim',[.5 1.5])
```

Notice that the change in the sign of ci.Stack\{'Test'\}.xf needed to have a positive driving point FRFs (this is assumed by id_rm). Reciprocity was either applied using complex (the 'AllIO' command in res2ss returns all input/output pairs assuming reciprocity) or normal modes with NOR. $\mathrm{pb}=\mathrm{NOR} . \mathrm{cp}$ '.
Closed loop frequency predictions agree very well using complex or normal modes (as well as with FEM predictions) but damping variation estimates are not very good with the complex mode statespace model.

There is much more to structural dynamic modification than a generalization of this example to arbitrary point mass, stiffness and damping connections. And you can read [25] or get in touch with SDTools for our latest advances on the subject.

FEM tutorial

4.1 FE mesh declaration 139
4.1.1 Direct declaration of geometry (truss example) 139
4.2 Building models with feutil 140
4.3 Building models with femesh 144
4.3.1 Automated meshing capabilities 146
4.3.2 Importing models from other codes 146
4.3.3 Importing model matrices from other codes 147
4.4 The feplot interface 149
4.4.1 The main feplot figure 149
4.4.2 Viewing stack entries 153
4.4.3 Pointers to the figure and the model 153
4.4.4 The property figure 153
4.4.5 GUI based mesh editing 155
4.4.6 Viewing shapes 156
4.4.7 Viewing property colors 158
4.4.8 Viewing colors at nodes 159
4.4.9 Viewing colors at elements 159
4.4.10 feplot FAQ 160
4.5 Other information needed to specify a problem 162
4.5.1 Material and element properties 162
4.5.2 Other information stored in the stack 164
4.5.3 Cases GUI 164
4.5.4 Boundary conditions and constraints 166
4.5.5 Loads 167
4.6 Sensors 168
4.6.1 Sensor GUI, a simple example 168
4.6.2 \quad Sensor definition from a cell array 169
4.6.3 Sensor data structure and init commands 173
4.6.4 Topology correlation and observation matrix 180
4.7 Stress observation 184
4.7.1 Building view mesh 184
4.7.2 Building and using a selection for stress observation 186
4.7.3 Observing resultant fields 187
4.8 Computing/post-processing the response 187
4.8.1 Simulate GUI 187
4.8.2 Static responses 188
4.8.3 Normal modes (partial eigenvalue solution) 189
4.8.4 State space and other modal models 190
4.8.5 Viewing shapes, stress, energy, 192
4.8.6 Time computation 192
4.8.7 Manipulating large finite element models 194
4.8.8 Optimized assembly strategies 196

This chapter introduces notions needed to use finite element modeling in the SDT. It illustrates how to define mechanical problems (model, boundary conditions, loads, etc.), compute and post-process the response

- using the feplot Graphical User Interface,
- or using script commands.

The GUIs are described and the connections between graphical and low level data are detailed for

- the model data structures,
- the case (i.e. DOFs, boundary conditions, loads, ...),
- the response to a specified case,
- the results post-processing.

4.1 FE mesh declaration

This section gives a summary of FE mesh declaration with pointers to more detailed documentation.

4.1.1 Direct declaration of geometry (truss example)

Hand declaration of a model can only be done for small models and later sections address more realistic problems. This example mostly illustrates the form of the model data structure.

Figure 4.1: FE model.
In d_mesh('TutoBmesh-s1'), the geometry is declared in the model.Node matrix (see section 7.1 and section 7.1.1). In this case, one defines 6 nodes for the truss and an arbitrary reference node to distinguish principal bending axes (see beam1)

```
% NodeID unused x y z
model.Node=[ 1 0 0 0 0 1 0;
    2 0 0 0 0 0 0;
    3 0 0 0 1 1 0;
    4 0 0 0 1 0 0;
    5 0 0 0 2 0 0;
    6 0 0 2 1 0;
    7 0 0 0 1 1 1]; % reference node
```

The model description matrix (see section 7.1) describes 4 longerons, 2 diagonals and 2 battens. These can be declared using three groups of beam1 elements

```
model.Elt=[ . . .
    % declaration of element group for longerons
    Inf abs('beam1') ; ...
    %node1 node2 MatID ProID nodeR, zeros to fill the matrix
\begin{tabular}{llllllll}
1 & 3 & 1 & 1 & 7 & 0 & \(;\) & \(\ldots\) \\
3 & 6 & 1 & 1 & 7 & 0 & \(;\) & \(\ldots\) \\
2 & 4 & 1 & 1 & 7 & 0 & \(;\) & \(\ldots\) \\
4 & 5 & 1 & 1 & 7 & 0 & \(;\) & \(\ldots\)
\end{tabular}
    % declaration of element group for diagonals
    Inf abs('beam1') ; ...
        2 3 1 2 0 7 0 ; ...
        4 6 1 2 0 7 0 ; ...
    % declaration of element group for battens
    Inf abs('beam1') ; ...
        3 3
```


4.2 Building models with feutil

Declaration by hand is clearly not the best way to proceed in general feutil provides a number of commands for finite element model creation feutil should be preferred to femesh which is a lower level command. One can find meshing examples through the feutil commands in

- d_truss : this demo builds a truss model using beam elements.
- d_ubeam : the beginning of the demo builds a volume model that is used is various examples of this documentation.

The principle of feutil meshing strategy is to build sub model parts using the feutil basic meshing commands (extrusion, rotation, revolution, division, ...) and to assemble those models to form the resulting model thanks to the feutil AddTest commands.
Following detailed example builds the GARTEUR model.
First the model data structure is initialized (see sdtweb model), with fields Node (that contains some initial nodes that will be used to begin building of elements by elementary operations), Elt (which is empty at this step), unit (that contains the unit of the mesh, that must be coherent with material properties defined later. Here the SI system is used that means that node positions are defined in meters.), and name (that contains model name that is used to identify the model in the assembly steps for example).

```
%% Step1 : Initialize model
model=struct('Node', [1 0 0 0 0 0 0 0; 2 2 0 0 0 0 0 0 0.15;
    300000.4 1.0 0.176; 4 0 0 0 0.4 0.9 0.176],\ldots
    'Elt', [],'unit','SI', 'name','GARTEUR') ;
```

Now the fuselage is built by creating an initial beam between nodes 1 and 2 (see feutil Object commands to easily create a number of elementary models). Then the beam is extruded with an irregular spatial step in the x direction, to form quad4 elements that represents the fuselage.

```
%% Step2 Fuselage
model.Elt=feutil('ObjectBeamLine 1 2',model);
model=feutil('Extrude 0 1.0 0.0 0.0',model,...
    [linspace(0,.55,5) linspace(.65,1.4,6) 1.5]);
```

The same strategy is used to mesh the quads corresponding to the plane tail. The extremities of the initial beam to be extruded are not explicitely defined as previously, but are found in the nodes created in the last step through the feutil FindNode command (that returns the NodeId of nodes found by FindNode). Here nodes are found at z position equal to .15 , and x upper than 1.4. The vertical tail is built in a temporary model named mo0. Note that mo0 is first initialized with principal model nodes (mo0=model;) so that new nodes that will be added during the extrusion respect the NodeId numerotation of the main model. Then we can simply add the vertical tail mo0 to the main model using the feutil AddTestCombine command (if node numerotation was not coherent for the new part mo0 and the main model already defined nodes, we would have to use the feutil AddTestMerge command that can be really time consuming).

```
%% Step3 vertical tail
n1=feutil('FindNode z==.15 & x>=1.4',model);
mo0=model; mo0.Elt=feutil('ObjectBeamLine',n1);
moO=feutil('Extrude 3 0 0 .1',mo0);
model=feutil('AddTestCombine-noori',model,mo0);
```

Then the vertical horizontal tail, the right and left drums, the wings and the connection plate are built and added to main model using the same strategy:

```
%% Step4 Vertical horizontal tail
n1=feutil('FindNode z==.45',model)
mo0=model; mo0.Elt=feutil('ObjectBeamLine',n1);
mo0=feutil('Extrude 0 0.0 0.2 0.0',mo0,[-1 -.5 0 .5 1]);
model=feutil('AddTestCombine;-noori',model,mo0);
```

\% \% right drum
mo0=model; mo0.Elt=feutil('ObjectBeamLine 3 4');
moO=feutil('Extrude 1 . 400 ',mo0);
moO=feutil('Divide',mo0,[0 2/40 15/40 25/40 1], [0 .7 1]);
model=feutil('AddTestCombine;-noori', model, mo0);
\%\% left drum
mo0=feutil('SymSel 1010 , mo0);
model=feutil('AddTestCombine;-noori', model,mo0);

```
%% wing
n1=feutil('FindNode y==1 & x>=.55 & x<=.65',model);
mo0=model; mo0.Elt=feutil('ObjectBeamLine',n1);
moO=feutil('Divide',mo0,[0 1-.762 1]);
mo0=feutil('Extrude 0 0.0 -1.0 0.0',mo0,[0 0.1 linspace(.15,.965,9) ...
                                    linspace(1.035,1.85,9) 1.9 2.0]);
model=feutil('AddTestCombine;-noori',model,mo0);
```

\% Connection plate
n1=feutil('FindNode $y==0.035 \mid y==-0.035 \& x==.55$ ', model)
mo0=model; mo0.Elt=feutil('ObjectBeamLine',n1);
moO=feutil('Divide 2',mo0);
mo0=feutil('TransSel -. 020 0', mo0);
mo0=feutil('Extrude 0100 , mo0, [0 . 02 . 12 .14]);
i1=intersect(feutil('FindNode group6', model),feutil('FindNode group1',mo0));
mo0=feutil('TransSel 0.0 0.0-0.026', mo0);
model=feutil('AddTestCombine;-noori', model,mo0);

The stiffness connecting the connection plate are built extruding a mass object to form a beam, and then changing the name of the beam group as celas which are the spring elements in SDT.

```
%% Step5 Stiff links for the connection
```

```
mo0=model; mo0.Elt=feutil('Object mass',i1);
moO=feutil('Extrude 1 0 0 -.026',mo0);
moO.Elt=feutil('set group1 name celas',mo0);
```

The celas properties are defined in the element matrix (see sdtweb celas for more details). First row of mo 0 is the header, the springs are stored as following rows (2 nd row to the end). The springs connect the master DOF (column 3) x, y, z, θ_{x} and θ_{y} to the same DOF on the slave nodes (column 4,0 that mean the same as master). The stiffness (column 7) is defined at 1 e 12 . The 4 springs inmo0 are then added to the main model.
$\% \%$ Step6 set connected DOFs and spring value
mo0.Elt (2:end,3) $=12345$; \% master dof
moO.Elt(2:end,4)=0; \% same dof as master
mo0.Elt (2:end, 7)=1e12; \% stiffness
model=feutil('AddTestCombine;-noori',model,mo0); \% add springs to main model
Then group 6 is divided in 2 groups to get the part covered by constraining layer in a separated group (in order to help the later manipulations of this part, such as material identifier definition).

```
%% Step7 Make a group of the part covered by the constraining layer
model.Elt=feutil('Divide group 6 InNode {x>.55 & y<=. }85& & y=-.85}',model)
```

Then some masses are added through the ObjectMass command. Then all masses are regrouped in a same group.

```
%% Step8 Tip masses
i1=feutil('FindNode y==0.93 | y==-0.93 & x==0.42',model)
moO=model; moO.Elt=feutil('Object mass',i1,[0.2 0.2 0.2]); %200g
model=feutil('AddTestCombine;-noori',model,mo0);
i1=feutil('FindNode z==.45 & y==0',model)
mo0=model; mo0.Elt=feutil('Object mass',i1,[0.5 0.5 0.5]); %500g
model=feutil('AddTestCombine;-noori',model,mo0);
model=feutil('Join mass1',model); % all mass in the same group
```

Then plates are oriented (see the feutil Orient command) so that offset in correct direction can be defined. Offset (distances in the normal direction from element plane to reference plane) are defined in element matrices in the 9th column for quad4 elements. The feutil FindElt command is used to find the indices of considered elements in the model element matrix model.Elt.

```
%% Step9 Orient plates that will need an off-set
model.Elt=feutil('Orient 4:8 n 0 0 3',model);
i1=feutil('FindElt group4:5',model);
model.Elt(i1,9)=0.005; % drums (positive off-set)
i1=feutil('FindElt group6:7',model);
```

```
model.Elt(i1,9)=-0.005; % wing
i1=feutil('FindElt group8',model);
model.Elt(i1,9)=0.008; % wing
```

Now ProId (element property identifier) and MatId (material identifier) are defined for each element. In last meshing steps, elements have been added by group (or separated), so that we only attribute a material and element property identifier for each group.

```
%% Step10 Deal with material and element properties identifier:
model.Elt=feutil('Set group1 mat1 pro3',model);
model.Elt=feutil('Set group2:7 mat1 pro1',model);
model.Elt=feutil('Set group8 mat2 pro2',model);
model.Elt=feutil('Set group6 pro4',model);
```

And following lines define associated properties:

```
%% Step11 Define associated properties:
model.pl=[m_elastic('dbval 1 aluminum');
    m_elastic('dbval 2 steel')];
model.il = [1 fe_mat('p_shell','SI',1) 2 1 0 . 01
    2 fe_mat('p_shell','SI',1) 2 1 0 . 016
    3 fe_mat('p_shell','SI',1) 2 1 0 . 05
    4 fe_mat('p_shell','SI',1) 2 1 0 .011];
```

The result is then displayed in feplot, coloring each material differently:

```
%% Step12 Display in feplot
    cf=comgui('guifeplot -project "SDT Root"',3); % Robust open in figure(3)
    cf.model=model; % display model
    fecom(';sub 1 1;view3; colordatamat-edgealpha.1'); % 1 subplot, specify view, color,
```


4.3 Building models with femesh

Declaration by hand is clearly not the best way to proceed in general femesh provides a number of commands for finite element model creation. The first input argument should be a string containing a single femesh command or a string of chained commands starting by a ; (parsed by commode which also provides a femesh command mode).

To understand the examples, you should remember that femesh uses the following standard global variables

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

In the example of the previous section (see also the d_truss demo), you could use femesh as follows: initialize, declare the 4 nodes of a single bay by hand, declare the beams of this bay using the objectbeamline command

```
%% Step1 Declare nodes and build single bay
    FEel0=[]; FEelt=[];
FEnode=[1 0 0 0 0 0 0;2 0 0 0 0 1 0; ...
    3 0 0 0 1 0 0;4 0 0 0 1 1 0]; ...
femesh('objectbeamline 1 3 0 2 4 0 3 4 0 1 4');
```

The model of the first bay in is now selected (stored in FEel0). You can now put it in the main model, translate the selection by 1 in the x direction and add the new selection to the main model

```
%% Step2 Put in main model, translate seclection and add to main model
    femesh(';addsel;transsel 1 0 0;addsel;info');
    model=femesh('model'); % export FEnode and FEelt geometry in model
    cf=feplot; cf.model=model;
    fecom(';view2;textnode;triax;');
```

You could also build more complex examples. For example, one could remove the second bay, make the diagonals a second group of bar1 elements, repeat the cell 10 times, rotate the planar truss thus obtained twice to create a 3 -D triangular section truss and show the result (see d_truss)

```
%% Step3 Create a 3D struss based on a single 2D bay
    femesh('reset');
    femesh('test2bay');
    femesh('removeelt group2');
    femesh('divide group 1 InNode 1 4');
    femesh('set group1 name bar1');
    femesh(';selgroup2 1;repeatsel 10 1 0 0;addsel');
    femesh(';rotatesel 1 60 1 0 0;addsel;');
    femesh(';selgroup3:4;rotatesel 2 -60 1 0 0;addsel;');
    femesh(';selgroup3:8');
    model=femesh('model0'); % export FEnode and FEelO in model
    cf=feplot; cf.model=model;
    fecom(';triaxon;view3;view y+180;view s-10');
```

femesh allows many other manipulations (translation, rotation, symmetry, extrusion, generation by revolution, refinement by division of elements, selection of groups, nodes, elements, edges, etc.) which are detailed in the Reference section.

Other more complex examples are treated in the tutorial scripts listed using d_mesh('Tuto') or in scripts beambar, d_ubeam, gartfe.

4.3.1 Automated meshing capabilities

While this is not the toolbox focus, SDT supports some free meshing capabilities.
fe_gmsh is an interface to the open source 3D mesher GMSH. Calls to this external program can be used to generate meshes by direct calls from MATLAB. Examples are given in the function reference.
fe_tetgen is an interface to the open source 3D tetrahedral mesh generator. See help fe_tetgen for commands.
fe_fmesh('qmesh') implements a 2D quad mesher which meshes a coarse mesh containing triangles or quads into quads of a target size. All nodes existing in the rough mesh are preserved. The -noTest option removes the initial mesh.
\% build rough mesh
model=feutil('Objectquad 1 1', [0 0 0;2 0 0; $230 ; 030], 1,1$);
model=feutil('Objectquad 1 1',model, [2 0 0;800; $810 ; 210], 1,1$);
$\%$ start the mesher with characteristic length of . 1
model=fe_fmesh('qmesh .1',model.Node,model.Elt);
feplot(model);
Other resources in the MATLAB environment are initmesh from the PDE toolbox and the Mesh2D package.

4.3.2 Importing models from other codes

The base SDT supports reading/writing of test related Universal files. All other interfaces are packaged in the FEMLink extension. FEMLink is installed within the base SDT but can only be accessed by licensed users.

To open the FEMLink GUI use sdtroot ('InitFEMLink'). for a reference on the FEMLink Tab, see section 8.2.2. You will find an up to date list of interfaces with other FEM codes at www.sdtools.com/tofromfem.html). Import of model matrices in discussed in section 4.3.3.
These interfaces evolve with user needs. Please don't hesitate to ask for a patch even during an SDT evaluation by sending a test case to info@sdtools.com.

Interfaces available when this manual was revised were
ans2sdt reads ANSYS binary files, reads and writes .cdb input (see FEMLink)
abaqus reads ABAQUS binary output .fil files, reads and writes input and matrix files (.inp, mtx) (see FEMLink)
nasread reads the MSC/NASTRAN [26] .f06 output file (matrices, tables, real modes, displacements, applied loads, grid point stresses), input bulk file (nodes, elements, properties). FEMLink provides extensions of the basic nasread, output2 to model format conversion including element matrix reading, output4 file reading, advanced bulk reading capabilities).
naswrite writes formatted input to the bulk data deck of MSC/NASTRAN (part of SDT), FEMLink adds support for case writing.
nopo This OpenFEM function reads MODULEF models in binary format. reads PERMAS ASCII files (this function is part of FEMLink)
reads SAMCEF text input and binary output .u18, .u11, . u12 files (see FEMLink) samcef ufread reads results in the Universal File format (in particular, types: 55 analysis data at nodes, 58 data at DOF, 15 grid point, 82 trace line). Reading of additional FEM related file types is supported by FEMLink through the uf_link function.
ufwrite writes results in the Universal File format. SDT supports writing of test related datasets. FEMLink supports FEM model writing.

4.3.3 Importing model matrices from other codes

FEMLink handles importing element matrices for NASTRAN nasread BuildUp), ANSYS ans2sdt Build, SAMCEF (samcef read) and ABAQUS abaqus read).

Reading of full matrices is supported for NASTRAN in the binary .op2 and .op4 formats (writing to .op4 is also available). For ANSYS, reading of .matrix ASCII format is supported. For ABAQUS, reading of ASCII .mtx format is supported.

Note that numerical precision is very important when importing model matrices. Storing matrices in 8 digit ASCII format is very often not sufficient.

To incorporate full FEM matrices in a SDT model, you can proceed as follows. A full FEM model matrix is most appropriately integrated as a superelement. The model would typically be composed of

- a mass m and stiffness matrix k linked to DOFs mdof which you have imported with your own code (for example, using nasread output2 or output4 and appropriate manipulations to create mdof). Note that the ofact object provides translation from skyline to sparse format.
- an equivalent mesh defined using standard SDT elements. This mesh will be used to plot the imported model and possibly for repeating the model in a periodic structure. If you have no mesh, define nodes and associated mass elements.
fesuper provides functions to handle superelements. In particular, fesuper SEAdd lets you define a superelement model, without explicitly defining nodes or elements (you can specify only DOFs and element matrices), and add it to another model.
Following example loads ubeam model, defines additional stiffness and mass matrices (that could have been imported) and a visualization mesh.

```
% Load ubeam model :
model=demosdt('demo ubeam-pro');
cf=feplot; model=cf.mdl;
% Define superelement from element matrices :
SE=struct('DOF',[180.01 189.01]',...
    'K',{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},...
    'Klab',{{'m','k'}},...
    'Opt',[1 0;2 1]); % Matrix types, sdtweb secms#SeStruct
% Define visualization mesh :
SE.Node=feutil('GetNode 180 | 189',model);
SE.Elt=feutil('ObjectBeamLine 180 189 -egid -1');
% Add as a superelement to model :
model=fesuper('SEadd -unique 1 1 selt',model,SE);
```

You can easily define weighting coefficient associated to matrices of the superelement, by defining an element property (see p_super for more details). Following line defines a weighting coefficient of 1 for mass and 2 for stiffness (1001 is the MatId of the superelement).

```
% Define weighting coefficients for mass and stiffness matrices
model.il=[1001 fe_mat('p_super','SI',1) 1 2];
```

You may also want to repeat the superelement defined by element matrices. Following example shows how to define a model, from repeated superelement:

```
% Define matrices (can be imported from other codes) :
model=femesh('testhexa8');
[m,k,mdof]=fe_mk(model);
% Define the superelement:
SE=struct('DOF',[180.01 189.01]',...
    'K',{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},....
    'Klab',{{'m','k'}},...
    'Opt',[1 0;2 1]);
```

```
SE.Node=model.Node; SE.Elt=model.Elt;
% Add as repeated superelement:
% (need good order of nodes for nodeshift)
model=fesuper('SEAdd -trans 10 0.0 0.0 1.0 4 1000 1000 cube', [],SE);
cf=feplot(model)
```

Superelement based substructuring is demonstrated in d_cms2 which gives you a working example where model matrices are stored in a generic superelement. Note that numerical precision is very important when importing model matrices. Storing matrices in 8 digit ASCII format is very often not sufficient.

4.4 The feplot interface

Three kinds of manipulations are possible using the feplot GUI

- viewing the model and post-processing the responses,
- setting and displaying the mechanical problem (model properties and cases),
- setting the view properties.

4.4.1 The main feplot figure

feplot figures are used to view FE models and hold all the data needed to run simulations. Data in the model can be viewed in the property figure (see section 4.4.4). Data in the figure can be accessed from the command line through pointers as detailed in section 4.4.3. The feplot help gives architecture information, while fecomists available commands. Most demonstrations linked to finite element modeling (see section 1.1 for a list) give examples of how to use feplot and fecom.

Figure 4.2: Main feplot figure.

The first step of most analyzes is to display a model in the main feplot figure. Examples of possible commands are (see fecom load for more details)

- cf=feplot (model) display the model in a variable and returns a pointer object cf to the figure.
- $c f=f e p l o t(5) ; c f . m o d e l=m o d e l ;$ do the same thing but in figure 5.
$c f=f e p l o t ; c f . m o d e l=\{$ node, elt $\}$; will work for just nodes and elements. Note that cf. model is a method to define the model and is not a pointer. cf.mdl is a pointer to the model, see section 4.4.3.
- feplot('load', 'File.mat') load a model from a .mat file.

As an example, you can load the data from the gartfe demo, get cf a SDT handle for a feplot figure, set the model for this figure and get the standard 3D view of the structure

```
model=demosdt('demogartfe')
cf=feplot; % open FEPLOT and define a pointer CF to the figure
cf.model=model;
```

The main capabilities the feplot figure are accessible using the figure toolbar, the keyboard shortcuts, the right mouse button (to open context menus) and the menus.

Toolbar

List of icons used in GUIs

-	Model properties used to edit the properties of your model.
9	Start/stop animation
-	Previous Channel/Deformation
\pm	Next Channel/Deformation
\square	iimouse zoom
\$*	Orbit. Remaining icons are part of MATLAB cameratoolbar functionality.
甗	Snapshot. See iicom ImWrite,

Keyboard shortcuts

At this level note how you can zoom by selecting a region of interest with your mouse (double click or press the i key to zoom back). You can make the axis active by clicking on it and then use any of the $\mathrm{u}, \mathrm{U}, \mathrm{v}, \mathrm{V}, \mathrm{w}, \mathrm{W}, 3,2$ keys to rotate the plot (press the ? key for a list of iimousekey shortcuts).

Menus and context menu

The contextmenu associated with your plot may be opened using the right mouse button and select Cursor. See how the cursor allows you to know node numbers and positions. Use the left mouse button to get more info on the current node (when you have more than one object, the n key is used to go to the next object). Use the right button to exit the cursor mode.

Notice the other things you can do with the ContextMenu (associated with the figure, the axes and objects). A few important functionalities and the associated commands are

- Cursor Node tracks mouse movements and displays information about pointed object. This is equivalent to the iimouse('cursor') command line.
- Cursor...[Elt, Sel, Off] selects what information to display when tracking the mouse. The iimouse ('cursor [onElt, onSel, Off]') command lines are possible.
- Cursor... 3DLinePick (which can be started with fe_fmesh('3DLineInit')) allows node picking. Once started, the context menu gives access info (lists picked nodes and distances) and done prints the list of picked nodes.
- TextNode activates the node labeling. It is equivalent to the fecom('TextNode') command line.
- Triax displays the orientation triax. It is equivalent to the fecom('triax') command line.
- Undef shows the undeformed structure. Other options are accessible with the fecom('undef[dot,line]') command line.
- Views... [View n $+\mathrm{x}, \ldots$..] selects default plot orientation. The
iimouse('[vn+x,...]') command lines are available.
- colorbar on shows the colorbar, for more accurate control see fecom ColorBar.
- Zoom Reset is the same as the iimouse('resetvie') command line to reset the zoom.
- setlines is the same as the setlines command line.

The figure Feplot menu gives you access to the following commands (accessible by fecom)

- Feplot:Feplot/Model properties opens the property figure (see section 4.4.4).
- Feplot:Sub commands:Sub IsoViews (same as iicom('subiso')) gets a plot with four views of the same mode. Use iicom('sub2 2 step') to get four views of different modes.
- Feplot:Show menu generates standard plots. For FE analyses one will generally use surface plots color-coded surface plots using patch objects) or wire-frame plots (use Feplot:Show menu to switch).
- Feplot:Misc shows a Triax or opens the channel selector.
- Feplot:Undef is used to show or not the undeformed structure.
- Feplot:Colordata shows structure with standard colors.
- Feplot:Selection shows available selections.
- Feplot:Renderer is used to choose the graphical rendering. Continuous animation in OpenGL rendering is possible for models that are not too large. The fecom SelReduce can be use to coarsen the mesh otherwise.
- Feplot:Anim chooses the animation mode.
- Feplot:View defaults changes the orientation view.

4.4.2 Viewing stack entries

You can typically view stack entries by clicking on the associated entry and using ProViewOn (©) icon). Handling of which deformation is shown in multi-channel entries is illustrated below

```
model=demosdt('demo UbeamDofLoad');cf=feplot;
fecom('curtabCases','Point load 1');fecom('proViewOn');
% Control channel in multi column DOFLoad
cf.CStack{'Point load 1'}.Sel.ch=2;fecom('proViewOn');
```


4.4.3 Pointers to the figure and the model

cf1=feplot returns a pointer to the current feplot figure. The handle is used to provide simplified calling formats for data initialization and text information on the current configuration. You can create more than onefeplot figure with $c f=f e p l o t$ (FigHandle). If many feplot figures are open, one can define the target giving an feplot figure handle $c f$ as a first argument to fecom commands.

The model is stored in a graphical object. cf.model is a method that calls fecom InitModel. cf $1 . \mathrm{mdl}$ is a method that returns a pointer to the model. Modifications to the pointer are reflected to the data stored in the figure. However mo1=cf.mdl;mo1=model makes a copy of the variable model into a new variable mo1.
cf.Stack gives access to the model stack as would cf.mdl. Stack but allows text based access. Thus cf.Stack\{'EigOpt'\} searches for a name with that entry and returns an empty matrix if it does not exist. If the entry may not exist a type must be given, for example cf. Stack\{ 'info', 'EigOpt '\}=[5 10 1].
cf. CStack gives access to the case stack as would calls of the form
Case=fe_case(cf.mdl, 'getcase') ; stack_get (Case, 'FixDof', 'base') but it allows more convenient string based selection of the entries.
cf.Stack and cf.CStack allow regular expressions text based access. First character of such a text is then \#. One can for example access to all of the stack entries beginning by the string test with cf.Stack\{'\#test.*'\}. Regular expressions used by SDT are standard regular expressions of Matlab. For example . replaces any character, $*$ indicates 0 to any number repetitions of previous character...

4.4.4 The property figure

Finite element models are described by a data structures with the following main fields (for a full list of possible fields see section 7.6)

```
.Node
.Elt
.pl
.il
.Stack
|nodes
stack of entries containing additional information cases (boundary conditions, loads, etc.), material names, etc.
```

The model content can be viewed using the feplot property figure. This figure is opened using the $\stackrel{\text { M.- }}{\circ}$ icon, or fecom('ProInit').

Figure 4.3: Model property interface.

This figure has the following tabs

- Model tab gives general information on the model nodes and elements. You can declare those by hand as shown in section 4.1.1, through structured mesh manipulations with feutil see section 4.3 , or through import see section 4.3 .2 . (see section 4.5 and Figure 4.3). You can visualize one or more groups by selecting them in the left group list of this tab.
- Mat tab lists and edits all the material. In the mode, associated elements in selection are shown. See section 4.5.1.
- ElProp tab lists and edits all the properties. See section 4.5.1.
- Stack tab lists and edits general information stored in the model (see section 7.7 for possible
entries). You can access the model stack with the cf. Stack method.
- Cases tab lists and edits load and boundary conditions (see section 4.5.3 and Figure 4.9). You can access the case stack with the cf. CStack method.
- Simulate tab allows to launch the static and dynamic simulation (see section 4.8 and Figure 4.12).

The figure icons have the following uses

	Model properties used to edit the properties of your model.
(1)	Active display of current group, material, element property, stack or case entry. Activate with fecom('ProViewOn');
∞	Open the iiplot GUI.
Δ	Open/close feplot figure
(4)	Refresh the display, when the model has been modified from script.

4.4.5 GUI based mesh editing

This section describes functionality accessible with the Edit list item in the Model tab. To force display use fecom('CurtabModel', 'Edit').

- AddNode opens a dialog that lets you enter nodes by giving their coordinates x y z , their node number and coordinates NodeId x y z or all the node information NodeId CID DID GID x y z.
- AddNodeCG starts the 3D line picker. You can then select a group of nodes by clicking with the left button on these nodes. When you select Done with the context menu (right click), a new node is added at the CG of the selected nodes.
- AddNodeOnEdge starts the 3D line picker to pick two nodes and adds nodes at the middle point of the segment.
- AddElt Name starts the 3D line picker and lets you select nodes to mesh individual elements. With Done the elements are added to the model as a group.
- AddRbe3 starts a line picker to define an RBE3 constraint. The first node picked is slave to the motion of other nodes.
- RemoveWithNode starts the 3D line picker. You can then select a group of nodes by clicking with the left button on these nodes. When you select Done with the context menu (right click), elements containing the selected nodes are removed.
- RemoveGroup opens a dialog to remove some groups.

Below are sample commands to run the functionality from the command line.

```
model=demosdt('demoubeam');cf=feplot;
fecom('CurtabModel','Edit')
fecom(cf,'addnode')
fecom(cf,'addnodecg')
fecom(cf,'addnodeOnEdge')
fecom(cf,'RemoveWithNode')
fecom(cf,'RemoveGroup')
fecom(cf,'addElt tria3')
fe_case(cf.mdl,'rbe3','RBE3',[1 97 123456 1 123 98 1 123 99]);
fe_case(cf.mdl,'rbe3 -append','RBE3',[[1 100 123456 1 123 101 1 123 102]);
fecom addRbe3
```


4.4.6 Viewing shapes

feplot displays shapes and color fields at nodes. The basic def data structure provides shapes in the . def field and associates each value with a .DOF (see mdof). For other inits seefecom InitDef.

```
[model,def]=demosdt('Demo gartfe'); % Get example
cf=feplot(model,def); % display model and shapes
fecom('ch7'); % select channel 7 (first flex mode)
fecom('pro'); % Show model properties
```

Scan through the various deformations using the +/- buttons/keys or clicking in the deformations list in the Deformations tab. From the command line you can use fecom ch commands.

Animate the deformations by clicking on the button. Notice how you can still change the current deformation, rotate, etc. while running the animation. Animation properties can be modified with fecom Anim commands or in the General tab of the feplot properties figure.

Modeshape scaling can be modified with the l/L key, with fecom Scale commands or in the Axes tab of the feplot properties figure.
You may also want to visualize the measurement at various sensors (see section 4.6 and fe_sens) using a stick or arrow sensor visualization fecom showsens or fecom showarrow). On such plots, you can label some or all degrees of freedom using the call fecom ('doftext', idof).

Look at the fecom reference section to see what modifications of displayed plots are available.

Superposing shapes

Modeshape superposition is an important application (see plot of section 2.7.1) which is supported by initializing deformations with the two deformation sets given sequentially and afecom ch command declaring more than one deformation. For example you could compare two sets of deformations using

```
[model,def]=demosdt('demo gartfe');cf=feplot(model); % demo init
cf.def(1)=def; % First set of deformations
def.def=def.def+rand(size(def.def))/5;
cf.def(2)=def; % second set of deformations
fecom('show2def'); fecom('scalematch');
```

where the scalematch command is used to compare deformations with unequal scaling. You could also show two deformations in the same set

```
cf=demosdt('demo gartfe plot');
fecom(';showline; ch7 10')
```

The,-+ buttons/commands will then increment both deformations numbers (overlay 8 and 11, etc.).

Element selections

Element selections play a central role in feplot. They allow selection of a model subpart (see section 7.12) and contain color information. The following example selects some groups and defines color to be the z component of displacement or all groups with strain energy deformation (seefecom ColorData commands)

```
cf=demosdt('demo gartfe plot');
cf.sel(1)={'group4:9 & group ~=8','colordata z'};
pause
cf.def=fe_eig(cf.mdl,[6 20 1e3]);
cf.sel(1)={'group all','colordata enerk'};
fecom('colorbar');
```

You can also have different objects point to different selections. This model has an experimental mesh stored in element group 11 (it has EGID -1). The following commands define a selection for the FEM model (groups 1 to 10) and one for the test wire frame (it has EGID<0). The first object cf.o(1) displays selection 1 as a surface plot (ty1 with a blue edge color. The second object displays selection to with a thick red line.

```
cf=demosdt('demo gartfe plot');
```

```
cf.sel(1)={'group1:10'}; cf.sel(2)='egid<0';
cf.o(1)={'ty1 def1 sel1','edgecolor','b'}
cf.o(2)={'ty2sel2','edgecolor','r','linewidth',2}
```

Note that you can use FindNode commands to display some node numbers. For example try fecom('textnode egid<0 \& $y>0$ ').

Figure 4.4: Stress level plot.

4.4.7 Viewing property colors

For reference information on colors, see fecom ColorData.
When preparing a model, one often needs to visualize property colors.

```
cf=feplot(demosdt('demogartfe'));
fecom('ColorDataMat'); % Display color associated with MatId
% Now a partial selection with nicer transparency
cf.sel={'eltname = =mass', 'ColorDataPro-alpha.1-edgealpha .05'}
```


How do I keep group colors constant when I select part of a model?

One can define different types of color for selection using fecom ColorData. In particular one can color by GroupId, by ProId or by MatId using respectively fecom colordatagroup, colordatapro or colordatamat. Without second argument, colors are attributed automatically. One can define a color map with each row of the form [ID Red Green Blue] as a second argument:
fecom('colordata', colormap). All ID do not need to be present in colormap matrix (colors for missing ID are then automatically attributed). Following example defines 3 color views of the same GART model:

```
cf=demosdt('demo gartFE plot');
```

```
% ID Red Green Blue
r1=[(1:10)' [ones(3,1); zeros(7,1)] ...
    [zeros(3,1); ones(7,1)] zeros(10,1)]; % colormap
fecom('colordatagroup',r1) % all ID associated with color
% redefine groups 4,5 color
cf.Stack{'GroupColor'}(4:5,2:4)=[0 0 1;0 0 1];
fecom('colordatagroup');
% just some ID associated with color
fecom('colordatapro',[1 1 0 0; 3 1 0 0])
fecom('colordatamat') % no color map defined
cf.Stack
```


4.4.8 Viewing colors at nodes

Color at nodes can be based on the current display. In particular, ColorDataEvalA, EvalX, ... EvalRadZ, EvalTanZ use the information of current motion from initial position to generate a color field dynamically. The advantage of this strategy is that no prior computation is needed.

Display of specific fields is another common application. Thus ColorDataDOF 19 displays DOF . 19 (pressure). This the field is not needed to display the motion of nodes, prior extraction from the deformations is needed.

4.4.9 Viewing colors at elements

Display of energies is a typical case of color at elements. Since computing energies for many deformations can take time, it is considered best practice to compute energies first and display energies next.

```
cf=demosdt('demo gartFE plot');
% If EltId are not consistent you may need to fix them
% The ; in 'eltidfix;' is used to prevent display of warning messages
[eltid,cf.mdl.Elt]=feutil('eltidfix;',cf.mdl);
Ek=fe_stress('Enerk -curve',cf.mdl,cf.def);
fecom(cf,'ColorDataElt',Ek) % Values for each element
% Sum by group
fecom(cf,'ColorDataElt -bygroup -frac -colorbartitle "Frac %"',Ek)
```

More details are given in fe_stress feplot.

4.4.10 feplot FAQ

feplot lets you define and save advanced views of your model, and export them as .png pictures.

- How do I display part of the model as wire frame? (Advanced object handling)

What is displayed in a feplot figure is defined by a set of objects. Once you have plotted your model with $c f=f e p l o t$ (model), you can access to displayed objects through $\mathrm{cf} . \circ$ (i) (i is the number of the object). Each object is defined by a selection of model elements ('sel i^{\prime}) associated to some other properties (see fecom SetObject). Selections are defined as FindElt commands through cf.sel(i). Displayed objects or selections can be removed using cf.o(i)=[] or cf.sel(i)=[].
Following example loads ubeam model, defines 2 complementary selections, and displays the second as a wire frame (ty2):

```
model=demosdt('demoubeam'); cf=feplot
% define visualisation
cf.sel(1)='WithoutNode{z>1 & z<1.5}';
cf.sel(2)='WithNode{z>1 & z<1.5}';
cf.o(1)={'sel1 ty1','FaceColor',[1 0 0]}; % red patch
cf.o(3)={'sel2 ty2','EdgeColor',[\begin{array}{lll}{0}&{0}\end{array}]}; % blue wire frame
% reinit visualisation :
cf.sel(1)='groupall';
cf.sel(2)=[]; cf.o(3)=[];
```


- Is feplot able to display very large models?

There is no theoretical size limitation for models to be displayed. However, due to the use of Matlab figures, and although optimization efforts have been done, feplot can be very slow for large models. This is due to the inefficient use of triangle strips by the Matlab calls to OpenGL, but to ensure robustness SDT still sticks to strict Matlab functionality for GUI operation.
When encountering problems, you should first check that you have an appropriate graphics card, that has a large memory and supports OpenGL and that the Renderer is set to opengl. Note also that any X window forwarding (remote terminal) can result in very slow operation: large models should be viewed locally since Matlab does not support an optimized remote client.

To increase fluidity it is possible to reduce the number of displayed patches using fecom command SelReduce $r p$ where $r p$ is the ratio of patches to be kept. Adjusting $r p$, fluidity can be significantly improved with minor visual quality loss.
Following example draws a 50 x 50 patch, and uses fecom('ReduceSel') to keep only a patch out of 10 :

```
model=feutil('ObjectQuad',[-1 -1 0;-1 1 0;1 1 0;1 -1 0],50,50);
cf=feplot(model); fecom(cf,'showpatch');
fecom(cf,'SelReduce .1'); % keep only 10% of patches.
```

If you encounter memory problems with feplot consider using fecom load-hdf.

- How do I save figures?

You should not save feplot figures but models using fecom Save.
To save images shown in feplot, you should see iicom ImWrite, If using the MATLAB print, you should use the -noui switch so that the GUI is not printed. Example print -noui -depsc2 FileName.eps.

- MATLAB gives the warning Warning: RGB color data not yet supported in Painter's mode. This is due to the use of true colors for ColorDataMat and other flat colors. You should save your figure as a bitmap or use the fecom ShowLine mode.
- How do I define a colorbar scale and keep it constant during animation?

When using fecom ColorDataEval commands (useful when displayed deformation is restituted from reduced deformation at each step), color scaling is updated at each step.
One can use fecom('ScaleColorOne') to force the colorbar scale to remain constant. In that case one can define the limit of the color map with set (cf.ga, 'clim', $\left[\begin{array}{ll}-1 & 1\end{array}\right]$) where cf is a pointer to target feplot figure, and -1 1 can be replaced by color map boundaries.

- How do I make an animation based on my deformation field displayed in feplot ?

Several strategies are available depending on the user needs.

- The simplest way to do this is to generate an avi file using the feplot figure menu: Feplot > Anim > MakeAVI. Equivalent command line inputs with variants are provided in fecom AnimMovie documentation.
- SDT allows generating animated gif fromfeplotanimations using the convert function. convert ('AnimMovie25') will generate a 25 steps feplot animation as an animated gif. To pilot a subsampling of steps, see fecom Anim. Note that the convert function is a gateway function to the convert function of ImageMagick, that should be installed on your system. You can look up http://www.imagemagick.org for more information.
- Better avi results can be obtained in recent MATLAB by using the VideoWriter object with lower level feplot calls. The following code allows doing this

```
writerObj = VideoWriter(['TEST2_ANIM.avi']); %'Archival');
    writerObj.FrameRate=830; % fps
    writerObj.Quality=100;
    open(writerObj);
```

```
cf.ua.PostFcn=sprintf(['evalin(''base'), '...
,''frame = getframe(gcf);writeVideo(writerObj,frame);'')']);
frame = getframe;
writeVideo(writerObj,frame); % frame will contain the film
close(writerObj);
```


4.5 Other information needed to specify a problem

Once the mesh defined, to prepare analysis one still needs to define

- material and element properties associated to the various elements.
- boundary conditions, constraints (see section 4.5.4) and applied loads (see section 4.5.5)

Graphical editing of case properties is supported by the case tab of the model properties GUI (see section 4.5.3). The associated information is stored in a case data structure which is an entry of the .Stack field of the model data structure.

4.5.1 Material and element properties

You can edit material properties using the Mat tab of the Model Properties figure which lists current materials and lets you choose new ones from the database of each material type. m_elastic is the only material function defined for the base $S D T$. It supports elastic materials, linear acoustic fluids, piezo-electric volumes, etc.

Figure 4.5: Material tab.
Similarly the ElProp tab lets you edit element properties. p_beam p_shell p_solid and p_spring are supported element property functions.

Figure 4.6: Property tab.

When the view mode is selected icon pressed), you can see the elements affected by each material or element property by selecting it in the associated tab.

You can edit properties using the Pro tab of the Model Properties figure which lists current properties and lets you choose new ones from the database of each property type (Figure 4.6).
The properties are stored with one property per row in model.il (see section 7.3) and model.il (see section 7.4). When using scripts, it is often more convenient to use low level definitions of the material properties. For example (see demo_fe), one can define aluminum and three sets of beam properties with

```
femesh('reset');
model=femesh('test 2bay plot');
model.pl = m_elastic('dbval 1 steel')
model.il = [ ...
```

```
... % ProId SecType J I1 I2 A
```

... % ProId SecType J I1 I2 A
1 fe_mat('p_beam','SI',1) 5e-9 5e-9 5e-9 2e-5 0 0 ; ...
1 fe_mat('p_beam','SI',1) 5e-9 5e-9 5e-9 2e-5 0 0 ; ...
p_beam('dbval 2','circle 4e-3') ; ... % circular section 4 mm
p_beam('dbval 2','circle 4e-3') ; ... % circular section 4 mm
p_beam('dbval 3','rectangle 4e-3 3e-3')...% rectangular section
p_beam('dbval 3','rectangle 4e-3 3e-3')...% rectangular section
];

```
];
```

Unit system conversion is supported in property definitions, through two command options.

- -unit command option asks for a specific unit system output. It thus expects possible input data in SI, prior to converting (and generating a proper typ value).
- -punit command option tells the function that a specific unit system is used. It thus expects possible input data in the specified unit system, and generates a proper typ value.

The 3 following calls are thus equivalent to define a beam of circular section of 4 mm in the MM unit system:

```
il = p_beam('dbval -unit MM 2 circle 4e-3'); % given data in SI, output in MM
il = p_beam('dbval -punit MM 2 circle 4'); % given data in MM, output in MM
il = p_beam('dbval -punit CM -unit MM circle 0.4'); % given data in CM, output in MM
```

To assign a MatID or a ProID to a group of elements, you can use

- the graphical procedure (in the context menu of the material and property tabs, use the Select elements and affect ID procedures and follow the instructions);
- the simple femesh set commands. For example femesh('set group1 mat101 pro103') will set values 101 and 103 for element group 1 .
- more elaborate selections based on FindElt commands. Knowing which column of the Elt matrix you want to modify, you can use something of the form (see gartfe)
FEelt(femesh('find EltSelectors'), IDColumn)=ID;
You can also get values with mpid=feutil('mpid',elt), modify mpid, then set values with elt=feutil('mpid',elt,mpid).

4.5.2 Other information stored in the stack

The stack can be used to store many other things (options for simulations, results, ...). More details are given in section 7.7 . You can get a list of current default entry builders with fe_def ('new').

```
info, EigOpt, sdtdef('DefaultEigOpt-safe',[5 20 1e3])
info, Freq, sdtdef('DefaultFreq-safe',[1:2])
    sel, Sel, struct('data','groupall','ID',1)
```


4.5.3 Cases GUI

Figure 4.7: Stack tab.

Figure 4.8: Cases properties tab.

When selecting New . . . in the case property list, as shown in the figure, you get a list of currently supported case properties. You can add a new property by clicking on the associated new cell in the table. Once a property is opened you can typically edit it graphically. The following sections show
you how to edit these properties trough command line or .m files.

Figure 4.9: Cases properties tab.

4.5.4 Boundary conditions and constraints

Boundary conditions and constraints are described in in Case.Stack using FixDof, Rigid, ... case entries (see fe_case and section 7.7). (KeepDof still exists but often leads to misunderstanding)

FixDof entries are used to easily impose zero displacement on some DOFs. To treat the two bay truss example of section 4.1.1, one will for example use

```
femesh('reset');
model=femesh('test 2bay plot');
model=fe_case(model, ... % defines a new case
    'FixDof','2-D motion',[.03 .04 .05]', ...
    'FixDof','Clamp edge',[1 2]');
fecom('ProInit') % open model GUI
```

When assembling the model with the specified Case (see section 4.5.3), these constraints will be used automatically.

Note that, you may obtain a similar result by building the DOF definition vector for your model using a script. FindNode commands allow node selection and fe_c provides additional DOF selection capabilities. Details on low level handling of fixed boundary conditions and constraints are given in section 7.14 .

4.5.5 Loads

Loads are described in Case. Stack using DOFLoad, FVol and FSurf case entries (seefe_case and section 7.7).

To treat a 3D beam example with volume forces (x direction), one will for example use

```
femesh('reset');
model = femesh('test ubeam plot');
data = struct('sel','GroupAll','dir',[1 0 0]);
model = fe_case(model,'FVol','Volume load',data);
Load = fe_load(model);
feplot(model,Load);fecom(';undef;triax;ProInit');
```

To treat a 3D beam example with surface forces, one will for example use

```
femesh('reset');
model = femesh('testubeam plot');
data=struct('sel','x==-.5', ...
    'eltsel','withnode {z>1.25}','def',1,'DOF',.19);
model=fe_case(model,'Fsurf','Surface load',data);
Load = fe_load(model); feplot(model,Load);
```

To treat a 3D beam example and create two loads, a relative force between DOFs 207x and 241x and two point loads at DOFs 207z and 365z, one will for example use

```
femesh('reset');
model = femesh('test ubeam plot');
data = struct('DOF',[207.01;241.01;207.03],'def',[1 0;-1 0;0 1]);
model = fe_case(model,'DOFLoad','Point load 1',data);
data = struct('DOF',365.03,'def',1);
model = fe_case(model,'DOFLoad','Point load 2',data);
Load = fe_load(model);
feplot(model,Load);
fecom('textnode365 207 241'); fecom('ProInit');
```

The result of fe_load contains 3 columns corresponding to the relative force and the two point loads. You might then combine these forces, by summing them

```
Load.def=sum(Load.def,2);
cf.def= Load;
fecom('textnode365 207 241');
```


4.6 Sensors

Sensors are used for test/analysis correlation and in analysis for models where one wants to postprocess partial information by using an observation equation $\{y\}=[c]\{q\}$. This general objective is supported by the use of SensDof entries. This section addresses the following issues

- translation measurements associated simplified views (often wire-frame) is classical for modal testing and FEM post-processing. These can be simply defined using a .tdof field, see also section 2.7.1 and section 2.7 .2 for wire frame geometry and sensor declaration. Commands trans, triax and laser provide simplified calls to generate the associated translation sensors.
- other sensor types typically used in analysis are
- rel relative displacement sensor.
- general general sensor (low level).
- resultant resultant force sensor.
- strain strain or stress sensor.
- topology correlation is the process in which sensor output is related to the DOFs of the underlying FEM. This is implemented as the SensMatch command detailed section 4.6.4. In the case of translation measurements, this is only needed for test/analysis correlation.

4.6.1 Sensor GUI, a simple example

Using the feplot properties GUI, one can edit and visualize sensors. The following example loads ubeam model, defines some sensors and opens the sensor GUI.

```
model=demosdt('demo ubeam-pro');
cf=feplot; model=cf.mdl;
model=fe_case(model,'SensDof append trans','output',...
    [1,0.0,0.5,2.5,0.0,0.0,1.0]); % add a translation sensor
```

```
model=fe_case(model,'SensDof append triax','output',8); % add triax sensor
model=fe_case(model,'SensDof append strain','output',...
    [4,0.0,0.5,2.5,0.0,0.0,1.0]); % add strain sensor
model=fe_case(model,'sensmatch radius1','output'); % match sensor set 'output'
fecom(cf,'promodelviewon');
fecom(cf,'curtab Cases','output'); % open sensor GUI
```

Clicking on Edit Label one can edit the full list of sensor labels.
The whole sensor set can be visualized as arrows in the feplot figure clicking on the eye button on the top of the figure. Once visualization is activated one can activate the cursor on sensors by clicking on CursorSel. Then one can edit sensor properties by clicking on corresponding arrow in the feplot figure.

The icons in the GUI can be used to control the display of wire-frame, arrows and links.

Figure 4.10: GUI for sensor edition

4.6.2 Sensor definition from a cell array

Experimental setups can be defined with a cell array containing all the information relative to the sensors (only displacement/velocity/acceleration sensors are currently supported). This array is meant to be filled any table editor, possibly outside MATLAB. Using EXCEL you can read it with data=sdtacx('excel read filename',sheetnumber).

The first row gives column labels (the order in which they are given is free). Each of the following
rows defines a sensor. Known column headers are

- 'lab' contains the names of the sensors. Providing a name for each sensor is mandatory.
- 'SensType' contains optional information such as the name of the sensor manufacturer, their types, etc.
- 'SensId' contains the identification numbers of the sensors. Each sensor must have a unique SensId. If the identification is non integer, the integer part is taken to be a NodeId. For example 10.01 will be taken to be node 10 .
- 'X', 'Y' and 'Z' contain the cartesian coordinates of each sensor in the reference frame. For cylindrical coordinates replace the column headers by 'R', 'Theta' and 'Z' (mixing both types of coordinates inside the cell array is not currently supported). Such columns are mandatory except of localization is given by FEMId.
- 'FEMId' can be used to specify localization and help node matching.
- 'DirSpec' contains a specification of the direction in which the measurement is done at each sensor. A minus in front of any specification can be used to generate the opposite direction (-TX for example). Available entries are

$\text { 'dir } x y$	Direction of measurement specified trough its components in global coordinates (the vector is normalized).
' X '	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, in the reference frame
'Y'	[000 110], in the reference frame
' Z '	[00001$]$, in the reference frame
'N'	normal to the element(s) to which the sensor is matched (automatically detected in the subsequent call to SensMatch
'TX'	tangent to matched surface in the $\overline{N, X}$ plane.
'TY'	tangent to matched surface in the N, Y plane
'TZ'	tangent to matched surface in the N, Z plane
' N^{\prime} 'TX'	tangent orthogonal to the N, X plane
' ${ }^{\wedge}$ 'TY'	tangent orthogonal to the N, Y plane
' ${ }^{\wedge}$ 'TZ'	tangent orthogonal to the N, Z plane
'laser xs ys zs'	where $\left(x_{s}, y_{s}, z_{s}\right)$ are the coordinates of the primary or secondary source (when mirrors are used).
$\begin{aligned} & \text { 'FEM } \\ & 10.01 \text { ' } \end{aligned}$	associated FEM DOF

triax sensors are dealt with by defining three sensors with the same 'lab' but different 'SensId' and 'DirSpec'. In this case, a straightforward way to define the measurement directions is to make the first axis be the normal to the matching surface. The second axis is then forced to be parallel to the surface and oriented along a preferred reference axis, allowed by the possibility to define ' $\mathrm{T} *$ '. The third axis is therefore automatically built so that the three axes form a direct orthonormal basis with a specification such as $N^{\wedge} T *$. Note that there is no need to always consider the orthonormal basis as a whole and a single trans sensor with either ' $\mathrm{T} *$ ' or $\mathrm{N}^{\wedge} \mathrm{T} *$ as its direction of measure can be specified.

In the example below, one considers a pentahedron element and aims to observe the displacement just above the slanted face. The first vector is the normal to that face whose coordinates are
$[-\sqrt{2} / 2, \sqrt{2} / 2,0]$. The second one is chosen (i.) parallel to the observed face, (ii.) in the (x, y) plane and (iii.) along x axis, so that its coordinates are $[\sqrt{2} / 2, \sqrt{2} / 2,0]$. Finally, the coordinates of the last vector can only be $[0,0,-1]$ to comply with the orthonormality conditions. The resulting sensor placement is depicted in figure 4.11

```
cf=feplot;cf.model=femesh('testpenta6');fecom('triax');
% sensor definition as cell array
tcell={'lab', 'SensType','SensId','X','Y','Z','DirSpec';...
    'sensor 1','', 1.02,.4,.6,.5,'N';
    'sensor 2','', 1.01,.4,.6,.5,'TX';
    'sensor 3','', 2.01,.4,.6,1.,'dir 1 -1 1';
    'sensor 4','', 1.09,.4,.6,.5,'N^TX'
    'sensor 5','', 3.01,[],[],[],'FEM 5.01'
    'sensor 6',',' 4.02, 1, 0, 1,'Y'
    };disp(tcell)
%sens=fe_sens('tdoftable',tcell);
cf.mdl=fe_case(cf.mdl,'SensDof','Test',tcell);
cf.mdl=fe_case(cf.mdl,'SensMatch radius1','Test','selface');
fecom(cf,'curtab Cases','Test'); fecom(cf,'ProViewOn')% open sensor GUI
sens=fe_case(cf.mdl,'sens');
fe_sens('tdoftable',cf,'Test') % see summary of match results
fname=fullfile(sdtdef('tempdir'),'SensSpec.xls');
if ~isunix % Test write to excel to illustrate ability to reread
    xlswrite(fname,tcell,'Sensors');
    sdtweb('_link',sprintf('open(',%s'')',fname))
end
```


Figure 4.11: Typical axis definition of a triax sensor attached to a penta6

It is now possible to generate the experimental setup of the ubeam example described in the previous section by the means of a single cell array containing the data relative to both the trans and triax sensors.

```
model=demosdt('demo ubeam-pro');
cf=feplot; model=cf.mdl;
n8=feutil('getnode NodeId 8',model); % triax pos.
tdof={'lab','SensType','SensId', 'X', 'Y', 'Z','DirSpec';...
    'sensor1 - trans','',1,0.0,0.5,2.5,'Z';
    'sensor2 - triax','',2,n8(:,5),n8(:,6),n8(:,7),'X';
    'sensor2 - triax','',3,n8(:,5),n8(:,6),n8(:,7),'Y';
    'sensor2 - triax','',4,n8(:,5),n8(:,6),n8(:,7),'Z'};
sens=fe_sens('tdoftable',tdof);
cf.mdl=fe_case(cf.mdl,'SensDof','output',sens);
cf.mdl=fe_case(cf.mdl,'SensMatch radius1');
fecom(cf,'curtab Cases','output'); % open sensor GUI
```


4.6.3 Sensor data structure and init commands

This is a reference section on SensDof case entries. A tutorial on the basic configuration with a test wire frame and translation sensors is given in section 2.7. SensDof entries can contain the following

The sens.tdof field declares translation sensors and their directions

- nominally is 5 column matrix with rows containing [SensID NodeID nx ny nz] giving a sensor identifier (integer or real), a node identifier (positive integer, if relevant), a direction.
- can be single column DOF definition vector which can be transformed to 5 column format using tdof $=$ fe_sens('tdof',sens.tdof)
- SensId gives an identifier for each sensor. It should thus be unique and there may be conflicts if it is not.
- NodeId specifies a node identifier for the spatial localization of the sensor. If not needed (resultant sensors for example), NodeId can be set for zero.
NodeId>0 corresponds is for use of model. Node locations and sens.Node should not be defined. NodeId<0 is used to look for the node position in sens.Node rather than model. Node. Mixed definitions (some NodeId positive and other negative) are not supported.
Most initialization calls accept the specification of a physical x y z position, a .verto field is then defined.
- $n x$ ny $n z$ specifies a measurement direction for sensors that need one.

All sensors are generated with the command
fe_case(model,'SensDof <append, combine> Sensor_type',Sensor,data,SensLab)
Sensor is the case entry name to which sensors will be added. data is a structure, a vector, or a matrix, which describes the sensor to be added. The nature of data depends on Sensor_type as detailed below. SensLab is an optional cell array used to define sensor labels. There should be as much elements in SensLab as sensors added. If there is only one string in the cell array SensLab, it is used to generate labels substituting for each sensor \$id by its SensId, \$type by its type (trans, strain ...), $\$ j 1$ by its number in the set currently added. If SensLab is not given, default label generation is \$type_\$id.
In the default mode ('SensDof ' command), new sensors replace any existing ones. In the append mode ('SensDof append'), if a sensor is added with an existing SensID, the SensID of new sensor will changed to a free SensID value. In the combine mode ('SensDof combine'), existing sensor with the same SensID will be replaced by the new one.
rel
Relative displacement sensor or relative force sensor (spring load). Data passed to the command is [NodeID1 NodeID2].

This sensor measures the relative displacement between NodeID1 and NodeID2, along the direction defined from NodeID1 to NodeID2. One can use the command option -dof in order to measure along the defined DOF directions (mandatory if the two nodes are coincident). As many sensors as DOF are then added. For a relative force sensor, on can use the command option -coef to define the associated spring stiffness (sensor value is the product of the relative displacement and the stiffness of the spring).

If some DOF are missing, the sensor will be generated with a warning and a partial observation corresponding to the found DOF only.

The following example defines 3 relative displacement sensors (one in the direction of the two nodes, and two others along x and y):

```
model=demosdt('demo ubeam-pro')
data=[30 372];
model=fe_case(model,'SensDof append rel','output',data);
model=fe_case(model,'SensDof append rel -dof 1 2','output',data);
```


general

General sensors are defined by a linear observation equation. This is a low level definition that should be used for sensors that can't be described otherwise. Data passed to the command is a
structure with field .cta (observation matrix), .DOF DOF associated to the observation matrix, and possibly .lab giving a label for each row of the observation matrix.

The following example defines a general sensor

```
model=demosdt('demo ubeam-pro');
Sensor=struct('cta',[1 -1;0 1],'DOF',[8.03; 9.03]);
model=fe_case(model,'SensDof append general','output',Sensor);
```


trans

Translation sensors (see also section 2.7.2) can be specified by giving
[DOF]
[DOF, BasID]
[SensID, NodeID, nx, ny, nz]
[SensID, $x, y, z, n x, n y, n z]$
This is often used with wire frames, see section 2.7.2. The definition of test sensors is given in section 3.1.1.

The basic case is the measurement of a translation corresponding the main directions of a coordinate system. The DOF format (1.02 for $1 y$, see section 7.5) can then be simply used, the DOF values are used as is then used as SensID. Note that this form is also acceptable to define sensors for other DOFs (rotation, temperature, ...).

A number of software packages use local coordinate systems rather than a direction to define sensors. SDT provides compatibility as follows.

If model.bas contains local coordinate systems and deformations are given in the global frame (DID in column 3 of model. Node is zero), the directions $n x$ ny nz (sens.tdof columns 3 to 5) must reflect local definitions. A call giving [DOF, BasID] defines the sensor direction in the main directions of basis BasID and the sensor direction is adjusted.
If FEM results are given in local coordinates, you should not specify a basis for the sensor definition, the directions nx ny nz (sens.tdof columns 3 to 5) should be $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right], \ldots$ as obtained with a simple [DOF] argument in the sensor definition call.

When specifying a BasId, it the sensor direction nx ny nz is adjusted and given in global FEM coordinates. Observation should thus be made using FEM deformations in global coordinates (with a DID set to zero). If your FEM results are given in local coordinates, you should not specify a basis for the sensor definition. You can also perform the local to global transformation with

```
cGL= basis('trans E',model.bas,model.node,def.DOF)
def.def=cGL*def.def
```

The last two input forms specify location as x y z or NodeID, and direction $\mathrm{nx} n \mathrm{ny} \mathrm{nz}$ (this vector need not be normalized, sensor value is the scalar product of the direction vector and the displacement vector).

One can add multiple sensors in a single call fe_case(model, 'SensDof <append> trans', Name, Sensor) when rows of sensors contain sensor entries of the same form.

Following example defines a translation sensor using each of the forms

```
model=demosdt('demo ubeam-pro')
model.bas=basis('rotate',[],'r=30;n=[\begin{array}{lll}{0}&{1}&{1]',100);}\end{array},\mp@code{l}
model=fe_case(model,'SensDof append trans','output',...
    [1,0.0,0.5,2.5,0.0,0.0,1.0]);
model=fe_case(model,'SensDof append trans','output',...
    [2,8,-1.0,0.0,0.0]);
model=fe_case(model,'SensDof append trans','output',...
    [314.03]);
model=fe_case(model,'SensDof append trans','output',...
    [324.03 100]);
cf=feplot;cf.sel(2)='-output';cf.o(1)={'sel2 ty 7','linewidth',2};
```

Sens.Stack entries for translation can use the following fields

```
.vert0 physical position in global coordinates.
.ID
.match
physical position in global coordinates.
NodeId for physical position. Positive if a model node, negative if SensDof entry node.
.match
cell array describing how the corresponding sensor is matched to the reference model. Columns are ElemF, elt,rstj, StickNode.
```

dof
One can simply define a set of sensors along model DOFs with a direct SensDof call model=fe_case(model, 'SensDof' , 'SensDofName',DofList). There is no need in that case to pass through SensMatch step in order to get observation matrix.

```
model=demosdt('demo ubeam-pro')
model=fe_case(model,'SensDof','output', [1.01;2.03;10.01]);
Sens=fe_case(model,'sens','output')
```

```
triax, laser
```

A triax is the same as defining 3 translation sensors, in each of the 3 translation DOF ($0.01,0.02$ and 0.03) of a node. Use fe_case (model, 'SensDof append triax', Name, NodeId) with a vector NodeId to add multiple triaxes. A positive NodeId refers to a FEM node, while a negative refers to a wire frame node.

For scanning laser vibrometer tests
fe_sens('laser $p x$ py $p z^{\prime}$,model, SightNodes,'SensDofName')
appends translation sensors based on line of sight direction from the laser scanner position $p x \quad p y p z$ to the measurement nodes SightNodes. Sighted nodes can be specified as a standard node matrix or using a node selection command such as 'NodeId>1000 \& NodeId<1100' or also giving a vector of NodeId. If a test wire frame exists in the SensDofName entry, node selection command or NodeId list are defined in this model. If you want to flip the measurement direction, use a call of the form

```
cf.CStack{'output'}.tdof(:,3:5)=-cf.CStack{'output'}.tdof(:,3:5)
```

The following example defines some laser sensors, using a test wire frame:

```
cf=demosdt('demo gartfeplot'); model=cf.mdl;% load FEM
TEST=demosdt('demo garttewire'); % see sdtweb('pre#presen')
TEST.tdof=[];%Define test wire frame, but start with no tdof
model=fe_case(model,'SensDof ','test',TEST)
model=fe_case(model,'SensDof Append Triax','test',-TEST.Node(1))
% Add sensors on TEST wire frame location
model=fe_sens('laser 0 0 6',model,-TEST.Node(2:end,1),'test');
% Show result
fecom('curtab Cases','output'); fecom('proviewon');
```

To add a sensor on FEM node you would use model=fe_sens ('laser 006 ', model, 20, 'test'); but this is not possible here because SensDof entries do not support mixed definitions on test and FEM nodes.

```
strain,stress
```

Note that an extended version of this functionality is now discussed in section 4.7. Strain sensors can be specified by giving
[SensID, NodeID]
[SensID, x, y, z]
[SensID, NodeID, n1x, n1y, n1z]
[SensID, $x, y, z, n 1 x, n 1 y, n 1 z]$
[SensID, NodeID, n1x, n1y, n1z, n2x, n2y, n2z]
[SensID, $x, y, z, n 1 x, ~ n 1 y, ~ n 1 z, ~ n 2 x, ~ n 2 y, ~ n 2 z] ~$
when no direction is specified 6 sensors are added for stress/strains in the $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{yz}, \mathrm{zx}$, and xy directions (SensId is incremented by steps of 1). With n1x n1y n1z (this vector need not be normalized) on measures the axial strain in this direction. For shear, one specifies a second direction n 2 x n 2 y n 2 z (this vector need not be normalized) (if not given n_{2} is taken equal to n_{1}). The sensor value is given by $\left\{n_{2}\right\}^{T}[\epsilon]\left\{n_{1}\right\}$.
Sensor can also be a matrix if all rows are of the same type. Then, one can add a set of sensors with a single call to the fe_case (model, 'SensDof <append> strain', Name, Sensor) command.

Following example defines a strain sensor with each possible way:

```
model=demosdt('demo ubeam-pro')
model=fe_case(model,'SensDof append strain','output',...
    [4,0.0,0.5,2.5,0.0,0.0,1.0]);
model=fe_case(model,'SensDof append strain','output',...
    [6,134,0.5,0.5,0.5]);
model=fe_case(model,'SensDof append strain','output',...
    [5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);
model=fe_case(model,'SensDof append strain','output',...
    [7,370,0.0,0.0,1.0,0.0,1.0,0.0]);
```

Stress sensor.
It is the same as the strain sensor. The sensor value is given by $\left\{n_{2}\right\}^{T}[\sigma]\left\{n_{1}\right\}$.
Following example defines a stress sensor with each possible way:

```
model=demosdt('demo ubeam-pro')
model=fe_case(model,'SensDof append stress','output',...
    [4,0.0,0.5,2.5,0.0,0.0,1.0]);
model=fe_case(model,'SensDof append stress','output',...
    [6,134,0.5,0.5,0.5]);
model=fe_case(model,'SensDof append stress','output',...
    [5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);
model=fe_case(model,'SensDof append stress','output',...
    [7,370,0.0,0.0,1.0,0.0,1.0,0.0]);
```

Element formulations (see section 6.1) include definitions of fields and their derivatives that are strain/stress in mechanical applications and similar quantities otherwise. The general formula is $\{\epsilon\}=[B(r, s, t)]\{q\}$. These (generalized) strain vectors are defined for all points of a volume and the default is to use an exact evaluation at the location of the sensor.

In practice, the generalized strains are more accurately predicted at integration points. Placing the sensor arbitrarily can generate some inaccuracy (for example stress and strains are discontinuous across element boundaries two nearby sensors might give different results). The -stick option can be used to for placement at specific gauss points. -stick by itself forces placement of the sensor and the center of the matching element. This will typically be a more appropriate location to evaluate stresses or strains.

To allow arbitrary positioning some level of reinterpolation is needed. The procedure is then to evaluate strain/stresses at Gauss points and use shape functions for reinterpolation. The process must however involve multiple elements to limit interelement discontinuities. This procedure is currently implemented through the fe_caseg('StressCut') command, as detailed in section 4.7.

resultant

Resultant sensors measure the resultant force on a given surface. Note that the observation of resultant fields is discussed in section 4.7.3. They can be specified by giving a structure with fields

```
.ID sensor ID.
.EltSel FindElt command that gives the elements concerned by the resultant.
.SurfSel FindNode command that gives the surface where the resultant is computed.
.dir with 3 components direction of resultant measurement, with 6 origin and direction of
    resulting moment in global coordinates. This vector need not be normalized (scalar
    product). For non-mechanical DOF, .dir can be a scalar DOF ( . }21\mathrm{ for electric field
    for example)
.type contains the string 'resultant'.
```

Following example defines a resultant sensor:

```
model=demosdt('demo ubeam-pro')
Sensor.ID=1;
Sensor.EltSel='WithNode{z==1.25} & WithNode{z>1.25}';
Sensor.SurfSel='z==1.25';
Sensor.dir=[0.0 0.0 1.0];
Sensor.type='resultant';
model=fe_case(model,'SensDof append resultant','output',Sensor);
```

Resultant sensors are not yet available for superelements model.

4.6.4 Topology correlation and observation matrix

This command is used after SensMatch to build the observation equation that relates the response at sensors to the response a DOFs

$$
\begin{equation*}
\{y(t)\}_{N S \times 1}=[c]_{N S \times N}\{q(t)\}_{N \times 1} \tag{4.1}
\end{equation*}
$$

where the c matrix in stored in the sens.cta field and DOFs expected for q are given in sens.tdof. After the matching phase, one can build the observation matrix with SensFull=fe_case(model, 'sens', SensDofEntryName) or when using a reduced superelement model SensRed=fe_case(model,'sensSE',SensDofEntryName). Note that with superelements, you can also define a field . UseSE=1 in the sensor entry to force use of the reduced model. This is needed for the generation of reduced selections in feplot (typically cf.sel='-Test').

The following example illustrates nominal strategies to generate the observed shape, here for a static response.

```
model=demosdt('demoUbeamSens'); def=fe_simul('static',model);
% Manual observation, using {y} = [c] {q}
sens=fe_case(model,'sens');
def=feutilb('placeindof',sens.DOF,def); % If DOF numbering differs
% could use sens=feutilb('placeindof',def.DOF,sens); if all DOF present
y=sens.cta*def.def
% Automated curve generation
C1=fe_case('sensObserve',model,'sensor 1',def)
```


SensMatch

Once sensors defined (seetrans, ...), sensors must be matched to elements of the mesh. This is done using

```
model = fe_case(model,'sensmatch',SensDofEntryName);
```

You may omit to provide the name if there is only one sensor set. The command builds the observation matrix associated to each sensor of the entry Name, and stores it as a .cta field, and associated .DOF, in the sensor stack.

Storing information in the stack allows multiple partial matches before generating the global observation matrix. The observation matrix is then obtained using

```
Sens = fe_case(model,'sens',SensDofEntryName);
```

The matching operation requires finding the elements that contain each sensor and the position within the reference element shape so that shape functions can be used to interpolate the response. Typical variants are

- a radius can be specified to modify the default sphere in which a match is sought. This is typically needed in cases some large elements.
model=fe_case(model,'sensmatch radius1.0', Name)
- elements on which to match can be specified as a FindElt string. In particular, matching nodes outside volumes is not accepted. To obtain a match in cases where test nodes are located outside volume elements, you must thus match on the volume surface using fe_case(model,'sensmatch radius1.0', Name,'selface')
which selects external surface of volumes and allows a normal projection towards the surface and thus proper match of sensors outside the model volume.

Note that this selection does not yet let you selected implicit elements within a superelement.

- Matching on elements is not always acceptable, one can then force matching to the closest node. SensMatch-Near uses the motion at the matched node. SensMatch-Rigid uses a rigid body constraints to account for the distance between the matched node and the sensor (but is thus only applicable to cases with rotations defined at the nearby node).

In an automated match, the sensor is not always matched to the correct elements on which the sensor is glued, you may want to ensure that the observation matrices created by these commands only use nodes associated to a subset of elements. You can use a selection to define element subset on which perform the match. If you want to match one or more specific sensors to specific element subset, you can give cell array with SensId of sensor to match in a first column and with element string selector in a second column.

```
model=fe_case(model,'SensMatch',Name,{SensIdVector,'FindEltString'});
```

This is illustrated below in forcing the interpolation of test node 1206 to use FEM nodes in the plane where it is glued.

```
cf=demosdt('demo gartte cor plot');
fe_case(cf,'sensmatch -near')
fecom('curtabCases','sensors');fecom('promodelviewon');
% use fecom CursorSelOn to see how each sensor is matched.
cf.CStack{'sensors'}.Stack{18,3}
% modify link to 1206 to be on proper surface
```

```
cf.mdl=fe_case(cf.mdl,'SensMatch-near',...
    'sensors',{1206.02,'withnode {z>.16}'});
cf.CStack{'sensors'}.Stack{18,3}
% force link to given node (may need to adjust distance)
cf.mdl=fe_case(cf.mdl,'SensMatch-rigid radius .5','sensors',{1205.07,21});
cf.CStack{'sensors'}.Stack{19,3}
fecom('showlinks sensors');fecom('textnode',[1206 1205])
```


DofLoadSensDof

The generation of loads is less general than that of sensors. As a result it may be convenient to use reciprocity to define a load by generating the collocated sensor. When a sensor is defined, and the topology correlation performed with SensMatch, one can define an actuator from this sensor using model=fe_case(model, 'DofLoad SensDof',Input_Name, 'Sens_Name:Sens_Nb') or for model using superelements model=fe_case(model, 'DofLoad SensDofSE',Input_Name, 'Sens_Name:Sens_Nb'). Sens_Name is the name of the sensor set entry in the model stack of the translation sensor that defines the actuator, and Sens_Nb is its number in this stack entry. Thus Sensors:1 25 will define actuators with sensors 1,2 and 5 for SensDof entry Sensors. Input_Name is the name of the DofLoad entry that will be created in the model stack to describe the actuator.

Note that a verification of directions can be performed a posteriori using feutilb GeomRB.

Animation of sensor wire-frame models
This is discussed in section 2.7.3.

Obsolete

SDT 5.3 match strategies are still available. Only the arigid match has not been ported to SDT 6.1. This section thus documents SDT 5.3 match calls.

For topology correlation, the sensor configuration must be stored in the sens.tdof field and active FEM DOFs must be declared in sens.DOF. If you do not have your analysis modeshapes yet, you can use sens.DOF=feutil('getdof', sens.DOF). With these fields and a combined test/FEM model you can estimate test node motion from FEM results. Available interpolations are

- near defines the projection based on a nearest node match.
- rigid defines the projection based on a nearest node match but assumes a rigid body link between the DOFs of the FE model and the test DOFs to obtain the DOF definition vector adof describing DOFs used for FEM results.
- arigid is a variant of the rigid link that estimates rotations based on translations of other nodes. This interpolation is more accurate than rigid for solid elements (since they don't have rotational DOFs) and shells (since the value of drilling rotations is often poorly related to the physical rotation of a small segment).

At each point, you can see which interpolations you are using with
fe_sens('info', sens). Note that when defining test nodes in a local basis, the node selection commands are applied in the global coordinate system.

The interpolations are stored in the sens.cta field. With that information you can predict the response of the FEM model at test nodes. For example

```
[model,def]=demosdt('demo gartte cor');
model=fe_sens('rigid sensors',model); % link sensors to model
% display sensor wire-frame and animate FEM modes
cf=feplot; cf.model=model; cf.sel='-sensors';
cf.def=def;fecom(';undefline;scd.5;ch7')
```


4.7 Stress observation

Observation of stress and resultant fields is an application that requires specific tools for performance. A number of commands are thus available for this purpose. The two main commands arefe_caseg StressCut for generation of the observation and fe_caseg StressObserve for the generation of a curve Multi-dim curve showing observations as a table.

This functionality has been significantly stabilized for SDT 6.5 but improvements and minor format changes are still likely for future releases.

4.7.1 Building view mesh

Stresses can be observed at nodes of arbitrary meshes (view meshes that are very much related to test wireframes). You should look-up feutil('object') commands for ways to build simple shapes. A few alternate model generation calls are provided in fe_caseg StressCut as illustrated below and in the example for resultant sensors.

```
% Build straight line by weighting of two nodes
VIEW=fe_caseg('stresscut', ...
    struct('Origin',[0 0 0;0 0 1], ... % [n1,n2]
    'steps',linspace(0,1,10)))
% Automated build of a cut (works on convex cuts)
model=demosdt('demoubeam-pro');cf=feplot;
R0=struct('Origin',[0 0 .5],'axis',[0 0 1]);
VIEW=fe_caseg('StressCut',RO,cf);
feplot(VIEW) % note problem due to non convex cut
%View at Gauss points
model=demosdt('demoubeam-pro');cf=feplot;
cut=fe_caseg('StressCut-SelOut',struct('type', 'Gauss'),model);
cuts= fe_caseg('stresscutToStrain',cut);
% Observe beam strains at Gauss points
[model,def]=beam1t('testeig')
mo1=fe_caseg('StressCut',struct('type', 'BeamGauss'),model);
cut=fe_caseg('StressCut -radius 10 -SelOut',mo1,model);
C1=fe_caseg('StressObserve -crit""',cut,def) % Observation as CURVE
Generic command is :
VIEW=fe_caseg('StressCut', RO,model);
RO is a data structure defining the view mesh. Different views are available according to RO.type or RO fields:
```

- RO.type='conform' When one wants to define a mesh that is a subpart of the model, there is no need to perform the match step, and the type 'conform' can be used. The selection of the subpart of the model is performed through a FindElt command provided in RO.sel.
- RO.type='gauss' gauss points of the elements. A FindElt command can be provided in RO.sel (if omitted, all Gauss point are computed). For mechanical problems, to obtain the displacement gradient rather than the usual strain set il $(6)=100$.
- RO.type='beamgauss' : gauss points of a beam model.
- Plane cut mesh. RO.Origin and RO.axis must be filled. Cut is done in the plane defined by RO. Origin and RO.axis. If RO.planes is defined, as many planes (orthogonal to axis) as positions from the RO. Origin are defined.
- Cut line : RO.Origin defining line extremities (each row defines an extremity position, 3 columns for X Y and Z) and RO.steps defining the number of observation nodes must be filled.

4.7.2 Building and using a selection for stress observation

The first use of StressCut is to build a feplot selection to be used to view/animate stress fields on the view mesh. A basic example is shown below.

```
% build model
model=demosdt('volbeam');cf=feplot(model);
% build view mesh
VIEW=fe_caseg('stresscut', ...
    struct('Origin',[0 .05 .05;1 .05 .05], ... % [n1,n2]
    'steps',linspace(1,0,10)))
% build stress cut view selection
sel=fe_caseg('stresscut -selout',VIEW,cf);cla(cf.ga);feplot % generation observation
cf.def=fe_eig(model,[5 10 0]);
fe_caseg('stresscut',sel,cf) % Overlay view and nominal mesh
fecom('scc2') % Force equal scaling
```

The result of StressCut is found in sel.StressObs.cta which is an observation matrix giving the linear relation between motion at DOF of the elements connected to target points, to stress components at these target points. The procedure used to build this observation matrix in fe_caseg is as follows

- match desired nodes to the interior of elements and keep the resulting element coordinates. One then adds to the selected element set, one layer of elements with the same material and property ID (all elements that have one node in common with the matched elements);
- generate stress observation at Gauss points of the selected elements;
- for each stress component compute the stress at nodes that would lead to the same values at Gauss points. In other words one resolves

$$
\begin{equation*}
\sum_{g}\left(w_{g} J_{g}\left\{N_{i}(g)\right\}^{T}\left\{N_{j}(g)\right\} \sigma_{j}\right)=\sum_{g}\left(w_{g} J_{g}\left\{N_{i}(g)\right\}^{T} \sigma_{g}\right) \tag{4.2}
\end{equation*}
$$

- finally use the element shape functions to interpolate each stress component from nodal values to values at the desired points using element coordinates found at the first step.

Note that typically, a sel.StressObs.trans field gives the observation matrix associated with translations at the target points to allow animation of positions as well as colors.

4.7.3 Observing resultant fields

StressCut sensors provide stress post-treatments in model cutoffs. The command interprets a data structure with fields

```
.EltSel FindElt command that gives the elements concerned by the resultant.
.SurfSel FindNode command that gives the selection where the resultant is computed.
.type contains the string 'resultant'.
```

Following example defines a StressCut call to show modal stresses in an internal surface of a volumic model

```
demosdt('demoubeam')
cf=feplot;fecom('showpatch')
cf.mdl=feutil('lin2quad',cf.mdl); % better stress interpolation
def=fe_eig(cf.mdl,[5 10 1e3]);
cf.def=def;
r1=struct('EltSel','withnode {z<2}', ...
    'SurfSel','inelt{innode{z==2}}', ...
    'type','Resultant');
fe_caseg('stresscut',r1,cf);
% adapt transparencies
fecom(cf,'SetProp sel(1).fsProp','FaceAlpha',0.01,'EdgeAlpha',0.2);
```

The observation in feplot is performed on the fly, with data stored in cf.sel(2).StressObs (for the latter example).

Command option -SelOut allows recovering the observation data. Field .cta is here compatible with general sensors, for customized observation.
cta=fe_caseg('StressCut-SelOut',r1,cf);

4.8 Computing/post-processing the response

4.8.1 Simulate GUI

Access to standard solvers is provided through the Simulate tab of the Model properties figure. Experienced users will typically use the command line equivalent to these tabs as detailed in the following sections.

Figure 4.12: Simulation properties tab.

4.8.2 Static responses

The computation of the response to static loads is a typical problem. Once loads and boundary conditions are defined in a case as shown in previous sections, the static response may be computed using the fe_simul function.
This is an example of the 3D beam subjected to various type of loads (points, surface and volume loads) and clamped at its base:

```
model=demosdt('demo ubeam vol'); % Initialize a test
def=fe_simul('static',model');% Compute static response
cf=feplot; cf.def=def;% post-process
cf.sel={'Groupall', 'ColorDataStressMises'}
```

Low level calls may also be used. For this purpose it is generally simpler to create system matrices that incorporate the boundary conditions.
fe_c (for point loads) and fe_load (for distributed loads) can then be used to define unit loads (input shape matrix using $S D T$ terminology). For example, a unit vertical input (DOF .02) on node 6 can be simply created by

```
model=demosdt('demo2bay'); Case=fe_case(model,'gett'); %init
% Compute point load
b = fe_c(Case.DOF,[6.02],1)';
```

In many cases the static response can be computed using Static=kr $\backslash \mathrm{b}$. For very large models, you will prefer

```
kd=ofact(k); Static = kd\b; ofact('clear',kd);
```

For repeated solutions with the same factored stiffness, you should build the factored stiffness $k d=o f a c t(k)$ and then Static $=k d \backslash b$ as many times are needed. Note thatfe_eigcan return the stiffness that was used when computing modes (when using methods without DOF renumbering).

For models with rigid body modes or DOFs with no stiffness contribution (this happens when setting certain element properties to zero), the user interface function fe_reduc gives you the appropriate result in a more robust and yet computationally efficient manner

```
Static = fe_reduc('flex',m,k,mdof,b);
```


4.8.3 Normal modes (partial eigenvalue solution)

fe_eig computes mass normalized normal modes.
The simple call def=fe_eig (model) should only be used for very small models (below 100 DOF). In other cases you will typically only want a partial solution. A typical call would have the form

```
model = demosdt('demo ubeam plot');
cf.def=fe_eig(model,[6 12 0]); % 12 modes with method 6
fecom('colordata stress mises')
```

You should read the fe_eig reference section to understand the qualities and limitations of the various algorithms for partial eigenvalue solutions.

You can also load normal modes computed using a finite element package (see section 4.3.2). If the finite element package does not provide mass normalized modes, but a diagonal matrix of generalized masses mu (also called modal masses). Mass normalized modeshapes will be obtained using

```
ModeNorm = ModeIn * diag( diag(mu).^(-1/2) );
```

If a mass matrix is given, an alternative is to use mode $=f e _n o r m$ (mode, m). When both mass and stiffness are given, a Ritz analysis for the complete problem is obtained using [mode,freq] = fe_norm (mode,m,k).

Note that loading modes with in ASCII format 8 digits is usually sufficient for good accuracy whereas the same precision is very often insufficient for model matrices (particularly the stiffness).

4.8.4 State space and other modal models

A typical application of $S D T$ is the creation of input/output models in the normal mode nor, state space ss or FRF xf form. (The SDT does not replicate existing functions for time response generation such as lsim of the Control Toolbox which creates time responses using a model in the state-space form).

The creation of such models combines two steps creation of a modal or enriched modal basis; building of input/output model given a set of inputs and outputs.

As detailed in section 4.8.3 a modal basis can be obtained with fe_eig or loaded from an external FEM package. Inputs and outputs are easily handled using case entries corresponding to loads (DofLoad, DofSet, FVol, FSurf) and sensors (SensDof).

Figure 4.13: Truss example.

For the two bay truss examples shown above, the following script defines a load as the relative force between nodes 1 and 3 , and translation sensors at nodes 5 and 6

```
model=demosdt('demo2bay');
DEF=fe_eig(model,[2 5]); % compute 5 modes
% Define loads and sensors
Load=struct('DOF', [3.01;1.01],'def' , [1;-1]);
Case=fe_case('DofLoad','Relative load',Load, ...
    'SensDof','Tip sensors',[5.01;6.02]);
% Compute FRF and display
w=linspace(80, 240, 200)';
nor2xf(DEF,.01,Case,w,'hz iiplot "Main" -reset');
```

You can easily obtain velocity or acceleration responses using

```
xf=nor2xf(DEF,.01,Case,w,'hz vel plot');
xf=nor2xf(DEF,.01,Case,w,'hz acc plot');
```


Figure 4.14: FRF synthesis : with and without static correction.

As detailed in section 6.2.3, it is desirable to introduce a static correction for each input. fe2ss builds on fe_reduc to provide optimized solutions where you compute both modes and static corrections in a single call and return a state-space (or normal mode model) and associated reduction basis. Thus

```
model=demosdt('demo ubeam sens -pro');
model=stack_set(model,'info','Freq',linspace(10,1e3,500)');
model=stack_set(model,'info','DefaultZeta',.01);
[SYS,T]=fe2ss('free 6 10',model); %ii_pof(eig(SYS.a),3)
qbode(SYS,linspace(10,1e3,1500)'*2*pi,'iiplot "Initial" -reset');
nor2xf(T, [.04],model,'hz iiplot "Damped" -po');
```

computes 10 modes using a full solution (Eigopt=[lllll $\left.\begin{array}{lll}6 & 10 & 0\end{array}\right]$), appends the static response to the defined loads, and builds the state-space model corresponding to modal truncation with static correction (see section 6.2.3). Note that the load and sensor definitions where now added to the case in model since that case also contains boundary condition definitions which are needed in fe2ss.

The different functions using normal mode models support further model truncation. For example, to create a model retaining the first four modes, one can use

```
model=demosdt('demo2bay');
DEF=fe_eig(model,[2 12]); % compute 12 modes
Case=fe_case('DofLoad','Horizontal load',3.01, ...
    'SensDof','Tip sensors',[5.01;6.02]);
SYS =nor2ss(DEF,.01,Case,1:4);
ii_pof(eig(SYS.a)/2/pi,3) % Frequency (Hz), damping
```

A static correction for the displacement contribution of truncated modes is automatically introduced in the form of a non-zero d term. When considering velocity outputs, the accuracy of this model can be improved using static correction modes instead of the d term. Static correction modes are added if a roll-off frequency $f c$ is specified (this frequency should be a decade above the last retained mode and can be replaced by a set of frequencies)

```
SYS =nor2ss(DEF,.01,Case,1:4,[2e3 .2]);
ii_pof(eig(SYS.a)/2/pi,3,1) % Frequency (Hz), damping
```

Note that nor2xf always introduces a static correction for both displacement and velocity.
For damping, you can use uniform modal damping (a single damping ration damp=. 01 for example), non uniform modal damping (a damping ratio vector damp), non-proportional modal damping (square matrix ga), or hysteretic (complex DEF.data). This is illustrated in demo_fe.

4.8.5 Viewing shapes, stress, energy, ...

NEED TO INTRODUCE PROPER REFERENCES XXX

4.8.6 Time computation

To perform a full order model time integration, one needs to have a model, a load and a curve describing time evolution of the load.

```
% define model and load
model=fe_time('demo bar');fe_case(model,'info')
% Define curves stack (time integration curve will be chosen later):
% - step with ones from t=0 to t=1e-3, 0 after :
model=fe_curve(model,'set','input','TestStep t1=1e-3');
% - ramp from t=.1 to t=2 with final value 1.1;
model=fe_curve(model,'set','ramp','TestRamp t0=.1 tf=2 Yf=1.1');
% - Ricker curve from t=0 to t=1e-3 with max amplitude value 1:
model=fe_curve(model,'set','ricker','TestRicker t0=0 dt=1e-3 A=1');
% - Sinus (with evaluated string depending on t time vector) :
model=fe_curve(model,'set','sinus',...
    'Test eval sin(2*pi*1000*t)');
% - Another sinus definition, explicit curve (with time vector,
% it will be interpolated during the time integration if needed)
model=fe_curve(model,'set','sinus2',...
    struct('X',linspace(0,100,10)',...
```

```
    'Y',sin(linspace(0,100,10)'))); % tabulated
% - Have load named 'Point load 1' reference 'input'
% curve (one can choose any of the model stack
% curve from it stack entry name) :
model=fe_case(model,'SetCurve','Point load 1','input');
cf=feplot(model) % plot the model
```

Once model is plotted in feplot one can edit each curve under the model properties Stack tab. Parameters can be modified. Curve can be plotted in iiplot using the Show pop-up button. One has to define the number of steps (NStep) and the total time to be displayed (Tf) and click Using NStep \& Tf. One can also display curve on the info TimeOpt time options by clicking on Using TimeOpt.

Figure 4.15: GUI associated to a curve

One can change the curve associated to the load in the Case tab.

```
% Define time computation options : dt=1e-4, 100 time steps
cf.Stack{'info','TimeOpt'}=...
    fe_time('timeopt newmark . 25 . 5 0 1e-4 100');
% Compute and store/display in feplot :
cf.def=fe_time(cf.mdl);
figure;plot(cf.def.data,cf.def.def(cf.def.DOF==2.01,:)); % show 2.01 result
```

Time domain responses can also be obtained by inverse transform of frequency responses as illustrated in the following example

```
model=demosdt('demo ubeam sens');DEF=fe_eig(model,[5 10 1e3]);
w=linspace(0,600,6000)'; % define frequencies
R1=nor2xf(DEF,.001,model,w,'hz struct'); % compute freq resp.
R2=ii_mmif('ifft -struct',R1);R2.name='time'; % compute time resp.
iiplot(R2);iicom(';sub 1 1 1 1 3;ylin'); % display
```


4.8.7 Manipulating large finite element models

The flexibility given by the MatLab language comes at a price for large finite element computations. The two main bottlenecks are model assembly and matrix inversion (static and modal computations).

During assembly compiled elements provided with OpenFEM allow much faster element matrix evaluations (since these steps are loop intensive they are hard to optimize in MatLab). The sp_util. mex function alleviates element matrix assembly and large matrix manipulation problems (at the cost of doing some very dirty tricks like modifying input arguments).

Starting with SDT 6.1, model. Dbfile can be defined to let SDT know that the file can be used as a database. In particular optimized assembly calls (see section 4.8.8) make use of this functionality. The database is a .mat file that uses the HDF5 format defined for MATLAB versions over 7.3.

For matrix inversion, the ofact object allows method selection. Currently the easiest to use solver (and default ofact method) is the multi-frontal sparse solver spfmex. For very large models it is recommended to use mklserv_utils (an implementation of IntelMKL pardiso solver), the spfmex solver will perform perform poorly mainly because its current implementation is not parallelized. These solvers automatically perform equation reordering so this needs not be done elsewhere. They do not use the Matlab memory stack which is more efficient for large problems but requires ofact('clear') calls to free memory associated with a given factor.

With other static solvers, that should be used only for very specific cases, (MATLAB lu or chol, or $S D T$ true skyline sp_util method) you need to pay attention to equation renumbering. When assembling large models, fe_mk (obsolete compared to fe_mknl) will automatically renumber DOFs to minimize matrix bandwidth (for partial backward compatibility automatic renumbering is only done above 1000 DOF).

As SDT is an in-core oriented program, the real limitation on size is linked to performance drops when swapping. If the factored matrix size exceeds physical memory available to Matlab in your computer, performance tends to decrease drastically. The model size at which this limit is found is
very much model/computer dependent. It has to be noted that the most recent linux distributions (Kernel versions 4.4 and above) handle swapping quite well for large amounts of memory.

Memory management can be optimized to some extent in SDT with dedicated preferences. There is a distinction between blockwise in-core operations, where an intensive operation is performed by blocks to avoid large memory duplications, and out-of-core operations where data is written on disc to unload RAM and intensive operations involve reading file buffers and writing results buffers to temporary files. The following SDT preferences are available (they should be set by sdtdef command)

- BlasBufSize in GB, provides a block size for in-core operations, mainly matrix products with large bases, used by fe_eig, fe_norm, feutilb.
- EigOOC in GB provides a global vector basis size to trigger out-of-core operations. If a vector basis size is estimated over the specified value, it will be written to disc, used by fe_eig, fe_reduc, fe_cyclic.
- OutOfCoreBufferSize in MB provides a buffer size for out-of-core and file database operations. File database operations are common in FEMLink while handling results files. It is common not to load large files in memory. This buffer provides the amount of RAM that will still be used while in out-of-core mode, so this one should remain reasonable, and at least 10 times smaller than the EigOOC value.
- KiKeMemSize in MB provides a buffer size for out-of-core matrix assemblies, this is mostly used when exploiting FEMLink results files with matrices.
- MklServOOC a 1x2 line with [OOC_Mode MemSize(GB)]. Specific to the mklserv_utils solver with ofact allows specifying the out-of-core mode of the Pardiso solver and the associated memory threshold. OOC_Mode can take values 0 to force in-core, 2 to force out-of-core, and 1 to let the solver decide depending on MemSize. MemSize in GB is the total amount of RAM available for the solver, if the estimated factor size overcomes this value, the out-of-core mode is triggered. Beware that the solver will still need a fair amount of RAM to work, so that MemSize cannot be too small.
- MklServBufSize in GB provides a right hand size block size for in-core resolution with the mklserv_utils solver. An optimum exists around 1 GB for reasonable workstations.
fe_eig, method 6 (IRA/Sorensen) uses low level BLAS code and thus tends to have the best memory performance for eigenvalue computations.

For batch computations (in nodesktop mode) you may want to run Matlab with the -nojvm option turned on since it increases the memory addressable by Matlab(version $i=6.5$).

For out-of-core operations (supported by fe_mk, upcom, nasread and other functions). SDT creates temporary files whose names are generated with nas2up('tempnameExt'). You may need to set
sdtdef('tempdir', 'your_dir') to an appropriate location. The directory should be located on a local disk or a high speed disk array. If you have a RAID array or FLASH array, use a directory there.

4.8.8 Optimized assembly strategies

The handling of large models, often requires careful sequencing of assembly operations. While fe_mknl, fe_load, and fe_case, can be used for user defined procedures, SDT operations typically use the an internal (closed source) assembly call to fe_case Assemble . Illustrations of most calls can be found in fe_simul.
[k,mdl,Case,Load]=fe_case(mdl,'assemble matdes 1 NoT loadback',Case); return the stiffness without constraint elimination and evaluates loads.
[SE,Case,Load,Sens]=fe_case(mdl,' assemble -matdes 2134 -SE NoTload Sens') returns desired matrices in SE.K, the associated case, load and sensors (as requested in the arguments).

Accepted command options for the assemble call are

- -fetime forces the nominal assembly using mass, viscous damping and stiffness, output in this order: 23 1. If a reduced model is defined as an SE, MVR, the assembly is shortcut to output MVR as the assembled model, and MVR. Case as the Case. If the field . Case is absent, the case stacked in the base model is output.
- -reset forces reassembly even if the . K field is defined and filled.
- keep retains model.DOF even if some DOF are unused.
- load requires load assembly and output.
- sens requires sensor assembly and output.
- GetT outputs a struct containing Case.Stack, Case.T and Case.DOF.
- NoT is the usual option to prevent constraint elimination (computation of $T^{T} K T$). With NoT DOFs are given in model.DOF or Case.mDOF. Without the option they are consistent with Case. DOF.
- -MatDes specifies the list of desired matrices. Basic types are 2 for mass and 1 for stiffness, for a complete list see MatType.
- -1 is used separate matrices associated with parameters (see upcom Par)
- -1.1 removes the subparameters from the nominal matrix.
- -2 is used to obtain matrices associated with assembled superelements with a split based on the matrix labels (.Klab) only. Matrices with common labels through SE are thus assembled together. With a model having only SE, all matrices found in all SE are assembled. When the model combines SE and standard elements, the non SE elements are integrated in the first matrix of each type. To avoid this behavior specify a matrix type $1, \ldots$ where all SE and non SE elements will be assembled, then followed by SE only matrices by labels. Note that this strategy only works with a single matrix type at a time. Possibly defined matrix coefficients with a p_super entry are not taken into account in the SE specific matrix types.
- - 2. 1 performs the same task than -2 but accounting for p_super based SE matrix coefficients.
- 5 (geometric stiffness) uses a predefined deformation stored as stack entry 'curve' , 'StaticState'. Furthermore, the internal load is computed and added to returned loads.
- InitFcn allows pre-emptive behavior at the beginning of assembly. ExitFcn does the same at exit.
- -SE returns the assembled result as a superelement structure. One can use -SeCDof (superelement Case DOF) to fill .DOF field with constrained DOF (Case.DOF).
- -cell sets the first output as a cell array containing all assembled matrices.
- -cfield keeps the Case.MatGraph to allow further reassembly.

4 FEM tutorial

Structural dynamic concepts

5.1 I/O shape matrices 200
5.2 Normal mode models 202
5.3 Damping 203
5.3.1 Viscous damping in the normal mode model form 203
5.3.2 Viscous damping in finite element models 205
5.3.3 Hysteretic damping in finite element models 206
$5.4 \quad$ State space models 209
5.5 Complex mode models 210
5.6 Pole/residue models 212
5.7 Parametric transfer function 214
5.8 Non-parametric transfer function 214

This theoretical chapter is intended as a reference for the fundamental notions and associated variables used throughout the $S D T$. This piece of information is grouped here and hypertext reference is given in the HTML version of the manual.
Models of dynamic systems are used for identification phases and links with control applications supported by other Matlab toolboxes and Simulink. Key concepts and variables are

b, c	input/output shape matrices ($\mathrm{b}, \mathrm{c}, \mathrm{pb}, \mathrm{cp}$ variables)
nor	normal mode models (freq, damp, cp, pb variables)
damp	damping for full and reduced models
Cpx	complex mode models (lambda, psi variables)
res	pole/residue model (res, po variables)
SS	state space model ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ variables)
tf	parametric transfer function (num, den variables)
xf	non-parametric transfer function (w, xf variables)

5.1 I/O shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a product $\{F\}_{q}=$ [b] $\{u(t)\}$ where

- the input shape matrix $[b]$ is time invariant and characterizes spatial properties of the applied forces
- the vector of inputs $\{u\}$ allows the description of the time/frequency properties.

Similarly it is assumed that the outputs $\{y\}$ (displacements but also strains, stresses, etc.) are linearly related to the model coordinates $\{q\}$ through the sensor output shape matrix $(\{y\}=$ $[c]\{q\})$.

Input and output shape matrices are typically generated with fe_c or fe_load. Understanding what they represent and how they are transformed when model DOFs/states are changed is essential.

Linear mechanical models take the general forms

$$
\begin{gather*}
{\left[M s^{2}+C s+K\right]_{N \times N}\{q(s)\}=[b]_{N \times N A}\{u(s)\}_{N A \times 1}} \tag{5.1}\\
\{y(s)\}_{N S \times 1}=[c]_{N S \times N}\{q(s)\}_{N \times 1}
\end{gather*}
$$

in the frequency domain (with $Z(s)=M s^{2}+C s+K$), and

$$
\begin{gather*}
{[M]\left\{q^{\prime \prime}\right\}+[C]\left\{q^{\prime}\right\}+[K]\{q\}=[b]\{u(t)\}} \tag{5.2}\\
\{y(t)\}=[c]\{q(t)\}
\end{gather*}
$$

in the time domain.
In the model form (5.1), the first set of equations describes the evolution of $\{q\}$. The components of q are called Degrees Of Freedom (DOFs) by mechanical engineers and states in control theory. The second observation equation is rarely considered by mechanical engineers (hopefully the SDT may change this). The purpose of this distinction is to lead to the block diagram representation of the structural dynamics

which is very useful for applications in both control and mechanics.
In the simplest case of a point force input at a DOF q_{l}, the input shape matrix is equal to zero except for DOF l where it takes the value 1

$$
\left[b_{l}\right]=\left[\begin{array}{c}
\vdots \tag{5.3}\\
0 \\
1 \\
0 \\
\vdots
\end{array}\right] \leftarrow l
$$

Since $\left\{q_{l}\right\}=\left[b_{l}\right]^{T}\{q\}$, the transpose this Boolean input shape matrix is often called a localization matrix. Boolean input/output shape matrices are easily generated by fe_c (see the section on DOF selection page 292.

Input/output shape matrices become really useful when not Boolean. For applications considered in the $S D T$ they are key to

- distributed FEM loads, see fe_load
- test analysis correlation. Since you often have measurements that do not directly correspond to DOFs (accelerations in non global directions at positions that do not correspond to finite element nodes, see section 2.7.2).
- model reduction. To allow the changes to the DOFs q while retaining the physical meaning of the I/O relation between $\{u\}$ and $\{y\}$ (see section 6.2).

5.2 Normal mode models

The spectral decomposition is a key notion for the resolution of linear differential equations and the characterization of system dynamics. Predictions of the vibrations of structures are typically done for linear elastic structures or, for non-linear cases, refer to an underlying tangent elastic model.

Spectral decomposition applied to elastic structures leads to modal analysis. The main objective is to correctly represent low frequency dynamics by a low order model whose size is typically orders of magnitude smaller than that of the finite element model of an industrial structure.

The use of normal modes defined by the spectral decomposition of the elastic model and corrections (to account for the restricted frequency range of the model) is fundamental in modal analysis.

Associated models are used in the normal mode model format

$$
\begin{gather*}
{\left[[I] s^{2}+[\Gamma] s+\left[\Omega^{2}\right]\right]\{p(s)\}=\left[\phi^{T} b\right]\{u(s)\}} \tag{5.4}\\
\{y(s)\}=[c \phi]\{p(s)\}
\end{gather*}
$$

where the modal masses (see details below) are assumed to be unity.
Thenor2res, nor2ss, and nor2xf functions are mostly based on this model form (seenor2ss theory section). They thus support a low level entry format with four arguments
om modal stiffness matrix Ω^{2}. In place of a full modal stiffness matrix om, a vector of modal frequencies freq is generally used (in rad/s if Hz is not specified in the type string). It is then assumed that om=diag (freq. ${ }^{\wedge} 2$). om can be complex for models with structural damping (see the section on damping page 203).
ga modal damping matrix Γ (viscous). damping ratios damp corresponding to the modal frequencies freq are often used instead of the modal damping matrix ga (damp cannot be used with a full om matrix). If damp is a vector of the same size as freq, it is then assumed that ga=diag ($2 *$ freq. $*$ damp). If damp is a scalar, it is assumed that ga= $2 * \operatorname{damp} * \operatorname{diag}$ (freq). The application of these models is discussed in the section on damping page 203).
$\mathrm{pb} \quad$ modal input matrix $\left\{\phi_{j}\right\}^{T}[b]$ (input shape matrix associated to the use of modal coordinates).
$\mathrm{cp} \quad$ modal output matrix $[c]\left\{\phi_{j}\right\}$ (output shape matrix associated to the use of modal coordinates).
Higher level calls, use a data structure with the following fields

```
.freq frequencies (units given by .fsc field, 2*pi for Hz). This field may be empty if a non
    diagonal nor.om is defined.
.om alternate definition for a non diagonal reduced stiffness. Nominally om contains
    diag(freq.`2).
.damp modal damping ratio. Can be a scalar or a vector giving the damping ratio for each
    frequency in nor.freq.
.ga alternate definition for a non diagonal reduced viscous damping.
.pb input shape matrix associated with the generalized coordinates in which nor.om and
    nor.ga are defined.
.cp
.dof_in A six column matrix where each row describes a load by [SensID NodeID nx ny nz
    Type] giving a sensor identifier (integer or real), a node identifier (positive integer),
    the projection of the measurement direction on the global axes (if relevant), a Type.
.lab_in A cell array of string labels associated with each input.
.dof_out A six column matrix describing outputs following the .dof_in format.
.lab_out A cell array of string labels associated with each output.
```

General load and sensor definitions are then supported using cases (see section 4.5.3).
Transformations to other model formats are provided using nor2ss (state-space model), nor2xf (FRFs associated to the model in the xf format), and nor2res (complex residue model in the res format). The use of these functions is demonstrated in demo_fe.

Transformations from other model formats are provided by fe2ss, fe_eig fe_norm ... (from full order finite element model), id_nor and res2nor (from experimentally identified pole/residue model).

5.3 Damping

Models used to represent dissipation at the local material level and at the global system level should typically be different. Simple viscous behavior is very often not appropriate to describe material damping while a viscous model is appropriate in the normal mode model format (see details in Ref. [27). This section discusses typical damping models and discusses how piece-wise Rayleigh damping is implemented in SDT.

5.3.1 Viscous damping in the normal mode model form

In the normal mode form, viscous damping is represented by the modal damping matrix Γ which is
typically used to represent all the dissipation effects at the system level.
Models with modal damping assume that a diagonal Γ is sufficient to represent dissipation at a system level. The non-zero terms of Γ are then usually expressed in terms of damping ratios $\Gamma_{j j}=2 \zeta_{j} \omega_{j}$. The damping ratio ζ_{j} are accepted by most $S D T$ functions instead of a full Γ. The variable name damp is then used instead of ga in the documentation.

For a model with modal damping, the matrices in (6.99) are diagonal so that the contributions of the different normal modes are uncoupled and correspond exactly to the spectral decomposition of the model (see cpx page 210for the definition of complex modes). The rational fraction expression of the dynamic compliance matrix (transfer from the inputs $\{u\}$ to displacement outputs $\{y\}$) takes the form

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{N} \frac{\left\{c \phi_{j}\right\}\left\{b^{T} \phi_{j}\right\}^{T}}{s^{2}+2 \zeta_{j} \omega_{j} s+\omega_{j}^{2}}=\sum_{j=1}^{N} \frac{\left[T_{j}\right]_{N S \times N A}}{s^{2}+2 \zeta_{j} \omega_{j} s+\omega_{j}^{2}} \tag{5.5}
\end{equation*}
$$

where the contribution of each mode is characterized by the pole frequency ω_{j}, damping ratio ζ_{j}, and the residue matrix T_{j} (which is equal to the product of the normal mode output shape matrix $\left\{c \phi_{j}\right\}$ by the normal mode input shape matrix $\left\{\phi_{j}^{T} b\right\}$).
Modal damping is used when lacking better information. One will thus often set a uniform damping ratio $\left(\zeta_{j}=1 \%\right.$ or damp $=0.01$) or experimentally determined damping ratios that are different for each pole (po=ii_pof(po,3); damp=po(:,2);).
Historically, modal damping was associated to the proportional damping model introduced by Lord Rayleigh which assumes the usefulness of a global viscously damped model with a dynamic stiffness of the form

$$
\begin{equation*}
[Z(s)]=\left[M s^{2}+(\alpha M+\beta K) s+K\right] \tag{5.6}
\end{equation*}
$$

While this model indeed leads to a modally damped normal mode model, the α and β coefficients can only be adjusted to represent physical damping mechanisms over very narrow frequency bands. The modal damping matrix thus obtained writes

$$
\begin{equation*}
\Gamma=\left[\backslash \alpha+\beta \omega_{j \backslash}^{2}\right] \tag{5.7}
\end{equation*}
$$

which leads to damping ratios

$$
\begin{equation*}
2 \zeta_{j}=\frac{\alpha}{\omega_{j}}+\beta \omega_{j} \tag{5.8}
\end{equation*}
$$

Mass coefficient α leads to high damping ratios in the low frequency range. Stiffness coefficient β leads to a damping ratio linearly increasing with the frequency.

Using a diagonal $[\Gamma]$ can introduce significant errors when normal mode coupling through the spatial distribution of damping mechanisms is possible. The condition

$$
\begin{equation*}
2 \zeta_{j} \omega_{j} /\left|\omega_{j}-\omega_{k}\right| \ll 1 \tag{5.9}
\end{equation*}
$$

proposed by Hasselman [28, gives a good indication of when modal coupling will not occur. One will note that a structure with a group of modes separated by a few percent in frequency and levels of damping close to 1% does not verify this condition. The un-coupling assumption can however still be applied to blocks of modes [12].

A normal mode model with a full Γ matrix is said to be non-proportionally damped and is clearly more general/accurate than the simple modal damping model. The SDT leaves the choice between the non-proportional model using a matrix ga and the proportional model using damping ratio for each of the pole frequencies (in this case one has ga= $2 * \operatorname{diag}$ (damp. $* \mathrm{freq}$) or ga= $2 *$ damp $* \operatorname{diag}$ (freq) if a scalar uniform damping ratio is defined).

For identification phases, standard approximations linked to the assumption of modal damping are provided by id_rc, id_rm and res2nor), while id_nor provides an original algorithm of the determination of a full Γ matrix. Theoretical aspects of this algorithm and details on the approximation of modal damping are discussed in [12]).

5.3.2 Viscous damping in finite element models

Standard damped finite element models allow the incorporation of viscous and structural damping in the form of real C and complex K matrices respectively.
fe_mk could assemble a viscous damping matrix with user defined elements that would support matrix type 3 (viscous damping) using a call of the form
fe.mk(MODEL, 'options', 3) (see section 7.16 for new element creation). Viscous damping models are rarely appropriate at the finite element level [27], so that it is only supported by celas and cbush elements. Piece-wise Rayleigh damping where the viscous damping is a combination of element mass
and stiffness on element subsets

$$
\begin{equation*}
C=\sum_{j=1}^{N S}\left[\alpha_{j}^{S} M_{j}^{S}+\beta_{j}^{S} K_{j}^{S}\right] \tag{5.10}
\end{equation*}
$$

is supported as follows. For each material or group that is to be considered in the linear combination one defines a row entry giving GroupId MatId AlphaS BetaS (note that some elements may be counted twice if they are related to a group and a material entry). One can alternatively define ProId as a 5 th column (useful for celas element that have no matid). Note that each line is separately accounted for, so that duplicated entries or multiple references to same GroupId, MatId or ProId will also be combined. For example

```
model=demosdt('demogartfe');
model=stack_set(model,'info','Rayleigh', ...
    [10 0 1e-5 0.0; ... % Elements of group 10 (masses)
        90 0.0 1e-3; ... % Elements of group 9 (springs)
        0 1 0.0 1e-4; ... % Elements with MatId 1
        0 0.0 1e-4]); % Elements with MatId 2
% Note that DOF numbering may be a problem when calling 'Rayleigh'
% See sdtweb simul#feass for preferrred assembly in SDT
c=feutilb('Rayleigh',model); figure(1); spy(c);
dc=fe_ceig(model,[1 5 20 1e3]);cf=feplot(model,dc);
```

Such damping models are typically used in time integration applications. Info,Rayleigh entries are properly handled by Assemble commands.

You can also provide model=stack_set(model,'info', 'Rayleigh', [alpha beta]).
Note that in case of Rayleigh damping, celas element viscous damping will also be taken into account.

5.3.3 Hysteretic damping in finite element models

Structural or hysteretic damping represents dissipation by giving a loss factor at the element level leading to a dynamic stiffness of the form

$$
\begin{equation*}
Z(s)=\left[M s^{2}+K+i B\right]=M s^{2}+\sum_{j=1}^{N E}\left[K_{j}^{e}\right]\left(1+i \eta_{j}^{e}\right) \tag{5.11}
\end{equation*}
$$

The name loss factor derives from the fact that η is equal to the ratio of energy dissipated for one cycle $E_{d}=\int_{0}^{T} \sigma \epsilon^{\prime} d t$ by 2π the maximum potential energy $E_{p}=1 / 2 E$.

If dissipative materials used have a loss factor property, these are used by Assemble commands with a desired matrix type 4 . If no material damping is defined, you can also use DefaultZeta to set a
global loss factor to eta=2*DefaultZeta.
Using complex valued constitutive parameters will not work for most element functions. Hysteretic damping models can thus be assembled using the Rayleigh command shown above (to assemble the imaginary part of K rather than C or using upcom (see section 6.4). The following example defines two loss factors for group 6 and other elements of the Garteur FEM model. Approximate damped poles are then estimated on the basis of real modes (better approximations are discussed in [29])

```
Up=upcom('load GartUp'); cf=feplot(Up);
Up=fe_case(Up,'parReset', ...
    'Par k','Constrained Layer','group 6', ...
    'Par k','Main Structure','group~=6');
% type cur min max vtype
par = [ 1 1.0 0.1 3.0 1 ; ...
        1 1.0 0.1 3.0 1 ];
Up=upcom(Up,'ParCoef',par);
% assemble using different loss factors for each parameter
B=upcom(Up,'assemble k coef .05 .01');
[m,k]=upcom(Up,'assemble coef 1.0 1.0');
Case=fe_case(Up,'gett');
% Estimate damped poles on real mode basis
def=fe_eig({m,k,Case.DOF},[6 20 1e3]);
mr=def.def'*m*def.def; % this is the identity
cr=zeros(size(mr));
kr=def.def'*k*def.def+i*(def.def'*B*def.def);
dr=fe_ceig({mr,cr,kr,[]});dr.def=def.def*dr.def;dr.DOF=def.DOF;
cf.def=dr
```

Note that in this model, the poles λ_{j} are not complex conjugate since the hysteretic damping model is only valid for positive frequencies (for negative frequencies one should change the sign of the imaginary part of K).

Given a set of complex modes you can compute frequency responses with res2xf, or simply use the modal damping ratio found with fe_ceig. Continuing the example, above one uses

```
Up=fe_case(Up,'Dofload','Point loads',[4.03;55.03], ...
    'SensDof','Sensors',[4 55 30]'+.03);
Sens=feutilb('placeindof',def.DOF,fe_case(Up,'sens'));
Load=fe_load(Up);
```

5 Structural dynamic concepts

```
ind=find(dr.data(:,1)>5); % flexible modes
% Standard elastic response with modal damping
f=linspace(5,60,2048);
d1=def; d1.data(7:20,2)=dr.data(ind,2);
nor2xf(d1,Up,f,'hz iiplot "Normal" -reset -po');
% Now complex modes
RES=struct('res', [],'po',dr.data(ind,:),'idopt',idopt('new'));
RES.idopt.residual=2;RES.idopt.fitting='complex';
for j1=1:length(ind); % deal with flexible modes
    Rj=(Sens.cta*dr.def(:,ind(j1))) * ... % c psi
        (dr.def(:,ind(j1)).'*Load.def); % psi^T b
    RES.res(j1,:)=Rj(:).';
end
% Rigid body mode residual
RES.res(end+1,:)=0;
for j1=1:6;
    Rj=(Sens.cta*def.def(:,j1))*(def.def(:,j1)'*Load.def);
    RES.res(end,:)=RES.res(end,:)+Rj(:).';
end
res2xf(RES,f,'hz iiplot "Res2xf"');
damp=dr.data(ind,2);
d2=def;d2.data(7:20)=sqrt(real(d2.data(7:20). ^2)).*sqrt(1+i*damp*2);
nor2xf(d2,Up,f,'hz iiplot "Hysteretic"');
iicom('submagpha');
```

Note that the presence of rigid body modes, which can only be represented as residual terms in the pole/residue format (see section 5.6), makes the example more complex. The plot illustrates differences in responses obtained with true complex modes, viscous modal damping or hysteretic modal damping (case where one uses the pole of the true complex mode with a normal mode shape). Viscous and hysteretic modal damping are nearly identical. With true complex modes, only channels 2 and 4 show a visible difference, and then only near anti-resonances.

To incorporate static corrections, you may want to compute complex modes on bases generated by fe2ss, rather than simple modal bases obtained with fe_eig.

The use of a constant loss factor can be a crude approximation for materials exhibiting significant damping. Methods used to treat frequency dependent materials are described in Ref. [30].

5.4 State space models

While normal mode models are appropriate for structures, state-space models allow the representation of more general linear dynamic systems and are commonly used in the Control Toolbox or Simulink. The standard form for state space-models is

$$
\begin{align*}
\{\dot{x}\} & =[A]\{x(t)\}+[B]\{u(t)\} \\
\{y\} & =[C]\{x(t)\}+[D]\{u(t)\} \tag{5.12}
\end{align*}
$$

with inputs $\{u\}$, states $\{x\}$ and outputs $\{y\}$. State-space models are represented in the SDT, as generally done in other Toolboxes for use with Matlab, using four independent matrix variables a, b, c, and d (you should also take a look at the LTI state-space object of the Control Toolbox).

The natural state-space representation of normal mode models (5.4) is given by

$$
\begin{gather*}
\left\{\begin{array}{c}
p^{\prime} \\
p^{\prime \prime}
\end{array}\right\}=\left[\begin{array}{cc}
0 & I \\
-\Omega^{2} & -\Gamma
\end{array}\right]\left\{\begin{array}{c}
p \\
p^{\prime}
\end{array}\right\}+\left[\begin{array}{c}
0 \\
\phi^{T} b
\end{array}\right]\{u(t)\} \tag{5.13}\\
\{y(t)\}=\left[\begin{array}{ll}
c \phi & 0
\end{array}\right]\left\{\begin{array}{c}
p \\
p^{\prime}
\end{array}\right\}
\end{gather*}
$$

Transformations to this form are provided by nor2ss and fe2ss. Another special form of state-space models is constructed by res2ss.

A state-space representation of the nominal structural model (5.1) is given by

$$
\begin{gather*}
\left\{\begin{array}{c}
q^{\prime} \\
q^{\prime \prime}
\end{array}\right\}=\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} C
\end{array}\right]\left\{\begin{array}{c}
q \\
q^{\prime} \\
q
\end{array}\right\}+\left[\begin{array}{c}
0 \\
M^{-1} b
\end{array}\right]\{u(t)\} \tag{5.14}\\
\{y(t)\}=\left[\begin{array}{ll}
c & 0
\end{array}\right]\left\{\begin{array}{c}
\\
q^{\prime}
\end{array}\right\}
\end{gather*}
$$

The interest of this representation is mostly academic because it does not preserve symmetry (an useful feature of models of structures associated to the assumption of reciprocity) and because $M^{-1} K$ is usually a full matrix (so that the associated memory requirements for a realistic finite element model would be prohibitive). The $S D T$ thus always starts by transforming a model to the normal mode form and the associated state-space model (5.13).

The transfer functions from inputs to outputs are described in the frequency domain by

$$
\begin{equation*}
\{y(s)\}=\left([C][s I-A]^{-1}[B]+[D]\right)\{u(s)\} \tag{5.15}
\end{equation*}
$$

assuming that $[A]$ is diagonalizable in the basis of complex modes, model 5.12 is equivalent to
the diagonal model

$$
\begin{gather*}
\left(s[I]-\left[\backslash \lambda_{j} \backslash\right)\{\eta(s)\}=\left[\theta_{L}^{T} b\right]\{u\}\right. \tag{5.16}\\
\{y\}=\left[c \theta_{R}\right]\{\eta(s)\}
\end{gather*}
$$

where the left and right modeshapes (columns of $\left[\theta_{R}\right]$ and $\left[\theta_{L}\right]$) are solution of

$$
\begin{equation*}
\left\{\theta_{j L}\right\}^{T}[A]=\lambda_{j}\left\{\theta_{j L}\right\}^{T} \text { and }[A]\left\{\theta_{j R}\right\}=\lambda_{j}\left\{\theta_{j R}\right\} \tag{5.17}
\end{equation*}
$$

and verify the orthogonality conditions

$$
\begin{equation*}
\left[\theta_{L}\right]^{T}\left[\theta_{R}\right]=[I] \quad \text { and } \quad\left[\theta_{L}\right]^{T}[A]\left[\theta_{R}\right]=\left[\backslash \lambda_{j}\right] \tag{5.18}
\end{equation*}
$$

The diagonal state space form corresponds to the partial fraction expansion

$$
\begin{equation*}
\{y(s)\}=\sum_{j=1}^{2 N} \frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}}=\sum_{j=1}^{2 N} \frac{\left[R_{j}\right]_{N S \times N A}}{s-\lambda_{j}} \tag{5.19}
\end{equation*}
$$

where the contribution of each mode is characterized by the pole location λ_{j} and the residue matrix R_{j} (which is equal to the product of the complex modal output $\left\{c \theta_{j}\right\}$ by the modal input $\left\{\theta_{j}^{T} b\right\}$).
The partial fraction expansion (5.19) is heavily used for the identification routines implemented in the $S D T$ (see the section on the pole/residue representation ref page 212 .

5.5 Complex mode models

The standard spectral decomposition discussed for state-space models in the previous section can be applied directly to second order models of structural dynamics. The associated modes are called complex modes by opposition to normal modes which are associated to elastic models of structures and are always real valued.

Left and right eigenvectors, which are equal for reciprocal structural models, can be defined by the second order eigenvalue problem,

$$
\begin{equation*}
\left[M \lambda_{j}^{2}+C \lambda_{j}+K\right]\left\{\psi_{j}\right\}=\{0\} \tag{5.20}
\end{equation*}
$$

In practice however, mathematical libraries only provide first order eigenvalue solvers to that a transformation to the first order form is needed. Rather than the trivial state-space form (5.14), the following generalized state-space form is preferred

$$
\begin{gather*}
{\left[\begin{array}{cc}
C & M \\
M & 0
\end{array}\right]\left\{\begin{array}{l}
q^{\prime} \\
q^{\prime \prime}
\end{array}\right\}+\left[\begin{array}{cc}
K & 0 \\
0 & -M
\end{array}\right]\left\{\begin{array}{l}
q \\
q^{\prime}
\end{array}\right\}=\left[\begin{array}{l}
b \\
0
\end{array}\right]\{u\}} \tag{5.21}\\
\{y\}=\left[\begin{array}{ll}
c & 0
\end{array}\right]\left\{\begin{array}{c}
q \\
q^{\prime}
\end{array}\right\}
\end{gather*}
$$

The matrices M, C and K being symmetric (assumption of reciprocity), the generalized state-space model 5.21 is symmetric. The associate left and right eigenvectors are thus equal and found by solving

$$
\left(\left[\begin{array}{cc}
C & M \tag{5.22}\\
M & 0
\end{array}\right] \lambda_{j}+\left[\begin{array}{cc}
K & 0 \\
0 & -M
\end{array}\right]\right)\left\{\theta_{j}\right\}=\{0\}
$$

Because of the specific block from of the problem, it can be shown that

$$
\left\{\theta_{j}\right\}=\left\{\begin{array}{c}
\psi_{j} \tag{5.23}\\
\psi_{j} \lambda_{j}
\end{array}\right\}
$$

where it should be noted that the name complex modeshape is given to both θ_{j} (for applications in system dynamics) and ψ_{j} (for applications in structural dynamics).

The initial model being real, complex eigenvalues λ_{j} come in conjugate pairs associated to conjugate pairs of modeshapes $\left\{\psi_{j}\right\}$. With the exception of systems with real poles, there are $2 N$ complex eigenvalues for the considered symmetric systems $\left(\psi_{[N+1 \ldots 2 N]}=\bar{\psi}_{[1 \ldots N]}\right.$ and $\left.\lambda_{[N+1 \ldots 2 N]}=\bar{\lambda}_{[1 \ldots N]}\right)$.
The existence of a set of $2 N$ eigenvectors is equivalent to the verification of two orthogonality conditions

$$
\begin{array}{lll}
{[\theta]^{T}\left[\begin{array}{cc}
C & M \\
M & 0
\end{array}\right][\theta]} & =\psi^{T} C \psi+\Lambda \psi^{T} M \psi+\psi^{T} M \psi \Lambda & =\left[\backslash I_{\backslash}\right]_{2 N} \tag{5.24}\\
{[\theta]^{T}\left[\begin{array}{cc}
K & 0 \\
0 & -M
\end{array}\right][\theta]} & =\psi^{T} K \psi-\Lambda \psi^{T} M \psi \Lambda & =-[\backslash \Lambda \backslash]_{2 N}
\end{array}
$$

where in (5.24) the arbitrary diagonal matrix was chosen to be the identity because it leads to a normalization of complex modes that is equivalent to the collocation constraint used to scale experimentally determined modeshapes (12$]$ and section 2.8.2).
Note that with hysteretic damping (complex valued stiffness, see section 5.3.2) the modes are not complex conjugate but opposite. To use a complex mode basis one thus needs to replace complex modes whose poles have negative imaginary parts with the conjugate of the corresponding mode whose pole has a positive imaginary part.

For a particular dynamic system, one will only be interested in predicting or measuring how complex modes are excited (modal input shape matrix $\left\{\theta_{j}^{T} B\right\}=\left\{\psi_{j}^{T} b\right\}$) or observed (modal output shape matrix $\left.\left\{C \theta_{j}\right\}=\left\{c \psi_{j}\right\}\right)$.
In the structural dynamics community, the modal input shape matrix is often called modal participation factor (and noted L_{j}) and the modal output shape matrix simply modeshape. A different terminology is preferred here to convey the fact that both notions are dual and that $\left\{\psi_{j}^{T} b_{l}\right\}=\left\{c_{l} \psi_{j}\right\}$ for a reciprocal structure and a collocated pair of inputs and outputs (such that
$u \dot{y}$ is the power input to the structure).
For predictions, complex modes can be computed from finite element models using fe_ceig, Computing complex modes of full order models is typically not necessary so that approximations on the basis of real modes or real modes with static correction are provided. Given complex modes, you can obtain state-space models with res2ss. For further discussions, see Ref. 31] and low level examples in section 5.3.3.
For identification phases, complex modes are used in the form of residue matrices product $\left[R_{j}\right]=$ $\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}$ (see the next section). Modal residues are obtained by id_rc and separation of the modal input and output parts is obtained using id_rm.
For lightly damped structures, imposing the modal damping assumption, which forces the use of real modeshapes, may give correct result and simplify your identification work very much. Refer to section 2.8.3 for more details.

5.6 Pole/residue models

The spectral decomposition associated to complex modes, leads to a representation of the transfer function as a sum of modal contributions

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{2 N}\left(\frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}}\right)=\sum_{j=1}^{2 N}\left(\frac{\left[R_{j}\right]}{s-\lambda_{j}}\right) \tag{5.25}
\end{equation*}
$$

For applications in identification from experimental data, one can only determine modes whose poles are located in the test frequency range. The full series thus need to be truncated. The contributions of out-of-band modes cannot be neglected for applications in structural dynamics. One thus introduces a high frequency residual correction for truncated high frequency terms and, when needed, (quite often for suspended test articles) a low frequency residual for modes below the measurement frequency band.

These corrections depend on the type of transfer function so that the SDT uses ci. IDopt options (see the reference section on the idopt function) to define the current type. ci. IDopt.Residual specifies which corrections are needed (the default is 3 which includes both a low and high frequency residuals). ci. IDopt. Data specifies if the FRF is force to displacement, velocity or acceleration. For a force to displacement transfer function with low and high frequency correction), the pole/residue model (also called partial fraction expansion) thus takes the form

$$
\begin{equation*}
[\alpha(s)]=\sum_{j \in \text { identified }}\left(\frac{\left[R_{j}\right]}{s-\lambda_{j}}+\frac{\left[\bar{R}_{j}\right]}{s-\bar{\lambda}_{j}}\right)+[E]+\frac{[F]}{s^{2}} \tag{5.26}
\end{equation*}
$$

The $S D T$ always stores pole/residue models in the displacement/force format. The expression of
the force to acceleration transfer function is thus

$$
\begin{equation*}
[A(s)]=\sum_{j \in \text { identified }}\left(\frac{s^{2}\left[R_{j}\right]}{s-\lambda_{j}}+\frac{s^{2}\left[\bar{R}_{j}\right]}{s-\bar{\lambda}_{j}}\right)+s^{2}[E]+[F] \tag{5.27}
\end{equation*}
$$

The nominal pole/residue model above is used when ci.IDopt.Fit='Complex'. This model assumes that complex poles come in conjugate pairs and that the residue matrices are also conjugate which is true for real system.

The complex residues with asymmetric pole structure (ci.IDopt.Fit='Posit') only keep the poles with positive imaginary parts

$$
\begin{equation*}
[\alpha(s)]=\sum_{j \in \text { identified }}\left(\frac{\left[R_{j}\right]}{s-\lambda_{j}}\right)+[E]+\frac{[F]}{s^{2}} \tag{5.28}
\end{equation*}
$$

which allows slightly faster computations when using id_rc for the identification but not so much so that the symmetric pole pattern should not be used in general. This option is only maintained for backward compatibility reasons.

The normal mode residues with symmetric pole structure (ci.IDopt.Fit='Nor')

$$
\begin{equation*}
[\alpha(s)]=\sum_{j \in \text { identified }}\left(\frac{\left[T_{j}\right]}{s^{2}+2 \zeta_{j} \omega_{j} s+\omega_{j}^{2}}\right)+[E]+\frac{[F]}{s^{2}} \tag{5.29}
\end{equation*}
$$

can be used to identify normal modes directly under the assumption of modal damping (see damp page 203).

Further characterization of the properties of a given pole/residue model is given by a structure detailed under the Shapes at DOFs section.
The residue matrices res are stored using one row for each pole or asymptotic correction term and, as for FRFs (see the xf format), a column for each SISO transfer function (stacking $N S$ columns for actuator 1, then $N S$ columns for actuator 2, etc.).

$$
\text { res }=\left[\begin{array}{cccccc}
\vdots & & \ldots & \ldots & & \ldots \tag{5.30}\\
R_{j(11)} & R_{j(21)} & \ldots & R_{j(12)} & R_{j(22)} & \ldots \\
\vdots & & \ddots & \vdots & & \ddots \\
E_{11} & E_{21} & \ldots & E_{12} & E_{22} & \ldots \\
F_{11} & F_{21} & \ldots & F_{12} & F_{22} & \ldots
\end{array}\right]
$$

The normal mode residues (ci.IDopt. Fit='Normal') are stored in a similar fashion with for only difference that the T_{j} are real while the R_{j} are complex.

5.7 Parametric transfer function

Except for the id_poly and qbode functions, the SDT does not typically use the numerous variants of the ARMAX model that are traditional in system identification applications and lead to the ratio of polynomials called transfer function format (tf) in other Matlab Toolboxes. In modal analysis, transfer functions refer to the functions characterizing the relation between inputs and outputs. The tf format thus corresponds to the parametric representations of sets of transfer functions in the form of a ratio of polynomials

$$
\begin{equation*}
H_{j}(s)=\frac{a_{j, 1} s^{n a-1}+a_{j, 2} s^{n a-2}+\ldots+a_{j, n a}}{b_{j, 1} s^{n b-1}+b_{j, 2} s^{n b-2}+\ldots+b_{j, n b}} \tag{5.31}
\end{equation*}
$$

The SDT stacks the different numerator and denominator polynomials as rows of numerator and denominator matrices

$$
\text { num }=\left[\begin{array}{ccc}
a_{11} & a_{12} & \ldots \tag{5.32}\\
a_{21} & a_{22} & \ldots \\
\vdots & & \ddots
\end{array}\right] \text { and den }=\left[\begin{array}{ccc}
b_{11} & b_{12} & \ldots \\
b_{21} & b_{22} & \ldots \\
\vdots & & \ddots
\end{array}\right]
$$

Other Matlab toolboxes typically only accept a single common denominator (den is a single row). This form is also accepted by qbode which is used to predict FRFs at a number of frequencies in the non-parametric xf format).

The id_poly function identifies polynomial representations of sets of test functions and res2tf provides a transformation between the pole/residue and polynomial representations of transfer functions.

5.8 Non-parametric transfer function

Response data structures are the classical format to store non-parametric transfer functions. Multi-dim curve can also be used.

For a linear system at a given frequency ω, the response vector $\{y\}$ at $N S$ sensor locations to a vector $\{u\}$ of $N A$ inputs is described by the $N S$ by $N A$ rectangular matrix of Frequency Responses (FRF)

$$
\left\{\begin{array}{c}
y_{1}(\omega) \tag{5.33}\\
\vdots \\
y_{N S}(\omega)
\end{array}\right\}=[H]\{u\}=\left[\begin{array}{ccc}
H_{11}(\omega) & H_{12}(\omega) & \cdots \\
H_{21}(\omega) & H_{22}(\omega) & \\
\vdots & & \ddots
\end{array}\right]_{N S \times N A}\left\{\begin{array}{c}
u_{1}(\omega) \\
\vdots \\
u_{N A}(\omega)
\end{array}\right\}
$$

The SDT stores frequencies at which the FRF are evaluated as a column vector w

$$
\mathrm{w}=\left\{\begin{array}{c}
\omega_{1} \tag{5.34}\\
\vdots \\
\omega_{N W}
\end{array}\right\}_{N W \times 1}
$$

and SISO FRFs $H_{i j}$ are stored as columns of the matrix xf where each row corresponds to a different frequency (indicated in w). By default, it is assumed that the correspondence between the columns of xf and the sensors and actuator numbers is as follows. The $N S$ transfer functions from actuator 1 to the $N S$ sensors are stored as the first $N S$ columns of xf, then the $N S$ transfer functions of actuator 2 , etc.

$$
\mathrm{xf}=\left[\begin{array}{cccccc}
H_{11}\left(\omega_{1}\right) & H_{21}\left(\omega_{1}\right) & \ldots & H_{12}\left(\omega_{1}\right) & H_{22}\left(\omega_{1}\right) & \ldots \tag{5.35}\\
H_{11}\left(\omega_{2}\right) & H_{21}\left(\omega_{2}\right) & \ldots & H_{12}\left(\omega_{2}\right) & H_{22}\left(\omega_{2}\right) & \ldots \\
\vdots & & \ddots & \vdots & & \ddots
\end{array}\right]_{N W \times(N S \times N A)}
$$

Further characterization of the properties of a given set of FRFs is given by a structure detailed under Response data section.

Frequency response functions corresponding to parametric models can be generated in the xf format using qbode (transformation from ss and tf formats), nor2xf, or res2xf. These functions use robustness/speed trade-offs that are different from algorithms implemented in other Matlab toolboxes and are more appropriate for applications in structural dynamics.

5 Structural dynamic concepts

Advanced FEM tools

6.1 FEM problem formulations 219
6.1.1 3D elasticity 219
6.1 .2 2D elasticity 220
6.1.3 Acoustics 221
6.1.4 Classical lamination theory 222
6.1.5 Piezo-electric volumes 225
6.1.6 Piezo-electric shells 227
6.1.7 Geometric non-linearity 229
6.1.8 Thermal pre-stress 231
6.1.9 Hyperelasticity 231
6.1.10 Gyroscopic effects 233
6.1.11 Centrifugal follower forces 234
6.1.12 Poroelastic materials 234
6.1.13 Heat equation 239
6.2 Model reduction theory 241
6.2.1 General framework 241
6.2.2 Normal mode models 242
6 6.2.3 Static correction to normal mode models 244
6 6.2.4 Static correction with rigid body modes 245
6.2.5 Other standard reduction bases 246
6.2 .6 Substructuring 247
6.2.7 Reduction for parameterized problems 249
6.3 Superelements and CMS 250
6.3.1 Superelements in a model 250
6.3.2 SE data structure reference 251
6.3 .3 An example of SE use for CMS 253
6.3.4 Obsolete superelement information 255
6.3.5 Sensors and superelements 256
6.4 Model parameterization 258
6.4.1 Parametric models, zCoef 258
6.4.2 Reduced parametric models 261
6.4.3 upcom parameterization for full order models 261
6.4.4 Getting started with upcom 262
6.4.5 Reduction for variable models 263
6.4.6 Predictions of the response using upcom 264
6.5 Finite element model updating 265
6.5.1 Error localization/parameter selection 266
6.5.2 Update based on frequencies 267
6.5.3 Update based on FRF 267
6.6 Handling models with piezoelectric materials 269
6.7 Viscoelastic modeling tools. 269
6.8 SDT Rotor 269

6.1 FEM problem formulations

This section gives a short theoretical reminder of supported FEM problems. The selection of the formulation for each element group is done through the material and element properties.

6.1.1 3D elasticity

Elements with a p_solid property entry with a non-zero integration rule are described under p_solid. They correspond exactly to the $* \mathrm{~b}$ elements, which are now obsolete. These elements support 3D mechanics (DOFs . 01 to . 03 at each node) with full anisotropy, geometric non-linearity, integration rule selection, ... The elements have standard limitations. In particular they do not (yet)

- have any correction for shear locking found for high aspect ratios
- have any correction for dilatation locking found for nearly incompressible materials

With m_elastic subtypes 1 and 3, p_solid deals with 3D mechanics with strain defined by

$$
\left\{\begin{array}{c}
\epsilon_{x} \tag{6.1}\\
\epsilon_{y} \\
\epsilon_{z} \\
\gamma_{y z} \\
\gamma_{z x} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
N, x & 0 & 0 \\
0 & N, y & 0 \\
0 & 0 & N, z \\
0 & N, z & N, y \\
N, z & 0 & N, x \\
N, y & N, x & 0
\end{array}\right]\left\{\begin{array}{l}
u \\
v \\
w
\end{array}\right\}
$$

where the engineering notation $\gamma_{y z}=2 \epsilon_{y z}, \ldots$ is used. Stress by

$$
\left\{\begin{array}{c}
\sigma_{x} \tag{6.2}\\
\sigma_{y} \\
\sigma_{z} \\
\sigma_{y z} \\
\sigma_{z x} \\
\sigma_{x y}
\end{array}\right\}=\left[\begin{array}{llll}
d_{1,1} N, x+d_{1,5} N, z+d_{1,6} N, y & d_{1,2} N, y+d_{1,4} N, z+d_{1,6} N, x & d_{1,3} N, z+d_{1,4} N, y+d_{1,5} N, x \\
d_{2,1} N, x+d_{2,5} N, z+d_{2,6} N, y & d_{2,2} N, y+d_{2,4} N, z+d_{2,6} N, x & d_{2,3} N, z+d_{2}, 4 N, y+d_{2} N, 5 N, x \\
d_{3,1} N, x+d_{3,5} N, z+d_{3,6} N, y & d_{3,2} N, y+d_{3,4} N, z+d_{3,6} N, x & d_{3,3} N, z+d_{3,4} N, y+d_{3,5} N, x \\
d_{4,1} N, x+d_{4,5} N, z+d_{4,6} N, y & d_{4,2} N, y+d_{4,4} N, z+d_{4,6} N, x & d_{4,3} N, z+d_{4,4} N, y+d_{4,5} N, x \\
d_{5,1} N, x+d_{5,5} N, z+d_{5,6} N, y & d_{5,2} N, y+d_{5,4} N, z+d_{5,6} N, x & d_{5,3} N, z+d_{5,4} N, y+d_{5} N, x \\
d_{6,1} N, x+d_{6,5} N, z+d_{6,6} N, y & d_{6,2} N, y+d_{6,4} N, z+d_{6,6} N, x & d_{6,3} N, z+d_{6,4} N, y+d_{6,5} N, x
\end{array}\right]\left\{\begin{array}{l}
u \\
v \\
w
\end{array}\right\}
$$

Note that the strain states are $\left\{\begin{array}{lllllll}\epsilon_{x} & \epsilon_{y} & \epsilon_{z} & \gamma_{y z} & \gamma_{z x} & \gamma_{x y}\end{array}\right\}$ which may not be the convention of other software.

Note that NASTRAN, SAMCEF, ANSYS and MODULEF order shear stresses with $\sigma_{x y}, \sigma_{y z}, \sigma_{z x}$ (MODULEF elements are obtained by setting p_solidinteg value to zero). Abaqus uses $\sigma_{x y}, \sigma_{x z}, \sigma_{y z}$ In fe_stress the stress reordering can be accounted for by the definition of the proper TensorTopology matrix.

For isotropic materials

$$
D=\left[\begin{array}{cc}
\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} \\
\frac{\nu}{1-\nu} & 1 & \frac{\nu}{1-\nu} \\
\frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 1
\end{array}\right] & \left.\begin{array}{ccc}
& 0 & \\
0 & &
\end{array} \begin{array}{ccc}
G & 0 & 0 \\
0 & G & 0 \\
0 & 0 & G
\end{array}\right] \tag{6.3}
\end{array}\right]
$$

with at nominal $G=E /(2(1+\nu))$. For isotropic materials, interpolation of $\rho, \eta, E, \nu, G, \alpha$ with temperature is supported.

For orthotropic materials, the compliance is given by

$$
\{\epsilon\}=[D]^{-1}\{\sigma\}=\left[\begin{array}{cccccc}
1 / E_{1} & -\frac{\nu_{21}}{E_{2}} & -\frac{\nu_{31}}{E_{3}} & 0 & 0 & 0 \tag{6.4}\\
-\frac{\nu_{12}}{E_{1}} & 1 / E_{2} & -\frac{\nu_{32}}{E_{3}} & 0 & 0 & 0 \\
-\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & 1 / E_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{23}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{31}} & \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{12}}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\sigma_{z x} \\
\sigma_{x y}
\end{array}\right\}
$$

For constitutive law building, see p_solid. Material orientation can be interpolated by defining v1 and v2 fields in the InfoAtNode. Interpolation of non isotropic material properties was only implemented for of $\mathrm{mk} ~ i=1.236$.

6.1.2 2D elasticity

With m_elastic subtype 4, p_solid deals with 2D mechanical volumes with strain defined by (see q4p constants)

$$
\left\{\begin{array}{c}
\epsilon_{x} \tag{6.5}\\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc}
N, x & 0 \\
0 & N, y \\
N, y & N, x
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\}
$$

and stress by

$$
\left\{\begin{array}{c}
\sigma \epsilon_{x} \tag{6.6}\\
\sigma \epsilon_{y} \\
\sigma \gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cc}
d_{1,1} N, x+d_{1,3} N, y & d_{1,2} N, y+d_{1,3} N, x \\
d_{2,1} N, x+d_{2,3} N, y & d_{2,2} N, y+d_{2,3} N, x \\
d_{3,1} N, x+d_{3,3} N, y & d_{3,2} N, y+d_{3,3} N, x
\end{array}\right]\left\{\begin{array}{c}
u \\
v
\end{array}\right\}
$$

For isotropic plane stress p_solid form=1), one has

$$
D=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \tag{6.7}\\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

For isotropic plane strain p_solid form=0), one has

$$
D=\frac{E(1-\nu}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \tag{6.8}\\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)}
\end{array}\right]
$$

6.1.3 Acoustics

With m_elastic subtype 2, p_solid deals with 2D and 3D acoustics (see flui4 constants) where 3 D strain is given by

$$
\left\{\begin{array}{l}
p, x \tag{6.9}\\
p, y \\
p, z
\end{array}\right\}=\left[\begin{array}{l}
N, x \\
N, y \\
N, z
\end{array}\right]\{p\}
$$

This replaces the earlier flui4 ... elements.
The mass and stiffness matrices are given by

$$
\begin{align*}
& M_{i j}=\int_{\Omega} \frac{1}{\rho_{0} C^{2}}\left\{N_{i}\right\}\left\{N_{j}\right\} \tag{6.10}\\
& K_{i j}=\int_{\Omega} \frac{1}{\rho_{0}}\left\{N_{i, k}\right\}\left\{N_{j, k}\right\} \tag{6.11}
\end{align*}
$$

The source associated with a enforced velocity on a surface

$$
\begin{equation*}
B_{i}=\int_{\partial \Omega}\left\{N_{i}\right\}\left\{V_{e}\right\} \tag{6.12}
\end{equation*}
$$

When an impedance $Z=\rho C R(1+i \eta)$ is considered on a surface, the associated viscous damping
matrix is given by

$$
\begin{equation*}
C_{i j}=\int_{\partial \Omega_{Z}^{e}} \frac{1}{Z}\left\{N_{i}\right\}\left\{N_{j}\right\} \tag{6.13}
\end{equation*}
$$

6.1.4 Classical lamination theory

Both isotropic and orthotropic materials are considered. In these cases, the general form of the 3D elastic material law is

$$
\left\{\begin{array}{l}
\sigma_{11} \tag{6.14}\\
\sigma_{22} \\
\sigma_{33} \\
\tau_{23} \\
\tau_{13} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
& C_{22} & C_{23} & 0 & 0 & 0 \\
& & C_{33} & 0 & 0 & 0 \\
& & & C_{44} & 0 & 0 \\
& (s) & & & C_{55} & 0 \\
& & & & & C_{66}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\gamma_{23} \\
\gamma_{13} \\
\gamma_{12}
\end{array}\right\}
$$

Plate formulation consists in assuming one dimension, the thickness along x_{3}, negligible compared with the surface dimensions. Thus, vertical stress $\sigma_{33}=0$ on the bottom and upper faces, and assumed to be neglected throughout the thickness,

$$
\begin{equation*}
\sigma_{33}=0 \Rightarrow \epsilon_{33}=-\frac{1}{C_{33}}\left(C_{13} \epsilon_{11}+C_{23} \epsilon_{22}\right), \tag{6.15}
\end{equation*}
$$

and for isotropic material,

$$
\begin{equation*}
\sigma_{33}=0 \Rightarrow \epsilon_{33}=-\frac{\nu}{1-\nu}\left(\epsilon_{11}+\epsilon_{22}\right) . \tag{6.16}
\end{equation*}
$$

By eliminating σ_{33}, the plate constitutive law is written, with engineering notations,

$$
\left\{\begin{array}{c}
\sigma_{11} \tag{6.17}\\
\sigma_{22} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{13}
\end{array}\right\}=\left[\begin{array}{ccccc}
Q_{11} & Q_{12} & 0 & 0 & 0 \\
Q_{12} & Q_{22} & 0 & 0 & 0 \\
0 & 0 & Q_{66} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 \\
0 & 0 & 0 & 0 & Q_{55}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\gamma_{12} \\
\gamma_{23} \\
\gamma_{13}
\end{array}\right\} .
$$

The reduced stiffness coefficients $Q_{i j}(i, j=1,2,4,5,6)$ are related to the 3D stiffness coefficients $C_{i j}$ by

$$
Q_{i j}= \begin{cases}C_{i j}-\frac{C_{i 3} C_{j 3}}{C_{33}} & \text { if } \mathrm{i} \mathrm{j}=1,2 \tag{6.18}\\ C_{i j} & \text { if } \mathrm{i}, \mathrm{j}=4,5,6 .\end{cases}
$$

The reduced elastic law for an isotropic plate becomes,

$$
\left\{\begin{array}{l}
\sigma_{11} \tag{6.19}\\
\sigma_{22} \\
\tau_{12}
\end{array}\right\}=\frac{E}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\gamma_{12}
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{l}
\tau_{23} \tag{6.20}\\
\tau_{13}
\end{array}\right\}=\frac{E}{2(1+\nu)}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\gamma_{23} \\
\gamma_{13}
\end{array}\right\} .
$$

Under Reissner-Mindlin's kinematic assumption the linearized strain tensor is

$$
\epsilon=\left[\begin{array}{ccc}
u_{1,1}+x_{3} \beta_{1,1} & \frac{1}{2}\left(u_{1,2}+u_{2,1}+x_{3}\left(\beta_{1,2}+\beta_{2,1}\right)\right) & \frac{1}{2}\left(\beta_{1}+w_{, 1}\right) \tag{6.21}\\
(s) & u_{2,2}+x_{3} \beta_{2,2} & \frac{1}{2}\left(\beta_{2}+w_{, 2}\right) \\
& & 0
\end{array}\right] .
$$

So, the strain vector is written,

$$
\{\epsilon\}=\left\{\begin{array}{c}
\epsilon_{11}^{m}+x_{3} \kappa_{11} \tag{6.22}\\
\epsilon_{22}^{m}+x_{3} \kappa_{22} \\
\gamma_{12}^{m}+x_{3} \kappa_{12} \\
\gamma_{23} \\
\gamma_{13}
\end{array}\right\},
$$

with ϵ^{m} the membrane, κ the curvature or bending, and γ the shear strains,

$$
\epsilon^{m}=\left\{\begin{array}{c}
u_{1,1} \tag{6.23}\\
u_{2,2} \\
u_{1,2}+u_{2,1}
\end{array}\right\}, \kappa=\left\{\begin{array}{c}
\beta_{1,1} \\
\beta_{2,2} \\
\beta_{1,2}+\beta_{2,1}
\end{array}\right\}, \gamma=\left\{\begin{array}{l}
\beta_{2}+w_{, 2} \\
\beta_{1}+w_{, 1}
\end{array}\right\}
$$

Note that the engineering notation with $\gamma_{12}=u_{1,2}+u_{2,1}$ is used here rather than the tensor notation with $\epsilon_{12}=\left(u_{1,2}+u_{2,1}\right) / 2$. Similarly $\kappa_{12}=\beta_{1,2}+\beta_{2,1}$, where a factor $1 / 2$ would be needed for the tensor.

The plate formulation links the stress resultants, membrane forces $N_{\alpha \beta}$, bending moments $M_{\alpha \beta}$ and shear forces $Q_{\alpha 3}$, to the strains, membrane ϵ^{m}, bending κ and shearing γ,

$$
\left\{\begin{array}{c}
N \tag{6.2.2}\\
M \\
Q
\end{array}\right\}=\left[\begin{array}{lll}
A & B & 0 \\
B & D & 0 \\
0 & 0 & F
\end{array}\right]\left\{\begin{array}{c}
\epsilon^{m} \\
\kappa \\
\gamma
\end{array}\right\} .
$$

The stress resultants are obtained by integrating the stresses through the thickness of the plate,

$$
\begin{equation*}
N_{\alpha \beta}=\int_{h b}^{h t} \sigma_{\alpha \beta} d x_{3}, \quad M_{\alpha \beta}=\int_{h b}^{h t} x_{3} \sigma_{\alpha \beta} d x_{3}, \quad Q_{\alpha 3}=\int_{h b}^{h t} \sigma_{\alpha 3} d x_{3} \tag{6.25}
\end{equation*}
$$

with $\alpha, \beta=1,2$.
Therefore, the matrix extensional stiffness matrix $[A]$, extension/bending coupling matrix $[B]$, and the bending stiffness matrix $[D]$ are calculated by integration over the thickness interval $\left[\begin{array}{ll}h b & h t\end{array}\right]$

$$
\begin{gather*}
A_{i j}=\int_{h b}^{h t} Q_{i j} d x_{3}, \quad B_{i j}=\int_{h b}^{h t} x_{3} Q_{i j} d x_{3}, \tag{6.26}\\
D_{i j}=\int_{h b}^{h t} x_{3}^{2} Q_{i j} d x_{3}, \quad F_{i j}=\int_{h b}^{h t} Q_{i j} d x_{3} .
\end{gather*}
$$

An improvement of Mindlin's plate theory with tranverse shear consists in modifying the shear coefficients $F_{i j}$ by

$$
\begin{equation*}
H_{i j}=k_{i j} F_{i j} \tag{6.27}
\end{equation*}
$$

where $k_{i j}$ are correction factors. Reddy's $3^{\text {rd }}$ order theory brings to $k_{i j}=\frac{2}{3}$. Very commonly, enriched $3^{\text {rd }}$ order theory are used, and $k_{i j}$ are equal to $\frac{5}{6}$ and give good results. For more details on the assessment of the correction factor, see [32].

For an isotropic symmetric plate ($h b=-h t=h / 2$), the in-plane normal forces N_{11}, N_{22} and shear force N_{12} become

$$
\left\{\begin{array}{l}
N_{11} \tag{6.28}\\
N_{22} \\
N_{12}
\end{array}\right\}=\frac{E h}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
& 1 & 0 \\
(s) & & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
u_{1,1} \\
u_{2,2} \\
u_{1,2}+u_{2,1}
\end{array}\right\}
$$

the 2 bending moments M_{11}, M_{22} and twisting moment M_{12}

$$
\left\{\begin{array}{l}
M_{11} \tag{6.29}\\
M_{22} \\
M_{12}
\end{array}\right\}=\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
& 1 & 0 \\
(s) & & \frac{1-\nu}{2}
\end{array}\right]\left\{\begin{array}{c}
\beta_{1,1} \\
\beta_{2,2} \\
\beta_{1,2}+\beta_{2,1}
\end{array}\right\}
$$

and the out-of-plane shearing forces Q_{23} and Q_{13},

$$
\left\{\begin{array}{l}
Q_{23} \tag{6.30}\\
Q_{13}
\end{array}\right\}=\frac{E h}{2(1+\nu)}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\beta_{2}+w_{, 2} \\
\beta_{1}+w_{, 1}
\end{array}\right\} .
$$

One can notice that because the symmetry of plate, that means the reference plane is the mid-plane of the plate $\left(x_{3}(0)=0\right)$ the extension/bending coupling matrix $[B]$ is equal to zero.
Using expression 6.26 for a constant $Q_{i j}$, one sees that for a non-zero offset, one has

$$
\begin{equation*}
A_{i j}=h\left[Q_{i j}\right] \quad B_{i j}=x_{3}(0) h\left[Q_{i j}\right] \quad C_{i j}=\left(x_{3}(0)^{2} h+h^{3} / 12\right)\left[Q_{i j}\right] \quad F_{i j}=h\left[Q_{i j}\right] \tag{6.31}
\end{equation*}
$$

where is clearly appears that the constitutive matrix is a polynomial function of $h, h^{3}, x_{3}(0)^{2} h$ and $x_{3}(0) h$. If the ply thickness is kept constant, the constitutive law is a polynomial function of $1, x_{3}(0), x_{3}(0)^{2}$.

6.1.5 Piezo-electric volumes

A revised version of this information is available at http://www.sdtools.com/pdf/piezo. pdf. Missing PDF links will be found there.

The strain state associated with piezoelectric materials is described by the six classical mechanical strain components and the electrical field components. Following the IEEE standards on piezoelectricity and using matrix notations, S denotes the strain vector and E denotes the electric field vector (V / m) :

$$
\left\{\begin{array}{l}
S \tag{6.32}\\
E
\end{array}\right\}=\left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\epsilon_{z} \\
\gamma_{y z} \\
\gamma_{z x} \\
\gamma_{x y} \\
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right\}=\left[\begin{array}{cccc}
N, x & 0 & 0 & 0 \\
0 & N, y & 0 & 0 \\
0 & 0 & N, z & 0 \\
0 & N, z & N, y & 0 \\
N, z & 0 & N, x & 0 \\
N, y & N, x & 0 & 0 \\
0 & 0 & 0 & -N, x \\
0 & 0 & 0 & -N, y \\
0 & 0 & 0 & -N, z
\end{array}\right]\left\{\begin{array}{c}
u \\
v \\
w \\
\phi
\end{array}\right\}
$$

where ϕ is the electric potential (V).

The constitutive law associated with this strain state is given by

$$
\left\{\begin{array}{l}
T \tag{6.33}\\
D
\end{array}\right\}=\left[\begin{array}{cc}
C^{E} & e^{T} \\
e & -\varepsilon^{S}
\end{array}\right]\left\{\begin{array}{c}
S \\
-E
\end{array}\right\}
$$

in which D is the electrical displacement vector (a density of charge in $C b / \mathrm{m}^{2}$), T is the mechanical stress vector $\left(N / m^{2}\right) . C^{E}$ is the matrix of elastic constants at zero electric field ($E=0$, shortcircuited condition, see section 6.1.1 for formulas (there C^{E} is noted D). Note that using $-E$ rather than E makes the constitutive law symmetric.

Alternatively, one can use the constitutive equations written in the following manner :

$$
\left\{\begin{array}{l}
S \tag{6.34}\\
D
\end{array}\right\}=\left[\begin{array}{cc}
s^{E} & d^{T} \\
d & \varepsilon^{T}
\end{array}\right]\left\{\begin{array}{l}
T \\
E
\end{array}\right\}
$$

In which s^{E} is the matrix of mechanical compliances, $[d]$ is the matrix of piezoelectric constants $(m / V=C b / N)$:

$$
[d]=\left[\begin{array}{cccccc}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \tag{6.35}\\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36}
\end{array}\right]
$$

Matrices $[e]$ and $[d]$ are related through

$$
\begin{equation*}
[e]=[d]\left[C^{E}\right] \tag{6.36}
\end{equation*}
$$

Due to crystal symmetries, $[d]$ may have only a few non-zero elements.
Matrix $\left[\varepsilon^{S}\right]$ is the matrix of dielectric constants (permittivities) under zero strain (constant volume) given by

$$
\left[\varepsilon^{S}\right]=\left[\begin{array}{lll}
\varepsilon_{11}^{S} & \varepsilon_{12}^{S} & \varepsilon_{13}^{S} \tag{6.37}\\
\varepsilon_{21}^{S} & \varepsilon_{22}^{S} & \varepsilon_{23}^{S} \\
\varepsilon_{31}^{S} & \varepsilon_{32}^{S} & \varepsilon_{33}^{S}
\end{array}\right]
$$

It is more usual to find the value of ε^{T} (Permittivity at zero stress) in the datasheet. These two values are related through the following relationship :

$$
\begin{equation*}
\left[\varepsilon^{S}\right]=\left[\varepsilon^{T}\right]-[d][e]^{T} \tag{6.38}
\end{equation*}
$$

For this reason, the input value for the computation should be $\left[\varepsilon^{T}\right]$.

Also notice that usually relative permittivities are given in datasheets:

$$
\begin{equation*}
\varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}} \tag{6.39}
\end{equation*}
$$

ε_{0} is the permittivity of vacuum $(=8.854 \mathrm{e}-12 \mathrm{~F} / \mathrm{m})$
The most widely used piezoelectric materials are PVDF and PZT. For both of these, matrix $\left[\varepsilon^{T}\right]$ takes the form

$$
\left[\varepsilon^{T}\right]=\left[\begin{array}{ccc}
\varepsilon_{11}^{T} & 0 & 0 \tag{6.40}\\
0 & \varepsilon_{22}^{T} & 0 \\
0 & 0 & \varepsilon_{33}^{T}
\end{array}\right]
$$

For PVDF, the matrix of piezoelectric constants is given by

$$
[d]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \tag{6.41}\\
0 & 0 & 0 & 0 & 0 & 0 \\
d_{31} & d_{32} & d_{33} & 0 & 0 & 0
\end{array}\right]
$$

and for PZT materials :

$$
[d]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & d_{15} & 0 \tag{6.42}\\
0 & 0 & 0 & d_{24} & 0 & 0 \\
d_{31} & d_{32} & d_{33} & 0 & 0 & 0
\end{array}\right]
$$

6.1.6 Piezo-electric shells

A revised version of this information is available at http://www.sdtools.com/pdf/piezo. pdf.
Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field components. It is assumed that in each piezoelectric layer $i=1 \ldots n$, the electric field takes the form $\vec{E}=\left(\begin{array}{lll}0 & 0 & E_{z i}\end{array}\right) . E_{z i}$ is assumed to be constant over the thickness h_{i} of the layer and is therefore given by $E_{z i}=-\frac{\Delta \phi_{i}}{h_{i}}$ where $\Delta \phi_{i}$ is the difference of potential between the electrodes at the top and bottom of the piezoelectric layer i. It is also assumed that the piezoelectric principal axes are parallel to the structural orthotropy axes.

The strain state of a piezoelectric shell takes the form

There are thus n additional degrees of freedom $\Delta \phi_{i}, n$ being the number of piezoelectric layers in the laminate shell

The constitutive law associated to this strain state is given by :

$$
\left\{\begin{array}{c}
N \tag{6.44}\\
M \\
Q \\
D_{z 1} \\
\ldots \\
D_{z n}
\end{array}\right\}=\left[\begin{array}{cccccc}
A & B & 0 & G_{1}^{T} & \ldots & G_{n}^{T} \\
B & D & 0 & z_{m 1} G_{1}^{T} & \ldots & z_{m n} G_{n}^{T} \\
0 & 0 & F & H_{1}^{T} & \ldots & H_{n}^{T} \\
G_{1} & z_{m 1} G_{1} & H_{1} & -\varepsilon_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots & 0 & \ldots & 0 \\
G_{n} & z_{m n} G_{n} & H_{n} & 0 & \ldots & -\varepsilon_{n}
\end{array}\right]\left\{\begin{array}{c}
\epsilon \\
\kappa \\
\gamma \\
-E_{z 1} \\
\ldots \\
-E_{z n}
\end{array}\right\}
$$

where $D_{z i}$ is the electric displacement in piezoelectric layer (assumed constant and in the z-direction), $z_{m i}$ is the distance between the midplane of the shell and the midplane of piezoelectric layer i, and
G_{i}, H_{i} are given by

$$
\begin{gather*}
G_{i}=\left\{\begin{array}{lll}
e_{.1} & e_{.2} & 0
\end{array}\right\}_{i}\left[R_{s}\right]_{i} \tag{6.45}\\
H_{i}=\left\{\begin{array}{ll}
e_{.4} & e_{.5}
\end{array}\right\}_{i}[R]_{i} \tag{6.46}
\end{gather*}
$$

where . denotes the direction of polarization. If the piezoelectric is used in extension mode, the polarization is in the z-direction, therefore $H_{i}=0$ and $G_{i}=\left\{\begin{array}{lll}e_{31} & e_{32} & 0\end{array}\right\}_{i}$. If the piezoelectric is used in shear mode, the polarization is in the x or y-direction, therefore $G_{i}=0$, and $H_{i}=\left\{\begin{array}{ll}0 & e_{15}\end{array}\right\}_{i}$ or $H_{i}=\left\{e_{24} 0\right\}_{i}$. It turns out however that the hypothesis of a uniform transverse shear strain distribution through the thickness is not satisfactory, a more elaborate shell element would be necessary. Shear actuation should therefore be used with caution.
$\left[R_{s}\right]_{i}$ and $[R]_{i}$ are rotation matrices associated to the angle θ of the piezoelectric layer.

$$
\begin{gather*}
{\left[R_{s}\right]=\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & \sin \theta \cos \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & -\sin \theta \cos \theta \\
-2 \sin \theta \cos \theta & 2 \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]} \tag{6.47}\\
{[R]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \tag{6.48}
\end{gather*}
$$

6.1.7 Geometric non-linearity

The following gives the theory of large transformation problem implemented in OpenFEM function of_mk_pre.c Mecha3DInteg.

The principle of virtual work in non-linear total Lagrangian formulation for an hyperelastic medium is

$$
\begin{equation*}
\int_{\Omega_{0}}\left(\rho_{0} u^{\prime \prime}, \delta v\right)+\int_{\Omega_{0}} S: \delta e=\int_{\Omega_{0}} f . \delta v \forall \delta v \tag{6.49}
\end{equation*}
$$

with p the vector of initial position, $x=p+u$ the current position, and u the displacement vector. The transformation is characterized by

$$
\begin{equation*}
F_{i, j}=I+u_{i, j}=\delta_{i j}+\left\{N_{, j}\right\}^{T}\left\{q_{i}\right\} \tag{6.50}
\end{equation*}
$$

where the N, j is the derivative of the shape functions with respect to Cartesian coordinates at the current integration point and q_{i} corresponds to field i (here translations) and element nodes. The notation is thus really valid within a single element and corresponds to the actual implementation
of the element family in elem0 and of mk. Note that in these functions, a reindexing vector is used to go from engineering ($\left\{\begin{array}{lll}e_{11} & e_{22} & e_{33}\end{array} e_{23} 2 e_{31} 2 e_{12}\right\}$) to tensor [$e_{i j}$] notations ind_ts_eg=[1 6 5;6 $24 ; 543$; e_tensor=e_engineering(ind_ts_eg); One can also simplify a number of computations using the fact that the contraction of a symmetric and non symmetric tensor is equal to the contraction of the symmetric tensor by the symmetric part of the non symmetric tensor.
One defines the Green-Lagrange strain tensor $e=1 / 2\left(F^{T} F-I\right)$ and its variation

$$
\begin{equation*}
d e_{i j}=\left(F^{T} d F\right)_{S y m}=\left(F_{k i}\left\{N_{, j}\right\}^{T}\left\{q_{k}\right\}\right)_{S y m} \tag{6.51}
\end{equation*}
$$

Thus the virtual work of internal loads (which corresponds to the residual in non-linear iterations) is given by

$$
\begin{equation*}
\int_{\Omega} S: \delta e=\int_{\Omega}\left\{\delta q_{k}\right\}^{T}\left\{N_{, j}\right\} F_{k i} S_{i j} \tag{6.52}
\end{equation*}
$$

and the tangent stiffness matrix (its derivative with respect to the current position) can be written as

$$
\begin{equation*}
K_{G}=\int_{\Omega} S_{i j} \delta u_{k, i} u_{l, j}+\int_{\Omega} d e: \frac{\partial^{2} W}{\partial e^{2}}: \delta e \tag{6.53}
\end{equation*}
$$

which using the notation $u_{i, j}=\left\{N_{, j}\right\}^{T}\left\{q_{i}\right\}$ leads to

$$
\begin{equation*}
K_{G}^{e}=\int_{\Omega}\left\{\delta q_{m}\right\}\left\{N_{, l}\right\}\left(F_{m k} \frac{\partial^{2} W}{\partial e^{2}}{ }_{i j k l} F_{n i}+S_{l j}\right)\left\{N_{, j}\right\}\left\{d q_{n}\right\} \tag{6.54}
\end{equation*}
$$

The term associated with stress at the current point is generally called geometric stiffness or prestress contribution.

In isotropic elasticity, the 2nd tensor of Piola-Kirchhoff stress is given by

$$
\begin{equation*}
S=D: e(u)=\frac{\partial^{2} W}{\partial e^{2}}: e(u)=\lambda T r(e) I+2 \mu e \tag{6.55}
\end{equation*}
$$

the building of the constitutive law matrix D is performed in p_solid BuildConstit for isotropic, orthotropic and full anisotropic materials. of mk_pre.c nonlin_elas then implements element level computations. For hyperelastic materials $\frac{\partial^{2} W}{\partial e^{2}}$ is not constant and is computed at each integration point as implemented in hyper.c.

For a geometric non-linear static computation, a Newton solver will thus iterate with

$$
\begin{equation*}
\left[K\left(q^{n}\right)\right]\left\{q^{n+1}-q^{n}\right\}=R\left(q^{n}\right)=\int_{\Omega} f . d v-\int_{\Omega_{0}} S\left(q^{n}\right): \delta e \tag{6.56}
\end{equation*}
$$

where external forces f are assumed to be non following.
For an example see staticNewton.

6.1.8 Thermal pre-stress

The following gives the theory of the thermoelastic problem implemented in OpenFEM function of mk_pre.c nonlin_elas.

In presence of a temperature difference, the thermal strain is given by $\left[e_{T}\right]=[\alpha]\left(T-T_{0}\right)$, where in general the thermal expansion matrix α is proportional to identity (isotropic expansion). The stress is found by computing the contribution of the mechanical deformation

$$
\begin{equation*}
S=C:\left(e-e_{T}\right)=\lambda \operatorname{Tr}(e) I+2 \mu e-(C:[\alpha])\left(T-T_{0}\right) \tag{6.57}
\end{equation*}
$$

This expression of the stress is then used in the equilibrium (6.49), the tangent matrix computation (6.53), or the Newton iteration (6.56). Note that the fixed contribution $\int_{\Omega_{0}}\left(-C: e_{T}\right): \delta e$ can be considered as an internal load of thermal origin.

The modes of the heated structure can be computed with the tangent matrix.
An example of static thermal computation is given in ofdemos ThermalCube.

6.1.9 Hyperelasticity

The following gives the theory of the thermoelastic problem implemented in OpenFEM function hyper.c (called by of_mk.c MatrixIntegration).

For hyperelastic media $S=\partial W / \partial e$ with W the hyperelastic energy. hyper.c currently supports Mooney-Rivlin materials for which the energy takes one of following forms

$$
\begin{gather*}
W=C_{1}\left(J_{1}-3\right)+C_{2}\left(J_{2}-3\right)+K\left(J_{3}-1\right)^{2}, \tag{6.58}\\
W=C_{1}\left(J_{1}-3\right)+C_{2}\left(J_{2}-3\right)+K\left(J_{3}-1\right)-\left(C_{1}+2 C_{2}+K\right) \ln \left(J_{3}\right), \tag{6.59}
\end{gather*}
$$

where $\left(J_{1}, J_{2}, J_{3}\right)$ are the so-called reduced invariants of the Cauchy-Green tensor

$$
\begin{equation*}
C=I+2 e, \tag{6.60}
\end{equation*}
$$

linked to the classical invariants $\left(I_{1}, I_{2}, I_{3}\right)$ by

$$
\begin{equation*}
J_{1}=I_{1} I_{3}^{-\frac{1}{3}}, \quad J_{2}=I_{2} I_{3}^{-\frac{2}{3}}, \quad J_{3}=I_{3}^{\frac{1}{2}} \tag{6.61}
\end{equation*}
$$

where one recalls that

$$
\begin{equation*}
I_{1}=\operatorname{tr} C, \quad I_{2}=\frac{1}{2}\left[(\operatorname{tr} C)^{2}-\operatorname{tr} C^{2}\right], \quad I_{3}=\operatorname{det} C . \tag{6.62}
\end{equation*}
$$

Note : this definition of energy based on reduced invariants is used to have the hydrostatic pressure given directly by $p=-K\left(J_{3}-1\right)$ (K "bulk modulus"), and the third term of W is a penalty on incompressibility.

Hence, computing the corresponding tangent stiffness and residual operators will require the derivatives of the above invariants with respect to e (or C). In an orthonormal basis the first-order derivatives are given by:

$$
\begin{equation*}
\frac{\partial I_{1}}{\partial C_{i j}}=\delta_{i j}, \quad \frac{\partial I_{2}}{\partial C_{i j}}=I_{1} \delta_{i j}-C_{i j}, \quad \frac{\partial I_{3}}{\partial C_{i j}}=I_{3} C_{i j}^{-1} \tag{6.63}
\end{equation*}
$$

where $\left(C_{i j}^{-1}\right)$ denotes the coefficients of the inverse matrix of $\left(C_{i j}\right)$. For second-order derivatives we have:

$$
\begin{equation*}
\frac{\partial^{2} I_{1}}{\partial C_{i j} \partial C_{k l}}=0, \quad \frac{\partial^{2} I_{2}}{\partial C_{i j} \partial C_{k l}}=-\delta_{i k} \delta_{j l}+\delta_{i j} \delta_{k l}, \quad \frac{\partial^{2} I_{3}}{\partial C_{i j} \partial C_{k l}}=C_{m n} \epsilon_{i k m} \epsilon_{j l n} \tag{6.64}
\end{equation*}
$$

where the $\epsilon_{i j k}$ coefficients are defined by

$$
\left\{\begin{array}{rlr}
\epsilon_{i j k} & =0 \quad \text { when } 2 \text { indices coincide } \tag{6.65}\\
& =1 \quad \text { when }(i, j, k) \text { even permutation of }(1,2,3) \\
& =-1 & \text { when }(i, j, k) \text { odd permutation of }(1,2,3)
\end{array}\right.
$$

Note: when the strain components are seen as a column vector ("engineering strains") in the form $\left(e_{11}, e_{22}, e_{33}, 2 e_{23}, 2 e_{31}, 2 e_{12}\right)^{\prime}$, the last two terms of (6.64) thus correspond to the following 2 matrices

$$
\begin{gather*}
\left(\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 / 2
\end{array}\right), \tag{6.66}\\
\left(\begin{array}{cccccc}
0 & C_{33} & C_{22} & -C_{23} & 0 & 0 \\
C_{33} & 0 & C_{11} & 0 & -C_{13} & 0 \\
C_{22} & C_{11} & 0 & 0 & 0 & -C_{12} \\
-C_{23} & 0 & 0 & -C_{11} / 2 & C_{12} / 2 & C_{13} / 2 \\
0 & -C_{13} & 0 & C_{12} / 2 & -C_{22} / 2 & C_{23} / 2 \\
0 & 0 & -C_{12} & C_{13} / 2 & C_{23} / 2 & -C_{33} / 2
\end{array}\right) . \tag{6.67}
\end{gather*}
$$

We finally use chain-rule differentiation to compute

$$
\begin{gather*}
S=\frac{\partial W}{\partial e}=\sum_{k} \frac{\partial W}{\partial I_{k}} \frac{\partial I_{k}}{\partial e} \tag{6.68}\\
\frac{\partial^{2} W}{\partial e^{2}}=\sum_{k} \frac{\partial W}{\partial I_{k}} \frac{\partial^{2} I_{k}}{\partial e^{2}}+\sum_{k} \sum_{l} \frac{\partial^{2} W}{\partial I_{k} \partial I_{l}} \frac{\partial I_{k}}{\partial e} \frac{\partial I_{l}}{\partial e} . \tag{6.69}
\end{gather*}
$$

Note that a factor 2 arise each time we differentiate the invariants with respect to e instead of C.
The specification of a material is given by specification of the derivatives of the energy with respect to invariants. The laws are implemented in the hyper.c EnPassiv function.

6.1.10 Gyroscopic effects

Written by Arnaud Sternchuss ECP/MSSMat.
In the fixed reference frame which is Galilean, the Eulerian speed of the particle in \mathbf{x} whose initial position is \mathbf{p} is

$$
\begin{equation*}
\frac{\partial \mathbf{x}}{\partial t}=\frac{\partial \mathbf{u}}{\partial t}+\boldsymbol{\Omega} \wedge(\mathbf{p}+\mathbf{u}) \tag{6.70}
\end{equation*}
$$

and its acceleration is

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{x}}{\partial t^{2}}=\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\frac{\partial \boldsymbol{\Omega}}{\partial t} \wedge(\mathbf{p}+\mathbf{u})+2 \boldsymbol{\Omega} \wedge \frac{\partial \mathbf{u}}{\partial \mathbf{t}}+\boldsymbol{\Omega} \wedge \boldsymbol{\Omega} \wedge(\mathbf{p}+\mathbf{u}) \tag{6.71}
\end{equation*}
$$

$\boldsymbol{\Omega}$ is the rotation vector of the structure with

$$
\boldsymbol{\Omega}=\left[\begin{array}{l}
\omega_{x} \tag{6.72}\\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

in a (x, y, z) orthonormal frame. The skew-symmetric matrix $[\Omega]$ is defined such that

$$
[\Omega]=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \tag{6.73}\\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

The speed can be rewritten

$$
\begin{equation*}
\frac{\partial \mathbf{x}}{\partial t}=\frac{\partial \mathbf{u}}{\partial t}+[\Omega](\mathbf{p}+\mathbf{u}) \tag{6.74}
\end{equation*}
$$

and the acceleration becomes

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{x}}{\partial t^{2}}=\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\frac{\partial[\Omega]}{\partial t}(\mathbf{p}+\mathbf{u})+2[\Omega] \frac{\partial \mathbf{u}}{\partial t}+[\Omega]^{2}(\mathbf{p}+\mathbf{u}) \tag{6.75}
\end{equation*}
$$

In this expression appear

- the acceleration in the rotating frame $\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}$,
- the centrifugal acceleration $\mathbf{a}_{\mathbf{g}}=[\Omega]^{2}(\mathbf{p}+\mathbf{u})$,
- the Coriolis acceleration $\mathbf{a}_{\mathbf{c}}=\frac{\partial[\Omega]}{\partial t}(\mathbf{p}+\mathbf{u})+2[\Omega] \frac{\partial \mathbf{u}}{\partial t}$.
\mathcal{S}_{0}^{e} is an element of the mesh of the initial configuration \mathcal{S}_{0} whose density is $\rho_{0} .[N]$ is the matrix of
shape functions on these elements, one defines the following elementary matrices

$$
\begin{align*}
& {\left[D_{g}^{e}\right]=\int_{\mathcal{S}_{0}^{e}} 2 \rho_{0}[N]^{\top}[\Omega][N] d \mathcal{S}_{0}^{e}} \\
& {\left[K_{a}^{e}\right]=\int_{\mathcal{S}_{0}^{e}} \rho_{0}[N]^{\top} \frac{\partial[\Omega]}{\partial t}[N] d \mathcal{S}_{0}^{e}} \tag{6.76}\\
& {\left[K_{g}^{e}\right]=\int_{\mathcal{S}_{0}^{e}} \rho_{0}[N]^{\top}[\Omega]^{2}[N] d \mathcal{S}_{0}^{e}}
\end{align*} \text { contriolis accelerational softening/stiffening} \$
$$

The traditional fe_mknl MatType in SDT are 7 for gyroscopic coupling and 8 for centrifugal softening.

6.1.11 Centrifugal follower forces

This is the embryo of the theory for the future implementation of centrifugal follower forces.

$$
\begin{equation*}
\delta W_{\omega}=\int_{\Omega} \rho \omega^{2} R(x) \delta v_{R} \tag{6.77}
\end{equation*}
$$

where δv_{R} designates the radial component (in deformed configuration) of δv. One assumes that the rotation axis is along e_{z}. Noting $n_{R}=1 / R\left\{x_{1} x_{2} 0\right\}^{T}$, one then has

$$
\begin{equation*}
\delta v_{R}=n_{R} \cdot \delta v \tag{6.78}
\end{equation*}
$$

Thus the non-linear stiffness term is given by

$$
\begin{equation*}
-d \delta W_{\omega}=-\int_{\Omega} \rho \omega^{2}\left(d R \delta v_{R}+R d \delta v_{R}\right) \tag{6.79}
\end{equation*}
$$

One has $d R=n_{R} \cdot d x\left(=d x_{R}\right)$ and $d \delta v_{R}=d n_{R} \cdot \delta v$, with

$$
d n_{R}=-\frac{d R}{R} n_{R}+\frac{1}{R}\left\{d x_{1} d x_{2} 0\right\}^{T}
$$

Thus, finally

$$
\begin{equation*}
-d \delta W_{\omega}=-\int_{\Omega} \rho \omega^{2}\left(d u_{1} \delta v_{1}+d u_{2} \delta v_{2}\right) \tag{6.80}
\end{equation*}
$$

Which gives

$$
\begin{equation*}
d u_{1} \delta v_{1}+d u_{2} \delta v_{2}=\left\{\delta q_{\alpha}\right\}^{T}\{N\}\{N\}^{T}\left\{d q_{\alpha}\right\} \tag{6.81}
\end{equation*}
$$

with $\alpha=1,2$.

6.1.12 Poroelastic materials

The poroelastic formulation comes from [33], recalled and detailed in [34].

Domain and variables description:
$\Omega \quad$ Poroelastic domain
$\partial \Omega \quad$ Bounding surface of poroelastic domain
$n \quad$ Unit external normal of $\partial \Omega$
u Solid phase displacement vector
$u^{F} \quad$ Fluid phase displacement vector

$$
u^{F}=\frac{\phi}{\tilde{\rho}_{22} \omega^{2}} \nabla p-\frac{\tilde{\rho}_{12}}{\tilde{\rho}_{22}} u
$$

$p \quad$ Fluid phase pressure
$\sigma \quad$ Stress tensor of solid phase
$\sigma^{t} \quad$ Total stress tensor of porous material $\quad \sigma^{t}=\sigma-\phi\left(1+\frac{\tilde{Q}}{\tilde{R}}\right) p I$
Weak formulation, for harmonic time dependence at pulsation ω :

$$
\begin{align*}
& \int_{\Omega} \sigma(u): \epsilon(\delta u) d \Omega-\omega^{2} \int_{\Omega} \tilde{\rho} u \cdot \delta u d \Omega-\int_{\Omega} \frac{\phi}{\tilde{\alpha}} \nabla p \cdot \delta u d \Omega \\
& \quad-\int_{\Omega} \phi\left(1+\frac{\tilde{Q}}{\tilde{R}}\right) p \nabla \cdot \delta u d \Omega-\int_{\partial \Omega}\left(\sigma^{t}(u) \cdot n\right) \cdot \delta u d S=0 \quad \forall \delta u \tag{6.82}\\
& \int_{\Omega} \frac{\phi^{2}}{\tilde{\alpha} \rho_{o} \omega^{2}} \nabla p . \nabla \delta p d \Omega-\int_{\Omega} \frac{\phi^{2}}{\tilde{R}} p \delta p d \Omega-\int_{\Omega} \frac{\phi}{\tilde{\alpha}} u \cdot \nabla \delta p d \Omega \\
&-\int_{\Omega} \phi\left(1+\frac{\tilde{Q}}{\tilde{R}}\right) \delta p \nabla \cdot u d \Omega-\int_{\partial \Omega} \phi\left(u^{F}-u\right) \cdot n \delta p d S=0 \quad \forall \delta p \tag{6.83}
\end{align*}
$$

Matrix formulation, for harmonic time dependence at pulsation ω :

$$
\left[\begin{array}{cc}
K-\omega^{2} M & -C_{1}-C_{2} \tag{6.84}\\
-C_{1}^{T}-C_{2}^{T} & \frac{1}{\omega^{2}} F-K_{p}
\end{array}\right]\left\{\begin{array}{l}
u \\
p
\end{array}\right\}=\left\{\begin{array}{c}
F_{s}^{t} \\
F_{f}
\end{array}\right\}
$$

where the frequency-dependent matrices correspond to:

$$
\begin{array}{ll}
\int_{\Omega} \sigma(u): \epsilon(\delta u) d \Omega & \Rightarrow \delta u^{T} K u \\
\int_{\Omega} \tilde{\rho} u \cdot \delta u d \Omega & \Rightarrow \delta u^{T} M u \\
\int_{\Omega} \frac{\phi^{2}}{\tilde{\alpha} \rho_{o}} \nabla p \cdot \nabla \delta p & \Rightarrow \delta p^{T} K_{p} p \tag{6.85}\\
\int_{\Omega} \frac{\phi^{2}}{\tilde{R}} p \delta p & \Rightarrow \delta p^{T} F p \\
\int_{\Omega} \frac{\phi}{\tilde{\alpha}} \nabla p \cdot \delta u d \Omega & \Rightarrow \delta u^{T} C_{1} p \\
\int_{\Omega} \phi\left(1+\frac{\tilde{Q}}{\tilde{R}}\right) p \nabla \cdot \delta u d \Omega & \Rightarrow \delta u^{T} C_{2} p \\
\int_{\partial \Omega}\left(\sigma^{t}(u) \cdot n\right) \cdot \delta u d S & \Rightarrow \delta u^{T} F_{s}^{t} \\
\int_{\partial \Omega} \phi\left(u^{F}-u\right) \cdot n \delta p d S & \Rightarrow \delta p^{T} F_{f}
\end{array}
$$

N.B. if the material of the solid phase is homogeneous, the frequency-dependent parameters can be eventually factorized from the matrices:

$$
\left[\begin{array}{cc}
\left(1+i \eta_{s}\right) \bar{K}-\omega^{2} \tilde{\rho} \bar{M} & -\frac{\phi}{\tilde{\alpha}} \bar{C}_{1}-\phi\left(1+\frac{\tilde{Q}}{R}\right) \bar{C}_{2} \tag{6.86}\\
-\frac{\phi}{\tilde{\alpha}} \bar{C}_{1}^{T}-\phi\left(1+\frac{\tilde{Q}}{\bar{R}}\right) \bar{C}_{2}^{T} & \frac{1}{\omega^{2}} \frac{\phi^{2}}{\tilde{R}} \bar{F}-\frac{\phi^{2}}{\tilde{\alpha} \rho_{o}} \bar{K}_{p}
\end{array}\right]\left\{\begin{array}{c}
u \\
p
\end{array}\right\}=\left\{\begin{array}{c}
F_{s}^{t} \\
F_{f}
\end{array}\right\}
$$

where the matrices marked with bars are frequency independent:

$$
\begin{array}{lll}
K=\left(1+i \eta_{s}\right) \bar{K} & M=\tilde{\rho} \bar{M} & C_{1}=\frac{\phi}{\tilde{\alpha}} \bar{C}_{1} \\
C_{2}=\phi\left(1+\frac{\tilde{Q}}{\tilde{R}}\right) \bar{C}_{2} & F=\frac{\phi^{2}}{\tilde{R}} \bar{F} & K_{p}=\frac{\phi^{2}}{\tilde{\alpha} \rho_{o}} \bar{K}_{p} \tag{6.87}
\end{array}
$$

Material parameters:
$\phi \quad$ Porosity of the porous material
$\bar{\sigma} \quad$ Resistivity of the porous material
$\alpha_{\infty} \quad$ Tortuosity of the porous material
$\Lambda \quad$ Viscous characteristic length of the porous material
$\Lambda^{\prime} \quad$ Thermal characteristic length of the skeleton
$\rho \quad$ Density of the skeleton
$G \quad$ Shear modulus of the skeleton
$\nu \quad$ Poisson coefficient of the skeleton
$\eta_{s} \quad$ Structural loss factor of the skeleton
$\rho_{o} \quad$ Fluid density
$\gamma \quad$ Heat capacity ratio of fluid $(=1.4$ for air $)$
$\eta \quad$ Shear viscosity of fluid $\left(=1.84 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right.$ for air)
Constants:

$$
\begin{array}{ll}
P_{o}=1,01 \times 10^{5} \mathrm{~Pa} & \text { Ambient pressure } \\
\operatorname{Pr}=0.71 & \text { Prandtl number }
\end{array}
$$

Poroelastic specific (frequency dependent) variables:
$\rho_{11} \quad$ Apparent density of solid phase
$\rho_{11}=(1-\phi) \rho-\rho_{12}$
ρ_{22} Apparent density of fluid phase
$\rho_{22}=\phi \rho_{o}-\rho_{12}$
ρ_{12} Interaction apparent density
$\rho_{12}=-\phi \rho_{o}\left(\alpha_{\infty}-1\right)$
$\tilde{\rho} \quad$ Effective density of solid phase
$\tilde{\rho}=\tilde{\rho}_{11}-\frac{\left(\tilde{\rho}_{12}\right)^{2}}{\tilde{\rho}_{22}}$
$\tilde{\rho}_{11}$ Effective density of solid phase
$\tilde{\rho}_{11}=\rho_{11}+\frac{\tilde{b}}{i \omega}$
$\tilde{\rho}_{22}$ Effective density of fluid phase
$\tilde{\rho}_{22}=\rho_{22}+\frac{b}{i \omega}$
$\tilde{\rho}_{12}$ Interaction effective density
$\tilde{\rho}_{12}=\rho_{12}-\frac{\tilde{b}}{i \omega}$
$\tilde{b} \quad$ Viscous damping coefficient
$\tilde{b}=\phi^{2} \bar{\sigma} \sqrt{1+i \frac{4 \alpha_{\infty}^{2} \eta \rho_{o} \omega}{\bar{\sigma}^{2} \Lambda^{2} \phi^{2}}}$
$\tilde{\gamma} \quad$ Coupling coefficient
$\tilde{\gamma}=\phi\left(\frac{\tilde{\rho}_{12}}{\tilde{\rho}_{22}}-\frac{\tilde{Q}}{\tilde{R}}\right)$
$\tilde{Q} \quad$ Elastic coupling coefficient

Biot formulation
$\tilde{Q}=\frac{1-\phi-\frac{K_{b}}{K_{s}}}{1-\phi-\frac{K_{b}}{K_{s}}+\phi \frac{K_{s}}{\tilde{K}_{f}}} \phi K_{s}$
Approximation from $K_{b} / K_{s} \ll 1$
$\tilde{Q}=(1-\phi) \tilde{K}_{f}$
$\tilde{R} \quad$ Bulk modulus of air in fraction volume
Biot formulation

Approximation from $K_{b} / K_{s} \ll 1$
$\tilde{R}=\frac{\phi^{2} K_{s}}{1-\phi-\frac{K_{b}}{K_{s}}+\phi \frac{K_{s}}{\tilde{K}_{f}}}$
$\tilde{R}=\phi \tilde{K}_{f}$
$K_{b} \quad$ Bulk modulus of porous material in vacuo
$K_{b}=\frac{2 G(1+\nu)}{3(1-2 \nu)}$
$K_{s} \quad$ Bulk modulus of elastic solid
est. from Hashin-Shtrikman's upper bound
$K_{s}=\frac{1+2 \phi}{1-\phi} K_{b}$
$\tilde{K}_{f} \quad$ Effective bulk modulus of air in pores
$\tilde{K}_{f}=\frac{P_{o}}{1-\frac{\gamma-1}{\gamma \alpha^{\prime}}}$
$\alpha^{\prime} \quad$ Function in \tilde{K}_{f} (Champoux-Allard model)
$\omega_{T} \quad$ Thermal characteristic frequency
$\alpha^{\prime}=1+\frac{\omega_{T}}{2 i \omega}\left(1+\frac{i \omega}{\omega_{T}}\right)^{\frac{1}{2}}$
$\omega_{T}=\frac{16 \eta}{\operatorname{Pr} \Lambda^{\prime 2} \rho_{o}}$
To add here:

- coupling conditions with poroelastic medium, elastic medium, acoustic medium
- dissipated power in medium

6.1.13 Heat equation

This section is based on an OpenFEM contribution by Bourquin Frédéric and Nassiopoulos Alexandre from Laboratoire Central des Ponts et Chaussées.

The variational form of the Heat equation is given by

$$
\begin{gather*}
\int_{\Omega}(\rho \mathbf{c} \dot{\theta})(v) d x+\int_{\Omega}(\mathbf{K} \operatorname{grad} \theta)(\operatorname{grad} v) d x+\int_{\partial \Omega} \alpha \theta v d \gamma= \\
\int_{\Omega} f v d x+\int_{\partial \Omega}\left(g+\alpha \theta_{\text {ext }}\right) v d \gamma \tag{6.88}\\
\forall v \in H^{1}(\Omega)
\end{gather*}
$$

with

- ρ the density, c the specific heat capacity.
- \mathbf{K} the conductivity tensor of the material. The tensor \mathbf{K} is symmetric, positive definite, and is often taken as diagonal. If conduction is isotropic, one can write $\mathbf{K}=k(x) I d$ where $k(x)$ is called the (scalar) conductivity of the material.
- Acceptable loads and boundary conditions are
- Internal heat source f
- Prescribed temperature (Dirichlet condition, also called boundary condition of first kind)

$$
\begin{equation*}
\theta=\theta_{\text {ext }} \quad \text { on } \quad \partial \Omega \tag{6.89}
\end{equation*}
$$

modeled using a DofSet case entry.

- Prescribed heat flux g (Neumann condition, also called boundary condition of second kind)

$$
\begin{equation*}
(\mathbf{K} \operatorname{grad} \theta) \cdot \vec{n}=g \quad \text { on } \quad \partial \Omega \tag{6.90}
\end{equation*}
$$

leading to a load applied on the surface modeled using a FVol case entry.

- Exchange and heat flux (Fourier-Robin condition, also called boundary condition of third kind)

$$
\begin{equation*}
(\mathbf{K} \operatorname{grad} \theta) \cdot \vec{n}+\alpha\left(\theta-\theta_{\text {ext }}\right)=g \quad \text { on } \quad \partial \Omega \tag{6.91}
\end{equation*}
$$

leading to a stiffness term (modeled using a group of surface elements with stiffness proportional to α) and a load on the associated surface proportional to $g+\alpha \theta_{\text {ext }}$ (modeled using FVol case entries).

Test case

One considers a solid square prism of dimensions L_{x}, L_{y}, L_{z} in the three directions $(O x),(O y)$ and $(O z)$ respectively. The solid is made of homogeneous isotropic material, and its conductivity tensor thus reduces to a constant k.
The faces, $\Gamma_{i}\left(i=1 . .6, \cup_{i=1}^{6} \Gamma_{i}=\partial \Omega\right)$, are subject to the following boundary conditions and loads

- $f=40$ is a constant uniform internal heat source
- $\Gamma_{1}(x=0)$: exchange \& heat flux (Fourier-Robin) given by $\alpha=1, g_{1}=\alpha \theta_{\text {ext }}+\frac{\alpha f L_{x}^{2}}{2 k}=25$
- $\Gamma_{2}\left(x=L_{x}\right):$ prescribed temperature : $\theta\left(L_{x}, y, z\right)=\theta_{\text {ext }}=20$
- $\Gamma_{3}(y=0), \Gamma_{4}\left(y=L_{y}\right), \Gamma_{5}(z=0), \Gamma_{6}\left(z=L_{z}\right)$: exchange \& heat flux $g+\alpha \theta_{\text {ext }}=$ $\alpha \theta_{\text {ext }}+\frac{\alpha f}{2 k}\left(L_{x}^{2}-x^{2}\right)+g_{1}=25-\frac{x^{2}}{20}$

The problem can be solved by the method of separation of variables. It admits the solution

$$
\theta(x, y, z)=-\frac{f}{2 k} x^{2}+\theta_{\text {ext }}+\frac{f L_{x}^{2}}{2 k}=\frac{g(x)}{\alpha}=25-\frac{x^{2}}{20}
$$

The resolution for this example can be found in demo/heat_equation.

Figure 6.1: Temperature distribution along the x -axis

6.2 Model reduction theory

Finite element models of structures need to have many degrees of freedom to represent the geometrical detail of complex structures. For models of structural dynamics, one is however interested in

- a restricted frequency range $\left(s=i \omega \in\left[\begin{array}{ll}\omega_{1} & \omega_{2}\end{array}\right]\right)$
- a small number of inputs and outputs (b, c)
- a limited parameter space α (updated physical parameters, design changes, non-linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models that accurately represent the dynamics of the full order model in all the considered loading/parameter conditions.

Model reduction notions are key to many SDT functions of all areas: to motivate residual terms in pole residue models (id_rc, id_nor), to allow fine control of model order (nor2ss, nor2xf), to create normal models of structural dynamics from large order models fe2ss, fe_reduc), for test measurement expansion to the full set of DOFs (fe_exp), for substructuring using superelements fesuper, fe_coor, for parameterized problems including finite element model updating upcom.

6.2.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they seek solutions in the subspace generated by a reduction matrix T. Assuming $\{q\}=[T]\left\{q_{R}\right\}$, the second order finite element model (5.1) is projected as follows

$$
\begin{gather*}
{\left[T^{T} M T s^{2}+T^{T} C T s+T^{T} K T\right]_{N R \times N R}\left\{q_{R}(s)\right\}=\left[T^{T} b\right]_{N R \times N A}\{u(s)\}_{N A \times 1}} \tag{6.92}\\
\{y(s)\}_{N S \times 1}=[c T]_{N S \times N R}\left\{q_{R}(s)\right\}_{N R \times 1}
\end{gather*}
$$

Modal analysis, model reduction, component mode synthesis, and related methods all deal with an appropriate selection of singular projection bases $\left([T]_{N \times N R}\right.$ with $\left.N R \ll N\right)$. This section summarizes the theory behind these methods with references to other works that give more details.

The solutions provided by $S D T$ making two further assumptions which are not hard limitations but allow more consistent treatments while covering all but the most exotic problems. The projection is chosen to preserve reciprocity (left multiplication by T^{T} and not another matrix). The projection bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved for a given frequency and parameter range

$$
\begin{equation*}
[c][Z(s, \alpha)]^{-1}[b] \approx[c T]\left[T^{T} Z(s, \alpha) T\right]^{-1}\left[T^{T} b\right] \tag{6.93}
\end{equation*}
$$

Traditional modal analysis, combines normal modes and static responses. Component mode synthesis methods extend the selection of boundary conditions used to compute the normal modes. The $S D T$ further extends the use of reduction bases to parameterized problems.

A key property for model reduction methods is that the input/output behavior of a model only depends on the vector space generated by the projection matrix T. Thus range $(T)=\operatorname{range}(\tilde{T})$ implies that

$$
\begin{equation*}
[c T]\left[T^{T} Z T\right]^{-1}\left[T^{T} b\right]=[c \tilde{T}]\left[\tilde{T}^{T} Z \tilde{T}\right]^{-1}\left[\tilde{T}^{T} b\right] \tag{6.94}
\end{equation*}
$$

This equivalence property is central to the flexibility provided by the $S D T$ in CMS applications (it allows the decoupling of the reduction and coupled prediction phases) and modeshape expansion methods (it allows the definition of a static/dynamic expansion on sensors that do not correspond to DOFs).

6.2.2 Normal mode models

Normal modes are defined by the eigenvalue problem

$$
\begin{equation*}
-[M]\left\{\phi_{j}\right\} \omega_{j}^{2}+[K]_{N \times N}\left\{\phi_{j}\right\}_{N \times 1}=\{0\}_{N \times 1} \tag{6.95}
\end{equation*}
$$

based on inertia properties (represented by the positive definite mass matrix M) and underlying elastic properties (represented by a positive semi-definite stiffness K). The matrices being positive there are N independent eigenvectors $\left\{\phi_{j}\right\}$ (forming a matrix noted $[\phi]$) and eigenvalues ω_{j}^{2} (forming a diagonal matrix noted $\left[\backslash \omega_{j}^{2} \backslash\right]$).

As solutions of the eigenvalue problem (6.95), the full set of N normal modes verify two orthogonality conditions with respect to the mass and the stiffness

$$
\begin{equation*}
[\phi]^{T}[M][\phi]=\left[\backslash \mu_{j}\right]_{N \times N} \quad \text { and } \quad[\phi]^{T}[K][\phi]=\left[\backslash \mu_{j} \omega_{j \backslash}^{2}\right] \tag{6.96}
\end{equation*}
$$

where μ is a diagonal matrix of modal masses (which are quantities depending uniquely on the way the eigenvectors ϕ are scaled).
In the $S D T$, the normal modeshapes are assumed to be mass normalized so that $[\mu]=[I]$ (implying $[\phi]^{T}[M][\phi]=[I]$ and $[\phi]^{T}[K][\phi]=\left[\backslash \omega_{j}^{2}\right]$). The mass normalization of modeshapes is independent from a particular choice of sensors or actuators.

Another traditional normalization is to set a particular component of $\tilde{\phi}_{j}$ to 1 . Using an output shape matrix this is equivalent to $c_{l} \tilde{\phi}_{j}=1$ (the observed motion at sensor c_{l} is unity). $\tilde{\phi}_{j}$, the modeshape with a component scaled to 1 , is related to the mass normalized modeshape by $\tilde{\phi}_{j}=\phi_{j} /\left(c_{l} \phi_{j}\right)$.

$$
\begin{equation*}
m_{j}\left(c_{l}\right)=\left(c_{l} \phi_{j}\right)^{-2} \tag{6.97}
\end{equation*}
$$

is called the modal or generalized mass at sensor c_{l}. A large modal mass denotes small output. For rigid body translation modes and translation sensors, the modal mass corresponds to the mass of the structure. If a diagonal matrix of generalized masses mu is provided and ModeIn is such that the output c_{l} is scaled to 1 , the mass normalized modeshapes will be obtained by

$$
\text { ModeNorm }=\text { ModeIn } * \operatorname{diag}\left(\operatorname{diag}(m u) .^{\wedge}(-1 / 2)\right) ;
$$

Modal stiffnesses are are equal to

$$
\begin{equation*}
k_{j}\left(c_{l}\right)=\left(c_{l} \phi_{j}\right)^{-2} \omega_{j}^{2} \tag{6.98}
\end{equation*}
$$

The use of mass-normalized modes, simplifies the normal mode form (identity mass matrix) and allows the direct comparison of the contributions of different modes at similar sensors. From the orthogonality conditions, one can show that, for an undamped model and mass normalized modes,
the dynamic response is described by a sum of modal contributions

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{N} \frac{\left\{c \phi_{j}\right\}\left\{\phi_{j}^{T} b\right\}}{s^{2}+\omega_{j}^{2}} \tag{6.99}
\end{equation*}
$$

which correspond to pairs of complex conjugate poles $\lambda_{j}= \pm i \omega_{j}$.
In practice, only the first few low frequency modes are determined, the series in 6.99 is truncated, and a correction for the truncated terms is introduced (see section 6.2.3).

Note that the concept of effective mass [35], used for rigid base excitation tests, is very similar to the notion of generalized mass.

6.2.3 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition 6.99). In practice, one distinguishes modes that have a resonance in the model bandwidth and need to be kept and higher frequency modes for which one assumes $\omega \ll \omega_{j}$. This assumption leads to

$$
\begin{equation*}
[c]\left[M s^{2}+K\right]^{-1}[b] \approx \sum_{j=1}^{N_{R}} \frac{[c]\left\{\phi_{j}\right\}\left\{\phi_{j}\right\}^{T}[b]}{s^{2}+\omega_{j}^{2}}+\sum_{j=N_{R}+1}^{N} \frac{[c]\left\{\phi_{j}\right\}\left\{\phi_{j}\right\}^{T}[b]}{\omega_{j}^{2}} \tag{6.100}
\end{equation*}
$$

Figure 6.2: Normal mode corrections.

For the example treated in the demo fe script, the figure shows that the exact response can be decomposed into retained modal contributions and an exact residual. In the selected frequency range, the exact residual is very well approximated by a constant often called the static correction.

The use of this constant is essential in identification phases and it corresponds to the E term in the pole/residue models used by id_rc (see under res page 212 .
For applications in reduction of finite element models, a little more work is typically done. From the
orthogonality conditions (6.96), one can easily show that for a structure with no rigid body modes (modes with $\omega_{j}=0$)

$$
\begin{equation*}
\left[T_{A}\right]=[K]^{-1}[b]=\sum_{j=1}^{N} \frac{\left\{\phi_{j}\right\}\left\{\phi_{j}^{T} b\right\}}{\omega_{j}^{2}} \tag{6.101}
\end{equation*}
$$

The static responses $K^{-1} b$ are called attachment modes in Component Mode Synthesis applications [36]. The inputs [b] then correspond to unit loads at all interface nodes of a coupled problem.

One has historically often considered residual attachment modes defined by

$$
\begin{equation*}
\left[T_{A R}\right]=[K]^{-1}[b]-\sum_{j=1}^{N R} \frac{\left\{\phi_{j}\right\}\left\{\phi_{j}^{T} b\right\}}{\omega_{j}^{2}} \tag{6.102}
\end{equation*}
$$

where $N R$ is the number of normal modes retained in the reduced model.
The vector spaces spanned by $\left[\phi_{1} \ldots \phi_{N R} T_{A}\right]$ and $\left[\phi_{1} \ldots \phi_{N R} T_{A R}\right]$ are clearly the same, so that reduced models obtained with either are dynamically equivalent. For use in the $S D T$, you are encouraged to find a basis of the vector space that diagonalizes the mass and stiffness matrices (normal mode form which can be easily obtained with fe_norm).

Reduction on modeshapes is sometimes called the mode displacement method, while the addition of the static correction leads to the mode acceleration method.

When reducing on these bases, the selection of retained normal modes guarantees model validity over the desired frequency band, while adding the static responses guarantees validity for the spatial content of the considered inputs. The reduction is only valid for this restricted spatial/spectral content but very accurate for solicitation that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer. The standard, but conservative, criterion (attributed to Rubin) is to keep modes with frequencies below 1.5 times the highest input frequency of interest.

6.2.4 Static correction with rigid body modes

For a system with $N B$ rigid body modes kept in the model, $[K]$ is singular. Two methods are typically considered to overcome this limitation.

The approach traditionally found in the literature is to compute the static response of all flexible modes. For $N B$ rigid body modes, this is given by

$$
\begin{equation*}
[K]^{*}[b]=\sum_{j=N B+1}^{N} \frac{\left\{\phi_{j}\right\}\left\{\phi_{j}^{T} b\right\}}{\omega_{j}^{2}} \tag{6.103}
\end{equation*}
$$

This corresponds to the definition of attachment modes for free floating structures [36]. The flexible response of the structure can actually be computed as a static problem with an iso-static constraint imposed on the structure (use the fe_reduc flex solution and refer to [37] or [38] for more details).

The approach preferred in the $S D T$ is to use a mass-shifted stiffness leading to the definition of shifted attachment modes as

$$
\begin{equation*}
\left[T_{A S}\right]=[K+\alpha M]^{-1}[b]=\sum_{j=1}^{N} \frac{\left\{\phi_{j}\right\}\left\{\phi_{j}^{T} b\right\}}{\left(\omega_{j}^{2}+\alpha\right)} \tag{6.104}
\end{equation*}
$$

While these responses don't exactly span the same subspace as static corrections, they can be computed using the mass-shifted stiffness used for eigenvalue computations. For small mass-shifts (a fraction of the lowest flexible frequency) and when modes are kept too, they are a very accurate replacement for attachment modes. It is the opinion of the author that the additional computational effort linked to the determination of true attachment modes is not mandated and shifted attachment modes are used in the SDT.

6.2.5 Other standard reduction bases

For coupled problems linked to model substructuring, it is traditional to state the problem in terms of imposed displacements rather than loads.

Assuming that the imposed displacements correspond to DOFs, one seeks solutions of problems of the form

$$
\left[\begin{array}{cc}
Z_{I I}(s) & Z_{I C}(s) \tag{6.105}\\
Z_{C I}(s) & Z_{C C}(s)
\end{array}\right]\left\{\begin{array}{c}
<q_{I}(s)> \\
q_{C}(s)
\end{array}\right\}=\left\{\begin{array}{c}
R_{I}(s) \\
<0>
\end{array}\right\}
$$

where $<>$ denotes a given quantity (the displacement q_{I} are given and the reaction forces R_{I} computed). The exact response to an imposed harmonic displacement $q_{I}(s)$ is given by

$$
\{q(s)\}=\left[\begin{array}{c}
I \tag{6.106}\\
-Z_{C C}^{-1} Z_{C I}
\end{array}\right]\left\{q_{I}\right\}
$$

The first level of approximation is to use a quasistatic evaluation of this response (evaluate at $s=0$, that is use $Z(0)=K$). Model reduction on this basis is known as static or Guyan condensation [21].

This reduction does not fulfill the requirement of validity over a given frequency range. Craig and Bampton 39 thus complemented the static reduction basis by fixed interface modes : normal modes of the structure with the imposed boundary condition $q_{I}=0$. These modes correspond to singularities $Z_{C C}$ so their inclusion in the reduction basis allows a direct control of the range over
which the reduced model gives a good approximation of the dynamic response.
The Craig-Bampton reduction basis takes the special form

$$
\left\{\begin{array}{c}
q_{I}(s) \tag{6.107}\\
q_{C}(s)
\end{array}\right\}=\left[\begin{array}{cc}
I & 0 \\
-K_{C C}^{-1} K_{C I} & \phi_{C}
\end{array}\right]\left\{q_{R}\right\}
$$

where the fact that the additional fixed interface modes have zero components on the interface DOFs is very useful to allow direct coupling of various component models. fe_reduc provides a solver that directly computes the Craig-Bampton reduction basis.

A major reason of the popularity of the Craig-Bampton reduction basis is the fact that the interface DOFs q_{I} appear explicitly in the generalized DOF vector q_{R}. This is actually a very poor reason that has strangely rarely been challenged. Since the equivalence property tells that the predictions of a reduced model only depend on the projection subspace, it is possible to select the reduction basis and the generalized DOFs independently. The desired generalized DOFs can always be characterized by an observation matrix c_{I}. As long as $\left[c_{I}\right][T]$ is not rank deficient, it is thus possible to determine a basis \tilde{T} of the subspace spanned by T such that

$$
\left[c_{I}\right][\tilde{T}]=\left[\begin{array}{ll}
{[I]_{N I \times N I}} & {[0]_{N I \times(N R-N I)}} \tag{6.108}
\end{array}\right]
$$

The fe_coor function builds such bases, and thus let you use arbitrary reduction bases (loaded interface modes rather than fixed interface modes in particular) while preserving the main interest of the Craig-Bampton reduction basis for coupled system predictions (see example in section 6.3.3).

6.2.6 Substructuring

Substructuring is a process where models are divided into components and component models are reduced before a coupled system prediction is performed. This process is known as Component Mode Synthesis in the literature. Ref. [36] details the historical perspective while this section gives the point of view driving the $S D T$ architecture (see also [40]).

One starts by considering disjoint components coupled by interface component(s) that are physical parts of the structure and can be modeled by the finite element method. Each component corresponds to a dynamic system characterized by its I/O behavior $H_{i}(s)$. Inputs and outputs of the component models correspond to interface DOFs.

Figure 6.3: CMS procedure.

Traditionally, interface DOFs for the interface model match those of the components (the meshes are compatible). In practice the only requirement for a coupled prediction is that the interface DOFs linked to components be linearly related to the component DOFs $q_{j i n t}=\left[c_{j}\right]\left[q_{j}\right]$. The assumption that the components are disjoint assures that this is always possible. The observation matrices c_{j} are Boolean matrices for compatible meshes and involve interpolation otherwise.

Because of the duality between force and displacement (reciprocity assumption), forces applied by the interface(s) on the components are described by an input shape matrix which is the transpose of the output shape matrix describing the motion of interface DOFs linked to components based on component DOFs. Reduced component models must thus be accurate for all those inputs. CMS methods achieve this objective by keeping all the associated constraint or attachment modes.

Considering that the motion of the interface DOFs linked to components is imposed by the components, the coupled system (closed-loop response) is simply obtained adding the dynamic stiffness of the components and interfaces. For a case with two components and an interface with no internal DOFs, this results in a model coupled by the dynamic stiffness of the interface

$$
\left(\left[\begin{array}{cc}
Z_{1} & 0 \tag{6.109}\\
0 & Z_{2}
\end{array}\right]+\left[\begin{array}{cc}
c_{1}^{T} & 0 \\
0 & c_{2}^{T}
\end{array}\right]\left[Z_{\text {int }}\right]\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right]\right)\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=[b]\{u(s)\}
$$

The traditional CMS perspective is to have the dimension of the interface(s) go to zero. This can be seen as a special case of coupling with an interface stiffness

$$
\left(\left[\begin{array}{cc}
Z_{1} & 0 \tag{6.110}\\
0 & Z_{2}
\end{array}\right]+\left[\begin{array}{cc}
c_{1}^{T} & 0 \\
0 & c_{2}^{T}
\end{array}\right] \frac{\left[\begin{array}{cc}
I & -I \\
-I & I
\end{array}\right]}{\epsilon}\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right]\right)\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=[b]\{u(s)\}
$$

where ϵ tends to zero. The limiting case could clearly be rewritten as a problem with a displacement
constraint (generalized kinematic or Dirichlet boundary condition)

$$
\left[\begin{array}{cc}
Z_{1} & 0 \tag{6.111}\\
0 & Z_{2}
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=[b]\{u(s)\} \quad \text { with } \quad\left[\begin{array}{cc}
c_{1} & \left.-c_{2}\right]
\end{array}\left\{\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right\}=0\right.
$$

Most CMS methods state the problem this way and spend a lot of energy finding an explicit method to eliminate the constraint. The SDT encourages you to usefe_coor which eliminates the constraint numerically and thus leaves much more freedom on how you reduce the component models.

In particular, this allows a reduction of the number of possible interface deformations 40. But this reduction should be done with caution to prevent locking (excessive stiffening of the interface).

6.2.7 Reduction for parameterized problems

Methods described up to now, have not taken into account the fact that in 6.93 the dynamic stiffness can depend on some variable parameters. To apply model reduction to a variable model, the simplest approach is to retain the low frequency normal modes of the nominal model. This approach is however often very poor even if many modes are retained. Much better results can be obtained by taking some knowledge about the modifications into account 41.

In many cases, modifications affect a few DOFs: $\Delta Z=Z(\alpha)-Z\left(\alpha_{0}\right)$ is a matrix with mostly zeros on the diagonal and/or could be written as an outer product $\Delta Z_{N \times N}=\left[b_{I}\right][\Delta \hat{Z}]_{N B \times N B}\left[b_{I}\right]^{T}$ with $N B$ much smaller than N. An appropriate reduction basis then combines nominal normal modes and static responses to the loads b_{I}

$$
T=\left[\begin{array}{ll}
\phi_{1 \ldots N R} & {[\hat{K}]^{-1}\left[b_{I}\right]} \tag{6.112}
\end{array}\right]
$$

In other cases, you know a typical range of allowed parameter variations. You can combine normal modes are selected representative design points to build a multi-model reduction that is exact at these points

$$
T=\left[\begin{array}{lll}
\phi_{1 \ldots N R}\left(\alpha_{1}\right) & \phi_{1 \ldots N R}\left(\alpha_{2}\right) & \ldots \tag{6.113}
\end{array}\right]
$$

If you do not know the parameter ranges but have only a few parameters, you should consider a model combining modeshapes and modeshape sensitivities [42] (as shown in the gartup demo)

$$
T=\left[\begin{array}{lll}
\phi_{1 \ldots N R}\left(\alpha_{0}\right) & \frac{\partial \phi_{1 \ldots N R}}{\partial \alpha} & \ldots \tag{6.114}
\end{array}\right]
$$

For a better discussion of the theoretical background of fixed basis reduction for variable models see Refs. 41] and 42 .

6.3 Superelements and CMS

6.3.1 Superelements in a model

A superelement is a model that is included in another global model as an element. In general superelements are reduced: the response at all DOFs is described by a linear combination of shapes characterized by generalized DOFs. The use of multiple superelements to generate system predictions is called Component Mode Synthesis (CMS). For a single superelement (SE structure not included in a larger model) simply use fe_reduc calls. This section addresses superelements integrated in a model.

Starting with SDT 6, superelements are stored as 'SE' entries in the model stack (of the form 'SE', SEname, SEmodel) with field detailed in section 6.3.2. Superelements are then referenced by element rows in a group of SE elements in the global model. A group of superelements in the Elt matrix begins by the header row [Inf abs('SE') 0]. Each superelement is then defined by a row of the form
[NameCode N1 Nend BasId Elt1 EltEnd MatId ProId EltId].

- NameCode is an identifier encoding the superelement name using fesuper('s_name'). It is then assumed that the model stack contains an 'SE', name entry containing the model constituting the superelement. The encoding uses base2dec and is limited to 8 alphabetic lower case characters and numbers, you can use
NameCode $=$ feval (fesuper('@cleanSEname'), NameCode); to test the name compatibility.
- [N1 Nend] and [Elt1 EltEnd] are ranges of implicit NodeId and EltId of the superelement nodes and elements in the global model. That is to say that each node or element of the superelement is identified in the global model by an Id that can be different from the original Id of the superelement model stored in the stack. For more details see Node.
- BasId is the basis identifier in the bas field of the global model. It allows repositioning of the superelement in the global model.
- Elt1,EltEnd give the range of EltId used to identify elements constituting the superelement. These numbers are distinct from the superelement identifier itself.
- MatId,ProId,EltId are used to associate properties to a given superelement. Superelements support p_super property entries. Material information can be used for selection purposes.

The d_cms demo illustrates the Component Mode Synthesis based on a superelement element strategy. The model of this example (shown below) is composed by two stiffened plates. CMS here consists in splitting the model into two superelement plates that will be reduced, before computation of the global model modes.

Figure 6.4: CMS example: 2 stiffened plates.

- \triangle step 1 builds the simple model shown above
- D in step 2 the two parts are separated and defined as super-elements
- D now display

Other examples of superelement use are given in section 6.3.3.

6.3.2 SE data structure reference

The superelement data is stored as a 'SE', Name, Data entry of the global model stack. The following entries describe standard fields of the superelement Data structure (which is a standard SDT model data structure with possible additional fields).

Opt
Options characterizing the type of superelement as follows:

```
Opt (1,1) 1 classical superelements, 3 FE update unique superelements (see upcom).
Opt (1,4)
Opt(2,:)
Opt (3,:) is used to define the coefficient associated with each of the matrices declared
    in row 2. An alternative mechanism is to define an element property in the
    il matrix. If these coefficients are not defined they are assumed to be equal
    to 1. See p_super for high level handling.
```


Node

Nominal node matrix. Contains the nodes used by the unique superelement or the nominal generic superelement (see section 7.1). The only restriction in comparison to a standard model Node matrix is that it must be sorted by NodeId so that the last node has the largest NodeId.

In the element row declaring the superelement (see above) one defines a node range N1 NEND. The constraint on node numbers is that the defined range corresponds to the largest node number in the superelement (NEND-N1+1=max(SE.Node(:,1))). Not all nodes need to be defined however.

Nodes numbers in the full model are given by NodeId=SE.Node (: , 1)-max (SE.Node (: , 1))+NEND N1 is really only used for coherence checking).

```
K{i},Klab{i},DOF
```

Superelement matrices. The presence and type of these matrices is declared in the Opt field (see above) and should be associated with a label giving the meaning of each matrix.

All matrices must be consistent with the .DOF field which is given in internal node numbering. When multiple instances of a superelement are used, node identifiers are shifted.

Elt, Node, il, pl
Initial model retrieval for unique superelements. Elt field contains the initial model description matrix which allows the construction of a detailed visualization as well as post-processing operations. .Node contains the nodes used by this model. The .pl and .il fields store material and element properties for the initial model.

Once the matrices built, SE.Elt may be replaced by a display mesh if appropriate.

TR field contains the definition of a possible projection on a reduction basis. This information is stored in a structure array with fields

- . DOF is the model active DOF vector.
- . def is the projection matrix. There is as many columns as DOFs in the reduced basis (stored in the DOF field of the superelement structure array), and as many row as active DOFs (stored in TR.DOF).
- . adof, when appropriate, gives a list of DOF labels associated with columns of TR. def
- .data, when appropriate, gives a list frequencies associated with columns of TR.def
- . LargeDOF can be used to specify DOFs used to track the large rotation of frame where the superelement is defined in multi-body systems.
- . KeptDOF can be used to specify master DOFs not included TR.def but that should still be used for display of the superelement.

6.3.3 An example of SE use for CMS

Following example splits the 2 stiffened plane models into 2 sub models, and defines a new model with those 2 sub models taken as superelements.
First the 2 sub models are built

```
model=demosdt('Tuto CMSSE -s1 model');
SE1.Node=model.Node; SE2.Node=model.Node;
[ind,SE1.Elt]=feutil('FindElt WithNode{x>0|z>0}',model); % sel 1st plate
SE1.Node=feutil('OptimModel',SE1); SE1=feutil('renumber',SE1);
[ind,SE2.Elt]=feutil('FindElt WithNode{x<0|z<0}',model); % sel 2nd plate
SE2.Node=feutil('OptimModel',SE2); SE2=feutil('renumber',SE2);
```

Then mSE model is built including those 2 models as superelements

```
mSE.Node=[];
mSE.Elt=[Inf abs('SE') 0 0 0 0 0 0; % header row for superelements
    fesuper('s_se1') 1 16 0 1 1 100 100 1 ; % SE1
    fesuper('s_se2') 101 116 0 2 2 101 101 2]; % SE2
mSE=stack_set(mSE,'SE','se1',SE1); mSE=stack_set(mSE,'SE','se2',SE2);
feplot(mSE); fecom('promodelinit')
```

This is a low level strategy. fesuper provides a set of commands to easily manipulate superelements. In particular the whole example above can be performed by a single call to fesuper ('SelAsSE') command as shown in the CMS example in section 6.3.3.

In this example one takes a full model split it into two superelements through element selections

```
model=demosdt('Tuto CMSSE -s1 model'); % get the full model
feutil('infoelt',model)
mSE=fesuper('SESelAsSE-dispatch',model, ...
    {'WithNode{x>0|z>0}';'WithNode{x<0|z<0}'});
feutil('infoelt',mSE)
[eltid,mSE.Elt]=feutil('eltidfix;',mSE);
```

Then the two superelements are stored in the stack of mSE. Both of them are reduced using fe_reduc (with command option -SE for superelement, and -UseDof in order to obtain physical DOFs) CraigBampton reduction. This operation creates the .DOF (reduced DOFs), .K (superelement reduced matrices) and .TR (reduction basis) fields in the superelement models.
Those operations can be performed with following commands (seefesuper)
mSE=fesuper(mSE,'setStack','se1','info','EigOpt', [5 20 1e3]);
mSE=fesuper(mSE,'settr','se1', 'CraigBampton -UseDof');
mSE=fesuper (mSE,'setStack','se2','info','EigOpt', [5 20 1e3]);
mSE=fesuper (mSE,'settr','se2', 'CraigBampton -UseDof');
This is the same as following lower level commands

```
SE1=stack_get(mSE,'SE','se1','getdata');
SE1=stack_set(SE1,'info','EigOpt',[5 50.1 1e3]);
SE1=fe_reduc('CraigBampton -SE -UseDof',SE1);
mSE=stack_set(mSE,'SE','se1',SE1);
SE2=stack_get(mSE,'SE','se2','getdata');
SE2=stack_set(SE2,'info','EigOpt',[5 50.1 1e3]);
SE2=fe_reduc('CraigBampton -SE -UseDof',SE2);
mSE=stack_set(mSE,'SE','se2',SE2);
```

Then the modes can be computed, using the reduced superelements

```
def=fe_eig(mSE,[5 20 1e3]); % reduced model
dfull=fe_eig(model,[5 20 1e3]); % full model
```

The results of full and reduced models are very close. The frequency error for the first 20 modes is lower than 0.02%.
fesuper provides a set of commands to manipulate superelements. fesuper('SEAdd') lets you add a superelement in a model. One can add a model as a unique superelement or repeat it with translations or rotations.

For CMS for example, one has to split a model into sub structure superelement models. It can be performed by the fesuper SESelAsSE command. This command can split a model into superelements defined by selections, or can build the model from sub models taken as superelements. The fesuper SEDispatch command dispatches the global model constraints (FixDof, mpc, rbe3, DofSet and rigid elements) into the related superelements and defines DofSet (imposed displacements) on the interface DOFs between sub structures.

6.3.4 Obsolete superelement information

The following strategy is now obsolete and should not be used even though it is still tested.
Superelements are stored in global variables whose name is of the form SEName. fe_super ensures that superelements are correctly interpreted as regular elements during model assembly, visualization, etc. The superelement Name must differ from all function names in your Matlab path. By default these variables are not declared as global in the base workspace. Thus to access them from there you need to use global SEName.

Reference to the superelements is done using element group headers of the form [Inf abs('name')].
The fesuper user interface provides standard access to the different fields (see fe_super for a list of those fields). The following sections describe currently implemented commands and associated arguments (see the commode help for hints on how to build commands and understand the variants discussed in this help).
Warnings. In the commands superelement names must be followed by a space (in most other cases user interface commands are not sensitive to spaces).

- Info Outputs a summary of current properties of the superelement Name.
- Load, Save Load FileName loads superelements (variables with name of the form SEName) present in the file. SaveFileName Name1 Name2 ... saves superelements Name1, Name2 ... in the file. Note that these commands are really equivalent to global SEName; save FileName SEName and global SEName;load FileName SEName.
- Make elt=fesuper('make Name generic') takes a unique superelement and makes it generic (see fe_super for details on generic superelements). Opt $(1,1)$ is set to 2. SEName.DOF is transformed to a generic DOF form. The output elt is a model description matrix for the nominal superelement (header row and one element property row). This model can by used by femesh to build structures that use the generic superelement several times (see the d_cms2 demo).
make complete adds zero DOFs to nodes which have less than 3 translations (DOFs . 01 to .03) or rotations (DOFs . 04 to .06). Having complete superelements is important to be able to rotate them (used for generic superelements with a Ref property).
- New New unique superelement declaration using the general format fesuper ('New Name', FEnode, FEelt). If a superelement called Name exists it is erased. The Node and Elt properties are set to those given as arguments. The Patch property used by feplot for display is initialized.

Set calls of the form fesuper('Set Name FieldOrCommand', 'Value') are obsolete and replaced as follows

- ref field are now replaced by the definition of local bases for each instance of the superelement.
- patch simply replace the superelement .Elt field by another simplified model to be used for viewing once the matrices have been defined.
- ki type fesuper('set Name $\mathrm{k} i$ type', Mat) sets the superelement matrix K\{i\} to Mat and its type to type. The size of Mat must be coherent with the superelement DOF vector. type is a positive integer giving the meaning of the considered matrix (see MatType).

6.3.5 Sensors and superelements

All sensors, excepted resultant sensor, are supported for superelement models. One can therefore add a sensor with the same way as for a standard model with fe_case ('SensDof') commands: fe_case(model, 'SensDof [append, combine] SenType', Name, Sensor). Name contains the entry name in the stack of the set of sensors where Sensor will be added. Sensor is a structure of data, a vector, or a matrix, which describes the sensor (or sensors) to be added to model. Command option append specifies that the SensId of latter added sensors is increased if it is the same as a former sensor SensId. With combine command option, latter sensors take the place of former same SensId sensors. See section 4.6 for more details.

Following example defines some sensors in the last mSE model

```
% First two steps define model and split as two SE
mSE=demosdt('tuto CMSSE -s2 mSE');
mSE=fesuper(mSE,'setStack','se1','info','EigOpt',[5 50 1e3]);
mSE=fesuper(mSE,'settr','se1','CraigBampton -UseDof');
mSE=fesuper(mSE,'setStack','se2','info','EigOpt',[5 50 1e3]);
```

```
mSE=fesuper(mSE,'settr','se2','CraigBampton -UseDof');
Sensors={[0,0.0,0.75,0.0,0.0,1.0,0.0]; % Id,x,y,z,nx,ny,nz
    [0,10,0.0,0.0,1.0]; % Id,NodeId,nx,ny,nz
    [29.01]}; % DOF
for j1=1:length(Sensors);
    mSE=fe_case(mSE,'SensDof append trans','output',Sensors{j1});
end
mSE=fe_case(mSE,'SensDof append stress','output',[111,22,0.0,1.0,0.0]);
fe_case('SensMatch') command is the same as for standard models
mSE=fe_case(mSE,'SensMatch Radius2','output');
```

Use fe_case('SensSE') to build the observation matrix on the reduced basis

```
Sens=fe_case(mSE,'SensSE','output');
```

For resultant sensors, standard procedure does not work at this time. If the resultant sensor only relates to a specific superelement in the global model, it is however possible to define it. The strategy consists in defining the resultant sensor in the superelement model. Then one can build the observation matrix associated to this sensor, come back to the implicit nodes in the global model, and define a general sensor in the global model with the observation matrix. This strategy is described in following example.

One begins by defining resultant sensor in the related superelement

```
SE=stack_get(mSE,'SE','se2','GetData'); % get superelement
Sensor=struct('ID',0, ...
    'EltSel','WithNode{x<-0.5}'); % left part of the plate
Sensor.SurfSel='x==-0.5'; % middle line of the plate
Sensor.dir=[1.0 0.0 0.0]; % x direction
Sensor.type='resultant'; % type = resultant
SE=fe_case(SE,'SensDof append resultant',...
    'output',Sensor); % add resultant sensor to SE
```

Then one can build the associated observation matrix

```
SE=fe_case(SE,'SensMatch radius .6','output'); % SensMatch
Sens=fe_case(SE,'Sens','output'); % Build observation
```

Then one can convert the SE observation matrix to a mSE observation matrix, by renumbering DOF (this step is not necessary here since the use of fesuper SESelAsSE command assures that implicit numbering is the same as explicit numbering)

```
cEGI=feutil('findelt eltname SE:se2',mSE);
```

```
% implicit nodes of SE in mSE
i1=SE.Node(:,1)-max(SE.Node(:,1))+mSE.Elt(cEGI,3);
% renumber DOF to fit with the global model node numbers:
NNode=sparse(SE.Node(:,1),1,i1);
Sens.DOF=full(NNode(fix(Sens.DOF)))+rem(Sens.DOF,1);
```

Finally, one can add the resultant sensor as a general sensor

```
mSE=fe_case(mSE,'SensDof append general','output',Sens);
```

One can define a load from a sensor observation as following, and compute FRFs:

```
mSE=fe_case(mSE,'DofLoad SensDofSE','in','output:2') % from 2nd output sensor
def=fe_eig(mSE,[5 20 1e3]); % reduced model
nor2xf(def,mSE,'acc iiplot'); ci=iiplot;
```


6.4 Model parameterization

6.4.1 Parametric models, zCoef

Different major applications use families of structural models. Update problems, where a comparison with experimental results is used to update the mass and stiffness parameters of some elements or element groups that were not correctly modeled initially. Structural design problems, where component properties or shapes are optimized to achieve better performance. Non-linear problems where the properties of elements change as a function of operating conditions and/or frequency (viscoelastic behavior, geometrical non-linearity, etc.).

A family of models is defined (see 41 for more details) as a group of models of the general second order form 5.1 where the matrices composing the dynamic stiffness depend on a number of design parameters p

$$
\begin{equation*}
[Z(p, s)]=\left[M(p) s^{2}+C(p) s+K(p)\right] \tag{6.115}
\end{equation*}
$$

Moduli, beam section properties, plate thickness, frequency dependent damping, node locations, or component orientation for articulated systems are typical p parameters. The dependence on p parameters is often very non-linear. It is thus often desirable to use a model description in terms of other parameters α (which depend non-linearly on the p) to describe the evolution from the initial
model as a linear combination

$$
\begin{equation*}
[Z(p, s)]=\sum_{j=1}^{N B} \alpha_{j}(p)\left[Z_{j \alpha}(s)\right] \tag{6.116}
\end{equation*}
$$

with each $\left[Z_{j \alpha}(s)\right]$ having constant mass, damping and stiffness properties.
Plates give a good example of p and α parameters. If p represents the plate thickness, one defines three α parameters: t for the membrane properties, t^{3} for the bending properties, and t^{2} for coupling effects.
p parameters linked to elastic properties (plate thickness, beam section properties, frequency dependent damping parameters, etc.) usually lead to low numbers of α parameters so that the α should be used. In other cases (p parameters representing node positions, configuration dependent properties, etc.) the approach is impractical and p should be used directly.

par

SDT handles parametric models where various areas of the model are associated with a scalar coefficient weighting the model matrices (stiffness, mass, damping, ...). The first step is to define a set of parameters, which is used to decompose the full model matrix in a linear combination.

The elements are grouped in non overlapping sets, indexed m, and using the fact that element stiffness depend linearly on the considered moduli, one can represent the dynamic stiffness matrix of the parameterized structure as a linear combination of constant matrices

$$
\begin{equation*}
\left[Z\left(G_{m}, s\right)\right]=s^{2}[M]+\sum_{m} p_{m}\left[K_{m}\right] \tag{6.117}
\end{equation*}
$$

Parameters are case stack entries defined by using fe_case par commands (which are identical to upcom Par commands for an upcom superelement).
A parameter entry defines a element selection and a type of varying matrix. Thus

```
model=demosdt('demoubeam');
model=fe_case(model,'par k 1 . 1 10','Top','withnode {z>1}');
fecom('proviewon');fecom('curtabCase','Top') % highlight the area
```


zcoef

The weighting coefficients in 6.117) are defined formally using the cf.Stack\{'info', 'zCoef'\} cell array viewed in the figure and detailed below.

The columns of the cell array, which can be modified with the feplot interface, give

- the matrix labels Klab which must coincide with the defined parameters
- the values of coefficients in (6.117) for the nominal mass (typically mCoef=[100... $\left.\begin{array}{llll}1 & 0 & \ldots\end{array}\right)$
- the real valued coefficients zCoef0 in (6.117) for the nominal stiffness K_{0}
- the values or strings z CoefFcn to be evaluated to obtain the coefficients for the dynamic stiffness (6.117).

Given a model with defined parameters/matrices, model=fe_def ('zcoef-default', model) defines default parameters.
zcoef=fe_def('zcoef', model) returns weighting coefficients for a range of values using the frequencies (see Freq) and design point stack entries

Frequencies are stored in the model using a call of the form model=stack_set(model, 'info', 'Freq', w_hertz_colum). Design points (temperatures, optimization points, ...) are stored as rows of the 'info', 'Range' entry, see fevisco Range for generation.
When computing a response, fe_def zCoef starts by putting frequencies in a local variable w (which by convention is always in rd / s), and the current design point (row of 'info', 'Range' entry or row of
its .val field if it exists) in a local variable par. zCoef2: end, 4 is then evaluated to generate weighting coefficients zCoef giving the weighting needed to assemble the dynamic stiffness matrix (6.117). For example in a parametric analysis, where the coefficient par (1) stored in the first column of Range. One defines the ratio of current stiffness to nominal Kvcurrent $=\operatorname{par}(1) * K v($ nominal $)$ as follows

```
% external to fexf
    zCoef={'Klab','mCoef','zCoef0','zCoefFcn';
        'M' 1 0 ',-w. `2';
        'Ke' 0 1 1+i*fe_def('DefEta', []);
        'Kv' 0 1 'par(1)'};
model=struct('K',{cell(1,3)});
model=stack_set(model,'info','zCoef',zCoef);
model=stack_set(model,'info','Range', ...
    struct('val',[1;2;3],'lab',{{'par'}}));
%Within fe2xf
w=[1:10]'*2*pi; % frequencies in rad/s
Range=stack_get(model,'info','Range','getdata');
for jPar=1:size(Range.val,1)
    Range.jPar=jPar;zCoef=fe2xf('zcoef',model,w,Range);
    disp(zCoef)
    % some work gets done here ...
end
```


6.4.2 Reduced parametric models

As for nominal models, parameterized models can be reduced by projection on a constant reduction basis T leading to input/output models of the form

$$
\begin{gather*}
{\left[T^{T} Z(p, s) T\right]\left\{q_{R}\right\}=\left[T^{T} b\right]\{u(s)\}} \tag{6.118}\\
\{y(s)\}=[c T]\left\{q_{R}\right\}
\end{gather*}
$$

or, using the α parameters,

$$
\begin{gather*}
\sum_{j=1}^{N B} \alpha_{j}(p)\left[T^{T} \Delta Z_{j \alpha}(s) T\right]\left\{q_{R}\right\}=\left[T^{T} b\right]\{u(s)\} \tag{6.119}\\
\{y(s)\}=[c T]\left\{q_{R}\right\}
\end{gather*}
$$

6.4.3 upcom parameterization for full order models

Although superelements can deal with arbitrary models of the form 6.116), the upcom interface is designed to allow easier parameterization of models. This interface stores a long list of mass M^{e} and stiffness K^{e} matrices associated to each element and provides, through the assemble command, a fast algorithm to assemble the full order matrices as weighted sums of the form

$$
\begin{equation*}
[M(p)]=\sum_{j=1}^{N E} \alpha_{k}(p)\left[M_{k}^{e}\right] \quad[K(p)]=\sum_{j=1}^{N E} \beta_{k}(p)\left[K_{k}^{e}\right] \tag{6.120}
\end{equation*}
$$

where the nominal model corresponds to $\alpha_{k}(p)=\beta_{k}(p)=1$.
The basic parameterizations are mass p_{i} and stiffness p_{j} coefficients associated to element selections e_{i}, e_{j} leading to coefficients

$$
\begin{align*}
& \alpha_{k}, \beta_{k}=1 \quad \text { for } \quad k \notin e_{i} \\
& \alpha_{k}=p_{i} \quad \text { for } \quad k \in e_{i} \tag{6.121}\\
& \beta_{k}=p_{j} \quad \text { for } \quad k \in e_{j}
\end{align*}
$$

Only one stiffness and one mass parameter can be associated with each element. The element selections e_{i} and e_{j} are defined using upcom Par commands. In some upcom commands, one can combine changes in multiple parameters by defining a matrix dirp giving the p_{i}, p_{j} coefficients in the currently declared list of parameters.

Typically each element is only associated to a single mass and stiffness matrix. In particular problems, where the dependence of the element matrices on the design parameter of interest is non-linear and yet not too complicated more than one submatrix can be used for each element.

In practice, the only supported application is related to plate/shell thickness. If p represents the plate thickness, one defines three α, β parameters: t for the membrane properties, t^{3} for the bending properties, and t^{2} for coupling effects. This decomposition into element submatrices is implemented by specific element functions, q4up and q8up, which build element submatrices by calling quad4 and quadb. Triangles are supported through the use of degenerate quad4 elements.
Element matrix computations are performed before variable parameters are declared. In cases where thickness variations are desired, it is thus important to declare which group of plate/shell elements may have a variable thickness so that submatrices will be separated during the call to fe_mk. This is done using a call of the form upcom('set nominal t GroupID', FEnode, FEel0, pl, il).

6.4.4 Getting started with upcom

Basic operation of the upcom interface is demonstrated in gartup.
The first step is the selection of a file for the superelement storage using upcom('load FileName'). If the file already exists, existing fields of Up are loaded. Otherwise, the file is created.

If the results are not already saved in the file, one then computes mass and stiffness element matrices (and store them in the file) using

```
upcom('setnominal',FEnode,FEelt,pl,il)
```

which calls fe_mk. You can of course eliminate some DOFs (for fixed boundary conditions) using a call of the form

```
upcom('setnominal',FEnode,FEelt,pl,il, [],adof)
```

At any time, upcom info will printout the current state of the model: dimensions of full/reduced model (or a message if one or the other is not defined)

```
'Up' superelement (stored in '/tmp/tp425896.mat')
Model Up.Elt with 90 element(s) in 2 group(s)
Group 1 : }73\mathrm{ quad4 MatId 1 ProId 3
Group 6 : 17 q4up MatId 1 ProId 4
Full order (816 DOFs, 90 elts, 124 (sub)-matrices, 144 nodes)
Reduced model undefined
No declared parameters
```

In most practical applications, the coefficients of various elements are not independent. The upcom par commands provide ways to relate element coefficients to a small set of design variables. Once parameters defined, you can easily set parameters with the parcoef command (which computes the coefficient associated to each element (sub-)matrix) and compute the response using the upcom compute commands. For example

```
upcom('load GartUp');
upcom('ParReset')
upcom('ParAdd k','Tail','group3');
upcom('ParAdd t','Constrained Layer','group6');
upcom('ParCoef',[1.2 1.1]);
upcom('info')
cf=upcom('plotelt')
cf.def(1)=upcom('computemode full 6 20 1e3 11')
fecom('scd.3');
```


6.4.5 Reduction for variable models

The upcom interface allows the simultaneous use of a full and a reduced order model. For any model in a considered family, the full and reduced models can give estimates of all the qualities (static responses, modal frequencies, modeshapes, or damped system responses). The reduced model estimate is however much less numerically expensive, so that it should be considered in iterative schemes.

The selection of the reduction basis T is essential to the accuracy of a reduced family of models. The simplest approach, where low frequency normal modes of the nominal model are retained, very often gives poor predictions. For other bases see the discussion in section 6.2.7.

A typical application (see the gartup demo), would take a basis combining modes and modeshape sensitivities, orthogonalize it with respect to the nominal mass and stiffness (doing it with fe_norm ensures that all retained vectors are independent), and project the model

```
upcom('parcoef', [1 1]);
[fsen,mdsen,mode,freq] = upcom('sens mode full',eye(2),7:20);
[m,k]=upcom('assemble');T = fe_norm([mdsen mode],m,k);
upcom('par red',[T])
```

In the gartup demo, the time needed to predict the first 20 modes is divided by 10 for the reduced model. For larger models, the ratio is even greater which really shows how much model reduction can help in reducing computational times.

Note that the projected model corresponds to the currently declared variable parameters (and in general the projection basis is computed based on knowledge of those parameters). If parameters are redefined using Par commands, you must thus project the model again.

6.4.6 Predictions of the response using upcom

The upcom interface provides optimized code for the computation, at any design point, of modes (ComputeMode command), modeshape sensitivities (SensMode), frequency response functions using a modal model (ComputeModal) or by directly inverting the dynamic stiffness (ComputeFRF). All predictions can be made based on either the full or reduced order model. The default model can be changed using upcom('OptModel $[0,1]$ ') or by appending full or reduced to the main command. Thus

```
upcom('ParCoef',[\begin{array}{ll}{1}&{1}\end{array}]);
[md1,f1] = upcom('compute mode full 105 20 1e3');
[md2,f2] = upcom('compute mode reduced');
```

would be typical calls for a full (with a specification of the fe_eig options in the command rather than using the Opt command) and reduced model.

Warning: unlike fe_eig, upcom typically returns frequencies in Hz (rather than rd/s) as the default unit option is 11 (for rd/s use upcom('optunit22'))

Given modes you could compute FRFs using

```
IIxh = nor2xf(freq,0.01,mode'*b,c*mode,IIw*2*pi);
```

but this does not include a static correction for the inputs described by b. You should thus compute the FRF using (which returns modes as optional output arguments)

```
[IIxh,mode,freq] = upcom('compute modal full 105 20',b,c,IIw);
```

This approach to compute the FRF is based on modal truncation with static correction (see section 6.2.3). For a few frequency points or for exact full order results, you can also compute the response of the full order model using

```
IIxh = upcom('compute FRF',b,c,IIw);
```

In FE model update applications, you may often want to compute modal frequencies and shape sensitivities to variations of the parameters. Standard sensitivities are returned by the upcom sens command (see the Reference section for more details).

6.5 Finite element model updating

While the upcom interface now provides a flexible environment that is designed for finite element updating problems, integrated methodologies for model updating are not stabilized. As a result, the $S D T$ currently only intends to provide an efficient platform for developing model updating methodologies. This platform has been successfully used, by SDTools and others, for updating industrial models, but the details of parameter selection and optimization strategies are currently only provided through consulting services.

Figure 6.5: FE updating process.

The objective of finite element updating is to estimate certain design parameters (physical properties of the model) based on comparisons of test and analysis results. All the criteria discussed in section 3.2 can be used for updating.

The correlation tools provided by fe_sens and fe_exp are among the best existing on the market and major correlation criteria can easily be implemented. With SDT you can thus easily implement most of the existing error localization algorithms. No mechanism is however implemented to automatically translate the results of this localization into a set of parameters to be updated. Furthermore, the updating algorithms provided are very basic.

6.5.1 Error localization/parameter selection

The choice of design parameters to be updated is central to FE update problems. Update parameters should be chosen based on the knowledge that they have not been determined accurately from initial component tests. Whenever possible, the actual values of parameters should be determined using refined measurements of the component properties as the identifiability of the parameters is then clear. If such refined characterizations are not possible, the comparison of measured and predicted responses of the overall system provide a way to assess the probable value of a restricted set of parameters.

Discrepancies are always expected between the model and test results. Parameter updates made based on experimentally measured quantities should thus be limited to parameters that have an impact on the model that is large enough to be clearly distinguished from the expected residual error. Such parameters typically are associated to connections and localized masses.

In practice with industrial models, the FE model is initially divided into zones with one mass/stiffness parameter associated with each zone. The feutil FindElt commands can greatly help zone definition.

Visualizing the strain/kinetic energy distribution of modeshapes is a typical way to analyze zones where modifications will significantly affect the response. The gartup demo shows how the strain energy of modeshapes and displacement residuals can be used in different phases of the error localization process.

6.5.2 Update based on frequencies

As illustrated in demo_fe, once a set of update parameters chosen, you should verify that the proper range is set (see min and max values in section 6.4.4), make sure that Up.copt options are appropriately set to allow the computation of modes and sensitivities (see upcom copt commands), and define a sensor configuration matrix sens using fe_sens.

With test results typically stored in poles IIpo and residues IIres (see section 2.2), the update based on frequencies is then simply obtained by a call of the form

```
i2=1:8; % indices of poles used for the update
[coef,md1,f1] = up_freq('basic',IIpo(i2,:),IIres(i2,:).',sens);
```

The result is obtained by a sensitivity method with automated matching of test and analysis modes using the MAC criterion. A non-linear optimization based solution can be found using up_ifreq but computational costs tend to prevent actual use of this approach. Using reduced order models (see section 6.4.5 and start use with upcom('opt model 1')) can alleviate some of the difficulties but the sensitivity based method up_freq is clearly better.

6.5.3 Update based on FRF

An update algorithm based on a non-linear optimization of the Log-Least-Squares cost comparing FRFs is also provided with up_ixf. The call to up_ixf takes the form

```
coef = up_ixf('basic',b,c,IIw,IIxf,indw)
```

Using up_min for the optimization you will have messages such as
Step size: 1.953e-03
Cost Parameter jumps ...
$3.9341 e-01-9.83 e+00 \quad 4.05 e+00$
which indicate reductions in the step size (Up.copt $(1,7)$) and values of the cost and update parameters at different stages of the optimization. With Up. $\operatorname{copt}(1,2)$ set to 11 you can follow the evolution of predictions of the first FRF in the considered set. The final result here is shown in the figure where the improvement linked to the update is clear.

Figure 6.6: Updated FRF.

This algorithm is not very good and you are encouraged to use it as a basis for further study.

6.6 Handling models with piezoelectric materials

This has been moved to the piezoelectric manual (see sdtweb('piezo')) and is no longer reproduced here.

6.7 Viscoelastic modeling tools

The viscoelastic modeling tools are not part of the base SDT but licensed on an industrial basis only. Their documentation can be found at http://www.sdtools.com/pdf/visc.pdf.

6.8 SDT Rotor

Work on the integration of cyclic symmetry capabilities into a complete SDT ROTOR package is under progress. Their documentation can be found at http://www.sdtools.com/pdf/rotor.pdf.

Developer information

7.1 Nodes 273
7.1.1 Node matrix 273
7.2 Model description matrices 274
7.3 Material property matrices and stack entries 276
7.4 Element property matrices and stack entries 277
7.5 DOF definition vector 278
7.6 FEM model structure 280
7.7 FEM stack and case entries 281
7.8 FEM result data structure 285
7.9 Curves and data sets 286
7.10 DOF selection 292
7.11 Node selection 293
7.12 Element selection 296
7.13 Defining fields trough tables, expressions, 299
7.14 Constraint and fixed boundary condition handling 301
7.14.1 Theory and basic example 301
7.14.2 Local coordinates 302
7.14.3 Enforced displacement 303
7.14.4 Resolution as MPC and penalization transformation 303
7.14.5 Low level examples 304
7.15 Internal data structure reference 305
7.15.1 Element functions and C functionality 305
7.15.2 Standard names in assembly routines 306
7.15.3 Case.GroupInfo cell array 308
7.15.4 Element constants data structure 309
7.16 Creating new elements (advanced tutorial) 311
7.16.1 Generic compiled linear and non-linear elements 311
7.16.2 What is done in the element function 312
7.16.3 What is done in the property function 313
7.16.4 Compiled element families in of_mk. 315
7.16.5 Non-linear iterations, what is done in of mk 320
7.16.6 Element function command reference 321
7.17 Variable names and programming rules (syntax) 327
7.17.1 Variable naming conventions 328
7.17.2 Coding style 329
7.17.3 Input parsing conventions 331
7.17.4 Commands associated to project application functions 332
7.17.5 Commands associated to tutorials 336
7.18 Criteria with CritFcn 338
7.19 Legacy information 338
7.19.1 Legacy 2D elements 339
7.19.2 Rules for elements in of mk subs 339

This chapter gives a detailed description of the formats used for variables and data structures. This information is grouped here and hypertext reference is given in the HTML version of the manual.

7.1 Nodes

7.1.1 Node matrix

Nodes are characterized using the convention of Universal files. model. Node and FEnode are node matrices. A node matrix has seven columns. Each row of gives

```
NodeId PID DID GID x y z
```

where NodeId are node numbers (positive integers with no constraint on order or continuity), PID and DID are coordinate system numbers for position and displacement respectively (zero or any positive integer), GID is a node group number (zero or any positive integer), and x y z are the coordinates . For cylindrical coordinate systems, coordinates represent r teta z (radius, angle in degrees, and z axis value). For spherical coordinates systems, they represent r teta phi (radius, angle from vertical axis in degrees, azimuth in degrees). For local coordinate system support see section 7.1.1.

A simple line of 10 nodes along the x axis could be simply generated by the command

```
node = [[1:10]' zeros(10,3) linspace(0,1,10)'*[1 0 0]];
```

For other examples take a look at the finite element related demonstrations (see section 4.5) and the mesh handling utility femesh.

The only restriction applied to the NodeId is that they should be positive integers. The earlier limit of round $\left(\left(2^{\wedge} 31-1\right) / 100\right) \approx 21 \mathrm{e} 6$ is no longer applicable.

In many cases, you will want to access particular nodes by their number. The standard approach is to create a reindexing vector called NNode. Thus the commands

```
NNode=[];NNode(node(:,1))=1:size(node,1);
Indices_of_Nodes = NNode(List_of_NodeId)
```

gives you a simple mechanism to determine the indices in the node matrix of a set of nodes with identifiers List_of_NodeId. The feutil FindNode commands provide tools for more complex selection of nodes in a large list.

Coordinate system handling

Local coordinate systems are stored in a model.bas field (see NodeBas). Columns 2 and 3 of model.Node define respectively coordinate system numbers for position and displacement.

Use of local coordinate systems is illustrated in section 3.1.1 where a local basis is defined for test results.
feplot, fe_mk, rigid, ... now support local coordinates. feutil does when the model is described by a data structure with the .bas field. femesh assumes you are using global coordinate system obtained with

```
[FEnode,bas] = basis(model.Node,model.bas)
```

To write your own scripts using local coordinate systems, it is useful to know the following calls: [node,bas,NNode]=feutil('getnodebas', model) returns the nodes in global coordinate system, the bases bas with recursive definitions resolved and the reindexing vector NNode.

To obtain, the local to global transformation matrix (meaning $\left\{q_{g l o b a l}\right\}=\left[c_{G L}\right]\left\{q_{\text {local }}\right\}$) use

```
cGL=basis('trans l',model.bas,model.Node,model.DOF)
```


7.2 Model description matrices

A model description matrix describes the model elements. model.Elt and FEelt are, for example, model description matrices. The declaration of a finite element model is done through the use of element groups stacked as rows of a model description matrix elt and separated by header rows whose first element is Inf in Matlab or \%inf in Scilab and the following are the ASCII values for the name of the element. In the following, Matlab notation is used. Don't forget to replace Inf by \%inf in Scilab.
For example a model described by

```
elt = [Inf abs('beam1') 0 0
    1
    2
    Inf abs('mass1') 0 102
    2 1e2 1e2 1e2 5e-5 5e-5 5e-5 0 ];
```

has 2 groups. The first group contains 2 beam1 elements between nodes 1-2 and 2-3 with material property 11 , section property 12 , and bending plane containing node 5 . The second group contains a concentrated mass on node 2.

Note how columns unused for a given type element are filled with zeros. The 102 declared for the mass corresponds to an element group identification number EGID.

You can find more realistic examples of model description matrices in the demonstrations (see section 4.5).

The general format for header rows is

[Inf abs('ElementName') 0 opt]
The Inf that mark the element row and the 0 that mark the end of the element name are required (the 0 may only be omitted if the name ends with the last column of elt).

For multi-platform compatibility, element names should only contain lower case letters and numbers. In any case never include blanks, slashes, ... in the element name. Element names reserved for supported elements are listed in the element reference chapter 9 (or doc ('eltfun') from the command line) .

Users can define new elements by creating functions (.m or .mex in Matlab, .sci in Scilab) files with the element name. Specifications on how to create element functions are given in section 7.16 .

Element group options opt can follow the zero that marks the end of the element name. opt (1), if used, should be the element group identification number EGID. In the example, the group of mass1 elements is this associated to the EGID 102. The default element group identification number is its order in the group declaration. Negative EGID are ignored in FEM analyzes (display only, test information, ...).

Between group headers, each row describes an element of the type corresponding to the previous header (first header row above the considered row).

The general format for element rows is

[NodeNumbers MatId ProId EltId OtherInfo]
where

- NodeNumbers are positive integers which must match a unique NodeId identifier in the first column of the node matrix.
- MatId and ProId are material and element property identification numbers. They should be positive integers matching a unique identifier in the first column of the material pl and element il property declaration matrices.
- EltId are positive integers uniquely identifying each element. See feutil EltId for a way to return the vector and verify/fix identifiers.
- OtherInfo can for example be the node number of a reference node beam1 element). These columns can be used to store arbitrary element dependent information. Typical applications would be node dependent plate thickness, offsets, etc.

Note that the position of MatId, ProId and EltId in the element rows are returned by calls of the form ind=elem0('prop') (elem0 is a generic element name, it can be bar1, hexa8, ...).

Element property rows are used for assembly by fe_mk, display by feplot, model building by femesh,

7.3 Material property matrices and stack entries

This section describes the low level format for material properties. The actual formats are described under m_ functions m_elastic, m_piezo, ... For Graphical edition and standard scripts see section 4.5.1.

A material is normally defined as a row in the material property matrix pl. Such rows give a declaration of the general form [MatId Type Prop] with

MatId a positive integer identifying a particular material property.
Type a positive real number built using calls of the form fe_mat('m_elastic', 'SI', subtype), the subtype integer is described in m_ functions.
Prop as many properties (real numbers) as needed (see fe_mat m_elastic for details).
Additional information can be stored as an entry of type 'mat' in the model stack which has data stored in a structure with at least fields
.name Description of material.
.pl a single value giving the MatId of the corresponding row in the model.pl matrix or row of values.
Resolution of the true .pl value is done by pl=fe_mat('getpl', model). The property value in . pl should be -1 for interpolation in GetPl, -2 for interpolation using the table at each integration point, -3 for direct use of a FieldAtNode value as constitutive value.
.unit a two character string describing the unit system (see fe_mat Convert and Unit commands).
.type the name of the material function handling this particular type of material (for example m_elastic.
.field can be a structure allowing the interpolation of a value called field based on the given table. Thus
 value E based on field T . The positions of interpolated variables within the pl row are given by list=feval(mat.type, 'propertyunittype cell', subtype).

7.4 Element property matrices and stack entries

This section describes the low level format for element properties. The actual formats are described under p_functions p_shell, p_solid, p_beam, p_spring. For Graphical edition and standard scripts see section 4.5.1.

An element property is normally defined as a row in the element property matrix il. Such rows give a declaration of the general form [ProId Type Prop] with
$\begin{array}{ll}\text { ProId } & \text { a positive integer identifying a particular element property. } \\ \text { Type } & \begin{array}{l}\text { a positive real number built using calls of the form fe_mat ('p_beam', 'SI' , 1), the } \\ \text { subtype integer is described in the p_ functions. }\end{array} \\ \text { Prop } & \text { as many properties (real numbers) as needed (see fe_mat, p_solid for details). } \\ \text { Additional information can be stored as an entry of type 'pro' in the model stack which has data }\end{array}$ stored in a structure with fields

. name	description of property.
.il	a single value giving the ProId of the corresponding row in the il matrix or row of values
	Resolution of the true .il value is done by il=fe_mat('getil', model). The property value in .il should be -1 for interpolation in GetIl, -2 for interpolation using the table at each integration point, -3 for direct use of a FieldAtNode value as constitutive value.
. unit	a two character string describing the unit system (see the fe_mat Convert and Unit commands)
.type	the name of the property function handling this particular type of element properties (for example p_beam)
.NLdata	used to stored non-linear property information. Seenl_spring.
. MAP	specifications of a field at node, see section 7.13
.gstate	specifications of a field at integration points, see section 7.13
. field	can be a structure allowing the interpolation of a value called field based on the given table. Thus
	value A based on field x. The positions of interpolated variables within the il row are given by list=feval(pro.type, 'propertyunittype cell', subtype).

The handling of a particular type of constants should be fully contained in the p_* function. The meaning of various constants should be defined in the help and TeX documentation. The subtype mechanism can be used to define several behaviors of the same class. The generation of the integ and constit vectors should be performed through a BuildConstit call that is the same for a full family of element shapes. The generation of EltConst should similarly be identical for an element family.

7.5 DOF definition vector

The meaning of each Degree of Freedom (DOF) is handled through DOF definition vectors typically stored in .DOF fields (and columns of .dof in test cases where a DOF specifies an input/output location). All informations defined at DOFs (deformations, matrices, ...) should always be stored with the corresponding DOF definition vector. The fe_c function supports all standard DOF manipulations (extraction, conversion to label, ...)

Nodal DOFs are described as a single number of the form NodeId.DofId where DofId is an integer between 01 and 99. For example DOF 1 of node 23 is described by 23.01. By convention

- DOFs 01 to 06 are, in the following order u, v, w (displacements along the global coordinate axes)
and $\theta_{u}, \theta_{v}, \theta_{w}$ (rotations along the same directions)
- DOFs 07 to 12 are, in the following order $-u,-v,-w$ (displacements along the reversed global coordinate axes) and $-\theta_{u},-\theta_{v},-\theta_{w}$ (rotations along the same directions). This convention is used in test applications where measurements are often made in those directions and not corrected for the sign change. It should not be used for finite element related functions which may not all support this convention.

While these are the only mandatory conventions, other typical DOFs are .19 pressure, .20 temperature, .21 voltage, .22 magnetic field.

In a small shell model, all six DOFs (translations and rotations) of each node would be retained and could be stacked sequentially node by node. The DOF definition vector mdof and corresponding displacement or load vectors would thus take the form

$$
\text { mdof }=\left[\begin{array}{c}
1.01 \tag{7.1}\\
1.02 \\
1.03 \\
1.04 \\
1.05 \\
1.06 \\
\vdots
\end{array}\right], \mathrm{q}=\left[\begin{array}{ccc}
u_{1} & u_{2} & \\
v_{1} & v_{2} & \\
w_{1} & w_{2} & \\
\theta_{u 1} & \theta_{u 2} & \ldots \\
\theta_{v 1} & \theta_{v 2} & \\
\theta_{w 1} & \theta_{w 2} & \\
\vdots & & \ddots .
\end{array}\right] \text { and } \mathrm{F}=\left[\begin{array}{ccc}
F_{u 1} & F_{u 2} & \\
F_{v 1} & F_{v 2} & \\
F_{w 1} & F_{w 2} & \\
M_{u 1} & M_{u 2} & \ldots \\
M_{v 1} & M_{v 2} & \\
M_{w 1} & M_{w 2} & \\
\vdots & & \ddots
\end{array}\right]
$$

Typical vectors and matrices associated to a DOF definition vector are

- modes resulting from the use of fe_eig or read from FE code results (see nasread, ufread).
- input and output shape matrices which describe how forces are applied and sensors are placed (see fe_c, fe_load, bc page 200).
- system matrices : mass, stiffness, etc. assembled by fe_mk
- FRF test data. If the position of sensors is known, it can be used to animate experimental deformations (see feplot, xfopt, and fe_sens).

Note that, in Matlab version, the functions fe_eig and fe_mk for models with more than 1000 DOFs, renumber DOF internally so that you may not need to optimize DOF numbering yourself. In such cases though, mdof will not be ordered sequentially as shown above.

Element DOFs are described as a single number of the form -EltId.DofId where DofId is an integer between 001 and 999. For example DOF 1 of the element with ID 23001 is described by -23001.001. Element DOFs are typically only used by superelements (see section 6.3). Due to the use of integer routines for indexing operations, you cannot define element DOFs for elements with
and EltId larger than 2147484.

7.6 FEM model structure

Finite element simulations are best handled using standard data structures supported by OpenFEM. The two main data structures are model which contains information needed to specify a FEM problem, and DEF which stores a solution.

Finite element models are described by their topology nodes, elements and possibly coordinate systems), their properties material and element. Computations performed with a model are further characterized by a case as illustrated in section 4.5.3 and detailed in section 7.7.

Data structures describing finite element models have the following standardized fields, where only nodes and elements are always needed.

. bas	local coordinate system definitions.
. cta	sensor observation matrix. Used by fe_sens.
. copt	solver options. For use by upcom. This field is likely to disappear in favor of defaults in sdtdef.
. DOF	DOF definition vector for the matrices of the model. Boundary conditions can be imposed using cases.
. Elt	elements. This field is mandatory.
.file	Storage file name. Used by upcom.
.il	element property description matrix. Can also be stored as 'pro' entries in the Stack.
. $\mathrm{K}\{i\}$	cell array of constant matrices for description of model as a linear combination. Indices i match definitions in. $\operatorname{Opt}(2,:)$ and. $\operatorname{Opt}(3,:)$. Should be associated with a .Klab field giving a string definition of each matrix. See details in the fe_super reference.
. mind	element matrix indices. Used by upcom.
. Node	nodes. This field is mandatory.
. Opt	options characterizing models that are to be used as superelements.
.pl	material property description matrix. Can also be stored as 'mat' entries in the Stack.
. Patch	Patch face matrix. See fe_super.
. Stack	A cell array containing optional properties further characterizing a finite element model. See stack_get for how to handle the stack and the next section for a list of standardized entries.
. TR	projection matrix. Seefe_super.
. unit	main model unit system (see fe_mat Convert for a list of supported unit systems and the associated two letter codes). Specifying this field let you perform conversion from materials defined in US system unit from the GUI.
. wd	working directory

Obsolete fields are . Ref Generic coordinate transformation specification, .tdof test DOF field (now in SensDof entries).

7.7 FEM stack and case entries

Various information are stored in the model. Stack field. If you use a SDT handle refering to a feplot figure, modification of the model and case entries is often easier using cf. Stack calls (see feplot).

7 Developer information
Currently supported entry types in the stack are

```
case defines a case: boundary conditions, loading, ...
curve curve to be used for simulations (see fe_curve.
info
info,map
mat
pro
SE
sel
seln
set
non standard information used by solvers or meshing procedures (see below).
    used to define a normal MAP, see feutil GetNormal for format
    defines a material entry.
defines an element property entry.
defines a set that is a structure with fields
```

- .ID (a reference number of the set),
- .data defines the data
- .type nature of the set.

The following set types are acceped:
NodeId data is a column of node numbers.
EltId data is a column of element numbers.
FaceId, EdgeId data is two columns giving EltId and face/edge number (as detailed in integrules, or resulting from (tetra10('faces'), ...). Face sets are often used to define loaded surfaces.

- A third column can be added to specify subgroups within the set and a . NodeCon sparse matrix can be used to specify nodes (rows) connected to each subgroup (column).
- For FaceId sets, external code imports like used for FEMLinkface identifiers conventions may vary, so that read data may not be in coherence with SDT notations. To alleviate the problem, one can add field ConvFcn to provide a conversion function. The conversion function can be called depending on the element type ElemF with the syntax
- feval(ConvFcn, ['conv faceNum.' ElemF]); that should rethrow a renumbering vector giving in sorted SDT face numbering order the corresponding face index of the external convention.
- feval(ConvFcn, ['conv face.' ElemF]); that should rethrow the list of nodes per face (by line) in the original external face convention (but with SDT node numbering convention).

Currently reserved names for info entries are
\(\left.$$
\begin{array}{ll}\text { DefaultZeta } & \begin{array}{l}\text { value to be used as default modal damping ratio (viscous damping). The } \\
\text { default loss factor if needed is taken to be twice that value.' Default damp- }\end{array}
$$

ing is only used when no other damping information is available.

(discontinued) value to be used as default loss factor should be replaced by\end{array}\right]\)| DefaultZeta=eta/2. |
| :--- |
| gives real eigenvalue solver options (see fe_eig). |

Currently reserved names for curve entries are

- StaticState used to assemble prestressed matrices (type 5).
- q0 used to initialize time simulations and for non-linear analyses

A case type defines finite element boundary conditions, applied loads, physical parameters, ... The associated information is stored in a case data structure with fields

Case.Stack list of boundary conditions, constraints, parametric design point, and loading cases that need to be considered. A table of accepted entries is given under fe_case. Each row gives \{Type, Name, data\}.
Case.T basis of subspace verifying fixed boundary conditions and constraints.
Case. DOF DOF definition vector describing the columns of T, the rows of T are described by the .DOF field of the model.

The various cases are then stored in the . Stack field of the model data structure (this is done by a call to fe_case. If you use a $S D T$ handle referring to a feplot figure, modification of the case entries is often easier using cf.CStack calls (seefeplot.

7.8 FEM result data structure

Deformations resulting from finite element computations fe_eig, fe_load, ...) are described by def structures with fields

. def	deformations ($N D O F$ by $N D e f$ matrix)
. DOF	DOF definition vector
. data	(optional) (NDef by $N_{\text {info }}$ vector or matrix) characterizing the content of each deformation (frequency, time step, ...)
.Xlab	(optional) \{'DOF', 'Freq'; 'Index'\} cell array describing the columns of data.
. defL	displacement field corresponding to the left eigenmodes obtained from fe_ceig.
.fun	function description [Model Analysis Field FieldType Format NDV]. This is
	based on the UNV 55 format detailed below. Typically field with [0 fe_curve('TypeAnalysis')]. This field is needed for proper automated display setup.
. 1 ab	(optional) cell array of strings characterizing the content of each deformation (columns of .def). For large arrays, the use of a .LabFcn is preferable.
. ImWrite	(optional) can be used to control automated multiple figure generation, see iicom ImWrite,
. LabFcn	callback for label generation see fecom LabFcn
. Legend	data for legend generation, see fecom Legend
label	(optional) string describing the content
. DofLab	optional cell array of strings specifying a label for each DOF. This is used for display in iiplot.
.scale	field used by feplot to store scaling information.

The .fun field is a numeric row with values (a typical value for static responses is def.fun=[01 0])

- Model (0 Unknown, 1 Structural, 2 Heat Transfer, 3 Fluid Flow)
- Analysis see list with fe_curve('TypeAnalysis')
- Field see list with 0: Unknown (or general SDT), 1: Scalar, 2: Tx Ty Tz, 3: Tx Ty Tz Rx Ry Rz, 4: Sxx Sxy Syy Sxz Syz Szz, 5: Sxx Syx Szx Sxy Syy Szy Sxz Syz Szz
- FieldType see list with fe_curve('typefield')
- Format 0 default, 2 Real, 5 Complex
- NDV Number Of Data Values Per Node (0 for variable number)

SDT provides a number of utilities to manipulate deformation structures. In particular you should use

- def=fe_def ('subdef', def,ind) extracts some deformations (columns of def.def). You can select based on the data field, for example with ind=def.data $(:, 1)>100$.
- def=fe_def('AppendDef', def, def1) combines two sets of deformations
- def=fe_def('SubDof', def, DOF) extracts some DOF (rows of def.def). To select based on DOF indices, use def=fe_def ('SubDofInd', def,ind).
- def=feutilb('placeindof',DOF, def) is similar but DOF may be larger than def.DOF.
- fe_def('SubDofInd-Cell', def,ind_dof,ind_def) return clean display of deformation as a cell array.

7.9 Curves and data sets

Curves are used to specify Inputs (for time or frequency domain simulation) and store results from simulations. The basic formats are the Multi-dim curve and FEM result def. For experimental modal analysis, Response data and Shapes at DOFs are also used.

All these formats can be displayed using the iiplot interface. For extraction see fe_def SubCh.

Multi-dim curve

A curve is a data structure with fields

. X	axis data. A cell array with as many entries as dimensions of . Y. Contents of each cell can be
	- a vector (for example vector of frequencies or time steps),
	- a matrix with as many rows a steps in curve. Y. Each column then corresponds to a different definition of the same data (time and position for example) and you can have as many rows in curve. $\mathrm{Xlab}\{\mathrm{i}\}$ as colums.
	- a cell array describing data vectors in . Y (for example response labels) with as many rows as elements in corresponding dimension of .Y. In such a cell array, column 2 is for units and 3 for unit type (see fe_curve datatype). To use a specific curve. $\mathrm{X}\{\mathrm{i}\}$ to generate labels for the data, specify the index of the associated dimension in curve. Ylab.
. Xl ab	. X giving x -axis data as a vector is obsolete and should be avoided.
	a cell array giving the meaning of each entry in . X Each cell can be a string (giving the dimension name) or itself a cell array with columns giving \{'name', 'UnitString', unitcode, 'fmt'\}. Typical entries are obtained using the fe_curve datatypecell command. Multiple rows can be used to describe multiple columns in the . X entry (matrix input for curve. $\mathrm{X}\{\mathrm{i}\}$).
	fmt, if provided, gives a formatting instruction for example 'length=\%i m^{\prime}. If more intricate formatting is needed a callback can be obtained with \zs\{'\#st3\{'\}\}=sprintf(' $P \mathrm{PK}=\%$. 2fkm'', r2(j2)*1e-3);'.
.Y	response data with as many dimensions as the length of curve.X and curve. Xlab. If a 2D matrix rows correspond to . $\mathrm{X}\{1\}$ values and columns are called channels described by . $\mathrm{X}\{2\}$.
. Ylab	describes content of .Y data. It can be a string, a 1x3 unit type cell array, or a number that indicates which dimension (index in . $\mathrm{X}\{\mathrm{i}\}$ field cell array) describes the . Y unit.
. ID	Optional. It can be used to generate automatically vertical lines in iiplot. See ii_plp Call from iiplot for more details.
. name	name of the curve used for legend generation.
.type	Optional. 'fe_curve'.
. Interp	optional interpolation method. Available interpolations are linear, log and stair.
. Extrap	optional extrapolation method. Available extrapolations are flat, zero (default for fe_load and exp.
.PlotInfo	indications for automated plotting, see iiplot PlotInfo
. DimPos	order of dimensions to be shown by iiplot.

The following gives a basis generation example.

```
t=linspace(0,10, 100)';lab={'ux';'uy'};
C1=struct('X',{{t,lab}},'Xlab',{{'Time','DOF'}}, ...
    'Y',[sin(t) cos(t)],'name','Test');
iicom('curveinit',C1.name,C1);iicom('ch1:2');
```


FEM Result

See section 7.8 or sdtweb('def').

Inputs

Inputs for time or frequency simulations are stored as entries \{'curve', Name, data\} in the model stack or in the case of inputs in the load.curve cell array.

A curve can be used to define a time (or frequency) dependent load $\{F\}=[B]\{u\}$. [B] defines the spatial distribution of the load on DOFs and its unit is the same as $F .[B]$ is defined by a DOFLoad entry in the Case. $\{u\}$ defines the time (or frequency) dependency as a unitless curve. There should be as many curves as columns in the matrix of a given load def. If a single curve is defined for a multi-load entry, it will affect all the loads of this entry.

As an illustration, let us consider ways to define a time dependent load by defining a . curve field in the load data structure. This field may contain a string referring to an existing curve (name is

```
'input' here)
model=fe_time('demo bar');fe_case(model,'info')
% Define input curve structure (single input step)
% For examples see: sdtweb fe_curve#Test
model=fe_curve(model,'set','input','TestStep t1=1e-3');
% define load.curve{1} to use that input
model=fe_case(model,'setcurve','Point load 1','input');
% Run a simulation
TimeOpt=fe_time('timeopt newmark .25 .5 0 1e-4 100');
model=stack_set(model,'info','TimeOpt',TimeOpt);
def=fe_time(model); feplot(model,def); fecom ColorDataAll
```

It is also possible to directly define the .curve field associated with a load

```
model=fe_time('demo bar'); fe_case(model,'info')
model=fe_case(model,'remove','fd'); \% loads at both ends
data=struct ('DOF', [1.01;2.01],'def', 1e6*eye (2), ...
    'curve', \(\{\{\) 'test ricker \(\mathrm{dt}=1 \mathrm{e}-3 \mathrm{~A}=1\) ', ...
    'test ricker dt=2e-3 A=1'\}\});
model \(=\) fe_case(model,'DOFLoad','Point load 1',data);
TimeOpt=fe_time('timeopt newmark . 25 . 50 1e-4 100');
model=stack_set (model, 'info', 'Time0pt', TimeOpt);
def=fe_time(model) ; feplot(model,def); fecom ColorDataAll
```


Response data

Response data sets xfstruct correspond to groups of universal files of type UFF58 that have the same properties (type of measurement, abscissa, units, ...). They are used for identification with idcom while the newer curve format is used for simulation results. They are characterized by the following fields

. W	abscissa values
.xf	response data, one column per response, see section 5.8
.dof	characteristics of individual responses (one row per column in the response data as
	detailed below)
.fun	general data set options, contain [FunType DFormat NPoints XSpacing Xmin XStep ZValue] as detailed in ufread 58 .
.idopt	options used for identification related routines (see idopt)
. header	header (5 text lines with a maximum of 72 characters)
. x	abscissa description (see xfopt ('_datatype'))
. yn	numerator description (see xfopt('_datatype'))
. yd	denominator description (see xfopt('_datatype'))
. z	third axis description (see xfopt ('_datatype'))
.group	(optional) cell array containing DOF group names. Get label with
.load	c.group (c.dof(:,4)) for response and c.group (c.dof $(:, 5))$ for excitation. (optional) loading patterns used in the data set

The .w and . xf fields contain the real data while other fields give more precisions on its nature.
The .dof field describes DOF/channel dependent options of a MIMO data set. The dof field contains one row per response/DOF with the following information (this corresponds to data in line 6 of ufread 58 except for address)
[RespNodeID.RespDOFID ExciNodeID.ExciDOFID Address ...

RespGroupID ExciGroupID FunID LoadCase ZaxisValue]

- Standard DOF definitions of the form NodeID.DOFID are introduced in section 7.5. When considering sensors in general directions (see section 4.6) the SensId should match RespNodeID.RespDOFID.
- Addresses are integer numbers used to identify columns of xf matrices. They typically correspond to a measurement number.
- Sensor / actuator groups are correspond to the group names given in the group field (this is really only supported by ufread.
- Other columns are given in the universal format specification but unused in SDT.

The idopt field is used to point to identification options used on the data set. These should point to the figure options ci.IDopt.

The .group field is used to associate a name to the group identification numbers RespGroupID ExciGroupID defined in the . dof columns 4 and 5 . These names are saved by ufwrite and used for geometry identification.

The load field describes loading cases by giving addresses of applied loads in odd columns and the corresponding coefficients in even columns. This field is used in test cases with multiple correlated inputs.

Shapes at DOFs

Shapes at DOFs is used to store modeshapes, time responses defined at all nodes, ... and are written to universal file format 55 (response at nodes) by ufwrite. The fields used for such datasets are .po pole values, time steps, frequency values ...

For poles, see ii_pof which allows conversions between the different pole formats.
.res residues / shapes (one row per shape). Residue format is detailed in section 5.6.
.dof characteristics of individual responses (follow link for description).
.fun function characteristics (see UFF58)
.header header (5 text lines with a maximum of 72 characters)
.idopt identification options. This is filled when the data structure is obtained as the result of an idcom call.
.label string describing the content
.lab_in optional cell array of names for the inputs
.lab_out optional cell array of names for the outputs
.group optional cell group names

7.10 DOF selection

$f_{f}-C$ is the general purpose function for manipulating DOF definition vectors. It is called by many other functions to select subsets of DOFs in large DOF definition vectors. DOF selection is very much related to building an observation matrix c, hence the name fe_c.

For DOF selection, fe_c arguments are the reference DOF vector mdof and the DOF selection vector adof. adof can be a standard DOF definition vector but can also contain wild cards as follows

NodeId. 0 means all the DOFs associated to node NodeId
0.DofId means DofId for all nodes having such a DOF
-EltN. 0 means all the DOFs associated to element EltId
Typical examples of DOF selection are
ind $=$ fe_c (mdof,111.01, 'ind') ; returns the position in mdof of the x translation at node 111. You can thus extract the motion of this DOF from a vector using mode (ind,:). Note that the same result would be obtained using an output shape matrix in the command fe_c (mdof,111.01) *mode.

```
model = fe.mk(model,'FixDOF','2-D motion',[.03 .04 .05])
```

assembles the model but only keeps translations in the $x y$ plane and rotations around the z axis (DOFs [. 01 . 02 . 06]'). This is used to build a 2-D model starting from 3-D elements.

The feutil FindNode commands provides elaborate node selection tools. Thus femesh('findnode $\mathrm{x}>0$ ') returns a vector with the node numbers of all nodes in the standard global variable FEnode that are such that their x coordinate is positive. These can then be used to select DOFs, as shown in the section on boundary conditions section 7.14 . Node selection tools are described in the next section.

7.11 Node selection

feutil FindNode supports a number of node selection criteria that are used by many functions. A node selection command is specified by giving a string command (for example 'GroupAll', or the equivalent cell array representation described at the end of this section) to be applied on a model (nodes, elements, possibly alternate element set).

Output arguments are the numbers NodeId of the selected nodes and the selected nodes node as a second optional output argument. The basic commands are

- [NodeId,node]=feutil(['findnode ...'],model) or node=feutil(['getnode ...'],model) this command applies the specified node selection command to a model structure. For example, [NodeId,node] = feutil('findnode $x==0$ ',model);
selects the nodes in model. Node which first coordinate is null.
- [NodeId,node]=femesh(['findnode ...'])
this command applies the specified node selection command to the standard global matrices FEnode, FEelt, FEel0, ... For example,
[NodeId,node] = femesh('findnode $x==0$ '); selects the node in FEnode which first coordinate is null.

Accepted selectors are

	selects the nodes in the node group i (specified in column 4 of the node matrix). Logical operators are accepted.
Group i	selects the nodes linked to elements of group(s) i in the main model. Same as InElt\{Group i\}
Groupa	selects nodes linked to elements of group(s) i of the alternate model
InElt $\{\mathrm{sel}$ \}	selects nodes linked to elements of the main model that are selected by the element selection command sel.
NodeId >i	selects nodes selects nodes based relation of NodeId to integer i. The logical operator $>,<,>=,<=,{ }^{\sim}=$, or $==$ can be omitted (the default is then $==$). feutil('findnode 12 ',model) interprets the values as NodeId unless three values are given (then interpreted as $\mathrm{x} \mathrm{y} z$). feutil('findnode', model, IdList) should then be used.
NotIn $\{$ sel\}	selects nodes not linked to elements of the main model that are selected by the element selection command sel.
Plane $==i n x n y n z$	selects nodes on the plane containing the node number i and orthogonal to the vector [$n x \quad n y n z$]. Logical operators apply to the oriented half plane. i can be replaced by string 0 xo yo zo specifying the origin.
$\operatorname{rad}<=r x y y z$	selects nodes based on position relative to the sphere specified by radius r and position x y z node or number x (if y and z are not given). The logical operator $>,<,>=,<=$ or $==$ can be omitted (the default is then $<=$).
$\begin{aligned} & \text { cyl <=r i nx ny nz } \\ & \text { z1 z2 } \end{aligned}$	selects nodes based on position relative to the cylinder specified by radius r and axis of direction $n x$ ny $n z$ and origin the node i (NodeId i can be replaced by string $o x o$ yo $z o$). Optional arguments $z 1$ and $z 2$ define bottom and top boundaries from origin along cylinder axis.
betweenn1 $n 2$	selects nodes located between the two planes of normal directed by ni-n2 and respectively passing through $n 1$ and $n 2$.
Setname name	finds nodes based on a set defined in the model stack. Note that the name must not contain blanks or be given between double quotes "name". Set can be a NodeId or even an EltId or FaceId, EdgeIdset. "name: con IdList" can be used to select a subset connected to nodes in the IdList.
$\mathrm{x}>a$	selects nodes such that their x coordinate is larger than $a . \mathrm{x}$ y z r (where the radius r is taken in the $x y$ plane) and the logical operators $>,<,>=,<=$, == can be used.
$x y z$	Expressions involving other dimensions can be used for the right hand side. For example $r>.01 * z+10$. selects nodes with the given position. If a component is set to NaN it is ignored. Thus [0 NaN NaN] is the same as $\mathrm{x}==0$.

Element selectors EGID, EltId, EltName, MatId and ProId are interpreted as InElt selections.
Command option epsl value can be used to give an evaluation tolerance for equality logical operators.

Different selectors can be chained using the following logical operations

- \& , finds nodes that verify both conditions.
- I, finds nodes that verify one or both conditions.
- $\&^{\sim}$ finds nodes that verify the left condition and not the right condition (exclusion from current selection state)

Condition combinations are always evaluated from left to right (parentheses are not accepted).
While the string format is typically more convenient for the user, the reference format for a node selection is really a 4 column cell array :

\{	Selector	Operator	Data
Logical	Selector	Operator	Data
$\}$			

The first column gives the chaining between different rows, with Logical being either \&, ।, \& \sim, or a bracket (and). The Selector is one of the accepted commands for node selection (or element selection if within a bracket). The operator is a logical operator $>,<,>=,<=,{ }^{\sim}=$, or $==$. The data contains numerical or string values that are used to evaluate the operator. Note that the meaning of $\sim=$ and $==$ operators is slightly different from base MATLAB operators as they are meant to operate on sets.

The feutil FindNodestack command returns the associated cell array rather than the resulting selection.

7.12 Element selection

feutil FindElt supports a number of element selection criteria that are used by many functions. An element selection command is specified by giving a string command (for example 'GroupAll') to be applied on a model (nodes, elements, possibly alternate element set).

Basic commands are :

- [eltind,elt] = feutil('findelt selector',model); or elt = feutil('selelt selector', model); this command applies the specified element selection command to a model structure. For example, [eltind,selelt] = feutil('findelt eltname bar1',model) selects the elements in model. Elt which type is bar1.
- [eltind,elt] = feutil('findelt selector',model);
this command applies the specified element selection command to the standard global matrices FEnode, FEelt, FEel0, ...For example, [eltind,selelt] = feutil('findelt eltname bar1', model) selects the elements in FEelt which type is bar1.

Output arguments are eltind the selected elements indices in the element description matrix and selelt the selected elements.

Accepted selectors are

ConnectedTo i finds elements in a group that contains the nodes i. This calls feutil DivideInGroups and thus only operates on groups of elements of a single type.
EGID i
EltId i
EltInd i
EltName s
finds elements with element group identifier i. Operators accepted.
finds elements with identifiers i in FEelt. Operators accepted.
finds elements with indices i in FEelt. Operators accepted.
finds elements with element name s. EltName flui will select all elements with name starting with flui. EltName ~ = flui will select all elements with name not starting with flui. One can select superelements from their name using EltName SE: SEName. Selection of all elements but a single SE from its name is obtained using EltName ~ = SE:SEName. Regular expressions on superelement names are accepted, one then replaces token SEName by the prefix \# followed by the desired expression, e.g. EltName SE: \#tgm* to select all superlement whose name starts with tgm.
Facing $>\cos x y$ finds topologically 2-D elements whose normal projected on the direction from

Set $i \quad$ finds elements in element set(s) based on the .ID field (see set stack entries). Elements belonging to any set of ID of value i will be selected.

- By default an error is thrown if the set name does not exist in stack. Use command SafeSetName to get empty results instead.
- By default no spaces in set names are allowed. For more complicated setnames, place the name into double quotes: SetName "my set name with spaces".
- Selection by exclusion is possible with token :exclude. E.g. SetName unused: exclude will return all elements excluding the elements present in the set named unused.
- Alternative calls to more advanced sets based on connectivity are possible,
- SetName "name:con IdList" can be used to select a subset connected to nodes in the IdList (assuming the .NodeCon field is defined).
- SetName "name:subname" can be used to select a subset in the set by connectivity format (see set).

WithoutNode $i \quad$ finds elements without any of the nodes in the set $i . i$ can be a list of node numbers. Replacements for i are accepted as above.
SelEdge type selects the external edges (lines) of the currently selected elements (any element selected before the SelEdge selector), any further selector is applied on the model resulting from the SelEdge command rather than on the original model. The -All option skips the internal edge elimination step. It can be combined with option -noUni to keep edge duplicates between elements.
Type g retains inter-group edges. m retains inter-material edges. Type p retains inter-property edges. all retains all edges. The MatId for the resulting model identifies the original properties of each side of the edge. The edge number is stored in the column after EltId.
SelFace type selects the external faces (surfaces) of the currently selected elements. The face number is stored in the column after EltId to allow set generation. See more details under SelEdge. The -All option skips the internal face elimination step. Warning: the face number stored in the column after the EltId column interferes with the Theta property for shell elements (see quad4 tria3). If the selection output will be used as elements in a model, ensure that the Theta property is properly set for your application, see p_shell setTheta.

SelFace -trim trims a surface selection to remove boundary elements that may overcome a sharp edge. The base application is thus to be able to select interior surfaces with robustness regarding the surface edges in a volume, where it is classical to end up with a layer of side elements. The sharp edges detection uses feutilb SurfaceAsQuad to whom the angle defined by val is passed. Sharp edge element groups exclusively containing elements with nodes on the edge of the surface are then removed from the selection.

Different selectors can be chained using the available logical operations

- \& finds elements that verify both conditions.
- | finds elements that verify one or both conditions.
- $\&^{\sim}$ finds elements that verify the left condition and not the right condition (exclusion from current selection state)
i1=feutil('FindEltGroup 1:3 \& with node 18 ', model) for example. Condition combinations are always evaluated from left to right (parentheses are not accepted). Note that SelEdge and SelFace selectors do not output elements of the mesh but new elements of respectively 1D or 2D topology, so that some combinations may not be directly possible (e.g. if later combined to Group selector).

Command option epsl value can be used to give an evaluation tolerance for equality logical operators.

Numeric values to the command can be given as additional arguments. Thus the command above could also have been written i1=feutil('findelt group \& withnode', model, 1:3, [1 8]).

7.13 Defining fields trough tables, expressions, ...

Finite element fields are used in four main formats

- def field at DOFs
- InfoAtNode field at nodes of an element group can be built from a pro.MAP field which can be an VectFromDir structure, a structure with fields .bas and .EltId with EltId=0 to define material orientations.
info, EltOrient is an alternative to specify the orientation of all elements rather than associate values for each property entry. The format is a structure with field .EltId giving the identifiers and .bas giving an orientation for each element in the basis format. To interpolate constitutive properties as a function of temperature, ... see section 7.3 .
- gstate field at integration points of an element group (can be built from a pro.gstate field).
- a field definition structure to be transformed to the other formats using a elem0 ('VectFromDir') command as illustrated below.

The VectFromDir structure has fields
data.dir a cell array specifying the value of various fields. Each cell of data.dir can give a constant value, a position dependent value defined by a string FcnName that is evaluated using
$f v(:, j D i r)=e v a l(F c n N a m e)$ or $f v(:, j D i r)=f e v a l(F c n N a m e$, node $)$ if the first fails. Note that node corresponds to nodes of the model in the global coordinate system and you can use the coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ for your evaluation.
data.lab cell array giving label for each field of an InfoAtNode or gstate structure.
data.DOF a vector defining the DOF associated with each .dir entry. The transformation to a vector defined at model.DOF is done using vect=elem0('VectFromDirAtDof', model, data, model.DOF).
For example

```
% Analytical expression for a displacement field
model=femesh('testubeam');
data=struct('dir',{{'ones(size(x))','y','1*x.`3'}}, ...
    'DOF',[.01;.02;.03]);
model.DOF=feutil('GetDOF',model);
def=elem0('VectFromDirAtDof',model,data,model.DOF)
% Orientation field at nodes
data=struct('dir',{{'x./sqrt(x.^2+y.^2)','y./sqrt(x.^2+y.^2)',0}}, ...
    'lab',{{'v1x','v1y','v1z'}});
pro=struct('il',1,'type','p_solid','MAP',data);
model=stack_set(model,'pro', 'WithMap',pro);
C1=fe_mknl('init',model);InfoAtNode=C1.GroupInfo{7}
feplot(model);fecom('showMap','WithMap') % display map
% Material field at node
sdtweb('_eval','d_mesh.m#RVEConstitInterp')
```


7.14 Constraint and fixed boundary condition handling

7.14.1 Theory and basic example

rigid links, FixDof, MPC entries, symmetry conditions, continuity constraints in CMS applications, ... all lead to problems of the form

$$
\begin{gather*}
{\left[M s^{2}+C s+K\right]\{q(s)\}=[b]\{u(s)\}} \\
\{y(s)\}=[c]\{q(s)\} \tag{7.2}\\
{\left[c_{\text {int }}\right]\{q(s)\}=0}
\end{gather*}
$$

The linear constraints $\left[c_{i n t}\right]\{q(s)\}=0$ can be integrated into the problem using Lagrange multipliers or constraint elimination. Elimination is done by building a basis T for the kernel of the constraint equations, that is such that

$$
\begin{equation*}
\operatorname{range}\left([T]_{N \times(N-N C)}\right)=\operatorname{ker}\left(\left[c_{i n t}\right]_{N S \times N}\right) \tag{7.3}
\end{equation*}
$$

Solving problem

$$
\begin{gather*}
{\left[T^{T} M T s^{2}+T^{T} C T s+T^{T} K T\right]\left\{q_{R}(s)\right\}=\left[T^{T} b\right]\{u(s)\}} \tag{7.4}\\
\{y(s)\}=[c T]\left\{q_{R}(s)\right\}
\end{gather*}
$$

is then strictly equivalent to solving (7.2).
The basis T is generated using [Case, NNode, model.DOF]=fe_case(model,'gett') where Case.T gives the T basis and Case. DOF describes the active or master DOFs (associated with the columns of T), while model.DOF or the Case.mDOF field when it exists, describe the full list of DOFs.

The NoT command option controls the need to return matrices, loads, ... in the full of unconstrained DOFs $[M],\{b\} \ldots$ or constrained $T^{T} M T, T^{T} b$ in fe_mknl, fe_load,

For the two bay truss example, can be written as follows :

```
model = femesh('test 2bay');
model2=fe_case(model, ... % defines a new case
    'FixDof','2-D motion',[.03 .04 .05]', ... % 2-D motion
    'FixDof','Clamp edge',[1 2]'); % clamp edge
Case=fe_case('gett',model) % Notice the size of T and
fe_c(Case.DOF) % display the list of active DOFs
model = fe_mknl(model)
% Now reassemble unconstrained matrices and verify the equality
% of projected matrices
```

7 Developer information

```
[m,k,mdof]=fe_mknl(model,'NoT');
norm(full(Case.T'*m*Case.T-model.K{1}))
norm(full(Case.T'*k*Case.T-model.K{2}))
```

To compute resultants associated with constraint forces further details are needed. One separates active DOF q_{a} which will be kept and slave DOF that will be eliminated q_{e} so that the constraint is given by

$$
\left[\begin{array}{ll}
c_{a} & c_{e}
\end{array}\right]_{N \times N_{e}}\left\{\begin{array}{l}
q_{a} \tag{7.5}\\
q_{e}
\end{array}\right\}=0 \Leftrightarrow\left[-\left(-c_{e}^{-1} c_{a}\right) \quad I\right]\left\{\begin{array}{l}
q_{a} \\
q_{e}
\end{array}\right\}=[-G I]\{q\}=0
$$

The subspace with DOFs eliminated is spanned by

$$
[T]_{N \times\left(N-N_{e}\right)}=\left[\begin{array}{c}
I_{\left(N-N_{e}\right) \times\left(N-N_{e}\right)} \tag{7.6}\\
G_{N_{e} \times\left(N-N_{e}\right)}
\end{array}\right]=\left[\begin{array}{c}
I \\
-c_{e}^{-1} c_{a}
\end{array}\right]
$$

The problem that verifies constraints can also be written using Lagrange multipliers, which leads to

$$
\left[\begin{array}{c}
{[Z(s)]} \tag{7.7}\\
{[-G I]}
\end{array}\left[\begin{array}{c}
-G \\
I \\
0
\end{array}\right]\right]\left\{\begin{array}{c}
q \\
F_{c}
\end{array}\right\}=\left\{\begin{array}{c}
F \\
0
\end{array}\right\}
$$

The response can be computed using elimination (equation 7.4) and the forces needed to verify the constraints (resultant forces) can be assumed to be point forces associated with the eliminated DOF q_{e} which leads to

$$
\begin{equation*}
F_{c}=\left[\left[Z_{e a}(s)\right]+Z_{e e}(s)[G]\right]\{q\}-F_{e}=\left[T_{e}^{T} Z(s) T\right]\left\{q_{a}\right\}-T_{e}^{T} F \tag{7.8}
\end{equation*}
$$

A common approximation is to ignore viscous and inertia terms in the resultant, that is assume $T_{e}^{T} Z(s) T \approx T_{e}^{T} K T$.

7.14.2 Local coordinates

In the presence of local coordinate systems (non zero value of DID in node column 3), the Case.cGL matrix built during the gett command, gives a local to global coordinate transformation

$$
\begin{equation*}
\left\{q_{\text {all,global }}\right\}=\left[c_{G L}\right]\left\{q_{\text {all }, \text { local }}\right\} \tag{7.9}
\end{equation*}
$$

Constraints (mpc, rigid, ...) are defined in local coordinates, that is they correspond to

$$
\begin{equation*}
\left\{q_{\text {all }, \text { local }}\right\}=\left[T_{\text {local }}\right]\left\{q_{\text {master }, \text { local }}\right\} \tag{7.10}
\end{equation*}
$$

with $q_{\text {master,local }}$ master DOFs (DOFs in Case. DOF) defined in the local coordinate system and the Case.T corresponding to

$$
\begin{equation*}
\left\{q_{\text {all,global }}\right\}=[T]\left\{q_{\text {master }, \text { local }}\right\}=\left[c_{G L}\right]\left[T_{\text {local }}\right]\left\{q_{\text {master }, \text { local }}\right\} \tag{7.11}
\end{equation*}
$$

As a result, model matrices before constraint elimination (with NoT) are expected to be defined in the global response system, while the projected matrix $T^{T} M T$ are defined in local coordinates.
celas use local coordinate information for their definition. cbush are defined in global coordinates but allow definition of orientation through the element CID.

An example of rigid links in local coordinates can be found in se_gimbal('ScriptCgl').

7.14.3 Enforced displacement

For a DofSet entry, one defines the enforced motion in Case.TIn and associated DOFs in Case.DofIn. The DOFs specified in Case.DofIn are then fixed in Case.T.

7.14.4 Resolution as MPC and penalization transformation

Whatever the constraint formulation it requires a transformation into an explicit multiple point constraint during the resolution. This transformation is accessible for RBE3 and rigidconstraints, a cleaned resolution of MPC constraints is also accessible using fe_mpc.

- RBE3c provides the resolution for RBE3 constraints.
- RigidC provides the resolution for rigidconstraints.
- MPCc provides the resolution for MPC constraints.

The output is of the format struct with fields

- c the constraint matrix.
- DOF the DOF vector relative to the constraint.
- slave slave DOF indices in DOF.

Such format allows the user to transform a constraint into a penalization using the constraint matrix as an observation matrix. One can indeed introduce for each constraint equation a force penalizing its violation through a coefficient kc so that $\{f\}_{\text {penal }}=k c[c]_{N_{c} \times N}\{q\}_{N \times 1}$. This can be written by means of a symmetric stiffness matrix $\left[k_{\text {penal }}\right]_{N \times N}=k c[c]^{T}[\mathcal{I}]_{N_{c} \times N_{c}}[c]_{N_{c} \times N}$ added to the system stiffness.

7 Developer information

```
% Transformation of a constraint into a penalty
% Generation of a screw model example
model=demosdt('demoscrew layer 1 40 20 3 3 space . 2 layer 2 40 20 4');
% Model a screw connection with a RBE3 constraint
% see sdtweb fe_case.html#ConnectionScrew
r1=struct('Origin',[20 10 0],'axis',[0 0 1],'radius',3, ...
    'planes',[0 0 111 1 0;3 0 111 1 0; % [z0 type ProId zTol rTol]
    5.2 0 112 1 6; 7.2 0 112 1 6], ...
    'MatProId',[101 101],'rigid',[Inf abs('rigid')],'NewNode',0);
r1.planes(:,2)=1; % RBE3
mo2=fe_caseg('ConnectionScrew',model,'screw1',r1);
% display the connection in feplot
cf=feplot(mo2);fecom('colordatamat -alpha .1');
% Replace RBE3 by a penalized coupling
% Get the constraint matrix
r1=fe_mpc('rbe3c',mo2,'screw1');
% remove the RBE3 constraint
mo2=fe_case(mo2,'reset');
% Generate the penalization stiffness with default kc
kc=sdtdef('kcelas');
SE=struct('DOF',r1.DOF,'Opt', [1;1],...
    'K',{{feutilb('tkt',r1.c,kc*speye(length(r1.slave)))}});
% Instance the superelement in the model
mo2=fesuper('seadd -unique 1 1 screw1',mo2,SE,[1 1]);
% Compute the system modes
def=fe_eig(cf.mdl,[5 20 1e3]);
```


7.14.5 Low level examples

A number of low level commands feutil GetDof, FindNode, ...) and functions fe_c can be used to operate similar manipulations to what fe_case GetT does, but things become rapidly complex. For example

```
% Low level handling of constraints
    femesh('reset'); model = femesh('test 2bay');
    [m,k,mdof]=fe_mknl(model)
```

```
i1 = femesh('findnode x==0');
adof1 = fe_c(mdof,i1,'dof',1); % clamp edge
adof2 = fe_c(mdof,[.03 .04 .05]','dof',1); % 2-D motion
adof = fe_c(mdof,[adof1;adof2],'dof',2);
ind = fe_c(model.DOF,adof,'ind');
mdof=mdof(ind); tmt=m(ind,ind); tkt=k(ind,ind);
```

Handling multiple point constraints (rigid links, ...) really requires to build a basis T for the constraint kernel. For rigid links the obsolete rigid function supports some constraint handling. The following illustrates restitution of a constrained solution on all DOFs

```
% Example of a plate with a rigid edge
model=femesh('testquad4 divide 10 10');femesh(model)
% select the rigid edge and set its properties
femesh(';selelt group1 & seledge & innode {x==0};addsel');
femesh('setgroup2 name rigid');
FEelt(femesh('findelt group2'),3)=123456;
FEelt(femesh('findelt group2'),4)=0;
model=femesh;
% Assemble
model.DOF=feutil('getdof',model);% full list of DOFs
[tmt,tkt,mdof] = fe_mknl(model); % assemble constrained matrices
Case=fe_case(model,'gett'); % Obtain the transformation matrix
[md1,f1]=fe_eig(tmt,tkt,[5 10 1e3]); % compute modes on master DOF
def=struct('def',Case.T*md1,'DOF',model.DOF) % display on all DOFs
feplot(model,def); fecom(';view3;ch7')
```


7.15 Internal data structure reference

7.15.1 Element functions and C functionality

In OpenFEM, elements are defined by element functions. Element functions provide different pieces of information like geometry, degrees of freedom, model matrices, ...
OpenFEM functions like the preprocessor femesh, the model assembler fe_mk or the post-processor feplot call element functions for data about elements.

For example, in the assembly step, fe_mk analyzes all the groups of elements. For each group, fe_mk gets its element type (bar1, hexa8, ...) and then calls the associated element function.
First of all, fe_mk calls the element function to know what is the right call form to compute the elementary matrices (eCall=elem0 ('matcall') or eCall=elem0 ('call'), see section 7.16 .6 for details). eCall is a string. Generally, eCall is a call to the element function. Then for each element, fe_mk executes eCall in order to compute the elementary matrices.

This automated work asks for a likeness of the element functions, in particular for the calls and the outputs of these functions. Next section gives information about element function writing.

7.15.2 Standard names in assembly routines

vector of element property row indices of the current element group (without the group header)

EGID Element Group Identifier of the current element group (different from jGroup if an
cEGI
constit
def.def
elt

ElemF
ElemP
gstate
integ
jElt
jGroup
nodeE EGID is declared).
model description matrix. The element property row of the current element is given by elt (cEGI (jElt),:) which should appear in the calling format eCall of your element function.
name of element function or name of superelement
parent name (used by femesh in particular to allow property inheritance)
real (double) valued element state information.
int32 valued constitutive information.
number of the current element in cEGI
number of the current element group (order in the element matrix). [EGroup, nGroup] =getegroup (elt) ; finds the number of groups and group start indices.
nodes of the current element. In the compiled functions, NodeId is stored in column 4, followed by the values at each node given in the InfoAtNode. The position of known columns is identified by the InfoAtNode.lab labels (the associated integer code is found with comstr('lab',-32)). Of particular interest are

- v1x (first vector of material orientation, which is assumed to be followed by $\mathrm{v} 1 \mathrm{y}, \mathrm{v} 1 \mathrm{z}$ and for 3D orientation $\mathrm{v} 2 \mathrm{x}, \mathrm{y}, \mathrm{z}$), see stack entry info, EltOrient
- v3x, v3y, v3z for normal maps
- T is used for temperature (stack entry info,RefTemp)

NNode node identification reindexing vector. NNode(ID) gives the row index (in the node matrix) of the nodes with identification numbers ID. You may use this to extract nodes in the node matrix using something like node(NNode(elt(cEGI (jElt), [1 2])),:) which will extract the two nodes with numbers given in columns 1 and 2 of the current element row (an error occurs if one of those nodes is not in node). This can be built using NNode=sparse (node (: , 1) , 1, 1: size (node, 1).
pointers one column per element in the current group gives.

7.15.3 Case.GroupInfo cell array

The meaning of the columns of GroupInfo is as follows
DofPos Pointers Integ Constit gstate ElMap InfoAtNode EltConst
DofPos int32 matrix whose columns give the DOF positions in the full matrix of the associated elements. Numbering is C style (starting at 0) and -1 is used to indicate a fixed DOF.
pointers int32 matrix whose columns describe information each element of the group. Pointers has one column per element giving
[OutSize1 OutSize2 u3 NdNRule MatDes IntegOffset ConstitOffset StateOffset u9 u10]
Outsize1 size of element matrix (for elements issued from MODULEF), zero otherwise.
MatDes type of desired output. See the MatType section for a current list.
IntegOffset gives the starting index (first element is 0) of integer options for the current element in integ,
ConstitOffset gives the starting index (first element is 0) of real options for the current element in constit.

integ	int32 matrix storing integer values used to describe the element formulation of the group. Meaning depends on the problem formulation and should be documented in the property function p_solid BuildConstit for example). The nominal content of an integ column (as return by the element integinfo call) is MatId, ProId, NDofPerElt, NNodePerElt, IntegRuleType where integrules (ElemP, IntegRuleType) is supposed to return the appropriate integration rule.
constit	double matrix storing integer values used to describe the element formulation of the group. Meaning depends on element family and should be documented in the element property function p_solid BuildConstit for example).
gstate	a curve with field .Y describing the internal state of each element in the group. Typical dimensions stress, integration points, elements so that . Y has size $N \operatorname{strain} \times N w \times$ $N E l t$. The labels in . $\mathrm{X}\{1\}$ can be used to find positions in the . Y matrix. The . $\mathrm{X}\{2\}$ should contain the gauss point locations within the reference element. Automated generation of initial states is discussed in section 7.13 . Users are of course free to add any appropriate value for their own elements, a typical application is the storage of internal variables. For an example of gstate initialization see fe_stress thermal. the old format with a double matrix with one column per element is still supported but will be phased out.
ElMap	int32 element map matrix used to distinguish between internal and external element DOF numbering (for example : hexa8 uses all x DOF, then all $y \ldots$ as internal numbering while the external numbering is done using all DOFs at node 1 , then node $2, \ldots$...). The element matrix in external sort is given by k_ext=ke(ElMap). EltConst.VectMap gives similar reordering information for vectors (loads, ...).
InfoAtNode	a structure with .NodePos (int32) with as many columns as elements in the group giving column positions in a .data field. Each row in . data corresponds to a field that should be described by a cell array of string in .lab used to identify fields in assembly, see nodeE. Initialization for a given element type is done the GroupInit phase, which uses pro.MAP fields (see section 7.13). Typical labels for orientation are $\{$ 'v1x', 'v1y','v1z','v2x', 'v2y', 'v2z'\} Obsolete format : double matrix whose rows describe information at element nodes (as many columns as nodes in the model).
EltConst	struct used to store element formulation information (integration rule, constitutive matrix topology, etc.) Details on this data structure are given in section 7.15.4.

7.15.4 Element constants data structure

The EltConst data structure is used in most newer generation elements implemented in of_mk.c. It contains geometric and integration rule properties. The shape information is generated by calls to integrules. The formulation information is generated p_function const calls (see p_solid. p_heat, ...).

. N	$n w \times N n o d e ~ s h a p e ~ f u n c t i o n s ~ a t ~ i n t e g r a t i o n ~ p o i n t s ~$
. Nr	$n w \times$ Nnode derivative of shape function with respect to the first reference coordinate
.Ns	$n w \times$ Nnode derivative of shape function with respect to the second reference coordinate s
. Nt	$n w \times N$ node derivative of shape function with respect to the second reference coordinate t
. NDN	N shape $\times n w(1+N$ dim $)$ memory allocation to store the shape functions and their derivatives with respect to physical coordinates $[N N, x N, y N, z]$. of mk currently supports the following geometry rules 3 3D volume, 22 D volume, 23 3D surface, 13 3D line (see integrules BuildNDN for calling formats). Cylindrical and spherical coordinates are not currently supported. In the case of rule 31 (hyperelastic elements), the storage scheme is modified to be $(1+N d i m) \times N$ shape $\times n w$ which preserves data locality better.
. jdet	$N w$ memory allocation to store the determinant of the jacobian matrix at integration points.
.bas	$9 \times N w$ memory allocation to store local material basis. This is in particular used for 3D surface rules where components 6:9 of each column give the normal.
. Nw	number of integration points for output (inferior to size(EltConst. $\mathrm{N}, 1$) when different rules are used inside a single element)
. Nnode	number of nodes (equal to size(EltConst.N,2)=size(EltConst.NDN,1))
.xi	Nnode $\times 3$ reference vertex coordinates
.VectMap	index vector giving DOF positions in external sort. This is needed for RHS computations.
. CTable	low level interpolation of constitutive relation based on field values. Storage as a double vector is given by [Ntables CurrentValues (Ntables x 7) tables] with CurrentValues giving [i1 xi si xstartpos Nx nodeEfield constit(pos_Matlab)]. Implementation is provided for m_elastic to account for temperature dependence, fe_mat to generate interpolated properties.

7.16 Creating new elements (advanced tutorial)

In this section one describes the developments needed to integrate a new element function into OpenFEM. First, general information about OpenFEM work is given. Then the writing of a new element function is described. And at last, conventions which must be respected are given.

7.16.1 Generic compiled linear and non-linear elements

To improve the ease of development of new elements, OpenFEM now supports a new category of generic element functions. Matrix assembly, stress and load assembly calls for these elements are fully standardized to allow optimization and generation of new element without recompilation. All the element specific information stored in the EltConst data structure.

Second generation volume elements are based on this principle and can be used as examples. These elements also serve as the current basis for non-linear operations.

The adopted logic is to develop families of elements with different topologies. To implement a family, one needs

- shape functions and integration rules. These are independent of the problem posed and grouped systematically in integrules.
- topology, formatting, display, test, ... information for each element. This is the content of the element function (see hexa8, tetra4, ...) .
- a procedure to build the constit vectors from material data. This is nominally common to all elements of a given family and is used in integinfo element call. For example p_solid('BuildConstit').
- a procedure to determine constants based on current element information. This is nominally common to all elements of a given family and is used in groupinit phase (see fe_mk). The GroupInit call is expected to generate an EltConst data structure, that will be stored in the last column of Case. GroupInfo, For example hexa8 constants which calls p_solid('ConstSolid').
- a procedure to build the element matrices, right hand sides, etc. based on existing information. This is compiled in of mk MatrixIntegration and StressObserve commands. For testing/development purposes is expected that for sdtdef ('diag', 12) an .m file implementation in elem $0 . m$ is called instead of the compiled version.

The following sections detail the principle for linear and non-linear elements.

7.16.2 What is done in the element function

Most of the work in defining a generic element is done in the element property function (for initializations) and the compile of mk function. You do still need to define the commands

- integinfo to specify what material property function will be called to build integ, constit and elmap. For example, in hexa8, the code for this command command is

```
if comstr(Cam,'integinfo')
%constit integ,elmap ID,pl,il
    [out,out1,out2]= ...
    p_solid('buildconstit', [varargin{1};24;8],varargin{2},varargin{3});
```

input arguments passed from fe_mknl are ID a unique pair of MatId and ProId in the current element group. pl and il the material and element property fields in the model. Expected outputs are constit, integ and elmap, see Case. GroupInfo. Volume elements hexa8, q4p, ... are topology holders. They call p_solid BuildConstit which in turn calls as another property function as coded in the type (column two of il coded with fe_mat ('p_fun', 'SI', 1)). When another property function is called, it is expected that constit (1:2)=[-1 TypeM] to allow propagation of type information to parts of the code that will not analyze pl .

- constants to specify what element property function will be called to initialize EltConst data structure and possibly set the geometry type information in pointers ($4,:$). For example, in hexa8, the code for this command is

```
...
elseif comstr(Cam,'constants')
    integ=varargin{2};constit=varargin{3};
    if nargin>3; [out,idim]=p_solid('const','hexa8',integ,constit);
    else; p_solid('constsolid','hexa8',[1 1 24 8],[]);return;
    end
    out1=varargin{1};out1(4,:)=idim; % Tell of_mk('MatrixInt') this is IDIM
```

input arguments passed from femknl are pointers,integ,constit the output arguments are EltConst and a modified pointers where row 4 is modified to specify a 3D underlying geometry.
If constit (1:2) $=[-1$ TypeM $]$ p_solid calls the appropriate property function.
For elements that have an internal orientation (shells, beams, etc.) it is expected that orientation maps are built during this command (see beam1t, ...). Note, that the 'info' , 'EltOrient' stack entry can also be used for that purpose.

- standard topology information (commands node, dof, prop, line, patch, face, edge, parent) see section 7.16.6.
hexa8 provides a clean example of what needs to be done here.

7.16.3 What is done in the property function

p_fen

Commands specific to $p_{-} *$ are associated to the implementation of a particular physical formulation for all topologies.

BuidConstit

As shown in section 7.15.1 and detailed under fe_mkn1 the FEM initialization phase needs to resolve

- constitutive law information from model constants elem0 integinfocall to the element functions, which for all topology holder elements is forwarded to p_solid BuildConstit)
- and to fill-in integration constants and other initial state information (using groupinit to generate the call and constant build the data).

Many aspects of a finite element formulation are independent of the supporting topology. Element property functions are thus expected to deal with topology independent aspects of element constant building for a given family of elements.

Thus the element integinfo call usually just transmits arguments to a property function that does most of the work. That means defining the contents of integ and constit columns. For example for an acoustic fluid, constit columns generated by p_solid BuildConstit contain $\left[\begin{array}{ccc}\frac{1}{\rho C^{2}} & \eta & \frac{1}{\rho}\end{array}\right]$.
Generic elements hexa8, q4p, ...) all call p_solid BuildConstit. Depending on the property type coded in column 2 of the current material, p_solid attempts to call the associated m_mat function with a BuildConstit command. If that fails, an attempt to call p_mat is made (this allows to define a new family of elements trough a single p_fen p_heat is such an example).
integ nominally contains MatId, ProId, NDofPerElt, NNodePerElt, IntegRuleNumber.

7 Developer information

Const

Similarly, element constant generation of elements that support variable integration rules is performed for an element family. For example, p_solid const supports for 3D elastic solids, for 2D elastic solids and 3D acoustic fluid volumes. pheat supports 2D and 3D element constant building for the heat equation.

Generic elements hexa8, q4p, ...) all use the call [EltConst, NDNDim] = p_solid('Const', ElemF, integ, constit).
User extendibility requires that the user be able to bypass the normal operation of p_solid const. This can be achieved by setting constit (1) =-1 and coding a property type in the second value (for example constit(1)=fe_mat ('p_heat', 'SI',1). The proper function is then called with the same arguments as p_solid.

Expected commands common to both p_* and m_* functions are the following

Subtype

With no argument returns a cell array of strings associated with each subtype (maximum is 9). With a string input, it returns the numeric value of the subtype. With a numeric input, returns the string value of the subtype. See m_elastic for the reference implementation.

database

Returns a structure with reference materials or properties of this type. Additional strings can be used to give the user more freedom to build properties.

dbval

Mostly the same as database but replaces or appends rows in model.il (for element properties) or model.pl (for material properties).

PropertyUnitType

i1=p_function('PropertyUnitType', SubType) returns for each subtype the units of each value in the property row (column of pl).

This mechanism is used to automate unit conversions in fe_mat Convert.
[list, repeat]=p_function('PropertyUnitTypeCell', SubType) returns a cell array describing the content of each column, the units and possibly a longer description of the variable. When properties can be repeated a variable number of times, use the repeat (example in p_shell for composites). This mechanism is used to generate graphical editors for properties.

Cell arrays describing each subtype give

- a label. This should be always the same to allow name based manipulations and should not contain any character that cannot be used in field names.
- a conversion value. Lists of units are given using fe_mat('convertSITM'). If the unit is within that list, the conversion value is the row number. If the unit is the ratio of two units in the list this is obtained using a non integer conversion value. Thus 9.004 corresponds to $\mathrm{kg} / \mathrm{m}(9$ is kg and 4 is m).
- a string describing the unit

7.16.4 Compiled element families in of_mk

of $m k$ is the C function used to handle all compiled element level computations. Integration rules and shape derivatives are also supported as detailed in BuildNDN

Generic multi-physic linear elements

This element family supports a fairly general definition of linear multi-physic elements whose element integration strategy is fully described by an EltConst data structure. hexa8 and p_solid serve as a prototype element function. Element matrix and load computations are implemented in the of mk.c MatrixIntegration command with StrategyType=1, stress computations in the of mk.c StressObserve command.

```
EltConst=hexa8('constants',[],[1 1 24 8],[]);
integrules('texstrain',EltConst)
EltConst=integrules('stressrule',EltConst);
integrules('texstress',EltConst)
```

Elements of this family are standard element functions (see section 7.16) and the element functions must thus return node, prop, dof, line, patch, edge, face, and parent values. The specificity is that all information needed to integrate the element is stored in an EltConst data structure that is initialized during the fe_mknl GroupInit phase.

For DOF definitions, the family uses an internal DOF sort where each field is given at all nodes sequentially $1 x 2 x \ldots 8 x 1 y \ldots 8 y \ldots$ while the more classical sort by node $1 x 1 y \ldots 2 x \ldots$ is still used for external access (internal and external DOF sorting are discussed in section 7.16.6).
Each linear element matrix type is represented in the form of a sum over a set of integration points

$$
\begin{equation*}
k^{(e)}=\sum_{j i, j j} \sum_{j w}\left[\left\{B_{j i}\right\} D_{j i} j k(w(j w))\left\{B_{j j}\right\}^{T}\right] J(w(j w)) W((j w)) \tag{7.12}
\end{equation*}
$$

where the jacobian of the transformation from physical $x y z$ to element rst coordinates is stored in EltConst.jdet(jw) and the weighting associated with the integration rule is stored in EltConst.w(jw, 4).

The relation between the Case. GroupInfo constit columns and the $D_{i j}$ constitutive law matrix is defined by the cell array EltConst. ConstitTopology entries. For example, the strain energy of a acoustic pressure formulation p_solid ConstFluid) is given by

The integration rule for a given element is thus characterized by the strain observation matrix $B_{j i}(r, s, t)$ which relates a given strain component $\epsilon_{j i}$ and the nodal displacements. The generic linear element family assumes that the generalized strain components are linear functions of the shape functions and their derivatives in euclidian coordinates ($x y z$ rather than $r s t$).

The first step of the element matrix evaluation is the evaluation of the EltConst. NDN matrix whose first $N w$ columns store shape functions, $N w$ next their derivatives with respect to x, then y and z for 3D elements

$$
\begin{equation*}
[N D N]_{N \operatorname{node} \times N w(N \operatorname{dims}+1)}=\left[[N(r, s, t)]\left[\frac{\partial N}{\partial x}\right]\left[\frac{\partial N}{\partial y}\right]\left[\frac{\partial N}{\partial z}\right]\right] \tag{7.13}
\end{equation*}
$$

To improve speed the EltConst.NDN and associated EltConst.jdet fields are preallocated and reused for the assembly of element groups.

For each strain vector type, one defines an int32 matrix
EltConst.StrainDefinition\{jType\} with each row describing row, NDNBloc, DOF, NwStart, NwTot giving the strain component number (these can be repeated since a given strain component can combine more than one field), the block column in NDN (block 1 is $N, 4$ is $\partial N / \partial z$, a nega-
tive number can be used to specify $-N, \ldots$), the field number, and the starting integration point associated with this strain component and the number of integration points needed to assemble the matrix. The default for NwStart NwTot is 1, Nw but this formalism allows for differentiation of the integration strategies for various fields. The figure below illustrates this construction for classical mechanical strains.

To help you check the validity of a given rule, you should fill the
EltConst.StrainLabels\{jType\} and EltConst.DofLabels fields and use the integrules('texstrain', EltConst) command to generate a LATEX printout of the rule you just generated.

The .StrainDefinition and .ConstitTopology information is combined automatically in integrules to generate .MatrixIntegration (integrules MatrixRule command) and .StressRule fields (integrules StressRule command). These tables once filed properly allow an automated integration of the element level matrix and stress computations in OpenFEM.

Phases in of_mk.c matrix integration

The core of element computations is the matrixintegration command that computes and assembles a group of elements.

After a number of inits, one enters the loop over elements.
The nodeE matrix, containing field at element nodes, is filled with information at the element nodes as columns. The first 3 columns are positions. Column 4 is reserved for node numbers in case a callback to MATLAB makes use of the information. The following columns are based on the InfoAtNode structure whos indexing strategy is compatible with both continuous and discontinuous fields at each node. See sdtweb elem0 ('get_nodeE') for details.

Initialization of InfoAtNode is performed with fe_mknl('Init -gstate') calls. The m_elastic AtNodeGState command is an illustration of init used to interpolate material properties in volume elements.

The defe vector/matrix contains the values at the current element DOF of the provided deformation(s).

Generic RHS computations

Right hand side (load) computations can either be performed once (fixed set of loads) through fe_load which deals with multiple loads, or during an iterative process where a single RHS is assembled by fe_mknl into the second column of the state argument dc.def (: , 2) along with the matrices when requiring the stiffness with MatDes=1 or MatDes=5 (in the second case, the forces are assumed following if implemented).
There are many classical forms of RHS, one thus lists here forms that are implemented in of mk. c MatrixIntegration. Computations of these rules, requires that the EltConst. VectMap field by defined. Each row of EltConst.RhsDefinition specifies the procedure to be used for integration.

Two main strategies are supported where the fields needed for the integration of loads are stored either as columns of dc.def (for fields that can defined on DOFs of the model) or as nodeE columns.

Currently the only accepted format for rows of EltConst.RhsDefinition is
101(1) InfoAtNode1(2) InStep(3) NDNOff1(4) FDof1(5) NDNCol(6)
NormalComp (7) w1 (8) nwStep (9)
Where InfoAtNode1 gives the first row index in storing the field to be integrated in InfoAtNode. InStep gives the index step (3 for a 3 dimensional vector field), NDNOff 1 gives the block offset in the NDN matrix (zero for the nominal shape function). FDof1 gives the offset in force DOFs for the current integration. NDNCol. If larger than -1 , the normal component NormalComp designs a row number in EltConst.bas, which is used as a weighting coefficient. tt w1 gives the index of the first gauss point to be used (in C order starting at 0). nwStep gives the number of gauss points in the rule being used.

- volume forces not proportional to density

$$
\begin{equation*}
\int_{\Omega_{0}} f_{v}(x) \cdot d u(x)=\left\{F_{v}\right\}_{k}=\sum_{j_{w}}\left(\left\{N_{k}\left(j_{w}\right)\right\}\left\{N_{j}\left(j_{w}\right)\right\} f_{v}\left(x_{j}\right)\right) J\left(j_{w}\right) W\left(j_{w}\right) \tag{7.14}
\end{equation*}
$$

are thus described by

```
opt.RhsDefinition=int32( ...
```

[101 0030	$000-1$	rule $+\left[\begin{array}{ll}-1 & 0\end{array}\right]$;
101130	$10-1$	rule+[[-1 0];
10123	$20-1$	rule+[-1

for 3D solids (see p_solid).
Similarly, normal pressure is integrated as 3 volume forces over 3D surface elements with normal component weighting

$$
\begin{align*}
F_{m} & = \tag{7.15}\\
& =\sum_{j_{w}}\left(\left\{N_{k}\left(j_{w}\right)\right\}\left\{N_{j} p(x) n_{m}\left(j_{w}\right)\right\} p\left(x_{j}\right) n_{m}\right) J\left(j_{w}\right) W\left(j_{w}\right)
\end{align*}
$$

- inertia forces (volume forces proportional to density)

$$
\begin{equation*}
F=\int_{\Omega_{0}} \rho(x) f_{v}(x) \cdot d v(x) \tag{7.16}
\end{equation*}
$$

- stress forces (will be documented later)

Large transformation linear elasticity

Elastic3DNL fully anisotropic elastic elements in geometrically non-linear mechanics problems. Element matrix are implemented in the of mk.c MatrixIntegration command with StrategyType=2 for the linear tangent matrix (MatType=5). Other computations are performed using generic elements (section 7.16.4) (mass MatType=2). This formulation family has been tested for the prediction of vibration responses under static pre-load.

Stress post-processing is implemented using the underlying linear element.

Hyperelasticity

Simultaneous element matrix and right hand side computations are implemented in the of mk.c MatrixIntegration command with StrategyType=3 for the linear tangent matrix (MatType=5). In this case (and only this case!!), the EltConst.NDN matrix is built as follow: for $1 \leq j w \leq N w$

$$
\begin{equation*}
[N D N]_{(\text {Ndims }+1) \times \text { Nnode }(N w)}=\left[[N D N]^{j w}\right] \tag{7.17}
\end{equation*}
$$

with

$$
[N D N]_{(N d i m s+1) \times N n o d e}^{j w}=\left[\begin{array}{c}
{[N(r, s, t)]_{j w}} \tag{7.18}\\
{\left[\frac{\partial N}{\partial x}\right]_{j w}} \\
{\left[\frac{\partial N}{\partial y}\right]_{j w}} \\
{\left[\frac{\partial N}{\partial z}\right]_{j w}}
\end{array}\right]
$$

This implementation corresponds to case 31 of NDNSwitch function in of mk_pre.c. The purpose is to use C-BLAS functions in element matrix and right hand side computations implemented in the same file (function Mecha3DintegH) to improve speed.
Other computations are performed using generic elements (section 7.16.4) (mass MatType=2). This formulation family has been tested for the RivlinCube test.

Stress post-processing is not yet implemented for hyperelastic media.

7.16.5 Non-linear iterations, what is done in of $m k$

Non linear problems are characterized by the need to perform iterations with multiple assemblies of matrices and right hand sides (RHS). To optimize the performance, the nominal strategy for non-linear operations is to

- perform an initialization (standard of mknl init call)
- define a deformation data structure dc with two columns giving respectively the current state and the non linear RHS.

At a given iteration, one resets the RHS and performs a single $f e . m k n l$ call that returns the current non-linear matrix and replaces the RHS by its current value (note that fe mknl actually modifies the input argument dc which is not an normal Matlab behavior but is needed here for performance)

```
% at init allocate DC structure
dc=struct('DOF', model.DOF,'def',zeros(length(model.DOF),2);
% ... some NL iteration mechanism here
dc.def(:,2)=0; % reset RHS at each iteration
k=fe_mknl('assemble not',model,Case,dc,5); % assemble K and RHS
```

Most of the work for generic elements is done within the of mk MatrixIntegration command that is called by fe_mknl. Each call to the command performs matrix and RHS assembly for a full group of elements. Three strategies are currently implemented

- Linear multiphysics elements of arbitrary forms, see section 7.16.4
- Elastic3DNL general elastic elements for large transformation, see section 7.16.4
- Hyperelastic elements for large transformation problems. see section 7.16.4. These elements have been tested through the RivlinCube example.

7.16.6 Element function command reference

Nominally you should write topology independent element families, if hard coding is needed you can however develop new element functions.

In Matlab version, a typical element function is an .m or .mex file that is in your Matlab path. In Scilab version, a typical element function is an .sci or .mex file that is loaded into Scilab memory (see getf in Scilab on-line help).
The name of the function/file corresponds to the name of the element (thus the element bar1 is implemented through the bar1.m file)

General element information

To build a new element take q4p.m or q4p.sci as an example.
As for all Matlab or Scilab functions, the header is composed of a function syntax declaration and a help section. The following example is written for Matlab. For Scilab version, don't forget to replace $\%$ by //. In this example, the name of the created element is elem0.

For element functions the nominal format is

```
function [out,out1,out2]=elem0(CAM,varargin);
%elem0 help section
```

The element function should then contain a section for standard calls which let other functions know how the element behaves.

```
if isstr(CAM) %standard calls with a string command
[CAM, Cam]=comstr (CAM, 1); % remove blanks
if comstr(Cam,'integinfo')
    % some code needed here
    out= constit; % real parameter describing the constitutive law
    out1=integ; % integer (int32) parameters for the element
    out2=elmap;
```

7 Developer information

```
elseif comstr(Cam,'matcall')
    out=elem0('call');
    out1=1; % SymFlag
elseif comstr(Cam,'call'); out = ['AssemblyCall'];
elseif comstr(Cam,'rhscall'); out = ['RightHandSideCall'];
elseif comstr(Cam,'scall'); out = ['StressComputationCall'];
elseif comstr(Cam,'node'); out = [NodeIndices];
elseif comstr(Cam,'prop'); out = [PropertyIndices];
elseif comstr(Cam,'dof'); out = [ GenericDOF ];
elseif comstr(Cam,'patch');
out = [ GenericPatchMatrixForPlotting ];
elseif comstr(Cam,'edge'); out = [ GenericEdgeMatrix ];
elseif comstr(Cam,'face'); out = [ GenericFaceMatrix ];
elseif comstr(Cam,'sci_face'); out = [ SciFaceMatrix ];
elseif comstr(Cam,'parent'); out = ['ParentName'];
elseif comstr(Cam,'test')
    % typically one will place here a series of basic tests
end
return
end % of standard calls with string command
```

The expected outputs to these calls are detailed below.

```
call,matcall
```

Format string for element matrix computation call. Element functions must be able to give fe_mk the proper format to call them (note that superelements take precedence over element functions with the same name, so avoid calling a superelement beam1, etc.).
matcall is similar to call but used by fe_mknl. Some elements directly call the of mk mex function thus avoiding significant loss of time in the element function. If your element is not directly supported by fe mknl use matcall=elem0('call').

The format of the call is left to the user and determined by fe.mk by executing the command eCall=elem0 ('call'). The default for the string eCall should be (see any of the existing element functions for an example)

```
[k1,m1]=elem0(nodeE,elt(cEGI(jElt),:),...
    pointers(:,jElt),integ,constit,elmap);
```

To define other proper calling formats, you need to use the names of a number of variables that are internal to fe_mk. fe_mk variables used as output arguments of element functions are
k1 element matrix (must always be returned, for opt (1) ==0 it should be the stiffness, otherwise it is expected to be the type of matrix given by opt (1))
m1 element mass matrix (optional, returned for opt (1) $==0$, see below)
[ElemF,opt, ElemP]=
zrfeutil('getelemf',elt(EGroup(jGroup), :), jGroup)
returns, for a given header row, the element function name ElemF, options opt, and parent name ElemP.
fe.mk and fe.mknl variables that can be used as input arguments to element function are listed in section 7.15 .2 .
dof, dofcall

Generic DOF definition vector. For user defined elements, the vector returned by elem0('dof') follows the usual DOF definition vector format (NodeId.DofId or -1.DofId) but is generic in the sense that node numbers indicate positions in the element row (rather than actual node numbers) and -1 replaces the element identifier (if applicable).
For example the bar1 element uses the 3 translations at 2 nodes whose number are given in position 1 and 2 of the element row. The generic DOF definition vector is thus
[1.01;1.02;1.03;2.01;2.01;2.03].
A dofcall command may be defined to bypass generic dof calls. In particular, this is used to implement elements where the number of DOFs depends on the element properties. The command should always return out=elem0 ('dofcall'); The actual DOF building call is performed in p_solid('BuildDof') which will call user p_*.m functions if needed.

Elements may use different DOF sorting for their internal computations.
edge,face,patch,line,sci_face
face is a matrix where each row describes the positions in the element row of nodes of the oriented face of a volume (conventions for the orientation are described under integrules). If some faces have fewer nodes, the last node should be repeated as needed. feutil can consider face sets with orientation conventions from other software.
edge is a matrix where each row describes the node positions of the oriented edge of a volume or a surface. If some edges have fewer nodes, the last node should be repeated as needed.
line (obsolete) is a vector describes the way the element will be displayed in the line mode (wire frame). The vector is generic in the sense that node numbers represent positions in the element row rather than actual node numbers. Zeros can be used to create a discontinuous line. line is now typically generated using information provided by patch.
patch. In MATLAB version, surface representations of elements are based on the use of Matlab patch objects. Each row of the generic patch matrix gives the indices nodes. These are generic in the sense that node numbers represent positions in the element row rather than actual node numbers.

For example the tetra4 solid element has four nodes in positions 1:4. Its generic patch matrix is [1 $23 ; 234 ; 341 ; 412$]. Note that you should not skip nodes but simply repeat some of them if various faces have different node counts.
sci_face is the equivalent of patch for use in the SCILAB implementation of OpenFEM. The difference between patch and sci_face is that, in SCILAB, a face must be described with 3 or 4 nodes. That means that, for a two nodes element, the last node must be repeated (in generality, sci_face $\left.=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right] ;\right)$. For a more than 4 nodes per face element, faces must be cut in subfaces. The most important thing is to not create new nodes by the cutting of a face and to use all nodes. For example, 9 nodes quadrilateral can be cut as follows :

Figure 7.1: Lower order patch representation of a 9 node quadrilateral
but a 8 nodes quadrilaterals cannot by cut by this way. It can be cut as follows:

Figure 7.2: Lower order patch representation of a 8 node quadrilateral

integinfo, BuildConstit

integinfo, BuildConstit are commands to resolve constants in elements and p_function respectively.
[constit, integ, elmap]=elem0('integinfo', [MatId ProId], pl, il, model, Case) is supposed to search pl and il for rows corresponding to MatId and ProId and return a real vector constit describing the element constitutive law and an integer vector integ.
ElMap is used to build the full matrix of an element which initially only gives it lower or upper triangular part. If a structure is return, fe_mknl can do some group wise processing (typically initialization of internal states).

In most elements, one uses
[constit,integ,elmap]=p_solid('buildconstit', [varargin\{1\};Ndof;Nnode],varargin\{2:end\}) since p_solid passes calls to other element property functions when needed.
elmap can also be used to pass structures and callbacks back to fe_mknl.
node

Vector of indices giving the position of nodes numbers in the element row. In general this vector should be [1:n] where n is the number of nodes used by the element.

```
prop
```

Vector of indices giving the position of MatId, ProId and EltId in the element row. In general this vector should be $\mathrm{n}+\left[\begin{array}{ll}1 & 2\end{array} 3\right]$ where n is the number of nodes used by the element. If the element does not use any of these identifiers the index value should be zero (but this is poor practice).
parent

Parent element name. If your element is similar to a standard element beam1, tria3, quad4, hexa8, etc.), declaring a parent allows the inheritance of properties. In particular you will be able to use functions, such as fe_load or parts of femesh. which only recognize standard elements.
rhscall
rhscall is a string that will be evaluated by fe_load when computing right hand side loads (volume and surface loads). Like call or matcall, the format of the call is determined by fe_load by executing the command eCall=elem0('call'). The default for the string eCall should be :

```
be=elem0(nodeE,elt(cEGI(jElt),:),pointers(:,jElt),...
    integ,constit,elmap,estate);
```

The output argument be is the right hand side load. The inputs arguments are the same as those for matcall and call.

Matrix, load and stress computations

The calls with one input are followed by a section on element matrix assembly. For these calls the element function is expected to return an element DOF definition vector idof and an element matrix k . The type of this matrix is given in opt (1). If opt (1) $==0$, both a stiffness k and a mass matrix m should be returned. See the fe_mk MatType section for a current list.
Take a look at bar1 which is a very simple example of element function.
A typical element assembly section is as follows :

```
% elem0 matrix assembly section
% figure out what the input arguments are
node=CAM; elt=varargin{1};
point=varargin{2}; integ=varargin{3};
constit=varargin{4}; elmap=varargin{5};
typ=point(5);
```

```
% outputs are [k,m] for opt(1)==0
% [mat] for other opt(1)
switch point(5)
case 0
    [out,out1] = ... % place stiffness in out and mass in out1
case 1
    out= ... % compute stiffness
case 2
    out= ... % compute mass
case 100
    out= ... % compute right hand side
case 200
    out= ... % compute stress ...
otherwise
    error('Not a supported matrix type');
end
```

Distributed load computations (surface and volume) are handled by fe_load. Stress computations are handled by fe_stress.

There is currently no automated mechanism to allow users to integrate such computations for their own elements without modifying fe_load and fe_stress, but this will appear later since it is an obvious maintenance requirement.

The mechanism that will be used will be similar to that used for matrix assembly. The element function will be required to provide calling formats when called with elem0('fsurf') for surface loads, elem0 ('fvol') for volume loads, and elem0 ('stress') for stresses. fe_load and fe_stress will then evaluate these calls for each element.

7.17 Variable names and programming rules (syntax)

The following rules are used in programming SDT and OpenFEM as it makes reading the source code easier.

All SDT functions are segmented and tagged so that the function structure is clearly identified. Its tree structure can be displayed and browsable through the sdtweb _taglist interface. You should produce code compatible with this browser including tags (string beginning by \# in a comment), in particular at each command of your function.

In addition, input parsing section 7.17 .3 and some utilities for directory handling section 7.17 .4 , post-treatment display section 7.17 .4 and figure formatting/capturing section 7.17 .4 have been standardized.

7.17.1 Variable naming conventions

Standardized variable names are
carg index of current argument. For functions with variable number of inputs, one seeks the next argument with NewArg=varargin $\{\operatorname{carg}\} ; \operatorname{carg}=c \arg +1$;
CAM Cam string command to be interpreted. Cam is the lower case version of CAM.
j1, j2, j3 ... loop indices.
jGroup, jElt, jW indices for element groups, elements, integration points. For code samples use help('getegroup')
i,j unit imaginary $\sqrt{-1} . i, j$ should never be used as indices to avoid any problem overloading their default value.
i1,i2,i3 ... integer values intermediate variables
r1,r2,r3 ... real valued variables or structures
ind,in2,in3 ... vectors of indices, cind is used to store the complement of ind when applicable.
out, out1, out2 ... output variables.
The following names are also used throughout the toolbox functions

```
model, mo1, mo2 SDT model structures.
node,FEnode, n1, nodes, FEnode is reserved as a global variable.
n2 ...
elt, FEelt, el1, elements, FEelt is reserved as a global variable.
el2 ...
EGroup, nGroup starting index of each group and number of groups in an element structure, see
help('getegroup').
cEGI index of elements for a given group in an element structure, see
    help('getegroup').
NNode reindexing vector, verifies NodeInd=NNode(NodeId). Can be built using
    NNode=sparse(node(:,1),1,1:size(node,1)).
nd reindexing object for DOF, verifies DofPos=feval(nd.getPosFcn,nd,DOF). Is
    built using nd=feval(fe_mknl('@getPosFromNd'), [],DOF);
RunOpt run options, a structure used to store options that are used in a command. RO
    can also be used.
adof current active DOF vector.
cf pointer to a feplot figure.
gf, uf, ga, ua, respectively handle and userdata to a figure, handle and userdata to an axis,
go, uo handle and userdata to a graphics subobject.
gc, evt respectively active object and associated event in Java triggered callbacks.
```


7.17.2 Coding style

The coding styles convention are detailed in the example below.

- Tags for taglist are marked with the \# token, not to interfere with pragma tokens, ensure that it is not directly following a $\%$, but leave at least one space.
- The tag level can be specified by placing -i at the end of the line, i being the level. If not each tag is assumed to be level 1. Tags with lines finishing by - - - or after the \#SubFunc tag are assumed level 2.
- By default, the taglist will concatenate consecutive tags with the same starting letters, the subsequent tags will thus be shifted.
- Code sections are usually delimited using the cell display \%\%.
- The first input argument should be a string whose parsing will determine the command to execute and associated command options.
- An error should be returned if the command is unknown.
- Access from the outside to subfunction handles should be made possible through a call suf=my_func('@my_sub_fun').
- Subversion tags should be present to allow easy administration using cvs or svn, in a unique command cvs, that will output a string containing the cvs or svn tags.

```
function [out,out1,out2,out3]=my_func(varargin);
% Here you should place your help
% SDT functions always use varargin for input and [out,out1, ...] for
% output.
% ask MATLAB to avoid some warnings the in the editor MLint
%#ok<*NASGU,*ASGLU,*CTCH ,*TRYNC , *NOSEM>
% Get the command in varargin{1} and strip front/end blanks with comstr
% CAM is as input, Cam is lower case.
[CAM, Cam]=comstr (varargin{1},1); carg=2;
%% #Top : main level command Top
% the %% is to use Matlab cell, while #Top is a sdtweb _taglist tag
% by default tags are set to level 1
% Now test that Cam starts by 'top' and then strip 3 characters and trim (+1)
if comstr(Cam,'top'); [CAM,Cam]=comstr(CAM,4);
if comstr(Cam,'manual')
%% #TopLevel2 : subcommand level 2 - _ - _ - - - - - -2
% - - - tells sdtweb this is a level 2 tag
% if sufficies to end the line with -2 in practice
% any other level can be used by adding a higher number at the end of the tag line
% recover other inputs
r1=varargin{carg}; carg=carg+1; % get input and increment counter
% get optionnal input arguments
if carg<=nargin; r2=carargin{carg}; carg=carg+1; else; r2=[]; end
% ...
```

```
    %% #TopEnd -2
    else; error('Top%s unknown',CAM);
    end
%% #End : typical commands placed at end of function
elseif comstr(Cam,'@');out=eval(CAM);
elseif comstr(Cam,'cvs')
    out='$Revision: 1.17 $ $Date: 2019/02/15 17:37:30 $';
else; error('my_func %s unknown',CAM);
end
%% #SubFunc : indicates start of subfunctions to taglist parsing
%% #my_sub_fun
function out=my_sub_fun(varargin)
```


7.17.3 Input parsing conventions

Passing command options is a critical feature to enable little behavior alteration as function of the user needs although most of the functionality is the same. This allows in particular limiting code duplication.

From the input CAM variable, command option parsing utilities have been defined and standardized. The goal is to build a run option structure from the input command string while keeping the possibility to provide it as an extra argument.

The command parsing code is then

```
% Usual run options handling
% first possible to recover in extra input
if carg>nargin||~isstruct(varargin{carg});RO=struct;
else;RO=varargin{carg};carg=carg+1;
end
% then parse CAM for command options,
% and assign default values to unspecified options
% values declared prior to the paramedit call are not overriden
[RO,st, CAM]=cingui('paramedit -DoClean', [ . . .
    'param(val#%g#"Description")' ...
    'token(#3#"token modes does...")' ...
    '-parS("string"#%s#"parS modes available...")' ...
```

$$
\text {],\{RO, CAM }\} \text {) ; Cam=lower (CAM) ; }
$$

The paramEdit call from cingui performs standard operations for each token in the second input string of the command. Each token follows the format token (val\#typ\#"info"), and will generate a case sensitive field token in the structure RO. val is a default value that is applied if the field token is missing before the call. info is a string providing information on the token effect. typ tells the type of input that should be parsed after the token, with the following rules:

- 3 Only checks for the presence of token in the command without any other value. Sets field token to 1 (double) if found, 0 (as double) if not. val must remain empty. e.g. Top token, will set RO.token=1.
- 31 Behaves as type 3 but also checks for an optional integer input. Sets field token to 1 (double) if found, O (as double) if not, or to the found integer if found. val must remain empty. e.g. Top token 2 will set RO.token=2, and Top token will set RO.token=1.
- \%g Checks for token followed by a float. If found RO.token is set to the float, if no float is found the field is left empty. If the token is not found, the default value val is set. e.g. Top token 3.14 will set RO.token=3.14.
- \%i Checks for token followed by an integer. If found RO. token is set to the integer, if no integer is found the field is left empty. If the token is not found, the default value val is set. e.g. Top token 31 will set RO. token=31.
- \%s Checks for token followed by a string (delimited by two "). If found RO.token is set to the string, if no string is found the field is left empty. If the token is not found, the default value val is set. e.g. Top token"test" will set RO.token='test'. Note that for this type if val is not empty one defines the token as token("val"\#\%s\#"info"), but if val is empty, one should use token(\#\%s\#"info").

The output CAM has been stripped from any parsed data.
The format -token(val\#typ\#"info") will require the presence of -token in the command to generate the token field in RO.

By convention, to handle interferences between the extra input argument RO and default values overriding, any field present in RO prior to calling paramEdit will be left unchanged by the command.

7.17.4 Commands associated to project application functions

The development of project application functions follow some must have such as project directory handling section 7.17 .4 , post-treatment handling section 7.17 .4 , image capture generation section 7.17 .4 . Some of these steps have been standardized over the years, which are documented in the present sections.

wd,fname

The files relative to a specific application are usually stored in a specific file arborescence. It is thus useful to access standardly defined save directories in a robust manner, regardless of the operating system or the user. Standard applications developed by SDTools usually involve a user defined root directory from which the following subdirectories are defined

- m contains the project source code.
- tex contains the project documentation source code.
- mat contains reference data files.
- plots contains the image captures.
- doc contains other project support documentation.

Each of these directories may contain any further arborescence to class data as desired.
To allow efficient recovery of a specific subdirectory or file in the final project file architecture, sdtweb provides commands in its utilities (see sdtweb Utils) that should be used by the main project function to search the project architecture subdirectories.

The wd command should package a search in its known subdirectories.

```
%% #wd --------------------------------------------------------
elseif comstr(Cam,'wd')
if nargin==1 % output the possible root directories
    % assume this function is stored in root/m
    out=fileparts(which('my_func'));
    % possibly add specific root dirs outside the project
    % should be better handled with a preference
    wd2={'/p/my_files'}; % add as many as needed
    out=[out wd2];
else % get the subdirectory searched
```

7 Developer information

```
wd1=varargin{carg}; carg=carg+1;
% get the project root directory (several ones admitted)
wd0=my_func('wd');
% find the subdirectory
out=sdtweb('_wd',wd0,wd1);
end
```

The fname command should package a file search in the known subdirectories

```
%% #fname
elseif comstr(Cam,'fname')
fname=varargin{carg}; carg=carg+1;
% get the available root directories
wd=my_func('wd');
% search for the file
out=sdtweb('_fname',fname,wd);
```


view

The generation of displayed post-treatments should be handled by a command named View, that will centralize the feplot manipulations required to generate ad hoc displays. Variations of display are handled in the command, first and second input should be the feplot pointer and optionally a deformation data.

- Handling of legend (location, labels, ...) can be performed by defining a Legend field to deformation curves, see comgui def.Legend for more details.
- Handling of colorbars and their legends can be performed using fecom ColorBar and fecom Color egend commands.
- Stress post-treatments can be handled through a fe_caseg StressCut command.
- Energy post-treatment can be handled through fe_stress Ener and their corresponding display through fe_stress feplot
- Handling of color scales can be handled with fecom ColorScale.

A sample call to be handled by the view command could then be.
my_project('ViewUpStress', cf);

im

The generation of image captures from figures feplot iiplot or standard MATLAB figures) should be handled by a command named im, that will centralize formatting and saving. This command should

- Provide figure formatting data for implemented modes
- Perform figure formatting according to a required mode
- Perform figure capture and save to an appropriate directory

For details on figure formatting, see comgui objSet, for details on figure naming strategy see comgui ImFtitle, for low level image capturing calls, see comgui ImWrite.

A suggested layout for the im command of a sample my_func function is then

```
%% #im : figure formatting
elseif comstr(Cam,'im')
% sdt_table_generation('Rep{SmallWide}');comstr(ans,-30)
if nargin==2 % generate the calling string
    pw0=pwd;
    if isfield(varargin{2},'ch') % multiple generation with imwrite ch
        RO=varargin{2};cf=feplot;
        % Create an possibly change to directory
        sdtkey('mkdircd',my_func('wd','plots',sscanf(cf.mdl.name, '%s',1)));
        RO.RelPath=1; % Save links with path relative to current position
        RO=iicom(cf,'imwrite',RO);
        fid=fopen('index.html','w');fprintf(fid,'%s',RO.Out{:});fclose(fid);
        cd(pw0);
    elseif ~ischar(varargin{2}); % Apply reshaping to figure
        gf=varargin{2};if ~ishandle(gf);figure(gf);plot([0 1]);end
        cingui('objset',gf,my_func(CAM))
        % if feplot, center the display
        if strcmpi(get(gf,'tag'),'feplot');iimouse('resetvie');end
    elseif strcmpi(varargin{2},'.') % if '.' get automatic naming
        st=sprintf('imwrite-objSet"@my_func(',%s'')"-ftitle',varargin{1});
        comgui(st);
```

7 Developer information

```
    else
        cd(my_func('wd','plots'));
        st=sprintf('imwrite-objSet"@my_func(',%s'')"-ftitle%s',varargin{1:2});
        comgui(st);
        cd(pw0);
    end
elseif comstr(Cam,'imw1') % Figure formatting options for w1
    out={'position', [NaN,NaN,450*[1.5 2]],'paperpositionmode','auto', ...
        '@exclude',{'legend.*'},'@text',{'FontSize',14}, ...
        '@axes',{'FontSize',14,'box','on'}, ...
        '@ylabel',{'FontSize',14,'units','normalized'}, ...
        '@zlabel',{'FontSize',14,'units','normalized'}, ...
        '@title',{'FontSize',14}, ...
        '@line',{'linewidth',1}, ...
        '@xlabel',{'FontSize',14,'units','normalized'}};
% elseif ... use as many commands as needed
else; error(%%s unknown',CAM);
end
```

This way, the following tasks can be easily performed

```
% Im calls for figure capturing
gf=figure(1); plot([1 0]);
% Capture an image from figure 1 with formatting w1 and named test.png
my_func('imw1','test.png');
% Capture an image from figure 1 with formatting w1 with an automatic name
my_func('imw1','.');
% Format figure 1 according to w1 options
my_func('imw1',gf);
% Get formatting options for w1
r1=my_func('imw1');
```


7.17.5 Commands associated to tutorials

In a training function or in any function where a tutorial could be executed, the syntax is the following

```
elseif comstr(Cam,'tuto')
    %% #Tuto (implement standard behaviour of tuto command) -1
        % Execute the tutorial with CAM commands or open the tuto tree if empty CAM
    eval(sdtweb('_tuto',struct('file','current_function_name','CAM',CAM)));
    if nargout==0; clear out; end
    elseif comstr(Cam,'tutoname')
    %% #TutoTutoname-2
    % See sdtweb('LinkToHTML') % Open the HTML corresponding to the tutorial
    %% Step 1 : Description of step1
    % See sdtweb('LinkToHTML') % Open HTML detailed doc related to this step
    %% Step 1.1 : Description of substep 1.1
    % Code to execute correponding to Step 1.1
    %% Step 1.2 : Description of substep 1.1
    % Code to execute correponding to Step 1.2
    % Step 2 : Description of step2
    % See sdtweb('LinkToHTML') % Open HTML detailed doc related to this step
    % Code to execute correponding to Step 2
    %% EndTuto
    elseif comstr(Cam,'tutoname2')
    %% #TutoTutoname2-2
    % See sdtweb('LinkToHTML') % Open the HTML corresponding to the tutorial
    %% EndTuto
% elseif ... use as many commands as needed
This way, the following commands are usually executed :
\% Open the tree containing all the tutorial and clickable buttons my_func('Tuto');
\% Execute the whole tutorial (useful for test auto)
```

7 Developer information

```
my_func('TutoTutoname');
% Execute a tutorial up to a given step (here section 2.3)
my_func('TutoTutoname -s2.3');
```


7.18 Criteria with CritFcn

SDT supports the use of various criteria to be applied on data. The default CritFcn implementation is present in fegui. The fields of a CritFcn structure are

- . cmap colormap.
- . clevel levels associated with the colors (one more level than the number of colors). If not present, the default is an equal spacing of colors in the $[0,1]$ interval. This field is typically used to color tables.
- .cback default color if below the .clevel interval. Defaults to white.
-. .llevel levels associated with line plots.
- .Fcn handle to handling function, defaults to fegui('@CritFcn').
- .imap alternative to .Fcn to specify color index by hand.

```
r1=(1:10)'; r1=[r1 sin(r1/max(r1)*pi) cos(r1/max(r1)*pi) ];
% Standard criterion
R1=struct('clevel',linspace(0,1,4),'cmap',eye(3),'Fcn',fegui('@CritFcn'));
% Manual setting of color map
R2=struct('cmap',eye(3),'imap',round((r1(:,3)+1)*3/2));
ua=struct('name','CritFcn','ColumnName',{{'#','val','ind';'','','';
    '0','0.00','.0%'; ... % Column formatting (java)
    R1,R1,R2}}, ... % Define a CritFcn for coloring
    'setSort',2); % use filter-sort
ua=menu_generation('jpropcontext',ua,'Tab.ExportTable');
%feval(R1.Fcn,'imap',R1,r1)
comstr(r1,-17,'tab',ua)
```


7.19 Legacy information

This section gives data that is no longer used but is important enough not to be deleted.

7.19.1 Legacy 2D elements

These elements support isotropic and 2-D anisotropic materials declared with a material entry described in m_elastic. Element property declarations are p_solid subtype 2 entries

```
[ProId fe_mat('p_solid','SI',2) f N 0]
```

Where
$\mathrm{f} \quad$ Formulation : 0 plane stress, 1 plane strain, 2 axisymmetric.
$\mathrm{N} \quad$ Fourier coefficient for axisymmetric formulations
Integ set to zero to select this family of elements.
The $x y$ plane is used with displacement DOFs .01 and .02 given at each node. Element matrix calls are implemented using .c files called by of mk_subs.c and handled by the element function itself, while load computations are handled by fe_load. For integration rules, see section 7.19.2. The following elements are supported

- $q 4 p$ (plane stress/strain) uses the et*2q1d routines for plane stress and plane strain.
- q4p (axisymmetric) uses the et*aq1d routines for axisymmetry. The radial u_{r} and axial u_{z} displacement are bilinear functions over the element.
- q5p (plane stress/strain) uses the et*5noe routines for axisymmetry.

There are five nodes for this incompressible quadrilateral element, four nodes at the vertices and one at the intersection of the two diagonals.

- q8p uses the et*2q2c routines for plane stress and plane strain and et*aq2c for axisymmetry.
- q9a is a plane axisymmetric element with Fourier support. It uses the e*aq2c routines to generate matrices.
- t3p uses the et*2p1d routines for plane stress and plane strain and et*ap1d routines for axisymmetry.
The displacement (u, v) are assumed to be linear functions of (x, y) (Linear Triangular Element), thus the strain are constant (Constant Strain Triangle).
- t6p uses the et*2p2c routines for plane stress and plane strain and et*ap2c routines for axisymmetry.

7.19.2 Rules for elements in of mk_subs

7 Developer information
hexa8, hexa20
The hexa8 and hexa20 elements are the standard 8 node 24 DOF and 20 node 60 DOF brick elements.

The hexa8 element uses the et*3q1d routines.
hexa8 volumes are integrated at 8 Gauss points
$\omega_{i}=\frac{1}{8}$ for $i=1,4$
b_{i} for $i=1,4$ as below, with $z=\alpha_{1}$
b_{i} for $i=4,8$ as below, with $z=\alpha_{2}$
hexa8 surfaces are integrated using a 4 point rule
$\omega_{i}=\frac{1}{4}$ for $i=1,4$
$b_{1}=\left(\alpha_{1}, \alpha_{1}\right), b_{2}=\left(\alpha_{2}, \alpha_{1}\right), b_{3}=\left(\alpha_{2}, \alpha_{2}\right)$ and $b_{4}=\left(\alpha_{1}, \alpha_{2}\right)$
with $\alpha_{1}=\frac{1}{2}-\frac{1}{2 \sqrt{3}}=0.2113249$ and $\alpha_{2}=\frac{1}{2}+\frac{1}{2 \sqrt{3}}=0.7886751$.
The hexa20 element uses the et*3q2c routines.
hexa20 volumes are integrated at 27 Gauss points $\omega_{l}=w_{i} w_{j} w_{k}$ for $i, j, k=1,3$
with
$w_{1}=w_{3}=\frac{5}{18}$ and $w_{2}=\frac{8}{18} b_{l}=\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right)$ for $i, j, k=1,3$
with
$\alpha_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}, \alpha_{2}=0.5$ and $\alpha_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}$
$\alpha_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}, \alpha_{2}=0.5$ and
hexa20 surfaces are integrated at 9 Gauss points $\omega_{k}=w_{i} w_{j}$ for $i, j=1,3$ with
w_{i} as above and $b_{k}=\left(\alpha_{i}, \alpha_{j}\right)$ for $i, j=1,3$
with $\alpha_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}, \alpha_{2}=0.5$ and $\alpha_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}$.
penta6, penta15
The penta6 and penta15 elements are the standard 6 node 18 DOF and 15 node 45 DOF pentahedral elements. A derivation of these elements can be found in [43].

The penta6 element uses the et*3r1d routines.
penta 6 volumes are integrated at 6 Gauss points

Points b_{k}	x	y	z
1	a	a	c
2	b	a	c
3	a	b	c
4	a	a	d
5	b	a	d
6	a	b	d

with $a=\frac{1}{6}=.16667, b=\frac{4}{6}=.66667, c=\frac{1}{2}-\frac{1}{2 \sqrt{3}}=.21132, d=\frac{1}{2}+\frac{1}{2 \sqrt{3}}=.78868$
penta6 surfaces are integrated at 3 Gauss points for a triangular face (see tetra4) and 4 Gauss points for a quadrangular face (see hexa8).
penta15 volumes are integrated at 21 Gauss points with the 21 points formula
$a=\frac{9-2 \sqrt{15}}{21}, b=\frac{9+2 \sqrt{15}}{21}$,
$c=\frac{6+\sqrt{15}}{21}, d=\frac{6-\sqrt{15}}{21}$,
$e=0.5\left(1-\sqrt{\frac{3}{5}}\right)$,
$f=0.5$ and $g=0.5\left(1+\sqrt{\frac{3}{5}}\right)$
$\alpha=\frac{155-\sqrt{15}}{2400}, \beta=\frac{5}{18}$,
$\gamma=\frac{155+\sqrt{15}}{2400}, \delta=\frac{9}{80}$ and $\epsilon=\frac{8}{18}$.
Positions and weights of the 21 Gauss point are

Points b_{k}	x	y	z	weight ω_{k}
1	d	d	e	$\alpha \cdot \beta$
2	b	d	e	$\alpha \cdot \beta$
3	d	b	e	$\alpha \cdot \beta$
4	c	a	e	$\gamma \cdot \beta$
5	c	c	e	$\gamma \cdot \beta$
6	a	c	e	$\gamma \cdot \beta$
7	$\frac{1}{3}$	$\frac{1}{3}$	e	$\delta \cdot \beta$
8	d	d	f	$\alpha \cdot \epsilon$
9	b	d	f	$\alpha \cdot \epsilon$
10	d	b	f	$\alpha \cdot \epsilon$
11	c	a	f	$\gamma \cdot \epsilon$
12	c	c	f	$\gamma \cdot \epsilon$
13	a	c	f	$\gamma \cdot \epsilon$
14	$\frac{1}{3}$	$\frac{1}{3}$	f	$\delta \cdot \epsilon$
15	d	d	g	$\alpha \cdot \beta$
16	b	d	g	$\alpha \cdot \beta$
17	d	b	g	$\alpha \cdot \beta$
18	c	a	g	$\gamma \cdot \beta$
19	c	c	g	$\gamma \cdot \beta$
20	a	c	g	$\gamma \cdot \beta$
21	$\frac{1}{3}$	$\frac{1}{3}$	g	$\delta \cdot \beta$

penta15 surfaces are integrated at 7 Gauss points for a triangular face (see tetra10) and 9 Gauss points for a quadrangular face (see hexa20).

tetra4, tetra10

The tetra4 element is the standard 4 node 12 DOF trilinear isoparametric solid element. tetra10 is the corresponding second order element.

You should be aware that this element can perform very badly (for poor aspect ratio, particular loading conditions, etc.) and that higher order elements should be used instead.

The tetra4 element uses the et*3p1d routines.
tetra4 volumes are integrated at the 4 vertices $\omega_{i}=\frac{1}{4}$ for $i=1,4$ and $b_{i}=S_{i}$ the i-th element vertex.
tetra4 surfaces are integrated at the 3 vertices with $\omega_{i}=\frac{1}{3}$ for $i=1,3$ and $b_{i}=S_{i}$ the i-th vertex of the actual face

The tetra10 element is second order and uses the et*3p2c routines. tetra10 volumes are integrated at 15 Gauss points

Points b_{k}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	weight ω_{k}
1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{8}{405}$
2	b	a	a	a	α
3	a	b	a	a	α
4	a	a	b	a	α
5	a	a	a	b	α
6	d	c	c	c	β
7	c	d	c	c	β
8	c	c	d	c	β
9	c	c	c	d	β
10	e	e	f	f	γ
11	f	e	e	f	γ
12	f	f	e	e	γ
13	e	f	f	e	γ
14	e	f	e	f	γ
15	f	e	f	e	γ

with $a=\frac{7-\sqrt{15}}{34}=0.0919711, b=\frac{13+3 \sqrt{15}}{34}=0.7240868, c=\frac{7+\sqrt{15}}{34}=0.3197936$, $d=\frac{13-3 \sqrt{15}}{34}=0.0406191, e=\frac{10-2 \sqrt{15}}{40}=0.0563508, f=\frac{10+2 \sqrt{15}}{40}=0.4436492$ and $\alpha=\frac{2665+14 \sqrt{15}}{226800}, \beta=\frac{2665-14 \sqrt{15}}{226800}$ et $\gamma=\frac{5}{567}$
λ_{j} for $j=1,4$ are barycentric coefficients for each vertex S_{j} :
$b_{k}=\sum_{j=1,4} \lambda_{j} S_{j}$ for $k=1,15$
tetra10 surfaces are integrated using a 7 point rule

Points b_{k}	λ_{1}	λ_{2}	λ_{3}	weight ω_{k}
1	c	d	c	α
2	d	c	c	α
3	c	c	d	α
4	b	b	a	β
5	a	b	b	β
6	b	a	b	β
7	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	γ

with $\gamma=\frac{9}{80}=0.11250, \alpha=\frac{155-\sqrt{15}}{2400}=0.06296959, \beta=\frac{155+\sqrt{15}}{2400}=0.066197075$ and $a=\frac{9-2 \sqrt{15}}{21}=$ $0.05961587, b=\frac{6+\sqrt{15}}{21}=0.47014206, c=\frac{6-\sqrt{15}}{21}=0.10128651, d=\frac{9+2 \sqrt{15}}{21}=0.797427$
λ_{j} for $j=1,3$ are barycentric coefficients for each surface vertex S_{j} :
$b_{k}=\sum_{j=1,3} \lambda_{j} S_{j}$ for $k=1,7$
q4p (plane stress/strain)
The displacement (u, v) are bilinear functions over the element.
For surfaces, q4p uses numerical integration at the corner nodes with $\omega_{i}=\frac{1}{4}$ and $b_{i}=S_{i}$ for $i=1,4$.
For edges, q 4 p uses numerical integration at each corner node with $\omega_{i}=\frac{1}{2}$ and $b_{i}=S_{i}$ for $i=1,2$.

q4p axisymmetric

For surfaces, q4p uses a 4 point rule with

- $\omega_{i}=\frac{1}{4}$ for $i=1,4$
- $b_{1}=\left(\alpha_{1}, \alpha_{1}\right), b_{2}=\left(\alpha_{2}, \alpha_{1}\right), b_{3}=\left(\alpha_{2}, \alpha_{2}\right), b_{4}=\left(\alpha_{1}, \alpha_{2}\right)$ with $\alpha_{1}=\frac{1}{2}-\frac{1}{2 \sqrt{3}}=0.2113249$ and $\alpha_{2}=\frac{1}{2}+\frac{1}{2 \sqrt{3}}=0.7886751$

For edges, q4p uses a 2 point rule with

- $\omega_{i}=\frac{1}{2}$ for $i=1,2$
- $b_{1}=\alpha_{1}$ and $b_{2}=\alpha_{2}$ the 2 gauss points of the edge.
q5p (plane stress/strain)
For surfaces, q5p uses a 5 point rule with $b_{i}=S_{i}$ for $i=1,4$ the corner nodes and b_{5} the node 5 .
For edges, q5p uses a 1 point rule with $\omega=\frac{1}{2}$ and b the midside node.
q8p (plane stress/strain)
For surfaces, q8p uses a 9 point rule with
- $\omega_{k}=w_{i} w_{j}$ for $i, j=1,3$ with $w_{1}=w_{3}=\frac{5}{18}$ et $w_{2}=\frac{8}{18}$
- $b_{k}=\left(\alpha_{i}, \alpha_{j}\right)$ for $i, j=1,3$ with $\alpha_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}, \alpha_{2}=0.5$ and $\alpha_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}$

For edges, q8p uses a 3 point rule with

- $\omega_{1}=\omega_{2}=\frac{1}{6}$ and $\omega_{3}=\frac{4}{6}$
- $b_{i}=S_{i}$ for $i=1,2$ corner nodes of the edge et b_{3} the midside.

q8p axisymmetric

For surfaces, q8p uses a 9 point rule with

- $\omega_{k}=w_{i} w_{j}$ for $i, j=1,3$
with $w_{1}=w_{3}=\frac{5}{18}$ and $w_{2}=\frac{8}{18}$
- $b_{k}=\left(\alpha_{i}, \alpha_{j}\right)$ for $i, j=1,3$
with $\alpha_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}, \alpha_{2}=0.5$ and $\alpha_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}$
For edges, q8p uses a 3 point rule with
- $\omega_{1}=\omega_{3}=\frac{5}{18}, \omega_{2}=\frac{8}{18}$
- $b_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}=0.1127015, b_{2}=0.5$ and $b_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}=0.8872985$
t3p (plane stress/strain)
For surfaces, t3p uses a 3 point rule at the vertices with $\omega_{i}=\frac{1}{3}$ and $b_{i}=S_{i}$.
For edges, t3p uses a 2 point rule at the vertices with $\omega_{i}=\frac{1}{2}$ and $b_{i}=S_{i}$.

t3p axisymmetric

For surfaces, t 3 p uses a 1 point rule at the barycenter $\left(b_{1}=G\right)$ with $\omega_{1}=\frac{1}{2}$.
For edges, t3p uses a 2 point rule at the vertices with $\omega_{i}=\frac{1}{2}$ and $b_{1}=\frac{1}{2}-\frac{2}{2 \sqrt{3}}$ and $b_{2}=\frac{1}{2}+\frac{2}{2 \sqrt{3}}$.

7 Developer information
t6p (plane stress/strain)
For surfaces, t6p uses a 3 point rule with

- $\omega_{i}=\frac{1}{3}$ for $i=1,6$
- $b_{i}=S_{i+3, i+4}$ the three midside nodes.

For edges, t6p uses a 3 point rule

- $\omega_{1}=\omega_{2}=\frac{1}{6}$ and $\omega_{3}=\frac{4}{6}$
- $b_{i}=S_{i}, i=1,2$ the i-th vertex of the actual edge and $b_{3}=S_{i, i+1}$ the midside.

t6p axisymmetric

For surfaces, t6p uses a 7 point rule

Points b_{k}	λ_{1}	λ_{2}	λ_{3}	weight ω_{k}
1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	a
2	α	β	β	b
3	β	β	α	b
4	β	α	β	b
5	γ	γ	δ	c
6	δ	γ	γ	c
7	γ	δ	γ	c

with :
$a=\frac{9}{80}=0.11250, b=\frac{155+\sqrt{15}}{2400}=0.066197075$ and
$c=\frac{155-\sqrt{15}}{2400}=0.06296959$
$\alpha=\frac{9-2 \sqrt{15}}{21}=0.05961587, \beta=\frac{6+\sqrt{15}}{21}=0.47014206$
$\gamma=\frac{6-\sqrt{15}}{21}=0.10128651, \delta=\frac{9+2 \sqrt{15}}{21}=0.797427$
λ_{j} for $j=1,3$ are barycentric coefficients for each vertex S_{j} :
$b_{k}=\sum_{j=1,3} \lambda_{j} S_{j}$ for $k=1,7$
For edges, t6p uses a 3 point rule with $\omega_{1}=\omega_{3}=\frac{5}{18}, \omega_{2}=\frac{8}{18}$
$b_{1}=\frac{1-\sqrt{\frac{3}{5}}}{2}=0.1127015, b_{2}=0.5$ and $b_{3}=\frac{1+\sqrt{\frac{3}{5}}}{2}=0.8872985$

GUI and reporting tools

8.1 Formatting MATLAB graphics and output figures 348
8.1.1 Formatting operations with objSet. 349
8.1.2 Persistent data in Project 349
8.1.3 OsDic dictionnary of names styles 350
8.1.4 File name generation with objString 352
8.1.5 Image generation with ImWrite 352
8.2 SDT Tabs 352
8 8.2.1 Project 353
8.2.2 FEMLink 353
8.2.3 Mode 356
8.2.4 TestBas : position test versus FEM. 359
8.2.5 StabD : stabilization diagram 362
8.2.6 Ident : pole tuning 364
8.2.7 MAC : Modal Assurance Criterion display 365
8.3 Non java SDT Tabs (obsolete) 367
8.4 Handling data in the GUI format 367
8.4.1 Parameter/button structure 367
8.4.2 DefBut : parameter/button defaults 369
8.4.3 Reference button file in CSV format 370
8.4.4 Data storage and access 371
8.4.5 Tweaking display 374
8.4.6 Defining an exploration tree 376
8.4.7 Finding CinCell buttons in the GUI with getCell 377
8.5 Interactivity 378
8.5.1 Handling tabs 378
8.5.2 Handling dependencies 378
8.5.3 Dialogs 380

This chapter aims at providing the details and procedures used to build a GUI with SDT. The GUI is based on a formalism where the data and their display is decoupled.

The data considered is a set of parameters preliminary defined through the use of a csv file read by sdt_locale, quick definitions are supported by cingui ParamEdit.

This data is then transformed into a Java object stored as a v handle in the GUI figure. The GUI figure must be named and tagged appropriately to be accessed at any time. Its Name and Tag are equal and define the figure as unique.

Access to the data parameters is always performed through a v handle call and can be edited using sdcedit. Layout of the data can be shaped as desired and displayed under the form of Tables in the GUI figure, using sdt_dialogs and cinguj. The tables are interactive as the user can edit the data parameter fields through the interface. Dependency handling of other parameters as function of the edited one is possible.

8.1 Formatting MATLAB graphics and output figures

SDT implements single comgui ImWrite and multiple iicom ImWrite image generation mechanisms. The basic process is to

- generate your figure,
- call comgui objSet for the initial formatting,
- use sdtroot Set to define project information such as the plot output directory.
- use comgui PlotWd to predefine output options (directory, file name generation scheme, reformatting for image generation, insertion options for word, ...)

Figure 8.1: Figure generation process

8.1.1 Formatting operations with objSet

cingui('objSet',h,Prop) groups all formatting operations needed to obtain exactly the figure you want (font size, axes positions, line sequencing, ...) starting from a pointer to a MATLAB graphic h and a style given as cell array of formatting instructions Prop. It is the base SDT mechanism to generalize the MATLAB set command.

Prop is a cell array of tag-value pairs classical in MATLAB handle properties comgui objSet allows three types of modification

- recursion into objects or object search. Thus the property '@axes' of a figure is a handle to all axes within this figure or '@line(2)' is the second line object.
- expansion is the mechanism where a tag-value pairs is actually replaced by a larger list of tagvalue pairs. The definition of styles using comgui objSet entries leads to the use of expansion in the form '@OsDic(SDT Root)', \{'val1', 'val2'\}. This mechanism is key to let the user manage predefined styles.
- Value replacement/verification to enhance basic set commands used by MATLAB. Thus with 'Position', [NaN NaN 500 300] the lower left corner values shown here as NaN are replaced by their current value.

8.1.2 Persistent data in Project

The Project tab is initialized using sdtroot Set commands. The most commonly used fields are the project and plot directories and file name for export to Word, PowerPoint. Their use is illustrated in the next section.

```
sdtroot('SetProject',struct('ProjectWd',sdtdef('tempdir'), ...
    'root','MyTest'));
```


Figure 8.2: Basic project tab

8.1.3 OsDic dictionnary of names styles

The comgui objSet provides a basic mechanism to provide formatting instructions. As choosing those takes time and for the sake of uniformity it is useful to introduce style sheets, which SDT does using a list of named styles, as shown in figure 8.3.

Figure 8.3: Hierarchical view of project styles sdtroot('InitOsDic')

Basic implementations of most styles are provided in d_imw (see list with sdtweb('_taglist', 'd_imw')). The main categories of styles are

- Im : image formatting
- SmallWide for a wide picture (9:16) (landscape style) adapted to reports.
- SmallSquare for a square picture (4:3) adapted to reports.
- SmallHigh for a vertical rectangular picture (9:16) adapted to reports.
- LargeWide for a wide picture (landscape style) adapted to posters.
- LargeSquare for a square picture (4:3) adapted to posters.
- WideBar for a (4:3) landscape style picture. It has the same width than SmallWide but is higher, this is mostly convenient for wide bar diagrams.
- Cb colorbar insertion
- Cm colormap definition
- Cr image cropping options
- Fn file naming strategy. Fn + a combination of Root (project root field), $T($ itle) (figure title), xlabel, ylabel, zlabel (figure label), ii_legend (see ii_plp Legend), Name (cf.data.name), Model (cf.mdl.name)
- Pr figure configurations when opening project. See sdtweb('d_imw','Pr')

8 GUI and reporting tools

- Fi feplot view initialization using a comgui objSet call.
- Ii iiplot view initialization using a comgui objSet call.
- ...

8.1.4 File name generation with objString

The ability to generate context based file names is obtained using comgui objString. The principle is to provide a cell array of strings where '@command' string are interpreted.

8.1.5 Image generation with ImWrite

8.2 SDT Tabs

This section presents the GUI of SDT, organized as tabs in the sdtroot figure.

- The application tools breakdown is provided in an exploration tree placed at the figure left. The buttons allow opening the corresponding interface tabs.
- The tab area displays interactive tables that allows parameter editing and procedure execution. User interaction is associated with tabs implemented in the GUI,
- Project tab to handle the working environement, section section 8.2.1.
- FEMLink tab to handle model imports, section section 8.2.2.
- Mode tab to handle modal computations, section section 8.2.3.
- TestBas tab to superpose two meshes, section section 8.2.4.
- Ident tab SDT identification tuning, section section 8.2.6.
- StabD tab for stabilization diagrams, section section 8.2.5.
- MAC tab to handle MAC analysis, section section 8.2.7.
- OsDic tab for sdtroot 0sDic editing, section section 8.1.3.

8.2.1 Project

The Project tab allows handling the working environment.

This is a 2 column table allowing the definition of the following fields,

- ProjectWd A button defining the working directory used for the project. This is where models and curves will be saved. Clicking on the button will open a dialog for interactive definition.
- PlotWd A button defining the directory where image captures will be saved. If not specified the default will be ProjectWd/plots. Clicking on the button will open a dialog for interactive definition.
- PlotWord A button defining an existing Word report to which captured images can be inserted. Clicking on the button will open a dialog for interactive definition.
- PlotExcel This is not currently used, but could allow the specification of a different file for table export.
- LastWd The last chosen directory, used as a starting point for the next directory selection dialogs.
- root A short name that will be used to identify saved files in the project working directory, every saved file will start with this root.
- name A longer name version that is used for human description of the project name.
- Description An optionnal text that can provide further details on the current project.

8.2.2 FEMLink

The FEMLink tab allows handling model import from external codes.

This is a three column table allowing interactive definition of the fields described below. The second column allows activating specific options.

- Parent string name used to identify the model in further post-processing operations.
- Code allows selecting the code from which files will be imported. If code is unknown femlink will try guessing it from the file extension. This is a popup button providing a specified list of options. This is set by default to unknown.
- FileName Provides the base file for import. This file will be imported first and constitute the base model for the output. The second column button allows an interactive file selection through a dialog. The third column is an editable text cell.
- Unit allows defining a unit system with the model, that can be used for post treatments where output units are required. Some codes do not use it so that an external defintion is needed. This is set by default to auto.
- ImportType Provides model building options based on complementary files
- All imports model, results, ...
- Model just imports the model, material properties, boundary conditions, ...
- Result import result.
- UPCOM SE import element matrices in a type 3 superelement handled with upcom.
- BuildListGen allows generating a file list sequentially built, by successive file selection. These files then appear under the BuildListGen button and can be removed from the list
by clicking on \searrow. This is illustrated in figure 8.4. This option conditions the activation of BuildStepGen and BuildCb below.
- BuildStepGen : Should be updated with a capture of the window for step selection. Allows defining model Case resolution for a specific results step. By default femlink imports all data in the model. To recover specific boundary conditions relative to a specific computation step (if defined in the input and supported by the femlink function), one can either provide the step number or ask for last to let femlink find the last step defined in the model load case. The third column button allows selecting a step in an interactive way. By default, this option not is activated.
- BuildCb Allows defining further Build commands that may depend on the Original Code selected. The second column activates the option. The third column button provides a series of comma separated calls that will be applied to the model generated by femlink through the FEMLink function defined by the Code.
- PostImport is used to define steps performed after the base import.
- PostCb callback performed after import (for custom applications using FEMLink).
- FeplotFig Allows direct model loading into a feplot figure for visualization. The second column button activaftges the option. The third column button allows interactive selection a feplot figure, like for the Project tab. By default, this option is not activated.
- Save allows defining model saving strategy once imported. The second column button activates the option. The third column button allows defining a saving mode. This is a popup button proposing either :
* auto that will perform an automatic saving of the model based on the Mesh File name with a _import.mat extension
* Link to Project that will use the Project tab data to generate a file name. In this case the saving file name will be Project.root _ date _ Mesh File name _ import.mat
* Custom fname allows defining a user specific name in the second line button. The Save FName button can then be clicked on to provide a file name that will be used as verbatim.

By default the save option is activated and set to Link to Project.

- Import/Reset Import executes the import proecdure. The cross resets the tab to its original state.

8 GUI and reporting tools

Figure 8.4: The FEMLink tab, filled with input files

8.2.3 Mode

The Mode tab allows handling modal computations.

This is a three column tree-table allowing various choices to perform a wide range of modal computations, parametered by the fields below,

- Real modes This section and the associated subtree provides options on the computation of real modes
- Default Resets parameters of the real mode subtree to default values
- Resolution method The real mode solver (resolution method) choice (also used for reduced complex mode computations). Choices are packaged in a popup cell :
* Lanczos+It: set by default and recommended
* Lanczos: same as the previous without convergence check and correction, be used once parameters are calibrated
* IRA/Sorensent : quicker but less robust
- Target number of modes To provide a number of modes to compute, set to 25 by default.
* Minimum frequency To provide a minimum frequency of interest (not packaged yet).
* Maximum frequency To provide a maximum frequency of interest.
- Mass shift To provide a mass shift used for the factorization. This is set to 1 e 3 by default.
* Target maximum frequency To provide clues on the expected bandwidth (will influence the mass shift).
- Set EigOpt in model
- Complex modes This section and the associated subtree provides options on the computation of complex modes
- Resolution method The complex mode solver (resolution method) choice. Choices are packaged in a popup cell either :
* Red1 : complex modes on the real mode subspace (default)
* Red2 : complex modes on the real mode subspace enhanced with the imaginary part of the stiffness
* Full: direct without reduction
* Subspace 1st order The choice of the matrix types to be used for the subspace enhancement. The visc option is only available with SDT-visco licenses.
* Convergence check Not packaged yet.
- Tolerence
- Max iterations
- keepT
- lr
- Set CEigOpt in model
- Solve This section and the associated subtree provides options on the solver to use and potential post treatment or saving strategies.
- Solver options
* of act The choice of the matrix factorization solver, set by default to mklserv_utils -silent. This is recommended for very large models.
* Matrix assembly A text cell providing the matrix types to be assembled for the computation. This is either the keyword auto to let the solver decide the assembly strategy, or a series of matrix types (see sdtweb mattyp) to be assembled. By default this is set to auto, corresponding to 21 for real modes and 2314 for complex modes.
* Initial state This is activated by the second column. The third column provides a callback to initialize the system state. (not packaged yet).
* Post treatment Allows performing a callback after mode computation. The second column activates the option. The third column is a text cell providing a callback to perform. Not packaged yet.
- Mode set label A curve name used to store the deformation curve in the model stack. This is a text cell, set by default to modes.
- Save mode allows automatic curve saving once imported. The second column button activates the option. The third column button allows defining a saving mode. This is a popup button proposing either :
* auto that will perform an automatic saving of the curve based on the base model name with a _def.mat extension.
* Link to Project that will use the Project tab data to generate a file name. In this case the saving file name will be Project.root _ date _ model name _ Mode set label - def.mat
* Custom fname allows defining a user specific name in the second line button.
* Put a save filename The Save FName button can then be clicked on to provide a file name that will be used as verbatim.
- Real modes Executes the real mode computation
- Cpx modes Executes the complex mode computation
- Display Displays the model stack entry named after Mode set label.
- cf A button allowing an interactive defintion of the feplot figure that will hold the working model. Clicking on the button opens a dialog interface proposing the selection of an existing feplot figure or to open a new one. By default, this is set to the one specified in the Project tab.

8.2.4 TestBas : position test versus FEM

The TestBas tab is used to superpose two meshes. For examples see section 3.1.

8 GUI and reporting tools

This is a tree-table used for mesh superposition. The base mesh is called FEM and the mesh to be placed is called TEST even when you are superposing different things (TEST/TEST, FEM,FEM, ...). The NodePair section uses a strategy providing corresponding points, while the Tune section allows manual tuning of the relative position.

- SensDof selects the second mesh (stored in as a SensDof case entry in the first mesh) to be superposed on the first one.
- NodePairs is used to initialize the FemTest dock in side by side mode. In this mode, the left tile shows the feplot promodel, the center tile shows the reference mesh and the right tile the SensDof mesh.

The first step in this mode is to provide two list of paired nodes for the two meshes. To select the nodes, select a feplot figure and press the space bar: clicking on the mesh will select
nodes and add them to the list. Doing so in the two feplot figures provides two sets on paired nodes that can be used superpose with this information only (InitPosOnly) or with the help of an automatic algorithm after the initial positioning (ICP : Iterative Closest Points).

- Hidden To ease selecting only visible nodes on each mesh, this button removes hidden elements from the camera point on view. (Useful when selecting the paired node lists)
- nListFEM list of nodes selected in the main mesh feplot in center tile.
- nListTEST list of nodes in SensDOF mesh (right tile).
- InitPosOnly superpose the two meshes by minimization the Euclidian distance between the previously filled lists of paired nodes. This is helpful in presence of geometries with symmetries for which the ICP algorithm cannot converge (plate or cylinder for instance).
- ICP, using paired node lists, performs first the InitPosOnly action and then starts the optimization with the algorithm ICP which seeks to minimize the point-to-plane distance between each automatically paired nodes (closest nodes in the range of Radius).
- Radius search radius for node pairing (this is the same value as the Radius in MatchDo)
- Tune opens the FemTest dock inTune mode. The left timeshows the feplot promodel while the right feplot overlays the reference mesh (in blue) and the test mesh in its current position (in red)
- basEst : starting guess : if no InitPosOnly has been performed, the two meshes are automatically superposed using the gravity center and the three main directions of the point clouds formed by each node mesh. This is helpful to be closer to the good superposition before beginning to tune manually
- xaxis This is an informative display which gives the orientation of the x-axis test coordinate system in the base model. This is updated when rotating the second mesh
- yaxis orientation of test y -axis in FEM coordinates.
- scale scale applied between the two coordinate systems (for FEM in mm and test in meters use 0.001).
- tx Translation of test in the x-direction. The single arrows correspond to a low displacement step and the double arrow to a higher displacement step
- ty Translation of test in the y-direction
- tz Translation of test in the z-direction
* transStep This is the translation step used by the single arrow.
- rx Rotation of the second mesh around the x-axis. This rotation does not increase the angle which is always zero, but updates the orientation of the xaxis and the yaxis. The text is used for using input of large changes 90 (degrees) for example.
- ry Rotation of the second mesh around the y-axis
- rz Rotation of the second mesh around the z-axis
- BasisToFEM Modify the SensDof mesh by applying the transformation. The node coordinates are modified and all Tune fields set to identity.
- MatchDo Match is automatically performed after ICPPosOnly, ICP and BasisToFEM. This button can be used to redo the match with new options below.
- MatchSel Selection on the FEM before performing the Match. selface is classically used to force the match on the surface of the model instead of in the volume.
- Radius Search radius for node pairing (this is the same value as the Radius in NodePairs)
- View List of different views to evaluate the quality of the superposition
- MatchD displays the table showing the gap between each node of the second mesh and the matched surface. It also shows this information as a colormap on the test.
- ViewMatch Displays the test mesh over the FEM with the options listed below * DefLen Length of arrows if displayed
- Restore uses the .bas0 field to reset all the modifications since the last BasisToFem (performed after clicking on InitPosOnly, ICP and BasisToFEM) and put the second mesh at this previous location.
- Finalize Performs the SensMatch (i.e. the observation of the first mesh at sensors)
- SaveCb Callback executed with the Finalize action

8.2.5 StabD : stabilization diagram

The StabD tab is used create a stabilization diagram with the algorithm LSCF and provide tools to extract poles from it.

This is tab is used for LSCF handling (see section 2.3.2).

- Generate click on button to generate stabilization diagram.
- order : Maximum order of the model. The order of the model equals the number of poles used to fit the measured data. It is often necessary to select an order significantly higher than the expected number of physical poles in the band because the identification results in many numerical poles which compensate out-of-band modes and noise. Selecting at least ten times the number of expected poles often gives good results according to our experiment.
- norder : Minimum order to start the stabilization diagram (low model orders often show very few stabilized poles)
- fmin : Minimum frequency defining the beginning of the band of interest
- fmax : Maximum frequency defining the end of the band of interest
- band : Sequential iteration can be performed by band of the specified frequency width. The interest is that in presence of many modes, it is more efficient to perform several identifications by band rather than increasing the model order.
- Display : display result
- Ftol : tolerance for frequency convergence
- Dtol : tolerance for damping convergence
- AutomIdMain : fill IdMain set of poles from current data.
- DispMode
- CurPole : info based on click.
- CurLocal

8 GUI and reporting tools

8.2.6 Ident : pole tuning

The TabIdent tab is

The upper part is a list of alternate poles on the left and retained poles on the right. The arrows let you move poles and associated shapes from one list to the other.

The lower part as the main sections

- AddPoles see section 2.3
- Lscf LSCF algorithm see section 2.3.2
- IDopt section 2.4
- Fit
- data
- I/O
- Estimate section 2.5
- Optimize section 2.6
- Eup
- Analyze section 2.8
- Save
- SaveCb allows customization of saving strategy

8.2.7 MAC : Modal Assurance Criterion display

The MAC tab allows handling display of variants of Modal Assurance Criterion.

This is a three column tree-table allowing various choices to perform a wide range Modal Assurance Criterion variants, parametered by the fields below

- Data Options to properly define input data
- da provides indications on the number of sensors and the number of modes of
- inda
$-\mathrm{db}$
- indb
- sens
- UseMass
- Pair
- MacPlot
- Combine
- MacError
- MinMAC
- Df
- SensorSet
- MacCo
* MacCoN
- CoMac
- ShowDock3
- cfb
- selb
- cfa
- sela
- ci

8.3 Non java SDT Tabs (obsolete)

In the obsolete non java rendering mode (iicom(';projava0; curtabChannel')) the channel tab shown below is used to scan through the data.

Figure 8.5: Channel tabs of the iiplot interface.

Major commands you might want to know

- use the $\boldsymbol{-} \boldsymbol{+}$ to scan trough different transfer functions. Note that you can also use the + or - keys when a drawing axis is active.
- Go the Channel tab of the property figure and select more than one channel in the list. Note that you can also select channels from the command line using iicom('ch 15').

8.4 Handling data in the GUI format

8.4.1 Parameter/button structure

The initialization of GUI button/cells is performed using a but structure with fields .type, .name, ... Available types (string in but.type) are

- string A free input as a string or a number
- pop An input chosen in a predefined list
- push An assisted input triggered with a click on the button, or an action to execute
- check An on/off input, that can be equivalent to pop with two entries, but in a checkbox shape rather than a list

Each parameter or action is thus associated to a button of the types presented above. The parameter definition then depends on the type, as presented.

- For a string type, following fields are accessible and mandatory (if not stated otherwise)
- name The button name, explicited as family.param, that defines the parameter and its accessibility.
- format The data format, either $\%$ s for a real string or $\%$ g for numeric (double) values.
- value The parameter current value.
- enable (Optional) A logical, or either 'on' or 'off'. That allows deactivation of the parameter edition.
- ToolTip A string briefly defining the parameter.
- SetFcn A function to be called if dependencies have to be handled after editing the parameter. This can be left as an empty string (''). Field .name is necessary and field . parent may be needed to access the containing table.
- type A fixed string defining the parameter type, here string.
- ContextMenu a JPopupMenu that will be active in Java rendering of the cell. This field applies to all types.
- For a pop type, following fields are accessible and mandatory (if not stated otherwise)
- name The button name, as family. param, that defines the parameter and its accessibility.
- choices A cell array defining the choices available to the user. All choices are strings.
- choicesTag (Optional) A cell array defining the choices available to the user. All choices are strings. For localization matters, the language displayed in field choices may vary. This entry is thus a constant cell generally corresponding to the coding language. It is then possible to test the choice string parameter in the code with a fixed language independently from the display.
- value An integer providing the current choice.
- enable (Optional) A logical, or either 'on' or 'off'. That allows deactivation of the parameter edition.
- ToolTip A string briefly defining the parameter.
- SetFcn A function to be called if dependencies have to be handled after editing the parameter. This can be left as an empty string (' '). A name must be defined.
- type A fixed string defining the parameter type, here pop.
- For a push type, following fields are accessible and mandatory (if not stated otherwise)
- name The button name, given as family.param, that defines the parameter and its accessibility.
- value A string containing the parameter value, or the action name to be displayed.
- enable (Optional) A logical, or either 'on' or 'off'. That allows deactivation of the parameter edition.
- ToolTip A string briefly defining the parameter.
- callback A function to be executed when triggering the edition.
- SetFcn not normaly used. Since push cannot be edited, no dependencies can occur.
- type A fixed string defining the parameter type, here push.
- For a check type, following fields are accessible and mandatory (if not stated otherwise)
- name The button name, given as family.param, that defines the parameter and its accessibility.
- value An integer being 0 or 1 depending on the parameter state.
- enable (Optional) A logical, or either 'on' or 'off'. That allows deactivation of the parameter edition.
- ToolTip A string briefly defining the parameter.
- SetFcn A function to be called if dependencies have to be handled after editing the parameter. This can be left as an empty string (' ').
- type A fixed string defining the parameter type, here check.

8.4.2 DefBut : parameter/button defaults

To ease the development of GUIs, buttons are stored in DefBut structures. Initialization of the DefBut is usually done in using a file see section 8.4.3.

DefBut.MyField will usually group all buttons needed for a given part of the interface. Notable exceptions are

- .Tab used to store information associated with floating tabs. In particular . Tab. (field).jProp stores properties for java initialization.
.InitFcn=\{'fun', 'command'\}. . SetFcn=\{'fun', 'command'\}.
- . j used to store volatile java objects that should not be reinitialized too often.
- .fmt is a cell array containing the OsDic style sheet (text keys in first column and values in second).

The set of parameters is divided into families and defined by a keyword and a type. Each family can be easily displayed in separated tabs of the GUI, and constitute relevant sets of parameters regarding human readability.

For generalization purposes, execution actions follow the same definition as parameters, and are linked to a family, keyword and type.

The families and keywords are left free as long as they are compatible with the definition of MATLAB struct fields. The parameter type allows defining which kind of action the user is provided for edition. This is realized in the display by adapted buttons.

Each parameter can be defined as a structure, nested in a structure containing the parameter families as fields. The generation of such structure is handled by sdt_locale so that the definition consists in the generation of a csv file in ASCII format.

8.4.3 Reference button file in CSV format

The input csv file layout allows defining a parameter, or button with a header line starting with h ; defining its type and the fields to be provided, and an instance line starting with n ; providing the fields value. Fields that are invariant for the whole class can be defined in the header line. Comments are possible with lines starting with c ;

The following example illustrates the definition of each type of buttons

```
c; Sample definition of each class
c; sample string buttons, with dependencies handled by function my_ui
h;type=string;name;format;value;ToolTip;SetFcn=',
n;Family.SampleStrS;%s;"st1";"a string input button with no dependencies"
n;Family.SampleStrG;%g;1;"a numeric input button with no dependencies"
c; sample pop button
h;type=pop;name;value;choices;choicesTag;ToolTip;SetFcn=',
```

```
n;Familiy.SamplePop;1;{'choice1','choice2'};{'c1','c2'};"2 choice menu with default choice1"
c; sample push button
h;type=push;name;callback;value;ToolTip;
n;Family.SamplePush;my_fun('exec');"Push this button";"push button triggering my_fun"
c; sample check button
h;type=check;name;value;enable;ToolTip;SetFcn=''
n;Famimty.SampleCheck;0;"on";"check button, set 0, with conditional enabling and no dependencies"
```

The csv file should be named after the GUI handling function my_ui, a standard language identifier and extension .csv. Here for example my_ui_en-us.cvs for english-US or my_ui_fr-fr.cvs for french.

Generation of the parameter structure classically named DefBut can then be obtained by

```
DefBut=sdt_locale('defCSV','my_ui_en-us.csv');
```

At this state of definition, DefBut is a standard MATLAB struct corresponding to the documented fields. To transform it into a java object linked to the GUI figure of handle GuiGF, command cinguj ObjEditJ must be used

```
[r1j,r1]=cinguj('objEditJ',DefBut.Family,GuiGF);
```

The first output is r 1 j , which is an EditT Java object. This object will be used for dependencies handling and can be edited using sdcedit. The second output r1 contains copies of each parameters in a struct with fields the parameter names. The parameters are in their Java form that is to say editable buttons of class CinCell.

8.4.4 Data storage and access

Initializing the GUI figure

After generating the Java objects containing the parameters, one can store them in the GUI figure for further access. The data are stored in the GUI figure that is initialized by cinguj ObjFigInit.

```
GuiGF=cinguj('objFigInit',...
```

struct('tag','my_ui','noMenu',1,'name','my_ui'));

The handle should be stored UI.gf field of persistent variable UI in my_ui. One can also recover this pointer at any time by using GuiGF=findall(0, 'tag', 'my_ui'). It is thus critical to ensure the unicity of the GUI figure tag.

Efficient data storage in a figure is handled in SDT through the use of vhandle uo object. Access to this pointer is possible at any time using

```
uo = v_handle('uo',GuiGF);
```

It is recommended to package the access to the java data pointer in a command uo=my_ui('vh').

Handling the data java pointer

Automatic storage of the data pointer is performed at display. The pointer is handled as a MATLAB struct with fields corresponding to the parameter families. The objects stored are then either the EditT containing the full parameter family or a struct of CinCell, respectively corresponding to the first and second outputs of the ObjEditJ command.

A very low level way of storing invisible data is to edit the no object directly by doing

```
r1=get(GuiGF,'UserData');
r1. (family)=r1j;
set(GuiGF,'UserData', [], 'UserData',r1);
```

where family is the parameter family, r1j the EditT object generated by ObjEditJ and GuiGF the handle to the GUI figure. It is however recommended to let it be stored automatically at display.

Recovering data from java objects

To recover data in a RunOpt MATLAB struct format from EditT or CinCell objects, command fe_deffleanEntry must be used.

- For an EditT object the output of CleanEntry will be a structure with as many fields as parameters stored in the EditT assigned with their value converted to the proper format provided. When an EditT is displayed in a tab, obj. Peer should be the numeric handle to the matlab figure so that clean_get_uf can retrieve tab data.
- For a CinCell object, the output of CleanEntry will be the underlying structure of the button, as documented. Each CinCell object can/should have a EditT parent obtained with obj.get('parent').
- For pop objects CinCell or struct, the value is taken to be the choicesTag string if it exists or the choices string otherwise.
fe_deffleanEntry no longer returns the full structure for a button, so that the command r1=cinguj('ObjToStruct', ob) ; should be used.

To get the current data (.data\{.val\} of pop button, one uses
r1=feval(sdtroot('@obGet'), ob,'data');

It is recommended to build a call my_ui('GetTab') that will rethrow the RunOpt structure corresponding to a Tab from the GUI figure.

```
% get Java pointer and desired tab field
out=my_ui('vh'); tab=varargin{carg}; carg=carg+1;
% convert to a RunOpt structure
out=fe_def('cleanentry',out.(tab));
```

Direct access to a parameter can also be usefully packaged in my_ui('GetTab.Param'), with

```
% get Java pointer and desired tab field
out=my_ui('vh'); tab=varargin{carg}; carg=carg+1;
% parse tab to see if subfields are desired
tab=textscan(tab,'%s','Delimiter','.'); tab=tab{1};
% convert to a RunOpt structure
out=fe_def('cleanentry',out.(tab{1}));
% output only the desired subfield if it was specified
if length(tab)>1; tab(1)=[];
    while ~isempty(tab)&&~isempty(out); out=out.(tab{1}); st(1)=[]; end
end
```


Displaying data in the GUI figure

To display the parameters in the GUI figure, one has to generate a structure that will be interpreted as a JTable that will be included to the JTabbedPane object, that is to say the tabbed area of the GUI figure. This structure contains the fields

- name The name of the object that will be display. It is recommended to use the family name of the parameter family displayed.
- table A cell array containing the buttons in the CinCell. The JTable will have the same size as the table provided.
- ToolTip A string allowing to display some explanations on the tab.
- ParentPanel The handle to the GUI figure.

Generation of the table field can be done automatically with a call to sdt_dialogs uatable

```
ua.table=sdt_dialogs('uatable-end0', 'info',name,r1j);
```

with name the field relative to ua.name and r 1 j the EditT object (with .Peer defined). This will yield a tab with three columns, the first one being the parameter names, the second one the editable buttons as CinCell objects and the third one being the parameter ToolTip.

More complex layouts can be obtained by generating the table manually, exploiting the second output of the ObjEditJ command to fill in table positions. This allows generating the table by directly positioning the CinCell objects called by their names.

By adding a field level to ua, and calling cingujTabbedPaneAddTree a tree will be displayed instead of a table in the GUI figure. Field level has two columns and as many lines as the table. The first column provides the level of the table line in the tree as an integer. The second column indicates whether the line has to be expanded is set to 1 , or not if set to 0 .

Once ua is filled display is performed using cinguj TabbedPaneAdd
[ua, ga]=cinguj ('TabbedPaneAdd', 'my_ui', ua);
Command TabbedPaneAdd outputs ua that contains the displayed objects and their information. This can be accessed any time using field tStack of the GUI figure userdata, uf=clean_get_uf (GuiGF), and ga that is the handle to the figure axis containing the tab.

8.4.5 Tweaking display

Display can be tuned to the user will by editing the displayed objects. All display information is accessed through a call to clean_get_uf, using GuiGF the GUI figure handle as input argument.
uf = clean_get_uf (GuiGF);
$u f$ is a user data structure with fields

- ParentFigure The GUI figure handle. This should be equal to GuiGF.
- p The handle to the uipannel displaying the data.
- tStack A cell array of 7 columns and as many lines as tabs generated. Column 1 contains the tab names and column 7 contains the tab userdata object.
- tab the index in tStack corresponding to the tab currently displayed.
- java set to 1. Ensures that the userdata handles java objects for cingui.
- JPeer A pointer to the Java object containing the display, either a JTabbedPane if only tabs are displayed, or a JScrollPane if only a tree is displayed, or a JSplitPane if the display contains several Panes.
- pcontainer The handle to the hgjavacomponent that contains the display.
- toolbarRefresh (Optional) A function handle that can be called at refresh to perform toolbar dependencies (e.g. uicontrol enabling as function of the GUI state.
- tag The GUI figure tag.
- Explo If an exploration tree is present, the JScrollPane java object containing the tree.
- EJPeer If an exploration tree is present, JSplitPane java object containing the global display.

The seventh column of uf.tStack contains information relative to each of the tab objects of the JTabbedPane. It is commonly named ub and contains the following fields

- name The tab name, that should be corresponding to the parameter family.
- table A cell array containing the objects of each cell of the JTable
- ToolTip A string providing a tool tip if the mouse cursor if over the tab tip.
- ParentPannel The handle to the GUI figure.
- type A string providing the table objects type, commonly CinCell.
- JTable The JTable java object.
- JPeer pointer to the JScrollPane typically used for display.
- NeedClose value set to force use of a close button on the tab.

Each tabbed pane can be tweaked regarding the displayed column dimensions.
In the case of a GUI displaying user input objects the table itself does not need to be interactive. (This is different from a results table that will be analyzed by the user). It is thus recommended to deactivate the table selection interactivity using

```
ub.JTable.setRowSelectionAllowed(false);
```

ub. JTable.setColumnSelectionAllowed(false);
ub. JTable.setCellSelectionEnabled(false);

Columns width can be set using a line array with as many columns as columns in the table and providing in pixels the minimal width a column should have to cingujtableColWidth. The value can be set to -1 if the user wishes to let free the width of a column.

```
% for 3 columns table, last one left free
ColWidth=[150 300 -1];
cinguj('tableColWidth',ub.JTable,ColWidth);
```

Row height can be set (same for all lines) by calling the setRowHeight method of JTable. The value is in pixel.

```
% getting the intial row height
r1 = ub.JTable.getRowHeight
% setting a new row height to 22px
ub.JTable.setRowHeight(22)
```


8.4.6 Defining an exploration tree

To ease up navigation between tabs, one can use an exploration tree in the GUI figure. Tabs can then be opened by clicking in the tree that should list all available tabs (or parameter families).

The exploration tree is commonly named PTree, and has to be defined in the .csv file. It should contain push type buttons with callbacks triggering the opening of the desired tab.

```
c; sample PTree defintion
h;type=push;name;callback;value;ToolTip;
n;PTree.Family;my_ui('InitFamily');"Family";"Open corresponding family tab"
```

To properly handle an exploration tree, one has to initialize it when the GuiGF figure is opened, that is to say after the cinguj ObjFigInit call. The initialization should be handled by a call of the type mu_ui('InitPTree').

Low level access to the exploration tree is handled by a subfunction of cinguj named treeF. The subfunction handle can be accessed using treeF=cinguj ('@treeF'); . It is recommended to store the variable treeF containing the subfunction handle in a persistent variable of the GUI function my_ui.

```
% option initialization
RunOpt=struct('NoInit',0,'lastname','');
% for all fields of DefBut.PTree, sort the buttons
r1=fieldnames(DefBut.PTree); table=cell(length(r1),2);
for j1=1:length(r1);table(j1,:)={DefBut.PTree.(r1{j1}) [1 1]}; end
```

```
% generate clean table and corresponding levels
level=vertcat(table{:,2}); table=table(:,1);
% generate the tree ua
ua=struct('table',{table},'level',level,'name','my_ui',...
    'ParentPanel',GuiGF,'ToolTip','The GUI exploration tree','NeedClose',2);
% display the tree in the GUI figure
[tree,gf]=cinguj('tabbedpaneAddTree','my_ui',ua);
% tweak the tree to enable selected tab field highlighting
tree.getSelectionModel.setSelectionMode( ...
    javax.swing.tree.TreeSelectionModel.SINGLE_TREE_SELECTION)
% refresh
    cingui('resize',GuiGF);
```

The exploration tree thus defined highlights its node corresponding to the currently displayed tab. This tasks is performed automatically by cinguj when clicking on a button of a tree.

To access the tree object and its highlighted field, one can do

```
[RunOpt.lastname,tree]=treeF('explolastname',GuiGF);
```

To switch the highlighted field to a new name newname and get the tree node object, one can do

```
node=treeF('scrollToNameSelect',tree,newname);
```


8.4.7 Finding CinCell buttons in the GUI with getCell

To quickly find CinCell buttons in an interface, subfunction getCell of sdcedit can be used.

```
getCell=sdcedit('@getCell');
[obj,tab,name]=getCell(r1j,'propi','vali', ...,st0pt)
```

- rj1 is a GuiGF, or an UIVH, or a java/EdiT, or figure Tag, or vector of handles or 0 for all MATLAB figures.
- propi, vali are pairs of properties (fields of the buttons) and their desired values.
- stOpt is an option that allows a constant output in cell format if set to 'cell'.

Actions to check or get specific fields of a cell array of CinCell buttons are also available using commands

```
% r1=getCell('getfield st',obj); % outputs field st of obj (CinCell) or {obj}
% r1=getCell('isfield st',obj); % outputs logical checking presence of field st in obj
```


8.5 Interactivity

8.5.1 Handling tabs

To initialize tabs, it is recommended to use a call of type my_ui('InitTab'), that handles the tab generation using the standard button definitions.

To get information on the existing tabs, one can access to uf, with clean_get_uf.
It is possible to switch the display to an existing tab using cinguicurtabTab command, with Tab the tab name to switch to.

To close a tab, one should use a call to subfunction tabChage of cinguj. Handle to the subfunction can be accessed with cinguj('@tabChange'). One must then provide the close command, the GUI figure tag, and the tab name to close.

- One can use _cur instead of a tab name to close the current tab.
- One can use command closeAll instead of close to close all tabs at once.

```
% close current tab:
feval(cinguj('@tabChange'),'close','my_ui','_cur')
% close tab 'tab'
feval(cinguj('@tabChange'),'close','my_ui',tab)
% close all tabs
feval(cinguj('@tabChange'),'closeAll','my_ui')
```


8.5.2 Handling dependencies

Dependencies define the set of actions performed consequently to the edition of a given parameter. They should be handled by a call of type my_ui('set'). Classically dependencies are handled through the SetFcn definition relative to each parameter. In the .csv definition, most SetFcn fields should be set to my_ui('set').

For the exclusive case of push buttons, dependencies or actions have to be passed to the callback field.

The set function call must be able to be called from script in the same manner than from CinCell callbacks. Calls of the form my_ui('set',struct('Tab.Par',val,...)); should then edit the parameters and execute dependencies.

A typical entry to the set command can then be

```
if carg<=nargin; % from script mode
    r1=varargin{carg}; carg=carg+1; r2=fieldnames(r1);
    if length(r2)>1 % allow multiple fields input at once
        for j1=1:length(r2); % loop to assign each field
        my_ui('Set',struct(r2{j1},r1.(r2{j1})));
        end
        return % get out after having assigned each parameter
        else % one parameter provided, carry on
        obj=r1j.(CAM).(r2{1}); val=r1.(r2{1}); gf=GuiGF;
        uo=struct('FromScript',1); % build the data
    end
```

else \% callback from CinCell
[RO, uo, CAM, Cam]=clean_get_uf('getuo', ['SetStruct' CAM]);
obj=uo.ob; val=fieldnames(RO); gf=GuiGF; val=RO.(val\{1\});
end
\% robustness check regarding object existence
if isempty(obj)
r1=fieldnames(r1); r1=r1\{1\};
sdtw('_nb','Property \%s does not exist in \%s, skipped',r1,CAM); return
else; CAM=sdcedit(obj,'_get','name'); Cam=lower(CAM);
end

A robust recuperation of the active CinCell is performed through a clean_get_ufgetuo call. Recuperation of the parameter name can be performed with a sdcedit call. Note that obj should be an EditT java object or a CinCell.

To edit or get parameter values it is recommended to use sdcedit that implements robust parameter assignations.

To get values, if the object is an EditT, one should use 4 argument calls of the type r1 = sdcedit (obj,'field','_get', 'prop'), with field the parameter name, and prop the property to get, which is one of the fields defined in the button. A shortcut command to get the property value can be used used r1=sdcedit(obj,'_get','field').

If the object is a CinCell, one can use direct get commands with r1=obj.get('prop');

In the case of pop buttons, the current value can be expressed either as the index in the choices list (or ChoicesTag if defined) or the value in the choices list directly. To ensure the type of data accessed, one can use st1 = sdcedit(r1j, 'field', ' _popvalue', []) to get the value in the choice

To assign properties, if the object is an EditT, one can use 4 argument calls of the type r1 = sdcedit (obj,'field',' 'prop', value), with field the parameter name, and prop the property to set to value. A shortcut command to set the property value to val for both EditT and CinCell objects can be used obj=sdcedit(obj,'field', val).

If the object is a CinCell, one can use direct set commands with r1=obj. set('prop', val);

8.5.3 Dialogs

Interaction through dialog windows is possible, and standard sdt_dialogs calls are accessible. Specific dialogs using java objects with interactivity is also possible, but the dialog figure should always be the same and be closed after the dialog to control the number of opened figures.

File input dialog

The most classical dialog is to ask for a file or directory input. If the input file is a parameter in a push button, the user input is handled using a callback with sdt_dialogsEEdit, and the field SetFcn to handle the dependencies.

One can thus define such interactivity with a csv definition like

```
h;type=push;name;callback;value;ToolTip;SetFcn=my_ui('Set')
n;Familiy.FileInput;sdt_dialogs('EEdit_File');"Click to input file";"Specify a file"
```

Call EEdit of sdt_dialogs has several variants,

- EEdit_File to ask for an existing file.
- EEdit_Dir to ask for a directory.
- EEdit_FPut to ask for a file that can possibly be created.
- EEdit_prompt to ask for an input defined through a set of parameters defined in a PropertyUnitTypeCell format.

```
sdt_dialogs('EEdit_prompt m_elastic 2');
sdt_dialogs('EEdit_prompt -eval"my_fun(''proptypecell'');"',indRequired,val);
```


Selection in a tree dialog

When performing design of experiment analyses with saved results, one can use a tree representation of the parameter grid using fe_defRangeTree with a standard SDT parameter structure.

It is possible to implement callbacks in the tree to trigger actions for a specific point, such as loading the selected data set or displaying the selected results.

Using a standard SDT RangeGrid structure here named par, one can display in a dialog figure named my_uidlg the RangeTree that will call a specific loading function with

```
gf=cinguj('ObjFigInit',struct('Tag','my_uidlg,'name',my_uidlg','noMenu',1));
ua=fe_def(['rangetree-outgf-minName-root"DOE"-push-getUA"my_uidlg"'...
    '-callback"sprintf(''my_ui(''''load'''',,%%i);'',RO.valLink(j1));"'],par);
cinguj('tabbedpaneAddTree',ua.ParentPanel,ua,'my_uidlg');
```

In the fe_defRangeTree call,

- -outgf Activated the display mode of RangeTree that will generate the java tree object.
- -minName Asks to generate node names to display only with the sub name corresponding to the node level.
- -root' 'st' ' Allows specifying a tab root name in the my_uidlg figure.
- -push Activates the generation of push buttons with callbacks for the tree nodes. By default the callback displays in the command window the index in the Range.val list corresponding to the clicked point.
- -getUA' 'tag' ' Asks to output the tree object for customized external display. tag allows specifying to which parent figure the tree will be displayed.
- -callback' ' $f(n$ ' ' Allows defining a customized callback. The $f c n$ input must in fact be a string that will be evaluated to generate the callback call itself, so that the user can exploit the index in the Range.val list corresponding to the clicked node. Since the displayed nodes are not in the same order than the initial list, fe_defRangeTree uses the internal variable RO.valLink to make the conversion between the displayed node order and the initial val list. The callbacks are generated in a loop in the node order, indexed by $j 1$. In the example, the callback to be generated is my_ui('load',i1) with input i1 being the index of the clicked node in the initial val list.

For such behavior to be relevant, one expects the Range variable par to be accessible at any time by the function my_ui. Saving par in the GUI file arborescence or making it a persistent variable of my_ui are to easy solutions to this issue.

This mechanism can be used to handle a project results file arborescence. In this case the DefBut variable should contain the Range structure that will have to be incremented on the fly when saving a file.

Check list dialog

sdt_dialogs provides a check list functionality handling based on keywords. The associated button is valued as the list of keywords separated with commas. Its edition is then based on a list to check.

The following code demonstrates the use of such button, through a complete definition

```
% Use of buttons associated to a check list
% Define a tab with simple DefBut
r1=['Post(","#push#"define post list")']; % DefBut
% interpet DefBut
R1=cingui('paramedit',r1);
% Specifc check list definition
R1.Post.callback={'sdt_dialogs','EEdit_CheckList'}; % callback
% associate a keyword list
R1.Post.list=['FcA(#3#"Fc stats unfiltered")'...
    ' Fc20(#3#"Fc stats filtered 20Hz")' ...
    'UpA(#3#"Uplifts unfiltered")' ...
    'SubPto(#3#pantograph displacements")'];
R1.Post.SetFcn='';
% Now display tab with functional button
gf=cinguj('tabbedpanefig','demo_checkList');
R1=cinguj('ObjEditJ',R1,gf);
ua=struct('name','demo_checkList','ParentPanel',gf,'table',...
    {sdt_dialogs('uatable-end0','info','Post',R1)});
cinguj('tabbedpaneadd',gf,ua,ua.name,[]);
```


Element reference

bar1 386
beam1, beam1t 387
celas,cbush 390
dktp 394
fsc 396
hexa8, penta6, tetra4, and other 3D volumes 399
integrules 400
mass1,mass2 409
m_elastic 410
m_heat 414
m_hyper 416
m_piezo 418
p_beam 420
p_heat 424
p_shell 428
p_solid 433
p_spring 436
p_super 438
p_piezo 440
quad4, quadb, mitc4 444
$q 4 p, q 8 p, t 3 p, t 6 p$ and other 2 D volumes 447
rigid 448
tria3, tria6 451

Element functions supported by OpenFEM are listed below. The rule is to have element families (2D and 3D) with families of formulations selected through element properties and implemented for all standard shapes

3-D vOLUME ELEMENT SHAPES	
hexa8	8-node 24-DOF brick hexa20 hexa27 penta6 penta15 tetra4 tetra10

	2-D volum
q4p	4-node quadrangle
q5p	5 -node quadrangle
q8p	8-node quadrangle
q9a	9 -node quadrangle
t3p	3 -node 6-DOF triangle
t6p	6-node 12-DOF triangle

Supported problem formulations are listed in section 6.1, in particular one considers 2D and 3D elasticity, acoustics, hyperelasticity, fluid/structure coupling, piezo-electric volumes, ...

Other elements, non generic elements, are listed below

dktp	
mitc4 4	
quadb	3-D PLATE/SHELL ELEMENTS 4uad9 4-node 20-DOF discrete Kirchoff plate quadrilateral 4-node 20/24-DOF plate/shell
quadb	
tria3	
tria6	display only) quadrilateral 8-node 40/48-DOF plate/shell 3-node 15/18-DOF thin plate/shell element 6-node 36DOF thin plate/shell element

OTHER ELEMENTS	
bar1	standard 2-node 6-DOF bar
beam1	standard 2-node 12-DOF Bernoulli-Euler beam
beam1t	pretensionned 2-node 12-DOF Bernoulli-Euler beam
beam3	(display only)
celas	scalar springs and penalized rigid links
mass1	concentrated mass/inertia element
mass2	concentrated mass/inertia element with offset
rigid	handling of linearized rigid links
UTILITY ELEMENTS	
fe_super	element function for general superelement support
integrules	FEM integration rule support
fsc	fluid/structure coupling capabilities

Purpose

Element function for a 6 DOF traction-compression bar element.

Description

The bar1 element corresponds to the standard linear interpolation for axial traction-compression. The element DOFs are the standard translations at the two end nodes (DOFs . 01 to .03).

In a model description matrix, element property rows for bar1 elements follow the standard format (see section 7.16).

```
[n1 n2 MatID ProID EltID]
```

Isotropic elastic materials are the only supported (see m_elastic).
For supported element properties see p_beam. Currently, bar1 only uses the element area A with the format

```
[ProID Type 0 0 0 A]
```


See also

m_elastic, p_beam, fe_mk, feplot

beam1, beam1t

Purpose

Element functions for a 12 DOF beam element. beam1t is a 2 node beam with pretension available for non-linear cable statics and dynamics.

Description

beam1

In a model description matrix, element property rows for beam1 elements follow the format

```
[n1 n2 MatID ProID nR 0 O EltID p1 p2 x1 y1 z1 x2 y2 z2]
```

where
n1,n2 node numbers of the nodes connected
MatID material property identification number
ProID element section property identification number
nr 00 number of node not in the beam direction defining bending plane 1 in this case $\{v\}$ is the vector going from n 1 to nr . If nr is undefined it is assumed to be located at position $\left[\begin{array}{lll}1.5 & 1.5 & 1.5\end{array}\right]$.
$\mathrm{vx} \mathrm{vy} \mathrm{vz} \quad$ alternate method for defining the bending plane 1 by giving the components of a vector in the plane but not collinear to the beam axis. If vy and vz are zero, vx must be negative or not an integer. MAP=beam1t ('map', model) returns a normal vector MAP giving the vector used for bending plane 1. This can be used to check your model.
p1,p2 pin flags. These give a list of DOFs to be released (condensed before assembly). For example, 456 will release all rotation degrees of freedom. Note that the DOFS are defined in the local element coordinate system.
$x 1, \ldots$ optional components in global coordinate system of offset vector at node 1 (default is no offset)
$x 2, \ldots$ optional components of offset vector at node 2

Isotropic elastic materials are the only supported (see m_elastic). p_beam describes the section property format and associated formulations.

Failure to define orientations is a typical error with beam models. In the following example, the definition of bending plane 1 using a vector is illustrated.

```
cf=feplot(femesh('test2bay'));
% Map is in very variable direction due to undefined nr
% This is only ok for sections invariant by rotation
beam1t('map',cf.mdl);fecom('view3');
% Now define generator for bending plane 1
i1=feutil('findelt eltname beam1',cf.mdl); % element row index
cf.mdl.Elt(i1,5:7)=ones(size(i1))*[-.1 .9 0]; % vx vy vz
beam1t('map',cf.mdl);fecom('view2');
```

beam1 adds secondary inertia effects which may be problematic for extremely short beams and beam1t may then be more suitable.

beam1t

For the bending part, this element solves

$$
\begin{equation*}
\rho A\left(\ddot{w}-\Omega^{2} w\right)+\frac{\partial^{2}}{\partial x^{2}}\left(E I_{y} \frac{\partial^{2} w}{\partial x^{2}}\right)-\frac{\partial}{\partial x}\left(T \frac{\partial w}{\partial x}\right)-f=0 \tag{9.1}
\end{equation*}
$$

with boundary conditions in transverse displacement

$$
\begin{equation*}
w=\text { given or } F=T \frac{\partial w}{\partial x}-E I_{y} \frac{\partial^{3} w}{\partial x^{3}} \tag{9.2}
\end{equation*}
$$

and rotation

$$
\begin{equation*}
\frac{\partial w}{\partial x}=\text { given or } M=E I_{y} \frac{\partial^{2} w}{\partial x^{2}} \tag{9.3}
\end{equation*}
$$

This element has an internal state stored in a InfoAtNode structure where each column of Case. GroupInfo\{7\}.data gives the local basis, element length and tension [bas (:);L;ten]. Initial tension can be defined using a .MAP field in the element property.

This is a simple example showing how to impose a pre-tension :

```
model=femesh('TestBeam1 divide 10');
model=fe_case(model,'FixDof','clamp', [1;2;.04;.02;.01;.05]);
model.Elt=feutil('SetGroup 1 name beam1t',model);
d1=fe_eig(model,[5 10]);
model=feutil('setpro 112',model,'MAP', ...
```

```
    struct('dir',{{'1.5e6'}},'lab',{{'ten'}}));
d2=fe_eig(model,[5 10]);
figure(1);plot([d2.data./d1.data-1]);
xlabel('Mode index');ylabel('Frequency shift');
```

Strains in a non-linear Bernoulli Euler section are given by

$$
\begin{equation*}
\epsilon_{11}=\left(\frac{\partial u}{\partial x}+\frac{1}{2}\left({\frac{\partial w_{0}}{2}}_{\partial x}\right)\right)-z \frac{\partial^{2} w_{0}}{\partial x^{2}} \tag{9.4}
\end{equation*}
$$

See also

p_beam, m_elastic, fe_mk feplot

celas,cbush

Purpose

element function for scalar springs and penalized rigid links

Description

celas
In an model description matrix a group of celas elements starts with a header row [Inf abs ('celas') $0 . .$.$] followed by element property rows following the format$
[n1 n2 DofID1 DofID2 ProID EltID Kv Mv Cv Bv]
with
$\mathrm{n} 1, \mathrm{n} 2$ node numbers of the nodes connected. Grounded springs are obtained by setting n1 or n2 to 0 .
Dof ID Identification of selected DOFs.
For rigid links, the first node defines the rigid body motion of the other extremity slave node. Motion between the slave node and the second node is then penalized. Dof ID (positive) defines which DOFs of the slave node are connected by the constraint. Thus [1 $\left.2 \begin{array}{llllll}123 & 0 & 0 & 1 e 14\end{array}\right]$ will only impose the penalization of node translations 2 by motion of node 1, while [1 $2123456000 c 1 e 14]$ will also penalize the difference in rotations.

For scalar springs, Dof ID1 (negative) defines which DOFs of node 1 are connected to which of node 2. DofID2 can be used to specify different DOFs on the 2 nodes. For example [1 $2-123231001 e 14]$ connects DOFs 1.01 to 2.02 , etc. Use of negative Dof ID1 will only activate additional DOF if explicitly given.

ProID Optional property identification number (see format below)
Kv Optional stiffness value used as a weighting associated with the constraint. If Kv is zero (or not given), the default value in the element property declaration is used. If this is still zero, Kv is set to 1 e 14 .
Bv Optional stiffness hysteretic damping value : stiffness given by $K_{v}+i B_{v}$ (rather than $K v(1+i \eta)$ when using p_spring.
p_spring properties for celas elements take the form [ProID type KvDefault m c eta S]

By default a celas element will activate all 6 mechanical DOF in the model. If the celas element is not linked to other elements using these DOF (e.g. 3D elements do not use DOF 4-6), there will be a risk of null stiffness occurrence at assembly. To alleviate this problem use negative Dof ID1 that will only activate additional DOF in the specified list. One can also fix the spurious DOF as a boundary condition.

Below is the example of a 2D beam on elastic supports.

```
model=femesh('Testbeam1 divide 10');
model=fe_case(model,'FixDof','2D', [.01;.02;.04]);
model.Elt(end+1,1:6)=[Inf abs('celas')]; % spring supports
model.Elt(end+[1:2],1:7)=[1 0 -13 0 0 0 1e5;2 0 -13 0 0 0 1e5];
def=fe_eig(model,[5 10 0]); feplot(model,def);
```

When using local displacement bases (non zero DID), the stiffness is defined in the local basis and transformed to global coordinates.

cbush

The element property row is defined by

```
[n1 n2 MatId ProId EltId x1 x2 x3 EDID S OCID S1 S2 S3]
[n1 n2 MatId ProId EltId NodeIdRef 0 0 EDID S OCID S1 S2 S3]
```

The orientation of the spring (basis x_{e}, y_{e}, z_{e}) can be specified by

- EDID>0 specifies a coordinate system for element orientation. This behaviour is pre-emptive.
- For coincident $n 1, n 2$, orientation vector given as $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ can be used to specify x_{e} (this differs from figure and is not compatible with NASTRAN). To specify y_{e} for coincident nodes, you must use classically defined EDID, otherwise set the EDID to -1 .
- For distinct n1, n2, default default orientations are in the global framework. Local directions require a non-null EDID to be activated. If one wants to use local directions defined in the element entry, on can use EDID $=-1$. Then, element x_{e} is along $n_{2}-n_{1}$, other directions are defined as follows
- giving orientation vector v as $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ specifies y_{e} in the plane given by x_{e} and v. Note x 1 should not be an integer if x 2 and x 3 are zero to distinguish from the NodeIdRef case.
- NodeIdRef, 0,0 specifies the use of a node number to create $v=n_{r e f}-n_{1}$.

The spring/damper is located at a position interpolated between n 1 and n 2 using S , such that $x_{i}=S n_{1}+(1-S) n_{2}$. The midpoint is used by default, that-is-to-say S is taken at 0.5 if left to zero. To use other locations, specify a non-zero OCID and an offset $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$.

It is possible to set n2 to 0 to define a grounded cbush.

See also
p_spring, rigid

dktp

Purpose

2-D 9-DOF Discrete Kirchhoff triangle

Description

In a model description matrix, element property rows for dktp elements follow the standard format

```
[n1 n2 n3 MatID ProID EltID Theta]
```

giving the node identification numbers ni, material MatID, property ProID. Other optional information is EltID the element identifier, Theta the angle between material x axis and element x axis (currently unused)

The elements support isotropic materials declared with a material entry described in m_elastic Element property declarations follow the format described in p_shell.

The dktp element uses the et*dktp routines.
There are three vertices nodes for this triangular Kirchhoff plate element and the normal deflection $W(x, y)$ is cubic along each edge.

We start with a 6 -node triangular element with a total D.O.F $=21$:

- five degrees of freedom at corner nodes :

$$
\begin{equation*}
W(x, y), \frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \theta_{x}, \theta_{y} \quad(\text { deflection } W \text { and rotations } \theta) \tag{9.5}
\end{equation*}
$$

- two degrees of freedom θ_{x} and θ_{y} at mid side nodes.

Then, we impose no transverse shear deformation $\gamma_{x z}=0$ and $\gamma_{y z}=0$ at selected nodes to reduce the total $D O F=21-6 * 2=9$:

- three degrees of freedom at each of the vertices of the triangle.

$$
\begin{equation*}
W(x, y), \theta_{x}=\left(\frac{\partial W}{\partial x}\right), \theta_{y}=\left(\frac{\partial W}{\partial y}\right) \tag{9.6}
\end{equation*}
$$

The coordinates of the reference element's vertices are $\hat{S}_{1}(0 ., 0),. \hat{S}_{2}(1 ., 0$.$) and \hat{S}_{3}(0 ., 1$.$) .$
Surfaces are integrated using a 3 point rule $\omega_{k}=\frac{1}{3}$ and b_{k} mid side node.

See also

fe_mat, m_elastic, p_shell, fe_mk, feplot

Purpose

Fluid structure/coupling with non-linear follower pressure support.

Description

Elasto-acoustic coupling is used to model structures containing a compressible, non-weighing fluid, with or without a free surface.

The FE formulation for this type of problem can be written as [44]

$$
s^{2}\left[\begin{array}{cc}
M & 0 \tag{9.7}\\
C^{T} & K_{p}
\end{array}\right]\left\{\begin{array}{l}
q \\
p
\end{array}\right\}+\left[\begin{array}{cc}
K(s) & -C \\
0 & F
\end{array}\right]\left\{\begin{array}{l}
q \\
p
\end{array}\right\}=\left\{\begin{array}{c}
F^{e x t} \\
0
\end{array}\right\}
$$

with q the displacements of the structure, p the pressure variations in the fluid and $F^{e x t}$ the external load applied to the structure, where

$$
\begin{gather*}
\int_{\Omega_{S}} \sigma_{i j}(u) \epsilon_{i j}(\delta u) d x \Rightarrow \delta q^{T} K q \\
\int_{\Omega_{S}} \rho_{S} u . \delta u d x \Rightarrow \delta q^{T} M q \\
\frac{1}{\rho_{F}} \int_{\Omega_{F}} \nabla p \nabla \delta p d x \Rightarrow \delta p^{T} F p \tag{9.8}\\
\frac{1}{\rho_{F} c^{2}} \int_{\Omega_{F}} p \delta p d x \Rightarrow \delta p^{T} K_{p} p \\
\int_{\Sigma} p \delta u . n d x \Rightarrow \delta q^{T} C p
\end{gather*}
$$

To assemble fluid/structure coupling matrix you should declare a set of surface elements (any topology) with property p_solid('dbval 1 fsc '). The C matrix (solid forces induced by pressure field) is assembled with the stiffness (matrix type 1), while the C^{T} matrix (fluid pressure due to normal velocity of solid) is assembled with the mass (matrix type 2).

Some formulations, consider a surface impedance proportional to the pressure. This matrix can be computed by defining a group of surface elements with an acoustic material (see m_elastic 2) and a standard surface integration rule (p_solid('dbval $1 \mathrm{~d} 2-3$ ')). This results in a mass given by

$$
\begin{equation*}
\delta p^{T} K_{p} p=\frac{1}{\rho_{F} c^{2}} \int_{\Omega_{F}} \delta p p d x \tag{9.9}
\end{equation*}
$$

Follower force

One uses the identity

$$
\begin{equation*}
n d S=\frac{\partial \underline{x}}{\partial r} \wedge \frac{\partial \underline{x}}{\partial s} d r d s \tag{9.10}
\end{equation*}
$$

where (r, s) designate local coordinates of the face (assumed such that the normal is outgoing). Work of the pressure is thus:

$$
\begin{equation*}
\delta W_{p}=-\int_{r, s} \Pi\left(\frac{\partial \underline{x}}{\partial r} \wedge \frac{\partial \underline{x}}{\partial s}\right) \cdot \delta \underline{v} d r d s \tag{9.11}
\end{equation*}
$$

On thus must add the non-linear stiffness term:

$$
\begin{equation*}
-d \delta W_{p}=\int_{r, s} \Pi\left(\frac{\partial d \underline{u}}{\partial r} \wedge \frac{\partial \underline{x}}{\partial s}+\frac{\partial \underline{x}}{\partial r} \wedge \frac{\partial d \underline{u}}{\partial s}\right) \cdot \delta \underline{v} d r d s \tag{9.12}
\end{equation*}
$$

Using $\frac{\partial x}{\partial r}=\left\{x_{1, r} x_{2, r} x_{3, r}\right\}^{T}$ (idem for s), and also

$$
[A x r]=\left(\begin{array}{ccc}
0 & -x_{, r 3} & x_{, r 2} \tag{9.13}\\
x_{, r 3} & 0 & -x_{, r 1} \\
-x_{, r 2} & x_{, r 1} & 0
\end{array}\right), \quad[A x s]=\left(\begin{array}{ccc}
0 & -x_{, s 3} & x_{, s 2} \\
x_{, s 3} & 0 & -x_{, s 1} \\
-x_{, s 2} & x_{, s 1} & 0
\end{array}\right)
$$

this results in

$$
\begin{align*}
& \left(\frac{\partial d x}{\partial r} \wedge \frac{\partial x}{\partial s}+\frac{\partial x}{\partial r} \wedge \frac{\partial d \underline{x}}{\partial s}\right) \cdot \delta \underline{v}= \tag{9.14}\\
& \quad\left\{\delta q_{i k}\right\}^{T}\left\{N_{k}\right\}\left(A x r_{i j}\left\{N_{l, s}\right\}^{T}-A x s_{i j}\left\{N_{l, r}\right\}^{T}\right)\left\{d q_{j}\right\} .
\end{align*}
$$

Tests : fsc3 testsimple and fsc3 test.
In the RivlinCube test, the pressure on each free face is given by
\qquad

$$
\begin{array}{llll}
\Pi_{1}=-\frac{1+\lambda_{1}}{\left(1+\lambda_{2}\right)\left(1+\lambda_{3}\right)} \Sigma_{11} & \text { on } & \text { face } & \left(x_{1}=l_{1}\right) \\
\Pi_{2}=-\frac{1+\lambda_{2}}{\left(1+\lambda_{1}\right)\left(1+\lambda_{3}\right)} \Sigma_{22} & \text { on } & \text { face } & \left(x_{2}=l_{2}\right) \tag{9.15}\\
\Pi_{3}=-\frac{1+\lambda_{3}}{\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)} \Sigma_{33} & \text { on } & \text { face } & \left(x_{3}=l_{3}\right) .
\end{array}
$$

Non-conform

SDT supports non conforming element for fluid/structure coupling terms corresponding to the structure are computed using the classical elements of the SDT, and terms corresponding to the fluid are computed using the fluid elements (see flui4).

The coupling term C is computed using fluid/structure coupling elements $£$ sc elements).
Only one integration point on each element (the center of gravity) is used to evaluate C.
When structural and fluid meshes do not match at boundaries, pairing of elements needs to be done. The pairing procedure can be described for each element. For each fluid element F_{i}, one takes the center of gravity $G_{f, i}$ (see figure), and searches the solid element S_{i} which is in front of the center of gravity, in the direction of the normal to the fluid element F_{i}. The projection of $G_{f, i}$ on the solid element, P_{i}, belongs to S_{i}, and one computes the reference coordinate r and s of P_{i} in S_{i} (if S_{i} is a quad4, $-1<r<1$ and $-1<s<1$). Thus one knows the weights that have to be associated to each node of S_{i}. The coupling term will associate the DOFs of F_{i} to the DOFs of S_{i}, with the corresponding weights.

Fluid

Solid

See also

> flui4, m_elastic

hexa8, penta6, tetra4, and other 3D volumes

Purpose

Topology holders for 3D volume elements.

Description

The hexa8 hexa20 hexa27, penta6 penta15 tetra4 and tetra10 elements are standard topology reference for 3D volume FEM problems.

In a model description matrix, element property rows for hexa8 and hexa20 elements follow the standard format with no element property used. The generic format for an element containing i nodes is [n1 ... ni MatID ProId EltId]. For example, the hexa8 format is [n1 n2 n3 n4 n5 n6 n7 n8 MatID ProId EltId].

These elements only define topologies, the nature of the problem to be solved should be specified using a property entry, see section 6.1 for supported problems and p_solid, p_heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex coordinates of the reference element can be found using an integrules command containing the name of the element such as r1=integrules('q4p');r1.xi.

Backward compatibility note : if no element property entry is defined, or with a p_solid entry with the integration rule set to zero, the element defaults to the historical 3D mechanic elements described in section 7.19.2.

See also

fe_mat, m_elastic, fe_mk, feplot

integrules

Purpose

Command function for FEM integration rule support.

Description

This function groups integration rule manipulation utilities used by various elements. In terms of notations, a field u is interpolated within an element by shapes functions N_{i} and values of the field at nodes u_{i}

$$
\begin{equation*}
u(x, y, z)=\sum_{i} N_{i}(r, s, t) u_{i} \tag{9.16}
\end{equation*}
$$

The relation between physical coordinates x, y, z and element coordinates r, s, t is itself described by a mapping associated with shape functions. When computing an integral, one selects a number of Gauss points r_{g}, s_{g}, t_{g} and associated weights w_{g} leading to an approximation of the integral as

$$
\begin{equation*}
\int_{V} f(x, y, z) d V \approx \sum_{g} f\left(r_{g}, s_{g}, t_{g}\right) J w_{g} \tag{9.17}
\end{equation*}
$$

where J is the determinant of the Jacobian of the transform from reference to physical coordinates. The field .wjdet is used to denote the local value of the product $J w_{g}$. The following calls generate the reference EltConst data structure, see section 7.15.4.

Gauss

This command supports the definition of Gauss points and associated weights. It is called with integrules('Gauss Topology', RuleNumber). Supported topologies are 1d (line), q2d (2D quadrangle), t2d (2 D triangle), t3d (3D tetrahedron), p3d (3D prism), h3d (3D hexahedron). integrules('Gauss q2d') will list available 2D quadrangle rules.

- Integ -3 is always the default rule for the order of the element.
- -2 a rule at nodes.
- -1 the rule at center.

```
    [ -3] [ 0x1 double] 'element dependent default'
    [ -2] [ 0x1 double] 'node'
    [ -1] [ 1x4 double] 'center'
    [102] [ 4x4 double] 'gefdyn 2x2'
```

2]	[4 x 4 double]	'standard 2×2 '
[109]	[9x4 double]	'Q4WT'
[103]	[9x4 double]	'gefdyn 3x3'
[104]	[16x4 double]	'gefdyn 4x4'
[9]	[9x4 double]	'9 point'
[3]	[9x4 double]	'standard 3x3'
[2]	[4×4 double]	'standard 2×2 '
[13]	[13x4 double]	2 x 2 and 3×3

bar1,beam1, beam3

For integration rule selection, these elements use the 1D rules which list you can find using integrules('Gauss1d').

Geometric orientation convention for segment is $\bullet(1) \rightarrow(2)$
One can show the edge using elt_name edge (e.g. beaml edge).
t3p, t6p
Vertex coordinates of the reference element can be found using r1=integrules('tria3');r1.xi.

Figure 9.1: t3p reference element.

Vertex coordinates of the reference element can be found using r1=integrules('tria6');r1.xi.
\qquad

Figure 9.2: t6p reference element.

For integration rule selection, these elements use the 2D triangle rules which list you can find using integrules('Gausst2d').

Geometric orientation convention for triangle is to number anti-clockwise in the two-dimensional case (in the three-dimensional case, there is no orientation).

- edge [1]: $(1) \rightarrow(2)$ (nodes $4,5, \ldots$ if there are supplementary nodes) • edge [2]: (2) $\rightarrow(3)(\ldots) \bullet$ edge [3]: $(3) \rightarrow(1)(\ldots)$

One can show the edges or faces using elt_name edge or elt_name face (e.g. t3p edge).
q4p, q5p, q8p
Vertex coordinates of the reference element can be found using r1=integrules('quad4') ;r1.xi.

Figure 9.3: $q 4 p$ reference element.

Figure 9.4: q5p reference element.

Vertex coordinates of the reference element can be found using the r1=integrules('quadb');r1.xi.

Figure 9.5: q8p reference element.

For integration rule selection, these elements use the 2D quadrangle rules which list you can find using integrules('Gaussq2d').
Geometric orientation convention for quadrilateral is to number anti-clockwise (same remark as for the triangle)
\bullet edge [1]: $(1) \rightarrow(2)$ (nodes $5,6, \ldots) \bullet$ edge [2]: $(2) \rightarrow(3)(\ldots) \bullet$ edge [3]: $(3) \rightarrow(4) \bullet$ edge [4]: (4) \rightarrow (1)

One can show the edges or faces using elt_name edge or elt_name face (e.g. q4p edge).

tetra4,tetra10

3D tetrahedron geometries with linear and quadratic shape functions. Vertex coordinates of the reference element can be found using r1=integrules('tetra4'); r1.xi (or command 'tetra10').

Figure 9.6: tetra4 reference element.

Figure 9.7: tetra10 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find using integrules ('Gausst3d').
Geometric orientation convention for tetrahedron is to have trihedral $(\overrightarrow{12}, \overrightarrow{13}, \overrightarrow{14})$ direct $(\overrightarrow{i j}$ designates the vector from point i to point j).

- edge [1]: $(1) \rightarrow(2)$ (nodes $5, \ldots) \bullet$ edge [2]: $(2) \rightarrow(3)(\ldots) \bullet$ edge $[3]:(3) \rightarrow(1)$
- edge [4]: $(1) \rightarrow(4) \bullet$ edge [5]: $(2) \rightarrow(4) \bullet$ edge [6]: $(3) \rightarrow(4)$ (nodes \ldots, p)

All faces, seen from the exterior, are described anti-clockwise:

- face [1]: (1) (3) (2) (nodes p+1, ...) • face [2]: (1) (4) (3) (...)
- face [3]: (1) (2) (4) • face [4]: (2) (3) (4)

One can show the edges or faces using elt_name edge or elt_name face (e.g. tetra10 face).

penta6, penta15

3D prism geometries with linear and quadratic shape functions. Vertex coordinates of the reference element can be found using r1=integrules('penta6'); r1.xi (or command 'penta15').

Figure 9.8: penta6 reference element.

Figure 9.9: penta15 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find using integrules('Gaussp3d').
Geometric orientation convention for pentahedron is to have trihedral $(\overrightarrow{12}, \overrightarrow{13}, \overrightarrow{1} \overrightarrow{4})$ direct
\bullet edge [1]: $(1) \rightarrow(2)$ (nodes $7, \ldots) \bullet$ edge $[2]:(2) \rightarrow(3)(\ldots) \bullet$ edge [3]: $(3) \rightarrow(1)$

- edge [4]: $(1) \rightarrow(4) \bullet$ edge [5]: $(2) \rightarrow(5) \bullet$ edge $[6]:(3) \rightarrow(6)$
- edge [7]: $(4) \rightarrow(5) \bullet$ edge [8]: $(5) \rightarrow(6) \bullet$ edge $[9]:(6) \rightarrow(4)$ (nodes $\ldots, \mathrm{p})$
\qquad
All faces, seen from the exterior, are described anti-clockwise.
- face [1] : (1) (3) (2) (nodes p+1, ...) • face [2] : (1) (4) (6) (3) • face [3] : (1) (2) (5) (4)
- face [4] : (4) (5) (6) • face [5] : (2) (3) (5) (6)

One can show the edges or faces using elt_name edge or elt_name face (e.g. penta15 face).
hexa8, hexa20, hexa21, hexa27
3D brick geometries, using linear hexa8, and quadratic shape functions. Vertex coordinates of the reference element can be found using r1=integrules('hexa8');r1.xi (or command 'hexa20', 'hexa27').

Figure 9.10: hexa8 reference topology.

Figure 9.11: hexa20 reference topology.

For integration rule selection, these elements use the 3D hexahedron rules which list you can find using integrules('Gaussh3d').
Geometric orientation convention for hexahedron is to have trihedral $(\overrightarrow{12}, \overrightarrow{14}, \overrightarrow{15})$ direct
\bullet edge [1]: $(1) \rightarrow(2)($ nodes $9, \ldots) \bullet$ edge $[2]:(2) \rightarrow(3)(\ldots) \bullet$ edge $[3]:(3) \rightarrow(4)$

- edge [4]: $(4) \rightarrow(1) \bullet$ edge [5]: $(1) \rightarrow(5) \bullet$ edge [6]: $(2) \rightarrow(6)$
\bullet edge [7]: $(3) \rightarrow(7) \bullet$ edge [8]: $(4) \rightarrow(8) \bullet$ edge [9]: $(5) \rightarrow(6)$
\bullet edge [10]: $(6) \rightarrow(7) \bullet$ edge [11]: $(7) \rightarrow(8) \bullet$ edge [12]: $(8) \rightarrow(5)$ (nodes..., p)
All faces, seen from the exterior, are described anti-clockwise.
- face $[1]:(1)(4)(3)(2)($ nodes $\mathrm{p}+1, \ldots) \bullet$ face $[2]:(1)(5)(8)(4)$
- face [3] : (1) (2) (6) (5) • face [4] : (5) (6) (7) (8)
- face [5] : (2) (3) (7) (6) • face [6] : (3) (4) (8) (7)

One can show the edges or faces using elt_name edge or elt_name face (e.g. hexa8 face).

BuildNDN

The commands are extremely low level utilities to fill the .NDN field for a given set of nodes. The calling format is of mk('BuildNDN', type, rule, nodeE) where type is an int32 that specifies the rule to be used : 2 for $2 \mathrm{D}, 3$ for $3 \mathrm{D}, 31$ for 3 D with xyz sorting of NDN columns, 23 for surface in a 3D model, 13 for a 3D line. A negative value can be used to switch to the .m file implementation in integrules.

The 23 rule generates a transformation with the first axis along N, r, the second axis orthogonal in the plane tangent to N, r, N, s and the third axis locally normal to the element surface. If a local material orientation is provided in columns 5 to 7 of nodeE then the material x axis is defined by projection on the surface. One recalls that columns of nodeE are field based on the InfoAtNode field and the first three labels should be 'v1x', 'v1y', 'v1z'.

With the 32 rule if a local material orientation is provided in columns 5 to 7 for x and 8 to 10 for y the spatial derivatives of the shape functions are given in this local frame.

The rule structure is described earlier in this section and node has three columns that give the positions in the nodes of the current element. The rule. NDN and rule.jdet fields are modified. They must have the correct size before the call is made or severe crashes can be experienced.

If a rule.bas field is defined $(9 \times N w)$, each column is filled to contain the local basis at the integration point for 23 and 13 types. If a rule. J field with $(4 \times N w)$, each column is filled to contain the jacobian at the integration point for 23.

```
model=femesh('testhexa8'); nodeE=model.Node(:,5:7);
opt=integrules('hexa8', -1);
nodeE(:,5:10)=0; nodeE(:,7)=1; nodeE(:,8)=1; % xe=z and ye=y
integrules('buildndn', 32, opt,nodeE)
model=femesh('testquad4'); nodeE=model.Node(:, 5:7);
opt=integrules('q4p', -1) ; opt.bas=zeros(9,opt.Nw); opt.J=zeros(4,opt.Nw);
nodeE(:,5:10)=0; nodeE(:,5:6)=1; % xe= along [1,1,0]
```

integrules

```
integrules('buildndn',23,opt,nodeE)
```

See also
elem0

mass1,mass2

Purpose

Concentrated mass elements.

Description

mass1 places a diagonal concentrated mass and inertia at one node.
In a model description matrix, element property rows for mass1 elements follow the format

```
[NodeID mxx myy mzz ixx iyy izz EltID]
```

where the concentrated nodal mass associated to the DOFs .01 to .06 of the indicated node is given by

```
diag([mxx myy mzz ixx iyy izz])
```

Note feutil GetDof eliminates DOFs where the inertia is zero. You should thus use a small but non zero mass to force the use of all six DOFs.

For mass2 elements, the element property rows follow the format

[n1 M I11 I21 I22 I31 I32 I33 EltID CID X1 X2 X3 MatId ProId]

which, for no offset, corresponds to matrices given by

$$
\left[\right]=\left[\begin{array}{cccccc}
\int \rho d V & & & & \text { symmetric } & \tag{9.18}\\
& M & & & \\
& & M & & \\
& & & \int \rho\left(x^{2}+y^{2}\right) d V & & \\
& & & -I_{21} & I_{22} & \\
& & & -I_{31} & -I_{32} & I_{33}
\end{array}\right]
$$

Note that local coordinates CID are not currently supported by mass2 elements.

See also

femesh feplot

m_elastic

Purpose

Material function for elastic solids and fluids.

Syntax

```
mat= m_elastic('default')
mat= m_elastic('database name')
mat= m_elastic('database -therm name')
pl = m_elastic('dbval MatId name');
pl = m_elastic('dbval -unit TM MatId name');
pl = m_elastic('dbval -punit TM MatId name');
pl = m_elastic('dbval -therm MatId name');
```


Description

This help starts by describing the main commands of m_elastic: Database and Dbval. Materials formats supported by m_elastic are then described.

Database, Dbval] [-unit TY] [,MatiD]] Name
A material property function is expected to store a number of standard materials. See section 7.3 for material property interface.
m_elastic('database Steel') returns a the data structure describing steel.
m_elastic('dbval 100 Steel') only returns the property row.

```
% List of materials in data base
m_elastic info
% examples of row building and conversion
pl=m_elastic([100 fe_mat('m_elastic','SI',1) 210e9 . 3 7800], ...
    'dbval }101\mathrm{ aluminum', ...
    'dbval 200 lamina . 27 3e9 .4 1200 0 790e9 .3 1780 0');
pl=fe_mat('convert SITM',pl);
pl=m_elastic(pl,'dbval -unit TM 102 steel')
```

Command option -unit asks the output to be converted in the desired unit system. Command option -punit tells the function that the provided data is in a desired unit system (and generates the corresponding type). Command option -therm asks to keep thermal data (linear expansion coefficients and reference temperature) if existing.

You can generate orthotropic shell properties using the Dbval 100 lamina VolFrac Ef nu_f rho_f G_f E_m nu_m Rho_m G_m command which gives fiber and matrix characteristics as illustrated above (the volume fraction is that of fiber).

The default material is steel.
To orient fully anisotropic materials, you can use the following command

```
% Behavior of a material grain assumed orthotropic
C11=168.4e9; C12=121.4e9; C44=75.4e9; % GPa
C=[C11 C12 C12 0 0 0;C12 C11 C12 0 0 0;C12 C12 C11 0 0 0;
    0 0 0 C44 0 0; 0 0 0 0 C44 0; 0 0 0 0 0 C44];
pl=[m_elastic('formulaPlAniso 1',C,basis('bunge',[5.175 1.3071 4.2012]));
        m_elastic('formulaPlAniso 2',C,basis('bunge',[2.9208 1.7377 1.3921]))];
```

Subtypes m_elastic supports the following material subtypes

1 : standard isotropic
Standard isotropic materials, see section 6.1.1 and section 6.1.2, are described by a row of the form

```
[MatID typ E nu rho G Eta Alpha T0]
```

with typ an identifier generated with the fe_mat('m_elastic', 'SI',1) command, E (Young's modulus), ν (Poisson's ratio), ρ (density), G (shear modulus, set to $G=E / 2(1+\nu)$ if equal to zero). η loss factor for hysteretic damping modeling. α thermal expansion coefficient. T_{0} reference temperature. $G=E / 2(1+\nu)$

By default E and G are interdependent through $G=E / 2(1+\nu)$. One can thus define either E and G to use this property. If E or G are set to zero they are replaced on the fly by their theoretical expression. Beware that modifying only E or G, either using feutilsetMat or by hand, will not apply modification to the other coefficient. In case where both coefficients are defined, in thus has to modify both values accordingly.

2 : acoustic fluid
Acoustic fluid, see section 6.1.3, are described by a row of the form
[MatId typ rho C eta R]
with typ an identifier generated with the fe_mat('m_elastic', 'SI', 2) command, ρ (density), C (velocity) and η (loss factor). The bulk modulus is then given by $K=\rho C^{2}$.

For walls with an impedance (see p_solid 3 form 8), the real part of the impedance, which corresponds to a viscous damping on the wall is given by $Z=\rho C R$. If an imaginary part is to be present, one will use $Z=\rho C R(1+i \eta)$. In an acoustic tube the absorbtion factor is given by $\alpha=\frac{4 R}{\left((R+1)^{2}+(R \eta)^{2}\right)}$.

3 : 3-D anisotropic solid
3-D Anisotropic solid, see section 6.1.1, are described by a row of the form
[MatId typ Gij rho eta A1 A2 A3 A4 A5 A6 T0]
with typ an identifier generated with the fe_mat('m_elastic', 'SI',3) command, rho (density), eta (loss factor) and Gij a row containing

```
[G11 G12 G22 G13 G23 G33 G14 G24 G34 G44 ...
G15 G25 G35 G45 G55 G16 G26 G36 G46 G56 G66]
```

Note that shear is ordered $g_{y} z, g_{z} x, g_{x} y$ which may not be the convention of other software.
SDT supports material handling through

- material bases defined for each element xx
- orientation maps used for material handling are described in section 7.13. It is then expected that the six components $\mathrm{v} 1 \mathrm{x}, \mathrm{v} 1 \mathrm{y}, \mathrm{v} 1 \mathrm{z}, \mathrm{v} 2 \mathrm{x}, \mathrm{v} 2 \mathrm{y}, \mathrm{v} 2 \mathrm{z}$ are stored sequentially in the interpolation table.It is then usual to store the MAP in the stack entry info, EltOrient.

4 : 2-D anisotropic solid
2-D Anisotropic solid, see section 6.1.2, are described by a row of the form
[MatId typ E11 E12 E22 E13 E23 E33 rho eta a1 a2 a3 T0]
with typ an identifier generated with the femat('m_elastic', 'SI', 4) command, rho (density), eta (loss factor) and Eij elastic constants and ai anisotropic thermal expansion coefficients.

5 : shell orthotropic material
shell orthotropic material, see section 6.1 .4 corresponding to NASTRAN MAT8, are described by a row of the form

[MatId typ E1 E2 nu12 G12 G1z G2z Rho A1 A2 T0 Xt Xc Yt Yc S Eta... F12 STRN]

with typ an identifier generated with the fe_mat('m_elastic', 'SI',5) command, rho (density), ... See m_elastic Dbvallamina for building.

6 : Orthotropic material
3-D orthotropic material, see section 6.1.1, are described by a set of engineering constants, in a row of the form

```
[MatId typ E1 E2 E3 Nu23 Nu31 Nu12 G23 G31 G12 rho a1 a2 a3 T0 eta]
```

with typ an identifier generated with the fe_mat('m_elastic', 'SI', 6) command, Ei (Young modulus in each direction), $\nu i j$ (Poisson ratio), Gij (shear modulus), rho (density), ai (anisotropic thermal expansion coefficient), T_{0} (reference temperature), and eta (loss factor). Care must be taken when using these conventions, in particular, it must be noticed that

$$
\begin{equation*}
\nu_{j i}=\frac{E_{j}}{E_{i}} \nu_{i j} \tag{9.19}
\end{equation*}
$$

See also

Section 4.5.1, section 7.3 , fe_mat, p_shel1

m_heat

Purpose

Material function for heat problem elements.

Syntax

```
mat= m_heat('default')
mat= m_heat('database name')
pl = m_heat('dbval MatId name');
pl = m_heat('dbval -unit TM MatId name');
pl = m_heat('dbval -punit TM MatId name');
```


Description

This help starts by describing the main commands of m_heat : Database and Dbval. Materials formats supported by m_heat are then described.

```
Database,Dbval] [-unit TY] [,MatiD]] Name
```

A material property function is expected to store a number of standard materials. See section 7.3 for material property interface.
m_heat('DataBase Steel') returns a the data structure describing steel.
m_heat('DBVal 100 Steel') only returns the property row.

```
% List of materials in data base
m_heat info
% examples of row building and conversion
pl=m_heat('DBVal 5 steel');
pl=m_heat(pl,...
            'dbval }101\mathrm{ aluminum', ...
            'dbval 200 steel');
pl=fe_mat('convert SITM',pl);
pl=m_heat(pl,'dbval -unit TM 102 steel')
```

Subtypes m_heat supports the following material subtype

```
1 : Heat equation material
        [MatId fe_mat('m_heat','SI',2) k rho C Hf]
```

- k conductivity
- rho mass density
- C heat capacity
- Hf heat exchange coefficient

See also
Section 4.5.1, section 7.3, fe_mat, p_heat

m_hyper

Purpose

Material function for hyperelastic solids.

Syntax

```
mat= m_hyper('default')
mat= m_hyper('database name')
pl = m_hyper('dbval MatId name');
pl = m_hyper('dbval -unit TM MatId name');
pl = m_hyper('dbval -punit TM MatId name');
```


Description

Function based on m_elastic function adapted for hyperelastic material. Only subtype 1 is currently used:

1 : Nominal hyperelastic material

Nominal hyperelastic materials are described by a row of the form
[MatID typ rho Wtype C_1 C_2 K]
with typ an identifier generated with the fe_mat('m_hyper', 'SI', 1) command, rho (density), W type (value for Energy choice), C_{1}, C_{2}, K (energy coefficients).
Possible values for Wtype are:

$$
\begin{array}{ll}
0: & W=C_{1}\left(J_{1}-3\right)+C_{2}\left(J_{2}-3\right)+K\left(J_{3}-1\right)^{2} \\
1: & W=C_{1}\left(J_{1}-3\right)+C_{2}\left(J_{2}-3\right)+K\left(J_{3}-1\right)-\left(C_{1}+2 C_{2}+K\right) \ln \left(J_{3}\right)
\end{array}
$$

Other energy functions can be added by editing the hyper.c Enpassiv function.
In RivlinCube test, m_hyper is called in this form:

```
model.pl=m_hyper('dbval 100 Ref'); % this is where the material is defined
```

the hyperelastic material called "Ref" is described in the database of m_hyper.m file:
out.pl=[MatId fe_mat('type','m_hyper','SI',1) 1e-06 0 . 3 . 2 . 3];
out.name='Ref';
out.type='m_hyper';
out.unit='SI';

Here is an example to set your material property for a given structure model:
model.pl = [MatID fe_mat('m_hyper','SI',1) typ rho Wtype C_1 C_2 K]; model.Elt(2:end,length(feval(ElemF,'node')+1)) = MatID;

m_piezo

Purpose

Material function for piezoelectric solids

Syntax

```
mat= m_piezo('database name')
pl = m_piezo('dbval MatId -elas 12 Name');
```

See section 6.1.5 for tutorial calls. Accepted commands are
[Database, Dbval] [-unit TY] [,MatiD]] Name
m_piezo contains a number of defaults obtained with the database and dbval commands which respectively return a structure or an element property row. You can select a particular entry of the database with using a name matching the database entries.

Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric properties and contains a reference ElasMatId to an elastic material used for the elastic properties of the material (see m_elastic for input formats).

```
m_piezo('info') % List of materials in data base
% database piezo and elastic properties
pl=m_piezo('dbval 3-elas 12 Sample_ULB')
```

Theoretical details on piezoelectric materials are given in chapter 6.1.5. The m_piezo Const and BuildConstit commands support integration constant building for piezo electric volumes integrated in the standard volume elements. Element properties are given by p_solid entries, while materials formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option structure with fields

- .name of the form ProIdval+patchName. For example ProId1+SmartM.MFC-P1.2814.
- MatId value for the initial MatId.
m_piezo('patch') lists currently implemented geometries. In particular
- Noliac.Material.Geometry is used for circular patches by Noliac. Fields for the geometry are
- OD outer diameter (mm).
- TH Thickness (mm). To specify a milimiter fraction replace the . by and _. For example THO_7 is used for $\mathrm{TH}=0.7 \mathrm{~mm}$.
- ID inner diameter (mm) (optional for piezo rings).
- SmartM.Material.Geometry is used for circular patches by Noliac. The geometry is coded assuming a rectangle in mm . Thus 2814 corresponds to an $28 \times 14 \mathrm{~mm}$ active rectangle.

The piezoelectric constants can be declared using the following sub-types
1 : Simplified 3D piezoelectric properties
[ProId Type ElasMatId d31 d32 d33 eps1T eps2T eps3T EDType]
These simplified piezoelectric properties (1.4) can be used for PVDF, but also for PZT if shear mode actuation/sensing is not considered $\left(d_{24}=d_{15}=0\right)$. For EDType $==0$ on assumes d is given. For EDType $==1, e$ is given. Note that the values of ε^{T} (permitivity at zero stress) should be given (and not $\left.\varepsilon^{S}\right)$.

2 : General 3D piezo
[ProId Type ElasMatId d_1:18 epsT_1:9]
d_1:18 are the 18 constants of the [d] matrix (see section 6.1.5), and epsT_1:9 are the 9 constants of the $\left[\varepsilon^{T}\right]$ matrix. One reminds that strains are stored in order $x x, y y, z z, y z, z x, y x$.

3 : General 3D piezo, e matrix
[ProId Type ElasMatId e_1:18 epsT_1:9]
e_1:18 are the 18 constants of the $[d]$ matrix, and epsT_1:9 are the 9 constants of the $\left[\varepsilon^{T}\right]$ matrix in the constitutive law (see section 6.1.5).

See also

p_piezo.

p_beam

Purpose

Element property function for beams

Syntax

```
il = p_beam('default')
il = p_beam('database','name')
il = p_beam('dbval ProId','name');
il = p_beam('dbval -unit TM ProId name');
il = p_beam('dbval -punit TM ProId name');
il2= p_beam('ConvertTo1',il)
```


Description

This help starts by describing the main commands : p_beam Database and Dbval. Supported p_beam subtypes and their formats are then described.

```
Database,Dbval, ...
```

p_beam contains a number of defaults obtained with p_beam('database') or p_beam('dbval MatId'). You can select a particular entry of the database with using a name matching the database entries. You can also automatically compute the properties of standard beams

```
circle r beam with full circular section of radius r.
rectangle b h beam with full rectangular section of width b and height h. See
beam1 for orientation (the default reference node is 1.5, 1.5, 1.5 so
that orientation MUST be defined for non-symmetric sections).
Type r1 r2\ldots other predefined sections of subtype 3 are listed using
p_beam('info').
```

For example, you will obtain the section property row with ProId 100 associated with a circular cross section of 0.05 m or a rectangular $0.05 \times 0.01 \mathrm{~m}$ cross section using

```
% ProId 100, rectangle 0.05 m by 0.01 m
pro = p_beam('database 100 rectangle .05 .01')
% ProId 101 circle radius . }0
il = p_beam(pro.il,'dbval 101 circle .05')
p_beam('info')
% ProId 103 tube external radius . }05\mathrm{ internal . 04
```

```
    il = p_beam(il,'dbval -unit SI 103 tube .05 .04')
    % Transform to subtype 1
    il2=p_beam('ConvertTo1',il)
    il(end+1,1:6)=[104 fe_mat('p_beam','SI',1) 0 0 0 1e-5];
    il = fe_mat('convert SITM',il);
% Generate a property in TM, providing data in SI
    il = p_beam(il,'dbval -unit TM 105 rectangle .05 .01')
% Generate a property in TM providing data in TM
    il = p_beam(il,'dbval -punit TM 105 rectangle 50 10')
```

Show3D, MAP ...

format description and subtypes

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row (see section 7.4). Element property functions such as p_beam support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section 4.5.1. For a programmers reference on formats used to describe element properties see section 7.4 .

1 : standard
[ProID type J I1 I2 A k1 k2 lump NSM]

ProID	element property identification number.
type	identifier obtained with fe mat ('p_beam', 'SI', 1).
J	torsional stiffness parameter (often different from polar moment of inertia I1+I2).
I1	moment of inertia for bending plane 1 defined by a third node nr or the vector $v x$ vy $v z$ (defined in the beam1 element). For a case with a beam along x and plane 1 the $x y$ plane I1 is equal to $I z=\int_{S} y^{2} d s$.
I2	moment of inertia for bending plane 2 (containing the beam and orthogonal to plane 1.
A	section area.
k1	(optional) shear factor for motion in plane 1 (when not 0 , a Timoshenko beam element is used). The effective area of shear is given by $k_{1} A$.
k2	(optional) shear factor for direction 2.
lump	(optional) request for lumped mass model. 1 for inclusion of inertia terms. 2 for simple half mass at node.
NSM	(optional) non structural mass (density per unit length).

bar1 elements only use the section area. All other parameters are ignored.
beam1 elements use all parameters. Without correction factors ($k 1 k 2$ not given or set to 0), the beam1 element is the standard Bernoulli-Euler 12 DOF element based on linear interpolations for traction and torsion and cubic interpolations for flexion (see Ref. [37] for example). When non zero shear factors are given, the bending properties are based on a Timoshenko beam element with selective reduced integration of the shear stiffness [45]. No correction for rotational inertia of sections is used.

3 : Cross section database

This subtype can be used to refer to standard cross sections defined in database. It is particularly used by nasread when importing NASTRAN PBEAML properties.

[ProID type 0 Section Dim(i) ...]

ProID element property identification number.
type identifier obtained with fe_mat('p_beam', 'SI', 3).
Section identifier of the cross section obtained with comstr ('SectionName', -32' where SectionName is a string defining the section (see below).
Dim1 ... dimensions of the cross section.
Cross section, if existing, is compatible with NASTRAN PBEAML definition. Equivalent moment of inertia and tensional stiffness are computed at the centroid of the section. Currently available sections are listed with p_beam('info'). In particular one has ROD (1 dim), TUBE (2 dims), T (4 dims), T2 (4 dims), I (6 dims), BAR (2 dims), CHAN1 (4 dims), CHAN2 (4 dims).

For NSM and Lump support ConverTo1 is used during definition to obtain the equivalent subtype 1 entry.

See also

Section 4.5.1, section 7.4 , fe_mat

p_heat

Purpose

Formulation and material support for the heat equation.

Syntax

```
il = p_heat('default')
```


Description

This help starts by describing the main commands : p_heat Database and Dbval. Supported p_heat subtypes and their formats are then described. For theory see section 6.1.13.

```
Database,Dbval] ...
```

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row (see section 7.4). Element property functions such as p_solid support graphical editing of properties and a database of standard properties.
p_heat database
il=p_heat('database');
Accepted commands for the database are

- d3 Integ SubType: Integ integration rule for 3D volumes (default -3).
- d2 Integ SubType: Integ integration rule for 2D volumes (default -3).

For fixed values, use pheat('info').
Example of database property construction

```
il=p_heat([100 fe_mat('p_heat','SI',1) 0 -3 3],...
    'dbval 101 d3 -3 2');
```

```
Heat equation element properties
```

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row. Element property functions such as p_beam support graphical editing of properties and a database of standard properties.

```
1 : Volume element for heat diffusion (dimension DIM)
    [ProId fe_mat('p_heat','SI',1) CoordM Integ DIM]
    ProID element property identification number
    type identifier obtained with fe_mat('p_beam','SI',1)
    Integ is rule number in integrules
    DIM is problem dimension 2 or 3 D
2 : Surface element for heat exchange (dimension DIM-1)
        [ProId fe_mat('p_heat','SI',2) CoordM Integ DIM]
    ProID element property identification number
    type identifier obtained with fe_mat('p_beam','SI',2)
    Integ is rule number in integrules
    DIM is problem dimension 2 or 3 D
```


SetFace

This command can be used to define a surface exchange and optionally associated load. Surface exchange elements add a stiffness term to the stiffness matrix related to the exchange coefficient Hf defined in corresponding material property. One then should add a load corresponding to the exchange with the source temperature at T_{0} through a convection coefficient Hf which is Hf.T_0. If not defined, the exchange is done with source at temperature equal to 0 .

```
model=p_heat('SetFace',model,SelElt,pl,il);
```

- SelElt is a findelt command string to find faces that exchange heat (use 'SelFace' to select face of a given preselected element).
- pl is the identifier of existing material property (MatId), or a vector defining an m_heat property.
- il is the identifier of existing element property (ProId), or a vector defining an p_heat property.

Command option -load T can be used to defined associated load, for exchange with fluid at temperature T. Note that if you modify Hf in surface exchange material property you have to update the load.

Following example defines a simple cube that exchanges with thermal source at 55 deg on the bottom face.

```
model=femesh('TestHexa8'); % Build simple cube model
model.pl=m_heat('dbval 100 steel'); % define steel heat diffusion parameter
model.il=p_heat('dbval 111 d3 -3 1'); % volume heat diffusion (1)
model=p_heat('SetFace-load55',... % exchange at 55 deg
    model,...
    'SelFace & InNode{z==0}',... % on the bottom face
    100,... % keep same matid for exchange coef
    p_heat('dbval 1111 d3 -3 2')); % define 3d, integ-3, for surface exchange
cf=feplot(model); fecom colordatapro
def=fe_simul('Static',model); % compute static thermal state
mean(def.def)
```


2Dvalidation

Consider a bi-dimensional annular thick domain Ω with radii $r_{e}=1$ and $r_{i}=0.5$. The data are specified on the internal circle Γ_{i} and on the external circle Γ_{e}. The solid is made of homogeneous isotropic material, and its conductivity tensor thus reduces to a constant k. The steady state temperature distribution is then given by

$$
\begin{equation*}
-k \Delta \theta(x, y)=f(x, y) \quad \text { in } \quad \Omega \tag{9.20}
\end{equation*}
$$

The solid is subject to the following boundary conditions

- $\Gamma_{i}\left(r=r_{i}\right)$: Neumann condition

$$
\begin{equation*}
\frac{\partial \theta}{\partial n}(x, y)=g(x, y) \tag{9.21}
\end{equation*}
$$

- $\Gamma_{e}\left(r=r_{e}\right):$ Dirichlet condition

$$
\begin{equation*}
\theta(x, y)=\theta_{\text {ext }}(x, y) \tag{9.22}
\end{equation*}
$$

In above expressions, f is an internal heat source, $\theta_{\text {ext }}$ an external temperature at $r=r_{e}$, and g a function. All the variables depend on the variable x and y.

The OpenFEM model for this example can be found in ofdemos('AnnularHeat').
Numerical application : assuming $k=1, f=0, H f=1 e^{-10}, \theta_{\text {ext }}(x, y)=\exp (x) \cos (y)$ and
$g(x, y)=-\frac{\exp (x)}{r_{i}}(\cos (y) x-\sin (y) x)$, the solution of the problem is given by $\theta(x, y)=\exp (x) \cos (y)$ See also
section 6.1.13, section 4.5.1, fe_mat

p_shell

Purpose

Element property function for shells and plates (flat shells)

Syntax

```
il = p_shell('default');
il = p_shell('database ProId name');
il = p_shell('dbval ProId name');
il = p_shell('dbval -unit TM ProId name');
il = p_shell('dbval -punit TM ProId name');
il = p_shell('SetDrill 0',il);
```


Description

This help starts by describing the main commands : p_shell Database and Dbval. Supported p_shell subtypes and their formats are then described.

```
Database,Dbval] ...
```

p_shell contains a number of defaults obtained with the database and dbval commands which respectively return a structure or an element property row. You can select a particular entry of the database with using a name matching the database entries.

You can also automatically compute the properties of standard shells with
kirchhoff $e \quad$ Kirchhoff shell of thickness e.
mindlin $e \quad$ Mindlin shell of thickness e.
laminate MatIdi Ti Thetai Specification of a laminate property by giving the different ply MatId, thickness and angle. By default the z values are counted from -thick/2, you can specify another value with a z0.

You can append a string option of the form $-f i$ to select the appropriate shell formulation. For example, you will obtain the element property row with ProId 100 associated with a .1 thick Kirchhoff shell (with formulation 5) or the corresponding Mindlin plate use

```
il = p_shell('database 100 MindLin .1')
il = p_shell('dbval 100 kirchhoff .1 -f5')
il = p_shell('dbval 100 laminate z0=-2e-3 110 3e-3 30 110 3e-3 -30')
il = fe_mat('convert SITM',il);
il = p_shell(il,'dbval -unit TM 2 MindLin .1') % set in TM, provide data in SI
il = p_shell(il,'dbval -punit TM 2 MindLin 100') % set in TM, provide data in TM
```

For laminates, you specify for each ply the MatId, thickness and angle.

Shell format description and subtypes

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row (see section 7.4). Element property functions such as p_shell support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section 4.5.1. For a reference on formats used to describe element properties see section 7.4 .
p_shell currently only supports two subtypes

1 : standard isotropic
[ProID type f d 0 h k MID2 RatI12_T3 MID3 NSM Z1 Z2 MID4]
type identifier obtained with fe_mat('p_shell', 'SI', 1).
f $\quad 0$ use default of element. For other formulations the specific help for each element quad4. tria3, ...), each formulation specifies integration rule.
d -1 no drilling stiffness. The element DOFs are the standard translations and rotations at all nodes (DOFs . 01 to .06). The drill DOF (rotation . 06 for a plate in the xy plane) has no stiffness and is thus eliminated by fe_mk if it corresponds to a global DOF direction. The default is $\mathrm{d}=1$ (d is set to 1 for a declared value of zero).
d arbitrary drilling stiffness with value proportional to d is added. This stiffness is often needed in shell problems but may lead to numerical conditioning problems if the stiffness value is very different from other physical stiffness values. Start with a value of 1. Use il=p_shell ('SetDrill d',il) to set to d the drilling stiffness of all p_shell subtype 1 rows of the property matrix il.
h plate thickness.
$\mathrm{k} \quad k \quad$ shear correction factor (default $5 / 6$, default used if k is zero). This correction is not used for formulations based on triangles since tria3 is a thin plate element.
RatI12_T3Ratio of bending moment of inertia to nominal T3/I12 (default 1).
NSM Non structural mass per unit area.
MID2 material property for bending. Defauts to element MatId if equal to 0 .
MID3 material property for transverse shear.
z1,z2 (unused) offset for fiber computations.
MID4 material property for membrane/bending coupling.
Shell strain is defined by the membrane, curvature and transverse shear
\qquad
(display with p_shell('ConstShell')).

$$
\left\{\begin{array}{c}
\epsilon_{x x} \tag{9.23}\\
\epsilon_{y y} \\
2 \epsilon_{x y} \\
\kappa_{x x} \\
\kappa_{y y} \\
2 \kappa_{x y} \\
\gamma_{x z} \\
\gamma_{y z}
\end{array}\right\}=\left[\begin{array}{ccccc}
N, x & 0 & 0 & 0 & 0 \\
0 & N, y & 0 & 0 & 0 \\
N, y & N, x & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & N, x \\
0 & 0 & 0 & -N, y & 0 \\
0 & 0 & 0 & -N, x & N, y \\
0 & 0 & N, x & 0 & -N \\
0 & 0 & N, y & N & 0
\end{array}\right]\left\{\begin{array}{c}
u \\
v \\
w \\
r u \\
r v
\end{array}\right\}
$$

2 : composite
[ProID type Z0 NSM SB FT TREF GE LAM MatId1 T1 Theta1 SOUT1 ...]
ProID Section property identification number.
type Identifier obtained with fe_mat('p_shell', 'SI',2).
Z0 Distance from reference plate to bottom surface.
NSM Non structural mass per unit area.
SB Allowable shear stress of the bonding material.
FT Failure theory.
TREF Reference temperature.
Eta Hysteretic loss factor.
LAM Laminate type.
MatIdi
MatId for ply i, see m_elastic 1, m_elastic 5, ...
$\mathrm{T} i \quad$ Thickness of ply i.
Theta $i \quad$ Orientation of ply i.
SOUT $i \quad$ Stress output request for ply i.
Note that this subtype is based on the format used by NASTRAN for PCOMP and the formulation used for each topology is discussed in each element (see quad4, tria3). You can use the DbvalLaminate commands to generate standard entries.

$$
\left\{\begin{array}{c}
N \tag{9.24}\\
M \\
Q
\end{array}\right\}=\left[\begin{array}{lll}
A & B & 0 \\
B & D & 0 \\
0 & 0 & F
\end{array}\right]\left\{\begin{array}{c}
\epsilon \\
\kappa \\
\gamma
\end{array}\right\}
$$

setTheta

When dealing with laminated plates, the classical approach uses a material orientation constant per element. OpenFEM also supports more advanced strategies with orientation defined at nodes but this is still poorly documented.

The material orientation is the reference for plies. Any angle defined in a laminate command is an additional rotation. In the example below, the element orientation is rotated 30 degrees, and the ply another 30. The fibers are thus oriented 60 degrees in the $x y$ plane. Stresses are however given in the material orientation thus with a 30 degree rotation. Per ply output is not currently implemented.

The element-wise material angle is stored for each element. In column 7 for tria3, 8 for quad4, ... The setTheta command is a utility to ease the setting of these angles. By default, the orientation is done at element center. To use the mean orientation at nodes use command option -strategy 2.

```
model=ofdemos('composite');
model.il = p_shell('dbval 110 laminate 100 1 30'); % single ply
% Define material angle based on direction at element
MAP=feutil('getnormalElt MAP -dir1',model);
bas=basis('rotate', [],'rz=30;',1);
MAP.normal=MAP.normal*reshape(bas(7:15),3,3)';
model=p_shell('setTheta',model,MAP);
% Obtain a MAP of material orientations
MAP=feutil('getnormalElt MAP -dir1',model);
feplot(model);fecom('showmap',MAP)
% Set elementwise material angles using directions given at nodes.
% Here a global direction
MAP=struct('normal',ones(size(model.Node,1),1)*bas(7:9), ...
    'ID',model.Node(:,1),'opt',2);
model=p_shell('setTheta',model,MAP);
% Using an analytic expression to define components of
% material orientation vector at nodes
data=struct('sel','groupall','dir',{{'x-0','y+.01',0}},'DOF',[.01;.02;.03]);
model=p_shell('setTheta',model,data);
MAP=feutil('getnormalElt MAP -dir1',model);
feplot(model);fecom('showmap',MAP)
```

model=p_shell('setTheta', model, 0) is used to reset the material orientation to zero.

Technically, shells use the of mk('BuildNDN') rule 23 which generates a basis at each integration point. The first vector $\mathrm{v} 1 \mathrm{x}, \mathrm{v} 1 \mathrm{y}, \mathrm{v} 1 \mathrm{z}$ is built in the direction of r lines and $\mathrm{v} 2 \mathrm{x}, \mathrm{v} 2 \mathrm{y}, \mathrm{v} 2 \mathrm{z}$ is tangent to the surface and orthogonal to $v 1$. When a InfoAtNode map provides $\mathrm{v} 1 \mathrm{x}, \mathrm{v} 1 \mathrm{y}, \mathrm{v} 1 \mathrm{z}$, this vector is projected (NEED TO VERIFY) onto the surface and $v 2$ taken to be orthogonal.

See also

Section 4.5.1, section 7.4 , fe_mat

p_solid

Purpose

Element property function for volume elements.

Syntax

```
il=p_solid('database ProId Value')
il=p_solid('dbval ProId Value')
il=p_solid('dbval -unit TM ProId name');
il=p_solid('dbval -punit TM ProId name');
model=p_solid('default',model)
```


Description

This help starts by describing the main commands : p_solid Database and Dbval. Supported p_solid subtypes and their formats are then described.

```
Database,Dbval,Default] ...
```

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row (see section 7.4). Element property functions such as p_solid support graphical editing of properties and a database of standard properties.

Accepted commands for the database are

- d3 Integ: Integ integration rule for quadratic 3D volumes. For information on rules available see integrules Gauss. Examples are d3 2 2x2x2 integration rule for linear volumes (hexa8 ...); d3 -3 default integration for all 3D elements, ...
- d2 Integ: Integ integration rule for quadratic 2D volumes. For example d2 $22 \times 2 \times 2$ integration rule for linear volumes (q4p ...). You can also use d2 102 for plane stress, and d2 202 for axisymmetry.
- fsc Integ: integration rule selection for fluid/structure coupling.

For fixed values, use p_solid('info').
For a tutorial on material/element property handling see section 4.5.1. For a reference on formats used to describe element properties see section 7.4 .

Examples of database property construction
\qquad

```
il=p_solid([100 fe_mat('p_solid','SI',1) 0 3 0 2], ...
    'dbval 101 Full 2x2x2','dbval 102 d3 -3');
il=fe_mat('convert SITM',il);
il=p_solid(il,'dbval -unit TM 2 Reduced shear')
% Try a smart guess on default
model=femesh('TestHexa8');model.il=[];
model=p_solid('default',model)
```

1 : 3D volume element
[ProID fe_mat('p_solid','SI',1) Coordm In Stress Isop]
ProID Property identification number.
Coordm Identification number of the material coordinates system. Warning not implemented for all material formulations.
In Integration rule selection (see integrules Gauss). 0 selects the legacy 3D mechanics element (of mk_pre.c), -3 the default rule.
Stress Location selection for stress output (NOT USED).
Isop Integration scheme (will be used to select shear protection mechanisms).
The underlying physics for this subtype are selected through the material property. Examples are 3D mechanics with m_elastic, piezo electric volumes (see m_piezo), heat equation p_heat.

```
2 : 2D volume element
    [ProId fe_mat('p_solid','SI',2) Form N In]
```

 ProID Property identification number.
 Type Identifier obtained with fe_mat('p_solid,'SI',2).
 Form Formulation (0 plane strain, 1 plane stress, 2 axisymmetric), see details in
 m_elastic
 N Fourier harmonic for axisymmetric elements that support it.
 In Integration rule selection (see integrules Gauss). 0 selects legacy 2D element,
 -3 the default rule.
 The underlying physics for this subtype are selected through the material property. Examples are 2D mechanics with m_elastic.

```
3 : ND-1 coupling element
    [ProId fe_mat('p_solid','SI',3) Integ Form Ndof1 ...]
```

ProID	Property identification number.
Type	Identifier obtained with fe_mat('p_solid, 'SI', 3).
Integ	Integration rule selection (see integrules Gauss). 0 or -3 selects the default for the element.
Form	1 volume force, 2 volume force proportional to density, 3 pressure, $4:$ fluid/structure coupling, see fsc, 52 D volume force, 62 D pressure. 8 Wall impedance (acoustics), then uses the R parameter in fluid.

See also

Section 4.5.1, section 7.4 , fe_mat

p_spring

Purpose

Element property function for spring and rigid elements

Syntax

```
il=p_spring('default')
il=p_spring('database MatId Value')
il=p_spring('dbval MatId Value')
il=p_spring('dbval -unit TM ProId name');
il=p_spring('dbval -punit TM ProId name');
```


Description

This help starts by describing the main commands : p_spring Database and Dbval. Supported p_spring subtypes and their formats are then described.

```
Database,Dbval] ...
```

Element properties are described by the row of an element property matrix or a data structure with an .il field containing this row (see section 7.4).

Examples of database property construction

```
il=p_spring('database 100 1e12 1e4 0')
il=p_spring('dbval 100 1e12');
il=fe_mat('convert SITM',il);
il=p_spring(il,'dbval 2 -unit TM 1e12') % Generate in TM, provide data in SI
il=p_spring(il,'dbval 2 -punit TM 1e9') % Generate in TM, provide data in TM
```

p_spring currently supports 2 subtypes
1 : standard
[ProID type k m c Eta S]
ProID property identification number.
type identifier obtained with fe_mat('p_spring', 'SI',1).
k stiffness value.
m mass value.
c viscous damping value.
eta loss factor.
S Stress coefficient.

2 : bush
Note that type 2 is only functional with cbush elements.
[ProId Type k1:k6 c1:c6 Eta SA ST EA ET m v]

ProID	property identification number.
type	identifier obtained with fe_mat('p_spring', 'SI', 2).
ki	stiffness for each direction.
ci	viscous damping for each direction.
SA	stress recovery coef for translations.
ST	stress recovery coef for rotations.
EA	strain recovery coef for translations.
ET	strain recovery coef for rotations.
m	mass.
v	volume.

See also

Section 4.5.1, section 7.4 , fe_mat, celas, cbush

p_super

Purpose

Element property function for superelements.

Syntax

```
il=p_super('default')
il=p_super('database MatId Value')
il=p_super('dbval MatId Value')
il=p_super('dbval -unit TM ProId name');
il=p_super('dbval -punit TM ProId name');
```


Description

If ProID is not given, fe_super will see if SE.Opt ($3,:$) is defined and use coefficients stored in this row instead. If this is still not given, all coefficients are set to 1 . Element property rows (in a standard property declaration matrix il) for superelements take the forms described below with ProID the property identification number and coefficients allowing the creation of a weighted sum of the superelement matrices SEName. $\mathrm{K}\{\mathrm{i}\}$. Thus, if $\mathrm{K}\{1\}$ and $\mathrm{K}\{3\}$ are two stiffness matrices and no other stiffness matrix is given, the superelement stiffness is given by coef $1 * K\{1\}+\operatorname{coef} 3 * K\{3\}$.

```
Database,Dbval] ...
```

There is no database call for p_super entries.

```
1 : simple weighting coefficients
    [ProId Type coef1 coef2 coef3 ... ]
```

 ProID Property identification number.
 Type Identifier obtained with fe_mat('p_super', 'SI',1).
 coef1 Multiplicative coefficient of the first matrix of the superelement (K\{1\}). Su-
 perelement matrices used for the assembly of the global model matrices will be
 \(\{\operatorname{coef} 1 * \mathrm{~K}\{1\}\), coef \(2 * \mathrm{~K}\{2\}\), coef \(3 * \mathrm{~K}\{3\}, \ldots\}\). Type of the matrices (stiff-
 ness, mass ...) is not changed. Note that you can define parameters for superele-
 ment using fe_case(model, 'par'), seefe_case.
 2 : matrix type redefinition and weighting coefficients
[ProId Type Form type1 coef1 type2 coef2 ...]

ProID	Property identification number.
Type	Identifier obtained with $f e$ mat ('p_super', 'SI', 2).
type1	Type redefinition of the first matrix of the superelement (K\{1\}) according to
	SDT standard type (1 for stiffness, 2 for mass, 3 for viscous damping... see
coef1	fe_mknl MatType.

See also

fesuper, section 6.3

p_piezo

Purpose

Property function for piezoelectric shells and utilities associated with piezoelectric models.

Syntax

```
mat= m_piezo('database name')
pl = m_piezo('dbval MatId -elas 12 Name');
```

See section 6.1.5 for tutorial calls. Accepted commands are

ElectrodeMPC

[model,InputDOF (end+1,1)]=p_piezo('ElectrodeMPC Name', model, 'z==5e-5'); defines the isopotential constraint as a case entry Name associated with FindNode command $z==5 e-5$. An illustration is given in section 6.1.5.

Accepted command options are

- -Ground defines a fixed voltage constraint FixDof,V=0 on Name.
- -Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.
- MatId i is used to define a resultant sensor to measure the charge associated with the electrode. Note that the electrode surface must not be inside the volume with MatIdi. If that is the case, you must arbitrarily decompose your mesh in two parts with different MatId. You can also generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the MatId i based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p_piezo('ElectrodeSensQ 1682 Q-Base', model); adds a charge sensor resultant) called Q-Base on node 1682. (See (1.4) for theory).

For shells, the node number is used to identify the p_piezo shell property and thus the associated elements. It is reminded that p_piezo entries must be duplicated when multiple patches are used. For volumes, the p-piezo ElectrodeMPC should be first defined, so that it can be used to obtain the electrode surface information.

Note that the command calls fe_case('SensMatch') so that changes done to material properties after this call will not be reflected in the observation matrix of this sensor.

To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify a data structure with observation .cta at multiple .DOF as illustrated below.

For a voltage sensor, you can simply use a DOF sensor model=fe_case(model, 'SensDof', 'V-Base', 1682.21).

```
model=d_piezo('meshULBPlate cantilever'); % creates the model
% If you don't remember the electrode node numbers
p_piezo('ElectrodeDOF',model)
% Combined charge
r1=struct('cta',[1 1],'DOF',[1684;1685]+.21,'name','QS2+3');
model=p_piezo('ElectrodeSensQ',model,r1);
sens=fe_case(model,'sens');
% Combined voltage
r1=struct('cta',[1 1],'DOF',[1684;1685]+.21,'name','VS2+3');
model=fe_case(model,'SensDof',r1.name,r1);
sens=fe_case(model,'sens');sens.lab
```


ElectrodeDOF

p_piezo('ElectrodeDof Bottom', model) returns the DOF the bottom electrode. With no name for selection p_piezo('ElectrodeDof', model) the command returns the list of electrode DOFs based on MPC defined using the ElectrodeMPC command or p_piezo shell entries. Use ElectrodeDof .* to get all DOFs.

ElectrodeView ...

p_piezo('electrodeview', cf) outlines the electrodes in the model and prints a clear text summary of electrode information. To only get the summary, pass a model model rather than a pointer cf to a feplot figure.
p_piezo('electrodeviewCharge', cf) builds a StressCut selection allowing the visualization of charge density. You should be aware that only resultant charges at nodes are known. For proper visualization a transformation from charge resultant to charge density is performed, this is known to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to generate appropriate case entries : V_In for enforced voltage actuators, V_Out for voltage measurements, Q_Out for charge sensors.

ElectrodeInit

ElectrodeInit analyses the model to find electric master DOFs in piezo-electric shell properties or in MPC associated with volume models.

Tab

Tab commands are used to generate tabulated information about model contents. The calling format is p_piezo ('TabDD', model). With no input argument, the current feplot figure is used. Currently generated tabs are

- TabDD constitutive laws
- TabPro material and element parameters shown as java tables.

View

p_piezo('ViewDD', model) displays information about piezoelectric constitutive laws in the current model.
p_piezo('ViewElec ...', model) is used to visualize the electrical field. An example is given in section 6.1.5. Command options are DefLenval to specify the arrow length, EltSelval for the selection of elements to be viewed, Reset to force reinit of selection.

ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a layered composite, see p_shell 2, and an electrode definition with element property rows of the form
[ProId Type MecaProId ElNodeId1 LayerId1 UNU1 E1NodeId2...]

- Type typically fe_mat('p_piezo', 'SI', 1)
- MecaProId : ProId for mechanical properties of element p_shell 2 composite entry. The MatId i for piezo layers must be associated with piezo electric material properties.
- ElNodId1 : NodeId for electrode 1. This needs to be a node declared in the model but its position is not used since only the value of the electric potential (DOF 21) is used. You may use a node of the shell but this is not necessary.
- LayerId : layer number as declared in the composite entry.
- UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section 6.1.5. The following gives a sample declaration.

```
model=femesh('testquad4'); % Shell MatId 100 ProdId 110
% MatId 1 : steel, MatId 12 : PZT elastic prop
model.pl=m_elastic('dbval 1 Steel');
% Sample ULB piezo material, sdtweb m_piezo('sample_ULB')
model.pl=m_piezo(model.pl,'dbval 3 -elas 12 Sample_ULB');
% ProId 111 : 3 layer composite (mechanical properties)
model.il=p_shell(model.il,['dbval 111 laminate ' ...
    '3 1e-3 0'... % MatID 3 (PZT), 1 mm piezo, 0
    '1 2e-3 0 , ... % MatID 1 (Steel), 2 mm
    '3 1e-3 0']); % MatID 3 (PZT), 1 mm piezo, 0
% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683
model.il=p_piezo(model.il,'dbval 110 shell 111 1682 1 0 1683 3 0');
p_piezo('viewdd',model) % Details about the constitutive law
p_piezo('ElectrodeInfo',model) % Details about the layers
```


quad4, quadb, mitc4

Purpose

4 and 8 node quadrilateral plate/shell elements.

Description

In a model description matrix, element property rows for quad4 quadb and mitc4 elements follow the standard format

```
[n1 ... ni MatID ProID EltID Theta Zoff T1 ... Ti]
```

giving the node identification numbers ni (1 to 4 or 8), material MatID, property ProID. Other optional information is EltID the element identifier, Theta the angle between material x axis and element x axis, Zoff the off-set along the element z axis from the surface of the nodes to the reference plane (use feutil Orient command to check z-axis orientation), Ti the thickness at nodes (used instead of il entry, currently the mean of the Ti is used).

If n3 and n4 are equal, the tria3 element is automatically used in place of the quad4.
Isotropic materials are currently the only supported (this may change soon). Their declaration follows the format described in m_elastic. Element property declarations follow the format described p_shell.

quad4

Supported formulations (f value stored in il(3) p_shell entries for isotropic materials and element default for composites) are

- 0 element/property dependent default. This is always used for composites (p_shell subtype 2).
- 5 Q4CS is a second implementation MITC4 elements that supports classical laminated plate theory (composites) as well as the definition of piezo-electric extension actuators. This is the default for SDT. Non flat shell geometries are supported with interpolation of normal fields.
- 14 tria3 thin plate elements with condensation of central node. Old and not very efficient formulation implemented in quad4.
- 2 Q4WT for membrane and Q4gamma for bending (implemented in quad4). This is only applicable if the four nodes are in a single plane. When not, formulation 1 is called.
- 4 MITC4 calls the MITC4 element below. This implementation has not been tested extensively, so that the element may not be used in all configurations. It uses 5 DOFs per node with the two rotations being around orthogonal in-plane directions. This is not consistent for mixed element types assembly. Non smooth surfaces are not handled properly because this is not implemented in the feutil GetNormal command which is called for each group of mitc4 elements.

The definition of local coordinate systems for composite fiber orientation still needs better documentation. Currently, q4cs the only element that supports composites, uses the local coordinate system resulting from the BuildNDN 23 rule. A temporary solution for uniform orientation is provided with model=feutilb('shellmap -orient $d x ~ d y ~ d z ', m o d e l) . ~$

quadb

Supported formulations (p_shellil(3) for isotropic materials and element default for composites) are

- 18 tria3 thin plate elements with condensation of central node.
- 2 isoparametric thick plate with reduced integration. For non-flat elements, formulation 1 is used.

See also
m_elastic, p_shell fe_mk, feplot

$q 4 p, q 8 p, t 3 p, t 6 p$ and other 2 D volumes

Purpose

2-D volume elements.

Description

The q4p q5p, q8p, q9a, t3p, t6p elements are topology references for 2D volumes and 3D surfaces.
In a model description matrix, element property rows for this elements follow the standard format

```
[n1 ... ni MatID ProID EltID Theta]
```

giving the node identification numbers n1, ...ni, material MatID, property ProID. Other optional information is EltID the element identifier, Theta the angle between material x axis and element x axis (material orientation maps are generally preferable).

These elements only define topologies, the nature of the problem to be solved should be specified using a property entry, see section 6.1 for supported problems and p_solid, p_heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex coordinates of the reference element can be found using an integrules command containing the name of the element such as r1=integrules('q4p');r1.xi.

Backward compatibility note : if no element property entry is defined, or with a p_solid entry with the integration rule set to zero, the element defaults to the historical 3D mechanic elements described in section 7.19.2.

These volume elements are used for various problem families.

See also

fe_mat, fe_mk feplot

rigid

Purpose

Linearized rigid link constraints.

Description

Rigid links are often used to model stiff connections in finite element models. One generates a set of linear constraints that relate the 6 DOFs of master M and slave S nodes by

$$
\left\{\begin{array}{c}
u \tag{9.25}\\
v \\
w \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right\}_{S}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & z_{M S} & -y_{M S} \\
0 & 1 & 0 & -z_{M S} & 0 & x_{M S} \\
0 & 0 & 1 & y_{M S} & -x_{M S} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
u \\
v \\
w \\
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right\}_{M}
$$

Resolution of linear constraints is performed using fe_case or model assembly (see section 4.8.8) calls. The theory is discussed in section 7.14 . Note that the master node of a rigid link has 6 DOF, even if the model may only need less (3 DOF for volumes).

If coordinate systems are defined in field model.bas (see basis), PID (position coordinate system) and DID (displacement coordinate system) declarations in columns 2 and 3 of model.Node are properly handled.

Although rigid are linear constraints rather than true elements, such connections can be declared using an element group of rigid connection with a header row of the form [Inf abs('rigid')] followed by as many element rows as connections of the form

```
[ n1 n2 DofSel MatId ProId EltId]
```

where node n 2 will be rigidly connected to node n 1 which will remain free. DofSel lets you specify which of the 3 translations and 3 rotations are connected (thus 123 connects only translations while 123456 connects both translations and rotations). The rigid elements thus defined can then be handled as standard elements.

With this strategy you can use penalized rigid links celas element) instead of truly rigid connections. This requires the selection of a stiffness constant but can be easier to manipulate. To change a group of rigid elements into celas elements and set a stiffness constant Kv, one can do

```
model=feutil('SetGroup rigid name celas',model);
model.Elt(feutil('findelt group i',model),7) = Kv; % celas in group i
```

The other rigid definition strategy is to store them as a case entry. rigid entries are rows of the Case. Stack cell array giving \{'rigid', Name, Elt $\}$.

The syntax is
model=fe_case(model,'rigid', Name, Elt);
where Name is a string identifying the entry. Elt is a model description matrix containing rigid elements. Command option Append allows concatenating a new list of rigid constraints to a preexisting list in Case.Stack.

The call model=fe_case(model,'rigidAppend', 'Name', Elt1); would thus concatenate the previously defined list Name with the new rigid element matrix Elt1.

Using the fe_case call to implement rigid allows an alternative rigid constraint input that can be more comprehensive in some applications. You may use a list of the form [MasterNode slaveDOF slaveNode_1 slaveNode_2 ... slaveNode_i] instead of the element matrix. Command option Append is also valid.

The following sample calls are thus equivalent, and consists in implementing a rigid link between nodes 1 and 2, and 1 and 3 (with 1 as master) for all six DOF in a sample model:

```
model=fe_case(model,'rigid','Rigid edge',...
[Inf abs('rigid');
1 2 123456 0 0 0;
1 3 123456 0 0 0]);
% or
model=fe_case(model,'rigid','Rigid edge',[\begin{array}{lll}{123456 2 3]);}\end{array}]=\mp@code{l}
```

In some cases, interactions with feplot visualization may transform the Elt matrix into a structure with fields Elt that contains the original data, and Sel that is internally used by feplot to display the rigid constraint on the mesh.

The following example generates the mesh of a square plate with a rigid edge, the rigid constraint is here declared as rigid elements

```
% generate a sample plate model
model=femesh('testquad4 divide 10 10');
% generate beam1 elements based on the edge
% of the underlying 2D model at x=0
elt=feutil('selelt seledge & innode{x==0}',model);
% remove element header from selection,
```

rigid

```
% we only use the node connectivity
elt=elt(2:end,:);
% assign the rigid element property
elt(2:end,3)=123456; % all 6 DOF are slave
% remove old data from the previous element selection
elt(2: end,4:end)=0;
% add rigid elements to the model
model=feutil('addelt',model,'rigid',elt);
% % alternative possible: define as a case entry
% model=fe_case(model,'rigid','Rigid edge',[Inf abs('rigid'); elt]);
% Compute and display modes
def=fe_eig(model,[6 20 1e3]);
feplot(model,def);fecom(';view3;ch8;scd.1');
```

The rigid function itself is only used for low level access by generating the subspace T that verifies rigid constraints

```
[T,cdof] = rigid(node,elt,mdof)
[T,cdof] = rigid(Up)
```


See also

Section 7.14, celas

tria3, tria6

Purpose

Element functions for a 3 node/18 DOF and 6 nodes/36 DOF shell elements.

Description

In a model description matrix, element property rows for tria3 elements follow the standard format

```
[n1 n2 n3 MatID ProID EltID Theta Zoff T1 T2 T3]
```

giving the node identification numbers ni, material MatID, property ProID. Other optional information is EltID the element identifier, Theta the angle between material x axis and element x axis (currently unused), Zoff the off-set along the element z axis from the surface of the nodes to the reference plane, Ti the thickness at nodes (used instead of il entry, currently the mean of the Ti is used).

The element only supports isotropic materials with the format described in m_elastic.
The supported property declaration format is described in p_shell. Note that tria3 only supports thin plate formulations.
tria3: p_shellformulation is not used, the single implemented formulation uses a T3 triangle for membrane properties and a DKT for bending (see [46] for example).
tria6 p_shellformulation is not used since the currently the only implementation is a call to q4cs (formulation 5).

See also

quad4, quadb, fe_mat, p_shell, m_elastic, fe_mk, feplot
tria3, tria6

Function reference

This section contains detailed descriptions of the functions in Structural Dynamics Toolbox. It begins with a list of functions grouped by subject area and continues with the reference entries in alphabetical order. From Matlab short text information is available through the help command while the HTML version of this manual can be accessed through doc.

For easier use, most functions have several optional arguments. In a reference entry under syntax, the function is first listed with all the necessary input arguments and then with all possible input arguments. Most functions can be used with any number of arguments between these extremes, the rule being that missing, trailing arguments are given default values, as defined in the manual.

As always in Matlab, all output arguments of functions do not have to be specified, and are then not returned to the user.

As indicated in their synopsis some functions allow different types of output arguments. The different output formats are then distinguished by the number of output arguments, so that all outputs must be asked by the user.

Typesetting conventions and mathematical notations used in this manual are described in section 1.3

Element functions are detailed in chapter 9.
A list of demonstrations is given in section 1.1.

User Interface (UI) and Graphical User Interface (GUI) Tools	
fecom	UI command function for deformations created with feplot
femesh	UI command function for mesh building and modification
feplot	GUI for 3-D deformation plots
fesuper	UI commands for superelement manipulations
idcom	UI commands for standard identification procedures
idopt	manipulation of identification options
iicom	UI commands for measurement data visualization
ii_mac	GUI for MAC and other vector correlation criteria
iiplot	GUI for the visualization of frequency response data

ExPERIMENTAL MODEL IDENTIFICATION	
idcom	UI commands linked to identification manipulation of options for identification related functions broadband pole/residue model identification alternate optimization algorithm for Id_rc idopt
id_rc	

UI AND GUI UTILITIES	
comgui	general purpose functions for the graphical user interfaces general purpose parser for UI command functions general purpose string handling routine mouse related callbacks (zooming, info, ...) commode
comstr	
mesh handling utilities	

FREQUENCY Response AnALYSIS ToOLS	
db	amplitude in dB (decibels)
ii_cost	
ii_mif	
phaseb	FRF comparison with quadratic and logLS cost Multivariate Mode Indicator Function phase (in degrees) with an effort to unwrap along columns Root Mean Square response
rms	

Test/analysis correlation tools	
fe_exp fe_sens ii_comac ii_mac	experimental shape expansion sensor configuration declaration and sensor placement tools obsolete (supported by ii_mac) GUI for MAC and other vector correlation criteria
Finite Element Analysis Tools	
fe2ss fe_c fe_case fe_ceig fe_coor fe_eig fe_load fe_mat fe_mk fe_norm fe_reduc fe_stress fe_super rigid	methods to build ss models from full order FEM DOF selection and I/O matrix creation Cases (loads, boundary conditions, etc.) handling computation and normalization of complex modes transformation matrices for Component Mode Synthesis partial and full eigenvalue computations assembly of distributed load vectors material property handling utilities assembly of full and reduced FE models orthonormalization and collinearity check utilities for finite element model reduction element energies and stress computations generic element function for superelement support projection matrix for linearized rigid body constraints

nor2res	normal mode model to complex mode residue model assemble state-space model linked to normal mode model compute FRF associated to a normal mode model fast computation of FRF of a state-space model nor2ss pole/residue to state space model nor2xf
qbode/residue to/from polynomial model	
compute FRF associated to pole/residue model	
res2ss	res2tf state-space to pole/residue model
res2xf	

FinITE ELEMENT UPDATE ToOLS	
upcom	user interface for finite element update problems semi-direct update by comparison modal frequencies iterative update by comparison of modal frequencies up_freq
up_ifreq	
up_ixf	iterative update based on FRF comparison minimization algorithm for FE update algorithms
up_min	

INTERFACES WITH OTHER SoFTWARE	
ans2sdt	
nasread	
naswrite	reading of ANSYS binary files (FEMLink) read from MSC/NASTRAN .dat, .f06, .o2, .o4 files (some with FEM- Link) write data to MSC/NASTRAN bulk data deck (some with FEMLink) extended reading of NASTRAN files nas2up
ufread	
ufwrite	

OTHER UTILITIES	
basis	coordinate transformation utilities find string in a file
order remi	sorts eigenvalues and eigenvectors accordingly integer rem function (remi $(6,6)=6$ and not 0) setlines sdth
line type and color sequencing	
SDT handle objects	
sdtcheck	creation and operators on ofact matrix objects

abaqus

Purpose Interface between ABAQUS and SDT (part of FEMLink) Warning this function requires MATLAB 7.1 or later.

Syntax

```
        abaqus('read FileName');
abaqus('job');
read[*.fil, *.inp, *.mtx, *.dat]
```

By itself the read command imports the model from a .inp ASCII input or .fil binary output file. Support for .dat read is very partial, but provides a framework for users to parse desired tokens.

Models created by an *Assembly command using several instances and/or additional nodes or elements are treated with superelements. Each part instance (called by *Instance...*end instance) becomes then a specific superelement in the SDT model. A packaged call allows to get a full model back

```
model=abaqus('read Job-1.inp');
model=abaqus('ResolveModel',model);
% both calls at once:
model=abaqus('read-resolve Job-1.inp');
```

The ResolveModel command has a limited robustness in the general case due to the difficulty to handle heterogeneous Stack data while renumbering parts of a model. Most cases should be properly handled. One can use command read-resolve to perform both operations at once.

When reading deformations, sdtdef('OutOfCoreBufferSize') is used to determine whether the vectors are left in the file or not. When left, def.def is a v-handle object that lets you access deformations with standard indexing commands. Use def.def=def. $\operatorname{def}(:,:)$ to load all. If a modal basis is read, it is stored in the model stack, as curve, Mode. If static steps are present all associated deformation are concatenated in order of occurrence in the model stack as curve, step (1).

Command option -wd allows to save the model generated in a directory different from the one in which the abaqus files are saved.

You can request the output of element matrices which will then be read into an upcom model. To do so, you need to define an element set. To read matrices, you have to provide some information before running the job in order to select which matrices you want to write and read. In the .inp input file you may enter the following line
*ELSET, ELSET=ALL ELT FOR SDT
THIN SHELL1 , THIN SHELL1_1
(second line contains all the ABAQUS defined sets) just before the *STEP line and
*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, STIFFNESS=YES
*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, MASS=YES
just after the *STEP line.
Note that this information are automatically generated using the following command abaqus('elementmatrices model.inp'); .

Running the Abaqus job generates outputs specified by the user, with *OUTPUT commands in the Abaqus job input file. Current default use generates an odb file, using commands of the type *NODE OUTPUT. The odb format however requires the use of Abaqus libraries to be read.

Imports are thus handled in SDT using the .fil output binary file. This file is readable without Abaqus, and its reading has been optimized in FEMLink. This type of output is generated using commands of the type *NODE FILE. A sample command to obtain nodal deformation a the end of a step is then

```
** general command to .fil and ask for nodal deformation field
*OUTPUT, FIELD
*NODE FILE
U
```

All nodal variable keywords should be expressed on separated lines. This must be repeated in all steps of interest in an ABAQUS computation file input .inp.

Most common and general nodal variables keywords of interest are the following (this is not applicable to all ABAQUS procedures)

- U, V, A respectively for nodal displacement, velocity and acceleration output
- RF,CF, VF, TF respectively for nodal reaction forces, constrained forces, viscous forces, and total forces output
- GU, GV, GA respectively for generalized displacement, velocity ad acceleration (when reduction is involved)

Since not all information (materials, set names, ...) can be found in the .fil, you may want to combine two reads into an upcom model

```
abaqus('read file.inp', 'buildup file.fil');.
```

Abaqus features a matrix sparse output starting from version 6.7-1. Their generation is performed in a dedicated step as follows
*STEP
*MATRIX GENERATE, STIFFNESS, MASS
*END STEP
The output is one ASCII file .mtx by matrix requested, which can be read by abaqus.
Reading a . dat file should be avoided in general as the ASCII storage format and variation between ABAQUS versions makes it unpractical. There are however cases where such reading is the easiest way; A framework adapted to such parsing is provided with support to read complex mode shapes (that cannot be stoed in the .fil file).

One can call data=abaqus('Read',fdat,li); with fdat a .dat file and li an optionnal Nx2 cell array providing a list of tokens to detect and and associated callback. The supported tokens are used if $l i$ is omitted, it is separately accessible with $l i=$ abaqus ('DatList') ; if users wish to combine supported features with customized ones.

If a token is detected in the file, a callback will be fired as out1=feval(cbk1,fid,evt, cbk2: end); with cbk the callback cell array provided in the second column of li, fid the valid opened file object set a the starting position of the currently detected token, evt a structure with fields .p0 the starting position of the scanned text buffer (not the current position to be recovered by pcur=ftell (fid); .p1 the file length, .bufs a buffer size to be exploited. The callback command must rethrow a structure whose field will be incremently added to the global output structure.

Build [model, case, contact]

Thise set of high level commands aims at transforming a raw imported model into a functional model in SDT. It exploits in particular the lower level abaqus Resolve commands.

- BuildCase step istep
model=abaqus('BuildCase step1', model); This command prepares the model case loading corresponding to a given step index istep. Raw model reading imports indiferently all boundary conditions and loading into the Case Stack. The loading sequence is stored in the stack entry info, BSHist and is exploited by BuildCase to generate the loading relative to a given step. One can ask for the last step by using token steplast instead of step istep. Command options
- all restores all case entries in the Case Stack.
- -noResolve asks not to perform the abaqus Resolve call if this was previously performed.
- BuildModel step istep
model=abaqus('BuildModel step1', model); This command generates the model global state at a given step specified by step index istep. In addition to the BuildCase functionalities, this function looks for a static response result corresponding to the given set to define a curve, q0 entry, thus declaring a static state in the SDT model. One can ask for the last step by using token steplast instead of step istep. Command options
- -noResolve asks not to perform the abaqus Resolve call if this was previously performed.
- -contact CAM link to a call to the BuildContact command with forwarding of additionnal command options given in CAM. This feature is only accessible with a valid SDTContact module license.
- -getStatic to only resolve the static state. The output is then the static state. It is possible to specifiy in intial set of static deformations in an additional argument. q0=abaqus('buildModel-steplast-getStatic', model, ... stack_get(mo1,'curve', 'step(1)', 'get')).
- BuildContact step istep
model=abaqus('BuildContact step1', model); This command packages the generation of SDT contact elements and laws based on the ABAQUS definition. This feature is only accessible with a valid SDT-Contact module license. The import generates contact elements based on master surfaces with penalized contact laws. Hard contact laws are thus automatically penalized with a calibrated stiffness density. Support for the *CONTACT PAIR, *MOTION, *CLEARANCE, *CHANGEFRICTION commands is provided and integrates *SURFACE BEHAVIOR and $*$ FRICTION law inputs.

The step definition is mostly usefull for $*$ MOTION and *CHANGE FRICTION commands.One can ask for the last step by using token steplast instead of step istep. Command options

- -module has to be used for users with no access to the SDT-NL tools outside SDT-Contact.
- Command option -useRes asks to initialize contact states based on static force resultants on surface rather than by observing gaps on the static deformation field. This can be usefull to alleviate contact state import discrepancies due to different contact implementations between ABAQUS and SDT.
- -optim is used to remove curves from the model that are not usefull for further anlysis after the BuildContact step is performed.
- -tgStickNoMotion can be used to define tangential sticking property for contact with friction and no motion.
- -moRot is used to specify the local definition of contacts : tangent and normal directions
* -moRot' 'cyl' ' defines a cylindrical contact (for example the sliding contact of a drum brake)

Resolve

This set of commands transforms a raw model import by abaqus read into en exploitable SDT model. This is for example useful when the ABAQUS model has been generated with $*$ PART and *INSTANCE. In such case, the representation of an ABAQUS model becomes very far from an SDT model. The raw reading obtained by read will thus interpret parts as superelements, and leave the instance data, and some internal information not translated. Some other advanced definitions need special care and are thus handled in this section.

Some adaptations, performed by ResolveModel are thus needed. In particular, renumbering can occur, however all sets definitions are maintained.

- ResolveModel

This command will create the elements conforming to the instance information. Commands ResolveSet, ResolveMass, AssembleUserElements, ResolveCase and ResolveShellC will also be called, to generate a fully exploitable SDT model.

- ResolveSet

This command transforms each ABAQUS implicitly defined sets into explicit SDT sets. This is very useful if some sets have been defined in ABAQUS using internal part numerotations. This command is also usefull to distinguich sets of different types but with initially the same name. This behavior is not available in SDT and special care is taken not to mixup set names and types. Called by ResolveModel.

- ResolveCase

This command aims at resolving all implicitly defined case entries in the model, including *MODEL CHANGE, and some connector calls. This also handles the multiple slave resolution in the manner of ABAQUS, and should thus be performed before assembling models if multiple slave error occur.

- ResolveMass

This command handles the model stack entry info, UnResolvedMasses that may have been created during the read call, and assigns mass values missing in mass elements. This is necessary when masses have been defined in an ABAQUS part, such that the attribution of the mass amplitude by *MASS is not directly retrievable. Called by ResolveModel.

- ResolveShellC

Continuum shell elements (SC8R and SC6R) have no direct counterparts in SDT. A base resolution just ignores the shell declaration and declare these elements as solids with reduced integration (this may not work for stacked layers of continuum shells). The following command options are available

- -shellSE will generate a superelement embedding shells in SDT format from the neutral fiber of the continuum shells, within the 3D topology. In that way a behavior equivalent to ABAQUS is expected.
- -order2 in combination with -shellSE uses second ordr shells instead of first order ones.

write

abaqus('write Name.inp',model); writes and ABAQUS input file.
abaqus('BwMTX', model); writes all matrices stored in model. K in the abaqus sparse output format. Each matrix file is named after the model.file entry and model.Klab. For a model stored in model.mat containing a matrix ' k ', the file output will be named model_k.mat.

BwMat ; BwMp ; BwSet ; Bwbas ; BwStepEig are implemented.

JobOpt
JobOpt = abaqus('JobOpt', Opt); This command returns a filled JobOpt structure to be run by sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and OutList must be filled. Further options concern the fields Input when the input file is different from the job name, RunOptions to append the usual option to the Abaqus command, RemoveFile to remove files from the remote directory when needed.

conv

This command lists conversion tables for elements, topologies, face topologies. You can redefine (enhance) these tables by setting preferences of the form sd_pref('set', 'FEMLink', 'abaqus.list', value), but please also request enhancements so that the quality of our translators is improved.
model=abaqus('SplitCelas',model) splits all SDT celas elements to one dimension celas elements that can be handled by Abaqus. This command can change the EltId so it must be used when meshing the model.

```
uniquematpro
```

Merges duplicated pl/il instances.

AssembleUserElements

Returns a matrix and its corresponding DOF, from the assembly of all USER ELEMENT instances in an ABAQUS model. This command is exploited in abaqus Resolve calls.
[K,dof] = abaqus('AssembleUserElements',model);
Command option -inModel directly sets a SDT functional superelement named usere in the model. In this case, element matrices are removed from the stack. They can be kept with command option -keep.

Command option -disjsplit splits the assembled SE into disjoint SE regarding DOF connectivit, resulting SE are named ue i with i a 6 digit fixed index.
model=abaqus('AssembleUserElements-inModel', model);
odb2sdt
Utility functions to transfer Abaqus .odb file data into a format similar to MATLAB 6 binary .mat file and readable by sdthdf. The changes in the format are introduced to support datasets larger than 2 GB .

Abaqus outputs are commonly written in .odb files, using a non documented format. The only way to access its data is to use Abaqus CAE or Abaqus Python. These utility functions are to be used with Abaqus Python to extract data from the output database for further use outside Abaqus. The modules used are

- odbAccess. Abaqus access libraries.
- abaqusConstants. Common output values dictionary, such as 'U', 'UR'
- Numeric. Module for array handling utilities.
- struct. Module to pack data into binary strings.

For the moment, only nodal data transfer is completely implemented. More information can be found on Python at http://www.python.org. Note that def is a reserved word in Python for the function definition command; remember not to use it in another way!

The following script is a quick example of what can be done with these functions. It can be launched directly if written in a .py file readODB.py for example, by abaqus python readODB.py

```
from odb2sdt import * # import read functions
```

jobName='my_abaqus_job'
odb=openOdb(jobName + '.odb')
allNodal2mat (odb)

This second script will only write the DOF set in a .mat binary file

```
from odb2sdt import * # import read functions
jobName='my_abaqus_job'
odb=openOdb(jobName + '.odb') #open the database
stepName=odb.steps.keys()[0] #get the name of the first step
fieldItem=['U'] #I want the 'U' displacement field
# get the fieldOutputs instances list from the first frame:
fieldOutputs=odb.steps.__getitem__(stepName).getFrame(0).fieldOuputs
f=matFile(jobName + '_dof.mat') # Initialize the file
dof2mat(f,fieldOutputs,fieldItem,stepName) # write the DOF array to it
f.close()
```

Once a file_allNodal.mat file has been generated, it is possible to load the deformation structure fields using

```
def=abaqus('read file_allNodal.mat')
```

def output is here a cell array containing all def structures found in the allNodal.mat file. Only simple cases of .odb outputs are supported. The rest of the data is not automatically read, it can nevertheless be attained using
r1=sdthdf('open',file_allNodal.mat);
where r 1 is a cell array containing all the fields contained in the allNodal.mat file.

```
odb2sdt.py reference
```

The following lists the main subfunctions in odb2sdt.py
matFile(fname) Creation of a the file fname, with the standard .mat header.f=matFile (fname)
dof2mat(f, fields
,fieldItems, stepName)
defSet2mat(f, step, fieldList)

Writes the DOF array in SDT format to file f. fields is the list of fieldOutput instances from the step named stepName. fieldItems is the sorted list containing the displacement fieldOutputs present in the fieldOuputs list. It must contain in that order, and at least one entry of the list ['U' , 'UR' , 'UT']. It is a direct call with no output.

Writes a fieldOutput set for all frames of a step, contiguously into file f. step is a step instance, fieldList is the list of fieldOutputs to be output from the frame object. All kind of nodal vector output can be treated although this was designed to treat displacement fields linked to the dof2mat function. It is a direct call with no output. In case of a modal deformation set, the EIGIMAG, EIGFREQ, EIGREAL and DAMPRATIO historyOutput data are also output.

Outputs an array of scalar nodal values to file f, for a particular fieldOutput instance field. stepName is the name of the step considered, frameName the name of the frame. However, since the fieldOutput is given the last two arguments are strings only needed to compose the array name in f.It is a direct call with no output.
allNodal2mat (odb) This function combines the lower level nodal output function to create and fill directly a .mat file containing DOFs, deformations sets, and nodal scalar values form an odb instance, created with openOdb. It is a direct call with no output.

The following are lower level calls, and alternative calls, with output in the workspace.

```
sortFieldList( fieldList)
```

arrayHead2mat(f, nValSize, isCpx, dim1,dim2, arrayName) fieldKeys)
readData(value)
readNodalValues(field, outList)
rmFromList(list1, list2) Returns list1 in which the items in list2 have been removed.
Low level command. Initialization of an array entry into the file f. The corresponding header is written such that the array values can be written right after. nValSize is the space needed to store the values form the array in Bytes. isCpx takes the value 0 if the data to store are real, or 16 if the values to store are complex. dim1 and dim2 are the dimensions of the array in direction 1 and 2. arrayName is the name given to the array. It is a direct call with no output.
getNodes(frame) Returns a nodeId array in the workspace, taken in a frame instance.nodeId=getNodes (frame)
getLabels(frame, fieldKeys) Returns the list of componentLabels contained in all the
Returns the list of componentLabels contained in all the
fieldKeys list, in a frame instance. It also generates a list in
which the field keys are repeated to match the componentLabels
Returns the list of componentLabels contained in all the
fieldKeys list, in a frame instance. It also generates a list in
which the field keys are repeated to match the componentLabels list. labels,labelField=getLabels(frame,fieldKeys)
setDOF(nodeId, field, Returns a DOF array interpreted from a fieldOuputs
Returns a field keys list in which the existing displacement field keys have been sorted at the list beginning, in the order ' U ', 'UR' , 'UT'.fieldList=sortFieldList(fieldList). list, a nodeId array and fieldKeys giving the fieldOutput displacement keys relevant in field. DOF=setDOF (nodeId,fieldOutputs, ['U'])

A way to output a data member of a value instance regardless of the precision used during the computation. data=readData(value)

Returns optionally the nodeId array, the corresponding data array and the componentLabels lists found, from a fieldOutput instance. OutList is a list of length 3 being [1,1,1] for a complete output, $[0,1,0]$ to output only the data array, and $[1,1,0]$ to output the combo nodeId array and data array. nodeId,data=readNodalValues(fieldOutput, $[1,1,0]$)

abaqus

Examples

See also FEMLink

ans2sdt

Purpose

Interface between ANSYS and SDT (part of FEMLink)

Syntax

```
ans2sdt('read FileName') % .rst, .cdb, .matrix, .mode files
ans2sdt('write FileName') % .cdb file
ans2sdt('BuildUp FileName') % .rst and .emat files
... = ans2sdt('def FileName.rst')% .rst or .mode files
```


Description

Build [Up, ContactMPC]

- Command BuildUp reads the binary files FileName.rst for model definition and FileName. emat for element matrices. The result is stored in Up (a type 3 superelement handled by upcom). FileName.mat is used to store the superelement.
General syntax is ans2sdt('BuildUp FileName'); valid calls are

```
Up=ans2sdt('buildup file');
[m,k]=upcom(Up,'assemble not');
```

For recent versions of ANSYS, you will have to manually add the ematwrite, yes command to the input file to make sure that all element matrices are written. This command is not accessible from the ANSYS menu.

There is a partial attempt to fill in element properties in Up.il. You can also use data=stack_get(model, 'info', 'RealConstants', 'getdata') to obtain the cell array containing the ANSYS real constants for various elements. The index in this cell array corresponds to element ProId values.

- Command BuildContactMPC interprets ANSYS contact elements (CONTA171-175), and slave elements TARGE170 to generate MPCs in the form of fe_caseg ConnectionSurface. This is thus close to bonded contact formulations.

```
model=ans2sdt('Read file.cdb'); % read base file
% transform contact info into bonded coupling
model=ans2sdt('BuildContactMPC',model);
```

\qquad
def
def=ans2sdt('read','file.mode') reads deformations in .mode files.
To read responses .rst files you should use

```
model=ans2sdt('readdef','test.rst'); % read all data
def=stack_get(model,'curve', 'NSL');
% Partial read of only specific entries
model=ans2sdt('rstdef','sdtforced.rst', ...
    struct('DefUse',{{'NSL'}})); % give the block names to be read
```

Since multiple blocks can be read, the results is saved in the model stack and can be retrieved by name using stack_get (model, 'curve', 'NSL') ; or similar calls. The standard names used by ANSYS are NSL (displacement), VSL (velocity response), RF (reaction forces), ESL (element solution, see ans2sdt ESLread). If you are interested in reading other results, please send a test case.

```
conv
```

This command lists conversion tables for elements, topologies, face topologies. You can redefine (enhance) these tables by setting preferences of the form sd_pref('set', 'FEMLink', 'ansys.elist', value), but please also request enhancements so that the quality of our translators is improved.

read

This command reads files based on their standard ANSYS extension.

- .matrix files are read assuming ASCII Harwell Boeing format obtained with HBMAT, Fname,Ext,--, ASCII,STIFF. RHS vectors or binary matrices are not read yet. You can read the mapping file at the same time using ans2sdt ('matrix', 'k.txt', 'k.mapping'); or DOF=ans2sdt('mapping', 'k.mapping').
- . mode files contain deformations which are read into the usual SDT format.
- .rst files contains model information topology, some material/element properties and boundary conditions (but these are more consistently read in the .cdb), ...
- When an .emat file is present, the read call attempts to run the BuildUp command.
- Responses are read using a call of the form ans2sdt ('readdef ', 'file.rst'), see ans2sdt def
- . cdb input files also written by ANSYS using the CDWRITE ALL,FileName, cdb command. Please also request enhancements on the support of this format so that the quality of our translators is improved.

ANSYS does not store boundary conditions in the .rst files so that these can only be imported from .cdb file. If you only have fixed boundary conditions, you can easily generate those with

```
model=ans2sdt('buildup test'); % read model
def=ans2sdt('def test.rst'); % read deformations
model = fe_case(model,'fixdof','Fixed_Dofs', ...
        fe_c(model.DOF,def.DOF,'dof',2));
cf=feplot; cf.model=model; cf.def=def; % display
```

Def
def=ans2sdt('def FileName.rst') or def=ans2sdt('def FileName.mode') reads deformations in .rst or .mode files

ESLread
To read element output data if any, that were detected during the reading of an output file (.rst). model=ans2sdt('ESLread'", model); will generate a stack entry named ESL: token in the model that will contain the element data.
token is an element output data identifier as documented by ANSYS, and mentioned in the model stack entry info,ptrESL.

Command option group i allows generating the output for a given group number i

JobOpt
JobOpt $=$ ans2sdt('JobOpt', Opt) ; This command returns a filled JobOpt structure to be run by sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and OutList must be filled. Further options concern the fields Input when the input file is different from the job name, RunOptions to append the usual option to the Ansys command, RemoveFile to remove files from the remote directory when needed.

Write
ans2sdt('write FileName.cdb', model) is the current prototype for the ANSYS writing capability. In ANSYS .cdb files are written with the CDWRITE ALL, FileName, cdb command. This does not currently write a complete . CDB file so that some manual editing is needed for an ANSYS run after the write.

See also

FEMLink

basis

Purpose

Coordinate system handling utilities

Syntax

p	$=\operatorname{basis}(\mathrm{x}, \mathrm{y})$
$[$ bas, x$]$	$=\operatorname{basis}($ node $)$
$[\ldots]$	$=$ basis('Command',)

Description

```
nodebas [nodeGlob,bas]=basis('nodebas',model)
```

NodeBas performs a local to global node transformation with recursive transformation of coordinate system definitions stored in bas. Column 2 in nodeLocal is assumed give displacement coordinate system identifiers PID matching those in the first column of bas. [nodeGlobal, bas]= basis (nodeLocal, bas) is an older acceptable format. -force is a command option used to resolve all dependencies in bas even when no local coordinates are used in node.

Coordinate systems are stored in a matrix where each row represents a coordinate system using any of the three formats

```
% different type of coordinate defintition
CorID Type RefID A1 A2 A3 B1 B2 B3 C1 C2 C3 0 0 0 s
CorID Type 0 NIdA NIdB NIdC 0 0 0 0}0
CorID Type 0 Ax Ay Az Ux Uy Uz Vx Vy Vz Wx Wy Wz s
```

Supported coordinate types are 1 rectangular, 2 cylindrical, 3 spherical. For these types, the nodal coordinates in the initial nodeLocal matrix are $x y z, r$ teta z, r teta phi respectively.

Figure 10.1: Coordinates convention.

The first format defines the coordinate system by giving the coordinates of three nodes A, B, C as shown in the figure above. These coordinates are given in coordinate system RefID which can be 0 (global coordinate system) or another CordId in the list (recursive definition).

The second format specifies the same nodes using identifiers NIdA, NIdB, NIdC of nodes defined in node.

The last format gives, in the global reference system, the position $A x A y A z$ of the origin of the coordinate system and the directions of the x, y and z axes. When storing these vectors as columns one thus builds the $x_{G}=\left[c_{G} L\right] x_{L}$ transform.

The s scale factor can be used to define position of nodes using two different unit systems. This is used for test/analysis correlation. The scale factor has no effect on the definition of displacement coordinate systems.

```
trans[ ,t][ ,l][,e] cGL= basis('trans [ ,t][ ,l] [,e]',bas,node,DOF)
```

The transformation basis for displacement coordinate systems is returned with this call. Column 3 in node is assumed give displacement coordinate system identifiers DID matching those in the first column of bas.

By default, node is assumed to be given in global coordinates. The 1 command option is used to tell basis that the nodes are given in local coordinates.

Without the DOF input argument, the function returns a transformation defined at the 3 translations and 3 rotations at each node. The t command option restricts the result to translations. With the DOF argument, the output is defined at DOFs in DOF.

The e command option (for elimination) returns a square transformation matrix. Warning: use of the transE command and the resulting transformation matrix can only be orthogonal for translation DOF if all three translation DOF are present.

```
gnode:nodeGlobal = basis('gnode',bas,nodeLocal)
```

Given a single coordinate system definition bas, associated nodes nodeLocal (with coordinates x y z, r teta z, r teta phi for Cartesian, cylindrical and spherical coordinate systems respectively) are transformed to the global Cartesian coordinate system. This is a low level command used for the global transformation [node,bas] = basis(node,bas).
bas can be specified as a string compatible with a basis ('rotate' call. In such case, the actual basis is generated on the fly by basis('rotate') before applying the node transformation.

```
[p,nodeL] = basis(node)
```

Element basis computation With two output arguments and an input node matrix, basis computes an appropriate local basis bas and node positions in local coordinates x . This is used by some element functions quad4 to determine the element basis.

rotate

bas=basis('rotate', bas, 'command', basId); is used to perform rotations on coordinate systems of bas given by their basId. command is a string to be executed defining rotation in degrees ($\mathrm{rx}=45$; defines a 45 degrees rotation along x axis). One can define more generally rotation in relation to another axis defining angle $r=a n g l e$ and axis $\mathrm{n}=[n x, n y, n z]$. It is possible to define translations (an origin displacement) by specifying in command translation values under names tx, ty and tz, using the same formalism than for rotations.

For example, one can define a basis using

```
% Sample basis defintion commands
bas=basis('rotate',[],'rz=30;',1); % 30 degrees / z axis
bas=basis('rotate',[],'r=30;n=[0 1 1]',1); % 30 degrees / [0 1 1] axis
bas=basis('rotate',[],'tx=12;',1); % translation of 12 along x
bas=basis('rotate',[],'ty=24;r=15;n=[1 1 1];',1); % trans. of 24 along y and rot.
```

$\mathrm{p}=$ basis($\mathrm{x}, \mathrm{y})$

Basis from nodes (typically used in element functions to determine local coordinate systems). x and y are two vectors of dimension 3 (for finite element purposes) which can be given either as rows or columns (they are automatically transformed to columns). The orthonormal matrix p is computed as follows

$$
\begin{equation*}
p=\left[\frac{\vec{x}}{\|\vec{x}\|}, \frac{\overrightarrow{y_{1}}}{\left\|\vec{y}_{1}\right\|}, \frac{\vec{x} \times \vec{y}_{1}}{\|\vec{x}\|\left\|\vec{y}_{1}\right\|}\right] \tag{10.1}
\end{equation*}
$$

where \vec{y}_{1} is the component of \vec{y} that is orthogonal to \vec{x}

$$
\begin{equation*}
\vec{y}_{1}=\vec{y}-\vec{x} \frac{\vec{x}^{T} \vec{y}}{\|\vec{x}\|^{2}} \tag{10.2}
\end{equation*}
$$

If x and y are collinear y is selected along the smallest component of x . A warning message is passed unless a third argument exists (call of the formbasis $(x, y, 1)$).

```
p = basis([2 0 0}]\mp@code{[ [\begin{array}{lll}{1}&{1}&{1}\end{array}]) gives the orthonormal basis matrix p
% Generation of an orthonormal matrix
p = basis([2 0 0],[\begin{array}{lll}{1}&{1}&{1}\end{array}])
p =
            1.0000 0 0
            0 0.7071 -0.7071
            0.7071 0.7071
```


See also

beam1, section 7.1 , section 7.2
Note : the name of this function is in conflict with basis of the Financial Toolbox.

comgui,cingui

Purpose

General utilities for graphical user interfaces and figure formatting. Figure formatting documentation can be found in section 8.1.

Syntax

```
comgui('Command', ...)
cingui('Command', ...)
```

comgui is an open source function that the user is expected to call directly while cingui is closed source and called internally by SDT.

ImCrop

Image cropping utilities. This function allows cropping uniform borders and uniform rows or columns in an image.

Syntax is a=comgui('ImCrop', a)'
Image a can be either

- an image defined by an m-by-n-by 3 matrix, or a line cell array of such images
- a structure from getFrame with fields cdata containing m-by-n-by 3 matrices
- a file name or a line cell array of file names. By default if a file name is given the file is replaced by saving the cropped image.
- a composite cell array line with file names and images. By default if a file name is given the file is replaced by saving the cropped image.

The following command options are available

- Borders To only crop image from the first border.
- AllBorders To only crop image from all borders.
- BorderNum To only crop image from the first N borders, given as parameter.
- UpToBorder To crop until a border is found in the limit of 20 pix from the edges of the original image. (Useful for java capture of figures)
- All To remove all rows/columns with equal colors throughout the image.
- Equal To apply the same cropping to all images in the cell array input, by intersecting cropping rows and columns.
- -noSave Not to erase images provided in file names.
- Rot90 can be used to rotate the image by ± 90 degrees before cropping

You can include cropping options within an ImWrite call by defining a . CropOpt field in the option structure.

ImWrite, ...

ImwriteFileName. ext does a clean print of the current figure. The preferred strategy is to predefine options, so that comgui('ImWrite') alone is sufficient to generate a figure. This can be done by

- predefining properties in a comgui PlotWd call (including the file name as illustrated under comgui ImFtitle.
- or using the obsolete strategies of setting ua.ImWrite in the iiplot PlotInfo so that the proper data is used when a curve is displayed in iiplot or setting ImWrite in comgui def.Legend so that the proper configuration is used when a def is displayed in feplot.
comgui('ImWrite',gf,RO) with a figure handle given in gf and options stored in the RO structure, is the most general. gf can be omitted and will be taken to be gcf.

RO can be omitted if options are given as strings in the command. Thus ImWrite-NoCrop is the same as using RO. NoCrop=1.

For details for multi-image capture strategies (for example a set of modeshapes), see iicom ImWrite. Acceptable options are detailed below.

- .FileName The default extension is .png. With no file name a dialog opens to select one. RO.FileName can be a cell array for a ImFtitle call.
- .NoCrop=1 avoids the default behavior where white spaces are eliminated around bitmap images.
- .FTitle=1 uses the title/legend information to generate a file name starting with the provided filename.

A typical example would be comgui('imwrite-FTitle plots/root') which will generate a root_detail.png file in local directory plots.
For a given plot, comgui ('imFTitle') can be used to check the target name.
Using a cell .FileName calls comgui ImFtitle to let you build the file name from elements within the figure.

- . LaTeX=1 displays LATEX commands to be used to include the figure in a file.
- .objSet provides an comgui objSet style. You can also combine predefined styles using a cell of the form \{'@OsDic(SDT Root)', \{'fmt1', 'fmt2'\}\}. The '@ToFig' can be used to clone the figure before printing to avoid modifying its appearance.
- . clipboard copies to clipboard.
- .Java To use screenshot strategies of the system current monitor display using java. This implies in particular that the content to capture is visible on screen when the command is used.
- . Java=1 uses java to do a screen capture of the figure content (undocked figure).
- . Java=2 captures the figure with the figure border (undocked figure). Use 2.2 to perform a clean crop arround the figure (if windows in your OS are surrounded by an unicolor rectangle)
- . Java=3 captures the dock containing the current figure.
- . Java=4 captures the content of the current tab in a tabbed pane without column headers.
- . Java=5 captures the pane containing the current tab (add the tab layout).
- . Java=6 captures the content of the current tab in a tabbed pane with column headers.
- .Java=7 captures the content of the tile containing the figure (figure + figure headers).
- . Java=8 captures the ExploTree of the UI.
- .JavaT To capture figures contents using java object methods (works for tables only)
- . open=1 opens the image in a browser.
- . Crop='all' modifies the cropping option, see comgui ImCrop. Use 'no' to avoid cropping.
- .MultiExt=\{'.png','.fig'\} will allow saving of multiple versions of the same image.
- .wobjSet is used to insert the image into the current Microsoft Word file directly. d_imw('get', 'WrW49C') gives a sample format.

It is also possible to directly capture a graphical java object which contains getVisibleRect and getLocationOnScreen properties. Simply provide the java object as instead of a figure handle.
sdtweb sdt \% Open sdt.html in the help browser
pause(2) ; \% Wait for the display
desktop = com.mathworks.mde.desk.MLDesktop.getInstance;
r1=desktop.getGroupContainer('Help') \% Get the java container of the help browser \% Save the HelpBrowser capture in the tempdir with name testjavacapture.png comgui('imwrite testjavacapture',r1);

ImFtitle, ...
ImFtitle generates a file name for the figure based on current displayed content. Text is searched in objects with tags legend, ii_legend, in the axes title. By default all the text is concatenated and that can generate excessively long names so finer control is achieved by providing the FileName as a cell array in the comgui PlotWd call. The underlying mechanism to generate the string is described in comgui objString.

```
figure(1);clf; t=linspace(0,2*pi);h=plot(t,[1:3]'*sin(t));
legend('a','b','c');title('MyTit');
% Define target plot directory in the figure
cingui('objset',1,{'@PlotWd',sdtdef('tempdir')})
% Check name generation, from string
comgui('imftitle',1,{'@PlotWd','@title','.png'})
% Do a direct call with name building
comgui('imwrite',struct('FileName',{{'@PlotWd','@title','.png'}}))
% Predefine the figure save name in the userdata.Imwrite of current axis
comgui('PlotWd',1,'FileName', ...
    {'@Plotwd','@title', ... % Search for plotwd, use title name
    '@legend(1:2)','.png'}); % use first legend entry
comgui('imInfo') % See parameters
% check image name, display clickable link for image generation
comgui('imftitle')
sdtweb('_link','comgui(''Imwrite'')','Generate');
d_imw('Fn') % Standard names styles for tile name generation
```

dock
SDT uses some docking utilities that are not supported by MATLAB. The actual implementation is thus likely to undergo changes.

```
gf=11;figure(gf);clf; t=linspace(0,2*pi);h=plot(t,[1:3]'*sin(t));
figure(12);plot(rand(3));figure(13);mesh(peaks);
% set the dock name and position
comgui('objset',[11 12 13],{'@dock',{'name','MAC', ...
    'arrangement',[\begin{array}{lllll}{1}&{2;1}&{1}&{3}\end{array}], ... % Automated tile merging
    'position',[0 0 600 400],...
    'tileWidth',[.4 .6], ... % Fraction of columns
    'tileHeight',[.3 .7]}}); % Fraction of rows
pos=feval(iimouse('@getGroupPosition'),'MAC'); % group screen position
figure(14); % Add a new figure in specified tile
cingui('objset',14,{'@Dock',{'Name','MAC','Tile',11}});
feval(iimouse('@deleteGroup'),'MAC') % Delete group (and figures)
```

Capture of a dock group figure is possible with comgui imwrite-Java3

```
guifeplot,iiplot
    cf=comgui('guifeplot -reset -project "SDT Root"',2);
    comgui('iminfo',cf) % View what was set
```

Is used to force a clean open of an feplot figure. The option -reset is used to force emptying of the figure. The option -project is used to combine a call to comgui PlotWd to define the project.
Formatting styles sdtroot 0sDic are also stored in the project.

objSet (handle formatting)

cingui('objSet', h, Prop) is the base SDT mechanism to generalize the MATLAB set command. It allows recursion into objects and on the fly replacement. Prop is a cell array of tag-value pairs classical in MATLAB handle properties with possible modifications. Three base mechanisms are object search, expansion and verification.

Object search '@tag', value applies property/values pairs stored in value to an object to determined on the fly. For example '@xlabel' applies to the xlabel of the current axis.

- @xlabel accepts a value that is a cell array that will be propagated for all x labels. A typical example would be \{'@xlabel', \{'FontSize', 12\}\}. Other accepted components are @ylabel, @zlabel, ©title, @axes, @text,
- @axes, @figure will search for parent or child axes objects
- @tag is assumed to search for object with the given tag, so that its properties can be set. For example \{'@ii_legend', \{'FontSize', 12\}\} will set the fontsize of an object with tag ii_legend.
- @tag(val) allows the selection of a specific object by index when multiple objects with the same tag are found.
- @ImFtitle is used to store the cell array for image name generation see comgui ImFtitle. This must be set after displaying title and legend entries, since the information is stored in these objects.
- @legend generates the usual MATLAB legend
- @ii_legend allows a tick generation callback, see ii_plp Legend
- @TickFcn allows a tick generation callback, see ii_plp TickFcn
- @ColorBar allows handles properties of colorbar. This is illustrated under fecom ColorBar, but can be used for any figure.
- @dock handles docking operations, see comgui dock
- @ToFig replicate the figure before applying operations. Property \{'cf', val\} can be used to force replication into figure val (use NaN for a new figure). Property \{'PostFcn', val\} can be used to allow execution of a callback after the figure replication. Property $\{$ ' 1 eg ', 1$\}$ uses the iiplot ii_legend object, while 2 transforms to a MATLAB legend.
- @PlotInfo calls iicom PlotInfo to initialize how data is displayed in an feplot/iiplot figure.

Expansion modifies the current property/value list by replacing a given entry.

- '@OsDic(SDT Root)', \{'val1', 'val2'\} seeks objset values in the sdtroot OsDic.
- ' ', '@tag' is first expanded by inserting a series of tag-value pairs resulting from the replacement of @tag.

The two uses are illustrated below

```
% Define OsDic entries in project
sdtroot('SetOsDic',{'feplotA',{'Position',[NaN NaN 500 300]};
    'font12',{'@axes',{'fontsize',12},'@title',{'fontsize',12}}
    'grid',{'@axes',{'xgrid','on','ygrid','on','zgrid','on'}}
});
sdtroot('setOsDic', ... % Define a line sequence
    {'LiMarker',setlines(jet(5),{'-','--','-.'},'+ox*sdv`><ph')})
% Example of apply call
figure(1);plot(sin(linspace(0,4*pi)'*[1:3]))
cingui('objset',1,{'@OsDic(SDT Root)',{'feplotA','grid','LiMarker'}})
% Get OsDic data for given entry
sdtroot('cbosdicget',[],'ImLW75') % in project
cingui('fobjset','RepRef',{'@OsDic',{'feplotA','grid'}})
cingui('fobjset','RepRef',{', ,'@Rep{SmallWide}'})
```

Value replacement/verification performs checks/callbacks to determine the actual value to be used in the MATLAB set.

- position accepts NaN for reuse of current values. Thus [NaN NaN 300 100] only sets width and height.
- @def The value is a default stored in sdt_table_generation('Command'). One can search values by name within a cell array. This is in particular used for preset report formats @Rep\{SmallWide\} in comgui ImWrite.
- xlim, ... clim accept callbacks for the setting of limits. 'set(ga,"clim",[-1 1 $]^{*} \max (\operatorname{abs}(\operatorname{get}($ ga," clim" $\left.)))\right)^{\prime}$ is a typical example setting symmetric color limits.
- '@setlines(''marker'')' or '@out=setlines(''marker'');' are two variants where the value is obtained as the result of a callback. Note that the variant with @out must end with a semicolumn. This is illustrated in the example below.

```
figure(1);t=linspace(0,2*pi);h=plot(t,[1:3]'*sin(t));
cingui('objset',1, ... % Handle to the object to modify
    {'','@Rep{SmallWide}', ... % Predefined figure type
        '@line','@setlines(''marker'')'}) % Line sequencing
cingui('fobjset','RepRef',{', ,'@Rep{SmallWide}'})
```

\qquad
objString (string generation for title and file)
cingui('objString',h,SCell) is a mechanism to generate strings based on a set of properties. Elements of SCell are replaced when starting by an @, with implemented methods being

- @PlotWd is the base mechanism to find the plotting directory, see comgui PlotWd @PlotWd/relpath is accepted in name generation to allow simple generation of relative paths.
- @tag (1:2) allows selection of a subset of objects when multiple exist. Typical are @legend (1) to select the first string of a MATLAB legend, or ©ii_legend(1) for an SDT ii_plp Legend entry. ©headsub for the text used by feplot to display titles.
- @colorbar seeks the string associated with a colorbar
- @cf.mdl.name or any variant based on @cf can be used to retrieve data in an SDT handle pointer.

This is used by comgui ImFtitle to generate figure names, but can also be used elsewhere fe_range, ...). For example in title generation.

```
figure(1);clf;
t=linspace(0,2*pi);h=plot(t,[1:3]'*sin(t));title('MyTit')
legend('a','b','c');
SCell= {'@Plotwd/plots', ... % Search for plotwd/plot
    '@title', ... % use title name
    '.png'}; % extension
cingui('objstring',1,SCell) % Handle of base object
```


ParamEdit

cingui('ParamEdit') calls are used to clarify filling of options data structures as detailed in section 7.17.3.

def.Legend

The def.Legend field is used to control dynamic generation of text associated with a given display. It is stored using the classical form of property/value pairs stored in a cell array, whose access can be manual or more robustly done with sdsetprop.
Accepted properties any text property (see doc text) and the specific, case sensitive, properties

- set gives the initialization command in a string. This command if of the form 'legend -corner . 01 . 01 -reset' with
- cornerx y gives the position of the legend corner with respect to the current axis.
- -reset option deletes any legend existing in the current axis.
- string gives a cell array of string whose rows correspond to lines of the legend. \$title is replaced by the string that would classically be displayed as label by feplot. Individual formatting of rows can be given as a cell array in the second column. For example \{'\eta_1', \{'interpreter', 'tex'\}\}.
[model,def]=hexa8('testeig'); cf=feplot(model);
cf.data.root='\it MyCube';
def.Legend=\{'set','legend -corner . 1 . 9 -reset', ... \% Init
'string',\{'\$title';'@cf.data.root'\}, ... \% The legend strings
'FontSize',12\} \% Other test properties
cf.def=def;

PlotWd
A key aspect of image generation is to define meta-data associated with a figure. These include, directory where the image will be saved, file name, possible inclusion in Word, PowerPoint, ... The Project tab defines the plot directory and possibly a file for inclusion. Other properties are set using the PlotWd command cingui('plotwd',gf,'@OsDic(SDT Root)') as illustrated below.

When initializing in a feplot figure, use cf=comgui('guifeplot -project "SDT Root"', 2) to set the project information. Note that the older strategy using cf.def.PlotWd, cf.mdl.PlotWd are still used first if they exist. Similarly use cf=comgui('guiiiplot -project "SDT Root"',2) to set the project information of iiplot figures.

When refining formatting beyond specifying directory, insertion file, accepted property/value pairs (a structure can also be used but this is not the norm)

- '@OsDic (SDT Root)', list is used to extract property/values from the dictionnary. The (SDT Root) is the name of the figure from which dictionnary and project information is to be obtained from. The Project values is set.
- Project tag of project interface. Default would be SDT Root
- FileName cell array describing file name generation, see example in comgui ImFtitle, Note that the Fn. OsDic entries allow generation of names from text present in the figure (labels, titles, ...).
- objSet cell array of objset commands to be performed before generating an image. This typically begins by a @ToFig to avoid modifying the original figure.
- wobjSet cell array of commands for insertion of the resulting image into MicroSoft Word, Powerpoint,Excel, LaTex, ... A sample entry is given by d_imw('wrw49c').
- 'MultiExt', \{'.png', '.fig'\} cell array of extensions to save mutiple versions of given figure.

```
t=linspace(0,pi); % basic plot
gf=1;figure(gf);clf;plot(t,sin(t));
title('TestFigure');legend('a');
% Define the project directory
sdtroot('SetProject',struct('PlotWd',sdtdef('tempdir')))
% Prepare for image generation.
list={ ... % List of OsDic entries, implemented in d_imw
    'ImToFigN', ... % Duplicate to new figure before ImWrite
    'FnTitle', ... % Generate file name based on Title
    'WrW49C' % Insert in word with 49% wide centered
    };
% Associate figure gf with project SDT Root
cingui('plotwd',gf,'@0sDic(SDT Root)',list)
comgui('iminfo',gf) % View what was set
comgui('imwrite',gf) % Actually insert image
```

A variety of predefined formats is available (and can be customized) with OsDic.

FitLabel
comgui('fitlabel') attempts to replace axes of the current figure so that xlabel, ylabel, ... are not cropped.

commode

Purpose

General purpose command parser for user interface command functions.

Syntax

Commode ('CommandFcn', 'Chain0fCommands')

Description

Commands and options are central to SDT. These strings are passed to functions to allow multiple variations in behavior. Accepted commands are listed in the help (text) and sdtweb (html) documentations (see iicom, fecom, feutil, etc.).

- commands are case insensitive, thus FindNode and findnode are equivalent. The uppercase is used to help reading.
- options can be separated by blanks: 'ch1' or 'ch 1' are the same.
- option values (that must be provided) are indicated italic in the HTML help and in brackets () in the text help.

For example ch i indicates that the command ch expects an integer. ch 14 is valid, but ch or ch i are not.

- in the help alterative options are indicated by [c1, c2] (separated by commas).

For example ch $[, c][i,+,-,+i,-i]$ means as a first alternative that ch and chc are possible. Then alternatives are i a number, + for next, - for previous, $+i$ for shift by i. ch 14 , chc $12: 14, \mathrm{chc}+$, ch-2 are all valid commands.

- Commands are text strings so that you can use fecom ch[1,4], fecom 'ch 14' or fecom('ch 14^{\prime}) but not fecom ch 14 where ch, 1 and 4 are interpreted by Matlab as 3 separate strings.
- ; placed at the end of a command requests a silent operation as in MATLAB.
- When building complex commands you may need to compute the value used for an option. Some commands actually let you specify an additional numeric argument (feplot('textnode', $\left.\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$ and feplot('textnode 123 ') are the same) but in other cases you will have to build the string yourself using calls of the form feplot (['textnode' sprintf(' \%i', [lllll)

The UI command functions only accept one command at a time, so that commode was introduced to allow

- command chaining: several commands separated by semi-columns ; The parsing is then done by commode.
- scripting: execute all commands in a file.
- command mode: replace the MatLaB prompt >> by a CommandFcn> which directly sends commands to the command function(s).

Most command functions send a command starting by a '; ' to commode for parsing. Thus commode ('iicom', 'cax1; abs') is the same as iicom (';cax1;abs')
The following commands are directly interpreted by commode (and not sent to the command functions)
q, quit exits the command mode provided by commode but not Matlab .
script FName reads the file FName line by line and executes the lines as command strings.
The following syntax rules are common to commode and Matlab

\%comment	all characters after a \% and before the next line are ignored.
[]	brackets can be used to build matrices.
$;$	separate commands (unless within brackets to build a matrix).

See also

comstr iicom, fecom, femesh

comstr

Purpose

String handling functions for the Structural Dynamics Toolbox.

Syntax

See details below

Description

The user interfaces of the Structural Dynamics Toolbox have a number of string handling needs which have been grouped in the comstr function. The appropriate formats and usual place of use are indicated below.

```
Cam,string istrue=comstr(Cam,'string')
```

String comparison. 1 is returned if the first characters of Cam contain the complete 'string'. 0 is returned otherwise. This call is used extensively for command parsing. Note that istrue is output in format double and not logical. See also strncmp.

```
Cam,string,format [opt,CAM,Cam]=comstr(CAM,'string','format')
```

Next string match and parameter extraction. comstr finds the first character where lower(CaM) differs from string. Reads the remaining string using the sscanf specified format. Returns opt the result of sscanf and CAM the remaining characters that could not be read with the given format. [opt , CAM, Cam]=comstr (CAM, 'string', , \% ') is used to eliminate the matching part of string.

```
CAM,ind [CAM,Cam] = comstr(CAM,ind)
```

Command segmentation with removal of front and tail blanks. The first ind characters of the string command in capitals CAM are eliminated. The front and tail blanks are eliminated. Cam is a lowercase version of CAM. This call to comstr is used in all UI command functions for command segmentation.

```
-1 opt = comstr(CAM,[-1 default])
```

Option parameter evaluation. The string CAM is evaluated for numerical values which are output in the row vector opt. If a set of default values default is given any unspecified value in opt will be set to the default.
-3 date $=$ comstr (CAM, [-3])
Return the standard date string. Used by ufwrite, naswrite, etc. See also date, datenum.
-4 CAM $=\operatorname{comstr}(C A M,[-4 n c])$
Fills the string CAM with blanks up to nc characters.
-5 comstr(Matrix,[-5 fid],'format')
Formatted output of Matrix, the format is repeated as many times as Matrix has columns and a formatted output to fid (default is 1 standard output). For example you might use comstr (ii_mac(md1,md2)*100,[-5 1], ,\%6.0f').
-7 st1=comstr(st1, -7, 'string')
used for dynamic messaging on the command line. On UNIX platforms (the backspace does not work properly on Windows), the string st1 is erased before 'string' is displayed.

```
-17 Tab , comstr(tt,-17,'type')
```

This is used to generate tabular output of the cell array tt to various supported types: tab (opens a java tab containing the table), excel (Microsoft Excel only available on windows), html, csv (comma separated values, readable by excel), tex (latex formatting), text printout to the command window.

```
% A sample table
tab=num2cell(reshape(1:10, [],2));tab(1,:)={'c1','c2'};
tname=nas2up('tempname o.html');
% RO option structure to format a table for HTML or java output
RO=struct('fmt',{{'%3i','%.1f'}}, ... % Formatting for each column
    'HasHead',1); % a header is provided as strings
RO.fopen={tname,'a+'}; % Opening information
RO.OpenOnExit=0;
RO.Legend=sprintf('<p>%s</p>','My HTML legend');
% comstr(tab,-17,[],RO.fmt)
comstr(tab,-17,'html',RO);
sdtweb('_link',sprintf('web(',%s'')', tname))
% Show the table in JAVA tab
```

```
comstr(tab,-17,'tab', RO);
% Generate tex output of java tabs
comstr(struct('FigTag','SDT Root'),-17,'tex');
comstr(gcf,-17,'tex');
```

Accepted fields for the options structure are

- .fmt cell array of column formatting instructions. These can be strings $\% .1 \mathrm{f}, \% \mathrm{i}, \% .2 \mathrm{~g}$ which are passed to sprintf. They can also be java strings java.lang. String(' 0.00% ') which are then parsed using java.text. DecimalFormat.
- . ColumnName cell array with first row giving column names. .ColumnName (: , 3) can also be used to store the column format. .ColumnName (: 4) can also be used to store cell coloring data, see section 7.18.
- .HasHead if non zero, skips lines of strings

Fields specific for HTML generation are

- .name is used to define a title for the table.
- .fopen used for HTML generation. For example \{tname, 'a+'\}; is for append. .OpenOnExit asks to open the file in the web browser.

Fields specific for JAVA tabs are

- . setSort activates row sorting in java tables. 1 : basic sort, 2 : selectable sort. 3 : tree table.
- .name is used to define a tab name.
- .FigTag tag or handle for figure where the tab should be displayed.
- . ColWidth vector of column width in pixels.
- . groupable used with . setSort=3 to specify columns that will be used to generate the tree.
- jProp accepts tag, value pairs. 'ResizeMode', 'Off' to fix colums for example. 'MousePressed', data gives a cell array used to store events that should be handled by the table (see menu_generation('jpropcontext', ua, 'Tab.ExportTable')).
- . ColumnName second row can give alignment 'right'. Third row can give column formatting (alternatively, the .RowFmt can be used). Row 4 can be used to define a color based on a CritFcn.
-38 [i0, st2] =comstr (st1, -38)
Checks whether provided string st1 is valid to be a structure field. Output i0 is a boolean, true if valid, false otherwise. Output st2 is equal to input st1 if the string is valid. If not, st2 is an
alternative valid suggestion based on st1.
See also
commode

curvemodel

Purpose

Handle object for implicit representation of curves.

Syntax

```
h=curvemodel('Source',r1,'yRef',fun,'getXFcn',{fun,fun,fun}, ...
    'DimPos',[\begin{array}{lll}{1}&{3}&{2}\end{array}]);
```


Description

Multi-dim curve are multi-dimensional arrays (.Y field) with information about the various dimensions (.X,.Xlab fields). curvemodel store similar data sets but provide methods to generate the . X, .Xlab, .Y fields content dynamically from an information source.
curvemodel objects are derived from MATLAB handle objects. If you copy an object's handle, MATLAB copies only the handle and both the original and copy refer to the same object data.

The principle of curve models is that the computation only occurs when the user seeks the required data.

Important fields are

- . Source contains the data to be used as source. The source can be a pointer. For example cf.v_handle.Stack\{'def1'\} can be used to point to a set of deformations stored in afeplot, or iiplot stack.
- . DimPos is used to allow permutations of the array dimensions (implicit equivalent of permute(c.Y,c.DimPos).
- .xRef is a cell array of length the number of dimensions in .Y allowing the extraction from the source.

Documented methods are

- . GetData: creates a copy of the full implicit data.

This functionality mostly undocumented. Support functions are process_r that handles delayed signal processing requests, ii_signal that supports curvemodel commands associated with signal processing. The following is an example for users willing to dig into the code.

```
C1=d_signal('RespsweepSpec') % Create a spectrogram model
C2=C1.GetData; % create a copy where the spectrogram is computed
C2.PlotInfo=ii_plp('plotinfo 2D');
iicom('curveinit','Spectro',C2);
```


db, phaseb

Purpose

Compute the decibel magnitude.
Compute the unwrapped phase in degrees.phase

Syntax

$\mathrm{m}=\mathrm{db}(\mathrm{xf})$
$\mathrm{p}=\mathrm{phaseb}(\mathrm{xf})$

Description

db computes the decibel magnitude of each element of the matrix xf. An equivalent would be

```
m = 20*log10(abs(xf))
```

phaseb is an extension to the case of multiple FRF stacked as columns of a matrix xf of the phase routine available in the System Identification Toolbox. It computes the phase in degrees with an effort to keep the phase continuous for each column.

Example

Here is an example that generates the two FRF of a SIMO system and plots their magnitude and phase.

```
a=[0 1;-1 -.01];b=[0;1];c=[1 0;0 1];d=[0;0];
w=linspace(0,2,100)'; xf=qbode(a,b,c,d,w);
clf;
subplot(211);plot(w,dbsdt(xf)); title('dB magnitude')
subplot(212);plot(w,phaseb(xf));title('Unwrapped phase in degrees')
```


See also

The xf format, iiplot

ex2sdt

Purpose

Interface between EXCITE and SDT (part of FEMLink).

Syntax

```
        ex2sdt('read',FileName);
        ex2sdt('post');
read[*.cff, *.gid]
    ex2sdt('Read','fname.cff') % Read .cff file and display in feplot
```

This command can be used to read some Excite specific output files :

- . cff file can be used to export model geometry. Model is read and displayed in feplot.
- .gid file can be used to export time curve at a current DOF. A full directory can be read : ex2sdt('Read', 'Directory.gid'). Curves are displayed in iiplot.

ConvertAsMat

ex2sdt('ConvertAsMat') This command aims to convert all Excite results of a given directory as SDT mat files (typically RO mdl and def variables) that can be explorated and post treated through the ex2sdt UIScan command.

```
sdtroot('SetProject',struct('ProjectWd','projectpath','root','resultroot'))
ex2sdt('Post')
```

First a root project must be opened, defining at least :

- ProjectWd : the main project directory that contains the results of the time simulation.
- root : the root of the filenames where model and results are stored.

The result folder must contains

- the model file, and if needed the associated reduction basis file. The model file should be (in preference order):
- a root.OUT2 nastran output2 file from the DMAP condensation step.
- a root.NAS nastran bulk file.
- a root.cff excite file (to be implemented).
- if needed, the file that contains the restitution matrix in the case of meshed part reduced using the AVL DMAP. This file is read and lead to a model.TR reduction basis, that can be used to expand the displacement form the reduced model to the full displacement field (and so animate the time deformation in feplot).
- a matlab file, root_X20A.mat, that is obtained by the ex2sdt Text0p4 command, that converts the original export text OUT4 file to a Matlab binary file that is more convenient to use (it can be read as an HDF handle to save memory).
- directly the original root_X20A.OUT4 export, which is a text file. This case is only suitable for files that are lower than 300 MB .
- as many subfolders as simulation results. For the moment each simulation typically corresponds to a specific rotation speed (so each subfolder name should end by the rotation velocity in RPM, for example study. 2000 for the 2000 RPM speed case) : this will be generalized to obtain simulation information and build a simulation parameter data structure RO, in order to perform dirscan in the generic SDT process (see sdtweb fe_range) (XXX need to find way to recover those parameters from Excite ouputs...). The result files should be, by order of preferences:
- a root_SOL109.INP4 nastran input4 text file that contains displacements, velocities and acceleration at each (reduced) DOF. This is the more compact and usable output. Corresponding time and angle are then read in the util_batch_list.out log file.
- a number of root-NodeID-DOFID-REL.GID files, each one containing the displacement, velocity and acceleration in a given of the 6 directions at a node of the model. Some developpements are needed to use this strategy (INP4 should be prefered), that is beside very time-consumming.

The input parameters can be get from 2 different files:

- summary. xml : that can be read with RO=feval (ex2sdt ('@parseXML'), 'summary.xml'). Developpement must be done.
- simulation_report.out : a text log file that can be read with RO=feval(ex2sdt('@readReportOut'), 'simulation_report.out').
ex2sdt('UIScan') This command can be used to scan a given directory (defined in the Project tab) and then perform some post-treatment (compute campbell diagrams and animate displacements or velocities as color map,...) and explorate data through UI.

Text0p4
This command is experimental.
ex2sdt('Text0p4','filename_X20A.OUT4')
It aims to convert an ascii X20A.OUT4 file, to a binary HDF .mat file. This operation is bufferized so that the 2 GB memory limitation of old 32 bits Matlab can be bypassed.

See also

FEMLink

fe2ss

Purpose

Build state-space or normal mode form from FE model.

Syntax

```
[sys,TR] = fe2ss('command [options]',MODEL)
[sys,TR] = fe2ss('command [options]',MODEL,C)
[nor,TR] = fe2ss('command -nor', ...)
TR = fe2ss('command -basis', ...)
```


Description

fe2ss is meant to allow users to build state-space (see section 5.4) and normal mode models from full order model matrices. Accepted commands are detailed below. Accepted command options

- -nor outputs the normal mode model data structure (see section 5.2).
- -basis outputs the reduction basis is the structure TR
- -se outputs a reduced superelement
- -loss2c performs estimates viscous damping based on hysteretic models
- -cpx 1 computes complex modes and uses a call to res2ss to compute the state space model. - cpx 2 uses first order correction in the fe_ceig call before using res2ss to build the statespace model. This is currently only available for a Free command.
- -dterm includes static correction as a D term rather than additional modes. The associated full order shapes are stored in TR.bset.
- -ind specifies indices of modes to be kept. Others are included as a D term.

The procedure is always decomposed in the following steps

- call fe_reduc build a reduction basis given in TR.def (see section 6.2). This usually includes a call to fe_eig with options EigOpt provided in the fe2ss command
- call fe_norm to orthonormalize the basis with respect to mass and stiffness (obtain a model in the normal mode form (5.4), see section 5.2) and eliminate collinear vectors if any
- call nor2ss or project model matrices depending on the number of outputs

The TR output argument, contains the modeshapes followed by residual vectors, is given so that the user can display modeshapes in feplot with $\mathrm{cf} . \mathrm{def}=\mathrm{TR}$ or callnor2ss repeatedly without computing the basis again. The later is in particular useful for changes in the sensor configuration which have no effect on the retained basis. -nor and -basis can be used to generate the corresponding outputs.

High level input arguments are a MODEL (see section 4.5) with a case defined in the model which must contain load and sensor entries (see fe_case).

Damping can be specified multiple ways.

- modal damping of viscous form can be given in the model (using a DefaultZeta case entry as shown below) or as an additional argument C which can be a system damping matrix, a scalar uniform damping ratio or a vector of damping ratios.
- defining modal damping using an inline function. For example to set 1% below 3000 Hz and 5% above use

```
model=stack_set(model,'info','DefaultZeta', ...
    @(f)double(f/2/pi<3000)*.01+double(f/2/pi>=3000)*.05);
```

- using material loss factors and adding the -loss2c option described above.
in the model (using a DefaultZeta case entry for example), or given as an additional argument C which can be a system damping matrix, a scalar uniform damping ratio or a vector of damping ratios.

The following example compares various damping models.

```
mdl=demosdt('demo ubeam mix');cf=feplot;
mdl=fe_case(mdl,'SensDof','Out',[[343.01 343.02 347.03]', ...
    'FixDof','base', 'z==0')
freq=linspace(10,1e3,2500)';mdl=stack_set(mdl,'info', 'Freq',freq);
% uniform 1 % modal damping
mdl=stack_rm(mdl,'info', 'RayLeigh');
mdl=stack_set(mdl,'info','DefaultZeta',.01);
[sys,T] = fe2ss('free 6 10',mdl);
qbode(sys,freq*2*pi,'iiplot "Modal"');
% Rayleigh damping with 1 % viscous at 200 Hz, see sdtweb('damp')
mdl=stack_rm(mdl,'info','DefaultZeta');
mdl=stack_set(mdl,'info', 'Rayleigh', [0 .01*2/(200*2*pi)]);
[sys2,T] = fe2ss('free 6 10',mdl);
qbode(sys2,freq*2*pi,'iiplot "Rayleigh"');
% Estimate viscous from hysteretic damping
[sys3,T] = fe2ss('free 6 10 -loss2c',mdl);
```

```
qbode(sys3,freq*2*pi,'iiplot "Loss"');
iicom('iix',{'Modal', 'Rayleigh', 'Loss'});
% display full response
RB=struct('f',cf.Stack{'Freq'},'u',eye(5,1))
cf.def=fe2ss('sysdef',sys,T,RB);
% use iimouse('cursorOnFeplot') to see deformations at various freq.
```


SysDef

The command is used to generate a restitution of a forced response on all DOF in TR. The calling format is $f e 2 s s(' s y s d e f$ ', sys, TR, RB) with fields of the option structure being

- .f frequency in Hz. or .w frequency in rad/s.
- .u input possibly a vector that should be consistent with sys.b.

```
Free [ , Float] [ , -dterm] EigOpt
```

See fe_reduc Free for calling details, this generates the classical basis with free modes and static correction to the loads defined in the model case (see fe_case). With the -dterm option, the static correction is given as a D term rather than additional modes.

CraigBampton nm

It is really a companion function to fe_reduc CraigBampton command. The retained basis combines fixed interface attachment modes and constraint modes associated to DOFs in bdof.

This basis is less accurate than the standard modal truncation for simple predictions of response to loads, but is often preferred for coupled (closed loop) predictions. In the example below, note the high accuracy up to 200 Hz .

```
mdl=demosdt('demo ubeam');cf=feplot;
mdl=fe_case(mdl,'SensDof','Out',[343.01 343.02 347.03]', ...
    'FixDof ','Base','z==0')
freq=linspace(10,400, 2500)';mdl=stack_set(mdl,'info','Freq',freq);
% uniform 1 % modal damping
mdl=stack_rm(mdl,'info','RayLeigh');
mdl=stack_set(mdl,'info','DefaultZeta',.01);
```

\qquad

```
[sys,T] = fe2ss('CraigBampton 5 10', ...
    fe_case(mdl,'DofSet', 'IN',314.01));
qbode(sys,freq*2*pi,'iiplot "Craig"');
% Same with free modes
[sys2,T2] = fe2ss('Free 5 10', ...
    fe_case(mdl,'Remove','IN','DofLoad','IN',314.01));
qbode(sys2,freq*2*pi,'iiplot "Free" -po');
iicom('iixOnly',{'Craig','Free'});iicom(';sub 1 1;ylog')
```


Low level input format

The obsolete low level input arguments are those of fe_reduc with the additional damping and output shape matrix information.

```
[sys,TR] = fe2ss('command',m,k,mdof,b,rdof,C,c)
```

$\mathrm{m}, \mathrm{k} \quad$ symmetric real mass and stiffness matrix
mdof associated DOF definition vector describing DOFs in m and k
$\mathrm{b} \quad$ input shape matrix describing unit loads of interest. Must be coherent with mdof. bdof alternate load description by a set of DOFs (bdof and mdof must have different length) rdof contains definitions for a set of DOFs forming an isostatic constraint (see details below). When rdof is not given, it is determined through an LU decomposition done before the usual factorization of the stiffness. This operation takes time but may be useful with certain elements for which geometric and numeric rigid body modes don't coincide.
C damping model. Can specify a full order damping matrix using the same DOFs as the system mass M and stiffness K or a scalar damping ratio to be used in a proportional damping model.
c output shape matrix describing unit outputs of interest (see section 5.1). Must be coherent with mdof.

Standard bases used for this purpose are available through the following commands.

See also

demo_fe, fe_reduc, fe_mk, nor2ss, nor2xf

fecom

Purpose

UI command function for the visualization of 3-D deformation plots

Syntax

```
fecom
fecom CommandString
fecom(cf,'CommandString')
fecom('CommandString',AdditionalArgument)
```


Description

fecom provides a number of commands that can be used to manipulate 3-D deformation plots are handled by the feplot fecom interface. A tutorial is given section 4.4 . Other examples can be found in gartfe, gartte and other demos. Details on the interface architecture are given under feplot.

This help lists all commands supported by the interface (calling fecom or feplot is insensitive to the user).

- $c f 1=f e p l o t$ returns a pointer to the current feplot figure (see section 4.4.3). The handle is used to provide simplified calling formats for data initialization and text information on the current configuration. You can create more than onefeplotfigure with $\mathrm{cf}=\mathrm{feplot}$ (FigHandle). If many feplot figures are open, one can define the target giving an feplot figure handle cf as a first argument.
- without input arguments, fecom calls commode which provides a command mode for entering different possibly chained fecom commands.
- the first input argument should be a string containing a single fecom command, or a chain of semi-column separated commands starting with a semi-column fecom(';com1;com2')). Such commands are parsed by commode.
- some commands, such as TextNode, allow the use of additional arguments

AddNode, Line

These commands start to implement direct model modification in the feplot figure. Sample calls are illustrated in section 2.7.1.

```
Anim[,One][,Time,Freq][,col][nCycle i, Start i, Step]
```

Deformed structure animation. The animation is not movie based so that you can actively rotate, change mode, ... without delay. The AnimStep command is only used when you really want to create movies.
The animation is started/interrupted using the animation button which calls the AnimStart command. You can set animation properties in the General tab of the feplot properties figure.

To control animation speed and replay you can use fecom('AnimTime nStep tStep tStart') which specifies the number of times that you want the animation to run (0 to run continuously), the minimum time spent at each time step (default zero), and the wait time between successive runs of the same animation (default 0 , only works with time mode animation). You can also use fecom('AnimTime StepInc') to define the step increment of the animation. You may need to fix the color limits manually using cf.ua.clim=[00 1 e 3$]$.
demosdt('demobartime'); fecom AnimeTime5;
Accepted Anim options are

- Freq the default animation (use of AnimFreq to return to the default) adds a certain phase shift $(2 * \mathrm{pi} / \mathrm{nCycle})$ to the amplification factor of the deformations currently displayed and updates the plot. The default nCycle value is obtained using feplot AnimnCycle25.
- Time starts the animation in a mode that increments deformations while preserving the amplification. This is appropriate for animation of time responses.
- One animates the current axis only rather than the default (all).
- Col sets color animation to dual sided (alternates between a max value and its opposite) rather than the default of no animation. You can animate colors without deformations if you define colors for the current selection without defining a deformation.
- Slider On, Off, Tog opens an slider to select deformation.

Animation speed is very dependent on the figure renderer. See the fecom Renderer command.

AnimMovie step

SDT supports creation of movies using VideoWriter, imwrite, avifile.

Command option -crop calls comgui ImCrop to crop borders, ... You can use the .Movie field in iicom ImWrite to generate multiple files.

Typical uses are illustrated below

```
cf=demosdt('DemoGartfePlot'); fecom('ColordataEvalZ-edgeAlpha.1');% Load an example
```

fecom('MovieProfiles') \% List profiles (supported file types)
tname=nas2up('tempname.gif');
R1=fecom('AnimMovie',tname) \% Base give a name
R2=fecom('AnimMovie-CropEqual',tname) \% ask to crop all white
\% More advanced specify properties and shapes
R2=struct('FileName', \{\{sdtdef('tempdir'), 'Gart','@ii_legend','.gif'\}\}, ...
'prop', \{\{'Quality',100, 'FrameRate', 10\}\}, ... \% VideoWriter properties
'CropFcn', \{\{'comgui','imCropEqual'\}\}, ... \% Do cropping
'PostFcn','camorbit $(5,0)$ ') ; \% Callback after each step
\% R2=fecom('AnimMovie 10^{\prime}, R2) ; \% Here save 10 animation steps
R2=fecom('ImWrite',struct('ch',7:8,'Movie',R2)); \% Generate two movies
\% Use a Matlab Movie
R3=struct('Profile', \{\{', ' Matlab', 'movie'\}\});
R3=fecom('AnimMovie 10',R3); \% Get a Matlab Movie in R3.M

```
caxi, ca+
```

Change current axes. cax i makes the axis i (an integer number) current. ca+ makes the next axis current.

For example, fecom(';sub2 1;cax1;show line;ca+;show sensor') displays a line plot in the first axis and a sensor plot in the second.
See also the Axes tab in the feplot properties figure and the iicom sub command. In particular SubStep is used to increment the deformation numbers in each subplot.
$\operatorname{ch}[, \mathrm{c}][i,+,-,+i,-i]$,
Displayed deformation control. feplot is generally used to initialize a number of deformations (as many as columns in mode). ch i selects the deformation(s) i to be displayed (for example ch 12 overlays deformations 1 and 2). By default the first deformation is displayed (for line and sensor plots with less than 5 deformations, all deformations are overlaid). You can also increment/decrement
using the ch+ and ch- commands or the + and - keys when the current axis is a plot axis. ch $+i$ increments by i from the current deformation.

You can also select deformations shown in the Deformations tab in the feplot properties figure.
When using more than one axis (different views or deformations), the ch commands are applied to all feplot axes while the chc commands only apply to the current axis.

The SubStep command is useful to obtain different deformations in a series of axes. Thus to display the first 4 modes of a structure you can use: fecom(';sub 1 1;ch1;sub 22 step') where the sub 11 is used to make sure that everything is reinitialized. You can then see the next four using fecom('ch+4').

For line and sensor plots and multiple channels, each deformation corresponds to an object and is given a color following the ColorOrder of the current axis is used. feplot line and sensor plots compatible with the use of setlines for line type sequences.

```
ColorData [,seli] [Type] [,-alphai]
```

Color definitions Color information is defined for element selections (see the fecom Sel commands) and should be defined with the selection using a call of the form, cf.sel(i) $=\{$ 'SelectionString', 'ColorData', ...\}. fecom('colordata seli ...',...) is the corresponding low level call. See also fecom ColorBar and fecom Color egend commands.
Accepted options for the command are

- -alpha val can be used to set face transparency. This is only valid using OpenGL rendering and is not compatible with the display of masses (due to a MATLAB rendering bug).
- -edgealpha val is used for edge transparency
- -ColorBarTitle "val" is used to open a colorbar with the appropriate title (see ColorBar and ColorScale commands). A . ColorBar field can be used for calls with a data structure input.

Accepted ColorData commands are listed below

Note: When displaying results colors are sometimes scaled using the amplification factor used for deformations. Thus, to obtain color values that match your input exactly, you must use the fecom ScaleColorOne mode. In some animations you may need to fix the color limits manually using cf.ua.clim=[0 1e3].

Color [,seli] [Edge ..., Face ..., Legend]
Default EdgeColor and FaceColor properties of the different patches can be set to none, interp, flat, white, ... using fecom('ColorEdgeNone'), ...
fecom('ColorEdge', ColorSpec) where ColorSpec is any valid Matlab color specification, is also acceptable.

EdgeColor and FaceColor apply to the current selection. The optional Sel i argument can be used to change the current selection before applying the command.

You can also modify the properties of a particular object using calls of the form set (cf.o(i),'edgecolor', ColorSpec) (see fecomgo commands and illustrations in gartte).
fecom('ColorLegend') uses the MatLab legend command to create a legend for group, material or property colors. Of course, the associated selection must have such colors defined with a Colordata[M, P, G] command.

ColorBar, ColorMap

fecom('colorbar') calls the MatLab colorbar to display a color scale to the left of the figure. feplot updates this scale when you change the deformation shown. Editing of display is done with additional arguments fecom('colorbar', 'CustomField', NewVal,...), where CustomField is a standard colorbar field, and NewVal the custom value to set. See comgui objSet for details on this generic SDT procedure.
fecom ColorBarOff is used to reinitialize a subplot without a color bar.
fecom('colorMap') calls ii_plp('ColormapBand') to generate specialized color maps. See ii_plp ColorMap for details.

In the following example, one plots the actual z displacement using a custom colorbar.
cf=demosdt('DemoGartfePlot');
fecom('colordataEvalZ -edgealpha .1')
\% Disp in CM (*100), 2sided ([-cmax cmax]), instant (updated scale)
fecom('ColorScale Unit 100 2Sided Instant');
fecom('colorbar',d_imw('get','CbTR','String','z [mm]'));
\% sdtweb d_imw('cbTr') \% To see code of typical colorbar styles

```
fecom('colormapjet(9)');
```

A . ColorBar field can be used for ColorData calls with a data structure input.

ColorAlpha

fecom ColorAlpha starts a specific coloring mode where the transparency is indexed on the colormap level. This can be used to highlight high strain areas in volume models. -EdgeAlpha val may be used to make the edges transparent.

Uniform transparency of faces and edges is obtained using the FaceEdgeAlpha entry in the object context menu or with a command of the form below.

```
d_ubeam; cf=feplot;
% Use Value based alpha and Set the edges to be 10% transparent
fecom('ColorAlpha -edgealpha .1');
```

ColorScale
Once colors defined with fecom ColorData, multiple scaling modes are supported. fecom('ColorScale') displays current mode. For calling examples, seefecom ColorBar. The modes are accessible through the feplot:Anim menu.

- Tight corresponds to a value of [cmin cmax]. cf.ua.clim can be used to force values.
- 1Sided corresponds to a value of [0 cmax]. This is typically used for energy display.
- 2Sided corresponds to a value of [-cmax cmax]. This is typically used for translations, stresses,
- Fixed the color limits set in cf.ua.clim are used.
- Off the values are set at during manual refreshes (calls to fecom('ch') but not during animation. This mode is useful to limit computation costs but the color may get updated at the end of an animation.
- Instant the values of cmin, cmax are obtained using the current deformation.
- Transient the values are obtained using a range of deformations. For time domain animation, estimation is done dynamically, so that you may have to run your animation cycle once to find
the true limit.
- One does not scale color deformations (default starting with SDT 6.4)
- Unit coef defines a fixed color scaling coefficient. This is typically used to provide more convenient units (1e-6 to have stress colors in MPa rather than Pa for example).
- Def uses the amplification coefficient set for the associated deformation.

Cursor

If a time deformation is defined in the feplot figure, one can see time curve at a specific node using fecom CursorNodeIiplot command. A node cursor then appears on the feplot displayed model, and clicking on a node shows corresponding curve in the iiplot figure. Reciprocally one can show a cursor on the iiplot curve to show corresponding time deformation in feplot using iicom CursorDnFeplot command. Note that this functionality should only be used for small models.

Following example let you test this functionality.

```
model=femesh('testhexa8'); cf=feplot(model); model=cf.mdl; % simple cube
data=struct('def',[\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}]',',DOF',[\begin{array}{llll}{5}&{7}&{7}\end{array}]'+.03,...
    'curve',fe_curve('test sin 10e-2 5000 1 5000e-4'));
model=fe_case(model,'DofLoad','topload',data); % sin load
model=fe_case(model,'FixDof','basefix','z==0'); % fix base
model=fe_time('timeopt newmark . 25 .5 0 1e-4 5000',model); % time computation
cf.def=fe_time(model); % show time animation
fecom CursorNodeIiplot % display cursor on feplot
ci=iiplot;iicom(ci,'ch',{'NodeId',5}) % Test the callback
iicom CursorOnFeplot % display cursor on iiplot
% Cursor following animation
fecom(sprintf('AnimCursor%i Start100',ci.opt(1)))
```

ga i
fecom('ga i ') or cf.ga(i) gets pointers to the associated axes. See details under the same iicom command. A typical application would be to set multiple axes to the same view using iimouse('view3', cf.ga(:)).

Get handles to fecom objects. This provides and easy mechanism to modify MatLab properties of selected objects in the plot (see also the set command).

For example, set (fecom('go2'), 'linewidth', 2) will use thick lines for feplot object 2 (in the current feplot axis).

You will probably find easier to use calls of the form $c f=f e p l o t$ (to get a handle to the current feplot figure) followed by set (cf.o(2),'linewidth',2). If the feplot object is associated to more than one Matlab object (as for text, mixed plate/beam, ...) you can access separate pointers using $\mathrm{cf} . \circ(2,1)$. The gartte demo gives examples of how to use these commands.

LabFcn

Titles for each deformation should be generated dynamically with the def. LabFcn callback. $\operatorname{def}=f \mathrm{e}_{\mathrm{A}} \mathrm{def}\left({ }^{\prime} \mathrm{lab}\right.$ ', def) attempts to provide a meaningful default callback for the data present in the def structure.

The callback string is interpreted with a call to eval and should return a string defining the label for each channel. Local variables for the callback are ch (number of the channel currently displayed in feplot) and def (current deformation).

For example def.LabFcn='sprintf(' 't=\%. 2 f ms '', def. data(ch)*1000)' can be used to display times of a transient response in ms.
fecom('TitOpt111') turns automatic titles on (see iicom). fecom('TitOpt0') turns them off.

Legend, Head, ImWrite

Placing a simple title over the deformation can be to coarse. Defining a comgui def.Legend field provides a more elaborate mechanism to dynamic generation of multi-line legends and file name (to be used in iicom ImWrite.
The iicom head commands can be used to place additional titles in the figure. cf.head returns a pointer to the header axis. Mode titles are actually placed in the header axis in order to bypass inappropriate placement by MATLAB when you rotate/animate deformations.

Info

Displays information about the declared structure and the objects of the current plot in the command window. This info is also returned when displaying the SDT handle pointing to the feplot figure.

Thus $c f=f e p l o t$ returns

```
cf =
    FEPLOT in figure 2
        Selections: cf.sel(1)='groupall';
            cf.sel(2)='WithNode {x>.5}';
    Deformations: [ {816x20} ]
    Sensor Sets: [ 0 (current 1)]
    Axis 3 objects:
        cf.o(1)='sel 2 def 1 ch 9 ty1'; % mesh
        cf.o(2) % title
```

which tells what data arrays are currently defined and lists feplot objects in the current axis. fecom('pro') opens the feplot properties figure which provides an interactive GUI for feplot manipulations.

```
InitDef[ , Back]
```

Initialization of deformations. You can (re)declare deformations at any point using $\mathrm{cf} . \operatorname{def}(i)=\operatorname{def}$. Where cf a $S D T$ handle to the figure of interest and i the deformation set you which to modify (if only one is defined, cf. def is sufficient). Acceptable forms to specify the deformation are

- def is a structure with fields . def, .DOF, . data. Note that . Legend and .LabFcn can be used to control associated titles, see comgui def. Legend.
- \{mode, mdof, data\} a set of vectors, a vector of DOFs. For animation of test results, mdof can be given using the 5 column format used to define arbitrary sensor directions in fe_sens. The optional data is a vector giving the meaning of each column in mode. fecom head is used to generate the label.
- ci.Stack\{'IdMain'\}, see section 2.4 for identification procedures and section 5.6 for the pole residue format
- [] resets deformations
- \{def,'sensors'\} defines sensor motion in a case where sensors are defined in the case (that can be accessed through cf.CStack\{'sensors'\}). It is then expected that def.DOF matches the length of the sensor tdof field).
- \{def,TR\} supports automatic expansion/restitution, see illustrated in the fe_sens WireExp command. The same result can be obtained by defining a def.TR field.
feplot(cf,'InitDef', data) is an alternate calling format that defines the current deformation. InitDef updates all axes. InitDefBack returns without updating plots.
load, InitModel
Initialization of structure characteristics. The preferred calling format is
cf.model=model where the fields of model are described in section 7.6 . This makes sure that all model information is stored in the feplotfigure. cf.mdl then provides a handle that lets you modify model properties in scripts without calling InitModel again.

Lower level calls are cf.model=\{node, elt, bas \}
(or feplot('InitModel' , node, elt, bas) (see basisfor bas format information). InitModelBack does not update the plot (you may want to use this when changing model before redefining new deformations).

The command is also called when using femesh plotelt, or upcom plotelt (which is equivalent to cf. model $=\mathrm{Up}$). Note that cf. model=UFS (1) for a data stack resulting from ufread and cf. model=Up for type 3 superelement.

Load from file fecom('Load', 'FileName') will load the model from a binary FileName.mat file. By default the variable model is searched in the file. fecom('FileImportInfo') lists supported import formats.

The following variables are looked for in the .mat file

- model a model structure.
- def a def structure that will be loaded by default in cf.def
- cf_sel i, with i a number, a sel selection structure that will be loaded and stored in $\mathrm{cf} . \mathrm{sel}(\mathrm{i})$.

The following command options apply to command load for specific applications

- -back is used to load, but not display the model (this is used for very large model reading).
- -Hdf loads a model from a HDF5 .mat file but retains most data at v_handle pointers to the file.
- -sLin loads a model and generates a display using cf.sel='-linface'. This is needed for larger models.
- -noDef skips loading deformation curves when present.
- -skipFSE skips HDF loading of external data stored in model.fileSE

Initialization of sensors. You can declare sensors independently of the degrees of freedom used to define deformations (this is in particular useful to show measurement sensors while using modeshape expansion for deformations). Sensor and arrow object show the sensor sets declared using initsens.

Translation sensors in global coordinates can be declared using a DOF definition vector cf.sens $(i)=\{m d o f\}$ or feplot('initsens',mdof). In the first calling format, the current sensor set is first set to i.

Sensors in other directions are declared by replacing mdof by a 5 column matrix following the format

```
SensorId NodeId nx ny nz
```

with SensorId an arbitrary identifier (often 101.99 for sensor of unknown type at node 101), NodeId the node number of the sensor position, [$n \mathrm{x} \mathrm{ny} \mathrm{nz}$] a unit vector giving the sensor direction in global coordinates (see section 3.1).
fe_sens provides additional tools to manipulate sensors in arbitrary directions. Examples are given in the gartte demo.

Plot

feplot('plot'), the same as feplot without argument, refreshes axes of the current figure. If refreshing the current axis results in an error (which may occasionally happen if you modify the plot externally), use clf;iicom('sub') which will check the consistency of objects declared in each axis. Note that this will delete Text objects as well as objects created using the SetObject command.

Pro
feplot('pro') initializes or refreshes the feplot property GUI. You can also use the Edit:Feplot Properties . . . menu. A description of this GUI is made in section 4.4.
feplot('ProViewOn') turns entry viewing on.

Renderer [Opengl, zBuffer, Painters] [, default]
This command can be used to switch the renderer used by feplot. Animation speed is very dependent on the figure renderer. When creating the figure fecom tries to guess the proper renderer to use (painters, zbuffer, opengl), but you may want to change it (using the Feplot:Render menu or set(gcf,'renderer', 'painters'), ...). painters is still good for wire frame views, zbuffer
has very few bugs but is very slow on some platforms, opengl is generally fastest but still has some significant rendering bugs on UNIX platforms.

To avoid crashes when opening feplot in OpenGL mode use cingui ('Renderer zbuffer default') in your Matlab startup file.

Save, FileExport
Save the model to a .mat file or export it to supported formats.
fecom('FileExportInfo') lists supported export formats.
fecom('Save -savesel file.mat' also saves the selection(s) which allows faster reload of large models. fecom('Save -savedef file.mat' also saves the deformations(s).

Scale [,Defs, Dof i, equal, match, max, one]
Automatic deformation scaling. Scaling of deformations is the use of an amplification factor very often needed to actually see anything. A deformation scaling coefficient is associated with each deformed object. The Scale commands let you modify all objects of the current axis as a group.

You can specify either a length associated with the maximum amplitude or the scaling coefficient.
The base coefficient scc for this amplification is set using fecom ('ScaleCoef scc'), while fecom('ScaleDef scd') sets the target length. fecom('scd 0.01') is an accepted shortcut. If $s c d$ is zero an automatic amplitude is used. You can also modify the scaling deformation using the 1 or L keys (see iimouse).
fecom supports various scaling modes summarized in the table below. You can set this modes with fecom('scalemax') ... commands.

Scaling mode	Scaling of 1st deformation	Scaling of other deformations
max equal match	Amplitude of Max DOF set to scd. Amplitude of Max DOF set to scd.	Amplitude of Max DOF set to scd. Amplitude of other deformations equal to the first one, and amplitude of other ob- jects equal to the first one. Amplitude of other deformations set to op- timize superposition. When using two de- formation sets, rather than two modes in the same set, their DOFs must be compat- ible. coef one
Deformation amplitude multiplied by scd. Sets scd to 1 and uses coef mode (so fur- ther changes to scd lead to amplification that is not equal to 1).	Same as first deformation.	

Warning : using ScaleMax or AnimFreq can lead to negative or complex amplification factors which only makes sense for frequency domain shapes.
fecom('scalecoef') will come back to positive amplification of each object in the current feplot axis.

ScaleDof i is used to force the scaling DOF to be i. As usual, accepted values for i are of the form NodeId.DofId (1.03 for example). If i is zero or not a valid DOF number an automatic selection is performed. ScaleDof can only be used with a single deformation set.

You can change the scale mode using the FEplot:Scale menu or in the Axes tab of the feplot properties figure.

Sel [ElementSelectors, GroupAll, Reset]
Selection of displayed elements. What elements are to be displayed in a given object is based on the definition of a selection (see section 7.12).

The default command is 'GroupAll' which selects all elements of all element groups (see section 7.2 for details on model description matrices). cf. $\operatorname{sel}(1)='$ Group1 $3: 5$ ' will select groups $1,3,4$ and 5 . cf.sel(1)='Group1 \& ProId 2 \& WithNode $\{x>0\}$ ' would be a more complex selection example.

To define other properties associated with the selection fecom ColorData in particular), use a call of the form cf.sel(i)=\{ 'SelectionString', 'OtherProp', OtherPropData\}.

To return to the default selection use fecom('SelReset').
fecom('Sel ... -linface') can be used to generate first order faces for second order elements,
which allows faster animation.
Callbacks to customized selections is also available. One can then provide a selection starting with @, the output will be evaluatued on-the-fly. The function must rethrow in order i1, el0 and i2 as

- i1 the indices of the selected elements in cf.mdl.
- el0 the elements selected in cf.mdl. This can be the result of a transformation, e.g. face elements from a selface based selection.
- i1
the indices of the selected elements in cf.mdl, including the element header rows. The function is called as [i1,el0,i2]=eval (CAM (2:end));

```
SetObjectcf.o(1)= ... fecomSetObjset i [,ty j] ...
```

Set properties of object i. Plots generated by feplot are composed of a number of objects with basic properties

- ty 1 (surface view), 2 (wire frame view), 3 (stick view of sensors), 4 (undeformed structure), 5 (node text labels), 6 (DOF text labels), 7 (arrow view of sensors).
- def k index of the deformation set, stored in $c f . \operatorname{def}(i)$, seffecom InitDef.
- ch k channel (column of deformation)
- sel k index of display selection. See fecom Sel.
- scc k scaling coefficient for the deformation.

The following example illustrates how the SetObject can be used to create new objects or edit properties of existing ones.

```
    cf=feplot(femesh('testquad4 divide 2 2'));
    cf.sel(2)='withnode {x==0}';
% Display objects in current axis
    cf
% Copy and edit one of the object lines to modify properties
cf.o(1)='sel 1 def 1 ch 0 ty1'; % make type 1 (surface)
% Set other MATLAB patch properties
cf.o(1)={'sel 2 def 1 ch 0 ty1','marker','o'}
```


fecom

```
% Multiple object set, object index is row in cell array
    fecom(cf,'setobject',{'ty1 sel 2 ty','ty2 sel 1'})
% remove second object by empty string
    cf.o(2)=',
```

Show [patch,line, sensor, arrow, ...]
Basic plots are easily created using the show commands which are available in the FEplot: Show ... menu).

patch	surface view with hidden face removal and possible color coding (initialized by fecom('ShowPatch')). cf.o(1) object type is 1. For color coding, see colordata
commands.	
line	
wire frame plot of the deformed structure (initialized by fecom('ShowLine')).	
cf.o(2) object type is 2.	

Once the basic plot created, you can add other objects or modify the current list using the Text and SetObject commands.

Sub $\left[\begin{array}{ll}i & j\end{array}\right]$, SubIso, SubStep
Drawing figure subdivision (see iicom for more details). This lets you draw more than one view of the same structure in different axes. In particular the SubIso command gives you four different views of the same structure/deformation.

SubStep or Sub $i j$ Step increments the deformation shown in each subplot. This command is useful to show various modeshapes in the same figure. Depending on the initial state of the figure, you may have to first set all axes to the same channel. Use fecom('ch1; sub 22 step') for example.

Text [off, Node [,Select], Dof d]
Node/DOF text display. Text0ff removes all text objects from the current feplot axis. TextNode displays the numbers of the nodes in FEnode. You can display only certain node numbers by anode selection command Select. Or giving node numbers in fecom('textnode', i). Text properties can be given as extract arguments, for example fecom('textnode', i, 'FontSize', 12 , 'Color', 'r'). One can customize specific text display attached to nodal positions by directly providing a structure with fields .vert0, a 3 column matrix of nodal positions (that can be independent from the mesh) and .Node a 1 column cell array with as many lines as .vert0 containing strings to be displayed.

TextDOF displays the sensor node and direction for the current sensor.
TextDOF Name displays sensor labels of a cf.CStack\{ 'Name'\} SenDof entry. Additional arguments can be used to modify the text properties. fecom('textdof') displays text linked to currently declared sensors, see feplot InitSens command (note that this command is being replaced by the use of SensDof entries).
TextMatId places a label in the middle of each material area. TextProId does the same for properties.

TitOpt [, c] i

Automated title/label generation options. TitOpt i sets title options for all axes to the value i. i is a three digit number with units corresponding to title, decades to xlabel and hundreds to ylabel. By adding a c after the command (TitOptC 111 for example), the choice is only applied to the current axis.

The actual meaning of options depends on the plot function (see iiplot). For feplot, titles are
shown for a non zero title option and not shown otherwise. Title strings for feplot axes are defined using the fecom head command.

```
Triax [ , On, Off]
```

Orientation triax. Orientation of the plotting axis is shown using a small triax. Triax initializes the triax axis or updates its orientation. TriaxOff deletes the triax axis (in some plots you do not want it to show). Each triax is associated to a given axis and follows its orientation. The triax is initially positioned at the lower left corner of the axis but you drag it with your mouse.

Finally can use fecom('triaxc') to generate a triax in a single active subplot.

Undef [, Dot, Line, None]
Undeformed structure appearance. The undeformed structure is shown as a line which is made visible/invisible using UnDef (UnDefNone forces an invisible mesh). When visible, the line can show the node locations (use UnDefDot) or link nodes with dotted lines (use UnDefLine).

View [...]

Orientation control. See iimouse view, iimouse('viewclone', [cf.opt(1) cg.opt(1)]) can be used to link animation and orientation of two feplot figures. This is in particular used in ii_mac.

See also

feplot, fe_exp, feutil

femesh

Purpose

Finite element mesh handling utilities.

Syntax

femesh CommandString
femesh('CommandString')
[out,out1] = femesh('CommandString',in1,in2)

Description

You should usefeutil function that provides equivalent commands to femesh but using model data structure.
femesh provides a number of tools for mesh creation and manipulation. femesh uses global variables to define the proper object of which to apply a command. femesh uses the following standard global variables which are declared as global in your workspace when you call femesh

FEnode	main set of nodes
FEn0	selected set of nodes
FEn1	alternate set of nodes
FEelt	main finite element model description matrix
FEel0	selected finite element model description matrix
FEel1	alternate finite element model description matrix

By default, femesh automatically uses base workspace definitions of the standard global variables (even if they are not declared as global). When using the standard global variables within functions, you should always declare them as global at the beginning of your function. If you don't declare them as global modifications that you perform will not be taken into account, unless you call femesh from your function which will declare the variables as global there too. The only thing that you should avoid is to use clear (instead of clear global) within a function and then reinitialize the variable to something non-zero. In such cases the global variable is used and a warning is passed.

Available femesh commands are

Command chaining. Commands with no input (other than the command) or output argument, can be chained using a call of the form femesh(';Com1;Com2'). commode is then used for command parsing.

Add FEeli FEelj, AddSel

Combine two FE model description matrices. The characters i and j can specify any of the main t, selected 0 and alternate 1 finite element model description matrices. The elements in the model matrix $\mathrm{FEel} j$ are appended to those of $\mathrm{FEel} i$.

AddSel is equivalent to AddFEeltFEel0 which adds the selection FEel0 to the main model FEelt.
This is an example of the creation of FEelt using 2 selections (FEel0 and FEel1)
femesh('Reset');
femesh('Testquad4'); \% one quad4 created
femesh('Divide',[0 . 1.2 1],[0 . 3 1]); \% divisions
FEel0=FEel0(1:end-1,:); \% suppress 1 element in FEel0
femesh('AddSel'); $\%$ add FEel0 into FEelt
FEel1=[Inf abs('tria3');9 1012110$] ; \%$ create FEel1
femesh('Add FEelt FEel1'); \% add FEel1 into FEelt
femesh PlotElt \% plot FEelt

AddNode [,New] [, From i] [,epsl val]
Combine, append (without/with new) FEn0 to FEnode. Additional uses of AddNode are provided using the format

```
[AllNode,ind]=femesh('AddNode',OldNode,NewNode);
```

which combines NewNode to OldNode. AddNode finds nodes in NewNode that coincide with nodes in OldNode and appends other nodes to form AllNode. ind gives the indices of the NewNode nodes in the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates. The minimal distance below which two nodes are considered identical is given by sdtdef epsl (default 1e-6).
[AllNode,ind]=femesh('AddNode From 10000', OldNode,NewNode); gives node numbers starting at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb. See feutil AddNode for more details.

```
AddTest [,-EGID i][,NodeShift,Merge,Combine]
```

Combine test and analysis models. When combining test and analysis models you typically want to overlay a detailed finite element mesh with a coarse wire-frame representation of the test configuration. These models coming from different origins you will want combine the two models in FEelt.

By default the node sets are considered to be disjoint. New nodes are added starting from $\max (F E n o d e(:, 1))+1$ or from NodeShift+1 if the argument is specified. Thus femesh('addtest ' ', TNode, TElt) adds test nodes TNode to FEnode while adding NodeShift to their initial identification number. The same NodeShift is added to node numbers in TElt which is appended to FEelt. TElt can be a wire frame matrix read with ufread.

With merge it is assumed that some nodes are common but their numbering is not coherent. femesh('addtest merge', NewNode, NewElt) can also be used to merge to FEM models. Non coincident nodes (as defined by the AddNode command) are added to FEnode and NewElt is renumbered according to the new FEnode. Merge-Edge is used to force mid-side nodes to be common if the end nodes are.

With combine it is assumed that some nodes are common and their numbering is coherent. Nodes with new NodeId values are added to FEnode while common NodeId values are assumed to be located at the same positions.

You can specify an EGID value for the elements that are added using AddTest -EGID -1. In particular negative EGID values are display groups so that they will be ignored in model assembly operations.

The combined models can then be used to create the test/analysis correlation using fe_sens. An application is given in the gartte demo, where a procedure to match initially different test and FE coordinate frames is outlined.

```
Divide div1 div2 div3
```

Mesh refinement by division of elements. Divide applies to all groups in FEel0.
See equivalent feutil Divide command.

```
% Example 1 : beam1
femesh('Reset');
femesh(';Testbeam1;Divide 3;PlotE10'); % divide by 3
fecom TextNode
% Example 2 : you may create a command string
number=3;
st=sprintf(';Testbeam1;Divide %f;PlotEl0',number);
femesh('Reset');
femesh(st);
fecom TextNode
% Example 3 : you may use uneven division
```

```
femesh('Reset');femesh('testquad4'); % one quad4 created
femesh('DivideElt',[0 .1 .2 1],[0 .3 1]);
femesh PlotElo
```

DivideInGroups
Finds groups of FEel0 elements that are not connected (no common node) and places each of these groups in a single element group.

```
femesh('Reset');femesh('testquad4'); % one quad4 created
femesh('RepeatSel 2 0 0 1'); % 2 quad4 in the same group
femesh('DivideInGroups'); % 2 quad4 in 2 groups
```


DivideGroup i ElementSelectors

Divides a single group i of FEelt in two element groups. The first new element group is defined based on the element selectors (see section 7.12).

Extrude nRep tx ty tz
Extrusion. Nodes, lines or surfaces that are currently selected (put in FEel0) are extruded nRep times with global translations $t x$ ty $t z$.

You can create irregular extrusion giving a second argument (positions of the sections for an axis such that tx ty $t z$ is the unit vector).

See feutil Extrude for more details.

```
% Example 1 : beam
femesh('Reset');
femesh('Testbeam1'); % one beam1 created
femesh(';Extrude 2 1 0 0;PlotEl0'); % 2 extrusions in x direction
% Example 2 : you may create the command string
number=2;step=[11 0 0}]\mp@code{;
st=sprintf(';Testbeam1;Extrude %f %f %f %f',[number step]);
femesh('Reset');
femesh(st); femesh PlotEl0
```

```
% Example 3 : you may use uneven extrusions in z direction
femesh('Reset'); femesh('Testquad4')
femesh('Extrude 0 0 0 1', [0 . 1 . 2 . 5 1]); %
% 0 0 0 1 : 1 extrusion in z direction
% [0 . 1 . 2 . 5 1] : where extrusions are made
femesh PlotEl0
```


FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling format is

```
[ind,elt] = femesh('FindElt withnode 1:10')
```

where ind gives the row numbers of the elements (but not the header rows except for unique superelements which are only associated to a header row) and elt (optional) the associated element description matrix. FindE10 applies to elements in FEel0.

When operators are accepted, equality and inequality operators can be used. Thus group ${ }^{\sim}=\left[\begin{array}{ll}3 & 7\end{array}\right]$ or pro < 5 are acceptable commands. See also Sel:lt, Removeplt and DivideGroup, the gartfe demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of selectors listed in section 7.11.
Different selectors can be chained using the logical operations \& (finds nodes that verify both conditions), I (finds nodes that verify one or both conditions). Condition combinations are always evaluated from left to right (parentheses are not accepted).

Output arguments are the numbers NodeID of the selected nodes and the selected nodes node as a second optional output argument.

As an example you can show node numbers on the right half of the $z==0$ plane using the commands fecom('TextNode',femesh('FindNode $z==0$ \& $x>0$ '))

Following example puts markers on selected nodes

```
model=demosdt('demo ubeam'); femesh(model); % load U-Beam model
fecom('ShowNodeMark',femesh('FindNode z>1.25'),'color','r')
fecom('ShowNodeMark',femesh('FindNode x>0.2*z|x<-0.2*z'),...
    'color','g','marker','o')
```

Note that you can give numeric arguments to the command as additional femesh arguments. Thus the command above could also have been written

```
fecom('TextNode',femesh('FindNode z== & x>=',0,0)))
```

See also the gartfe demo.

```
Info [ ,FEeli, Node i]
```

Information on global variables. Info by itself gives information on all variables. The additional arguments FEelt ... can be used to specify any of the main t, selected 0 and alternate 1 finite element model description matrices. InfoNode i gives information about all elements that are connected to node i. To get information in FEelt and in FEnode, you may write

```
femesh('InfoElt') or femesh('InfoNode')
```

```
Join [,el0] [group i, EName]
```

Join the groups i or all the groups of type EName. JoinAll joins all the groups that have the same element name. By default this operation is applied to FEelt but you can apply it to FEel0 by adding the el0 option to the command. Note that with the selection by group number, you can only join groups of the same type (with the same element name).

```
femesh('Reset'); femesh(';Test2bay;PlotElt');
% Join using group ID
femesh('InfoElt'); % 2 groups at this step
femesh JoinGroup1:2 % 1 group now
% Join using element name
femesh('Reset'); femesh('Test2bay;PlotElt');
femesh Joinbeam1 % 1 group now
```

Model [,0]
model=femesh('Model') returns the FEM structure (see section 7.6) with fields model.Node=FEnode and model.Elt=FEelt as well as other fields that may be stored in the FE variable that is persistent in femesh. model=femesh('Model0') uses model.Elt=FEel0.

ObjectBeamLine i, ObjectMass i
Create a group of beam1 elements. The node numbers i define a series of nodes that form a continuous beam (for discontinuities use 0), that is placed in FEel0 as a single group of beam1 elements.

For example femesh('ObjectBeamLine $1: 3045$ ') creates a group of three beam1 elements between nodes 12,23 , and 45 .

An alternate call is femesh('ObjectBeamLine', ind) where ind is a vector containing the node numbers. You can also specify a element name other than beam1 and properties to be placed in columns 3 and more using femesh('ObjectBeamLine -EltName', ind, prop).
femesh('ObjectMass 1:3') creates a group of concentrated mass1 elements at the declared nodes.

```
femesh('Reset')
```

FEnode $=\left[\begin{array}{lllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 ; & 2 & 0 & 0 & 0 & 0 & .15 ;\end{array} \ldots\right.$
$3000.41 .176 ; 4000.4$. 9 .176];
prop=[100 1001.1000$] ;$ MatId ProId nx ny nz
femesh('ObjectBeamLine', 1:4,prop);femesh('AddSel');
\%or femesh(';ObjectBeamLine $12023034 ; A d d S e l ') ;$
\% or femesh('ObjectBeamLine',1:4);
femesh('ObjectMass', 3 , [1.1 1.1 1.1])
femesh AddSel
femesh PlotElt; fecom TextNode

ObjectHoleInPlate

Create a quad4 mesh of a hole in a plate. The format is 'ObjectHoleInPlate NO N1 N2 r1 r2 ND1 ND2 NQ'. See feutil ObjectHoleInPlate for more details.

```
FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];
femesh('ObjectHoleInPlate 1 2 3 . 5 . 5 3 4 4');
femesh('Divide 3 4'); % 3 divisions around, 4 divisions along radii
femesh PlotEl0
% You could also use the call
FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];
% n1 n2 n3 r1 r2 nd1 nd2 nq
r1=[ [1 2 2 3 .5 .5 3 % 4 4 4];
st=sprintf('ObjectHoleInPlate %f %f %f %f %f %f %f %f',r1);
femesh(st); femesh('PlotElO')
```


ObjectHoleInBlock

Create a hexa8 mesh of a hole in a rectangular block. The format is ' ObjectHoleInBlock x0 yo zo $n x 1$ ny1 nz1 nx3 ny3 nz3 dim1 dim2 dim3 r nd1 nd2 nd3 ndr'. Seefeutil ObjectHoleInBlock for more details.

```
femesh('Reset')
femesh('ObjectHoleInBlock 0 0 0 1 0 0 0 1 1 2 3 3 .7 8 8 3 2')
femesh('PlotEl0')
```

Object[Quad,Beam,Hexa] MatId ProId
Create or add a model containing quad4 elements. The user must define a rectangular domain delimited by four nodes and the division in each direction. The result is a regular mesh.

For example femesh('ObjectQuad 1011 ', nodes, 4,2) returns model with 4 and 2 divisions in each direction with a MatId 10 and a ProId 11.

```
femesh('reset');
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
femesh('Objectquad 1 1',node,4,3); % creates model
femesh('AddSel');femesh('PlotElt')
node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];
femesh('Objectquad 2 3',node,3,2); % matid=2, proid=3
femesh('AddSel');femesh('PlotElt');femesh Info
```

Divisions may be specified using a vector between $[0,1]$:

```
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
femesh('Objectquad 1 1',node,[0 .2 .6 1],linspace(0,1,10));
femesh('PlotEl0');
```

Other supported object topologies are beams and hexahedrons. For example

```
femesh('Reset')
node = [0 0 0; 2 0 0;1 3 0; 1 3 1];
femesh('Objectbeam 3 10',node(1:2,:),4); % creates model
femesh('AddSel');
femesh('Objecthexa 4 11',node,3,2,5); % creates model
femesh('AddSel');
femesh PlotElt; femesh Info
```

Object [Arc, Annulus, Circle,Cylinder,Disk]

Build selected object in FEel0. See feutil Object for a list of available objects. For example:

```
femesh('Reset')
femesh(';ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel');
femesh(';ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel');
femesh(';ObjectCircle 1 1 1 2 0 0 1 30;AddSel');
femesh(';ObjectCircle 1 1 3 2 0 0 1 30;AddSel');
femesh(';ObjectCylinder 0 0 0 0 0 4 2 10 20;AddSel');
```

```
femesh(';ObjectDisk 0 0 0 3 0 0 1 10 3;AddSel');
```

femesh(';ObjectAnnulus 0002300110 3;AddSel');
femesh('PlotElt')

Optim [Model, NodeNum, EltCheck]
OptimModel removes nodes unused in FEelt from FEnode.
OptimNodeNum does a permutation of nodes in FEnode such that the expected matrix bandwidth is smaller. This is only useful to export models, since here DOF renumbering is performed by fe.mk. OptimEltCheck attempts to fix geometry pathologies (warped elements) in quad4, hexa8 and penta6 elements.

Orient, Orient i [, $\mathrm{n} n x n y n z]$
Orient elements. For volumes and 2-D elements which have a defined orientation, femesh ('Orient') calls element functions with standard material properties to determine negative volume orientation and permute nodes if needed. This is in particular needed when generating models via Extrude or Divide operations which do not necessarily result in appropriate orientation (see integrules). When elements are too distorted, you may have a locally negative volume. A warning about warped volumes is then passed. You should then correct your mesh. Note that for 2D meshes you need to use 2D topology holders q4p, t3p,

Orient normal of shell elements. For plate/shell elements (elements with parents of type quad4, quadb or tria3) in groups i of FEelt, this command computes the local normal and checks whether it is directed towards the node located at $n x n y n z$. If not, the element nodes are permuted so that a proper orientation is achieved. A -neg option can be added at the end of the command to force orientation away rather than towards the nearest node.
femesh('Orient i^{\prime}, node) can also be used to specify a list of orientation nodes. For each element, the closest node in node is then used for the orientation. node can be a standard 7 column node matrix or just have 3 columns with global positions.

For example

```
% Init example
femesh('Reset'); femesh(';Testquad4;Divide 2 3;')
FEelt=FEel0; femesh('DivideGroup1 withnode1');
% Orient elements in group 2 away from [0 0 -1]
femesh('Orient 2 n 0 0 -1 -neg');
```

Plot [Elt, ElO]
Plot selected model. PlotElt calls feplot to initialize a plot of the model contained in FEelt. PlotEl0 does the same for FEel0. This command is really just the declaration of a new model using feplot('InitModel', femesh('Model')).

Once the plot initialized you can modify it using feplot and fecom

Lin2quad, Quad2Lin, Quad2Tria, etc.
Basic element type transformations.
Element type transformation are applied to elements in FEel0. See feutil Lin2Quad fore more details and a list of transformations.

```
% create 4 quad4
femesh(';Testquad4;Divide 2 3');
femesh('Quad2Tria'); % conversion
femesh PlotElO
% create a quad, transform to triangles, divide each triangle in 4
femesh(';Testquad4;Quad2Tria;Divide2;PlotEl0;Info');
% lin2quad example:
femesh('Reset'); femesh('Testhexa8');
femesh('Lin2Quad epsl .01');
femesh('Info')
```

RefineBeam l

Mesh refinement. This function searches FEel0 for beam elements and divides elements so that no element is longer than l.

```
Remove[Elt,ElO] ElementSelectors
```

Element removal. This function searches FEelt or FEel0 for elements which verify certain properties selected by ElementSelectors and removes these elements from the model description matrix. A sample call would be

```
% create 4 quad4
femesh('Reset'); femesh(';Testquad4;Divide 2 3');
femesh('RemoveElO WithNode 1')
femesh PlotElO
```

```
RepeatSel nITE tx ty tz
```

Element group translation/duplication. RepeatSel repeats the selected elements (FEel0) nITE times with global axis translations $t x$ ty $t z$ between each repetition of the group. If needed, new nodes are added to FEnode. An example is treated in the d_truss demo.

```
femesh('Reset'); femesh(';Testquad4;Divide 2 3');
femesh(';RepeatSel 3 2 0 0'); % 3 repetitions, translation x=2
femesh PlotEl0
% alternate call:
% number, direction
% femesh(sprintf(';repeatsel %f %f %f %f,, 3, [2 0 0]))
```

Rev nDiv OrigID Ang nx ny nz

Revolution of selected elements in FEel0. See feutil Rev for more details. For example:

```
FEnode = [1 0 0 0 0 . 2 0 0; 2 0 0 0 . 5 1 0; ...
    30 0 0 . 5 1.5 0; 4 0 0 0 . 3 2 0];
femesh('ObjectBeamLine',1:4);
femesh('Divide 3')
femesh('Rev 40 o 0 0 0 360 0 1 0');
femesh PlotEl0
fecom(';Triax;View 3;ShowPatch')
% An alternate calling format would be
% divi origin angle direct
%r1 = [40 0 0 0 360 0 1 0
%femesh(sprintf('Rev %f o %f %f %f %f %f %f %f',r1))
```


RotateSel OrigID Ang $n x$ ny $n z$

Rotation. The selected elements FEel0 are rotated by the angle Ang (degrees) around an axis passing trough the node of number OrigID (or the origin of the global coordinate system) and of direction $\left[\begin{array}{lll}n x & n y & n z\end{array}\right]$ (the default is the z axis $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$). The origin can also be specified by the xyz values preceded by an o

```
femesh('RotateSel o 2.0 2.0 2.0 90 1 0 0')
```

This is an example of the rotation of FEelO

```
femesh('Reset');
```

```
femesh(';Testquad4;Divide 2 3');
% center is node 1, angle 30, aound axis z
% Center angle dir
st=sprintf(';RotateSel %f %f %f %f %f',[1 30 0 0 1]);
femesh(st); femesh PlotElO
fecom(';Triax;TextNode'); axis on
```


Sel [Elt,ElO] ElementSelectors

Element selection. SelE1t places in the selected model FEel0 elements of FEelt that verify certain conditions. You can also select elements within FEel0 with the SelElO command. Available element selection commands are described under the FindElt command and section 7.12 .

```
femesh('SelElt ElementSelectors').
```

SelGroup i, SelNode i
Element group selection. The element group i of FEelt is placed in FEel0 (selected model). SelGroup i is equivalent to SelEltGroup i.

Node selection. The node(s) i of FEnode are placed in FEn0 (selected nodes).

SetGroup [i,name] [Mat j, Pro k, EGID e, Name s]
Set properties of a group. For group(s) of FEelt selector by number i, name name, or all you can modify the material property identifier j, the element property identifier k of all elements and/or the element group identifier e or name s. For example

```
femesh('SetGroup1:3 pro 4')
femesh('SetGroup rigid name celas')
```

If you know the column of a set of element rows that you want to modify, calls of the form FEelt(femesh('FindEltSelectors'), Column)= Value can also be used.

```
model=femesh('Testubeamplot');
FEelt(femesh('FindEltwithnode {x==-.5}'),9)=2;
femesh PlotElt;
cf.sel={'groupall','colordatamat'};
```

You can also use femesh('set groupa 1:3 pro 4') to modify properties in FEel0.

```
SymSel OrigID \(n x\) ny \(n z\)
```

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with respect to a plane going through the node of number OrigID (node 0 is taken to be the origin of the global coordinate system) and normal to the vector [$n x$ ny $n z$]. If needed, new nodes are added to FEnode. Related commands are TransSel, RotateSel and RepeatSel.

Test

Some unique element model examples. See list with femesh('TestList'). For example a simple cube model can be created using

```
model=femesh('TestHexa8'); % hexa8 test element
```

TransSel tx ty $t z$
Translation of the selected element groups. TransSel replaces elements of FEel0 by their translation of a vector [$t x$ ty $t z$] (in global coordinates). If needed, new nodes are added to FEnode. Related commands are SymSel, RotateSel and RepeatSel.

```
femesh('Reset');
```

femesh(';Testquad4;Divide 2 3;AddSel');
femesh(';TransSel $310 ; A d d S e l ') ; \%$ Translation of [3 10 0 $]$
femesh PlotElt
fecom(';Triax;TextNode')

UnJoin Gp1 Gp2
Duplicate nodes which are common to two groups. To allow the creation of interfaces with partial coupling of nodal degrees of freedom, UnJoin determines which nodes are common to the element groups Gp1 and Gp2 of FEelt, duplicates them and changes the node numbers in Gp2 to correspond to the duplicate set of nodes. In the following call with output arguments, the columns of the matrix InterNode give the numbers of the interface nodes in each group InterNode $=$ femesh('UnJoin 1 2').

```
femesh('Reset'); femesh('Test2bay');
femesh('FindNode group1 & group2') % nodes 3 4 are common
femesh('UnJoin 1 2');
femesh('FindNode group1 & group2') % no longer any common node
```

A more general call allows to separate nodes that are common to two sets of elements femesh('UnJoin', 'Selection1','Selection2'). Elements in Selection1 are left unchanged while nodes in Selection2 that are also in Selection1 are duplicated.

See also

fe_mk fecom, feplot, section 4.5, demos gartfe, d_ubeam, beambar ...

feutil

Purpose

Finite element mesh handling utilities.

Syntax

[out,out1] = feutil('CommandString',model,...)

Description

feutil provides a number of tools for mesh creation and manipulation.
Some commands return the model structure whereas some others return only the element matrix. To mesh a complex structure one can mesh each subpart in a different model structure (model, mo1, ...) and combine each part using AddTest command. To handle complex model combination (not only meshes but whole models with materials, bases, ...), one can use the CombineModel command.

Available feutil commands are

Advanced

Advanced command with non trivial input/output formats or detailed options are listed under feutila

AddElt

```
model.Elt=feutil('AddElt',model.Elt,'EltName',data)
```

This command can be used to add new elements to a model. EltName gives the element name used to fill the header. data describes elements to add (one row per element). Following example adds celas elements to the basis of a simple cube model.
\% Adding elements to a model
femesh('Reset'); model=femesh('Testhexa8'); \% simple cube model
data=[1 $01230011 e 3 ; 201230011 e 3 ;$ $301230011 e 3 ; 401230011 e 3] ; \% n 1 n 2$ dof1 dof2 EltId ProId k
model.Elt=feutil('AddElt', model.Elt,' celas', data);
cf=feplot(model);

```
AddNode[,New] [, From i] [,epsl val]
```

[AllNode, ind]=feutil('AddNode', OldNode, NewNode);
Combine (without command option New) or append (with command option New) NewNode to OldNode. Without command option New, AddNode combines NewNode to OldNode: it finds nodes in NewNode that coincide with nodes in OldNode and appends other nodes to form AllNode. With command option New, AddNode simply appends NewNode to OldNode.

AllNode is the new node matrix with added nodes. ind (optional) gives the indices of the NewNode nodes in the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates. The minimal distance below which two nodes are considered identical is given by sdtdef epsl (default 1e-6).
[AllNode,ind]=feutil('AddNode From 10000', OldNode,NewNode); gives node numbers starting at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb.
By default, nodes that repeated in NewNode are coalesced onto the same node (a single new node is added). If there is not need for that coalescence, you can get faster results with AddNode-nocoal.
ind=feutilb('AddNode -near epsl value', $\mathrm{n} 1, \mathrm{n} 2$); returns a sparse matrix with non zero values in a given colum indicating of n1 nodes that are within epsl of each n2 node (rows/columns correspond to $\mathrm{n} 1 / \mathrm{n} 2$ node numbers).
id=feutilb('AddNode -nearest epsl value', n1, xyz); returns vector giving the nearest n1 NodeId to each xyz node the search area being limited to epsl. When specified with a 7 column n2, the result is sparse ($\mathrm{n} 2(:, 1$), $1, \mathrm{n} 1$ _index). For fine meshes the algorithm can use a lot of memory. If n 2 is not too large it is then preferable to use an AddNode command with a tolerance sufficient for a match $[n 3, i n d]=f e u t i l(' A d d N o d e ~ e p s l ~ v a l u e ', n 1, n 2) ; i d=n 3(i n d, 1)$.

AddSet[NodeId, EltId, FaceId, EdgeId]
Command AddSet packages the generation of sets in an SDT model. Depending on the type of set several command options can apply.

- model=feutil('AddSetNodeId', model, 'name', 'FindNodeString') adds the selection FindNodeString as a set of nodes name to model. FindNodeString can be replaced by a column vector of NodeId.
- Syntax is the same for AddSetEltId with a FindEltString selection. FindEltString can be replaced by a column vector of EltId. Command option FromInd allows providing element indices instead of IDs.
- For faces with AddSetFaceId, the element selection argument FindEltString must result in the generation of a face selection. One can use the SelFace token in the FindEltString to this purpose. As an alternative, one can directly provide an element matrix resulting from a SelFace selection, or a 2 column list of respectively EltId and Face identifiers. For face identifier conversion to other code conventions, one can use command option @fun to obtain a set with a ConvFcn set to fun, see set for more details.
- For generation of EdgeId sets, the element selection argument FindEltString must result in the generation of an edge selection. One can use the SelEdge token in the FindEltString to this purpose. As an alternative, one can directly provide an element matrix resulting from a SelEdge selection, or a 2 column list of respectively EltId and Edge identifiers. Support for edge identifier conversion and setname selection is not provided yet.

The option -id value can be added to the command to specify a set ID.
By default the generated set erases any previously existing set with the same name, regardless of the type. Command option New alters this behavior by incrementing the set name. One can use the command second output to recover the new name.

Command option -Append allows generation of a meta-set. The meta-set is an agglomeration of several sets of possibly various types, see set for more information.

- The base syntax requires providing the meta-set name and the set name.
model=feutil('AddSetEltId -Append', model,'name', 'FindEltString', 'subname') will thus add the elements found as a sub set named subname of meta-set name. subname can be a 1 x 2 cell array \{subname, subgroup\} providing the set name and the set subgroup it belongs to. By default subgroup is set to the set type.
- Generation of a meta-set gathering all base sets in the model is possible by omitting subname and the FindEltString.

By default command AddSet returns the model as a first output and possibly the set data structure in a second output. Command option -get alters this behavior returning the data set structure without adding it to the model. For FaceId or EdgeId sets, command option -get can output the elements selected by the FindEltString,

Following example defines a set of each type on the ubeam model:

```
% Defining node elements or face sets in a model
model=demosdt('demo ubeam');
% Add a set of NodeId, and recover set data structure
```

```
[model,data]=feutil('AddSetNodeId',model,'nodeset','z==1');
% Add a set of EltId
model=feutil('AddSetEltId -id18',model,'eltset','WithNode{z==0}');
% Generate a set of EltId without model addition
data=feutil('AddSetEltId -id18 -get',model,'eltset','WithNode{z==0}');
% Generate a set of FaceId
model=feutil('AddSetFaceId',model,'faceset','SelFace & InNode{z==0}');
% Generate a set of FaceId without model addition
[data1,elt]=feutil('AddSetFaceId -get',model,'faceset','SelFace & WithNode{z==0}');
% Sample visalization commands
cf=feplot; % get feplot handle
[elt,ind]=feutil('FindElt setname eltset',model); % FindElt based on set name
cf.sel='setname faceset'; % element selection based on a FaceId set
% Lower level set handling
% Generate a FaceSet from an EltSet
r1=cf.Stack{'eltset'};r1.type='FaceId';r1.data(:,2)=1;
cf.Stack{'set','faceset'}=r1;
% Generate a DOF set from a node set
r1=cf.Stack{'nodeset'};r1.type='DOF';r1.data=r1.data+0.02;
cf.Stack{'set','dofset'}=r1;
% Visualize set data in promodel stack
fecom(cf,'curtab Stack','eltset');
```

AddTest[,-EGID i] [,NodeShift,Merge,Combine]
model=feutil('AddTest', mo1,mo2); Combine models. When combining test and analysis models you typically want to overlay a detailed finite element mesh with a coarse wire-frame representation of the test configuration. These models coming from different origins you will want combine the two models in model.

Note that the earlier objective of combining test and FEM models is now more appropriately dealt with using SensDof entries, see section 4.6 for sensor definitions and section 3.1 for test/analysis correlation. If you aim at combining several finite element models into an assembly, with proper handling of materials, element IDs, bases,... , you should rather use the more appropriate CombineModel command.

- By default the node sets are considered to be disjoint. New nodes are added starting from $\max (m o 1 . \operatorname{Node}(:, 1))+1$ or from NodeShift+1 if the argument is specified.

Thus feutil('AddTest NodeShift', mo1,mo2) adds mo2 nodes to mo1.Node while adding NodeShift to their initial identification number. The same NodeShift is added to node numbers in mo2.Elt which is appended to mo1.Elt. mo2 can be a wire frame matrix read with ufread for example.

- With command option Merge it is assumed that some nodes are common but their numbering is not coherent. Non coincident nodes (as defined by the AddNode command) are added to mo1.Node and mo2.Elt is renumbered according to resulting model.Node. Command option Merge-Edge is used to force mid-side nodes to be common if the end nodes are. Note that command Merge will also merge all coincident nodes of mo2.
- With command option Combine it is assumed that some nodes are common and their numbering is coherent. Nodes of mo2.Node with new NodeId values are added to mo1.Node while common NodeId values are assumed to be located at the same positions.
- You can specify an EGID value for the elements that are added using AddTest -EGID -1 for example. In particular negative EGID values are display groups so that they will be ignored in model assembly operations. Command option keeptest allows to retain existing test frames when adding a new one. If the same EGID is declared, test frames are then combined in the same group.
- Command option -NoOri returns model without the Info, OrigNumbering entry in the model stack.

```
Divide div1 div2 div3
```

model=feutil('Divide div1 div2 div3',model);

Mesh refinement by division of elements. Divide applies to all groups in model.Elt. To apply the division to a selection within the model use ObjectDivide.

Division directions div1 div2 div3 are here understood in the local element basis, thus depending on the declared node orders in the connectivity matrix that refer to the reference cell. Uneven divisions as function of the direction will thus require some care regarding the element declaration if the original mesh has been heterogeneously generated.

Currently supported divisions are

- segments : elements with beam1 parents are divided in div1 segments of equal length.
- quadrilaterals: elements with quad4 or quadb parents are divided in a regular mesh of div1 by div2 quadrilaterals.
- hexahedrons: elements with hexa8 or hexa20 parents are divided in a regular grid of div1 by div2 by div3 hexahedrons.
- tria3 can be divided with an equal division of each segment specified by div1.
- mass1 and celas elements are kept unchanged.

The Divide command applies element transformation schemes on the element parent topological structure. By default, the original element names are maintained. In case of trouble, element names can be controlled by declaring the proper parent name or use the SetGroupName command before and after divide.

The division preserves properties other than the node numbers, in addition final node numbering/ordering will depend on the MATLAB version. It is thus strongly recommended not to base meshing scripts on raw NodeId.

You can obtain unequal divisions by declaring additional arguments whose lines give the relative positions of dividers. Note that this functionality has not been implemented for quadb and tria3 elements.

For example, an unequal 2 by 3 division of a quad4 element would be obtained using model=feutil('divide', [0.1 1],[0.5 . 75 1] , model) (see also the gartfe demo).
\% Refining a mesh by dividing the elements
\% Example 1 : beam1
femesh('Reset'); model=femesh('Testbeam1'); \% build simple beam model
model=feutil('Divide 3',model); \% divide by 3
cf=feplot(model); fecom('TextNode'); \% plot model and display NodeId
\% Example 2 : you may create a command string
femesh('Reset'); model=femesh('Testbeam1'); \% build simple beam model
number=3;
st=sprintf('Divide \%f', number);
model=feutil(st,model);
cf=feplot(model); fecom('TextNode')

```
% Example 3 : you may use uneven division
```

femesh('Reset'); model=femesh('Testquad4'); \% one quad4 created
model=feutil('Divide', model,[0 . 1 . 2 1],[0 . 3 1]);
feplot(model);

An inconsistency in division for quad elements was fixed with version 1.105, you can obtain the consistent behavior (first division along element x) by adding the option -new anywhere in the divide command.

DivideInGroups

```
elt=feutil('DivideInGroups',model);
```

Finds groups that are not connected (no common node) and places each of these groups in a single element group.

DivideGroup i ElementSelectors

elt=feutil('DivideGroup i ElementSelector',model);

Divides a single group i in two element groups. The first new element group is defined based on the element selectors (see section 7.12).

For example elt=feutil('divide group 1 withnode\{x>10\}',model);

EltId

[EltId]=feutil('EltId', elt) returns the element identifier for each element in elt. It currently does not fill EltId for elements which do not support it.
[EltId,elt]=feutil('EltIdFix',elt) returns an elt where the element identifiers have been made unique.
Command option -elt can be used to set new EltId.
Command option -model can be used to set new EltId and renumber model Stack data, a model structure must be input, and the output is then the model.

```
% Handling elements IDs, renumbering elements
model=femesh('TestHexa8')
[EltId,model.Elt]=feutil('EltIdFix',model.Elt); % Fix and get EltId
[model.Elt,EltIdPos]=feutil('eltid-elt',model,EltId*18); % Set new EltId
model.Elt(EltIdPos>0,EltIdPos(EltIdPos>0)) % New EltId
% Renumber EltId with stack data
model=feutil('AddSetEltId',model,'all','groupall');
model=feutil('EltId-Model',model,EltId+1);
```

Extrude $n R e p t x$ ty $t z$
Extrusion. Nodes, lines or surfaces of model are extruded $n R e p$ times with global translations $t x$ $t y t z$. Elements with a mass1 parent are extruded into beams, element with a beam1 parent are extruded into quad4 elements, quad4 are extruded into hexa8, and quadb are extruded into hexa20.

You can create irregular extrusion. For example, model=feutil('Extrude 0001 ',model, [0 logspace($-1,1,5$)]) will create an exponentially spaced mesh in the z direction. The second argument gives the positions of the sections for an axis such that tx ty tz is the unit vector.

```
% Extruding mesh parts to build a model
% Example 1 : beam
femesh('Reset'); model=femesh('Testbeam1'); % one beam1 created
model=feutil('Extrude 2 1 0 0',model); % 2 extrusions in x direction
cf=feplot(model);
% Example 2 : you may create the command string
number=2;step=[\begin{array}{lll}{1}&{0}&{0}\end{array}];
st=sprintf('Extrude %f %f %f %f',[number step]);
femesh('Reset'); model=femesh('Testbeam1'); % one beam1 created
model=feutil(st,model);
cf=feplot(model);
% Example 3 : you may uneven extrusions in z direction
femesh('Reset'); model=femesh('Testquad4');
model=feutil('Extrude 0 0 0 1',model,[0 .1 .2 .5 1]);
    % 0 0 0 1 : 1 extrusion in z direction
    % [0 . 1 . 2 . 5 1] : where extrusions are made
feplot(model)
```


GetDof ElementSelectors

Command to obtain DOF from a model, or from a list of NodeId and DOF.

Use mdof=feutil('GetDof', dof,NodeId); to generate a DOF vector from a list of DOF indices dof, a column vector (e.g. dof $=[.01 ; .02 ; .03]$), and a list of NodeId, a column vector. The result will be sorted by DOF, equivalent to mdof $=[\operatorname{NodeId}+\operatorname{dof}(1) ; \operatorname{NodeId}+\operatorname{dof}(2) ; \ldots]$.

Call mdof=feutil('GetDof',NodeId, dof); will output a DOF vector sorted by NodeId, equivalent to mdof $=[\operatorname{NodeId}(1)+$ dof; NodeId (2) + dof;...$]$.

The nominal call to get DOFs used by a model is mdof=feutil('GetDOF', model). These calls are performed during assembly phases fe_mk, fe_load, ...). This supports elements with variable DOF numbers defined through the element rows or the element property rows. To find DOFs of a part of the model, you should add a ElementSelector string to the GetDof command string.

Note that node numbers set to zero are ignored by feutil to allow elements with variable number of nodes.

FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling format is [ind,elt] = feutil('FindElt ElementSelector',model);
where ind gives the row numbers of the elements in model. Elt (but not the header rows except for unique superelements which are only associated to a header row) and elt (optional) the associated element description matrix.

When operators are accepted, equality and inequality operators can be used. Thus group ${ }^{\sim}=\left[\begin{array}{ll}3 & 7\end{array}\right]$ or pro < 5 are acceptable commands. See also SelElt, RemoveElt and DivideGroup, the gartfe demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of node selectors listed in section 7.11.
Different selectors can be chained using the logical operations \& (finds nodes that verify both conditions), I (finds nodes that verify one or both conditions). Condition combinations are always evaluated from left to right (parentheses are not accepted).

The calling format is
[NodeId,Node] = feutil('FindNode NodeSelector',model);
Output arguments are the NodeId of the selected nodes and the selected nodes Node as a second optional output argument.

As an example you can show node numbers on the right half of the $z==0$ plane using the commands

```
fecom('TextNode',feutil('FindNode z==0 & x>0',model))
```

Following example puts markers on selected nodes

```
% Finding nodes and marking/displaying them in feplot
demosdt('demo ubeam'); cf=feplot; % load U-Beam model
fecom('ShowNodeMark',feutil('FindNode z>1.25',cf.mdl),'color','r')
fecom('ShowNodeMark-noclear',feutil('FindNode x>0.2*z|x<-0.2*z',cf.mdl),...
    'color','g','marker','o')
```

Note that you can give numeric arguments to the command as additional feutil arguments. Thus the command above could also have been written feutil('FindNode $z==\& x>=$ ', 0,0))

See also the gartfe demo.

GetEdge[Line,Patch]

These feutil commands are used to create a model containing the 1D edges or 2D faces of a model. A typical call is

```
% Generate a contour (nD-1) model from a nD model
femesh('reset'); model=femesh('Testubeam');
elt=feutil('GetEdgeLine',model); feutil('infoelt',elt)
```

GetEdgeLine supports the following variants MatId retains inter material edges, ProId retains inter property edges, Group retains inter group edges, all does not eliminate internal edges, InNode only retains edges whose node numbers are in a list given as an additional feutil argument.

These commands are used for SelEdge and SelFace element selection commands. Selface preserves the EltId and adds the FaceId after it to allow face set recovery.

GetElemF

Header row parsing. In an element description matrix, element groups are separated by header rows (see section 7.2) which for the current group jGroup is given by elt (EGroup (jGroup), :) (one can obtain EGroup - the positions of the headers in the element matrix - using [EGroup, nGroup]=getegroup (model.Elt)). The GetElemF command, whose proper calling format is

```
[ElemF,opt,ElemP] = feutil('GetElemF',elt(EGroup(jGroup),:),[jGroup])
```

returns the element/superelement name ElemF, element options opt and the parent element name ElemP. It is expected that opt (1) is the EGID (element group identifier) when defined.

Get [Line, Patch]

Line=feutil ('GetLine', node, elt) returns a matrix of lines where each row has the form [length(ind) +1 ind] plus trailing zeros, and ind gives node indices (if the argument node is not empty) or node numbers (if node is empty). elt can be an element description matrix or a connectivity line matrix (see feplot). Each row of the Line matrix corresponds to an element group or a line of a connectivity line matrix. For element description matrices, redundant lines are eliminated.

Patch=feutil('GetPatch',Node,Elt) returns a patch matrix where each row (except the first which serves as a header) has the form [n1 n2 n3 n4 EltN Groupn]. The ni give node indices (if
the argument Node is not empty) or node numbers (if Node is empty). Elt must be an element description matrix. Internal patches (it is assumed that a patch declared more than once is internal) are eliminated.

The all option skips the internal edge/face elimination step. These commands are used in wireframe and surface rendering.

GetNode Selectors

Node=feutil('GetNode Selectors', model) returns a matrix containing nodes rather than NodeIds obtained with the FindNode command. The indices of the nodes in model.Node can be returned as a 2 nd optional output argument. This command is equivalent to the feutil call
[NodeId,Node]=feutil('FindNode Selectors',model).

GetNormal [Elt, Node] [,Map], GetCG

[normal, cg]=feutil('GetNormal [elt, node]' ,model) returns normals to elements/nodes in model. CG=feutil('GetCG', model) returns the CG locations. Command option -dir i can be used to specify a local orientation direction other than the normal (this is typically used for composites). MAP=feutil('getNormal Map', model) returns a data structure with the following fields

ID column of identifier (as many as rows in the .normal field). For . opt=2 contains the NodeId. For . opt=1 contains the EltId.
normal $\quad N \times 3$ where each row specifies a vector at ID or vertex.
opt 1 for MAP at element center, 2 for map at nodes.
color $\quad N \times 1$ optional real value used for color selection associated with the axes color limits.
DefLen optional scalar giving arrow length in plot units.
The MAP data structure may be viewed using
fecom('ShowMap', MAP); fecom('ScaleOne');

Info[,Elt, Nodei]
feutil('Info',model); Information on model. Info by itself gives general information about model. InfoNode i gives information about all elements that are connected to node of NodeId i.

Join[group i, EltName]
Join the groups i or all the groups of type EltName. JoinAll joins all the groups that have the same element name. Note that with the selection by group number, you can only join groups of the same type (with the same element name). JoinAll joins all groups with identical element names.

You may join groups using there ID

```
% Joining groups of similar element types
femesh('Reset'); model=femesh('Test2bay');
% Join using group ID
feutil('Info',model); % 2 groups at this step
model=feutil('JoinGroup1:2',model) % 1 group now
feutil('Info',model);
% Join using element types
% Note you can give model (above) or element matrix (below)
femesh('Reset'); model=femesh('Test2bay');
model.Elt=feutil('Joinbeam1',model.Elt); % 1 group now
```

Matid, ProId, MPID
MatId=feutil('MatId', model) returns the element material identifier for each element in model.Elt. One can also modify MatId of the model giving a third argument. model=feutil ('MatId', model, r1) r1 can be a global shift on all non zero MatId or a matrix whose first column gives old MatId and second new MatId. MatId renumbering is applyed to elements, model.pl and model.Stack 'mat' entries. The ProId command works similarly.

MPId returns a matrix with three columns MatId, ProId and group numbers. model.Elt=feutil('mpid', model, mpid) can be used to set properties of elements in model.Elt matrix.

Node[trans, rot, mir, DefShift]

The command feutil('node [trans,rot,mir]', model, RO) allows to move model nodes (or part of a model with a provided selection) with standard transformations :

- translation : trans x y z
- rotation : rot $x 1$ x2 x3 n1 n2 n3 theta with $x i$ the coordinate of the node and ni the direction of the axe and theta the angle in degree
- plane symmetry :
- plane x y or $\mathrm{z}: \operatorname{mir} x, \operatorname{mir} y$ or mir z
- point + normal: mir "○ $x 1$ x2 $x 3$ n1 n2 n3" with $x i$ the coordinate of the node and $n i$ the direction of the normal to the plane
- plane equation : mir "eq $a b c d$ " defining the plane $a X+b Y+c Z+d=0$
- best plane defined by list of node coordinates :
feutil('node mir', model,struct('node', [x1 y1 z1; x2 y2 z2;...]))
- best plane defined by list of nodeids : mir "nodeid id1 id2 id3"
- rigid body matrix : feutil('node',model,struct('rb',[4x4 RB matrix]))

For each call, it is possible to either provide inputs as text string or as structure given on third argument with the field name corresponding to the wanted transformation.

An element selection can be provided in the text command (sel"EltSel") or as a text in a .sel field of the RO stucture to apply the transformation on only a part of the model. See FindElt.

Here is an exhaustive list of examples

```
model=femesh('test tetra4'); % Load model wontaining a tetrahedron
model.Node=feutil('addnode',model.Node,[0-1 0 0]); % Add a node
model.Elt=feutil('addelt',model.Elt,'mass1',5); % Set this node as a mass1 element
feplot(model); % Display
% Displacement transformations
% translation in the direction [1 0 0] sepcified in the text command
model=feutil('node trans 1 0 0',model); feplot(model);
% rotation of 180deg arround the axis defined by node [1 0 0] and vector [0 0 1]
RO=struct('rot',[1 0 0 0 0 1 180]); % rotation is the last number
% Only nodes in "group1" are moved
model=feutil('node -sel"group1"',model,RO); feplot(model);
% Rigid body transformation (matrix in field rb) on nodes in group1
RO=struct('rb',[1 0 0 -1;0 1 0 0;0 0 1 0;0 0 0 1],'sel','group1');
model=feutil('node',model,RO); feplot(model);
% mirror transformation
% Plane y=0
model=feutil('node mir y',model); feplot(model);
% Same plane definined with node [0 0 0] and normal [0 1 0]
model=feutil('node mir "o 0 0 0 0 1 0"',model); feplot(model);
% Same plane definined with nodeid 1 2 4
model=feutil('node mir "nodeid 1 2 4"',model); feplot(model);
```

```
% Same plane definined with equation 0*x+1*y+0*z+0=0, given as last
% argument in a structure
RO=struct('eq',[\begin{array}{llll}{0}&{1}&{0}&{0}\end{array}]);
model=feutil('node mir',model,RO); feplot(model);
% Mirror with respect to the "best" plane passing through the node list
R0=struct('node',[0 -0.1 0;1 0 0;0 0 1;1 0.3 1],'sel','group1');
model=feutil('node mir',model,RO); feplot(model);
fecom('shownodemark',[0 -0.1 0;1 0 0;0 0 1;1 0.3 1]); % Show nodes defining the plane
```

ObjectBeamLine i, ObjectMass i
elt=feutil('ObjectBeamLine i '); Create a group of beam1 elements. The node numbers i define a series of nodes that form a continuous beam (for discontinuities use 0), that is placed in elt as a single group of beam1 elements.

For example elt=feutil('ObjectBeamLine 1:3 04 5') creates a group of three beam1 elements between nodes 12,23 , and 45.

An alternate call is elt=feutil('ObjectBeamLine', ind) where ind is a vector containing the node numbers. You can also specify a element name other than beam1 and properties to be placed in columns 3 and more using elt=feutil('ObjectBeamLine -EltName', ind,prop).
elt=feutil('ObjectMass 1:3') creates a group of concentrated mass1 elements at the declared nodes.

```
% Build a mesh by addition of defined beam lines and masses
model=struct('Node',[1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...
    3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176], 'Elt', []);
prop=[100 100 1.1 0 0 0]; % MatId ProId nx ny nz
model.Elt=feutil('ObjectBeamLine 1 2 0 2 3 0 3 4',prop);
% or model.Elt=feutil('ObjectBeamLine',1:4);
model.Elt=feutil('ObjectMass',model,3,[1.1 1.1 1.1]);
%model.Elt(end+1:end+size(elt,1),1:size(elt,2))=elt;
feplot(model);fecom textnode
```

ObjectHoleInPlate

```
model=feutil('ObjectHoleInPlate ...',model);
```


Create a quad4 mesh of a hole in a plate. The format is 'ObjectHoleInPlate NO N1 N2 r1 r2 ND1 ND2 NQ' giving the center node, two nodes to define the edge direction and distance, two radiuses in the direction of the two edge nodes (for elliptical holes), the number of divisions along a half quadrant of edge 1 and edge 2, the number of quadrants to fill (the figure shows 2.5 quadrants filled).

```
% Build a model of a plate with a hole
model=struct('Node',[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],'Elt',[]);
model=feutil('ObjectHoleInPlate 1 2 3 .5 . 5 3 4 4',model);
model=feutil('Divide 3 4',model); % 3 divisions around, 4 divisions along radii
feplot(model)
% You could also use the call
model=struct('Node',[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],'Elt',[]);
% n1 n2 n3 r1 r2 nd1 nd2 nq
r1=[ [ 1 2 3 3 .5 .5 3 4 4 4];
st=sprintf('ObjectHoleInPlate %f %f %f %f %f %f %f %f',r1);
model=feutil(st,model);
```


ObjectHoleInBlock

model=feutil('ObjectHoleInBlock ...') ; Create a hexa8 mesh of a hole in a rectangular block. The format is' ObjectHoleInBlock $x 0$ y0 z0 nx1 ny1 nz1 nx3 ny3 nz3 dim1 dim2 dim3 r nd1 $n d 2 n d 3 n d r$ ' giving the center of the block ($x 0$ yo $z 0$), the directions along the first and third dimensions of the block ($n x 1$ ny1 $n z 1 n x 3$ ny3 $n z 3$, third dimension is along the hole), the 3 dimensions (dim1 dim2 dim3), the radius of the cylinder hole (r), the number of divisions of each dimension of the cube ($n d 1 n d 2 n d 3$, the 2 first should be even) and the number of divisions along the radius ($n d r$).
\% Build a model of a cube with a cylindrical hole

Object[Quad,Beam,Hexa] MatId ProId
model=feutil('ObjectQuad MatId ProId', model, nodes, div1, div2) Create or add a model containing quad4 elements. The user must define a rectangular domain delimited by four nodes and the division in each direction (div1 and div2). The result is a regular mesh.

For example model=feutil('ObjectQuad 10 11', nodes,4,2) returns model with 4 and 2 divisions in each direction with a MatId 10 and a ProId 11.

An alternate call is model=feutil('ObjectQuad 1 1',model, nodes,4,2): the quadrangular mesh is added to the model.

```
% Build a mesh based on the refinement of a single quad element
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil('Objectquad 1 1',node,4,3); % creates model
node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];
model=feutil('Objectquad 2 3',model,node,3,2); % matid=2, proid=3
feplot(model);
```

Divisions may be specified using a vector between $[0,1]$:

```
% Build a mesh based on the custom refinement of a single quad element
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil('Objectquad 1 1',node,[0 .2 .6 1],linspace(0,1,10));
feplot(model);
```

Other supported object topologies are beams and hexahedrons. For example
\% Build a mesh based on the custom refinement of a single element
node $=\left[\begin{array}{lllllllll}0 & 0 & 0 ; & 0 & 0 ; 1 & 3 & 0 ; 1 & 3 & 1\end{array}\right]$;
model=feutil('Objectbeam 3 10', node(1:2,:),4); \% creates model
model=feutil('Objecthexa 4 11', model, node, $3,2,5$); \% creates model
feutil('infoelt', model)

Object [Arc, Annulus, Circle, Cylinder, Disk]
These object constructors follow the format
model=feutil('ObjectAnnulus x y z r1 r2 nx ny nz Nseg NsegR', model) with x y z the coordinates of the center, nx ny nz the coordinates of the normal to the plane containing the annulus, Nseg the number of angular subdivisions, and NsegR the number of segments along the radius. The resulting model is in quad4 elements.
model=feutil('ObjectArc $\mathrm{x} y \mathrm{z}$ x1 y1 z1 x2 y2 z2 Nseg obt', model) with $\mathrm{x} y \mathrm{z}$ the coordinates of the center, xi yi zi the coordinates of the first and second points defining the arc boundaries, Nseg the number of angular subdivisions, and obt for obtuse, set to 1 to get the shortest arc between the two points or -1 to get the complementary arc. The resulting model is in beam1 elements.
model=feutil('ObjectCircle xc yc zc r nx ny nz Nseg', model) with xc yc zc the coordinates of the center, r the radius, $n x$ ny $n z$ the coordinates of the normal to the plane containing the circle, and Nseg the number of angular subdivisions. The resulting model is in beam1 elements.
model=feutil('ObjectCylinder x1 y1 z1 x2 y2 z2 r divT divZ',model) with xi yi zi the coordinates of the centers of the cylinder base and top circles, r the cylinder radius, divT the number of angular subdivisions, and divZ the number of subdivisions in the cylinder height. The resulting model is in quad4 elements.
model=feutil('ObjectDisk x y z r nx ny nz Nseg NsegR', model) with x y z, the coordinates of the center, r the disk radius, $n x$ ny $n z$ the coordinates of the normal to the plane containing the disk, Nseg the number of angular subdivisions, and NsegR the number of segments along the radius. The resulting model is in quad4 elements. Command option -nodeg avoids degenerate elements by transforming them into tria3 elements.

For example:

```
% Build a mesh based on simple circular topologies
model=feutil('object arc 0 0 0 1 0 0 0 1 0 30 1');
model=feutil('object arc 0 0 0 1 0 0 0 1 0 30 1',model);
model=feutil('object circle 1 1 1 2 0 0 1 30',model);
model=feutil('object circle 1 1 3 2 0 0 1 30',model);
model=feutil('object cylinder 0 0 0 0 0 4 2 10 20',model);
model=feutil('object disk 0 0 0 3 0 0 1 10 3',model);
model=feutil('object disk -nodeg 1 0 0 3 0 0 1 10 3',model);
model=feutil('object annulus 0 0 0 2 3 0 0 1 10 3',model);
feplot(model)
```


ObjectDivide

Applies a Divide command to a selection within the model. This is a packaged call to RefineCell, one thus has access to the following command options:

- -MPC to generate MPC constraints to enforce displacement continuity at non conforming interfaces
- KnownNew to add new nodes without check
- -noSData asks no to add model stack entry info, newcEGI that provides the indices of new elements in model.

```
% Perform local mesh refinement
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil('Objectquad 1 1',node,4,3); % creates model
model=feutil('ObjectDivide 3 2',model,'WithNode 1');
feplot(model);
% Perform a non uniform local mesh refinement with MPC
node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil('Objectquad 1 1',node,4,3); % creates model
model=feutil('ObjectDivide 3 2 -MPC',model,...
    'WithNode 1',[0 . 2 1],[0 . 25 . 8 1]);
% display model and MPC constraint
feplot(model);
fecom(';promodelinit;proviewon;')
fecom('curtabCases','MPCedge');
```

Optim[Model, NodeNum, EltCheck]
model.Node=feutil('Optim...', model);
model. Node=feutil('OptimModel', model) removes nodes unused in model.Elt from model. Node. This command is very partial, a thorough model optimization is obtained using feutilb SubModel with groupall selection. model=feutilb('SubModel', model,'groupall');. To recover used nodes the most complete command is feutilb GetUsedNodes,
model. Node=feutil('OptimNodeNum',model) does a permutation of nodes in model.Node such that the expected matrix bandwidth is smaller. This is only useful to export models, since here DOF renumbering is performed by fe_mk model=feutil ('OptimEltCheck', model) attempts to fix geometry pathologies (warped elements) in quad4, hexa8 and penta6 elements.
model=feutil('OptimDegen', model) detects degenerate elements and replaces them by the proper lower node number case hexa $->$ penta.

Orient, Orient i [, $\mathrm{n} n x n y n z$]
Orient elements. For volumes and 2-D elements which have a defined orientation model.Elt=feutil('Orient',model) calls element functions with standard material properties to
determine negative volume orientation and permute nodes if needed. This is in particular needed when generating models via Extrude or Divide operations which do not necessarily result in appropriate orientation (see integrules). When elements are too distorted, you may have a locally negative volume. A warning about warped volumes is then passed. You should then correct your mesh.

Note that for 2D meshes you need to use 2D element names (q4p, t3p, ...) rather than quad4, tria3, Typically model.Elt=feutil('setgroup1 name q4p',model).

Orient normal of shell elements. For plate/shell elements (elements with parents of type quad4, quadb or tria3) in groups i of model.Elt, model. Elt=feutil('Orient $i n n x n y n z^{\prime}$,model) command computes the local normal and checks whether it is directed towards the node located at $n x n y n z$. If not, the element nodes are permuted to that a proper orientation is achieved. A -neg option can be added at the end of the command to force orientation away rather than towards the nearest node.
model.Elt=feutil('Orient i ', model, node) can also be used to specify a list of orientation nodes. For each element, the closest node in node is then used for the orientation. node can be a standard 7 column node matrix or just have 3 columns with global positions.

For example

```
% Specify element orientation
% Load example
femesh('Reset'); model=femesh('Testquad4');
model=feutil('Divide 2 3',model);
model.Elt=feutil('Dividegroup1 WithNode1',model);
% Orient elements in group 2 away from [0 0 -1]
model.Elt=feutil('Orient 2 n 0 0 -1 -neg',model);
MAP=feutil('GetNormal MAP',model);MAP.normal
```

Quad2Lin, Lin2Quad, Quad2Tria, etc.
Basic element type transformations.
model=feutil('Lin2Quad epsl .01',model) is the generic command to generate second order meshes.
Lin2QuadCyl places the mid-nodes on cylindrical arcs.
Lin2QuadKnownNew can be used to get much faster results if it is known that none of the new midedge nodes is coincident with an existing node. Quad2Lin performs the inverse operation.
For this specific command many nodes become unecessary, command option -optim performs a cleanup by removing these nodes from the model, and its Stack and Case entries. Quad2Tria
searches elements for quad4 element groups and replaces them with equivalent tria3 element groups. Hexa2Tetra replaces each hexa8 element by four tetra4 elements (this is really not a smart thing to do).
Hexa2Penta replaces each hexa8 element by six tetra4 elements (warning : this transformation may lead to incompatibilities on the triangular faces).
Penta2Tetra replaces each penta6 element by 11 tetra4 elements.
Command option KnownNew can be used for Hexa2Tetra, Hexa2Penta, and Penta2Tetra. Since these commands add nodes to the structure, quicker results can be obtained if it is known that none of the new nodes are coincident with existing ones. In a more general manner, this command option is useful if the initial model features coincident but free surfaces (e.g. two solids non connected by topology, when using coupling matrices). The default behavior will add only one node for both surfaces thus coupling them, while the KnownNew alternative will add one for each.

```
% Transforming elements in a mesh, element type and order
% create 2x3 quad4
femesh('Reset'); model=femesh('Testquad4');
model=feutil('Divide 2 3',model);
model=feutil('Quad2Tria',model); % conversion
feplot(model)
% create a quad, transform to triangles, divide each triangle in 4
femesh('Reset'); model=femesh('Testquad4');
model=feutil('Quad2Tria',model);
model=feutil('Divide2',model);
cf=feplot(model); cf.model
% create a hexa8 and transform to hexa20
femesh('Reset'); model=femesh('Testhexa8');
model=feutil('Lin2Quad epsl .01',model);
feutil('InfoElt',model)
```


RefineCell, Beam l, ToQuad

- The RefineCell command is a generic element-wise mesh refinement command. Each element can be replaced by another mesh fitted in the initial topology. This is in particular used by RefineToQuad.

For each element type, it is possible to define an interior mesh defined in the element reference configuration. RefineCell then applies node and element additions in an optimized way to produce a final mesh in which all elements have been transformed.

A typical syntax is model=feutil('RefineCell', model,R1', with model a standard SDT model and R1 a running option structure providing in particular the cell refinement topologies.

In practice, cell refinement is defined for each element type in the reference configuration, giving additional nodes by edge, then face, then volume in increasing index. New nodes are computed using an operator performing weighted sums of initial cell coordinates. If no weights are given, arithmetic average is used.

Option structure R1 contains fields named as element types. These fields provide structures with fields

- edge a cell array in the format $\{$ [newId [oldId_Av]], [weights] $\}$ providing the nodes to be added on the edges of the initial element. It is a 1 by 2 cell array. The first part is a matrix with as many lines as new nodes to be added, the first column newId providing the new NodeId of the reference configuration and the following ones oldId_Av the nodes of the initial cell used to generate the new coordinates. The second part is a weight matrix, with as many lines as new nodes and as many columns as oldId_Av providing the weights for each node. The weights matrix can be left empty in which case equal weights will be used for each nodes. It can also be set a a scalar, and in this case the scalar coefficient will be used for each weight. newId have to be given in increasing order. This can be left blank if no node has to be added in edges.
- face a cell array in the same format than for field edge, providing the nodes to be added on the edges of the initial element. newId have to be given in increasing order and greater than the edge new IDs. This can be left blank if no node has to be added in faces.
- volume a cell array in the same format than for field edge, providing the nodes to be added in the volume of the initial element. newId have to be given in increasing order and greater than the edge new IDs and greater than the face new IDs. This can be left blank if no node has to be added in the volume.
- Elt a cell array providing the elements defined in the reference configuration topology. This is a cell array in format $\{\mathrm{ElemP}$, Elt $\}$, ElemP providing the new element types and Elt an element matrix with no header providing the connectivies associated to ElemP.
- faces For non symmetric transformations, it is possible to define a reference node ordering of the reference configuration that allows identifying a reference face of the reference configuration.
- shift For non symmetric transformations, shift will identify the reference face in the faces field to allow transformation for selected faces of elements.

A sample call to refine quad4 elements using RefineCell is then

```
% refine cell sample call for iso quad refinement
model=femesh('testquad4'); % base quad element
% definition of the quad transformation
R1=struct('quad4',...
```

```
    struct('edge', {{[[\begin{array}{llllll}{5}&{1}&{2;6}&{2}&{3;7}&{3}\end{array}4;8}
    'face',{{[[9
    'Elt',{{'quad4',[1 5 9 8;5 2 6 9;9 6 3 7;9 7 4 8]}}));
mo1=feutil('refinecell',model,R1)
[eltid,mo1.Elt]=feutil('EltIdFix;',mo1);
% Visualization
cf=feplot(mo1); fecom('textnode')
```

It is possible to restrain refinement to an element selection. This is realized by adding field set to R1 containing a list of EltId on which the refinement will be performed.
By default, the output model only contains the refined elements. Command option -Replace outputs the complete model on which selected elements have been refined. In this latter case, apparition of non conforming interfaces is possible. Command option -MPC allows generating MPC constraints (on DOF $1,2,3$) at non-conforming interfaces to enforce displacement continuity. Generated MPC are named MPCedge and MPCface respectively concerning nodes added on edges and faces.

```
% local refine cell call with MPC generation
R1.set=[1]; % define an EltId set to refine
% call for MPC for new interface edges
mo1=feutil('refinecell-replace-mpc',mo1,R1);
% display refined model and MPC
cf=feplot(mo1);
fecom(cf,';promodelinit;proviewon;curtabCase;','MPCedge');
```

Non symmetric cell refinement requires the ability to detect the element orientation regarding the reference cell orientation. The strategy implemented is based on element face (for volume) or edge (for shells) identification, through the definition in the input structure of a field faces providing the face indices of the reference model and a shift index providing a reference face. This strategy works well if the reference face is refined in a unique way. If several faces share the same refinement a yet to setup identification strategy has to be defined.

In this case, each element to be refined must be assigned a face (or edge) selection for orientation purpose. The field set in input structure R1 is then mandatory with two columns, the first one providing the selected element IDs and the second one the face (or edge) identifier corresponding to the reference configuration reference face. See feutil AddSetFaceId, and FindElt commands to generate such element selection.
The following example provides a non-symmetric cell refinement of a side of a structure allowing an increase of node one side while keeping a continuous mesh.

```
% unsymmetric refine cell call
```

```
model=femesh('testquad4'); % base model
model=feutil('refineToQuad',model); % refine into 4 quad4
% fix eltid for clean element selection
[eltid,model.Elt]=feutil('EltIdFix;',model);
% define a non symmetric cell refinement
% here refinement is based on edge 1 2 using reference faces
R1=struct('quad4', ...
    struct('edge',{{[[\begin{array}{lll}{5}&{1}&{2;6}\\{1}&{2}\end{array}],\ldots..
    [2/3 1/3;1/3 2/3]}},...
    'face',{{[[7 1:4;8 1:4],...
[1/6 1/3 1/3 1/6;1/3 1/6 1/6 1/3]}}},\mp@code{l
'Elt',{{'quad4',[1 5 8 4;5 6 7 8;6 2 3 7;8 7 3 4]}},...
'faces',quad4('edge'),'shift',1));
% define a selection of edges to refine
elt=feutil('selelt seledge & innode{x==0}',model);
% here easy recovery on elements for edge selection
% based on shell element
R1.set=elt(2:end,5:6);
% call refinement
mo1=feutil('refinecell-replace',model,R1)
cf=feplot(mo1); fecom('textnode')
```

- The RefineBeam command searches model.Elt for beam elements and divides elements so that no element is longer than l. For beam1 elements, transfer of pin flags properties are forwarded by keeping non null flags on the new beam elements for which a pre-existing node was flagged.

```
% Specific mesh refinement for beam
femesh('Reset'); model=femesh('Testbeam1'); % create a beam
model=feutil('RefineBeam 0.1',model);
```

One can give a model subselection (FindElt command string) as 2nd argument, to refine only a part of the model beams.

- The RefineBeamUnival command uniformly refines all beam1elements into val elements. This command packages a feutil ObjectDivide call with command options KnownNew and -noSData.
- Command option -pin allows proper pin flag forwarding for beam1 elements. transfer of pin flags properties are forwarded by keeping non null flags on the new beam elements for which a pre-existing node was flagged. This constitutes the main interest of the command.
- Command option -MergeNew asks to merge new nodes instead of simply adding them.
- The RefineToQuad command transforms first order triangles, quadrangles, penta, tetra, and hexa to quad and hexa only while dividing each element each in two. The result is a conform mesh, be aware however that nodes can be added to your model boundaries. Using such command on model sub-parts will thus generate non conforming interfaces between the refined and non-refined parts.

By default, new nodes are added with an AddNode command so matched new nodes are merged. Command option KnownNew allows a direct addition of new nodes without checking.
\% Refining mesh and transforming to quadrangle elements
model=femesh('testtetra4');model=feutil('RefineToQuad', model); feplot(model);

RemoveElt ElementSelectors

[model.Elt,RemovedElt]=feutil('RemoveElt ElementSelectors',model);
Element removal. This function searches model.Elt for elements which verify certain properties selected by ElementSelectors and removes these elements from the model description matrix. 2nd output argument RemovedElt is optional and contains removed elements. A sample call would be
\% Removing elements in a model
\% create $3 x 2$ quad4
femesh('Reset'); model=femesh('Testquad4');model=feutil('Divide 2 3',model);
[model.Elt,RemovedElt]=feutil('RemoveElt WithNode 1',model);
feplot(model)

Remove [Pro, Mat] MatId, ProId
Mat, Pro removal This function takes in argument the ID of a material or integration property and removes the corresponding entries in the model pl/il fields and in the stack mat/pro entries.

- Command option -all removes all pl/il entries found in the model and its stack.
- Command option -unused removes all pl/il entries not used by any element.

This call supports the info, Rayleigh stack entry (see sdtweb damp), so that the data entries referring to removed IDs will also be removed. By default, the non-linear properties are treated like
normal properties. Care must thus be taken if a non-linear property that is not linked to specific elements is used. Command option -unused will alter this behavior and keep non-linear properties.

Sample calls are provided in the following to illustrate the use.

```
% Removing material and integration properties in a model
model=femesh('testhexa8');
model=stack_set(model,'pro','integ',p_solid('default'));
model=stack_set(model,'mat','steel',m_elastic('default steel'));
model=feutil('remove pro 110',model);
model=feutil('remove pro',model,111);
model=feutil('remove mat 100',model);
model=feutil('remove mat 100 pro 1',model);
model=feutil('remove pro -all',model); % Command option -all
model=feutil('remove mat pro -all',model);
model=femesh('testhexa8'); % Command option -unused
model=feutil('remove mat pro -unused',model);
```


Renumber

model=feutil('Renumber', model' NewNodeNumbers) can be used to change the node numbers in the model. Currently nodes, elements, DOFs and deformations, nodeset, par, cyclic and other Case entries are renumbered.

NewNodeNumbers is the total new NodeIds vector. NewNodeNumbers can also be a scalar and then defines a global NodeId shifting. If NewNodeNumbers has two columns, first giving old NodeIds and second new NodeIds, a selective node renumbering is performed.

If NewNodeNumbers is not provided values 1:size (model.Node,1) are used. This command can be used to meet the OpenFEM requirement that node numbers be less than $2 \wedge 31 / 100$. Another application is to joint disjoint models with coincident nodes using

Command option -NoOri asks not to add the info,OrigNumbering data in the model stack. info, OrigNumbering is only useful when the user needs to convert something specific linked to the new node numerotation that is outside model.

```
% Finding duplicate nodes and merging them
[r1,i2]=feutil('AddNode',model.Node,model.Node);
model=feutil('Renumber',model,r1(i2,1));
```

Renumbering can also be applied to deformation curves, using the same syntax. Be aware however that to keep coherence between a deformation curve and a renumbered model, one should input NewNodeNumbers as the renumbered model stack entry info, OrigNumbering.

```
% Renumering the nodes of a model, and its data
% simple model
model=femesh('testhexa8b');
% simple curve
def=fe_eig(model,[5 5 1e3]);
% first renumber model
model=feutil('renumber',model,1e4);
% then renumber def with renumbering info
r1=stack_get(model,'info','OrigNumbering','get');
def=feutil('renumber',def,r1);
```

RepeatSel nITE $t x$ ty $t z$
Element group translation/duplication. RepeatSel repeats the elements of input model nITE times with global axis translations $t x$ ty $t z$ between each repetition of the group. If needed, new nodes are added to model. Node. An example is treated in the d_truss demo.

```
% Build a mesh by replicating and moving sub-parts
femesh('Reset'); model=femesh('Testquad4');
model=feutil('Divide 2 3',model);
model=feutil('RepeatSel 3 2 0 0',model); % 3 repetitions, tx=2
feplot(model)
% an alternate call would be
% number, direction
% model=feutil(sprintf('Repeatsel %f %f %f %f', 3, [2 0 0]))
```


Rev nDiv OrigID Ang $n x$ ny $n z$

Revolution. The elements of model are taken to be the first meridian. Other meridians are created by rotating around an axis passing trough the node of number OrigID (or the origin of the global coordinate system) and of direction [nx ny $n z$] (the default is the \mathbf{z} axis [0 0 1]). n Div+1 (for closed circle cases ang=360, the first and last are the same) meridians are distributed on a sector of angular width Ang (in degrees). Meridians are linked by elements in a fashion similar to extrusion. Elements with a mass1 parent are extruded into beams, element with a beam1 parent are extruded into quad4 elements, quad4 are extruded into hexa8, and quadb are extruded into hexa20,
The origin can also be specified by the $x y z$ values preceded by an \circ using a command like model=feutil('Rev 10 ○ $1.00 .00 .0 \quad 360100$ ').

You can obtain an uneven distribution of angles using a second argument. For example model=feutil('Rev 01014000 1',model, $[0$. 25 . 5 1]) will rotate around an axis passing by node 101 in direction z and place meridians at angles 01020 and 40 degrees.

```
% Build a mesh by revolving a sub-part
model=struct('Node',[1 0 0 0 . . 0 0; 2 0 0 0 . 5 1 0; ...
    3 0 0 0 . . 1.5 0; 4 0 0 0 . . 2 0],'Elt', []);
model.Elt=feutil('ObjectBeamLine',1:4);
model=feutil('Divide 3',model);
model=feutil('Rev 40 o 0 0 0 360 0 1 0',model);
feplot(model)
fecom(';triax;view 3;showpatch')
% An alternate calling format would be
% divi origin angle direct
% r1 = [40 0 0 0 360 0 1 0];
% model=feutil(sprintf('Rev %f o %f %f %f %f %f %f %f',r1))
```


RotateNode OrigID Ang $n x$ ny $n z$

Rotation. The nodes of model are rotated by the angle Ang (degrees) around an axis passing trough the node of number OrigID (or the origin of the global coordinate system) and of direction [$n x$ ny $n z]$ (the default is the z axis $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$). The origin can also be specified by the $x y z$ values preceded by an o model=feutil('RotateNode o $2.02 .02 .0 \quad 90100$ ', model) One can define as a second argument a list of NodeId or a FindNode string command to apply rotation on a selected set of nodes. model=feutil('RotateNode o 2.0 2.0 2.0 90100 ',model,'x==1')

For example:

```
% Rotating somes nodes in a model
femesh('reset'); model=femesh('Testquad4'); model=feutil('Divide 2 3',model);
% center is node 1, angle 30, aound axis z
% Center angle dir
st=sprintf('RotateNode %f %f %f %f %f',[1 [1 30 0 0 1]);
model=feutil(st,model);
feplot(model); fecom(';triax;textnode'); axis on
```

Similar operations can be realized using command basisgnode.

SelElt ElementSelectors

```
elt=feutil('SelElt ElementSelectors',model)
```

Element selection. SelElt extract selected element from model that verify certain conditions. Available element selection commands are described under the FindElt command and section 7.12 .

SetGroup [i,name] [Mat j, Pro k, EGID e, Name s]
Set properties of a group. For group(s) selected by number i, name name, or all you can modify the material property identifier j, the element property identifier k of all elements and/or the element group identifier e or name s. For example

```
% Assigning element properties by groups
model.Elt=feutil('SetGroup1:3 Pro 4',model);
model.Elt=feutil('SetGroup rigid Name celas',model)
```

If you know the column of a set of element rows that you want to modify, calls of the form model.Elt (feutil('FindEltSelectors', model), Column) = Value can also be used. See MPID for higher level custom element properties assignments.

```
% Low level assignment of element properties
femesh('Reset'); model=femesh('Testubeamplot');
model.Elt(feutil('FindElt WithNode{x==-.5}',model),9)=2;
cf=feplot(model);
cf.sel={'groupall','colordatamat'};
```

SetPro, SetMat, GetPro, GetMat
Set an integration property data (ProId) or material property (MatId). You can modify an il or pl property of ID i by giving its name and its value using an integrated call of the type

```
% Specifying material/integration rule parameters in a model
model=femesh('testhexa8');model.il
model=feutil('SetPro 111 IN=2',model,'MAP',struct('dir',1,'DOF',.01));
feutilb('_writeil',model)
mat=feutil('GetPl 100 -struct1',model) % Get Mat 100 as struct
```

The names related to the integration properties a documented in the p_functions, p_solid, p_shell, p_beam, ... To get a type use calls of the form p_pbeam('PropertyUnitTypeCell',1).

The command can also be used to define additional property information : pro.MAP for field at nodes (section ??), gstate for field at integration points and NLdata for non linear behavior data (nl_spring).

The GetPro and GetMat commands are the pending commands. For example:

```
model=femesh('testhexa8');model.il
rho=feutil('GetMat 100 rho',model) % get volumic mass
integ=feutil('GetPro 111 IN',model) % get the integ rule
```

GetIl, GetPl
The commands GetIl and GetP1 respectively output the il and pl matrices of the model for the IDs used by elements. This command provides the values used during assembling procedures and aggregates the values stores in the model.il, model.pl fields and pro, mat entries in the model stack.

StringDOF

feutil('stringdof',sdof) returns a cell array with cells containing string descriptions of the DOFs in sdof.

SymSel OrigID $n x$ ny $n z$
Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with respect to a plane going through the node of number OrigID (node 0 is taken to be the origin of the global coordinate system) and normal to the vector [$n x n y n z$]. If needed, new nodes are added to FEnode. Related commands are TransSel, RotateSel and RepeatSel.

Trace2Elt

```
elt=feutil('Trace2Elt',ldraw);
```

Convert the ldraw trace line matrix (see ufread 82 for format details) to element matrix with beam1 elements. For example:

```
% Build a beam model from a trace line matrix
TEST.Node=[1001 0 0 0 0 0 0 ; 1003 0 0 0 0.2 0 0 ;
    10070000.6 0 0 ; 1009 0 0 0 0.8 0 0 ;
    1015 0 0 0 0 0.2 0 ; 1016 0 0 0 0.2 0.2 0;
    1018 0 0 0 0.6 0.2 0; 1019 0 0 0 0.8 0.2 0];
L=[lllll
ldraw(1,[1 82+[1:length(L)]])=[length(L) L];
L=[1015 1016 1018 1019];
ldraw(2,[1 82+[1:length(L)]])=[length(L) L];
L=[1015 1001 0 1016 1003 0 1018 1007 0 1019 1009 0];
```

```
ldraw(3,[1 82+[1:length(L)]])=[length(L) L];
TEST.Elt=feutil('Trace2Elt',ldraw);
cf=feplot(TEST)
```

TransSel $t x$ ty $t z$

Translation of the selected element groups. TransSel replaces elements by their translation of a vector [$t x$ ty $t z$] (in global coordinates). If needed, new nodes are added. Related commands are SymSel, RotateSel and RepeatSel.

```
% Translate and transform a mesh part
femesh('Reset'); model=femesh('Testquad4'); model=feutil('Divide 2 3',model);
model=feutil('TransSel 3 1 0',model); % Translation of [3 1 0]
feplot(model); fecom(';triax;textnode')
```

Please, note that this command is usefull to translate only part of a model. If the full model must be translated, use basiscommand gnode. An example is given below.

```
% Translate all nodes of a model
femesh('Reset'); model=femesh('Testquad4'); model=feutil('Divide 2 3',model);
model.Node=basis('gnode','tx=3;ty=1;tz=0;',model.Node);
feplot(model); fecom(';triax;textnode')
```


UnJoin Gp1 Gp2

Duplicate nodes which are common to two element ensembles. To allow the creation of interfaces with partial coupling of nodal degrees of freedom, UnJoin determines which nodes are common to the specified element ensembles.

The command duplicates the common nodes between the specified element ensembles, and changes the node numbers of the second element ensemble to correspond to the duplicate set of nodes. The optional second output argument provides a two column matrix that gives the correspondence between the initial nodes and the duplicate ones. This matrix is coherent with the OrigNumbering matrix format.

The following syntaxes are accepted

- [model, interNodes]=feutil('unjoin Gp1 Gp2', model)' Implicit group separation, Gp1 (resp. Gp2) is the group identifier (as integer) of the first (resp. second) element groups to unjoin.
- [model,interNodes]=feutil('unjoin', model, EltSel1,EltSel2); Separation of two element selections. EltSel1 (resp. EltSel2) are either FindElt strings or EltId vectors providing the element selections corresponding to each ensemble.
- [model,interNodes=feutil('unjoin', model, RA) ; general input with RA as a structure. RA has fields
- .type, either group, eltid or eltind that provides the type of data for the selections, set to eltid if omitted.
- .sel1, definition of the first element ensemble, the GroupId for type group, either a FindElt string or a vector of EltId or EltInd depending on field .type.
- .sel2, definition of the second element ensemble, same format as field .sel1.
- . NodeSel, provides a FindNode selection command to restrict the second element ensemble. Optional, set to groupall by default

```
    % Generate a disjointed interface between to parts in a model
femesh('Reset'); model=femesh('Test2bay');
feutil('FindNode group1 & group2',model) % nodes 3 4 are common
% Implicit call for group
mo1=feutil('UnJoin 1 2',model);
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
% Variant by specifying selections
mo1=feutil('UnJoin',model,'group 1','group 2');
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
% Variant with structure input, type "group"
RA=struct('type','group','sel1',1,'sel2',2);
mo1=feutil('UnJoin',model,RA);
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
% Variant with structure input, type "eltid" and string selections
RA=struct('type','eltid','sel1','group1','sel2','group 2');
mo1=feutil('UnJoin',model,RA);
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
% Advanced variants with structure and with selections as vectors
% Clean model EltId
[eltid,model.Elt]=feutil('eltidfix;',model);
i1=feutil('findelt group1',model);
i2=feutil('findelt group2',model);
```

```
% type "eltid"
RA=struct('type','eltid','sel1',eltid(i1),'sel2',eltid(i2));
mo1=feutil('UnJoin', model, RA);
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
% type "eltind"
RA=struct('type','eltind','sel1',i1,'sel2',i2);
mo1=feutil('UnJoin', model, RA);
feutil('FindNode group1 & group2',mo1) % no common nodes in unjoined model
```


See also

feutila, fe_mk, fecom, feplot, section 4.5, demos gartfe, d_ubeam, beambar ...

feutila

Purpose

Advanced feutil commands.

RotateSel OrigID Ang $n x$ ny $n z$

Rotation. The elements of model are rotated by the angle Ang (degrees) around an axis passing trough the node of number OrigID (or the origin of the global coordinate system) and of direction $\left[\begin{array}{lll}n x & n y & n z\end{array}\right]$ (the default is the z axis [$\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$). The origin can also be specified by the $x y z$ values preceded by an o

```
model=feutil('RotateSel o 2.0 2.0 2.0 90 1 0 0',model)
```

Note that old nodes are kept during this process. If one simply want to rotate model nodes, see RotateNode.

For example:

```
% Rotate and transform part of a mesh
femesh('reset'); model=femesh('Testquad4');
model=feutil('Divide 2 3',model);
% center is node 1, angle 30, aound axis z
% Center angle dir
st=sprintf('RotateSel %f %f %f %f %f',[1 30 0 0 1]);
model=feutil(st,model);
feplot(model); fecom(';triax;textnode'); axis on
```


feutilb

Purpose

Gateway function for advanced FEM utilities in SDT.

Description

This function is only used for internal SDT operation and actual implementation will vary over time. The following commands are documented to allow user calls and SDT source code understanding.

AddNode

This command provides optimized operation when compared to the feutil equivalent and finer control.

CaseC2SE

Constraint penalization. This command packages the penalization of all constraints in the model. Types FixDOF, RBE3, MPC, rigid are supported.
model=feutilb('CaseC2SE' model, list); returns the model with penalized constraints. The constraints are then transformed into coupling superelements in the model. model is an SDT model. list is an optional restriction cell array of constraint names to be transformed. If omitted all found constraints are penalized.

- -kpval allows defining a custom penalization coefficent. By default the value stored in sdtdef('kcelas') is used.
- -kpAuto asks to use an automated estimation of kp based on the local compression stiffness in the area concerned by each constraint separately.
- -keepName allows keeping the constraints names for superelements. The names are transformed to comply with the superelement naming rules, see section 6.3 for more information. The base case uses names as typN with typ the type of constraint in lower case and N the occurence number in the penalization sequence.
- -CMT tells the command to operate on a pre-assembled reduced model SE, MVR.

```
CombineModel
    mo1=feutilb('combinemodel',mo1,mo2);
    [mo1,r1]=feutilb('combinemodel',mo1,mo2);
```

Integrated combining of two separate models. This call aims at creating an assembly from two separate mechanical components. This command properly handles potential NodeId, EltId, ProId, or MatId overlaying by setting disjoint ID sets before assembly. Stack or Case entries with overlaying names are resolved, adding (1) to common names in the second model. Sets with identical names between both models are concatenated into a single set. The original node numbering matrix for mo2 is output as a second argument (r1 in the second example call). The original element numbering matrix for mo2 can also be output as a third argument.
mo1 is taken as the reference to which mo2 will be added, the Node/Elt appending is performed by feutilAddTest.

- Command option -cleanMP cleans up duplicated mat/pro entries in the combined model.
- Command option -noSetCat, forces the sets duplication with incremented names (adding (1)), instead of concatenation when sets with identical names are found.
- Command option CompatNodeElt asks not to shift NodeId and EltId in the second model. It then assumes the ID ranges are fully compatible in both models.
- Command option CompatMatPro asks not to shift MatId and ProId in the second model. It then assumes these IDs to be fully compatible between both models.
- Command option CompatBas asks no to shift the BasId in the second model. It then assumes these IDs to be fully compatible between both models.

```
GeoLineTopo, ...
    r2=feutilb('geolinetopo',model,struct('starts',nodes));
    r2=feutilb('geolinetopo',model,struct('starts',RO.nodes(j1,1), ...
            'cos',0,'dir',r1.p(:,2)','circle',r1));
```

GeoLineTopo searches a topological line by following mesh edges.
Accepted fields are

- .starts node numbers. One row per line.
- . cos optional tolerance on direction change used to stop the line.
- . dir optional initial search direction, in not provided the direction defined by the line linking the two first nodes is used
- .forcedir optional, to force a constant head direction search. This can be used for disturbed lines where local direction variations may induce an unwanted dramatic change or natural direction for the line topology. Quasi-straight lines can thus be obtained in non rules meshes.
- .noSplitTh optional in combination with .forcedir, locally relieves the forcedir constraint if separation of points at a specific step cannot be clearly distinguished along forcedir. In case of non planar topologies, the forcedir head direction may become orthogonal to the local direction seen on the line. In such case, if several points have to be separated for the next line step, one gets the one closer to the forcedir provided. If the forcedir is orthogonal to the currently natural directions, the separation criterion be ill-posed. nlSplitTh provides a tolerance for the dispersion of the next local directions under which the natural local direction is used for the choice instead of the forcedir.
- . circle optional, to use a detection strategy adapted to circle, with richer information. This field is a structure with fields
- . Origin the coordinates of the circle origin
- .radius the circle radius
- .p the local basis associated to the circle principal directions
- .cos set to zero
- . dir the normalized direction of the normal to the plane containing the circle.

This field is mostly defined internally and used by the GeoFindCircle command.

GeoFindCircle packages the GeoLineTopo command to detect nodes on a quasi-circular mesh,

GeoFindCircle, ...

GeoFindCircle searches a topological circular line by following mesh edges. One can either provide three points one the circle, or one point with origin and axis.

```
    r2=feutilb('geofindcircle',model,struct('nodes',[n1 ...]);
    r2=feutilb('geofindcircle',model,...
    struct('nodes',n1,'Origin',[x y z],'axis',[nx ny nz]);
```

where n 1 is a NodeId, $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the coordinates of the circle origin, $\mathrm{nx}, \mathrm{ny}, \mathrm{nz}$ is the normal to the plane containing the circle.

The output r2 contains fields

- . Origin the coordinates of the circle origin.
- .normal the normalized direction of the normal to the plane containing the circle.
- .radius the circle radius
- . p the local basis associated to the circle principal directions
- .line the list of NodeId that belong to the circle

The following example illustrates how one can exploit this feature to define a connection screw based on a hole in plates.

```
% use the demostration model for screw defintions with two plates
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4');
% use 3D line pick to find three nodes on the hole
% fe_fmesh('3dlineinit') % acitvate option, and click on 3 nodes on the hole
nodes=[47 43 40]; % nodes picked on the hole
% detect hole
r1=feutilb('geofindcircle',model,struct('nodes',nodes)); r1=r1{1};
n1=feutil('getnodegroupall',model); n2=n1;
% define planes: need to detect plane altitudes
% 1- transform coordinates in the local hole basis for planes generation
n1(:,5:7)=(n1(:,5:7)-ones(size(n1,1),1)*r1.Origin)*r1.p;
[z1,i1]=unique(n1(:,7));
% 2- use global altitudes for the elements detection
z2=n2(i1,7); % use type 1
r2=[num2cell([z1 1+0*z1]) ...
    cellfun(@(x) sprintf('z==%.15g',x),num2cell(z2),'uni',0)];
% 3- screw model, see sdtweb fe_case
r2=struct('Origin',r1.Origin,'axis',r1.normal','radius',r1.radius, ...
    'planes',{r2},...
    'MatProId',[101 101],'rigid',[Inf abs('rigid')],...
    'NewNode',0);
model=fe_caseg('ConnectionScrew',model,'screw1',r2);
% compute modes to test
def=fe_eig(model,[5 10 1e3]);
cf=feplot(model); cf.def=def;
```


GeomRB, [Mass, ByParts, Beam1]

def=feutilb('geomrb', node,RefXYZ,adof,m) returns a geometric rigid body modes. If a mass matrix consistent with adof is provided the total mass, position of the center of gravity and inertia matrix at CG is computed. You can use def=feutilb('geomrb cg', Up) to force computation of rigid body mass properties.
def=feutilb('geomrbMass', model) returns the rigid body modes and mass, center of gravity and inertia matrix information. -bygroup, -bymat, -bypro can be used to detail results by subgroups. With no output argument, the results are shown in a table that can be copied to other software.
def=feutilb('GeomRbByParts', model) returns the rigid body modes of the model taking into account unconnected regions. Each unconnected mesh region is considered as a different part for which a set of 6 rigid body modes will be generated. def containts then a sequence of six rigid body modes by unconnected mesh region, placed in the global model DOF.
il=feutilb('GeomRBBeam1',mdl, RefXYZ) returns standard p_beam properties for a given model section where RefXYZ is the coordinates of the reference point from the gravity center.
 body check of the work generated by loads or loads collocated to sensors on rigid body motion. This provides a direction of application and moments around the origin. These are then used to estimate a point that would lead to the same moments. This point should be on a line of direction of force and containing the actual application point $\left(x_{\text {true }}=x_{\text {est }}+\alpha d_{x}, \ldots\right)$

GetUsedNodes

Node=feutilb('GetUsedNodes', model) ; returns the model nodes that are effectively used in the model. This command accounts for nodes present in SE elements and nodes used in Case constraints that may be not used by elements in model. Elt.

```
% Used nodes recovery in a model
% Use a base model with a rigid ring using a node not used by other elements
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4'); % create model
r1=struct('Origin',[20 10 0],'axis',[0 0 1],'radius',3, ...
    'planes',[1.5 0 111 1 3.1;
    5.0 0 112 1 4;], ...
    'rigid',[Inf abs('rigid')],...
    'NewNode',0);
model=fe_caseg('ConnectionScrew',model,'screw1',r1);
cf=feplot(model); % show model
fecom('promodelviewon');fecom('curtab Cases','screw1');
% Used nodes recovery strategy
n1=feutil('getnodegroupall',cf.mdl); % selects nodes used in model.Elt only
%n2=feutil('optimmodel',cf.mdl); % obsolete call that is based on GetNodeGroupall
n3=feutilb('GetUsedNodes',cf.mdl);
setdiff(n3(:,1),n1(:,1)) % node exclusively used by rigid case
```


Match

Non conform mesh matching utilities. The objective is to return matching elements and local coordinates for a list of nodes.

Matching elements mean

- for volumes, that the physical node is within the element. If volumes may be negative, check orientation using feutil orient.
- for surfaces, that the orthogonal projection of the node is within the element
- for lines that the orthogonal projection on the line is between the line extremities.

A typical node matching call would be

```
% Example of a base match call
model=femesh('test hexa8');
match=struct('Node',[.1 . 1 .1;.5 .5 .5;1 1 1]);
match=feutilb('match -info radius .9 tol 1e-8',model,match)
% Example of a matchSurf call
model=demosdt('demoTwoPlate');
% get nodes of half bottom plate
n1=feutil('getnode z==0 & y>.5',model);
% prepare the match structure
match=struct('Node',n1(:,5:7));
% perform surface match on the top plate selection
match=feutilb('matchsurf',model,match,'innode{z==.1}');
% display model and nodes
cf=feplot(model);
fecom(cf,'shownodemark',match.Node,'marker','o'); % display initial nodes
% then overlay matched points
fecom(cf,'shownodemark-noclear',match.StickNode,'marker','s','color','b')
% Use InterpNormal token to get clean normal at matched point
match=struct('Node',n1(:,5:7),'InterpNormal',1);
match=feutilb('matchsurf',model,match,'innode{z==.1}');
fecom(cf,'showmap',struct('vertex',match.StickNode,...
'normal',match.InterpNormal))
```

Accepted command options are

- MatchSurf has the same objective but uses a completely different strategy to match nodes on a surface. This is typically well suited for contact applications (node to surface matching).
- Note that only the input model skin is treated. This is done by default through a selface command to avoid the need for user treatment for base applications, see FindElt. It is possible to provide in a third argument a FindElt string providing a customized face selection of the model.
- It is possible to get normals interpolated by shape functions at matched points using the InterpNormal token in the input match structure.
- radius rad. The search is limited to points that are not too far a way from matchable element centers. Defining a search radius manually can help prevent matching for elements that are too far away or on the contrary allow matching within elements that are very large so that interior points may be far from the center.
- tolval modifies the 1e-8 tolerance used to stop the non-linear search for the match point in second order elements

The output structure contains the fields

```
.Node original positions
.rstj position in element coordinates and jacobian information.
.StickNode orthogonal projection on element surface if the original node is not within the element,
    otherwise original position.
.Info one row per matched node/element giving NodeId if exact match (0 otherwise), num-
    ber of nodes per element, element type (1 (1D), 2 (2D), 3 (3D), or 5 (SE), an element
    code and a distance indicator.
.match obtained when calling the command with -info, typically for row by row post-
    processing of the match. A cell array with one row per matched node/element giving
    eltname, slave element row, rstj, sticknode
.slave an element matrix providing for each node of field .Node the matched element.
.slaveind the element index (cEGI) in the .Elt matrix of input model providing for each node
    of field.Node the matched element index.
.master a sub-index vector providing only the matched nodes in other fields.
```

MeasThick,Show

Measure of thickness through a volume. Thickness is here defined as the distance from a node on a surface to another surface along the node face normal direction. The base call requires a surface
selection on a wolume mesh from which thickness is measured. The measure in internally performed as a feutilb Match call on the other surfaces connected to the surface selected (then assumed fully connected).

The definition of thickness is not unique in the general case, so that peculiar effects can be obtained, especially at corner locations. The defintion chosen here correctly suits thin 3D volumes for which the closest surface nodes to a given surface point is in the opposite surface.

The following commands are supported

- -sel''EltSel'' can be used to specify a FindElt command defining the surface from which the measure is performed.
- -set' 'name' ' can be used to directly provide a FaceId set instead of a seletion through -sel.
- -osel'' $E l t S e l$ '' can be used to restrict match by providing the surfaces facing be the base selection, using a FindElt command.
- -smooth can be used to smooth the response by interpolating unmatched points or out of tolerance points.
- -sTol provides a tolerance over which thickness is considered too large and declared the point unmatched.
- -show directly calls command MeasThickShow to display the thickness map in feplot.

Command MeasThickShow performs a display of the thickness map on the mesh in feplot.

```
% Thickness measurment and display
model=demosdt('demoUBeam NoPlot'); % demo model
model=feutil('divide 4 4 4',model); % some refinement
[eltid,model.Elt]=feutil('eltidfix;',model); % clean EltId
cf=feplot(model);
RO=struct('sel','selface & innode{y==0.5}',...
    'osel','selface & innode{notin{innode{z==0|z==2.5|y==.5}}}')
d1=feutilb('MeasThick-Show',cf.mdl,RO);
```


MpcFromMatch

This command is used to build multiple point constraints from a match. model=feutilb('MpcFromMatch', model, match).

The default output is the model with added MPC. The following command options are available

- -entry to output the MPC structure instead of the model.
- -keepAll not to remove any observation line from the node list.
- -UseDOF dofi to provide alternative DOF, this is usefull for non-mechanical DOF.
- -UseRot to keep rotation DOF constraints.
- Rot to generate an MPC on rotation DOF only.
- -NoOff not to account for StickNode offsets.

The solution retained for surfaces is to first project the arbitrarily located connection point P on the element surface onto a point Q on the neutral fiber used where element nodes are located. Then $Q 1$ or $P 1$ shape functions and their derivatives are used to define a linear relation between the 6 degree of freedom of point Q and the 3 or 4 nodes of the facing surface. Motion at P is then deduced using a linearized rigid $P Q$ link. One chooses to ignore rotations at the nodes since their use is very dependent on the shell element formulation.

Figure 10.2: Non conform mesh handling

The local element coordinates are defined by $x_{j}^{e}, j=1: 3$ along the r coordinate line

$$
\begin{equation*}
x_{j}^{e}=\alpha_{x} \frac{\partial N_{i}}{\partial r} x_{i j} \text { with } \alpha_{x}=1 /\left\|\frac{\partial N_{i}}{\partial r} x_{i j}\right\| \tag{10.3}
\end{equation*}
$$

y^{e} that is orthogonal to x^{e} and in the $x^{e}, \frac{\partial N_{i}}{\partial s} x_{i j}$ plane, and z^{e} that defines an orthonormal basis.
The local rotations at point Q are estimated from rotations at the corner nodes using

$$
\begin{equation*}
R_{j}=x_{j}^{e} \frac{\partial N_{i}}{\partial y^{e}} u_{i k} z_{k}^{e}-y_{j}^{e} \frac{\partial N_{i}}{\partial x^{e}} u_{i k} z_{k}^{e}+\frac{1}{2} z_{j}^{e}\left(\frac{\partial N_{i}}{\partial x^{e}} u_{i k} y_{k}^{e}-\frac{\partial N_{i}}{\partial y^{e}} u_{i k} x_{k}^{e}\right) \tag{10.4}
\end{equation*}
$$

with $u_{i k}$ the translation at element nodes and $j=1: 3, i=1: N_{\text {node }}, k=1: 3$. Displacement at Q is interpolated simply from shape functions, displacement at P is obtained by considering that the segment $Q P$ is rigid.

For volumes, displacement is interpolated using shape functions while rotations are obtained by averaging displacement gradients in orthogonal directions

$$
\begin{align*}
\text { theta }_{x} & =\left(-N_{y, z}+N z, y\right) / 2\{u\} \\
\text { theta }_{y} & =\left(N_{x, z}-N z, x\right) / 2\{u\} \tag{10.5}\\
\text { theta }_{w} & =\left(-N_{x, y}+N y, x\right) / 2\{u\}
\end{align*}
$$

You can check that the constraints generated do not constrain rigid body motion using fe_caseg ('rbcheck', model) which builds the transformation associated to linear constraints and returns a list of DOFs where geometric rigid body modes do not coincide with the transformation.

PlaceInDof

This command places DOF based matrices into different sets of DOFs. This can thus be used for def curves, observation, constraint, models or matrices. For subsets of DOFs a direct elimination is performed; if the new DOF set contains exclusive DOF, zeros are added, as no expansion is performed here.

This is typically used to eliminate DOFs, add zeros for unused DOFs or simply reorder DOFs. See also fe_def SubDof.

High level calls for data structures are supported using syntax
data $=$ feutilb('PlaceInDof', DOF, data) ; where DOF is the new set of DOF and data is a structure whose fields depends on the type of matrix

- . def and .DOF are necessary for a deformation field, in coherence with the def curve structure.
- . cta and .DOF for an observation matrix coherent with sensor defintions.
- . c and .DOF for a constraint matrix, coherence withmpd definitions. This bears the same base treatment as for the observation matrix but also handles field .slave is defined.
- .K and .DOF for an assembled model. For reduced models the restitution data entry infoSeRestit in . Stack field is also handled, see fesuper SEDef for more information.

The other fields are left unchanged.
Lower level calls for matrices are supported using syntax
mat=feutilb('PlaceInDof', $D O F$, oldDOF, mat); . This call then returns the data matrix placed in the new $D O F$ field, assuming that matrix mat is based on oldDOF. Depending on the size of mat, feutilb assumes the type of matrix it handles,

- A square matrix of size oldDOF is supposed to be a model matrix (stiffness, ...).
- A rectangular matrix with the line dimension equal to the number of oldDOF (i.e. size(mat,1)==length(oldDOF)) is supposed to be a deformation field.
- A rectangular matrix with the column dimension equal to the number of oldDOF i.e. $\operatorname{size}($ mat, 2$)==$ length (oldDOF)) is supposed to be an observation matrix.

SeparateByMat, Pro

Command SeparateBy ensures that only one MatId or ProId exist in each element group. If a group contains several MatId or ProId the group will be split in the element list, so that the new groups are inserted directly after the currently split group.

By default the criterion is based on MatId, use command SeparateByPro to base it on the ProId.

```
% Separate elements groups by Mat/ProId
% demonstration model
model=demosdt('demoubeam noplot');
% observe element groups
feutil('info',model)
% apply different MatId to different selections
i1=feutil('findelt withnode{z>1&z<=2}',model);
i2=feutil('findelt withnode{z>2}',model);
mpid=feutil('mpid',model.Elt);
mpid(i1,1)=2; mpid(i2,1)=3;
model.Elt=feutil('mpid',model.Elt,mpid);
% now one group with several MatId
feutil('info',model)
% apply group separation
model.Elt=feutilb('SeparateByMat',model.Elt);
% now three groups with unique MatId
feutil('info',model)
```


SubModel

This command aims at extracting a functional model from a selection of an element subset. From a FindElt selection, this command

- Removes unused nodes
- Cleans up the set stack entries. Sets are updated (and removed is they become empty)
- Cleans up the mat/pro entries, unused properties are removed
- Cleans up the case entries, constraints are adapted or removed if external to the submodel (RBE3 or rigid with removed slave or master elements are cleared), loads are adapted or removed if external.
- Updates info,Rayleigh and info,Omega stack entries.

If the FindElt command is omitted or set to groupall, the cleanup is performed on the whole model.

The following command options can be used not to clear some specific fields

- -keepStack not to clean the stack.
- -keepCase not to clean the case stack.
- -keepMatPro not to clean $\mathrm{pl} / \mathrm{il}$ entries.
- -keepIntSE to keep superelements whose nodes are fully contained in the selection provided. This option can be usefull to keep coupling superelements when the selection is related to component combinations.

```
% Call to extract a submodel from a model
model=demosdt('demoubeam');
mo1=feutilb('submodel',model,'innode{x<.5}');
feplot(mo1)
```


SurfaceAsQuad [, Group]

This command handles post-treatment of surfaces selections.
The syntax is mo1=feutilb('SurfaceAsQuad', model,eltsel)', where

- model is a standard SDT model, that will be transformed
- eltsel (optional) is a FindElt string that allows a subselection of the initial mesh. The selection should return a face selection, so that the command \& selface will be added to the FindElt string if the token selface is missing. If omitted this is set to selface.
- SurfaceAsQuad command transforms a mesh into a surface quad4 elements. A mesh surface selection is first performed, triangle surfaces are then transformed intro degenerated quad4 elements, and second order surfaces are linearized. The output model is then a quad4 surface mesh.
- SurfaceAsQuadGroup angle command splits surfaces based on sharp edges detection. A mesh surface selection is first performed.

The detection is based on angles between element edges on a surface selection, the threshold is given by angle in degrees, if omitted, the default value of 36.87 degrees is taken (corresponding to a cosine value of 0.8). The output model is then a surface mesh divided into groups of surfaces separated by sharp edges. The following command options can be used

- -set asks not to transform the model, but to generate a meta-set defining the surfaces separated by sharp edges.
- -set-old asks not to transform the model, but to generate a FaceIdset with a connectivity matrix.
- -isFaceSel asks not to alter the eltsel command even if the token selface is missing. This is useful if one works with a volume based surface selection, not to loose the face identifiers.

The following sample calls illustrate the syntax and the command outputs:

```
% SurfaceAsQuad, transform mesh into quad4 surface
model=femesh('testtetra4'); % sample volume mesh
mo1=feutilb('SurfaceAsQuad',model); % transform into surface quad4 mesh
feutil('info',mo1)
% SurfaceAsQuadGroup, post treat surface selection based on sharp edges
model=femesh('testtetra4'); % sample volume mesh
% Generate the surface mesh with group division by sharp edges
mo1=feutilb('surfaceasquadgroup 90',model);
cf=feplot(mo1); fecom(cf,';colordatagroup;viewn++-;');
% Generate a meta-set named face of FaceId divided by sharp edges
model=feutilb('surfaceasquadgroup90 -set"face"',model);
data=stack_get(model,'set','face','get');
data.SetNames % names of splitted face selections
```


SurfaceSplitDef

This command builds a deformation curve with associated colormap that localizes areas in a model, based on a curve result.
d1=feutilb('SurfaceSplitDef', model, def, RO) returns a deformation curve based on def with zeros for non-localized areas and connectivity levels to a starting area. model is an SDT model
providing the mesh topology, def is a curve based on which areas will be localized and RO is a running option structure with fields

- .elt a boolean telling whether one works with nodes (false) or elements (true).
- .tol that provides a criterion that defined the areas located from initial positions, this is set be default to 0.1.
- . starts that provides a starting point for the area localization. Depending on field .elt this is either a list of nodes or elts, or a string with a command field. Command max N is supported and used as a starting list the N first maximum values in the curve.
- . sel provides a FindElt string that restricts the initial selection for the clustering.

This command uses the feutilb @levNodeCon object.

```
% SurfaceSplitDef example
% demonstration model
demosdt('demoubeam')
cf=feplot; def=cf.def;
[~,cf.mdl.Elt]=feutil('eltidfix;',cf.mdl);
% Node based field, node clustering
d1=feutilb('surfacesplitdef',cf.mdl,def,struct('tol',.5,'starts','max2'));
cf.def=d1; fecom colordataa
ii_plp('colormap',struct('map',jet(2), ...
    'cval',[0 . 01 1],'Band',0,'refine',10,'bSplit',2))
% Element based field
Ek=fe_stress('ener -MatDes 1 -curve',cf.mdl,def);
% Element clustering
d2=feutilb('surfacesplitdef-elt',cf.mdl,Ek,struct('tol',.2,'starts','max2'));
cf.def=def; fecom('colordataelt',d2); colormap(cf.ga,jet);
```


SurfVisible

This command provides visible elements from a particular feplot view.
[eltind,elt,eltindWithHeaders]=feutilb('SurfaceVisible', cf) ; will output the indices eltind or with headers in cf.mdl.Elt that are currently visible in the display. The second output elt are the face elements consitituting the visible model skin.

This function is compatible but not conforming to feutil FindElt command. When outputting elements of different nature than for the model, the base FindElt commands will provide empty indices. This function still outputs the visible elements indices of the base model to allow further manipulations.

The following command options are available, either in the input string or in an additionnal running options structure.

- not to output invisible elements instead.
- initsel to provide an initial selection to peform with feplot prior to detection.
- cv to provide custom camera postions, as a matrix list of CameraTarget, CameraPosition, CameraUpVector; . . values. One line per configuration, the output will provide the union of visible elements per view.
- -rval to provide a pciture resolution for the dectection algorithm.

```
% Recovering visible elements from a feplot display
model=demosdt('demoubeam-noplot'); % demo model
% tweak its position
model.Node=basis('gnode','rx=45;ry=45;rz=45;',model.Node);
% display in feplot
cf=feplot(model);
% choose a view
fecom(cf','view2');
% Recover visible elements
[ind,elt,i1]=feutilb('SurfVisible',cf);
% restrain view to visible elements
cf.sel='@feutilb(''SurfVisible'',cf)';
```


SurfWjNode

This command provides nodal weights for node based surface integration. The weights are computed as the sum of each element weight contribution using node integration rules.
r1=feutilb('SurfWjNode', model, sel); . model is a standard SDT model, sel is a selection that must provide face elements. If omitted sel is set to selface, one can provide an empty sel is the model is already using shells or the resultof face selection itself. The output $r 1$ is a structure with fields . ID and .wjdet respectively providing the NodeId and associated surface weights on the given surface.

TKT[,dTKT,TKTSolve]
Optimized matrix projection utilities. This family of commands provides optimized operations obtained through compiled functionalities, and supports out of core, compatible with the sdthdf formats.

- TKT, $\mathrm{K}=$ feutilb('tkt', T, K) is the functional equivalent to T ' $* \mathrm{k} * \mathrm{~T}$. K may be a cell array of matrices, in which case one operates on each cell of the array.
- dTKT, $\mathrm{r} 1=$ feutilb('dtkt', T, K) is the functional equivalent to $\operatorname{diag}\left(\mathrm{T}{ }^{\prime} * \mathrm{k} * \mathrm{~T}\right) \mathrm{K}$ may be a cell array of matrices, in which case one operates on each cell of the array, the output is then a matrix with the diagonal of each projected matrix on each column.
- TKTSolve, $\mathrm{K}=$ feutilb('tkt', $\mathrm{T}, \mathrm{K}, \mathrm{b}$) is the functional equivalent to $\mathrm{T} *\left(\left(\mathrm{~T}{ }^{\prime} * \mathrm{k} * \mathrm{~T}\right) \backslash(\mathrm{T}\right.$ ' $* \mathrm{~b})$) that performs a direct resolution with constraints, resolution is called with ofact.

For real bases T, support for RAM footprint optimization is provided through the use of blockwise operations, this can be controlled by the preference BlasBufSize providing a block size in GB. This can be set to Inf to alleviate the behavior. It can be set using sdtdef sdtdef ('BlasBufSize', 2).

For very large bases T stored in v_handle format through sdthdf command TKTMinRead allows performing blockwise operations on every matrix K at once to limit disc I / O access when loading T . The block sizes are driven by preference OutOfCoreBufferSize providing a memory limit in MB.

Write
feutilb('WriteFileName.m', model) writes a clean output of a model to a script. Without a file name, the script is shown in the command window.
feutilb('_writeil', model) writes properties. feutilb('_writepl', model) writes materials.
Note that this command automatically overwrites existing script files

@levNodeCon

Internal node connectivity object that can be created through its constructor levNodeCon accessed trhough conn=feval (feutilb('@levNodeCon'), [],model); Note that this call is case sensitive.

The packaged functionalities allow browsing nodes or elts based on element edge levelled connectivity. By default, the node connectivity is initialized only, but one can activate element connectivity with token econ in the construction. conn=feval(feutilb('@levNodeCon'), [],model, 'econ');].

Alternative commands allow node/elt expansion based on threholds associated to external data (e.g. an energy curve)

The following methods are available

- expN2Lev. Expands a node list to the node list that is connected up to a given connectivity level. n2=feval (conn.expN2Lev, conn, [n1; ...]lev); returns a two column matrix whose column respectively provide the NodeId list and the connectivity level from the initial list. conn is the connectivity object, [$n 1 ; \ldots]$ is a column vector of starting NodeId, lev is the maximum connectivity level allowed.
- expE2Lev. Expands an element list to the elemnt list that is connected up to a given connectivity level. elid2=feval (conn.expN2Lev, conn, [elid1; ...]lev); returns a two column matrix whose column respectively provide the EltId list and the connectivity level from the initial list. conn is the connectivity object, [eltid1;...] is a column vector of starting EltId, lev is the maximum connectivity level allowed.
- expN2Thr. Generates a node list from a starting list that is incrementally increased by connectivity level so that the final list verifies a given criterion. The criterion is based on a threshold to a quantity to increases with the number of nodes, for example an absolute displacement field or an energy field. $n 3=f$ eval (conn. expN2Thr, conn, $n 1$, curve, tol); . $n 1$ is the initial list of nodes, curve is a data set with fields
- . data is the data field with as many lines as nodes or elements in the model and as many columns as needed.
- . ID or .EltId is in coherence with the number of lines of field . data and provides either the corresponding NodeId for the .ID field or EltId for the .EltId field.
- CritFcn is a criterion function that provides a scalar representative of the value associated to the current node or element list. This is set by default to crit=feutilb('@scalarCrit'), the function is called as val=crit (opt,ind) with ind the indices to be taken on field .data. This function should rethrow a positive value increasing with the number of nodes. The list incrementation is stopped once val>tol.
- expE2Thr Generates an element list from a starting list that is incrementally increased by connectivity level so that the final list verifies a given criterion. See method expN2Thr for the curve input and criterion function formats.
- getNodes Returns the nodes listed in the conn object.

```
% levNodeConn object example node or elt list by connectivity
demosdt('demoubeam')
```

```
cf=feplot; def=cf.def;
% object initialization
conn=feval(feutilb('@levNodeCon'), [],cf.mdl,'econ'); % init
start=1; % eltid 1
eltid=feval(conn.expE2Lev,conn,start,5); % levEltCon
data=struct('EltId',eltid(:,1),'data',eltid(:,2));
fecom('colordataelt',data);
% sample call with ndoes
n2=feval(conn.expN2Lev, conn, [125],2);
```

@unConSel

Internal method whose function handle can be obtained for external use by unConSel=feutilb('@unConSel'); .Note that this call is case sensitive.
sel=feval (feutilb('@unConSel'), model) ; returns a cell array of EltId vectors respectively constituting an unconnected mesh region of the model. The length of the selection is then the number of disconnected mesh regions in the model. This command does not take constraints into account. One has the possibility to work on a model on which constraints have been penalized using command feutilb CaseC2SE

feplot

Purpose

Gateway function for 3-D visualization of structures. See also the companion function fecom

Syntax

```
feplot
feplot(FigHandle)
feplot(model)
feplot(model,def)
```


Description

fecom gives a complete list of commands. The rest of this section gives more details on the feplot architecture. For a tutorial see section 4.4 . Basic ways to call feplot are

- feplot refreshes allfeplotaxes of the current figure. Use cf=feplot;cla(cf.ga);feplot to reinitialze the current plot.
- cf=feplot returns a SDT handle to the currentfeplotfigure. You can create more than onefeplot figure with cf=feplot(FigHandle).
- cf=cf=comgui('guifeplot -reset -project "SDT Root"',2) opens an SDT handle to the specified figure 2. Option -reset closes an existing figure if it is not already a feplot figure. Option -project uses OsDic style Prfeplot to configure project working directory, image formatting, ...
- $c f=f e p l o t$ (model) or cf.model=model calls fecom InitModel to initialize the FE model displayed in the current figure. See fecom load loads the model from a file.
- cf. def=def and cf.def(i =def falls fecom InitDef to initialize a deformation set,
- cf=feplot(model, def) initializes the FE model and a deformation set at the same time.
- cf.sel=\{'EltSel', 'ColorInfo', ... \} calls fecom Sel to initialize the selection used to display the model.
- cf. Stack and cf.CStack calls are detailed in section 4.4.3.

The old formats feplot(node, elt,mode,mdof,2) and cf.model=\{Node,Elt $\}$ are still supported but you are encouraged to switch to the new and more general procedure outlined above.

Views of deformed structures are obtained by combining information from various data arrays that can be initialized/modified at any time. The object hierarchy is outlined below with the first row being data arrays that store information and the second row objects that are really displayed in Matlab axes.

axes describe axes to be displayed within the feplot figure. Division of the figure into subplots (Matlab axes) is obtained using the fecom Sub commands. Within each plot, basic displays (wire mesh, surface, sensor, arrow corresponding to mesh, arrow, or text objects) can be obtained using the fecom Show commands while more elaborate plots are obtained using fecom SetObject commands. Other axes properties (rotations, animation, deformation selection, scaling, title generation, etc.) can then be modified using fecom commands.
mdl Model data structure (see section 7.6) cf.mdl is a handle to the model contained in the feplot figure. The model must be defined before any plot is possible. It is initialized using the fecom InitModel command or using the method cf.model.
Stack Model Stack entries are stored in cf.mdl. Stack, but can be more easily reached using cf.Stack $\{i\}$ or cf.Stack\{EntryName $\}$ or modified using cf. Stack $\{$ EntryType, EntryName $\}=$ EntryData.
CStack Case Stack entries are stored in the stack case (itself stored in cf.mdl. Stack). They can be more easily reached using cf. $\operatorname{CStack}\{i\}$ or $\mathrm{cf} . \operatorname{CStack}\{$ EntryName $\}$ or modified using cf.CStack $\{$ EntryType, EntryName $\}=$ EntryData.
sel Element selections describe which elements are displayed. The standard selection displays all elements of all groups. fecom Sel commands or cf.sel(i) let you define selections that only display some elements. See also the fecom SetObject commands. Color information is defined for each selection (see fecom Color commands). cf.sel $(i)=$ 'ElementSel' initializes a selection to use element selected by ElementSel. Note that you may want to declare color data simultaneously using cf.sel(i) = 'ElementSel','Colordata Command', Args $\}$. cf.o(i)= \{'ObjectSpec','PatchProperty',PatchValue\} modifies the properties of object i in the current feplot axis.
sens (obsolete) sensor selections describe sets of sensors. Sensor selections are used to display the response at measurement locations through stick or arrows. Initialized using the InitSens command or cf.sens(i) calls (seefecom).cf.sens $(i)=\{\operatorname{sdof}\} \quad$ initializes a sensor set (see fecom InitSens).
def deformation sets describe deformations at a number of DOFs. Initialized using the InitDef command or cf.def(i) calls (see fecom). cf.def(i) $=\{\operatorname{def}, \operatorname{dof}\}$ is also accepted. cf. $\operatorname{def}(i)=\{\operatorname{def}, \operatorname{dof}, f r e q\}$ where freq is a list of frequencies of poles automatically generates title labels for each deformation (seefecom InitDef).

Objects

mesh

mesh objects represent a deformed or undeformed finite element mesh. They are used both for wire-frame and surface representations. mesh objects are characterized by indices giving the element selection, deformation set, channel (deformation number), and color type. They can be modified using calls or the form

```
cf = feplot; % get sdth object handle
cf.o(2) = 'sel 1 def 1 ch 3'
```

or equivalently with fecom SetObject commands. fecom Show commands reset the object list of the current axis.

Each mesh object is associated to up to three Matlab patch objects associated respectively with real surfaces, segments and isolated nodes. You can access individual pointers to the patch objects using cf.o(i, j) (see fecom go commands).

arrow

Arrow objects are used to represent sensors, actuators, boundary conditions, ... They are characterized by indices giving their sensor set, deformation set, channel (deformation number), and arrow type. They can be modified using calls or the form (see fecom SetObject commands)

```
cf = feplot; % get sdth object handle
cf.o(2) = 'sen 1 def 1 ch 3'
```

The SDT currently supports stick sensors (object type 3) and arrows at the sensor tip (type 7). Other arrow types will eventually be supported.
text
fecom text objects are vectorized lists of labels corresponding to nodes, elements, DOFs, ... They can be initialized using fecom Text commands and deleted with textoff. You can use cf.o(i) (see fecom go commands) to get handles to the associated Matlab text objects and thus set font name size, ... set (cf.o(1), 'fontsize', 7) for example.

Data arrays

feplotstores information in various data arrays $\mathrm{cf} . m d l$ for the model, $\mathrm{cf} . \operatorname{def}(i)$ for the definition of deformations, cf.sel(i) for element selections for display and cf.sens (i) for sensor selections.
mdl
The model currently displayed is stored in cf.mdl, see fecom InitModel.
data
The cf.data field is used to store volatile interface data. In particular .ViewClone can store axes handles that should keep synchronized orientations.
def
The deformations currently displayed are stored in cf. def, see fecom InitDef for accepted input formats.
sel
element selections describe a selection of elements to be displayed. The standard selection displays all elements of all groups. fecom Sel commands let you define selections that only display some elements.

.selelt	string used for element selection
. verto	position of vertices (nodes) in the undeformed configuration
. node	node numbers associated to the various vertices
. cna	array (as many as currently declared deformations) of sparse observation matrices giving the linear relation between deformation DOFs and translation DOFs at the selection nodes. The observation matrix gives all x translations followed by all y translations and all z translations.
.fs	face definitions for true surfaces (elements that are not represented by lines or points). .ifs gives the element indices (possibly repeated if multiple faces)
.f2	face definitions for lines (if any). .if2 gives the element indices (possibly repeated if multiple faces).
.f1	face definitions for points (if any).
.fvcs	FaceVertexCData for true surfaces (see fecom ColorData commands). Can also be a string, which is then evaluated to obtain the color, or a function handle used in ColorAnimFcn.
.fvc2	FaceVertexCData for lines
.fvc1	FaceVertexCData for points

sens

sensor selections describe sets of sensors. Sensor selections are used to display the response at measurement locations through stick or arrows. The InitSens command is being replaced by the definition of SensDof stack entries.

.vert0	position of vertices (nodes) in the undeformed configuration
.node	node numbers associated to the various vertices
.ntag	numerical tag identifying each sensor
.dir	direction associated with each sensor
.cta	array (as many as currently declared deformations) of sparse observation matrices giving the linear relation between deformation DOFs and measurements.
. opt	[Created]
.arrow	defines how the arrow is related to the measurement

See also

fecom, femesh, feuti1, tutorial in section 4.4

fesuper

Purpose

User interface for superelement support.

Syntax

```
    fesuper('CommandString')
[out,out1] = fesuper('CommandString', ...)
model = fesuper(model,'CommandString', ... )
```


Description

Superelements (see section 6.3 for more details) should be declared as SE entries in model. Stack, see fesuper s_for name restrictions. When using this format, you should specify model as the first argument fesuper so that any modification to the superelement is returned in the modified stack.

F ...
Get full model from superelement model.

```
SE=demosdt('demo ubeam'); SE=SE.GetData; % Load full model.
model=fesuper('SESelAsSe',[],SE); % Build SE model.
Node=fesuper('FNode',model); % Get full model nodes.
Elt=fesuper('FElt',model); % Get full model elements.
mfull=fesuper('FSEModel',model); % Get full model.
```

- FSEModel generates a full model (with .Node and .Elt fields only) based on all SE. Warning the output erases the input model, so that care must be taken when model is a v_handle. The following command options are available:
- -Stack to keep the initial stack increased with all SE stacks, to keep material properties and sets.
- -StackAll to keep all base stack increased with all SE stacks.
- -SESets to add in the stack element sets corresponding to each SE, under the name _SE_sename.
- -join to join all element by types in the full model.
- FElt outputs the full elements of the model.
- FNode outputs the model full nodes. Command FNodeOptim outputs the nodes actually used in each SE.

```
Get,Set ...
```

Get,set properties from a superelement. Standard superelement fields are detailed in section 6.3.2. get and set commands are obsolete, you should really use direct access to the feplot stack. For example

```
cf=demosdt('demo cmsSE feplot');
```

SE1=cf.Stack\{'se1'\};
SE1=stack_set(SE1,'info','EigOpt',[5 10.1 1e3]);
SE1=fe_reduc('CraigBampton -SE -UseDof',SE1);
cf.Stack\{'se1'\}=SE1; fecom('curtabStack', 'SE:se1')

A new command to perform reduction is under development.
mdl=fesuper (mdl, 'setTR', name, 'fe_reduc command') calls fe_reduc to assemble and reduce the superelement. The command option -drill can be added to the fe_reduc command to consider drilling stiffness in shells. For example mdl=fesuper(mdl, 'SetTR', 'SE1', 'CraigBampton -UseDof -drill');
The modes to be kept in the superelement can be set using mdl=fesuper(mdl, 'setStack', name, 'info', 'EigOpt', EigOptOptions);

Damp

model=fesuper('Damp', model,'SEname', damp); Defines a modal damping on the superelement SEname. damp can be a scalar zeta0 and defines a global damping ratio on all computed modes. damp can also be a vector [zeta0 f0 zeta1] defining a first damping ratio zeta0 for frequencies lower than f 0 Hz and another damping ratio zeta1 for higher frequencies. Note that all modes are computed.

SEDef

Superelement restitution. These commands are used to handle model partial or full restitution for visualization and recovery handling.

SEDefInit is used to prepare the model for restitution matters. It adds in model.Stack an entry info, SeRestit containing the necessary data for restitution i.e. to perform $\{q\}=[T]\left\{q_{R}\right\}$. This aims to limit generic work needed for multiple restitution. Syntax is
model=fesuper('SEDefInit', model).
SEDef is used to implement restitution on full model DOFs. Syntax is dfull=fesuper ('SeDef', cf, def)

SEBuildSel

SEBuildSel is used to perform partial restitution on a model. This command sets feplot to display a restitution mesh and computes the corresponding deformation vectors. The restitution selection is defined as a cell array with rows of the form SeName EltSel for selection of each superelement. An EltSel entry set to 'groupall' thus displays the full superelement. EltSel can also be an element matrix (usefull to display deformations on a test frame) or even a vector of NodeIds.
To discard a superelement from display, use an empty string for EltSel. By default a superelement not mentioned in the selection is displayed.

After the generation of superelement selections, it is possible to set a global selection on the full mesh by adding an entry with an empty superelement name (see illustration below).

Accepted command options are

- -nojoin avoids grouping elements of the same topology in a single group.
- -LinFace can be used to generate selections that only use first order faces (tria3 instead of tria6, ...)
- -NoOptim is used to skip the restitution optimization phase.
- -cGL (used in SDT/Rotor) is used in cases with local bases associated with each superelement. In this case, data.cGL is a cell array used to define a local rotation associated with each superelement. Typically, this is equal to data. $\operatorname{cGL}\{j E t\}=r e s h a p e(m d l . b a s(j 1,7: 15), 3,3) ;$.
- -RotDof (used in SDT/Rotor) large angle DOF

The following example is based on a gimbal model reduced in three superelements: base, gimbal and tele. A partial restitution is proposed.

```
model=demosdt('demogimbal-reduce')
cf=feplot(model)
def=fe_eig(model,[5 10 1e3 0 1e-5]);
Sel={'gimbal' 'groupall';
    'tele' 'InNode{z>=0}';
    'base' ', }; % base not displayed
fesuper('SEBuildSel',cf,Sel);
cf.def=def;
```

```
% Second selection example
Sel={'gimbal' 'groupall';
    'tele' '';
    'base' 'groupall'
    '', 'InNode{z>=0}'}; % global selection
fesuper('SEBuildSel',cf,Sel);
```

If you have previously initialized a full restitution with fesuper('SeDefInit', cf), data to optimize partial restitution will be initialized. To obtain a partial restitution of a set of vectors, use data=cf.sel.cna1; dfull=fesuper('sedef', data,dred).

SE . . .

SEDof is an internal command used to implement proper responses to feutil GetDof commands. It is assumed that the superelement .DOF field is defined prior to setting the information in the model.Stack.

SEMPC is an internal command that need to be documented.
SECon may also need some documentation.

SEAdd . . .

SEAddSEName commands are used to append superelements to a model. With no command option fesuper('SEAdd SEname',model,SE, [matId proId]' appends a new superelement to the model.Elt field (creates a group SE if necessary) and saves the provided SE as a stack entry. [matId proId] can be given as a last argument to define properties associated to added superelement. As a new superelement is generated by default, SEname can be incremented if a superelement already exists with the same name.

The following command options are available

- -owrite allows overwriting a superelement whose name is already assigned.
- -name ' 'SEname' ' can be used instead of letting the superelement name itself in the command, for added robustness.
- -initcoef can be used in the case where the superelement is already assembled (reduced part, coupling superelement, ...). This allows the definition of a p_superentry of type 2, defining tunable matrix types and coefficients for parametric studies.
- -newID to assign a new independent EltId to each added superelement. This option makes sure that the assigned EltId is not already used in the full model EltId.

Note that SEname is checked to comply with the superelement naming convention of SDT, (see section 6.3 , fesuper s_). If SEname is altered, a warning will tell how and why. The warning can be deactivated by adding ; at the end of the command string.

SE is usually a standard SDT model, with fields .Node, .Elt, . Stack... But this command accepts models defined only from element matrices (needs .K, .Opt and .DOF fields). It can be useful to cleanly import element matrices from other codes for example (see section 4.3.3), or to represent penalized constraints, see fe.mpc.

When defining a superelement, two node and element numbering coexist, one a the superlement level, and one at the global level. To recover a full model at the global level, see fesuper FSeModel. To control the global model numbering ranges, ones defines NodeIdO and EltId0. NodeId0 is the lower bound of the range of the superelement implicit nodes (use 1 for no shift). NodeIdEnd is given by NodeIdEnd-NodeIdO=max (SE. $\operatorname{Node}(:, 1)$). EltIdO is the lower bound of the range of the superelement elements. The EltId range width is equal to the maximum EltId of the superelement.

- It is possible to define EltId0 to -1 to let fesuper assign an EltId range over the maximum currently used EltId, accouting for the global model.
- It is possible to define multiple instances of an SE at once (periodic models), see -trans for translation replication and -disk for circular replication. In such case, it is also possible to control the node shift applied between SE by defining a three value series NodeShift NodeIdo EltId0. If only two values are given, NodeShift is defaulted to zero and the two values are interpreted as NodeIdO and EltId0.

SEAdd -unique NodeIdO EltIdO SEname is used to add a single superelement and to give its ranges of implicit nodes and elements.

SEAdd -trans nrep $t x$ ty $t z$ <NodeShift> NodeIdO EltIdO SEname is used to repeat the model nrep times with a translation step ($t x$ ty $t z$). NodeId0 is the lower bound of the range of the first superelement implicit nodes. The range width is equal to the maximum NodeId of the superelement. The ranges of implicit nodes for repeated superelements are translated so that there is no overlap. To obtain overlap, you must specify NodeShift NodeIdO EltIdO, then there is a NodeId range overlap of NodeShift nodes. This is used to obtain superelement intersections that are not void and NodeShift is the number of intersection nodes between 2 superelements. EltId0 is the lower bound of the EltId range of elements of the first superelement. There is no EltId range overlap. Option -basval can be used as a starting value for the BasId of superelements.
For example
model=femesh('testhexa8');

```
model=feutil('renumber',model,model.Node(:,1)*10);
mo1=fesuper('SEAdd -trans 5 0 0 1 10000 10000 cube',[],model)
feplot(mo1)
```

SEAdd -disk <NodeShift> NodeIdO EltIdO SEName is used to repeat a sector model in cyclic sym-
metry. It is assumed that the symmetry case entry exists in the model (see fe_cyclic Build).

In all these cases, matrix of nodes of the superelement is sorted by NodeId before it is added to the stack of the model (so that SE.Node (end,1)==max (SE.Node (: , 1)).

SEAssemble ...

Command fesuper('SEAssemble', model) is used to assemble matrices of superelements that are used in model. A basis reduction from superelement Case.T (Interface DofSet is ignored) is performed.

SEDispatch ...

Command fesuper('SEDispatch', model) is used to dispatch constraints (mpc, rbe3, rigid elements, ...) of the global model in the related superelements, and create DofSet on the interface DOFs.

Rigid elements in model.Elt are distributed to the superelements (may be duplicated) that contain the slave node. The master node of the rigid element must be present in the superelement node matrix, even if it is unused by its elements (SESelAsSE called with selections automatically adds those nodes to the superelements).

Other constraints (mpc, rbe3, FixDof) are copied to superelement if all constraint DOFs are within the superelement. Constraints that span multiple superelements are not dispatched. All constraints remain declared in the main model. Parameters (par entries in Case) are also dispatched if the selection in the superelement is not empty.

Finally a DofSet (identity def matrix) is defined on superelement DOFs that are active in the global model and shared by another superelement. Those DofSet are stored in the 'Interface' entry of each superelement stack.

SEDofShow

Command fesuper('SeDofShow', cf 'tag) ; localizes nodes supporting DOF of superelements with mathing name based on tag and adds the SE names in an feplot display using cf. tag can be omitted in which case all SE are treated. tag can be replaced by a input structure with acceptable fields

- .tag provides the tag defined earlier.
- .evF provides a function handle to compute custom SE name anchor coordinates from SE.Node (: ,5:7). Default uses @mean.
- . sel provides a custom feplot selection command to update display. Default is set to reset-linface, use an empty field not to alter the current feplot selection.

SEInitCoef ...

Command fesuper('SEInitCoef', model) can be used to initialize p_super properties in model for used superelements. The full syntax allows choosing the type and a subselection of SE, [model, pro]=fesuper('SEInitCoeftyp', model'sel); typ can take values 1 or 2 to define the chosen p_super type (the default is type 2). sel can either be a FindElt string providing SE elements only or a index vector or SE elements in model.Elt. The outputs are model with additional pro Stack entries, and pro the list of treated ProId.

SEIntNode ...

Command fesuper('SEIntNode', model) can be used to define explicitly superelement interface nodes, taking into account local basis.

SESelAsSE ...

Selection as superelement. Command fesuper('SESelAsSE', model, Sel) is used to split a model in some superelement models, or to build a model from sub models taken as superelements.
Sel can be a FindElt string selector, or a model data structure.
If Sel is a FindElt string selector, the elements corresponding to the selection are removed from model, and then added as a superelement model. The implicit NodeId of the superelement are the same as the former NodeId in model. Warning: the selection by element group is not available due to internal renumbering operations performed in this task.
If Sel is a model, it is simply added to model as a superelement.
Sel can also be a cell array of mixed types (FindElt string selector or model data structure): it is the same as calling sequentially a SESelAsSE command for each element of the cell array (so avoid using group based selection for example, because after the first selection model.Elt may change). You can give a name to each superelement in the second column of Sel
\{Selection_or_model, SEname; ...\}. If name is not given (only one column in Sel), default seID is used.
By default, superelements Mat/ProId are generated and incremented from 1001. It is possible to
specify the MatId and/or ProId of the superelements created by adding a third column to Sel, with either a scalar value to apply to MatId and ProId or a line vector under the format [MatId ProId]. E.g. Sel=\{Selection, SEname, [1001 1001] ; . . \}. When the third column is left empty for certain lines, the default behavior is applied for these lines only.
Master nodes of the global model rigid elements are added to the superelements that contain corresponding slave nodes. By default, model properties are forwarded to the superelement fields, that is to say il, pl, stack entry types pro, mat, bas, set, and possible stack entries info,Rayleigh and info, Omega.
Superelement addtion is realized with command fesuper SEAdd, additional command options provided in command SeSelAsSe will be forwarded to SEAdd. E.g. one can use directly token -newID to generate clean EltId for added superelements.
The following example \square divides the d_cms model into 2 sub superelement models.

- The command option -dispatch can be used to dispatch constraints (rigid elements, mpc, rbe3 ...) of the global model in the related superelements and create DofSet on the interface DOFs. It is the same as calling the fesuper SEDispatch command after SESelAsSE without command option.
- Command option -noPropFwd can be used not to forward some model data to the superelement stack (older version compatibility). If used, stack entries of type, pro, mat, bas, set, and possible stack entries info, Rayleigh, info, Omega will not be forwarded to the superelement model.

SERemove

model=fesuper('SERemove', model,'name') searches superelement name in the model and removes it from Stack and element matrix.

SERenumber

SE=fesuper ('renumber', model, 'name') searches superelement name in the model stack and renumbers based on the entry in the SE element group. If name refers to multiple superelements, you should provide the row number in model. Elt.

S_
Superelement name coding operations. To allow storage in an element row, names must be 8 characters or less, combining letters a...z and numbers 0...9. They are taken to be case insensitive.

For proper use, superelement names should not contain the chain back, and should not start with 0.
num=fesuper ('s_name') returns the number coding the superelement name. name=fesuper ('s_', num) decodes the number. elt=fesuper ('s_name', model) extracts elements associated with a given superelement.

See also

fe_super, upcom, section 4.3.3, section 6.3

fjlock

Purpose

File lock handling object.

Syntax

ob=fjlock(fname); \% initialize object
ob.lock(flag); \% lock/unlock with flag
state=ob.locked; \% lock status

Description

To avoid simultaneous file access or to help with keeping track of currently processed files, one can use fjlock to test file accessibility or to lock file accessibility to other processes.
fjlock behavior follows the following semantics
The lock is handled within the object, ensuring exclusivity even if several fjlockobjects referring to the same file exist in different processes. The lock holder is thus a unique object independently from MATLAB sessions or processes. This leads to three distinct lock statuses:

- O file unlocked: no external lock found, and not locked in object. The file is accessible but should be locked to safely proceed.
- 1 file externally locked: no access possible, impossible to change the lock status until the lock holder has released it, the process testing accessibility should not proceed.
- 2 file lock within the object: the file is locked but this object is the lock holder, the process using this object may proceed safely.

When a lock holder fjlock is destroyed, the lock is released.
fjlockinherits the handle class, so that any copy refers to the same object (thus same lock status, holder, or destroyed). It is also recommended to use delete instead of clear to destroy the object. The clear command may postpone destruction and thus lock release in recent MATLAB versions.

File locking is never absolutely perfect, as OSes do not use transactional file systems. Besides, POSIX semantics are nowadays weakly enforced to optimize latency, especially over network access, and efficient strategies will depend on the OS. Several lock strategies are thus implemented with their own pros and cons.

- Java LockFile (flag=1) This implementation locks the file itself instead of generating a companion lock file. This is a very robust and attractive method but its effect is restrained
within a specific JRE instance (one machine). The lock validity will thus be limited to all MATLAB instances on a specific computer. Once locked the file may become inaccessible to read to any process (even the one hodling the lock). This behavior has been observed on Windows10. A non recoverable segFault may also fail to release the file, that would then remain locked at the JRE level without release access. The JRE would then need to be restarted to recover accessibility.
- external lock file with Java IO (flag=2,useNIO=0) This implementation generates a lock file companion whose existence will define the lock status. To be really safe the lock file generation has to be atomic, here through the File.createNewFile() method. Specific care is taken to avoid issues related to weak atomicity to the limits of the file system. The lock is then valid with no network limit and cross-platform access. As the file itself is not locked no access issue will exist. This also means that nothing will prevent another rude process to access the file, or delete it, or delete the lock file. The success of this method is thus linked to the robustness of access test. File access recovery in case of object loss is here easily done by deleting the lock file companion.
- external lock file with Java NIO (flag=2,useNIO=1) This implementation is a variant to the IO implementation. The main characteristics are the same, but atomicity if realized using the NIO class. The Files.copy method is used instead of the Files.move method. In recent file system the latter method may be atomic but fails to throw exceptions if the target already exist thus failing the lock scheme. The Files.copy associated to an empty file works better, but no atomicity is guaranteed so that a risk of error or lock file corruption may exist, although very small. This method (new from Java7) is eventually limited to recent MATLAB versions. For Unix environments starting from MATLAB 8.2 (R2013b), for Windows environments from MATLAB 9.1 (R2016b).

To be robust to the possibility of several lock strategies used at once, strategy 2 overrides strategy 1 in the lock holder only, and the lock status is independent from the strategy employed. It is then impossible to lock a file if any lock is detected. One can switch in the lock holder from strategy 1 to 2 but not the other way around until the lock is released. Although very improbable, the lock hold could be lost during the switch. It is anyways recommended not to mix strategies within a given distributed procedure.

The default behavior assumes that to be locked, a file must exist. If a file gets deleted, any referred hold lock will be released. It is however sometimes interesting to place a lock on a non-existing file to protect its creation. This specific behavior only works with the external lock files strategies. The operation must then be explicitly called using flag=3. In such case the external lock file strategy is forced and a lock can be hold on a non-existing file.

fjlock

fjlock constructor. Calling fjlock will create a new fjlock object. One can provide a file name string fname, and a lock flag integrer on-the-fly.
ob1=fjlock; \% create empty object
ob1=fjlock(fname); \% refer to file fname, access tested
ob1=fjlock(fname,flag); \% refer to file fname and try to lock with flag
.delete[,.close]
fjlockdestruction (and callback). Releases the lock if the object is a lock holder prior to destruction. If no process refers to the object or when exiting MATLAB this method will be called too.
.file
Provide a reference file name. It is possible to change the file reference in an existing object, in such case, the hold locks will be released.
ob1.file=fname2; \% change fname

. lock(flag)

Try to assign a lock $f l a g$ to the referred file, and outputs the lock status. If the $f l a g$ is set to false and hold lock is released, otherwise flag defines the lock strategy (and not the lock status per se). status=obj. lock (flag).

If the file is locked externally (status set to 1), nothing will be performed, one can however try to lock in a wait loop until the lock hold (status 2) is obtained.

Depending on the initial lock status, flag setting will have the following effect

- file exists, initial status unlocked (status 0)
- $\mathrm{flag}=0$ nothing is done, file remains unlocked.
- flag=1 lock with FileLock strategy, lock is hold with strategy 1.
- flag=2 lock with external lock file, lock is hold with strategy 2.
- flag=3 same as flag=2.
- file exists, initial status is externally locked (status 1)
- $\mathrm{flag}=0$ nothing is done, file remains externally locked.
- $\mathrm{flag}=1$ nothing is done, file remains externally locked.
- flag=2 nothing is done, file remains externally locked.
- flag=3 nothing is done, file remains externally locked.
- file exists, initial status is lock hold with FileLock strategy (status 2) (stra1)
- $\mathrm{flag}=0$ lock is released, file becomes unlocked.
- flag=1 nothing is done, lock is hold.
- flag=2 switch to external file lock strategy, java FileLock is released, lock is hold.
- flag=3 same as flag=2.
- file exists, initial status is lock hold with external lock file strategy (status 2) (stra2)
- flag=0 lock is released, file becomes unlocked.
- flag=1 nothing is done (no strategy change), lock is hold.
- flag=2 nothing is done, lock is hold.
- flag=3 same as flag=2.
- file does not exist, initial status unlocked (status 0)
- flag=0 nothing is done, file remains unlocked.
- flag=1 nothing is done, file remains unlocked.
- flag=2 nothing is done, file remains unlocked.
- flag=3 lock with external lock file, lock is hold with strategy 2.
- file does not exist, initial status is lock hold with external lock file strategy (status 2) (stra2)
- flag=0 lock is released, file becomes unlocked.
- flag=1 nothing is done (no strategy change), lock is hold.
- flag=2 nothing is done, lock is hold.
- flag=3 nothing is done, lock is hold.

. locked

Dynamically provides the object lock status associated to the referred file. Every call to .locked thus tests again file accessibility. The output is then the lock status.
status=obj.locked;

```
.setFile
```

Change the referred file in the object. If the object is a lock holder, the lock is released. No lock is performed on the newly referred file.

```
    obj.file=fname;
```

```
.setUseNIO(flag)
```

Change the external file lock implementation strategy. If flag is false, the IO strategy will be used, the NIO otherwise. It is recommended to stick with the IO strategy.

```
.tmpFile
```

Generate a temporary file using java IO or NIO method. This method is used internally but can also be called externally to generate an empty temporary file with the methods available in Java. This is a variant to nas2up('tempname'), the difference being that .tmpFile directly creates an empty file.

```
f1=char(tmpFile(fjlock,sdtdef('tempdir'),'.mat')); % in tempdir with suffix .mat
f1=char(tmpFile(fjlock,sdtdef('tempdir'))); % in tempdir no suffix
f1=char(tmpFile(fjlock)); % in pwd, no suffix
```


Examples

```
% fjlock calls example
% Generate a file for illustration
f1=char(tmpFile(fjlock,sdtdef('tempdir'),'.mat'));
% Initialize object
ob=fjlock(f1) % dislays .file and .locked
status=ob.locked % 0: unlocked
% lock the file
status=ob.lock(1) % status is 2
exist([f1 '.fjlock'],'file') % no external file
status=ob.lock(2) % status remains2
exist([f1 '.fjlock'],'file') % external file exists
% unlock the file
ob.lock(0) % status is 0
exist([f1 '.fjlock'],'file') % external file has been removed
% Now try with two objects
```

fjlock

```
ob1=fjlock(f1) % new lock object
status2=ob1.lock(2) % status2 is 2 ob1 is lock holder
status=ob.locked % status passed to 1 file locked but not by ob
status=ob.lock(0) % status sill to 1 does nothing as ob is not holder
delete(ob1) % lock release when destructed
status=ob.locked % status passed to 0 as no lock exists anymore
f1=nas2up('tempname.mat');
ob=fjlock(f1,2);
status=ob.locked % 0: file does not exist
ob1=fjlock(f1,3);
status1=ob1.locked % 2: lock hold on non existing file
status=ob.locked % 1: external lock found
ob1.lock(0) % 0: lock released
```


Purpose

DOF selection and input/output shape matrix construction.

Syntax

C	= fe_c (mdof, adof)
c	= fe_c (mdof, adof, cr,ty)
b	= fe_c(mdof, adof,cr)'
[adof, ind, c]	$=f e _c(m d o f, a d o f, c r, t y)$
ind	$=\mathrm{fe}$ _c(mdof, adof, 'ind', ty)
adof	$=\mathrm{fe}$ _c(mdof, adof, 'dof ', ty)
labels	= fe_c(mdof,adof, 'dofs',ty)

Description

This function is quite central to the flexibility of DOF numbering in the Toolbox. FE model matrices are associated to DOF definition vectors which allow arbitrary DOF numbering (see section 7.5). fe_c provides simplified ways to extract the indices of particular DOFs (see also section 7.10) and to construct input/output matrices. The input arguments for fe_c are
mdof \quad DOF definition vector for the matrices of interest (be careful not to mix DOF definition vectors of different models)
adof active DOF definition vector.
cr output matrix associated to the active DOFs. The default for this argument is the identity matrix. cr can be replaced by a string 'ind' or 'dof' specifying the unique output argument desired then.
ty active/fixed option tells fe_c whether the DOFs in adof should be kept (ty=1 which is the default) or on the contrary deleted ($\mathrm{ty}=2$).

The input adof can be a standard DOF definition vector but can also contain wild cards as follows
NodeID. 0 means all the DOFs associated to node NodeID
0.Dof ID means DofID for all nodes having such a DOF
-EltID. 0 means all the DOFs associated to element EltID

The convention that DOFs .07 to .12 are the opposite of DOFs .01 to .06 is supported by fe_c, but this should really only be used for combining experimental and analytical results where some sensors have been positioned in the negative directions.

The output argument adof is the actual list of DOFs selected with the input argument. fe_c seeks to preserve the order of DOFs specified in the input adof. In particular for models with nodal DOFs only and

- adof contains no wild cards: no reordering is performed.
- adof contains node numbers: the expanded adof shows all DOFs of the different nodes in the order given by the wild cards.

The first use of fe_c is the extraction of particular DOFs from a DOF definition vector (see b, c page 292). One may for example want to restrict a model to 2 -D motion in the $x y$ plane (impose a fixed boundary condition). This is achieved as follows

```
% finding DOF indices by extension in a DOF vector
[adof,ind] = fe_c(mdof,[0.01;0.02;0.06]);
mr = m(ind,ind); kr = k(ind,ind);
```

Note adof=mdof(ind). The vector adof is the DOF definition vector linked to the new matrices kr and mr .

Another usual example is to fix the DOFs associated to particular nodes (to achieve a clamped boundary condition). One can for example fix nodes 1 and 2 as follows

```
% finding DOF indices by NodeId in a DOF vector
    ind = fe_c(mdof,[1 2],'ind',2);
    mr = m(ind,ind); kr = k(ind,ind);
```

Displacements that do not correspond to DOFs can be fixed using fe_coor.
The second use of $f e_{-c}$ is the creation of input/output shape matrices (see b, c page 200). These matrices contain the position, direction, and scaling information that describe the linear relation between particular applied forces (displacements) and model coordinates. fe_c allows their construction without knowledge of the particular order of DOFs used in any model (this information is contained in the DOF definition vector mdof). For example the output shape matrix linked to the relative x translation of nodes 2 and 3 is simply constructed using

```
% Generation of observation matrices
    c=fe_c(mdof,[2.01;3.01],[1 -1])
```

For reciprocal systems, input shape matrices are just the transpose of the collocated output shape matrices so that the same function can be used to build point load patterns.

Example
Others examples may be found in adof section.

See also

fe_mk, feplot, fe_coor, fe_load, adof, nor2ss

fe_case

Purpose

UI function to handle FEM computation cases

Syntax

```
Case = fe_case(Case,'EntryType','Entry Name',Data)
fe_case(model,'command' ...)
```


Description

FEM computation cases contains information other than nodes and elements used to describe a FEM computation. Currently supported entries in the case stack are
cyclic (SDT) used to support cyclic symmetry conditions

DofLoad loads defined on DOFs (handled by fe_load)
DofSet (SDT) imposed displacements on DOFs
FixDof used to eliminated DOFs specified by the stack data
FSurf surface load defined on element faces (handled by fe_load). This will be phased out since surface load elements associated with volume loads entries are more general.
FVol volume loads defined on elements (handled by fe_load
info used to stored non standard entries
KeepDof (obsolete) used to eliminated DOFs not specified by the stack data. These entries are less general than FixDof and should be avoided.

map	
mpc	field of normals at nodes multiple point constraints a flavor of MPC that enforce motion of a nod
rbe3	are used to define physical parameters (see up par
linear constraints associated with rigid links	
SensDof	(SDT) Sensor definitions

fe_case is called by the user to initialize (when Case is not provided as first argument) or modify cases (Case is provided).
Accepted commands are

Get, T, Set, Remove, Reset...

- [Case, CaseName]=fe_case (model, 'GetCase') returns the current case.

GetCase i returns case number i (order in the model stack). GetCaseName returns a case with name Name and creates it if it does not exist. Note that the Case name cannot start with Case.

- data=fe_case(model,'GetData EntryName') returns data associated with the case entry EntryName.
- model=fe_case(model,'SetData EntryName', data) sets data associated with the case entry EntryName.
- [Case, NNode, ModelDOF]=fe_case(model, 'GetT') ; returns a congruent transformation matrix which verifies constraints. Details are given in section 7.14 .
CaseDof=fe_case (model, 'GetTDOF') returns the case DOF (for model DOF use feutil('getdof', model)). If fields Case.T and Case.DOF are already defined, they will be reused. Use command option new to force a reset of these fields.
- model=fe_case(model, 'Remove', 'EntryName') removes the entry with name EntryName.
- Reset empties all information in the case stored in a model structure
model = fe_case(model,'reset')
- fe_case SetCurve has a load reference a curve in model Stack. For example model=fe_case(model, 'SetCurve', 'Point load 1', 'input') ; associates Point load 1 to curve input. See section 7.9 for more details on curves format and fe_case SetCurve for details on the input syntax.
- stack_get applies the command to the case rather than the model. For example des = fe_case(model,'stack_get','par')
- stack_set applies the command to the case rather than the model. For example model $=$ fe_case(model,'stack_set', 'info', 'Value',1)
- stack_rm applies the command to the case rather than the model. For example model = fe_case(model,'stack_rm','par')

Commands for advanced constraint generation

AutoSPC

Analyses the rank of the stiffness matrix at each node and generates a fixdof case entry for DOFs found to be singular:

```
model = fe_case(model,'autospc')
```


Assemble

Calls used to assemble the matrices of a model. See fe_mknl Assemble and section 4.8.8 for optimized assembly strategies.

Build Sec epsl d

model = fe_cyclic('build (N) epsl (d)',model,LeftNodeSelect) is used to append a cyclic constraint entry in the current case.

ConnectionEqualDOF

fe_caseg('Connection EqualDOF', model, 'name', DOF1,DOF2) generates a set of MPC connecting each DOF of the vector DOF1 (slaves) to corresponding DOF in DOF2 (masters). DOF1 and DOF2 can be a list of NodeId, in that case all corresponding DOF are connected, or only DOF given as a -dof DOFs command option.

Following example defines 2 disjointed cubes and connects them with a set of MPC between DOFs along x and y of the given nodes,

```
% Build a Multiple Point Constraint (MPC) with DOF equalization
% Generate a cube model
cf=feplot; cf.model=femesh('testhexa8');
% duplicate the cube and translate
cf.mdl=feutil('repeatsel 2 0.0 0.0 1.5',cf.mdl);
% build the connection
cf.mdl=fe_caseg('Connection EqualDOF -id7 -dof 1 2',cf.mdl, ...
    'link1',[5:8]',[9:12]');
% display the result in feplot
cf.sel='reset'; % reset feplot display
% open feplot pro and view the built connection
fecom(cf,'promodelviewon');fecom(cf,'curtab Cases','link1');
```

The option -id i can be added to the command to specify a MPC ID i for export to other software. Silent mode is obtained by adding ; at the end of the command.
By default a DOF input mismatch will generate an error. Command option -safe allows DOF mismatch in the input by applying the constraint only to DOF existing in both lists. If no such DOF exists the constraint is not created.

ConnectionPivot

This command generates a set of MPC defining a pivot connection between two sets of nodes. It is meant for use with volume or shell models with no common nodes. For beams the pin flags (columns 9:10 of the element row) are typically more appropriate, see beam1 for more details.

The command specifies the DOFs constraint at the pivot (in the example DOF 6 is free), the local z direction and the location of the pivot node. One then gives the model, the connection name, and node selections for the two sets of nodes.

```
% Build a pivot connection between plates
model=demosdt('demoTwoPlate');
model=fe_caseg('Connection Pivot 12345 0 0 1 .5 .5 -3 -id 1111', ...
    model,'pivot','group1','group2');
def=fe_eig(model);feplot(model,def)
```

The option -id i can be added to the command to specify a MPC ID i for export to other software. Silent mode is obtained by adding ; at the end of the command.

ConnectionSurface

This command implements node to surface connections trough constraints or penalty. fe_caseg('ConnectionSurface DOFs', model,'name', NodeSel1, Eltsel2) generates a set of MPC connecting of DOFs of a set of nodes selected by NodeSel1 (this is a node selection string) to a surface selected by EltSel2 (this is an element selection string). ConnectionSurface performs a match between two selections using feutilb Match and exploits the result with feutilb MpcFromMatch.
The following example links x and z translations of two plates

```
% Build a surface connection between two plates
    model=demosdt('demoTwoPlate');
    model=fe_caseg('Connection surface 13 -MaxDist0.1',model,'surface', ...
    'z==0', ... % Selection of nodes to connect
    'withnode {z==.1 & y<0.5 & x<0.5}'); % Selection of elements for matching
    def=fe_eig(model);feplot(model,def)
```

Accepted command options are

- Auto will run an automated refinement of then provided element selections element selection to locate areas of possible interactions.
- -aTol provides a custom tolerance in Auto mode to detect interesecting volume extensions where the match will be performed. By default one will consider 10 times the mesh characteristic length.
- -id i can be added to the command to specify a MPC ID i for export to other software.
- -Radius val can be used to increase the search radius for the feutilb Match operation.
- -MaxDist val eliminates matched node with distance to the matched point within the element higher than val. This is typically useful for matches on surfaces where the node can often be external. Using a -MaxDist is required for -Dof.
- - kp val is used to give the stiffness (force/length) for a penalty based implementation of the constraint. The stiffness matrix of the penalized bilateral connection is stored in a superelement with the constraint name.
- -dens uses a slave surface. In conjunction with - kp the coefficient provided is used as a surface stiffness density. With this option, the first selection must rethrow a face selection.
- -Dof val can be used to build surface connections of non structural DOFs (thermal fields, ...).
- -MatchS uses a surface based matching strategy that may be significantly faster.
- -disjCut will attempt at splitting the generated connection by disjointed connected areas of the surface (second selection), the result is either a series of mpc or a model with multiple SE depending on the mode.
- Silent mode is obtained by adding ; at the end of the command.

It is also possible to define the ConnectionSurface implicitly, to let the constraint resolution be performed after full model assembly. The ConnectionSurface is then defined as an MPC, which data structure features fields .type equal to ConnectionSurface with possible command options, and field .sel giving in a cell array a sequence \{NodeSel1, EltSel2\}, as defined in the explicit definition. The following example presents the implicit ConnectionSurface definition equivalent to the above explicit one.

```
% Build a surface connection between two plates
% using implicit selections
model=demosdt('demoTwoPlate');
    model=fe_case(model,'mpc','surface', ...
struct('type','Connection surface 13 -MaxDist0.1',...
'sel',{{'z==0','withnode {z==.1 & y<0.5 & x<0.5}'}}));
def=fe_eig(model);feplot(model,def)
% Build a penalized surface connection
% with a given sitffness density between two plates
model=demosdt('demoTwoPlate');
```

```
model=fe_caseg('Connection surface 123 -MaxDist 0.1 -kp1e8 -dens',model,...
    'surface',...
    'withnode{z==0}&selface', ...
    'withnode {z==.1 & y<0.5 & x<0.5}')
def=fe_eig(model);cf=feplot(model,def);
fecom(cf,'promodelinit');
fecom(cf,'curtabStack','surface');
fecom(cf,'proviewon');
```

Warning volume matching requires that nodes are within the element. To allow exterior nodes, you should add a \& selface at the end of the element selection string for matching.

ConnectionScrew

```
fe_caseg('Connection Screw',model,'name',data)
```

This command generates a set of RBE3 defining a screw connection. Nodes to be connected are defined in planes from their distance to the axis of the screw. The connected nodes define a master set enforcing the motion of a node taken on the axis of the screw with a set of RBE3 (plane type 1) or rigid links (plane type 0) ring for each plane.

In the case where rigid links are defined, the command appends a group of rigid elements to the model case.

Real screws can be represented by beams connecting all the axis slave nodes, this option is activated by adding the field MatProId in the data structure.
data defining the screw is a data structure with following fields:
\qquad

Origin	a vector [x 0 y 0 z 0] defining the origin of the screw.
axis	a vector [$n \mathrm{x} \mathrm{ny} \mathrm{nz}$] defining the direction of the screw axis.
radius	defines the radius of the scre
planes	a matrix with as many lines as link rings. Each row is of the form [z0 type
	ProId zTol rToll where $z 0$ is the distance to the origin along the axis of the screw, type is the type of the link (0 for rigid and 1 for rbe3), ProId is the ProId of the elements containing nodes to connect, and $z \mathrm{Tol}$ and $r \mathrm{Tol}$ are tolerance of the positions of these nodes respectively for distance along the axis and distance to the axis.
MatProId	Optional. If present beams are added to connect slave nodes at the center of each link ring. It is a vector [MatId ProId] defining the MatId and the ProId of the beams.
MasterCelas	Optional. It defines the celas element which is added if this field is present. It is of the form [0 0 -DofID1 DofID2 ProID EltID Kv Mv Cv Bv]. The first node of the celas is the slave node of the rbe3 ring and the second is added at the same location. This can be useful to reduce a superelement keeping the center of the rings in the interface.
NewNode	Optional. If it is omitted or equal to 1 then a new slave node is added to the model at the centers of the link rings. If it equals to 0 , existent model node can be kept.
Nnode	Optional. Gives the number of points to retain in each plane.

Data field planes provide the selection parameters that are used to detect nodes in a plane. The selection combined three FindNode commands in the order detailed below

- nodes are searched in a cylinder using the axis and origin provided, using the radius rTol
- remaining nodes are limited as being over a plane with normal the axis provided, and over position z0 - zTol.
- remaining nodes are limited as begin under a plane with normal the axis provided and under position z0 $+z T o l$.

The found nodes, in a cylinder between two planes of same normal, are then connected to the center node, strictly defined at height $z 0$ on the axis provided. The heights provided as z 0 and zTol must be understood along the axis provided and not as function of the main frame coordinates.

One can also define more generally planes as a cell array whose each row defines a plane and is of the form $\{z 0$ type st $\}$ where $z 0$ and type are defined above and st is a FindNode string, st can contain $\$$ FieldName tokens that will be replaced by corresponding data.FieldName value (for example 'cyl<= \$radius o \$Origin \$axis \& inElt\{ProId \$ProId\}' will select nodes in cylin-
der of radius data.radius, origin data.Origin and axis data.axis, and in elements of ProId data.ProId).

Silent mode is obtained by adding ; at the end of the command.
Following example creates a test model, and adds 2 rbe 3 rings in 2 planes.

```
% Sample connection builds commands for screws using rigid or RBE3
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4'); % create model
r1=struct('Origin',[20 10 0],''axis',[[0 0 1],'radius',3, ...
    'planes',[1.5 1 111 1 3.1;
            5.0 1 112 1 4;], ...
    'MasterCelas',[0 0 -123456 123456 10 0 1e14], ...
    'NewNode',0);
model=fe_caseg('ConnectionScrew',model,'screw1',r1);
cf=feplot(model); % show model
fecom('promodelviewon');fecom('curtab Cases','screw1');
% alternative definintion using a beam
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4'); % create model
r1=struct('Origin',[20 10 0],'axis',[0 0 1],'radius',3, ...
    'planes',[1.5 1 111 1 3.1;
            5.0 1 112 1 4;], ...
    'MasterCelas',[0 0 -123456 123456 10 0 1e14], ...
    'MatProId',[110 1001],...
    'NewNode',0);
model=fe_caseg('ConnectionScrew',model,'screw1',r1);
cf=feplot(model); % show model
fecom('promodelviewon');fecom('curtab Cases','screw1');
% alternative definition with a load, two beam elements are created
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4'); % create model
model=fe_caseg('ConnectionScrew -load1e5;',model,'screw1',r1);
def=fe_eig(model,[5 15 1e3]);
% alternative definition with a load, two beam elements are created
% and a pin flag is added to release the beam compression
model=demosdt('demoscrew layer 0 40 20 3 3 layer 0 40 20 4'); % create model
model=fe_caseg('ConnectionScrew -load1e5 -pin1;',model,'screw1',r1);
def1=fe_eig(model,[5 15 1e3]);
```

\qquad
\% a new rigid body mode has been added due to the pin flag addition [def.data(7) def1.data(7)]

Command option -loadval allows defining a loading force of amplitude val to the screw in the case where a beam is added to model the screw (through the MatId optional field). To this mean the last beam element (in the order defined by the planes entry) is split in two at a tenth of its length and a compression force is added to the larger element that is exclusively inside the beam. In complement, command option -pinpdof allows defining pin flags with identifiers pdof to the compressed beam1 lement.

Entries

The following paragraphs list available entries not handled by fe_load or upcom.

cyclic (SDT)

cyclic entries are used to define sector edges for cyclic symmetry computations. They are generated using the fe_cyclic Build command.

FixDof

FixDof entries correspond to rows of the Case.Stack cell array giving \{'FixDof', Name, Data\}. Name is a string identifying the entry. data is a column DOF definition vector (see section 7.10) or a string defining a node selection command. You can also use data=struct('data', DataStringOrDof, 'ID', ID) to specify a identifier.

You can now add DOF and ID specifications to the findnode command. For example ' $\mathrm{x}==0-\mathrm{dof}$ 12 -ID 101' fixes DOFs x and y on the $\mathrm{x}==0$ plane and generates an data. ID field equal to 101 (for use in other software).
The following command gives syntax examples. An example is given at the end of the fe_case documentation.

```
% Declare a clamping constraint with fixdof
    model = fe_case(model,'FixDof','clamped dofs','z==0', ...
    'FixDof','SimpleSupport','x==1 & y==1 -DOF 3', ...
    'FixDof','DofList',[1.01;2.01;2.02], ...
    'FixDof','AllDofAtNode',[5;6], ...
    'FixDof','DofAtAllNode',[.05]);
```


map

map entries are used to define maps for normals at nodes. These entries are typically used by shell elements or by meshing tools. Data is a structure with fields

- . normal a N by 3 matrix giving the normal at each node or element
- .ID a N by 1 vector giving identifiers. For normals at integration points, element coordinates can be given as two or three additional columns.
- . opt an option vector. opt (1) gives the type of map (1 for normals at element centers, 2 for normals at nodes, 3 normals at integration points specified as additional columns of Data.ID).
- .vertex an optional N by 3 matrix giving the location of each vector specified in . normal. This can be used for plotting.

MPC
MPC (multiple point constraint) entries are rows of the Case. Stack cell array giving \{ 'MPC', Name, Data\}. Name is a string identifying the entry. Data is a structure with fields Data. ID positive integer for identification. Data.c is a sparse matrix whose columns correspond to DOFs in Data.DOF. c is the constraint matrix such that $[c]\{q\}=\{0\}$ for q defined on DOF.
Data.slave is an optional vector of slave DOFs in Data.DOF. If the vector does not exist, it is filled by feutil FixMpcMaster.
Note that the current implementation has no provision for using local coordinates in the definition of MPC (they are assumed to be defined using global coordinates).

```
par (SDT)
```

par entries are used to define variable coefficients in element selections. It is nominally used through upcom Par commands but other routines may also use it 31].

RBE3 (SDT)

rbe3 constraints enforce the motion of a slave node as a weighted average of master nodes. Two definition strategies are supported in SDT, either direct or implicit. There are known robustness problems with the current implementation of this constraint.
\qquad
The direct definition explicitely declares each node with coupled DOFs and weighting in a data field. Several rbe3 constrains can be declared in data.data. Each row of data.data codes a set of constraints following the format

Rbe3ID NodeIdSlave DofSlave Weight1 DofMaster1 NodeId1 Weight2 ...
DofMaster and DofSlave code which DOFs are used (123 for translations, 123456 for both translations and rotations). You can obtain the expression of the RBE3 as a MPC constraint using data=fe_mpc('rbe3c', model, 'CaseEntryName').

When reading NASTRAN models an alternate definition
Rbe3ID NodeIdSlave DofSlave Weight DofMaster NodeId1 NodeId2 ... may exist. If the automated attempt to detect this format fails you can fix the entry using model=fe_mpc('FixRbe3 Alt', model).

The implicit definition handles Node Selectors described in section 7.11 to define the rbe3. The input is then a structure:

```
% Define a RBE3 constraint
data=struct('SlaveSel','NodeSel',...
    'MasterSel','NodeSel', . . .
    'DOF', DofSlave,...
    'MasterDOF', DofMaster);
```

SlaveSel is the slave node selection (typically a single node), MasterSel is the master node selection, DOF is the declaration of the slave node coupling, MasterDOF is the declaration of the master nodes coupling (same for all master nodes).

Grounding or coupling the slave node movement is possible through the use of a celas, as shown in the example below featuring an implicit rbe3 definition. In a practical approach, the slave node is duplicated and a celas element is generated between the two, which allows the definition of global movement stiffnesses. Constraining the rotation of a drilled block around its bore axis is considered using a global rotation stiffness.

```
% Integrated generation of an RBE3 constraint in a model
% Definition of a drilled block around y
model=feutil('ObjectHoleInBlock 0 0 0 1 0 0 0 1 0 2 2 2 .5 4 4 4');
model=fe_mat('DefaultIl',model); % default material properties
model=fe_mat('defaultPl',model); % default element integration properties
% Generation of the bore surface node set
[i1,r1]=feutil('Findnode cyl ==0.5 ○ 0 0 0 0 1 0',model);
model=feutil('AddsetNodeId',model,'bolt',r1(:,1));
% Generation of the slave node driving the global bore movement
```

```
model.Node(end+[1:2],1:7)=[242 0 0 0 0 0 0;244 0 0 0 0 0 0];
% Addition of the celas element between the slave node and its duplicate
model.Elt(end+[1:2],1:7)=[inf abs('celas') 0;242 244 123456 0 0 0 1e11];
model=feutil('AddSetNodeId',model,'ref_rot',244);
% Definition of the RBE3 constraint
data=struct('SlaveSel','setname ref_rot',...
    'MasterSel','setname bolt',...
    'DOF',123456,... % Slave node constrained on 6 DOF
    'MasterDOF',123); % Master only use translation
model=fe_case(model,'rbe3','block_mov',data);
% Grounding the global y rotation (leaving the celas stiffness work)
model=fe_case(model,'fixdof','ClampBlockRot', 242.05);
% 5 rigid body modes model obtained
def=fe_eig(model,[5 20 1e3]);
cf=feplot(model,def);fecom('curtabCases','rbe3');fecom('ProViewOn');
```

rigid
See details under rigid which also illustrates the RigidAppend command.

```
Sens ... (SDT)
```

SensDof entries are detailed in section 4.6. They are stored as rows of the Case. Stack cell array giving \{'SensDof', Name, data\}. SensStrain entries have been replaced with strain sensors in SensDof

R1=fe_case('sensobserve', model, 'SensEntryName', def) ; iiplot(R1) can be used to extract observations at sensors associated with a given response. The SensEntryName can be omitted if a single sensor set exist.
Sens=fe_case(model, 'sens', 'SensName') ; R1=fe_case('sensobserve', Sens, def) ; is also acceptable
un=0
model=fe_case(model, 'un=0', 'Normal motion', map) ; where map gives normals at nodes generates an mpc case entry that enforces the condition $\{u\}^{T}\{n\}=0$ at each node of the map.
\qquad

SetCurve

To associate a time variation to a compatible case entry, one adds a field curve to the case entry structure. This field is a cell array that is of the same length as the number of solicitation contained in the case entry.

Each curve definition in the cell array can be defined as either

- a string referring to the name of a curve stacked in the model (recommended)
- a curve structure
- a string that will be interpreted on the fly by fe_curvewhen the load is assembled, see fe_curve('TestList') to get the corresponding strings

The assignation is performed using

```
model = fe_case(model,'SetCurve',EntryName,CurveName,Curve,ind);
with
```

- EntryName the case entry to which the curve will be assigned
- CurveName a string or a cell array of string with the name of the curves to assign
- Curve (optional) a curve or a cell array of curves that will be assigned (if not in model stack), they will be set in the model stack and only their names will be mentioned in the case entry
- ind (optional) the index of the curves to assign in the curve field, if several solicitation are present in the case entry considered. If ind is omitted the whole field curve of the case entry will be replaced by CurveName.

In practice, a variant call is supported for retro-compatibility but is not recommended for use,

```
model = fe_case(model,'SetCurve',EntryName,Curve,ind);
```

allows a direct assignation of non stacked curves to the case entry with the same behavior than for the classical way.

Multiple curve assignation at once to a specific EntryName is supported with the following rules

- CurveName, Curve (optional) and ind (mandatory) have the same sizes. In this case, all given curves will be assigned to the case entry with their provided index
- A singleCurveName and Curve is provided with a vector of indices. In this case, all indexed curves will be assigned to the new provided one

To remove a curve assignation to a case entry. Command

```
model = fe_case(model,'SetCurve',EntryName,'remove');
```

will remove the field curve from case entry EntryName.
The flexibility of the command imposes some restriction to the curve names. Name remove and TestVal with Val begin a keyword used by fe_curve Test cannot be used.

The following example illustrate the use of SetCurve to assign curves to case entries

```
% Sample calls to assign curves to load cases
% generate a sample cube model
model=femesh('testhexa8');
% clamp the cube bottom
model=fe_case(model,'FixDof','clamped dofs','z==0');
% load a DOF of the cube base
model=fe_case(model,'DofLoad','in',struct('def',1,'DOF',5.02));
% generate a curve loading transient pattern
R1=fe_curve('testramp t1.005 yf1');
% assign the curve to the load case
model=fe_case(model,'SetCurve','in','tramp',R1);
% add a new load case with two sollicitations
model=fe_case(model,'DofLoad','in2',...
    struct('def',[1 0;0 1],'DOF',[6.02;6.03]));
% assign a new transient variation to both directions
model=fe_case(model,'SetCurve','in2','tramp1', ...
    fe_curve('testramp t0.5 yf1'),1:2);
% modify the first direction only to tramp instead of tramp1
model=fe_case(model,'SetCurve','in2','tramp',1);
% remove the curve assigned to input in
model=fe_case(model,'SetCurve','in','remove')
```


Examples

Here is an example combining various fe_case commands

```
% Sample fe_case commands for boundary conditions, connections, and loads
    femesh('reset');
    model = femesh('test ubeam plot');
    % specifying clamped dofs (FixDof)
    model = fe_case(model,'FixDof','clamped dofs','z==0');
    % creating a volume load
    data = struct('sel','GroupAll','dir',[1 0 0]);
    model = fe_case(model,'FVol','Volumic load',data);
    % assemble active DOFs and matrices
    model=fe_mknl(model);
    % assemble RHS (volumic load)
    Load = fe_load(model,'Case1');
    % compute static response
    kd=ofact(model.K{2});def.def= kd\Load.def; ofact('clear',kd)
    Case=fe_case(model,'gett'); def.DOF=Case.DOF;
    % plot displacements
    feplot('initdef',def);
    fecom(';undef;triax;showpatch;promodelinit');
```

See also fe_mk fe_case

fe_caseg

Purpose

Gateway functions for advanced FEM utilities in SDT, regarding assembly, integrated case definition and post-treatments.

Description

This function is only used for internal SDT operation and actual implementation will vary over time. The following commands are documented to allow user calls and SDT source code understanding.

Assemble

Optimized strategies for assembly are provided in SDT through the fe_caseg Assemble command. More details are given in section 4.8.8.

StressCut

The StressCut command is the gateway for dynamic stress observation commands. Typical steps of this command are

- View mesh generation, see section 4.7.1.
- Generate a selection sel=fe_caseg('stresscut -selout',VIEW,model);
- Display the selection in feplotusing fe_caseg('stresscut', sel, cf)
- Observe the result using curve=fe_caseg('StressObserve', cf.sel(2), def)

For the selection generation, accepted options are

- VIEW can be a mesh so that feutilb Match is used to find elements associated with viewing positions. A structure struct('type', 'Gauss') to return selection at Gauss points. A structure struct('type', 'BeamGauss') to return selection at beam Gauss points.
- a model or feplot handle cf can be provided as third argument.
- -SelOut requires selection output.
- -Radiusval provides a search radius for the feutilb Match call.

The sel data structure is a standard selection (see feplot sel) with additional field . StressObs a structure with the following fields

- .cta observation matrix for stress components. The expected sort is to have all components at first node, all at second node, ...
- .DOF expected DOF needed for the observation.
- . X, .Xlab labels for the observation, see Multi-dim curve for details.
- . CritFcn callback to be evaluated, see fe_stress CritFcn.
- . Node, . Elt nodes and elements for the view mesh.
- .trans structure for the observation of interpolated displacement (needed when view mesh nodes are not nodes of the original mesh).

Par [Mat, Pro, SE, Init, Set , 2Case]
Advanced parameter declaration in models. Lower level declaration can be found in fe_case par. Model parametrization framework can be found in XXX.

The following commands are available to declare SDT parameters

- ParMat Support to declare as parameter and possibly split a material property. Warning: Some formulations and parameter classes cannot directly be split from the constitutive law, in such case the resulting assembled matrices may not be computable. Advances material splitting features are available in the Viscoelastic toolbox [31. Syntax is model=fe_caseg('ParMat', model,'p1 -matid i',par); with model a SDT model, $p 1$ is a constitutive law parameter as declared in the corresponding m_{-}function, and par is a parameter entry. The working material is defined by the token -matid. The output model can have a split material featuring varying parameters, and will have a Case par entry declaring the parameter and a entry in Stack, Range0 providing its variation.
- ParPro Support to declare as parameter and possibly split an integration property, this is designed for discrete structural elements such as celas, cbush mass1 lements. Syntax is model=fe_caseg('ParPro',model,'p1 -proid i',par); with model a SDT model, $p 1$ is a constitutive law parameter as declared in the corresponding p_{-}function, and par is a parameter entry. The working property is defined by the token -proid. The output model can have duplicated elements featuring varying parameters, and will have a Case par entry declaring the parameter and a entry in Stack, Range0 providing its variation.
- ParSE Support to declare as parameter a superelement, or a subset of superelement matrices. One can identify the SE of interest either by its SeName or its ProId. If necessary one can identify matrices of interest either by Klab or matdes, or property name in the p_superentry.
model=fe_caseg('ParSE', model,' -SeName"se1"', par);
model=fe_caseg('ParSE', model,' coef1 -proid1001', par);
model=fe_caseg('ParSE', model,' matdes3 -proid1001', par);
The output model can have duplicated elements featuring varying parameters, and will have a
Case par entry declaring the parameter and a entry in Stack, Range0 providing its variation.
The following commands are available to declare and handle broader parameter definitions, to be used in dedicated routines
- ParInit Instantiate .param entries in supported model features.
model=fe_caseg('ParInit',model,par) ; par is here a parameter or a cell array of parameters to be implemented. Implementation or the feature to be affected is provided through the .info field of the parameter. It is a string following the format type>entry TokenId.
- type is optionnal (> is then omitted) and provides a way of defining field .type of the parameter usual types are double, pop, but other custom types can be defined for dedicated applications.
- entry defines the parameter effect, the value depends on the type of feature to be parametered, defined by the TokenId
- TokenId defines the feature on which the parameter is applied. The following features are supported
* Materials, either defined by -matname or -matidi. Acceptable entries as then any declared constitutive law in the corresponding m_{-}function.
* Structural properties, either defined by -proname or -proidi. Acceptable entries as then any declared constitutive law in the corresponding p_{-}function. Properties in NLdata are supported, in such case the entry must start with nldata. val to affect field . val of field .NLdata.
* Loads, defined by their type and name typename (e.g. -dofLoad''ExForce''). entry is then the impacted field name.
* Boundary conditions, defined by their type and name typename (e.g. -rigid' 'conn' '). entry is then the impacted field name.
- ParSet Applies a current parameter set (or design point) to a model for which fe_caseg ParInit has been applied. Given an SDT model and a Range structure with field .jPar, the procedure loops over supported features having a .param field, and applies the current values. model=fe_caseg('ParSet', model,Range);
- Par2Case XXX Loads and ParPro at the moment

StressObserve

The StressCut command typically returns all stress components (x, y, and z), for a relevant plot, it is useful to define a further post-treatment, using the sel.StressObs.CritFcn callback. This callback is called once the stress observation have been performed. The current result is stored in variable r1, and follows the dimensions declared in field . X of the observation. For example to extract stresses in the x direction, the callback is

```
sel.StressObs.CritFcn='r1=r1(1,:,:) ;';
```

The StressObserve command outputs the stress observation in an curvestructure. You can provide a callback -crit "my_callback". The command option -trans allows observation of translations for selections that have this observation. If empty, all components are kept.

```
data=fe_caseg('StressObserve -crit""',cf.sel(2),def);
iiplot(data); % plot results
```


ZoomClip

The command accessible through the axes context menu Clip, can now also be called from the command line fe_caseg('ZoomClip',cf.ga, [xyz_left;xyz_right]).

fe_ceig

Purpose

Computation and normalization of complex modes associated to a second order viscously damped model.

Syntax

```
[psi,lambda] = fe_ceig( ... )
lambda = fe_ceig(m,c,k)
def = fe_ceig( ... )
    ... = fe_ceig(m,c,k)
    ... = fe_ceig({m,c,k,mdof},ceigopt)
    ... = fe_ceig({m,c,k,T,mdof},ceigopt)
    ... = fe_ceig(model,ceigopt)
    ... = fe_ceig( ... ,flag)
```


Description

Complex modes are solution of the second order eigenvalue problem (see section 5.5 for details)

$$
\begin{equation*}
[M]_{N \times N}\left\{\psi_{j}\right\}_{N \times 1} \lambda_{j}^{2}+[C]\left\{\psi_{j}\right\} \lambda_{j}+[K]\left\{\psi_{j}\right\}=0 \tag{10.6}
\end{equation*}
$$

where modeshapes $\mathrm{psi}=\psi$ and poles $\Lambda=\left[\backslash \lambda_{j} \backslash\right.$ are also solution of the first order eigenvalue problem (used in fe_ceig)

$$
\left[\begin{array}{cc}
C & M \tag{10.7}\\
M & 0
\end{array}\right]_{2 N \times 2 N}\left[\begin{array}{c}
\psi \\
\psi \Lambda
\end{array}\right]_{2 N \times 2 N}[\Lambda]_{2 N \times 2 N}+\left[\begin{array}{cc}
K & 0 \\
0 & -M
\end{array}\right]\left[\begin{array}{c}
\psi \\
\psi \Lambda
\end{array}\right]=[0]_{2 N \times 2 N}
$$

and verify the two orthogonality conditions

$$
\begin{equation*}
\psi^{T} C \psi+\Lambda \psi^{T} M \psi+\psi^{T} M \psi \Lambda=I \text { and } \psi^{T} K \psi-\Lambda \psi^{T} M \psi \Lambda=-\Lambda \tag{10.8}
\end{equation*}
$$

If matrices are non-symmetric, the left eigenvectors differ from the right eigenvectors. One can then set input flag to ' $\imath r$ ' to obtain the left eigenmodes in the output def structure. See section 7.8 to get more information about the def structure.
[psi,lambda] = fe_ceig (m,c,k) is the old low level call to compute all complex modes. For partial solution you should use def $=$ fe_ceig (model, ceigopt) where model can be replaced by a cell array with $\{\mathrm{m}, \mathrm{c}, \mathrm{k}, \mathrm{mdof}\}$ or $\{\mathrm{m}, \mathrm{c}, \mathrm{k}, \mathrm{T}, \mathrm{mdof}\}$ (see the example below). Using the projection matrix T generated with fe_case('gett') is the proper method to handle boundary conditions.

Options give [CeigMethod EigOpt] where EigOpt are standard fe_eig options and CeigMethod can be

- 0 (full matrices)
- 1 real modes then complex ones on the same basis (equivalent to NASTRAN SOL 110)
- 2 real modes and first order correction for viscous and hysteretic damping part.
- 3 is a refined solvers available with the VISCO extension.

Here is a simple example of fe_ceig calls.

```
model=demosdt('demoubeam'); cf=feplot;
[Case,model.DOF]=fe_mknl('init',model);
m=fe_mknl('assemble not',model,Case,2);
k=fe_mknl('assemble not',model,Case,1);
kc=k*(1+i*.002); % with hysteretic damping
def1=fe_ceig({m,[],kc,model.DOF},[1 6 10 1e3]); % free modes
def2=fe_ceig({m,[],kc,Case.T,model.DOF},[1 6 10 1e3]); % fixed modes
cf.def=def1; % show def1 in feplot figure
```


See also

fe_eig, fe_mk, nor2ss, nor2xf section 5.3

fe_coor

Purpose

Coordinate transformation matrices for Component Mode Synthesis problems.

Syntax

```
[t] = fe_coor(cp)
[t,nc] = fe_coor(cp,opt)
```


Description

The different uses of fe_coor are selected by the use of options given in the argument opt which contains [type method] (with the default values [131]).
type $=1$ (default) the output t is a basis for the kernel of the constraints cp

$$
\begin{equation*}
\operatorname{range}\left([T]_{N \times(N-N C)}\right)=\operatorname{ker}\left([c]_{N S \times N}\right) \tag{10.9}
\end{equation*}
$$

$N C \leq N S$ is the number of independent constraints.
type=2 the output argument t gives a basis of vectors linked to unit outputs followed by a basis for the kernel

$$
\begin{equation*}
T=\left[\left[T_{U}\right]_{N \times N S}\left[T_{K}\right]_{N \times(N-N S)}\right] \text { with }[c]_{N S \times N}[T]=\left[\left[\backslash_{I}\right][0]_{N S \times(N-N S)}\right] \tag{10.10}
\end{equation*}
$$

If $N C<N S$ such a matrix cannot be constructed and an error occurs.
method the kernel can be computed using: 1 a singular value decomposition svd (default) or 3 a lu decomposition. The lu has lowest computational cost. The svd is most robust to numerical conditioning problems.

Usage

fe_coor is used to solve problems of the general form

$$
\begin{gather*}
{\left[M s^{2}+C s+K\right]\{q(s)\}=[b]\{u(s)\} \quad \text { with }\left[c_{\text {int }}\right]\{q(s)\}=0} \tag{10.11}\\
\{y(s)\}=[c]\{q(s)\}
\end{gather*}
$$

which are often found in CMS problems (see section 6.2 .6 and 40$]$).
To eliminate the constraint, one determines a basis T for the kernel of $\left[c_{i n t}\right]$ and projects the model

$$
\begin{gather*}
{\left[T^{T} M T s^{2}+T^{T} C T s+T^{T} K T\right]\left\{q_{R}(s)\right\}=\left[T^{T} b\right]\{u(s)\}} \tag{10.12}\\
\{y(s)\}=[c T]\left\{q_{R}(s)\right\}
\end{gather*}
$$

See also

Section 7.14, fe_c, the d_cms demo

fe_curve

Purpose

Generic handling of curves and signal processing utilities

Syntax

```
out=fe_curve('command',MODEL, 'Name', ...);
```


Commands

fe_curve is used to handle curves and do some basic signal processing. The format for curves is described in section 7.9 . The iiplot interface may be used to plot curves and a basic call would be iiplot (Curve) to plot curve data structure Curve.

Accepted commands are
bandpass Unit f_min f_max
out=fe_curve('BandPass Unit f_min f_max',signals);
realizes a true bandpass filtering (i.e. using fft() and ifft()) of time signals contained in curves signals. f_min and f_max are given in units Unit, whether Hertz(Hz) or Radian(Rd). With no Unit, f_min and f_max are assumed to be in Hertz.
\% apply a true bandpasss filter to a signal
out=fe_curve('TestFrame');\% 3 DOF oscillator response to noisy input
fe_curve('Plot', out\{2\}); \% "unfiltered" response
filt_disp=fe_curve('BandPass Hz 70 90', out\{2\}); \% filtering
fe_curve('Plot',filt_disp); title('filtered displacement');
datatype [,cell]
out=fe_curve('DataType',DesiredType);
returns a data structure describing the data type, useful to fill .xunit and .yunit fields for curves definition. DesiredType could be a string or a number corresponding to the desired type. With no DesiredType, the current list of available types is displayed. One can specify the unit with out=fe_curve('DataType',DesiredType, 'unit');

DataTypeCell returns a cell array rather than data structure to follow the specification for curve data structures. Command option -label " $\downarrow a b$ " allows directly providing a custom label named lab in the data type.
getcurve
curve=fe_curve('getcurve', model, 'curve_name');
extracts curve curve_name from model. Stack or the possible curves attached to a load case. If the user does not specify any name, all the curves are returned in a cell array.
h1h2 input_channels

FRF=fe_curve('H1H2 input_channels',frames, 'window');
computes H1 and H2 FRF estimators along with the coherence from time signals contained in cell array frames using window window. The time vector is given in frames $\{1\}$. X while input_channels tells which columns of in frames $\{1\}$. Y are inputs. If more than one input channel is specified, true MIMO FRF estimation is done, and $\mathrm{H} \nu$ is used instead of H 2 . When multiple frames are given, a mean estimation of FRF is computed.

Note: To ensure the proper assembly of H 1 and $\mathrm{H} \nu$ in MIMO FRF estimation case, a weighing based on maximum time signals amplitude is used. To use your own, use FRF=fe_curve('H1H2 input_channels',frames,window,weighing);
where weighing is a vector containing weighing factors for each channel. To avoid weighing, use FRF=fe_curve('H1H2 input_channels',frames, window,0); . For an example see sdtweb('start_time2frf','h1h2')
noise
OBSOLETE : use fe_curve Test Noise instead
noise=fe_curve('Noise', Nw_pt,fs,f_max) ;
computes a Nw_pt points long time signal corresponding to a "white noise", with sample frequency fs and a unitary power spectrum density until f_max. $f s / 2$ is taken as f max when not specified. The general shape of noise power spectrum density, extending from 0 to $f s / 2$, can be specified instead of f.max.

```
% computes a 2 seconds long white noise, 1024 Hz of sampling freq.
% with "rounded" shape PSD
fs=1024; sample_length=2;
Shape=exp(fe_curve('window 1024 hanning'))-1;
noise_h=fe_curve('noise',fs*sample_length,fs,Shape);
noise_f=fe_curve('fft',noise_h);
figure(1);
subplot(211);fe_curve('plot -gca',noise_h);axis tight;
subplot(212);fe_curve('plot -gca',noise_f);axis tight;
```

```
plot
    fe_curve('plot',curve); plots the curve curve.
fe_curve('plot',fig_handle,curve); plots curve in the figure with handle fig_handle.
fe_curve('plot',model,'curve_name'); plots the curve of model.Stack named curve_name.
fe_curve('plot',fig_handle,model,curve_name); plots curve named curve_name stacked in .Stack
field of model model.
% Plot a fe_curve signal
% computes a 2 seconds long white noise, 1024 Hz of sampling freq.
fs=1024; sample_length=2;
noise=fe_curve('noise',fs*sample_length,fs);
noise.xunit=fe_curve('DataType','Time');
noise.yunit=fe_curve('DataType','Excit. force');
noise.name='Input force';
fe_curve('Plot',noise);
resspectrum [True, Pseudo] [Abs., Rel.] [Disp., Vel., Acc.]
out=fe_curve('ResSpectrum',signal,freq,damp);
computes the response spectrum associated to the time signal given in signal. Time derivatives
can be obtained with option -v or -a. Time integration with option +v or +a. Pseudo derivatives
with option PseudoA or PseudoV. freq and damp are frequencies (in Hz) and damping ratios vectors
of interest for the response spectra. For example
wd=fileparts(which('d_ubeam'));
% read the acceleration time signal
bagnol_ns=fe_curve(['read' fullfile(wd,'bagnol_ns.cyt')]);
% read reference spectrum
bagnol_ns_rspec_pa= fe_curve(['read' fullfile(wd,'bagnol_ns_rspec_pa.cyt')]);
% compute response spectrum with reference spectrum frequencies
% vector and 5% damping
RespSpec=fe_curve('ResSpectrum PseudoA',...
    bagnol_ns,bagnol_ns_rspec_pa.X/2/pi,.05);
fe_curve('plot',RespSpec); hold on;
plot(RespSpec.X,bagnol_ns_rspec_pa.Y,'r');
legend('fe\_curve','cyberquake');
```

returny
If curve has a . Interp field, this interpolation is taken in account. If . Interp field is not present or empty, it uses a degree 2 interpolation by default.

To force a specific interpolation (over passing .interp field, one may insert the -linear, -log or -stair option string in the command.

To extract a curve curve name and return the values Y corresponding to the input X , the syntax is y = fe_curve('returny', model, curve_name, X);

Given a curve data structure, to return the values Y corresponding to the input X, the syntax is y = fe_curve('returny', curve, X) ;
set
This command sets a curve in the model. 3 types of input are allowed:

- A data structure, model=fe_curve(model,'set', curve_name, data_structure)
- A string to interprete, model=fe_curve(model,'set', curve_name,string)
- A name referring to an existing curve (for load case only), model=fe_curve(model, 'set LoadCurve', load_case, chanel, curve_name). This last behavior is obsolete and should be replaced in your code by a more general call to fe_case SetCurve.

When you want to associate a curve to a load for time integration it is preferable to use a formal definition of the time dependence (if not curve can be interpolated or extrapolated).

The following example illustrates the different calls.

```
% Sample curve assignment to modal loads in a model
model=fe_time('demo bar'); q0=[];
% curve defined by a by-hand data structure:
c1=struct('ID',1,'X',linspace(0,1e-3,100), ...
    'Y',linspace(0,1e-3,100),'data',[],...
    'xunit',[],'yunit',[],'unit',[],'name','curve 1');
model=fe_curve(model,'set','curve 1',c1);
% curve defined by a string to evaluate (generally test fcn):
```

```
model=fe_curve(model,'set','step 1','TestStep t1=1e-3');
% curve defined by a reference curve:
c2=fe_curve('test -ID 100 ricker dt=1e-3 A=1');
model=fe_curve(model,'set','ricker 1',c2);
c3=fe_curve('test eval sin(2*pi*1000*t)'); % 1000 Hz sinus
model=fe_curve(model,'set','sin 1',c3);
% define Load with curve definition
LoadCase=struct('DOF',[1.01;2.01],'def',1e6*eye(2),...
    'curve',{{fe_curve('test ricker dt=2e-3 A=1'),...
        'ricker 1'}});
model = fe_case(model,'DOFLoad','Point load 1',LoadCase);
% modify a curve in the load case
model=fe_case(model,'SetCurve','Point load 1','TestStep t1=1e-3',2);
% the obsolete but supported call was
model=fe_curve(model,'set LoadCurve','Point load 1',2,'TestStep t1=1e-3');
% one would prefer providing a name to the curve,
% that will be stacked in the model
model=fe_case(model,'SetCurve','Point load 1',...
    'my\_load','TestStep t1=1e-3',2);
```

Test ...
The test command handles a large array of analytic and tabular curves. In OpenFEM all parameters of each curve must be given in the proper order. In SDT you can specify only the ones that are not the default using their name.

When the abscissa vector (time, frequency, ...) is given as shown in the example, a tabular result is returned.

Without output argument the curve is simply plotted.
\% Standard generation of parametered curves
fe_curve('test') \% lists curently implemented curves
t=linspace (0,3,1024) ; \% Define abscissa vector
\% OpenFEM format with all parameters (should be avoid):
C1=fe_curve('test ramp 0.62 .52 .3 ', t);

```
C2=fe_curve('TestRicker 2 2',t);
% SDT format non default parameters given with their name
% definition is implicit and will be applied to time vector
% during the time integration:
C3=fe_curve('Test CosHan f0=5 n0=3 A=3');
C4=fe_curve('testEval 3*cos(2*pi*5*t)');
% Now display result on time vector t:
C3=fe_curve(C3,t);C4=fe_curve(C4,t)
figure(1);plot(t,[C1.Y C2.Y C4.Y C3.Y]);
legend(C1.name,C2.name,C4.name,C3.name)
```

A partial list of accepted test curves follows

- Testsin, Testcos, TestTan, TestExp, accept parameters T period and A amplitude. -stoptime Tf will truncate the signal.
- TestRamp t0=t0 t1=t1 Yf=Yf has a ramp starting at zero until to and going up to Yf at t1. The number of intermediate value can be controlled with the abscissa vector.
To define a gradual load, for non linear static for example, a specific call with a Nstep parameter can be performed : TestRamp NStep=NStep Yf=Yf. For example, to define a 20 gradual steps to $1 \mathrm{e}-6$:R1=fe_curve('TestRamp NStep=20 Yf=1e-6');
- TestRicker $d t=d t \quad A=A \quad t 0=t 0$ generates a Ricker function typically used to represent impacts of duration $d t$ and amplitude A, starting from time $t 0$.
- TestSweep fmin=fmin fmax=fmax t0=t0 t1=t1 generates a sweep cosine from to to $t 1$, with linear frequency sweeping from $f 0$ to $f 1$.
$Y=\cos \left(2 * p i *\left(f \min +(f \max -f \min) * \frac{t-t 0}{t 1-t 0}\right) *(t-t 0)\right)$ for $t 0<t<t 1, Y=0$ elsewhere.
- TestStep $t 1=t 1$ generates a step which value is one from time 0 to time $t 1$.
- TestNoise -window"window" computes a time signal corresponding to a white noise, with the power spectrum density specified as the window parameter. For example TestNoise "Box $A=1 \min =0 \max =200$ " defines a unitary power spectrum density from 0 Hz to 200 Hz .
- TestBox $A=A$ min=min max=max generates a sample box signal from min to max abscissa, with an amplitude A.
- TestEval str generates the signal obtained by evaluating the string strfunction of t. For example R1=fe_curve('Test eval $\sin (2 * \mathrm{pi} * 1000 * \mathrm{t}$)', linspace $(0,0.005,501)$) ; iiplot (R1)

One can use fe_curve('TestList') to obtain a cell array of the test keywords recognized.

testframe

out=fe_curve('TestFrame') ; computes the time response of a 3 DOF oscillator to a white noise and fills the cell array out with noise signal in cell 1 and time response in cell 2 . See sdtweb fe_curve('TestFrame') to open the function at this example.

```
timefreq
```

 out=fe_curve('TimeFreq', Input, xf);
 computes response of a system with given transfer functions FRF to time input Input. Sampling
 frequency and length of time signal Input must be coherent with frequency step and length of given
 transfer FRF.
 \% Plot time frequency diagrams of signals
 fs=1024; sample_length=2; \(\% 2\) sec. long white noise
 noise=fe_curve('noise',fs*sample_length,fs); \% 1024 Hz of sampling freq.
 [t,f,N]=fe_curve('getXTime', noise);
 \% FRF with resonant freq. 50100200 Hz , unit amplitude, \(2 \%\) damping
 xf=nor2xf(2*pi*[50 100 200].',. \(02,[1\); 1 ; 1],[11 1 1],2*pi*f);
 Resp=fe_curve('TimeFreq', noise, xf); \% Response to noisy input
 fe_curve('Plot', Resp) ; title('Time response');

Window ...

Use fe_curve window to list implemented windows. The general calling format is win=fe_curve('Window Nb_pts Type Arg') ; which computes a Nb_pts points window. The default is a symmetric window (last point at zero), the command option - per clips the last point of a $N+1$ long symmetric window.

For the exponential window the arguments are three doubles. win $=$ fe_curve('Window 1024 Exponential 102010^{\prime}); returns an exponential window with 10 zero points, a 20 point flat top, and a decaying exponential over the 1004 remaining points with a last point at $\exp (-10)$. win = fe_curve('Window 1024 Hanning') ; returns a 1024 point long hanning window.

See also

fe_load fe_case

fe_cyclic

Purpose

Support for cyclic symmetry computations.

Syntax

```
model=fe_cyclic('build NSEC',model,LeftNodeSelect)
def=fe_cyclic('eig NDIAM',model,EigOpt)
```


Description

fe_cyclic groups all commands needed to compute responses assuming cyclic symmetry. For more details on the associated theory you can refer to [47].

Assemble [,-struct]

This command supports the computations linked to the assembly of gyroscopic coupling, gyroscopic stiffness and tangent stiffness in geometrically non-linear elasticity. The input arguments are the model and the rotation vector (in rad/s)

```
model=demosdt('demo sector all');
[K,model,Case]=fe_case('assemble -matdes 2 1 NoT -cell',model);
SE=fe_cyclic('assemble -struct',model,[0 0 1000]); %
def=fe_eig({K{1:2},Case.T,model.DOF},[6 20 0]);% Non rotating modes
def2=fe_eig({K{1},SE.K{4},Case.T,model.DOF},[6 20 0]); % Rotating mode shapes
[def.data def2.data]
```

Note that the rotation speed can also be specified using a stack entry model=stack_set (model, 'info', 'Omega', [0 0 1000]).

Build ...

model=fe_cyclic('build nsec epsl len', model, 'LeftNodeSelect') adds a cyclic symmetry entry in the model case. It automatically rotates the nodes selected with LeftNodeSelect by $2 \pi / \mathrm{nsec}$ and finds the corresponding nodes on the other sector face. The default for LeftNodeSelect is 'GroupAll' which selects all nodes.

The alternate command
model=fe_cyclic('build nsec epsl len -intersect', model, 'LeftNodeSelect') is much faster but does not implement strict node tolerancing and may thus need an adjustement of epsl to higher values.
\qquad
Command options are

- nsec is the optional number of sectors. An automatic determination of the number of angular sectors is implemented from the angle between the left and right interface nodes with the minimum radius. This guess may fail in some situtations so that the argument may be necessary.
- nsec=-1 is used for periodic structures and you should then provide the translation step. For periodic solutions,
model=fe_cyclic('build -1 tx ty $t z$ epsl len -intersect',model,' LeftNodeSelect') specifies 3 components for the spatial periodicity.
- Fix will adjust node positions to make the left and right nodes sets match exactly.
- epsllen gives the tolerance for edge node matching.
- -equal can be used to build a simple periodicity condition for use outside of fe_cyclic. This option is not relevant for cyclic symmetry.
- -ByMat is used to allow matching by MatId which allows for proper matching of coincident nodes.

```
model=demosdt('demo sector 5');
cf.model=fe_cyclic('build epsl 1e-6',model);
```


LoadCentrifugal

The command is used to build centrifugal loads based on an info, Omega stack entry in the form

```
data=struct('data',[0 0 1000],'unit','RPM');
model=stack_set(model,'info','Omega',data);
model=fe_cyclic('LoadCentrifugal',model);
```


Eig

def=fe_cyclic('eig ndiam', model, EigOpt) computes ndiam diameter modes using the cyclic symmetry assumption. For ndiamj0 these modes are complex to account for the inter-sector phase shifts. EigOpt are standard options passed to fe_eig.

This example computes the two diameter modes of a three bladed disk also used in the d_cms2 demo.

```
model=demosdt('demo sector');
model=fe_cyclic('build 3',model,'groupall');
fe_case(model,'info')
def=fe_cyclic('eig 2',model,[[6 20 0 11]);
fe_cyclic('display 3',model,def)
```

The basic functionality of this command is significantly extended in fe_cyclicb ShaftEig that is part of the SDT/Rotor toolbox.

Omega[,Group, GroupSet]

Handling of dynamic rotating bodies. Warning At the moment only one rotation vector can be defined. It can either be applied to the whole model or to specified groups. At low level, information is located in the info, Omega entry of an SDT model. This entry is a structure with fields

- .data provides the angular rotation vector whose norm is the angular velocity, defining the rotation axis.
- . unit provies the unit system associated to the amplitude, eitherrad/s or RPM.
- .group (optional) defines the model groups affected by the rotation, if omitted or left empty the whole model is affected.
- . orig (optional) defines the origin rotation (a point of the axis).

Command Omega provides the current data associated to a model.
[omega, rot, data]=fe_cyclic('Omega', model);
model is a standard SDT model. The outputs are omega the rotation vector, rot the rotation matrix, and data a reconstructed info, Omega stack entry based on the current state.

Commands OmegaGroup provides tools for definition of models with specific rotor areas.

- OmegaGroupSet provides an integrated definition forcing groups to be reset to conform with any FindElt selection. The specific group assignment is required due to low level assembly implementations.
model=fe_cyclic('OmegaGroupSet', model,list);
Input model is a standard SDT model, list is a three column cell-array with as many lines as declarations following the format \{FindEltStr, Amplitude, Axis, Orig;...\} respectively providing an element selection string, the angular velocity amplitude (scalar), the rotation axis (only the direction is used here), $\mathrm{nx}, \mathrm{ny}, \mathrm{nz}$, and an origin point of the rotation axis $\mathrm{ox}, \mathrm{oy}, \mathrm{oz}$. data can be directly placed as a stack entry named info, OmegaData in the model. The last
column can be omitted, in which case the origin considered is the global frame one. At the moment all rotation axes and amplitudes must be the same for all lines. The output model is then a model with separated groups for (one for each element type) affected to the rotation and with a new stack entry info,Omega. Command option First will force the new groups to be the first ones in the model.
- OmegaGroup is a lower level command without group modification. model=fe_cyclic('OmegaGroup', model, sel, data);
Input model is a standard SDT model, sel is an element selection string, data is the omega structure with fields . data as defined at this command header.

See also

fe_cyclicb

fe_def

Purpose

Utilities for FEM related data structures.

Syntax

```
... = fe_def(def,'command', ... )
... = fe_def('command', ... )
```


Description

fe_defmainly provides utilities for SDT def structure handling. It is also used internally to perform parameter recovery.

Commands

CleanEntry

Returns the value of a parameter contained in an SDT button.
The entry can either be

- a structure of buttons in MATLAB format, for old GUI application, now called DefBut.
- a button in Java/SDT CinCell format for current GUI applications.
- a set of Java/SDT buttons EditT format for current GUI applications.

This call does not work for simple SDT buttons in MATLAB format (structures) due to the difficulty to distinguish between DefBut structures and button structures. To exploit this capability, one can place the button in a cell array, or a structure.

For treated button entries, the output is the current value of the button,

- if the button is a pop, a list restricted choice, that is characterized by its type field set to pop and the presence of a field choices and optionally choicesTag, the returned value is the currently selected choicesTag entry if existing, else the currently selected choices. In this case the button field value only is the index in the choices, choicesTag cell arrays. The output is mandatorily a string, in conformity with the content of choices and choicesTag that can only be horizontal cell array of strings.
- in other cases, the field value is returned. It is cast to the provided format given in the format field, either double with format $\% \mathrm{~g}$ or string with format \%s.

For EditT entries, the output is a structure with as many fields as there are buttons in the EditT labelled with the names of the buttons. Each field contains each button value following the rules provided above.

For table entries (cell array with strings, CInCell...), the option -CellField \%s gives back specific button fields like name or tooltip instead of current value. (see section 8.4.1 for the list of fields by button type)

```
% Define a SDT button that can be used in GUI
but=struct('type','string','format','%s','value','val1');
% no action on trivial button in MATLAB format
but=fe_def('cleanentry',but);
% use a cell array in this case
val=fe_def('cleanentry',{but}); val=val{1};
```

\% Place the button in a DefBut
but1=struct('but1', but)
val=fe_def('cleanentry', but1);
\% Transform button into Java format (CinCell)
but1=feval(cinguj('@toCinCell'), but);
\% recover value with CleanEntry
val=fe_def('cleanentry', but1);
\% Place Java button in an EditT object (a set of buttons)
r1j=cinguj('ObjEditJ',struct('but1', but1));
\% recover the value of every button of the EditT at once in a struct
RO=fe_def('cleanentry', r1j);

DefEigOpt

w=fe_def('DefEigOpt', mo1) returns a EigOpt set of options for fe_eigfor model mo1. If first searches for a field info, EigOpt in the model stack, or returns a default value, set to [5 20 1e3].

DefFreq

w=fe_def ('DefFreq', DISK) returns frequencies defined in the info, Freq entries using Hz units.

Exp

Performs modal expansion for def structures expressed on reduced DOF, if a reduction basis is provided.

- def=fe_def('Exp',TR,def) will restitute def on the non-reduced DOF of TR, a reduction basis expressed as a SDT def structure.
- def=fe_def('Exp', def), will assume that def contains the reduction basis in field def.TR to perform the expansion.

SubDef, SubDof, SubCh
def=fe_def('SubDef', def,ind); keeps deformations associated with ind, which a vector of indices or a logical vector (for example ind=def.data(:,1)<500 can be used to select frequencies below 500). Other fields of the def structure are truncated consistently.
def=fe_def('SubDof', def,DOF) is extracts a subset of DOFs based on defined DOF or with def=fe_def('subdofind', def,ind) indices (again either values or logicals). You can also specify DOFs to be removed with def=fe_def ('SubDofRem', def, DofRemoved).

This command is partially redundant with feutilb PlaceInDof called with
def2 = feutilb('PlaceInDof', DOF, def). The main difference is the ability to add zeros (use DOF larger than def.DOF) and support sens structures.
fe_def('SubDofInd-Cell', def,ind_dof,ind_def) returns a clean cell array listing selected DOFs and responses. This is typically used to generate clean tables.
fe_def('SubChCurve', def, $\{$ 'lab', index\}) is similar to SubDof but allows but supports more advanced selection for multi-dimensional curves. This command is not fully documented.

```
C1=demosdt('Curve curved5'); % Sample 5D curve
C2=fe_def('subChCurve',C1,{'Time',1:10;'RPM',1:2});
```


fe_eig

Purpose

Computation of normal modes associated to a second order undamped model.

Syntax

```
def = fe_eig(model,EigOpt)
def = fe_eig({m,k,mdof},EigOpt)
def = fe_eig({m,k,T,mdof },EigOpt)
[phi, wj] = fe_eig(m,k)
[phi, wj, kd] = fe_eig(m,k,EigOpt,imode)
```


Description

The normal modeshapes phi $=\phi$ and frequencies $\mathrm{wj}=\operatorname{sqrt}\left(\operatorname{diag}\left(\Omega^{2}\right)\right.$) are solution of the undamped eigenvalue problem (see section 5.2)

$$
\begin{equation*}
-[M]\left\{\phi_{j}\right\} \omega_{j}^{2}+[K]\left\{\phi_{j}\right\}=\{0\} \tag{10.13}
\end{equation*}
$$

and verify the two orthogonality conditions

$$
\begin{equation*}
[\phi]^{T}[M]_{N \times N}[\phi]_{N \times N}=[I]_{N \times N} \text { and }[\phi]^{T}[K][\phi]=\left[\Omega_{j \backslash}^{2}\right] \tag{10.14}
\end{equation*}
$$

The outputs are the data structure def (which is more appropriate for use with high level functions feplot, nor2ss, ... since it keeps track of the signification of its content, frequencies in def. data are then in $\mathbf{H z}$) or the modeshapes (columns of phi) and frequencies wj in rad/s. Note how you provide $\{\mathrm{m}, \mathrm{k}, \mathrm{mdof}\}$ in a cell array to obtain a def structure without having a model.

The optional output kd corresponds to the factored stiffness matrix. It should be used with methods that do not renumber DOFs.
fe_eig implements various algorithms to solve this problem for modes and frequencies. Many options are available and it is important that you read the notes below to understand how to properly use them. The option vector EigOpt can be supplied explicitely or set using model=stack_set (model, 'info', 'EigOpt', EigOpt). Its format is
[method nm Shift Print Thres] (default values are [2 $00001 e-5]$)

- method

- 2 full matrix solution. Cannot be used for large models, used by default when the number of searched modes exceed 25% of the matrix size.
- $\mathbf{5}$ default Lanczos solver is an iterative solver with problem size scalability and higher robustness with convergence checks. To turn off convergence check add 2000 to the option $(2105,2005, \ldots)$, otherwise a maximum of 5 convergence iterations is performed. You can tune this value by setting the $9^{\text {th }}$ value of the opt vector to the desired number. opt=[5 100 1e3 1000011 ;
- 6 IRA/Sorensen solver. Faster than 5 but less robust, issues are known for multiple modes, very close frequencies, or when computing a large number of modes.
- 50 Callback to let the user specify an external solver method using setpref('SDT', 'ExternalEig').
- The other methods are left for reference but should not be used,
* 105, 106, 104 same as 5, 6, 4 methods but no initial DOF renumbering. This is useless with the default ofact('methodspfmex') which renumbers at factorization time.
* 0 SVD based full matrix solution
* 1 subspace iteration which allows to compute the lowest modes of a large problem where sparse mass and stiffness matrices are used.
* $\mathbf{3}$ Same as 5 but using ofact('methodlu').
* 4 Same as 5 but using ofact('methodchol').
- nm number of modes to be returned. A non-integer or negative nm is used as the desired fmax in $\mathbf{H z}$ for iterative solvers (this is limited to 12 modes with method 5). The easiest way to handle fmax at the moment is to call fe_def SubDef after fe_eig The sample syntax is then def=fe_eig(model, [5 50 1e3]); def=fe_def('subdef',def,find(def.data(:,1)<=fmax)); One thus has to estimate the relevant number of modes necessary beforehand.
- shift value of mass shift (should be non-zero for systems with rigid body modes, see notes below). The subspace iteration method supports iterations without mass shift for structures with rigid body modes. This method is used by setting the shift value to Inf.
- print level of printout (0 none, 11 maximum)
- thres threshold for convergence of modes (default 1e-5 for the subspace iteration and Lanczos methods)

Finally, a set of vectors imode can be used as an initial guess for the subspace iteration method (method 1).

Notes

- The default full matrix algorithm (method=2) cleans results of the Matlab eig function. Computed modes are mass normalized and complex parts, which are known to be spurious for symmetric eigenvalue problems considered here, are eliminated. The alternate algorithm for full matrices (method=0) uses a singular value decomposition to make sure that all frequencies are real. The results are thus wrong, if the matrices are not symmetric and positive definite (semi-positive definite for the stiffness matrix).
- The Lanczos algorithm (methods $3,4,5$) is much faster than the subspace iteration algorithm (method 1). A double Orthogonalization scheme and double restart usually detects multiple modes.
- Method 6 calls eigs (ARPACK) properly and cleans up results. This solver sometimes fails to reach convergence, use method 5 then.
- The subspace iteration and Lanczos algorithms are rather free interpretation of the standard algorithms (see Ref. [37] for example).
- For systems with rigid body modes, you must specify a mass-shift. A good value is about one tenth of the first flexible frequency squared, but the Lanczos algorithm tends to be sensitive to this value (you may occasionally need to play around a little). If you do not find the expected number of rigid body modes, this is can be reason. For large frequency bands, consider using a shift at 75% of the largest estimated frequency, using $-\left(0.75 * 2 * p i * f _ \text {max }\right)^{2}$.
- DOFs with zero values on the stiffness diagonal are eliminated by default. You can bypass this behavior by giving a shift with unit imaginary value (eigopt (3)=1e3+1i for example).
- For performance, optimization matters, please refer to section section 4.8.7.

Example

Here is an example containing a high level call

```
model =demosdt('demo gartfe');
cf=feplot;cf.model=model;
cf.def=fe_eig(model,[5 20 1e3 11]);
```


fecom chc10

and the same example with low level commands

```
model =demosdt('demo gartfe');
[m,k,mdof] = fe_mknl(model);
cf=feplot;cf.model=model;
cf.def=fe_eig({m,k,mdof},[6 20 1e3]);fecom chc10
```


See also

fe_ceig fe_mk nor2ss, nor2xf

fe_exp

Purpose

Expansion of experimental modeshapes.

Syntax

```
dExp = fe_exp('method',ID,Sens,FEM);
dExp = fe_exp('method',ID,SE);
```


Description

A unified perspective on interpolation and the more advanced finite element based expansion methods are discussed in the tutorial 3.3. An example is treated in detail in the gartco demonstration. This section gives a list of available methods with a short discussion of associated trade-offs.

Subspace, Modal, Serep
Subspace expansion solves a problem of the form

$$
\begin{equation*}
\left\{q_{\text {exp }}\right\}=[T]\left\{q_{r}\right\} \text { with }\left\{q_{r}\right\}=\operatorname{argmin}\left\|y_{\text {test }}-[c T]\left\{q_{r}\right\}\right\|^{2} \tag{10.15}
\end{equation*}
$$

Modal or SEREP expansion is a subspace based expansion using the subspace spanned by low frequency target modes (stored in TR in the def format). With a sensor configuration defined (sens defined using fe_sens), a typical call would be

```
[model,Sens,ID,FEM]=demosdt('demopairmac'); %sdtweb demosdt('demopairmac')
TR=fe_def('subdef',FEM,1:20); % Subspace containing 20 modes
dex1 = fe_exp('Subspace',ID,Sens,TR);
cf=feplot(model);
cf.def(1)=fe_def('subdef',FEM,7:20); % Rigid not in FEM
cf.def(2)=dex1; fecom('show2def');
```

This method is very easy to implement. Target modes can be imported from an external code. A major limitation is the fact that results tend to be sensitive to target mode selection.

Another traditional approach to build subspaces is to generate the solutions by mathematical interpolation. fe_sens WireExp provides such a strategy. For a basic example of needed data structures, one considers the following case of a structure with 3 nodes. Node 2 is placed at a quarter of the distance between nodes 1 and 3 whose motion is observed. A linear interpolation for translations in the x direction is built using

```
TR=struct('DOF',[1.01;2.01;3.01], ... % DOFs where subspace is defined
    'def',[1 0;3/4 1/4;0 1]); % Each .def column associated with a vector
% sdtweb sens#sensstruct % manual definition of a sens structure
sens=struct('cta',[1 0 0;0 0 1],'DOF',[1.01;2.01;3.01])
% Sample test shapes
ID=struct('def',eye(2),'DOF',[1.01;3.01]);
dexp = fe_exp('Subspace',ID,sens,TR) % Expansion
```

For expansion of this form, T (stored in TR.def) must contain at most as many vectors as there are sensors. In other cases, a solution is still returned but its physical significance is dubious.

Subspace-Orth can be used to impose that an orthogonal linear combination of the modes is used for the expansion. This is motivated for cases where both test and analysis modeshapes are mass normalized and will provide mass orthonormal expanded modeshapes 48]. In practice it is rare that test results are accurately mass normalized and the approach is only implemented for completeness.

Static

Static expansion is a subspace method where the subspace is associated with the static response to enforced motion or load at sensors. While you can use fe_reduc Static to build the subspace (or import a reduced subspace from an external code), a direct implementation for general definition of sensors is provided in fe_exp.

The main limitation with static expansion is the existence of a frequency limit (first frequency found when all sensors are fixed). These modes can be returned as a second argument to the Static command as illustrated below. If the first frequency is close to your test bandwidth, you should consider using dynamic expansion or possibly add sensors, see [49].

```
[model,Sens,ID,FEM]=demosdt('demopairmac'); %sdtweb demosdt('demopairmac')
[TR,dfix]=fe_exp('static',model,Sens); % Build static subpace
dex1 = fe_exp('Subspace',ID,Sens,TR);
cf=feplot(model,dex1); % Expanded mode
cf=feplot(model,dfix); % Fixed interface mode
```

In the present case, the fixed sensor mode at 44 Hz indicates that above that frequency, additional sensors should be added in the y direction for proper static expansion.

When many sensors and model reduction are used as in the example below, Lagrange resolution should be preferred to elimination, using options 'Solve', 'lagrange' and possibly adjusting the conditionning scalar 'pcond', 1e-4.

SE reduced superelements for expansion
All the expansion methods can be applied on reduced models.

```
% Further illustrations in gartco demo
[model,Sens,ID,FEM]=demosdt('demopairmac'); %sdtweb demosdt('demopairmac')
    RA=struct('wd',sdtdef('TempDir'), ...
    'Reset',0, ... % 1 to use reset
    'oProp',{{}}, ...
    'EigOpt',[5 20 1e3], ... % Eigenvalue options
    'SensName','test', ... % Sensor set for expansion
    'OutName','Gart_exp'); % Root of file name
% Generate or reload reduced model with modes & static
SE=fe_exp('mode+sens',model,RA);
RA=struct('Solve','lagrange','pcond',1e-4); % Solve using lagrange multipliers
[dex1,dfix] = fe_exp('Static',ID,SE,RA); % Static
dex3 = fe_exp('dynamic',ID,SE,RA); % Dynamic on reduced model
cf=feplot(model);
RO=struct('type','mdrewe','gamma',1e6, ...
    'cf',cf,'view',{{'fe_exp','viewEnerKDens',cf,'out1'}}); % feplot for display
[dex4,err] = fe_exp('mdre',ID,SE,RO); % MDRE-WE
```


Dynamic

Dynamic expansion is supported at the frequency of each deformation to be expanded using either full or reduced computations.

```
% Further illustrations in gartco demo
[model,Sens,ID,FEM]=demosdt('demopairmac'); %sdtweb demosdt('demopairmac')
dex1 = fe_exp('Dynamic',ID,Sens,model); % Dynamic full model
```

The preferred strategy is to build a reduced model SE containing normal and attachment modes. When many sensors are used Lagrange resolution should be preferred to elimination as shown in the example above.

MDRE, MDRE-WE

Minimum dynamic residual expansion (MDRE) is currently only implemented for normal modeshape expansion. Furthermore, computational times are generally only acceptable for the reduced
basis form of the algorithm as illustrated above. Note that the result may incorrect due to poor conditionning with a large number of sensors.

MDRE-WE (Minimum dynamic residual expansion with measurement error) is adjusted by the relative weighting γ_{j} between model and test error in (3.9)

$$
\begin{equation*}
\min _{q_{j, e x}}\left\|R\left(q_{j, e x}\right)\right\|_{K}^{2}+\gamma_{j} \epsilon_{j} \tag{10.16}
\end{equation*}
$$

Fields of the option structure are

- .type='mdrewe'
- .gamma weighting coefficient.
- . cf feplot figure for display.
- .view callback executed for energy display.

The first output argument is the expanded modeshape, the second the displacement residual which shown high energy concentration in locations where the model is wrong or the test very far from the model (which can occur when the test is wrong/noisy).

See also

fe_sens, fe_reduc, section 3.3, gartco demo.

fe_gmsh

Purpose

GMSH interface. You can download GMSH at http://www.geuz.org/gmsh/ and tell where to find GMSH using

Syntax

```
setpref('OpenFEM','gmsh','/path_to_binary/gmsh.exe') % Config
model=fe_gmsh(command,model,...)
model=fe_gmsh('write -run','FileName.stl')
```


Description

The main operation is the automatic meshing of surfaces.

Example

This example illustrates the automatic meshing of a plate

```
FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];
femesh('objectholeinplate 1 2 3 .5 .5 3 4 4');
model=femesh('model0');
model.Elt=feutil('selelt seledge ',model);
model.Node=feutil('getnode groupall',model);
model=fe_gmsh('addline',model,'groupall');
model.Node(:,4)=0; % reset default length
mo1=fe_gmsh('write del.geo -lc . 3 -run -2 -v 0',model);
feplot(mo1)
```

This other example makes a circular hole in a plate

```
% Hole in plate :
model=feutil('Objectquad 1 1',[0 0 0; 1 0 0;1 1 0;0 1 0],1,1); %
model=fe_gmsh('addline -loop1',model,[1 2; 2 4]);
model=fe_gmsh('addline -loop1',model,[4 3; 3 1]);
model=fe_gmsh('AddFullCircle -loop2',model,[.5 .5 0; .4 .5 0; 0 0 1]);
model.Stack{end}.PlaneSurface=[1 2];
mo1=fe_gmsh('write del.geo -lc . 02 -run -2 -v 0',model)
feplot(mo1)
```

To allow automated running of GMSH from MATLAB, this function uses a info, GMSH stack entry with the following fields
.Line one line per row referencing NodeId. Can be defined using addline commands.
. Circle
.LineLoop define properties of circles.
rows define a closed line as combination of elementary lines. Values are row indices in the .Line field. One can also define LineLoop from circle arcs (or mixed arcs and lines) using a cell array whose each row describes a lineloop as $\{$ 'LineType', LineInd,...\} where LineType can be Circle or Line and LineInd row indices in corresponding . Line or . Circle field.
.TransfiniteLinesDefines lines which seeding is controlled.
.PlaneSurface rows define surfaces as a combination of line loops, values are row indices in the .LineLoop field. Negative values are used to reverse the line orientation. 1st column describes the exterior contour, and followings the interiors to be removed. As .PlaneSurface is a matrix, extra columns can be filled by zeros.
.EmbeddedLines define line indices which do not define mesh contours but add additional constrains to the final mesh (see Line In Surface in the gmsh documentation.
.SurfaceLoop rows define a closed surface as combination of elementary surfaces. Values are row indices in the .PlaneSurface field.

The local mesh size is defined at nodes by GMSH. This is stored in column 4 of the model. Node. Command option -lcval in the command resets the value val for all nodes that do not have a prior value.

Add.
Typical calls are of the form [mdl, RO]=fe_gmsh ('Add Cmd', mdl, data). The optional second output argument can be used to obtain additional information like the LoopInfo. Accepted command options are

- -loop i is used to add the given geometries and append the associated indices into the LineLoop(i).
- FullCircle defines a circle defined using data with rows giving center coordinates, an edge node coordinates and the normal in the last row. 4 arcs of circle are added. In the LineLoop field the entry has the form \{'Circle', [ind1 ind2 ind3 ind4]\} where indi are the row indices of the 4 arcs of circle created in . Circle field.
- CircleArc defines a circle arc using data
- 3x3 matrix, with 1rst row giving center coordinates, second and third rows are respectively the first and second edges defined by node coordinates.
- 3 x 1 vector, giving the 3 NodeId (center, 1 st and 2 nd edge) as a column instead of $\mathrm{x} y \mathrm{z}$.
- with a -tangent1 option, 3 x3 matrix whose 1st row defines a tangent vector of the circle arc at the 1st edge node (resp. at the second edge node with the option -tangent2). 2nd row defines the 1st edge node coordinates and third row the 2nd edge node coordinate.
- Disk ...
- Line accepts multiple formats. data can be a 2 column matrix which each row defines a couple of points from their NodeId.
data can also be a 2 by 3 matrix defining the coordinates of the 2 extremities.
data can also be a string defining a line selection.
- It is possible to specify a seeding on the line for further meshing operation using additional arguments seed and the number of nodes to seed on the line.
E.g.: mdl=fe_gmsh('AddLine',mdl,data,'seed',5); will ask gmsh to place 5 nodes on each line declared in data.
- It is possible to define line constrains in mesh interiors using embedded lines (depending on the gmsh version). mdl=fe_gmsh('AddLine', mdl, data, 'embed', 1) ; will thus declare the edges found in data not as line loops defining surfaces, but as interior mesh constrains. This feature is only supported for lines specified as selections.
- AddLine3 can be used to declare splines instead of lines in the geometry. For this command to work, beam3 elements must be used, so that a middle node exists to be declared as the spline control point. For this command, data can only be an element string selection.

```
config
```

The fe_gmsh function uses the OpenFEM preference to launch the GMSH mesher.

```
setpref('OpenFEM','gmsh','$HOME_GMSH/gmsh.exe')
```

Ver
Command Ver returns the version of gmsh, the version is transformed into a double to simplify hierarchy handling (e.g. version 2.5.1 is transformed into 251). This command also provides a good test to check your gmsh setup as the output will be empty if gmsh could not be found.

Read

fe_gmsh('read FileName.msh') reads a mesh from the GMSH output format.

Write

fe_gmsh('write FileName.geo', model); writes a model (.Node, .Elt) and geometry data in model. Stack'info', 'GMSH' into a .geo file which root name is specified as FileName (if you use del.geo the file is deleted on exit).

- Command option -lc allows specifying a characteristic length. You can also define a nodewise characteristic length by setting non zero values in model.Node(:,4).
- Command option -multiple can be used for automated meshing of several closed contours. The default behavior will define a single Plane Surface combining all contours, while -multiple variant will declare each contour as a single Plane Surface.
- Command option -keepContour can be used to force gmsh not to add nodes in declared line objects (Transfinite Line feature).
- Command option -spline can be used (when lines have been declared using command AddLine3 from beam3 elements) to write spline objects instead of line objects in the . geo file
- . stl writing format is also supported, by using extension . stl instead of .geo in the command line.
- Command option -run allows to run gmsh on the written file for meshing. All characters in the command after -run will be passed to the gmsh batch call performed. fe_gmsh then outputs the model processed by gmsh, which is usually written in .msh file format.

All text after the -run is propagated to GMSH, see sample options below.
It also possible to add a different output file name NewFile.msh, using model=fe_gmsh('write NewFile.msh -run','FileName.stl').

- Conversion of files through fe_gmsh into .msh, or SDT/OpenFEM format is possible, for all input files readable by gmsh. Use command option -run and specify in second argument the file name.
For example: model=fe_gmsh('write -run', 'FileName.stl') convert .stl to .mesh then open into SDT/OpenFem. Some warning can occur if no FileName.mesh is given, but without effect on the result.

Known options for the run are

- -1 or -2 or -3$)$ specifies the meshing dimension.
- -order 2 uses quadratic elements.
- -v 0 makes a silent run.
- -clmax float sets maximum mesh size, -clmin float for minimum.

From a geometry file the simplest meshing call is illustrated below

```
filename=demosdt('download-back http://www.sdtools.com/contrib/component8.step')
RO=struct( ... % Predefine materials
    'pl',m_elastic('dbval -unit TM 1 steel'), ...
    'sel','selelt eltname tetra10', ... % Elements to retain at end
    'Run','-3 -order 2 -clmax 3 -clmin 2 -v 0'); %RunCommand
model=fe_gmsh('write',filename,RO);
```

It is also possible to write GMSH post-processing command lines, written at the end of the file (see the GMSH documentation) by providing a cell array (one cell by command line) in the field . Post of the RO structure.

See also

missread

fe_load

Purpose

Interface for the assembly of distributed and multiple load patterns

Syntax

```
Load = fe_load(model)
Load = fe_load(model,Case)
Load = fe_load(model,'NoT')
Load = fe_load(model,Case,'NoT')
```


Description

fe_load is used to assemble loads (left hand side vectors to FEM problems). Loads are associated with case structures with at least a Case. Stack field giving all the case entries. Addition of entries to the cases, it typically done using fe_case.

To compute the load, the model (a structure with fields .Node, .Elt, .pl, .il) must generally be provided with the syntax Load=fe_load(model). In general simultaneous assembly of matrices and loads detailed in section 4.8.8 is preferable.
The option NoT argument is used to require loads defined on the full list of DOFs rather than after constraint eliminations computed using Case. $\mathrm{T}^{\prime} *$ Load.def.

The rest of this manual section describes supported load types and the associated type specific data.

curve

The frequency or time dependence of a load can be specified as a data.curve field in the load case entry. This field is a cell array specifying the dependence for each column of the applied loads.

Each entry can be a curve data structure, or a string referring to an existing curve (stored in the model.Stack), to describe frequency or time dependence of loads.

Units for the load are defined through the .lab field (in $\{F\}=[B]\{u\}$ one assumes u to be unitless thus F and B have the same unit systems).

DofLoad, DofSet

Loads at DOFs DofLoad and prescribed displacements DofSet entries are described by the following data structure
data.DOF column vector containing a DOF selection
data.def matrix of load/set for each DOF (each column is a load/set case and the rows are indexed by Case.DOF). With two DOFs, def=[1;1] is a single input at two DOFs, while def=eye(2) corresponds to two inputs.
data.name optional name of the case
data.lab optional cell array giving label, unit label, and unit info (see fe_curve DataType) for each load (column of data.def)
data.curve see fe_load curve
Typical initialization is illustrated below

```
% Applying a load case in a model
    model = femesh('testubeam plot');
    % Simplified format to declare unit inputs
    model=fe_case(model,'DofLoad','ShortTwoInputs', [362.01;258.02]);
    % General format with amplitudes at multiple DOF
    % At node 365, 1 N in x and 1.1 N in z
    data=struct('DOF',[365.01;365.03],'def', [1;1.1]);
    data.lab=fe_curve('datatype',13);
    model=fe_case(model,'DofLoad','PointLoad',data);
    Load = fe_load(model);
    feplot(model,Load); fecom(';scaleone;undefline;ch1 2') % display
```

When sensors are defined in SDT, loads collocated with sensors can be defined using sensor DofLoadSensDof

FVol

FVol entries use data is a structure with fields
data.sel an element selection (or amodel description matrix but this is not acceptable for non-linear applications).
data.dir a 3 by 1 cell array specifying the value in each global direction x, y, z. Alternatives for this specification are detailed below. The field can also be specified using . def and .DOF fields.
data.lab cell array giving label, unit label, and unit info (see fe_curve DataType) for each load (column of data.def)
data.curve see fe_load curve
Each cell of Case.dir can give a constant value, a position dependent value defined by a string

FcnName that is evaluated using $f v(:, j D i r)=e v a l(F c n N a m e)$ or $f v(:, j D i r)=f e v a l(F c n N a m e, n o d e)$ if the first fails. Note that node corresponds to nodes of the model in the global coordinate system and you can use the coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ for your evaluation. The transformation to a vector defined at model.DOF is done using vect=elem0('VectFromDir', model,r1,model.DOF), you can look the source code for more details.

For example

```
% Applying a volumic load in a model
    model = femesh('testubeam');
    data=struct('sel','groupall','dir',[0 32 0]);
    data2=struct('sel','groupall','dir',{{0,0,'(z-1).`3.*x'}});
    model=fe_case(model,'FVol','Constant',data, ...
    'FVol','Variable',data2);
    Load = fe_load(model);
    feplot(model,Load);fecom(';colordataz;ch2'); % display
```

Volume loads are implemented for all elements, you can always get an example using the elements self tests, for example [model, Load]=beam1('testload').

Gravity loads are not explicitly implemented (care must be taken considering masses in this case and not volume). You should use the product of the mass matrix with the rigid body mode corresponding to a uniform acceleration.

FSurf

FSurf entries use data a structure with fields
data.sel a vector of NodeId in which the faces are contained (all the nodes in a loaded face/edge must be contained in the list). data.sel can also contain any valid node selection (using string or cell array format).
the optional data.eltsel field can be used for an optional element selection to be performed before selection of faces with feutil('selelt innode', model, data.sel). The surface is obtained using
\% Surface selection mechanism performed for a FSurf input if isfield(data,'eltsel'); mo1.Elt=feutil('selelt', mo1,data.eltsel); end elt=feutil('seleltinnode',mo1, ...
feutil('findnode',mo1,r1.sel));

```
data.set Alternative specification of the loaded face by specifying a face set name to be found in model. Stack
data.def a vector with as many rows as data.DOF specifying a value for each DOF.
data.DOF
data.lab cell array giving label, unit label ,and unit info (see fe_curve DataType) for
    each load (column of data.def)
data.curve see fe_load curve
data.type string giving 'surface' (default) or 'edge' (used in the case of 2D models
    where external surfaces are edges)
```

Surface loads are defined by surface selection and a field defined at nodes. The surface can be defined by a set of nodes (data.sel and possibly data.eltsel fields. One then retains faces or edges that are fully contained in the specified set of nodes. For example

```
% Applying a surfacing load case in a model using selectors
    model = femesh('testubeam plot');
    data=struct('sel','x==-.5', ...
        'eltsel','withnode {z>1.25}','def',1,'DOF',.19);
    model=fe_case(model,'Fsurf','Surface load',data);
    Load = fe_load(model); feplot(model,Load);
```

Or an alternative call with the cell array format for data.sel

```
% Applying a surfacing load case in a model using node lists
    data=struct('eltsel','withnode {z>1.25}','def',1,'DOF',.19);
    NodeList=feutil('findnode x==-.5',model);
    data.sel={'','NodeId', '==',NodeList};
    model=fe_case(model,'Fsurf','Surface load',data);
    Load = fe_load(model); feplot(model,Load);
```

Alternatively, one can specify the surface by referring to a set entry in model.Stack, as shown in the following example

```
% Applying a surfacing load case in a model using sets
    model = femesh('testubeam plot');
% Define a face set
    [eltid,model.Elt]=feutil('eltidfix',model);
i1=feutil('findelt withnode {x==-. 5 & y<0}',model);i1=eltid(i1);
i1(:,2)=2; % fourth face is loaded
data=struct('ID',1,'data',i1);
model=stack_set(model,'set','Face 1',data);
% define a load on face 1
data=struct('set','Face 1','def',1,'DOF',. 19);
model=fe_case(model,'Fsurf','Surface load',data);
Load = fe_load(model); feplot(model,Load)
```

The current trend of development is to consider surface loads as surface elements and transform the case entry to a volume load on a surface.

See also

fe_c, fe_case, fe_mk

fe_mat

Purpose

Material / element property handling utilities.

Syntax

```
out = fe_mat('convert si ba',pl);
typ=fe_mat('m_function',UnitCode,SubType)
[m_function',UnitCode,SubType]=fe_mat('type',typ)
out = fe_mat('unit')
out = fe_mat('unitlabel',UnitSystemCode)
[o1,o2,o3]=fe_mat(ElemP,ID,pl,il)
```


Description

Material definitions can be handled graphically using the Material tab in the model editor (see section 4.5.1). For general information about material properties, you should refer to section 7.3 . For information about element properties, you should refer to section 7.4.

The main user accessible commands in fe_mat are listed below

Convert,Unit

The convert command supports conversions from unit1 to unit2 with the general syntax pl_converted = fe_mat('convert unit1 unit2', pl);

For example convert from SI to BA and back

```
% Sample unit convertion calls
    mat = m_elastic('default'); % Default is in SI
    % convert mat.pl from SI unit to BA unit
    pl=fe_mat('convert SIBA',mat.pl)
    % for section properties IL, you need to specify -il
    fe_mat('convert -il MM',p_beam('dbval 1 circle .01'))
    % For every system but US you don't need to specify the from
    pl=fe_mat('convert BA',mat.pl)
    % check that conversion is OK
    pl2=fe_mat('convert BASI',pl);
    fprintf('Conversion roundoff error : %g\n',norm(mat.pl-pl2(1:6))/norm(pl))
    fe_mat('convertSIMM') % Lists defined units and coefficients
    coef=fe_mat('convertSIMM',2.012) % conversion coefficient for force/m^2
```

Supported units are either those listed with fe_mat ('convertSIMM') which shows the index of each unit in the first column or ratios of any of these units. Thus, 2.012 means the unit 2 (force) divided by unit 12 (surface), which in this case is equivalent to unit 1 pressure.
out=fe_mat('unitsystem') returns a struct containing the information characterizing standardized unit systems supported in the universal file format.
ID Length and Force ID

1 SI Meter, Newton 7
2 BG Foot, Pound f
3 MG Meter, kilogram f
8 GM
9 TM
Inch, Pound force
Millimeter, kilogram force
4 BA Foot, poundal 9 US User defined
4 BA Foot, poundal 9 US User defined
Millimeter, Newton
5 MM Millimeter, milli-newton
6 CM Centimeter, centi-newton
Unit codes 1-8 are defined in the universal file format specification and thus coded in the material/element property type (column 2). Other unit systems are considered user types and are associated with unit code 9 . With a unit code 9 , fe_mat convert commands must give both the initial and final unit systems.
out=fe_mat('unitlabel', UnitSystemCode) returns a standardized list of unit labels corresponding in the unit system selected by the UnitSystemCode shown in the table above.

When defining your own properties material properties, automated unit conversion is implemented automatically through tables defined in the p_fun PropertyUnitType command.

GetPl GetIl

$\mathrm{pl}=\mathrm{fe}$ mat('getpl', model) is used to robustly return the material property matrix pl (see section 7.3) independently of the material input format.

Similarly il $=$ fe_mat('getil', model) returns the element property matrix il.

```
Get[Mat,Pro]
```

r1 = fe_mat('GetMat Param', model) This command can be used to extract given parameter Param value in the model properties. For example one can retrieve density of matid 111 as following rho=fe_mat('GetMat 111 rho', model);

Set [Mat, Pro]
\qquad

```
r1 = fe_mat('SetMat MatId Param=value',model)
r1 = fe_mat('SetPro ProId Param=value',model)
```

This command can be used to set given parameter Param at the value value in the model properties. For example one can set density of matid 111 at 5000 as following
rho=fe_mat('SetMat 111 rho=5000', model);

Type

The type of a material or element declaration defines the function used to handle it. typ=fe_mat('m_function',UnitCode,SubType) returns a real number which codes the material function, unit and sub-type. Material functions are .m or .mex files whose name starts with m_{-}and provide a number of standardized services as described in the m_elastic reference.

The UnitCode is a number between 1 and 9 giving the unit selected. The SubType is a also a number between 1 and 9 allowing selection of material subtypes within the same material function (for example, m_elastic supports subtypes : 1 isotropic solid, 2 fluid, 3 anisotropic solid).

Note : the code type typ should be stored in column 2 of material property rows (see section 7.3).
[m_function, UnitCode, SubType]=fe_mat('typem', typ)
Similarly, element properties are handled by p_ functions which also use fe_mat to code the type (see p_beam p_shell and p_solid).

ElemP

Calls of the form $[01,02,03]=f e \quad$ mat (ElemP, ID , pl,il) are used by element functions to request constitutive matrices. This call is really for developers only and you should look at the source code of each element.

See also

m_elastic, p_shell, element functions in chapter 9

fe_mknl, fe_mk

Purpose

Assembly of finite element model matrices.

Syntax

```
[m,k,mdof] = fe_mknl(model);
[Case,model.DOF]=fe_mknl('init',model);
mat=fe_mknl('assemble',model,Case,def ,MatType);
```


Description

The exact procedure used for assembly often needs to be optimized in detail to avoid repetition of unnecessary steps. SDT typically calls an internal procedure implemented in fe_caseg Assemble and detailed in section 4.8.8. This documentation is meant for low level calls.
fe_mknl (and the obsolete fe_mk) take models and return assembled matrices and/or right hand side vectors.

Input arguments are

- model a model data structure describing nodes, elements, material properties, element properties, and possibly a case.
- case data structure describing loads, boundary conditions, etc. This may be stored in the model and be retrieved automatically using fe_case(model, 'GetCase').
- def a data structure describing the current state of the model for model/residual assembly using fe mknl. def is expected to use model DOFs. If Case DOFs are used, they are reexpanded to model DOFs using def=struct('def', Case.T*def.def, 'DOF', model.DOF). This is currently used for geometrically non-linear matrices.
- MatType or Opt describing the desired output, appropriate handling of linear constraints, etc.

Output formats are

- model with the additional field model. K containing the matrices. The corresponding types are stored in model.Opt ($2,:$). The model.DOF field is properly filled.
- [m,k,mdof] returning both mass and stiffness when Opt (1) $==0$
- [Mat, mdof] returning a matrix with type specified in Opt(1), see MatType below.
mdof is the DOF definition vector describing the DOFs of output matrices.
When fixed boundary conditions or linear constraints are considered, mdof is equal to the set of master or independent degrees of freedom Case.DOF which can also be obtained with
fe_case(model, 'gettdof'). Additional unused DOFs can then be eliminated unless Opt (2) is set to 1 to prevent that elimination. To prevent constraint elimination in fe_mknl use Assemble NoT.

In some cases, you may want to assemble the matrices but not go through the constraint elimination phase. This is done by setting Opt (2) to 2 . mdof is then equal to model.DOF.

This is illustrated in the example below

```
% Low level assembly call with or without constraint resolution
    model =femesh('testubeam');
    model.DOF=[];% an non empty model.DOF would eliminate all other DOFs
    model =fe_case(model,'fixdof','Base','z==0');
    model = fe_mk(model,'Options',[0 2]);
    [k,mdof] = fe_mk(model,'options',[0 0]);
    fprintf('With constraints %i DOFs\n',size(k,1));
    fprintf('Without %i DOFs',size(model.K{1},1));
    Case=fe_case(model,'gett');
    isequal(Case.DOF,mdof) % mdof is the same as Case.DOF
```

For other information on constraint handling see section 7.14 .
Assembly is decomposed in two phases. The initialization prepares everything that will stay constant during a non-linear run. The assembly call performs other operations.

Init

The fe_mknl Init phase initializes the Case. T (basis of vectors verifying linear constraints see section 7.14 , resolution calls fe_case Getr, Case. GroupInfo fields (detailed below) and Case. MatGraph (preallocated sparse matrix associated with the model topology for optimized (re)assembly). Case.GroupInfo is a cell array with rows giving information about each element group in the model (see section 7.15 .3 for details).

Command options are the following

- NoCon Case $=$ fe mknl('initNoCon', model) can be used to initialize the case structure without building the matrix connectivity (sparse matrix with preallocation of all possible non zero values).
- Keep can be used to prevent changing the model. DOF DOF list. This is typically used for submodel assembly.
- -NodePos saves the NodePos node position index matrix for a given group in its EltConst entry.
- -gstate is used force initialization of group stress entries.
- new will force a reset of Case.T.

The initialization phase is decomposed into the following steps

1. Generation of a complete list of DOFs using the feutil('getdof', model) call.
2. get the material and element property tables in a robust manner (since some data can be replicated between the pl,il fields and the mat, pro stack entries. Generate node positions in a global reference frame.
3. For each element group, build the GroupInfo data (DOF positions).
4. For each element group, determine the unique pairs of [MatId ProId] values in the current group of elements and build a separate integ and constit for each pair. One then has the constitutive parameters for each type of element in the current group. pointers rows 6 and 7 give for each element the location of relevant information in the integ and constit tables. This is typically done using an [integ, constit, ElMap]=ElemF('integinfo') command, which in most cases is really being passed directly to a p_fun('BuildConstit') command. ElMap can be a structure with fields beginning by RunOpt_, Case_ and eval which allows execution of specific callbacks at this stage.
5. For each element group, perform other initializations as defined by evaluating the callback string obtained using elem('GroupInit'). For example, initialize integration rule data structures EltConst, define local bases or normal maps in InfoAtNode, allocate memory for internal state variables in gstate, ...
6. If requested (call without NoCon), preallocate a sparse matrix to store the assembled model. This topology assumes non zero values at all components of element matrices so that it is identical for all possible matrices and constant during non-linear iterations.
```
Assemble [ , NoT]
```

The second phase, assembly, is optimized for speed and multiple runs (in non-linear sequences it is repeated as long as the element connectivity information does not change). In femk the second phase is optimized for robustness. The following example illustrates the interest of multiple phase assembly

```
% Low level assembly calls
    model =femesh('test hexa8 divide 100 10 10');
    % traditional FE_MK assembly
    tic;[m1,k1,mdof] = fe_mk(model);toc
    % Multi-step approach for NL operation
    tic;[Case,model.DOF]=fe_mknl('init',model);toc
tic;
m=fe_mknl('assemble',model,Case,2);
k=fe_mknl('assemble',model,Case,1);
toc
```

MatType: matrix identifiers
Matrix types are numeric indications of what needs to be computed during assembly. Currently defined types for OpenFEM are

- 0 mass and stiffness assembly. 1 stiffness, 2 mass, 3 viscous damping, 4 hysteretic damping
- 5 tangent stiffness in geometric non-linear mechanics (assumes a static state given in the call. In SDT calls (see section 4.8.8), the case entry 'curve', 'StaticState' is used to store the static state.
- 3 viscous damping. Uses info, Rayleigh case entries if defined, see example in section 5.3.2.
- 4 hysteretic damping. Weighs the stiffness matrices associated with each material with the associated loss factors. These are identified by the key word Eta in PropertyUnitType commands.
- 7 gyroscopic coupling in the body fixed frame, 70 gyroscopic coupling in the global frame. 8 centrifugal softening.
- 9 is reserved for non-symmetric stiffness coupling (fluid structure, contact/friction, ...);
- 20 to assemble a lumped mass instead of a consistent mass although using common integration rules at Gauss points.
- 100 volume load, 101 pressure load, 102 inertia load, 103 initial stress load. Note that some load types are only supported with the mat_og element family;
- 200 stress at node, 201 stress at element center, 202 stress at gauss point
- 251 energy associated with matrix type 1 (stiffness), 252 energy associated with matrix type 2 (mass), ...
- 300 compute initial stress field associated with an initial deformation. This value is set in Case.GroupInfo\{jGroup,5\} directly (be careful with the fact that such direct modification INPUTS is not a MATLAB standard feature). 301 compute the stresses induced by a thermal field. For pre-stressed beams, 300 modifies InfoAtNode=Case. GroupInfo\{jGroup, 7$\}$.
- $-1,-1.1$ submodel selected by parameter, see section 4.8.8.
- $-2,-2.1$ specific assembly of superelements with label split, see section 4.8.8.

NodePos

NodePos=fe_mknl('NodePos',NNode,elt,cEGI,ElemF) is used to build the node position index matrix for a given group. ElemF can be omitted. NNode can be replaced by node.
nd
nd=fe mknl ('nd' , DOF) ; is used to build and optimized object to get indices of DOF in a DOF list.

OrientMap

This command is used to build the InfoAtNode entry. The 'Info', 'EltOrient' field is a possible stack entry containing appropriate information before step 5 of the init command. The preferred mechanism is to define an material map associated to an element property as illustrated in section 7.13 .
of mk
of _mk is the mex file supporting assembly operations. You can set the number of threads used with of mk('setomppro', 8).

obsolete

Syntax

```
model = fe_mk(model,'Options',Opt)
    [m,k,mdof] = fe_mk( ... ,[0 OtherOptions])
[mat,mdof] = fe_mk( ... ,[MatType OtherOptions])
```

fe_mk options are given by calls of the form fe_mk(model, 'Options', Opt) or the obsolete fe_mk(node, elt, pl,il, [], adof,opt).
opt (1) MatType see above
opt (2) if active DOFs are specified using model. DOF (or the obsolete call with adof), DOFs in model.DOF but not used by the model (either linked to no element or with a zero on the matrix or both the mass and stiffness diagonals) are eliminated unless opt (2) is set to 1 (but case constraints are then still considered) or 2 (all constraints are ignored).
opt (3) Assembly method (0 default, 1 symmetric mass and stiffness (OBSOLETE), 2 disk (to be preferred for large problems)). The disk assembly method creates temporary files using the sdtdef tempname command. This minimizes memory usage so that it should be preferred for very large models.
opt (4) 0 (default) nothing done for less than 1000 DOF method 1 otherwise. 1 DOF numbering optimized using currentofact SymRenumber method. Since new solvers renumber at factorization time this option is no longer interesting.
[m,k,mdof]=femk(node,elt,pl,il) returns mass and stiffness matrices when given nodes, elements, material properties, element properties rather than the corresponding model data structure.
[mat, mdof] $=\mathrm{fe} \mathrm{mk}$ (node, elt, pl,il, [], adof, opt) lets you specify DOFs to be retained with adof (same as defining a case entry with \{'KeepDof', 'Retained', adof \}).

These formats are kept for backward compatibility but they do not allow support of local coordinate systems, handling of boundary conditions through cases, ...

Notes

fe mk no longer supports complex matrix assembly in order to allow a number of speed optimization steps. You are thus expected to assemble the real and imaginary parts successively.

See also

Element functions in chapter 9, fe_c, feplot, fe_eig upcom, fe_mat, femesh, etc.

fe_norm

Purpose

Mass-normalization and stiffness orthonormalization of a set of vectors.

Syntax

```
To = fe_norm(T,m)
[rmode,wr] = fe_norm(T,m,k,NoCommentFlag)
[rmode,wr] = fe_norm(T,m,k,tol)
```


Description

With just the mass m (k not given or empty), fe_norm orthonormalizes the T matrix with respect to the mass m using a preconditioned Cholesky decomposition. The result To spans the same vector space than T but verifies the orthonormal condition

$$
\begin{equation*}
[T o]^{T}[M]_{N \times N}[T o]_{N \times N M}=[I]_{N M \times N M} \tag{10.17}
\end{equation*}
$$

If some vectors of the basis T are collinear, these are eliminated. This elimination is a helpful feature of fe_norm

When both the mass and stiffness matrices are specified a reanalysis of the reduced problem is performed (eigenvalue structure of model projected on the basis T). The resulting reduced modes rmode not only verify the mass orthogonality condition, but also the stiffness orthogonality condition (where $\left[\backslash \Omega_{j}^{2}\right]=\operatorname{diag}\left(w r .{ }^{\wedge} 2\right)$)

$$
\begin{equation*}
[\phi]^{T}[K][\phi]=\left[\backslash \Omega_{j}^{2}\right]_{N M \times N M} \tag{10.18}
\end{equation*}
$$

The verification of the two orthogonality conditions is not a sufficient condition for the vectors rmode to be the modes of the model. Only if $N M=N$ is this guaranteed. In other cases, rmode are just the best approximations of modes in the range of T.

When the fourth argument NoCommentFlag is a string, no warning is given if some modes are eliminated.

When a tolerance is given, frequencies below the tolerance are truncated. The default tolerance (value given when tol=0) is product of eps by the number of modes by the smallest of 1 e 3 and the mean of the first seven frequencies (in order to incorporate at least one flexible frequency in cases
with rigid body modes). This truncation helps prevent poor numerical conditioning from reduced models with a dynamic range superior to numerical precision.

See also

fe_reduc, fe_eig

fe_quality

Purpose

Mesh quality measurement tools

Description

This function provides mesh quality measurement, visualization and report tools. Badly shaped elements are known to cause computation error and imprecision, and basic geometric tests can help to acknowledge such property. Every element cannot be tested the same way therefore the lab command presents the tests available for each kind. The geometric measurements performed are described in the following section.

An integrated call is provided for feplot,
fe_quality(cf.mdl);
This call performs all test available and opens a GUI allowing the user to customize the views.

Available tests

Degenerate

Degenerated elements have overlaying nodes which is generally unwanted. The set is automatically generated when such elements are detected.

Jacobian

This test computes the minimum Jacobian for each element and detects negative values. It is directly related to the element volume so that a wrapped element would show such pattern. The set is generated only if elements with negative Jacobian are detected.

AspectRatio

This test can be applied to any kind of element. It computes the ratio of the longest edge length to the shortest one. Thus a good element will have an aspect ratio close to one while a badly shaped element will have a greater aspect ratio. The Default tolerance for visualization is set to 2 .

MaxIntAng

This test can be applied to triangle and quadrangle elements (tria3, tria6, quad4, quad8, quadb). It measures the greatest angle in an element which is an indication of element distortion. The default tolerance is set to 110 degrees.

GammaK

This test is applied to triangle elements (tria3, tria6). It computes the ratio between the radius of the inscribed circle and the circumcircle. This indicator is named γ_{K} and is bounded between 0 and 1. Well shaped elements will have a γ_{K} coefficient close to one. Degenerated triangles show $\gamma_{K}=0$. The default tolerance is set to 0.5 .

MidNodeEgde

This test is applied to quadratic triangles (tria6). It measures the distance of the middle nodes to the edge nodes. The ratio between the distance from the middle node to the first edge node $\left(l_{1}\right)$ and the distance from the middle node to the second edge node $\left(l_{2}\right)$ is computed for each element as $M N E=\max _{i=1 \ldots 3}\left(\frac{\max \left(l_{1 i} / l_{2 i}, l_{2 i} / l_{1 i}\right)}{\min \left(l_{1 i} / l_{2 i}, l_{2 i} / l_{1 i}\right)}\right)$ The default tolerance is set to 1.5 .

MaxAngleMid2Edge

This test is applied to quadratic triangles (tria6). It measures the distortion of the edges by computing the maximum angle between the straight edge (between both edge extreme nodes) and the actual edges through the middle node. The maximum over the whole triangle is output, the default tolerance is set to 30 degrees.

Taper

This test is applied to 2 D quadrangle elements (quadb). It compares the areas of the 4 triangles formed by the diagonals and each edge to the area of the full quadrangle. The exact computation is $\max \left(\frac{2 \mathcal{A}_{i}}{\mathcal{A}_{K}}\right)$. Thus a well shaped element will show a taper ratio close to 0.5 , while a badly shaped element can have taper ratios over 1 . The default tolerance is set to 0.8 .

Skew

This test is applied to quadrangle elements (quad4, quad8, quadb). It evaluates the element distortion by measuring the angle formed by the diagonals (the maximum angle is taken). A square will
then show a skew angle of 90 degrees, while a distorted element will show angles over 150 degrees. The default tolerance is set to 110 degrees.

Wrap

This test is applied to quadrangle elements (quad4, quad8, quadb). It measures the coplanarity of the 4 vertices by comparing the height of the 4 th point to the plan generated by the first three points (H), relatively to the element dimension. The exact formulation is $W=\frac{H}{l\left(D_{1}\right)+l\left(D_{2}\right)}$. Perfectly planar elements will have a null wrap coefficient. The default tolerance is set to 10^{-2}

RadiusEdge

This test is applied to tetrahedron elements (tetra4, tetra10). It measures the ratio between the radius of the circumsphere to the minimum edge length of a tetrahedron. Well shaped elements will show a small value while badly shaped elements will show far greater values. The radius edge coefficient is lower bounded by the radius edge ratio of the regular tetrahedron: $R E \geq \frac{\sqrt{6}}{4}$. The default maximum value is set to 2 , which usually is sufficient to have a quality mesh. Sliver elements may not be detected by this measure.

Sliver

This test is applied to tetrahedron elements (tetra4, tetra10). A sliver element is a nearly flat tetrahedron, such pathology can lead to bad conditioning due to the very small volumes that can be engendered by these particular elements. This is well detected by computing the ratio between the maximum edge length to the minimum altitude (from a vertice to the opposed face). Sliver elements will have large values and possibly infinite if degenerated. The degenerated elements are set to a value of 10^{5} for visualization, the default tolerance is set to 10 .

FaceAspect

This can be applied to hexahedron and pentahedron elements (hexa8, hexa20, penta6, penta15). It measures the aspect ratio of each face of the elements. The default tolerance is set to 2 .

Unstraight

This can be applied to any element with middle nodes. It measures the Euclidean distance between the edge middle (if the edge were straight) and the actual position of the middle edge node. Tolerance is set at 0.1 .

RadiusCircum

This measure can only be accessed separately, with an explicity specification in the meas command. It measures the circum radiuses of triangle elements. This is applicable to tria3 and tria6 elements.

Commands

lab[...]
Outputs or prints the tests available and their default tolerance. If no output is asked this is printed to the prompt. fe_quality (' 1 ab ') outputs the list of element tested with the command for detailed information. fe_quality ('lab EltName' prints the tests available for the element EltName and the default tolerances associated.

```
meas[...]
```

Computes the mesh quality measurements. For a feplotnodel, the results are stored in the stack under the entry 'info', 'MeshQual'. The results are given by element groups unless a specific element selection is given as a third argument. Accepted calls are MQ = fe_quality('meas',model); Computes all available tests per element group.

MQ = fe_quality('meas -view MName', model); Computes the MName test and visualize it.
MQ = fe_quality('meas', model, 'EltSel') Computes all measurement tests for the specified EltSel element selection.
$M Q$ is the mesh quality output. It is a structure of fields eltid, data and lab. All fields are cell arrays of the same size related to the measures described in the lab entry as MName_ElemF_EGID for which corresponding EltId and measurement values (data) are given. Direct visualization of the results can be obtained with the -view option.

```
view[...]
```

Performs a visualization of the quality measurements of a feplotmodel. The stack entry 'info', 'MeshQual' must exist (created by meas). Two feplot pelections are generated. First the elements are face colored in transparency with a colored ranking. Second, the elements outside the measurement tolerance are plotted in white patches of full opacity. Both plots generate an EltSet, the elements plotted are stored in 'set', 'MeshQual_eltsel', the elements outside tolerance are stored in 'set', 'MeshQual_MName_tol_val' with MName the test considered and val the tolerance value.

The tolerance can be defined using the command option -tol val. A positive (resp. negative) tolerance val defines pathologic elements over (resp. under) the threshold.

Command option noGlobalMesh customizes the selection so that the global mesh in transparency is not displayed.

It is possible to plot a sub selection of the elements measured by specifying an EltSel as third argument. The curve colordataelt plot can also be output.
fe_quality('view'); Default visualization, AspectRatio is plotted as it is available for every element.
fe_quality('view MName -tol val',cf); feplotpointer, MName and tolerance val test are specified.
fe_quality('view', cf, EltSel) ; An additional element selection EltSel to restrict the mesh quality measurement plot.

MeshDim

fe_quality('MeshDim', model) returns a line vector [weight average min max] giving an indication on the mesh dimensions. The mesh edge lengths of all elements are computed, and the average, min and max data are output.

Command option - print allows printing this data in a human readable format to the output display. Another use of command MeshDim is to recover element indices with a threshold on their length. Use command option -getOverval with a three output argument call. [r1,r2,r3]=fe_quality ('MeshDim -getOver val', model); will output in r3 element indices in model. Elt that verify

- minimum edge length over val if val>0
- miminum edge length under or equal to abs (val) if val<=0

print

Prints out the mesh quality report sorted in 'info', 'MeshQual' of a model or a feplotfigure. By default the results are printed to the prompt, a specific file can be given in the print command. E.g.
fe_quality('print myMeshQualityReport', model);

CleanNJStraight
This command attempts to improve a model numerical conditioning by straightening the edges of quadratic elements with negative Jacobians. This command can be iteratively performed as the local movements of specific middle edge nodes can result in distubances in the connected elements.
model=fe_quality('CleanNJStraight', model); will output the model with altered nodal positions corresponding to the edge straightening of quadratic elements with negative Jacobian.
Command option -nit N will ask to run a maximum of N passes unless all Jacobians become positive.
clear[...]
This command clears the element quality visualization and can also clean up the stack of any element sets created during the view procedures. All entries created by fe_quality in the model Stack are of the 'info' or 'set' type with a name starting by MeshQual.
fe_quality('clear') clears the feplotselection and visualization.
fe_quality('clearall') clears the visualization and removes every stack entry concerning mesh quality.
fe_quality ('clear MName') removes from the stack a specified MName measurement visualization.

fe_range

Purpose

fe_range commands are used to manipulate experiment (series of design points) specifications.

Description

Experiments (series of design points) are used extensively in SDT. The figure below describes a 3 D design space with selected points. fe_range is used to generate experiment descriptions fe_range Build, run the solutions fe_range Loop and manipulate the associated results fe_range DirScan.

Figure 10.3: Sample experiments. a) Hypercube face center. b) Classical $2^{N P}$ factorial plan.

A range structure is the description of a set design points through a data structure with fields

- . val numeric array containing one design point per row and one design parameter per column.
- . lab cell array of strings giving a parameter label for each column. These labels should be acceptable fieldnames (no spaces, braces, ...)
- . param optional structure with fields associated with parameter labels used for formatting and analysis. Accepted values are detailed below. It is not necessary to define a .param field for each design parameter.
param.MainFcn=\{FcnHandle, 'command'\} can be used specify the user handling function in fe_range Loop.
- . edge optional connectivity matrix used to define lines connecting different design points of the experiment
- .FileName optional cell array of strings used to build file names associated with each experiment with command fe_range fname.
.param fields must match string values in .lab. Each field is a struct with possible fields
- .type a string. Typically double or pop.
- .choices, for .type='pop', contains a cell array of strings. The parameter value then gives the index within .choices.
- .data possible cell array containing data associated with the . choices field.
- . LabFcn a command to be evaluated with st1=eval (r2.LabFcn) to generate the proper label. For example 'sprintf ($', \%$.1f ms' ', val/1000)' is used to generate a label in a different unit. For choices, the default is $r 2$. choices $\{\mathrm{val}\}$;
- . Xlab long name to be used to fill Xlab when generating curve data structures.
- .level is an integer specifying the computational step at which a given parameter can be modified. This is used to generate tree type experiments.
- .uProp is a cell array giving a coefficient to go from value to engineering unit and a string for the unit. Or a structure with fields .coef multiplicative coefficient to go from storage value in val to display value. .coef can be a callback string based on the assumption that the value is in a val variable. . Xlab to be used for display after unit conversion, . unit string for unit of storage value. .fmt java formatting for display in tables.
- . SetFcn=\{fun, command $\}$ provides the callback used in fe_range Loop to execute parameter setting.
- .RepList=\{tokenString, subsasgn\} optionally provides the mechanism to aggregate parameter modifications in a Loop step.

Commands

Build [R, stra]
Build commands handle generation of the Range structure.
Range=fe_range('Build'', par);
Range is defined by a grid of all the parameter values defined in par.
par is expected to be either

- a structure where each field will be a parameter (for example struct(' a ', (1:3)', 'b', (1:2)'). For configurations, the field can contain a cell array with the configuration name and associated data (for example struct ('MesCfg', \{'a', data1; 'b', data2\}). To allow easier connection with graphical interfaces, the value can be replaced by a structure struct('a', struct('Eval', '1:3')). Note that .param is a reserved field.
- a cell array defining parameters. Each cell can be
- a range data structure. This is for example used for visco parameter definitions (see fevisco Range for more details).
- (to be phased out) a string 'lab "label" min min max max cur cur scale "scale" NPoints NPoints'. "label" is the parameter name. Then the minimum, maximum and nominal values are defined. Scale can be "lin" for linear scale or "log" for logarithmic scale. NPoints defines the number of point for the parameter vector.
- (to be phased out) a numeric vector in the old upcomformat [type cur min max scale] with type defining the matrix type (unused here), scale $==2$ indicates a logarithmic variation.

By default a grid type is generated. As an illustration, following example defines a grid 6×7 of 2 parameters named length and thickness

```
Range=fe_range('BuildGrid',struct('length',1:3, ...
    'thickness',[1 2],'Name',{{'a','data_for_a';'b','data_for_b'}}))
Range=fe_range('BuildGrid',Range);
fe_range('Tree',Range);
% String format (to be phased out)
par={'lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6',...
    'lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7'};
Range=fe_range('BuildGrid',par);
fe_range('Tree',Range);
```

A Range type must be defined by token stra. The following strategies are supported

- Grid Generates a grid type, with all possible parameter combinations.
- Vect generates a vector for a single parameter or a matrix with all parameters varying (the initial definition of each vector must have the same length).
- Simple Generates a sequential parameter combination. One parameter varies at a time, the others being kept at their nominal value.
- Rstra Generates reduced ranges spannix the parameters simplex. If ommitted this token is set to MinMax the available strategies are
- MinMax base point with all max, then successive set of one parameter to min. Dedicated variants include
* MinMaxP to add the nominal configuration at the list end
* MinMaxm to add the full minimal configuration at the list end
- MinNom uses the first design point with the nominal values of each parameters, then variations with one parameter set to the minimum value while the other remain at their nominal value.
- NomMax uses the first design point with the maximum values of each parameters, then variations with one parameter set to the nominal value while the other remain at their maximum value.
- NomMin uses the first design point with the minimum values of each parameters, then variations with one parameter set to the nominal value while the other remain at their minimum value.
- MaxMin uses the first design point with the minimum values of each parameters, then variations with one parameter set to the maximum value while the other remain at their minimum value.
- MaxNom uses the first design point with the nominal values of each parameters, then variations with one parameter set to the maximum value while the other remain at their nominal value.
- Nom only uses the nominal value of each parameters.
- Grid generates a grid type, considering minimum and maximum values of each parameter (corners of a hypercube).

Command option -flip allows generating a reverted list from down to bottom (flipud).

- @cbk Allows customized defintion, using $c b k$ as a function handle. Range is sequentially built with a expansion applied for each parameter. The typical call at the $j 1$-th parameter is

Range.val=cbk(Range.val, par\{j1\}.val,i1,RO);
with Range.val the current Range before handling the $j 1$-th parameter, $\operatorname{par}\{j 1\}$.val are the values considered for the j 1 -th parameter, i 1 is the column index associated to the j 1 -th parameter in Range.val. RO is the current running option structure.

Accepted options are

- replace ¿0 keep first value. 3 Reuse parameters in range.
- level handles levels if present.
- FileName augments the Range.FileName field if present.
- diag in Grid type, takes the diagonal of the hypercube.

Range=fe_range('BuildVect', par);

Simply concatenate all parameter ranges (they must have the same length) into a functional Range. par has the same format than for the fe_range BuildGrid input. In addition, all par entries provided should have the same number of points.

Vect command is used to generate single par structures to feed Range. param entries.
par=\{'lab "length" min 10 max 20 cur 10 scale "lin" NPoints 7',...
'lab "thickness" min 1e-3 max $2 e-3$ cur 0 scale "log" NPoints 7'\};
Range=fe_range('BuildVect', par);

DirScan

Scans a directory mat files and provides displayable information about property variations. It is assumed that files are saved with a variable RO (for Run Options) in struct format, each option considered as a field. Command DirScan will build a synthesis between constant and variable options, by providing in output a structure RB with fields

- wd the scanned directory.
- dirlist the file names scanned. (By default *.mat).
- RVar a structure that can be displayed by comstr -17 in Java tabs. In its basic version it contains fields table that list the differing options between each scanned file, one per line, and a field ColumName that provides the relative varying option fields. This list is handled by the flatParamFcn as explained below.
- RConstant a cell array with two columns providing the constant options for all scanned files. The first column contains the option fields and the second their value.

By default DirScan saves a file named RangeScan.mat in the scanned directory. This file contains the output to avoid scanning if possible. By default scanning is skipped if the file RangeScan.mat exists, refers to the same search in the dirlist field and if this file is more recent than all files to be scanned.

Options sorting is performed by the flatParamFcn. Typical options are hierarchically sorted in nested structure format that gather parameters of the same type, or belonging to a configuration set.

To ensure a clean view of varying parameters, the hierarchical structure has to be flattened, that is to recursively flush back all nested structure fields to the root structure. The default flatParamFcn only performs this simple operation, one should not use identical parameter names in different locations.

For advanced applications it is recommended to add intelligence to the flatParamFcn to help sorting relevant parameters, possibly remove some irrelevant ones and to convert complex options into human readable format. The typical call to flatParamFcn is
r1=feval(flatParamFcn,fname,RO);
The output r1 is in the same format than output RConstant field, that is a two column cell array with fieldnames in first column defining found parameters and a second column containing current values for the currently scanned file.

Input fname is a structure with field fname providing the file name containing a parameter structure names RO. Input RO is a structure with fields wd providing the name of the scanned directory and Content, a cell array that will keep track of all parameter fieldnames encountered during scanning.

A sample call would be

```
% Example of flatParamFcn behavior
% build a dummy result file with a parameter structure
tname=nas2up('tempname_RES.mat');
% sample 2 level parameter structure
RO=struct('MeshCfg',...
struct('lc',4,'name','toto'),...
'SimuCfg',...
struct('dt',1e-2','Tend',10));
% save RO in result file
save(tname,'RO');
% Options to call flatParam
R1=struct('flatParamFcn',fe_range('@flatParam'),'wd',pwd,'Content',{{}});
% call to flatParam
[r1,RO]=feval(R1.flatParamFcn,struct('fname',tname),R1);
delete(tname); % clean up example
```

Command DirScan takes a structure in input with fields

- wd the directory to scan.
- list the file names to scan. This allows restriction to filenames matching specific expressions. The default is $*$.mat.
- flatParamFcn. A function handle to sort the running options, by defaultset to fe_range('@flatParam').
- NoSave not to save the result in RangeScan.mat if set to one.

The following command options are accepted

- -reset to force a new scanning.
- -reload to force a reload of RangeScan.mat.

```
fname [,LabCell,Labdef]
```

Generate the list of files using the components of the Range.FileName cell array. In that cell, each string starting with ' ' is replaced. fnamedir forces names compatible with directories.

```
Range=fe_range('BuildGrid',struct('length',1:3, ...
    'thickness',[1 2],'Name',{{'a','data_for_a';'b','data_for_b'}}))
Range=fe_range('BuildGrid',Range);
% Name built out of differnt labels
Range.param.thickness.LabFcn='sprintf(''h=%.1f'',val)';
Range.param.thickness.ShortFmt=1;
Range.FileName={'Root','@length','@thickness','@Name'};
fe_range('fname',Range)
```


GeneLoop

Provides a genetic algorithm implementation inspired from the NSGA-II 50.
Command GeneLoop peforms the complete loop, taking into argument a set of parameters in a cell array, and a parameter structure with fields

- .PopSize the population size,
- . MatSize the mating group size,
- . NbTour the number of candidates to retain for a tournament round,
- . RatioMut the threshold ratio under which a gene mutation occurs when there is no crossover, between 0 (impossible) and 1 (always)
- . Optim the extremum to consider for the fitness function, min or max
- . RunExp the callback to the fitness function

The logic is to exploit a discretized pool gene based on a Range structure with available parameters. From a randomly chosen initial population using randi of size .PopSize, individuals are selected for mating, based on their fitness in a tournament phase. The tournament consists in running . MatSize tours in which the fittest individual is taken between . NbTour randomly picked candidates. The .MatSize selected individuals are then mated with a crossover and mutation strategy to produce a children gene pool of size PopSize. Crossover and mutation are sequential events. First, a crossover generates one child from two randomly picked parents in the mating pool (based on randperm) each gene is randomly picked from one or the other parent. Each gene can then mutate with a probability event driven by .RatioMut (based on rand threshold). In case of a mutation event, the gene will be forced to mutate by taking another available value in the gene pool. The children gene pool is forced to be gene combinations that have not been tested before. The parent and chidren populations are then combined, and only the .PopSize fittest individuals are kept for the next generation, ensuring elitism.

The output is a Range structure with field .val containing the current population, . Res the fitness values of the current population, .val0 the archive of all tested individuals, . Res0 the archive of fitness values of all tested individuals.

```
% define a set of parameters with discretized varying values
par={'lab "p1" min 10 max 20 cur 10 scale "lin" NPoints 100',...
    'lab "p2" min 1 max }100\mathrm{ cur 1 scale "lin" NPoints 100',...
    'lab "p3" min 2 max 5 cur 100 scale "log" NPoints 100'};
% define a callback function updating Range.Res
% with fitness function based on Range.val
RunExp=@(x, ~)setfield(x,'Res', abs(sqrt(x.val(:,1)+x.val(:,2).^3)-x.val(:,3)));
% Define genetic algorithm options
R0=struct('MaxGen',100,'PopSize',25,'MatSize',10,'NbTour',4, . . 
    'RatioMut',0.4,'RunExp',RunExp,'Optim','min');
% Run genetic algorithm
Range=fe_range('GeneLoop', par,RO);
```


labFcn

Loop
Loop the generic handler of parametric studies.

- The outer loop performs a loop on rows of Range.val (design points)
- For each design point, a loop on levels is performed. At a given level, an action is performed if . param.lab.SetFcn=\{'FcnName', 'Command'\} is defined. When aggregating parameters of a given level (typically with a LabCfg parameter), it is expected that only the configuration parameter has a SetFcn and fe_range ValEvtMerge is called.
- Range.param.MainFcn=\{'FcnName', 'Command'\} is used to implement standard methods.

Standard calls are:

```
fe_range('Loop',Range,RO)
```

fe_range('Loop', Range,UI,RO)
RO is

- .restart do a restart.
- . StepStart defines the minimum step level to be computed. If omitted starts at 1.
- . nSteps defines the maximum step level to be computed. If omitted, all steps are computed.
- .Verbose define the verbosity level. 0 by default.
- .WaitAt can be used to generate wait files at a given step number. It is then possible to open MATLAB slaves that will consume waiting files present in a given directory by calling sdtjob('StudySlaveStart reset', pwd). This provides a simple mechanism for parallel exectution of a series of steps. It is however then expected that the step saves its results to a file that will not interact with other jobs.

```
Res
R1=fe_range('Res',R1,Range);
```

This command reshapes the last dimension of the result curve R1 according to the Range. For a grid DOE last dimension is split in as many dimensions as parameters. For a vector DOE, last dimension is only redefined by a cell array of labels defining each design point.

The following command options are available

- -varOnly to expand only varying parameters in Range. In such case, constant parameters are gathered in the last dimension of label RConst.
- -varname to only extract parameter name from Range. For this to be possible, this parameter must be gridded against the remaining ones.
- -noRConst not to keep dimension RConst when using -varOnly
- -noParLab not to forward parameter LabFcn that possibly exist in Range to the . Xlab curve entry.

Sel
This command allows selection of design points in a series of experiments described by a Range structure. The main output is the indices in Range.val rows corresponding to the sequential application of selection rules.

The selection rules a provided in a cell array of three columns and as many lines as rules to apply under the format \{param_name, 'rule', 'crit'; ...\}.
The following types of rules are supported, defined by a string,

- ismember applies selection by only taking the values specified using MATLAB ismember command. crit is then either a list of values (then corresponding to values appearing in the DOE table), or a cell array of values (then corresponding to the values in the DOE table where string values are used for pop style parameters. Regular expressions are supported for the pop entries, in which case the string must start by \# followed by the regular expression to apply.
- $\langle\rangle,,<=,\rangle=,==$ applies sampling by using the logical operator specified on the parameter values. crit is then a numerical value corresponding to the values appearing in the DOE table for all parameters.
- sort applies a sorting algorithm for a given parameter. crit is then either
- a string specifying an argument to the sort command of MATLAB, either ascend or descend. Support for pop types is provided based on alphabetical sorting.
- a function handle to a sorting function that will be called with the val or choices field of the parameter and that will rethrow the sorted values and the corresponding index to the unsorted values.
- a cell array callback with first field a function_handle that will be called, the second entry will be replaced by the val or choices field of the parameter, and any further entries provided.
- sortrows will perform a post-treatment of the sampled Range to the selection applied and output a java compatible table.

Excepted for sortrows, other rules are sequentially applied to the current sampled Range. Sorting is thus only fully effective if last performed.

The optional . SortCol field can be used to specify a reformatting of the indices as a multidimensional grid.

Stats

fe_range('Stats', UI, sel, RA);

This command can be used to call a stack of post-treatments for a subpart of all computation results that have been priorly scanned through the DirScan command, and then displayed in the RVar tab. Results of the Stats command is a Stats tab in the UI.

UI is the interface data (where the Stats tab will be displayed), that can be obtained through the MainFcn('ParamUI') command. If it is left empty (UI=[]), sdtroot interface is implicitely defined.
sel is a selection cell array to select a sub set of results in all scanned results. See Sel for more details. If sel is empty ($\mathrm{sel}=\{ \}$), all results are post-treated.

RA defines the post-treatments to be computed from selected results. It is a data structure with following fields:

- .SortCols defines a subset and the order of input parameters to consider for stats output or display. Parameters must be RVar parameters.
- .PostPar is a data structure with a .list field that defines the stack of post-treatments to be computed. PostPar.list is a cell array with as many rows as post-treatments to compute. Each row is of the form 'PostName' PostData. PostData is a cell array of the form \{cbk data\}.
- cbk is callback cell array of the form \{FcnHandle Arg1 Arg2 ...\}. The callback is called with [Full,Stat] $=f e v a l(\operatorname{cbk}\{1\}, \operatorname{obj} 0, \operatorname{evt} 0, \operatorname{cbk}\{2: e n d\}) ;$ obj0 contains the results read in the current mat result file and evt0 is a structure with evt0.j1 containing the indice in the results stack. There are 2 output arguments Full that should contain a
full signal (for example the observation of time deformation at sensors, ...) and Stats that should be a SDT curve table (1 or 2 dimensions) of scalar results (for example time statistics for time signals...).
- data is a cell array with as many rows as scalar results (1 by column in the Stats tab that will be displayed) to extract from the post-treatment result curve Stats. Each row is of the form i1 i2 CritFcn. i1 (resp. i2) can be either the row (resp column) indice of the scalar result in the Stats.Y table or the label of the row (resp column) in the Stat. $\mathrm{X}\{1\}$ abscissa (resp Stat. $\mathrm{X}\{2\}$). CritFcn is the handle of a criterion function that can be used to colorate cell in the result tab (for example a threshold function) and also to display boundary lines in iiplot displays (needs critfcn doc and example).

Simple

Generates a set of experiments with sequential variation of each parameter, the other ones being fixed to their nominal value. par has the same format than for the fe_range BuildGrid input. They may feature a field nom providing a nominal value to each parameter, if this field is omitted the nominal value is considered to be the starting value of the parameter. In the case where par has been defined as a string input, field nom is taken to be the cur input value.

```
par={'lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6',...
    'lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7'};
Range=fe_range('Simple',par);
```

UI Tree
Basic display of an experiment design as a tree. See also the sdtroot version.

```
par={'lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6',...
    'lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7'};
Range=fe_range('Simple',par);
fe_range('Tree',Range);
sdtroot('setRange',Range); % Initialize range in PA.Range
PA=sdtroot('PARAMVh');PA.Range
sdtroot('InitRange'); % Initialize display
```

Val
Val commands are used to ease range manipulations.

ValCell

r2=fe_range('ValCell', Range);
This command can be used to convert a Range. Val as a cell array with as many rows as Range.val and each row of the form param1, val1, param 2 val2, One can give ind as a 2 nd argument, with the indices of rows to convert.

fe_reduc

Purpose

Utilities for finite element model reduction.

Syntax

```
SE = fe_reduc('command options',model)
TR = fe_reduc('command options',model)
```


Description

fe_reduc provides standard ways of creating and handling bases (rectangular matrix T) of real vectors used for model reduction (see details in section 6.2). Input arguments are a command detailed later and a model (see section 7.6). Obsolete low level calls are detailed at the end of this section. Generic options for the command are

- -matdes can be used to specify a list of desired matrices. Default values are -matdes 21 for mass and stiffness, see details in section 4.8.8.
- -SE is used to obtain the output (reduced model) as a superelement SE. Details about the fields of superelement data-structures are given section section 6.3.2.
- model.Dbfile can be used to specify a -v7.3 .mat file to be used as database for out of core operations.
- -hdf is used to request the use of out of core operations.

When using a model with pre-assembled matrices in the . K field, boundary conditions must not be eliminated to avoid reassembly in fe_reduc which is indicated by the message Assembling model.

```
[SE,CE] = fe_case(model,'assemble -matdes 2 1 -SE -NoT');
SE=stack_set(SE,'case','Case 1',CE);
```

Accepted fe_reduc commands are

Static, CraigBampton

Static computes static or Guyan condensation. CraigBampton appends fixed interface modes to the static condensation.

Given a set of interface DOFs, indexed as I, and other DOFs C, the static responses to unit displacements are given by

$$
[T]=\left[\begin{array}{c}
T_{I} \tag{10.19}\\
T_{C}
\end{array}\right]=\left[\begin{array}{c}
I \\
-K_{C C}^{-1} K_{C I}
\end{array}\right]
$$

which is the static basis (also called constraint modes in the Component Mode Synthesis literature). For Craig-Bampton (6.107), one appends fixed interface modes (with $q_{I}=0$). Note that you may get an error if the interface DOFs do not constrain rigid body motion so that $K_{C C}$ is singular.

The interface DOFs should be specified using a DofSet case entry. The interface DOFs are defined as those used in the DofSet. The complementary DOF are determined by exclusion of the interface DOF from the remaining active DOFs.

```
model=demosdt('volbeam');
% Define interface to be xyz DOF at nodes 2,3
model=fe_case(model,'DofSet','IN', ...
    feutil('getdof',[2;3],[.01;.02;.03]));
% statically reduced model
ST=fe_reduc('Static',model);
% For Craig Bampton specify eigenvalue options
model=stack_set(model,'info','EigOpt',[5 10 0]);
CB=fe_reduc('CraigBampton', model);
```

Available command options are

- NM is the number of desired modes, which should be specified in an info, EigOpt stack entry which allow selection of the eigenvalue solver (default is 5 , Lanczos). Note that using $\mathrm{NM}=0$ corresponds to static or Guyan condensation.
- -SE is used to obtain the output as a superelement SE. Without this argument, outputs are the rather obsolete list [T,sdof,f,mr,kr] where f is the frequency of fixed interface modes.
- -shift allows the use of a non-zero shift in the eigenvalue solution for the fixed interface modes. The interior matrix $K_{c c}$ is only factored once, so using a shifted matrix may result in poor estimates of rigid body modes.
- -useDOF recombines the fixed interface modes to associate shape with a specific interior DOF. This can ease the manipulation of the resulting model as a superelement.
- -drill. Shell elements may not always use drilling stiffness (5 DOF rather than 6), which tends to cause problems when using 6 DOF interfaces. The option calls model.il=p_shell('SetDrill 0^{\prime}, model.il) to force the default 6 DOF formulations.
- -Load appends static correction for defined loads to the model.
mdl=fesuper(mdl, 'setTR', name, 'fe_reduc command') callsfe_reduc to assemble and reduce the superelement. For example
mdl=fesuper(mdl, 'SetTR', 'SE1', 'CraigBampton -UseDof -drill');
Switching to out of core solver using .mat files is based on the value of sdtdef ('OutOfCoreBufferSize') given in Mb. For a sufficiently large RAM, you may want to use larger values sdtdef('OutOfCoreBufferSize', 1024*8) for 8 GB.

```
Free ...
```

The standard basis for modal truncation with static correction discussed in section 6.2 .3 (also known as McNeal reduction). Static correction is computed for the loads defined in the model case (see fe_case. Accepted command options are

- EigOpt should be specified in an info, EigOpt stack entry. For backward compatibility these fe_eig options can be given in the command and are used to compute the modeshapes. In the presence of rigid body modes you must provide a mass shift.
- Float=1 is used to obtain the standard attachment modes 6.103) in the presence of rigid body modes. Without this option, fe_reduc uses shifted attachment modes (6.104), when a non zero shift is given in EigOpt. This default is typically much faster since the shifted matrix need not be refactored, but may cause problem for relatively large negative shifts.
Float=2 uses an inertia balancing with respect to computed modes.
- -SE is used to obtain the output as a superelement SE.
- -bset returns information about loads to be applied in a system where enforced motion fe_load DofSet) entries are defined.
- -FirstCB implements first order correction for damping terms associated with viscous or hysteretic damping.
dynamic w
[T,rbdof,rb]=fe_reduc('dynamic freq', ...) computes the dynamic response at frequency w to loads b . This is really the same as doing $\left(-\mathrm{w}^{\wedge} 2 * \mathrm{~m}+\mathrm{k}\right) \backslash \mathrm{b}$ but can be significantly faster and is more robust.
flex [,nr]
[T,rbdof,rb]=fe_reduc('flex', ...) computes the static response of flexible modes to load b (which can be given as bdof)

$$
\begin{equation*}
\left[K_{\text {Flex }}^{-1}\right][b]=\sum_{j=N R+1}^{N} \frac{\left\{\phi_{j}\right\}\left\{\phi_{j}\right\}^{T}}{\omega_{j}^{2}} \tag{10.20}
\end{equation*}
$$

where $N R$ is the number of rigid body modes. These responses are also called static flexible responses or attachment modes (when forces are applied at interface DOFs in CMS problems).

The flexible response is computed in three steps:

- Determine the flexible load associated to b that does not excite the rigid body modes $b_{\text {Flex }}=$ $\left([I]-\left[M \phi_{R}\right]\left[\phi_{R}^{T} M \phi_{R}\right]^{-1}\left[\phi_{R}\right]^{T}\right)[b]$
- Compute the static response of an isostatically constrained model to this load

$$
\left[q_{\text {Iso }}\right]=\left[\begin{array}{cc}
0 & 0 \tag{10.21}\\
0 & K_{\text {Iso }}^{-1}
\end{array}\right]\left[b_{\text {Flex }}\right]
$$

- Orthogonalize the result with respect to rigid body modes
$q_{\text {Flex }}=\left([I]-\left[\phi_{R}\right]\left[\phi_{R}^{T} M \phi_{R}\right]^{-1}\left[\phi_{R}^{T} M\right]\right)\left[q_{\text {Iso }}\right]$
where it clearly appears that the knowledge of rigid body modes and of an isostatic constraint is required, while the knowledge of all flexible modes is not (see [37] for more details).

By definition, the set of degrees of freedom R (with other DOFs noted I so) forms an isostatic constraint if the vectors found by

$$
\left[\phi_{R}\right]=\left[\begin{array}{c}
\phi_{R R} \tag{10.22}\\
\phi_{I s o R}
\end{array}\right]=\left[\begin{array}{c}
I \\
-K_{I s o}^{-1} K_{I s o R}
\end{array}\right]
$$

span the full range of rigid body modes (kernel of the stiffness matrix). In other words, displacements imposed on the DOFs of an isostatic constraint lead to a unique response with no strain energy (the imposed displacement can be accommodated with a unique rigid body motion).

If no isostatic constraint DOFs rdof are given as an input argument, a lu decomposition of k is used to find them. rdof and rigid body modes rb are always returned as additional output arguments.

The command flexnr can be used for faster computations in cases with no rigid body modes. The static flexible response is then equal to the static response and fe_reduc provides an optimized
equivalent to the Matlab command $k \backslash b$.
rb
[rb,rbdof]=fe_reduc('rb',m,k,mdof,rbdof) determines rigid body modes (rigid body modes span the null space of the stiffness matrix). The DOFs rbdof should form an isostatic constraint (see the flex command above). If rbdof is not given as an input, an LU decomposition of k is used to determine a proper choice.

If a mass is given (otherwise use an empty [] mass argument), computed rigid body modes are mass orthonormalized $\left(\phi_{R}^{T} M \phi_{R}=I\right)$. Rigid body modes with no mass are then assumed to be computational modes and are removed.

```
obsoletem,k,mdof (obsolete format)
```

Low level calling formats where matrices are provided are still supported but should be phased out since they do not allow memory optimization needed for larger models.
m mass matrix (can be empty for commands that do not use mass)
$\mathrm{k} \quad$ stiffness matrix and
mdof associated DOF definition vector describing DOFs in m and k. When using a model with constraints, you can use mdof=fe_case(model, 'gettdof').
b input shape matrix describing unit loads of interest. Must be coherent with mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have different length)
rdof contains definitions for a set of DOFs forming an iso-static constraint (see details below).
When rdof is not given, it is determined through an LU decomposition done before the usual factorization of the stiffness. This operation takes time but may be useful with certain elements for which geometric and numeric rigid body modes don't coincide.

For CraigBampton, the calling format was
fe_reduc('CraigBampton NM Shift Options',m,k,mdof,idof);

See also

fe2s.s, fe_eig, section 6.2

fe_sens

Purpose

Utilities for sensor/shaker placement and sensor/DOF correlation.

Syntax

Command dependent syntax. See sections on placement and correlation below.

Placement

In cases where an analytical model of the structure is available before a modal test, you can use it for test preparation, see section 3.1 .3 and the associated d_cor ('TutoSensPlace') demo. fe_sens provides sensor/shaker placement methods.

InAcceptable

Command InAcceptable defines a set of acceptable sensors measuring normal displacement on a surface. This is typically used for hammer testing where duality/reciprocity is used to place sensors that are then used as impact locations (while shaker placement to define locations of reference accelerometers). Normal displacement is also typical for shaker placement.

Syntax is model=fe_sens('InAcceptable', model) ; with model a standard SDT model. The output model is the same model with a SensDof case entry named Acceptable containing the surface normal displacement observation, and a FaceId set named AcceptableMap containing the faces selected for the observation.

The main advantage of this command is the possibily to restrict the acceptable positions by using a third argument structure to possibly alter selection,

- . sel to provide a FindElt model selection on which the search is performed. By default a selface selection is performed.
- .EdgeTol to remove sharp edges. Shaker positioning is indeed impossible or difficult on nodes placed on sharp edges. Field .EdgeTol if present is a numeric value taken as an angle threshold in degrees. Facets showing angles on edges with others facets over the given threshold are eliminated.
- .radius to restrict the search to element groups (in the SDT terms, see elt) with a significant spatial span. If present, field .radius is a numeric threshold taken as the miminum sphere radius in which groups should not fit.

Example:
\qquad

```
% Find acceptable position for shaker placement
demosdt('demoubeam'); cf=feplot; def=cf.def;
RO=struct('sel','selface', ...
    'EdgeTol', 20);
model=cf.mdl.GetData; % Temporary model
model=fe_sens('InAcceptable',cf.mdl,RO);
% display model with new stack entries
feplot('initmodel',model)
% display added set
cf.sel='setname AcceptableMAP';
% display added SensDof entry
fecom(cf,'curtabCases','Acceptable');fecom(cf,'proviewon');
```

InGetDn
model=fe_sens('InGetDn', model, def); appends normal displacement associated with DOF . 19. model is a FEM model, def is a curve defined on the model. By default, this command expects to find the SensDof entry Acceptable generated by fe_sens InAcceptable. One can however provide a custom observation using a third agument SensDofName as string defining a SensDof entry in model.

By default the output is model with added stack entries

- curve, InDef providing the def structure with added observations on DOF . 19 .
- info, SensDofName providing the observation structure used. Note that SensDofName is here the name provided in third argument with default set to Acceptable.

The following command options are available

- -def outputs the def structure with added observations on DOF . 19 instead of model.
- -d19 only generates the def output on DOF .19.

The follwing example is based on the pre-treatment performed by fe_sens InAcceptable.

```
% Add additional nodal observations to an existing curve
% Normal displacement appended for shaker placementp procedures
model=fe_sens('InGetDn',model,def);
d1=stack_get(model,'curve','InDef','get')
```

indep
sdof=fe_sens ('indep', DEF) uses the effective independence algorithm [14] to sort the selected sensors in terms of their ability to distinguish the shapes of the considered modes. The output sdof is the DOF definition vector cdof sorted according to this algorithm (the first elements give the best locations).

See example in the d_cor ('TutoSensPlace') demo. The mseq algorithm is much faster and typically gives better results.

mseq

sdof $=$ fe_sens('mseq Nsens target',DEF,sdof0) places Nsens sensors, with an optional initial set sdof0. The maximum response sequence algorithm [49] used here can only place meaningfully NM (number of modes in DEF) sensors, for additional sensors, the algorithm tries to minimize the off-diagonal auto-MAC terms in modes in DEF.def whose indices are selected by target.

```
[FEM,def]=demosdt('demo gartfe');
def=fe_def('subdef',def,6:15); % Keep ten modes
d1=fe_def('subdof',def,[.01;.02;.03]) % Keep translations
% Select subpart as target location
d1=fe_def('subdof',d1,feutil('findnode group 4:6',FEM));
sdof= fe_sens('mseq 10',def);
FEM=fe_case(FEM,'sensdof','Test',sdof);
feplot(FEM);fecom('curtabCase -viewOn','Test');
% see also garsens demo
```

ma[,mmif]
[sdof,load] = fe_sens('ma val', po, cphi,IndB,IndPo,Ind0)
Shaker placement based on most important components for force appropriation of a mode. The input arguments are poles po, modal output shape matrix cphi, indices IndB of sensor positions where a collocated force could be applied, IndPo tells which mode is to be appropriated with the selected force pattern. Ind0 can optionally be used to specify shakers that must be included.
$\operatorname{sdof}(:, 1)$ sorts the indices IndB of positions where a force can be applied by order of importance. $\operatorname{sdof}(:, 2)$ gives the associated MMIF. load gives the positions and forces needed to have a MMIF below the value val (default 0.01). The value is used as a threshold to stop the algorithm early. ma uses a sequential building algorithm (add one position a time) while mmif uses a decimation
strategy (remove one position at a time).

Correlation

fe_sens provides a user interface that helps obtaining test/analysis correlation for industrial models. To get started you can refer to the following sections

- defining a wire-frame with translation sensors in section 2.7.1 and section 2.7.2
- adding sensors to a FEM as a SensDof entry is illustrated in the topology correlation tutorial section 3.1.

Commands supported by fe_sens are

basis

These commands are used to handle cases where the test geometry is defined in a different frame than the FEM. An example is detailed in section 3.1.2.

BasisEstimate guesses a local coordinate system for test nodes that matches the FEM model reasonably and displays the result in a fashion that lets you edit the estimated basis. Arguments are the model, and the name of the SensDof entry containing a test frame.

```
model = fe_sens('basisEstimate',model,'Test');
```

A list of node pairs in the FEM and test frames can be provided as an additional argument to improve results. The list is a two columns matrix containing FEM (resp. test) NodeId in the first (resp. second) column. If four nodes are provided, the estimation is an exact triplet positioning, the first node being the origin and the 3 other being directions (must be non collinear). For shorter or longer node lists, the positioning is based on global distance minimization between paired nodes.

BasisEstimate2 uses another strategy to guess a reasonnable superposition of the test wireframe over the FEM, based on finding main directions (SVD of the node sets) and their corresponding orientations. It should be used rather than BasisEstimate when it is not expected that global coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions) of both the test and the FEM coincide.

Basis is used to set the local test basis in a script (see example in section 3.1.2). Once the script is set, command option -noShow allows not printing the setting script to the screen.

BasisToFEM is used to transform the SensDof entry to FEM coordinates. This transformation is done after basis adjustment and makes verification easier by clarifying the fact that the sens.tdof uses the 5 column format with measurement directions given in the FEM format. The only reference to test is the identifier in sens.tdof $(:, 1)$ which is kept unchanged and thus where a 1.01 will refer to test direction x which may be another direction in the FEM.

SensMatch, sens, ...
For the basic definition of translation sensors is associated with cell arrays giving \{'SensId', 'x', 'y', 'z', 'DirSpec'\}, as detailed in section 4.6.2.
The building of observation matrices for SensDof entries is now described under sensor SensMatch (building topology correlation to locate test nodes in the FEM model) and sensor Sens (building of the observation matrix after matching). Please read section 4.6.4 for more details.

The obsolete near,rigid, arigid commands are supported through SensMatch calls.

```
tdof, ...
```

tdof $=$ fe_sens('tdof', sens.tdof) returns the 5 column form of tdof if sens.tdof is defined as a DOF definition vector. For more details see sens.tdof, section 2.7 for test geometry definition, and section 4.6 for general sensor definitions in FEM models.
sens=fe_sens('tdoftable', tcell,sens); is used to generate a group of sensors from a table a illustrated in section 4.6.2. The sens may be omitted of all the information is given in the table. The command option InFEM is used to generate sensors that use FEM degree of freedom.
fe_sens('tdoftable', model, 'SensDofEntry'); is used to generate the table description of the given group of sensors (with no output argument, the table is displayed).

links

fecom('ShowLinks Sensors') generates a plot with the mode wire-mesh associated with the SensDof entry Sensors.

For older models where the wire frame is included in the model with a negative EGID, fecom('ShowLinks') still generates a standard plot showing the FEM as a gray mesh, the test wireframe as a red mesh, test/FEM node links as green lines with end circles, and rotation interpolation links as blue lines with cross markers.

WireExp

def $=$ fe_sens('wireexp', sens) uses the wire-frame topology define in sens to create an interpolation for un-measured directions. For a tutorial on this issue see section 3.3.2.

The following example applies this method for the GARTEUR example. You can note that the in-plane bending mode (mode 8) is clearly interpolated with this approach (the drums of the green deformation have global motion rather than just one point moving horizontally).

```
[TEST,test_mode]=demosdt('demo gartte wire');
TR=fe_sens('wireexp',TEST);
cf=feplot;cf.model=TEST;fe_sens('WireExpShow',cf,TR)
pause %Use +/- to scan trough deformations as a verification
cf.def(1)=test_mode;
cf.def(2)={test_mode,TR};
fecom(';show2def;ScaleEqual;ch8;view2');
legend(cf.o(1:2),'Nominal','Wire-exp')
```

The command builds default properties associated with the wire frame (beams properties for segments, shells properties for surfaces, elastic properties for volumes). In some cases you may get better properties by defining properties yourself (see section 7.4 and section 7.3).

Test mesh handling

fe_sens provides commands dedicated to test mesh manipulations prior to correlation.

MeshProject

TEST=fe_sens('MeshProject', TEST, ' x ', [x 1 x 2 x 3],...) ; Projects the test mesh from a basis declaration. This allows keeping a test mesh in a specific basis for reuse in different FEM. Usual options are x, y, origin, scale. The command then defines a basis comptatible with the input arguments and projects nodes and tdof in the mesh output.

```
TEST=fe_sens('MeshProject',TEST,...
{'x', [-0.0724899 0.0460858 -0.996304], ... % x_test in FEM coordinates
    'y', [-0.0846775 0.995041 0.0521884], ... % y_test in FEM coordinates
    'origin',[182.78955815663335 25.33640608720782 -1.0],... % test origin in FEM coor
    'scale', [1]};
```


MeshSub

T1=fe_sens('MeshSub', TEST, NodeSel); Generates a test mesh T1 from a node selection from the global test mesh TEST. Remaining edges of cut surface elements will be kept as beams.

Section 4.6, femesh, fe_exp, fe_c ii_mac, ii_comac

fe_simul

Purpose

High level access to standard solvers.

Syntax

```
[Result,model] = fe_simul('Command',MODEL,OPT)
```


Description

fe_simul is the generic function to compute various types of response. It allows an easy access to specialized functions to compute static, modal (see fe_eig) and transient (see fe_time) response. A tutorial may be found in section 4.8 .
Once you have defined a FEM model (section 4.5), material and elements properties (section 4.5.1), loads and boundary conditions (see fe_case, calling fe_simul assembles the model (if necessary) and computes the response using the dedicated algorithm.

Note that you may access to the fe_simul commands graphically with the simulate tab of the feplot GUI. See tutorial (section 4.8) on how to compute a response.

Input arguments are :

- MODEL a standard FEM model data structure with loads, boundary conditions, ... defined in the case. See section 4.5 (tutorial), fe_case for boundary conditions, fe_load for loads, ...
- OPT is an option vector or data structure used for some solutions. These may also be stored as model.Stack entries.

Accepted commands are

- Static: computes the static response to loads defined in the Case. no options are available for this command

```
model = demosdt('demo ubeam');cf=feplot;cf.model=model;
data = struct('sel','GroupAll','dir',[1 0 0]);
model = fe_case(model,'FVol','Volume load',data);
[cf.def,model]=fe_simul('static',model);
```

- Mode : computes normal modes, fe_eig options can be given in the command string or as an additional argument. For modal computations, opt=[method nm Shift Print Thres] (it is the same vector option as for fe_eig). This an example to compute the first 10 modes of a 3D beam :

```
model = demosdt('demo ubeam');cf=feplot;cf.model=model;
model=stack_set(model,'info','EigOpt',[6 10 0 11]);
[cf.def,model]=fe_simul('mode',model);
```

- DFRF: computes the direct response to a set of input/output at the frequencies defines in Stack.

```
femesh('reset'); model = femesh('testubeamt');
model=fe_case(model,'FixDof ', 'Clamped end', 'z==0');
r1=struct('DOF',365.03,'def',1.1); % 1.1 N at node 365 direction z
model=fe_case(model,'DofLoad','PointLoad',r1);
model= stack_set(model,'info','Freq',1:10);
def=fe_simul('DFRF',model);
```

One can define a frequency dependence of the load using a curve (see section 7.9 for more detail). For example:

```
model=fe_curve(model,'set','input','Testeval (2*pi*t).`2');
model=fe_case(model,'setcurve', 'PointLoad','input');
```

- Time : computes the time response. You must specify which algorithm is used (Newmark, Discontinuous Galerkin dg, Newton, Theta, or NLNewmark). For transient computations, opt= [beta alpha t0 deltaT Nstep] (it is the same vector option as for fe_time). Calling time response with fe_simul does not allow initial condition. This is an example of a 1D bar submitted to a step input :

```
model=demosdt('demo bar');
[def,model]=fe_simul('time newmark',model,[.25 .5 0 1e-4 50]);
def.DOF=def.DOF+.02;
cf=feplot;cf.model=model;cf.def=def;
fecom(';view1;animtime;ch20');
```


See also

```
fe_eig, fe_time, fe_mk
```


fe_stress

Purpose

Computation of stresses and energies for given deformations.

Syntax

```
Result = fe_stress('Command',MODEL,DEF)
    ... = fe_stress('Command',node,elt,pl,il, ...)
    ... = fe_stress( . . , mode,mdof)
```


Description

You can display stresses and energies directly using fecom ColorDataEner commands and use fe_stress to analyze results numerically. MODEL can be specified by four input arguments node, elt, pl and il (those used by fe mk, see also section 7.1 and following), a data structure with fields .Node, .Elt, .pl, .il, or a database wrapper with those fields.
The deformations DEF can be specified using two arguments: mode and associated DOF definition vector mdof or a structure array with fields .def and .DOF.

Ener [m,k]ElementSelection

Element energy computation. For a given shape, the levels of strain and kinetic energy in different elements give an indication of how much influence the modification of the element properties may have on the global system response. This knowledge is a useful analysis tool to determine regions that may need to be updated in a FE model. Accepted command options are

- -MatDesval is used to specify the matrix type (see MatType). -MatDes 5 now correctly computes energies in pre-stressed configurations.
- -curve should be used to obtain energies in the newer curveformat. Ek.X\{1\} gives as columns EltId, vol, MatId, ProId, GroupId so that passage between energy and energy density can be done dynamically.
- ElementSelection (see the element selection commands) used to compute energies in part of the model only. The default is to compute energies in all elements. A typical call to get the strain energy in a material of ID 1 would then be $\mathrm{R} 1=\mathrm{fe}$ _stress ('Ener -MatDes1 -curve matid1', model, def);

Obsolete options are

- m, k specify computation of kinetic or strain energies. For backward compatibility, fe_stress returns [StrainE,KinE] as two arguments if no element selection is given.
- dens changes from the default where the element energy and not energy density is computed. This may be more appropriate when displaying energy levels for structures with uneven meshes.
- Element energies are computed for deformations in DEF and the result is returned in the data structure RESULT with fields . data and .EltId which specifies which elements were selected. A .vol field gives the volume or mass of each element to allow switching between energy and energy density.

The strain and kinetic energies of an element are defined by

$$
E_{\text {strain }}^{e}=\frac{1}{2} \phi^{T} K_{\text {element }} \phi \quad \text { and } \quad E_{\text {kinetic }}^{e}=\frac{1}{2} \phi^{T} M_{\text {element }} \phi
$$

For complex frequency responses, one integrates the response over one cycle, which corresponds to summing the energies of the real and imaginary parts and using a factor $1 / 4$ rather than $1 / 2$.

feplot

feplot allows the visualization of these energies using a color coding. You should compute energies once, then select how it is displayed. Energy computation clearly require material and element properties to be defined in InitModel.

The earlier high level commands fecom ColorDatak or ColorDataM don't store the result and thus tend to lead to the need to recompute energies multiple times. The preferred strategy is illustrated below.

```
% Computing, storing and displaying energy data
    demosdt('LoadGartFe'); % load model,def
    cf=feplot(model,def);cf.sel='eltname quad4';fecom ch7
    % Compute energy and store in Stack
    Ek=fe_stress('ener -MatDes 1 -curve',model,def)
    cf.Stack{'info', 'Ek'}=Ek;
    % Color is energy density by element
    feplot('ColorDataElt -dens -ColorBarTitle "Ener Dens"',Ek);
    % Color by group of elements
    cf.sel={'eltname quad4', ... % Just the plates
    'ColorDataElt -ColorBarTitle "ener" -bygroup -edgealpha .1', ...
    Ek}; % Data with no need to recompute
    fecom(cf,'ColorScale One Off Tight') % Default color scaling for energies
```

Accepted ColorDataElt options are

- -dens divides by element volume. Note that this can be problematic for mixed element types (in the example above, the volume of celas springs is defined as its length, which is inappropriate here).
- -frac divides the result by the total energy (equal to the square of the modal frequency for normal modes).
- -byGroup sums energies within the same element group. Similarly -byProId and -byMatId group by property identifier. When results are grouped, the fecom('InfoMass') command gives a summary of results.

The color animation mode is set to ScaleColorOne.

Stress

out=fe_stress('stress CritFcn Options', MODEL,DEF,EltSel) returns the stresses evaluated at elements of Model selected by EltSel.

The CritFcn part of the command string is used to select a criterion. Currently supported criteria are
sI, sII, principal stresses from max to min. sI is the default.
sIII
mises Returns the von Mises stress (note that the plane strain case is not currently handled consistently).
-comp $i \quad$ Returns the stress components of index i. This component index is giving in the engineering rather than tensor notation (before applying the TensorTopology transformation).
Supported command Options (to select a restitution method, ...) are

- AtNode average stress at each node (default). Note this is not currently weighted by element volume and thus quite approximate. Result is a structure with fields .DOF and .data.
- AtCenter stress at center or mean stress at element stress restitution points. Result is a structure with fields .EltId and .data.
- AtInteg stress at integration points ($* \mathrm{~b}$ family of elements).
- Gstate returns a case with Case.GroupInfo\{jGroup,5\} containing the group gstate. This will be typically used to initialize stress states for non-linear computations. For multiple deformations, gstate the first nElt columns correspond to the first deformation.
- -curve returns the output using the curve format.

The fecom ColorDatastress directly calls fe_stress and displays the result. For example, run the basic element test q4p testsurstress, then display various stresses using

```
% Using stress display commands
q4p('testsurstress')
fecom('ColorDataStress atcenter')
fecom('ColorDataStress mises')
fecom('ColorDataStress sII atcenter')
```

To obtain strain computations, use the strain material as shown below.

```
% Accessing stress computation data (older calls)
    [model,def]=hexa8('testload stress');
    model.pl=m_elastic('dbval 100 strain','dbval 112 strain');
    model.il=p_solid('dbval 111 d3 -3');
    data=fe_stress('stress atcenter',model,def)
```


CritFcn

For stress processing, one must often distinguish the raw stress components associated with the element formulation and the desired output. CritFcn are callback functions that take a local variable r1 of dimensions (stress components \times nodes \times deformations) and to replace this variable with the desired stress quantity(ies). For example

```
% Sample declaration of a user defined stress criterium computation
    function out=first_comp(r1)
        out=squeeze(r1(1,:,:,:));
```

would be a function taking the first component of a computed stress. sdtweb fe_stress (''Principal'') provides stress evaluations classical for mechanics.

For example, a list of predefined CritFcn callback :

- Von Mises : CritFcn='r1=of_mk(''StressCrit'',r1,''VonMises'') ;lab=''Mises'';';
- YY component: CritFcn='r1=r1(2,:,:,:);lab=' 'Syy'';'

Redefining the CritFcn callback is in particular used in the StressCut functionality, see section 4.7

See also

fe_mk feplot, fecom

fe_time

Purpose

Computation of time and non linear responses.

Syntax

```
def=fe_time(model)
def=fe_time(TimeOpt,model)
[def,model,opt]=fe_time(TimeOpt,model)
model=fe_time('TimeOpt...',model)
TimeOpt=fe_time('TimeOpt...')
```


Description

fe_time groups static non-linear and transient solvers to compute the response of a FE model given initial conditions, boundary conditions, load case and time parameters. Note that you may access to the fe_time commands graphically with the simulate tab of the feplot GUI. See tutorial (section 4.8) on how to compute a response.

Solvers and options

Three types of time integration algorithm are possible: the Newmark schemes, the Theta-method, and the time Discontinuous Galerkin method. Implicit and explicit methods are implemented for the Newmark scheme, depending on the Newmark coefficients β and γ, and non linear problems are supported.

The parameters of a simulation are stored in a time option data structure Time0pt given as input argument or in a model.Stack entry info, TimeOpt. Initial conditions are stored as a curve, q0 entry.

The solvers selected by the string TimeOpt. Method are

- newmark linear Newmark
- NLNewmark non linear Newmark (with Newton iterations)
- StaticNewton static Newton
- Theta Theta-Method (linear)
- Euler method for first order time integration.
- dg Discontinuous Galerkin
- back perform assembly and return model, Case, opt.

Here is a simple example to illustrate the common use of this function.

```
model=fe_time('demo bar'); % build the model
% Define time options and use structure directly
opt=fe_time('TimeOpt Newmark . 25 . 5 0 1e-4 100');
def=fe_time(opt,model); % compute the response
% Store as model.Stack entry {'info','TimeOpt',opt}
model=stack_set(model,'info','TimeOpt',opt);
def=fe_time(model); % compute the response
```


TimeOpt

The TimeOpt data structure has fields to control the solver

- Method selection of the solver
- Opt numeric parameters of solver if any. For example for Newmark [beta gamma to deltaT Nstep]
- MaxIter maximum number of iterations.
- $n f$ optional value of the first residual norm. The default value is norm (fc) where $f_{c}=[b]\{u(t)\}$ the instant load at first time step. This is used to control convergence on load.
- IterInit,IterEnd callbacks executed in non linear solver iterations. This is evaluated when entering and exiting the Newton solver. Can be used to save specific data, implement modified solvers, ...
- Jacobian string to be evaluated to generate a factored jacobian matrix in matrix or ofact object ki. Defaults are detailed for each solver, see also NLJacobianUpdate if you have the non-linear vibration tools.
- JacobianUpdate controls the update of Jacobian in Newton and quasi-Newton loops. Use 1 for updates and 0 for a fixed Jacobian (default).
- Residual Callback evaluated for residual. The default residual is method dependent.
- InitAcceleration optional field to be evaluated to initialize the acceleration field.
- IterFcn string or function handle iteration (inner loop) function. When performing the time simulation initialization, the string will be replaced by the function handle (e.g. @iterNewton). Iteration algorithms available in fe_time are iterNewton (default for basic Newton and Newmark) and iterNewton_Sec which implements the Newton increment control algorithm.
- RelTol threshold for convergence tests. The default is the OpenFEM preference getpref('OpenFEM', 'THRESHOLD', 1e-6) ;
- TimeVector optional value of computed time steps, if exists TimeVector is used instead of deltaT, Nstep.
- AssembleCall optional callback for assembly, see nl_spring('AssembleCall'). When model and Case are provided as fully assembled, one can define the AssembleCall field as empty to tell fe_timenot to perform any assembly. Description of assemble calls can be found in section 4.8.8.
to control the output
- OutInd DOF output indices (see 2D example). This selection is based on the state DOFs which can be found using fe_case(model, 'GettDof').
- OutputFen string to be evaluated for post-processing or time vector containing the output time steps. Examples are given below.
- FinalCleanupFcn string to be evaluated for final post-processing of the simulation
- c_u, c_v, c_a optional observation matrices for displacement, velocity and acceleration outputs. See section 4.6.4 for more details on observation matrix generation.
- lab_u, lab_v, lab_a optional cell array containing labels describing each output (lines of observation matrices)
- NeedUVA [NeedU NeedV NeedA], if NeedU is equal to 1, output displacement, etc. The default is $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ corresponding to displacement output only.
- OutputInit optional string to be evaluated to initialize the output (before the time loop). The objective of this call is to preallocate matrices in the out structure so that data can be saved efficiently during the time integration. In particular for many time steps out. def may be very large and you want the integration to fail allocating memory before actually starting.
- SaveTimes optional time vector, saves time steps on disk
- Follow implements a timer allowing during simulation display of results. A basic follow mechanism is implemented (opt.Follow=1; to activate, see NLNewmark example below)). One can also define a simple waitbar with remaining time estimation, with:
opt.Follow='cingui(''TimerStartWaitBar-title"Progress bar example..."'')'; More elaborate monitoring are available within the SDT optional function nl_spring (seenl_spring) Follow .

Input and output options

This section details the applicable input and the output options.
Initial conditions may be provided in a model. Stack entry of type info named q0 or in an input argument q0. q0 is a data structure containing def and DOF fields as in a FEM result data structure (section 4.8). If any, the second column gives the initial velocity. If q0 is empty, zero initial conditions are taken. In this example, a first simulation is used to determine the initial conditions of the final simulation.

```
model=fe_time('demo bar');
TimeOpt=fe_time('TimeOpt Newmark . 25 . 5 0 1e-4 100');
TimeOpt.NeedUVA=[11 11 0}]\mathrm{ ; ;
% first computation to determine initital conditions
def=fe_time(TimeOpt,model);
% no input force
model=fe_case(model,'remove','Point load 1');
% Setting initial conditions
q0=struct('def',[def.def(:,end) def.v(:,end)],'DOF',def.DOF);
model=stack_set(model,'curve', 'q0', q0);
def=fe_time(TimeOpt,model);
```

An alternative call is possible using input arguments

```
def=fe_time(TimeOpt,model,Case,q0)
```

In this case, it is the input argument $q 0$ which is used instead of an eventual stack entry.
You may define the time dependence of a load using curves as illustrated in section 7.9 .
You may specify the time steps by giving the 'TimeVector'

```
TimeOpt=struct('Method','Newmark','Opt',[.25 .5 ],...
    'TimeVector',linspace(0,100e-4,101));
```

This is useful if you want to use non constant time steps. There is no current implementation for self adaptive time steps.

To illustrate the output options, we use the example of a 2 D propagation. Note that this example also features a time dependent DofLoad excitation (seefe_case) defined by a curve, (seefe_curve), here named Point load 1.

```
model=fe_time('demo 2d');
TimeOpt=fe_time('TimeOpt Newmark . 25 . 5 0 1e-4 50');
```

You may specify specific output by selecting DOF indices as below

```
i1=fe_case(model,'GettDof'); i2=feutil('findnode y==0',model)+.02;
TimeOpt.OutInd=fe_c(i1,i2,'ind');
model=stack_set(model,'info','TimeOpt',TimeOpt);
def=fe_time(model); % Don't animate this (only bottom line)
```

You may select specific output time step using TimeOpt.OutputFcn as a vector

```
TimeOpt.OutputFcn=[11e-4 12e-4];
TimeOpt=feutil('rmfield',TimeOpt','OutInd');
model=stack_set(model,'info','TimeOpt',TimeOpt);
def=fe_time(model); % only two time steps saved
```

or as a string to evaluate. In this case it is useful to know the names of a few local variables in the fe_time function.

- out the structure preallocated for output.
- $j 1$ index of the current step with initial conditions stored in the first column of out. def so store the current time step in out. $\operatorname{def}(:, j 1+1)$.
- u displacement field, v velocity field, a acceleration field.

In this example the default output function (for TimeOpt.NeedUVA=[1181 $\left.\begin{array}{ll}1 & 1\end{array}\right]$) is used but specified for illustration

```
TimeOpt.OutputFcn=['out.def(:,j1+1)=u;' ...
    'out.v(:,j1+1)=v;out.a(:,j1+1)=a;'];
model=stack_set(model,'info','TimeOpt',TimeOpt);
def=fe_time(model); % full deformation saved
```

This example illustrates how to display the result (seefeplot) and make a movie

```
cf=feplot(model,def);
fecom('ColorDataEvalA');
fecom(cf,'SetProp sel(1).fsProp','FaceAlpha',1,'EdgeAlpha',0.1);
cf.ua.clim=[0 2e-6];fecom(';view2;AnimTime;ch20;scd1e-2;');
st=fullfile(getpref('SDT','tempdir'),'test.gif');
fecom(['animMovie ' st]);fprintf('\nGenerated movie %s\n',st);
```

Note that you must choose the Anim:Time option in the feplot GUI.
You may want to select outputs using observations matrix

```
model=fe_time('demo bar'); Case=fe_case('gett',model);
i1=feutil('findnode x>30',model);
TimeOpt=fe_time('TimeOpt Newmark . 25 .5 0 1e-4 100');
TimeOpt.c_u=fe_c(Case.DOF,i1+.01); % observation matrix
TimeOpt.lab_u=fe_c(Case.DOF,i1+.01,'dofs'); % labels
def=fe_time(TimeOpt,model);
```

If you want to specialize the output time and function you can specify the SaveTimes as a time vector indicating at which time the SaveFcn string will be evaluated. A typical TimeOpt would contain

TimeOpt.SaveTimes=[0:Ts:TotalTime];
TimeOpt.SaveFcn='My_function(''Output' ', u, v, a, opt, out, j1, t) ;';

Cleanup

The field FinalCleanupFcn of the TimeOpt can be used to specify what is done just after the time integration.
fe_simul provides a generic clean up function which can be called using opt.FinalCleanupFcn='fe_simul(''fe_timeCleanup' ', model)';
If the output has been directly saved or from iiplot it is possible to load the results with the same display options than for the fe_timeCleanup using fe_simul('fe_timeLoad',fname)';

Some command options can be used:

- -cf i stores the result of time integration in the stack of iiplot or feplot figure number i. $i=-1$ can be specified to use current iiplot figure and $i=-2$ for current feplot figure. Displacements are stored in curve, disp entry of the stack. Velocities and accelerations (if any)
are respectively stored in the curve, vel and curve, acc stack entries. If command option -reset is present, existent stack entries (disp, vel, acc, etc. ...) are lost whereas if not stack entries name are incremented (disp(1), disp (2), etc. ...).
- '-ExitFcn"AnotherCleanUpFcn"' can be used to call an other clean up function just after fe_simul('fe_timeCleanUp') is performed.
- -fulldOF performs a restitution of the output on the unconstrained DOF of the model used by fe_time.
-restitFeplot adds a .TR field to the output to allow deformation on the fly restitution in feplot. These two options cannot be specified simultaneously.
- Command option -rethrow allows outputting the cross reference output data from iiplotpr feplot fif option -cf-1 or $-c f-2$ is used.

newmark

For the Newmark scheme, TimeOpt has the form

```
TimeOpt=struct('Method','Newmark','Opt',Opt)
```

where TimeOpt. Opt is defined by

```
[beta gamma tO deltaT Nstep]
```

beta and gamma are the standard Newmark parameters [37] ([00.5] for explicit and default at [. 25 .5] for implicit), to the initial time, deltaT the fixed time step, Nstep the number of steps.

The default residual is $r=\left(f t(j 1,:) * f c^{\prime}-v^{\prime} * c-u{ }^{\prime} * k\right)$ '; (notice the sign change when compared to NLNewmark).

This is a simple 1D example plotting the propagation of the velocity field using a Newmark implicit algorithm. Rayleigh damping is declared using the info, Rayleigh case entry.

```
model=fe_time('demo bar');
data=struct('DOF',2.01,'def',1e6,...
    'curve',fe_curve('test ricker dt=1e-3 A=1'));
model = fe_case(model,'DOFLoad','Point load 1',data);
TimeOpt=struct('Method','Newmark','Opt',[. 25 . 5 3e-4 1e-4 100],...
    'NeedUVA', [[1 1 1 0}])\mathrm{ );
def=fe_time(TimeOpt,model);
```

```
% plotting velocity (propagation of the signal)
def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;
feplot(model,def_v);
if sp_util('issdt'); fecom(';view2;animtime;ch30;scd3');
else; fecom(';view2;scaledef3'); end
```

dg
The time discontinuous Galerkin is a very accurate time solver [51] [52] but it is much more time consuming than the Newmark schemes. No damping and no non linearities are supported for Discontinuous Galerkin method.

The options are [unused unused to deltaT Nstep Nf], deltaT is the fixed time step, Nstep the number of steps and $N f$ the optional number of time step of the input force.

This is the same 1D example but using the Discontinuous Galerkin method:

```
model=fe_time('demo bar');
TimeOpt=fe_time('TimeOpt DG Inf Inf 0. 1e-4 100');
TimeOpt.NeedUVA=[11 1 0}]\mp@code{1
def=fe_time(TimeOpt,model);
def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;
feplot(model,def_v);
if sp_util('issdt'); fecom(';view2;animtime;ch30;scd3'); ...
else; fecom(';view2;scaledef3'); end
```


NLNewmark

For the non linear Newmark scheme, TimeOpt has the same form as for the linear scheme (method Newmark). Additional fields can be specified in the TimeOpt data structure

Jacobian	string to be evaluated to generate a factored jacobian matrix in matrix or ofact object ki. The default jacobian matrix is 'ki=ofact (model.K\{3\}+2/dt*model.K\{2\}' $+4 /(\mathrm{dt} * \mathrm{dt}) *$ model.K\{1\});'
Residual	Defines the residual used for the Newton iterations of each type step. It is typically a call to an external function. The default residual is 'r = model.K\{1\}*a+model.K\{2\}*v+model.K\{3\}*u-fc;' where $f c$ is the current external load, obtained using (ft $\left.(\mathrm{j} 1,:) * \mathrm{fc} \mathrm{c}^{\prime}\right)^{\prime}$ at each time step.
IterInit	evaluated when entering the correction iterations. This can be used to initialize tolerances, change mode in a co-simulation scheme, etc.
IterEnd	evaluated when exiting the correction iterations. This can be used to save specific data, ...
IterFcn	Correction iteration algorithm function, available are iterNewton (default when omitted) or iterNewton_Sec. Details of the implementation are given in the staticNewton below.
MaxIterSec	for iterNewton_Sec applications (see staticNewton).
ResSec	for iterNewton_Sec applications (see staticNewton).

Following example is a simple beam, clamped at one end, connected by a linear spring at other end and also by a non linear cubic spring. The NL cubic spring is modeled by a load added in the residual expression.

```
% Get simple test case for NL simulation in sdtweb demosdt('BeamEndSpring')
model=demosdt('BeamEndSpring'); % simple example building
opt=stack_get(model,'info','TimeOpt','GetData');
disp(opt.Residual)
opt.Follow=1; % activate simple monitoring of the
% number of Newton iterations at each time step
def=fe_time(opt,model);
```


staticNewton

For non linear static problems, the Newton solver iterNewton is used. TimeOpt has a similar form as with the NLNewmark method but no parameter Opt is used.

An increment control algorithm iterNewton_Sec can be used when convergence is difficult or slow (as it happens for systems showing high stiffness variations). The Newton increment Δq is then the first step of a line search algorithm to optimize the corrective displacement increment $\rho \Delta q, \rho \in \mathbf{R}$ in the iteration. This optimum is found using the secant iteration method. Only a few optimization iterations are needed since this does not control the mechanical equilibrium but only the relevance of the Newton increment. Each secant iteration requires two residual computations, which can be
costly, but more efficient when a large number of standard iterations (matrix inversion) is required to obtain convergence.

Fields can be specified in the TimeOpt data structure

Jacobian	defaults to 'ki=ofact(model.K\{3\});',
Residual	defaults to 'r $=$ model.K\{ 3$\} * u-f c ; '$
IterInit	and IterEnd are supported see fe_time TimeOpt

IterEnd
MaxIterSec

ResSec
Maximum secant iterations for the iterNewton_Sec iteration algorithm. The default is 3 when omitted.
Residual evaluation for the secant iterations of the iterNewton_Sec iteration algorithm. When omitted, fe_timetries to interpret the Residual field. The function must fill in the secant residual evaluation $r 1$ which two columns will contain the residual for solution rho(1)*dq and rho(2)*dq. The default ResSec field will be then 'r1(:,1) = model.K\{3\}*(u-rho(1)*dq)-fc; r1(:,2) = model. $K\{3\} *(u-r h o(2) * d q)-f c ;^{\prime}$.
Below is a demonstration non-linear large transform statics.

```
% Sample mesh, see script with sdtweb demosdt('LargeTransform')
model=demosdt('largeTransform'); %
% Now perform the Newton loop
model=stack_set(model,'info','TimeOpt', ...
    struct('Opt', [], 'Method', 'StaticNewton', ...
    'Jacobian','ki=basic_jacobian(model,ki,0.,0.,opt.Opt);',...
    'NoT',1, ... % Don't eliminate constraints in model.K
    'AssembleCall','assemble -fetimeNoT -cfield1', ...
    'IterInit','opt=fe_simul(''IterInitNLStatic'',model,Case,opt);'));
model=fe_case(model,'setcurve','PointLoad', ...
    fe_curve('testramp NStep=20 Yf=1e-6')); % 20 steps gradual load
def=fe_time(model);
cf=feplot(model,def); fecom(';ch20;scc1;colordataEvalZ'); % View shape
ci=iiplot(def);iicom('ch',{'DOF',288.03}) % View response
```

numerical damping for Newmark, HHT-alpha schemes
You may want to use numerical damping in a time integration scheme, the first possibility is to tune the Newmark parameters using a coefficient α such that $\beta=\frac{(1+\alpha)^{2}}{4}$ and $\gamma=\frac{1}{2}+\alpha$. This is known
to implement too much damping at low frequencies and is very depending on the time step [37].
A better way to implement numerical damping is to use the HHT- α method which applies the Newmark time integration scheme to a modified residual balancing the forces with the previous time step.

For the HHT- α scheme, TimeOpt has the form

```
TimeOpt=struct('Method','nlnewmark', 'Opt',Opt,...
    'HHTalpha',alpha)
```

where TimeOpt.Opt is defined by

```
[beta gamma tO deltaT Nstep]
```

beta and gamma are the standard Newmark parameters [37] with numerical damping, to the initial time, deltaT the fixed time step, Nstep the number of steps.

The automatic TimeOpt generation call takes the form [alpha unused to deltaT Nstep] and will compute the corresponding β, γ parameters.

This is a simple 1D example plotting the propagation of the velocity field using the HHT- α implicit algorithm:

```
model=fe_time('demo bar');
TimeOpt=fe_time('TimeOpt hht . }05\mathrm{ Inf 3e-4 1e-4 100');
TimeOpt.NeedUVA=[1 1 0}]\mathrm{ ;
def=fe_time(TimeOpt,model);
```

The call

```
TimeOpt=fe_time('TimeOpt hht .05 Inf 3e-4 1e-4 100');
```

is strictly equivalent to

```
TimeOpt=struct('Method','nlnewmark', . . .
    'Opt',[.275625 . 55 3e-4 1e-4 100],...
    'HHTalpha',.05);
```


Theta

The θ-method is a velocity based solver, whose formulation is given for example in [53, 54]. It considers the acceleration as a distribution, thus relaxing discontinuity problems in non-smooth dynamics. Only a linear implementation is provided in fe_time. The user is nevertheless free to implement a non-linear iteration, through his own IterFcn.

This method takes only one integration parameter for its scheme, θ set by default at 0.5 . Any values between 0.5 and 1 can be used, but numerical damping occurs for $\theta>0.5$.

The TimeOpt. Opt takes the form [theta unused to deltaT Nstep].
This is a simple 1D example plotting the propagation of the velocity field using the θ-Method:

```
model=fe_time('demo bar');
TimeOpt=fe_time('TimeOpt theta .5 0 3e-4 100');
def=fe_time(TimeOpt,model);
Euler
```

This method can be used to integrate first order problem of the form $M \dot{q}+K q=F$. One can use it to solve transient heat diffusion equation (see p_heat).
Integration scheme is of the form $q_{n+1}=q_{n}+(1-\theta) h \dot{q}_{n}+\theta h \dot{q}_{n+1}$
θ can be define in opt. Opt (1). Explicit Euler $(\theta=0)$ is not implemented at this time. Best accuracy is obtained with $\theta=\frac{1}{2}$ (Crank-Nicolson).

See also

fe_mi fe_load, fe_case

of time

Purpose

The of time function is a low level function dealing with CPU and/or memory consuming steps of a time integration.

The case sensitive commands are

lininterp	linear interpolation.
storelaststep	pre-allocated saving of a time step in a structure with fields initially built with struct('uva', [u,v, a], 'FNL', model. FNL)
interp	Time scheme interpolations (low level call).
-1	In place memory assignment.

lininterp

The lininterp command which syntax is
out $=$ of_time ('lininterp',table, val,last) ,
computes val containing the interpolated values given an input table which first column contains the abscissa and the following the values of each function. Due to performance requirements, the abscissa must be in ascending order. The variable last contains [i1 xi si], the starting index (beginning at 0), the first abscissa and coordinate. The following example shows the example of 2 curves to interpolate:

```
out=of_time('lininterp',[0 0 1;1 1 2;2 2 4],linspace(0,2,10)',zeros(1,3))
```

Warning : this command modifies the variable last within a given function this may modify other identical constants in the same m-file. To avoid any problems, this variable should be generated using zeros (the Matlab function) to assure its memory allocation independence.

The storelaststep command makes a deep copy of the displacement, velocity and acceleration fields (stored in each column of the variable uva.uva in the preallocated variables u, v and a following the syntax:

```
of_time('storelaststep',uva,u,v,a);
```


interp

This command performs transient numerical scheme response interpolations. It is used by fe_time when the user gives a TimeVector in the command. In such case the output instants do not corre-
spond to the solver computation instants, the approached output instants must thus be interpolated from the solver instants using the numerical scheme quadrature rules.

This command uses current solver instant $t 1$ and the last instant step t0 of the solver uva. The uva matrix is stored in Case and contains in each column, displacement, velocity and acceleration at to. The interpolation strategy that is different for each numerical scheme depends on the arguments given to of_time.

Warning : this command modifies out.def at very low level, out.def thus cannot be initialized by simple numerical values, but by a non trivial command (use zeros(1) instead of 0 for example) to ensure the unicity of this data in memory.

For a Newmark or HHT-alpha scheme, the low level call command is

```
of_time ('interp', out, beta,gamma,uva,a, t0,t1,model.FNL);
```

where beta and gamma are the coefficients of the Newmark scheme, first two values of opt. Opt.
Thus the displacement $\left(u_{1}\right)$ and velocity $\left(v_{1}\right)$ at time t1 will be computed from the displacement $\left(u_{0}\right)$, velocity $\left(v_{0}\right)$, acceleration $\left(a_{0}\right)$ stored in uva, the new acceleration a $\left(a_{1}\right)$, and the time step ($h=t 1-t 0$) as

$$
\left\{\begin{array}{l}
v_{1}=v_{0}+h(1-\gamma) a_{0}+h \gamma a_{1} \tag{10.23}\\
u_{1}=u_{0}+h v_{0}+h^{2}\left(\frac{1}{2}-\beta\right) a_{0}+h^{2} \beta a_{1}
\end{array}\right.
$$

NL force (model.FNL) is linearly interpolated.
For the Theta-Method scheme, the low level command is

```
of_time ('interp', out, opt.Opt(1),[],uva,v, t0,t1,model.FNL);
```

Thus the displacement $\left(u_{1}\right)$ at time t1 will be computed from the displacement $\left(u_{0}\right)$, velocity $\left(v_{0}\right)$, stored in uva, the new velocity $\mathrm{v}\left(v_{1}\right)$, and the time step $(h=t 1-t 0)$ as

$$
\begin{equation*}
u_{1}=u_{0}+h(1-\theta) v_{0}+h \theta v_{1} \tag{10.24}
\end{equation*}
$$

For the staticnewton method, it is possible to use the same storage strategy (since it is optimized for performance), using
of_time ('interp', out, [], [], [],u, t0,t1,model.FNL);
In this case no interpolation is performed.
\qquad
Please note that this low-level call uses the internal variables of fe_time at the state where is is evaluated. It is then useful to know that inside fe_time:

- current instant computed is time $\mathrm{tc}=\mathrm{t}(\mathrm{j} 1+1)$ using time step dt , values are $\mathrm{t} 0=\mathrm{tc}-\mathrm{dt}$ and $\mathrm{t} 1=\mathrm{tc}$.
- uva is generally stored in Case.uva.
- the current acceleration, velocity or displacement values when interpolation is performed are always a , v , and u .
- The out data structure must be preallocated and is modified by low level C calls. Expected fields are

```
def displacement output, must be preallocated with size
    length(OutInd) x length(data)
v velocity output, must be preallocated with size
length(OutInd) x length(data)
a
acceleration output (when computed) must be preallocated with size
length(OutInd) x length(data)
data column vector of output times
OutInd int32 vector of output indices, must be given
cur [Step dt], must be given
FNL possibly preallocated data structure to store non-linear loads.
    FNL.def must be length(model.FNL) by size(out.data,1) (or
    possibly size(out.FNL.data,1), in this case fieldnames must be
    def,DOF,data,cur)
```

- non linear loads in model. FNL are never interpolated.
-1
This command performs in place memory assignment of data. It is used to avoid memory duplication between several layers of code when computation data is stored at high level. One can thus propagate data values at low level in variables shared by several layers of code without handling output and updates at each level.

The basic syntax to fill-in preallocated variable $r 1$ with the content of $r 2$ is $i 0=0 f$ _time ($-1, r 1, r 2$); The output i0 is the current position in r 1 after filling with r 2 .

It is possible to use a fill-in offset i1 to start filling $r 1$ with $r 2$ from index position i1 : i0 = of_time([-1 i1],r1,r2);.

To avoid errors, one must ensure that the assigned variable is larger than the variable to transmit. The following example illustrates the use of this command.

```
% In place memory assignment in vectors with of_time -1
r1=zeros(10,1); % sample shared variable
r2=rand(3,1); % sample data
% fill in start of r1 with r2 data
of_time(-1,r1,r2);
% fill in start of r1 with r2 data and
% get current position in r1
i0=of_time(-1,r1,r2);
% iO is current pos
% fill in r1 with r2+1
% with a position offset
i0=of_time([-1 i0],r1,r2+1);
```


See also

fe_time

idcom

Purpose

UI command functions for standard operations in identification.

Syntax

idcom('CommandString');

Description

The idcom command should only be used for script purpose. Most commands correspond to the underlying button callbacks of the Ident table (see section 8.2.6). Chapter 2 presents the interactive way to perform a modal identification with SDT using of the dedicated dock Id.
idcom provides a simple access to standard operations in identification. The way they should be sequenced is detailed in section 2.5 which also illustrates the use of the associated GUI.
idcom is always associated with an iiplot figure. Information on how to modify standard plots is given under iicom. The datasets used by idcom are described in section 2.5 . Methods to access the data from the command line are described in section 2.1.2. Identification options stored in the figure are detailed under the idopt function.
idcom(ci) turns the environment on, idcom(ci, 'Off') removes options but not datasets.
The information given below details each command (see the commode help for hints on how to build commands and understand the variants discussed in this help). Without arguments idcom opens or refreshes the current idcom figure.

Commands

$\mathrm{e}[, i w]$
Single pole narrow-band model identification. e calls ii_poest to determine a single pole narrow band identification for the data set ci.Stack\{'test'\}.

A bandwidth of two percent of w is used by default (when i is not given). For $i<1$, the i specifies the half bandwidth as a fraction of the central frequency w. For i an integer greater than 5 , the bandwidth is specified as a number of retained frequency points.
The selected frequency band is centered around the frequency w. If w is not given, ii_poest will wait for you to pick the frequency with your mouse.

If the local fit does not seem very good, you should try different bandwidths (values of i).
The results are stored in ci.Stack\{ 'IdAlt'\} with a pole .po and residue .res field. FRFs are resynthesized into ci.Stack\{'IdFrf'\} (which is overlaid to ci.Stack\{'Test'\} in iiplot). If, based on the plot(s), the estimate seems good it should be added to the current pole set ci.Stack\{ 'IdMain'\} using ea.
ea
Add alternate poles to the main set. If appropriate modes are present in ci.Stack\{'IdAlt'\} (after using the e or f commands for example), they should be added to the main pole set ci.Stack\{ 'IdMain'\} using the ea command. These poles can then be used to identify a multiple pole broadband model with idcom est and idcom eup commands.

If all poles in ci.Stack\{'IdAlt'\} are already in ci.Stack\{'IdMain'\}, the two are only combined when using the eaf command (this special format is used to prevent accidental duplication of the nodes).
er [num i, f w]
Remove poles from ci.Stack\{'IdMain'\}. The poles to be removed can be indicated by number using 'er num i ' or by frequency using 'er $f w^{\prime}$ (the pole with imaginary part closest to w is removed). The removed pole is placed in ci.Stack\{'IdAlt'\} so that an eammand will undo the removal.
est[,local,localpole]
Broadband multiple pole identification without pole update. est usesid_rcto identify a model based on the complete frequency range. This estimate uses the current pole set ci.Stack\{'IdMain'\} but does not update it. The results are a residue matrix ci.Stack\{'IdMain'\}.res, and corresponding FRF ci.Stack\{'IdFrf'\} (which is overlaid to ci.Stack\{'Test'\} in iiplot). In most cases the estimate can be improved by optimizing the poles using the eup or eopt commands.
estLocal only estimates residues of poles in the range selected by ci. IDopt. You perform a series of local estimates over selected bands by providing these bands or using narrow band around each pole with estLocalPole.

```
gartid
idcom('wO');idcom est
def_global=ci.Stack{'IdMain'}; % broadband estimate
```

```
idcom('estlocal',{[6 7],[15 17],[31 38],[48 65]});
def_local=ci.Stack{'IdMain'}; % estimate by multiple local bands
```

eup dstep fstep [local, num i, iter j]

Update of poles. eup uses id_rc to update the poles of a multiple pole model based data within ci. IDopt. SelectedRange. This update is done through a non-linear optimization of the pole locations detailed in section 2.6.5. The results are updated modes ci.Stack\{'IdMain'\} (the initial ones are stored in ci.Stack\{'IdAlt'\}), and corresponding FRF ci.Stack\{'IdFrf'\} (which is overlaid in iiplot.

In most cases, eup provides significant improvements over the initial pole estimates provided by the e command. In fact the only cases where you should not use eup is when you have a clearly incomplete set of poles or have reasons to suspect that the model form used by id_rc will not provide an accurate broadband model of your response.

Default values for damping and frequency steps are 0.05 and 0.002 . You may specify other values. For example the command 'eup 0.050 .0 ' will only update damping values.

It is often faster to start by optimizing over small frequency bands while keeping all the poles. Since some poles are not within the selected frequency range they should not be optimized. The option local placed after values of dstep and fstep (if any) leads to an update of poles whose imaginary part are within the retained frequency band.

When using local update, you may get warning messages about conditioning. These just tell you that residues of modes outside the band are poorly estimated, so that the message can be ignored. While algorithms that by-pass the numerical conditioning warning exist, they are slower and don't change results so that the warning was left.

In some cases you may want to update specific poles. The option num i where i gives the indices in IdMain of the poles you want to update. For example 'eup 0.00 .02 num 12 ' will update the frequency of pole 12 with a step of 2%.

- The poles in ci.Stack\{'IdMain'\}.po are all the information needed to obtain the full model estimate. You should save this information in a text file (use idcom('TableIdMain') to generate a clean output) to be able to restart/refine your identification.
- You can get a feel for the need to further update your poles by showing the error and quality plots (see iiplot and section 2.2.2).
eopt [local, num i, seq]
Update of poles. eopt is similar to eup but uses id_rcopt to optimize poles. eopt is often more efficient when updating one or two poles (in particular with the eopt local command after selecting a narrow frequency band). eopt is guaranteed to improve the quadratic cost (3.3) so that using it rarely hurts.
eoptSeq seeks to optimize all poles of the band. This is commonly efficient when starting from stabilization results.

find

Find a pole. This command detects minima of the MMIF that are away from poles of the current model ci.Stack\{'IdMain'\}.po and calls ii_poest to obtain a narrow band single pole estimate in the surrounding area. This command can be used as an alternative to indicating pole frequencies with the mouse (ecommand). More complex automated model initialization will be introduced in the future.
f i
Graphical input of frequencies. $f i$ prompts the user for mouse input of i frequencies (the abscissa associated with each click is taken to be a frequency). The result is stored in the pole matrix ci.Stack $\{$ 'IdAlt'\} . po assuming that the indicated frequencies correspond to poles with 1% damping. This command can be used to create initial pole estimates but the command eshould be used in general.
dspi $n m$
Direct system parameter identification. dspi uses id_dspi to create a $n m$ pole state space model of Test. nm must be less than the number of sensors. The results are transformed to the residue form which gives poles and residues in IdMain, and corresponding FRF IdFrf (which is overlaid to Test in iiplot.

```
mass i
```

Computes the generalized mass at address i. If the identified model contains complex residues (ci.IDopt. Fit='Pos' or 'Complex'), res2nor is used to find a real residue approximation. For real residues, the mass normalization of the mode is given by the fact that for collocated residues reciprocity implies

$$
\begin{equation*}
c_{\text {Col }} \phi_{j}=\phi_{j}^{T} b_{\text {Col }}=\sqrt{R_{j \text { Col }}}=\left(m_{j \text { Col }}\right)^{-1 / 2} \tag{10.25}
\end{equation*}
$$

The mass at a given sensor i is then related to the modal output $c_{l} \phi_{j}$ of the mass normalized mode by $m_{l j}=\left(c_{l} \phi_{j}\right)^{-2}$. This command can only be used when collocated transfer functions are specified and the system is assumed to be reciprocal (see idopt).

```
poly nn nd
```

Orthogonal polynomial identification. poly uses id_poly to create a polynomial model of Test with numerators of degree $n n$ and denominators of degree $n d$. The corresponding FRFs are stored in IdFrf (which is overlaid to Test in iiplot).

Table,Tex] IIpo

Formatted printout of pole variables IIpo or IIpo1. With the Tex command the printout is suitable for inclusion in LATEX.

This command is also accessible from the idcom figure context menu.

See also

idcom, iicom, iiplot, id_rc, section 2.2

idopt

Purpose

handling of options used by the identification related routines.

Description

idopt is the function handling identification options. Identification options associated with idcom figures are used when generating new identifications. They should be modified using the ci.IDopt pointer or the IDopt tab in the figure. In the text output below

```
>> ci=idcom; ci.IDopt
    (ID options in figure(2)) =
    ResidualTerms : [ 0 | 1 (1) | 2 (s^-2) | {3 (1 s^-2)} | 10 (1 s)]
    DataType : [ {disp./force} | vel./force | acc./force ]
    AbscissaUnits : [ {Hz} | rd/s | s ]
    PoleUnits : [ {Hz} | rd/s ]
    SelectedRange : [ 1-3124 (4.0039-64.9998) ]
    FittingModel : [ Posit. cpx | {Complex modes} | Normal Modes]
    NSNA : [ 0 sensor(s) 0 actuator(s) ]
    Reciprocity : [ {Not used} | 1 FRF | MIMO ]
    Collocated : [ none declared ]
```

currently selected value are shown between braces $\}$ and alternatives are shown.
After performing an identification, the options used at the time are copied to the result. Thus the ci.Stack\{'IdMain'\}.idopt is a copy of the figure options when the identification was performed. Some manipulations possible with the res2nor,res2ss,id_nor, ... functions may require modifications of these options (which are different from the idcom figure options.

The SDT handle object used to store options is very permissive in the way to change values from the command line (for GUI operation use the IDopt tab). ci. IDopt. OptName=OptValue sets the option. OptName need only specify enough characters to allow a unique option match. Thus ci.IDopt.res and ci.IDopt.ResidualTerms are equivalent. Here are a few examples

```
demosdt('demoGartIdEst');ci=idcom;
ci.IDopt.Residual=0; % modify estimation default
ci.IDopt.Selected=[100 2000];
ci.IDopt.Po='Hz';
ci.IDopt % changed
ci.Stack{'IdMain'}.idopt % not changed until new identification
```

The following is a list of possible options with indications as to where they are stored. Thus
ci. IDopt.res=2 is simply a user friendly form for the old call ci. $\operatorname{IDopt}(6)=2$ which you can still use.

Res	0	Residual terms selection (stored in ci.IDopt (1)) and corresponding to 5.26 none
	1	Static correction (high frequency mode correction)
	2	Roll-off (s^{-2}, low frequency mode correction).
	3	Static correction and roll-off (default)
	10	1 and s, this correction is only supported by id_rc and should be used for identification in narrow bandwidth (see ii_poest for example)
Data	-i	An alternate format uses negative numbers with decades indicating powers (starting at s^{-2}). Thus Ass=-1101 means an asymptotic correction with terms in $s^{-2}, 1, s$ type (stored in ci.IDopt (2))
	0	displacement/force (default)
	1	velocity/force
	2	acceleration/force
Abscissa		units for vector w can be Hz, rad/s or seconds
Pole		units can be Hz or rad/s
		units are actually stored in ci.IDopt(3) with units giving abscissa units (01 w in Hertz, 02 w in rad/s, 03 w time seconds) and tens pole units (10 po in Hertz, 20 po in rad/s). Thus ci. IDopt (3)=12 gives w in rad/sec and po in Hz.
Selected		frequency range indices of first and last frequencies to be used for identification or display (stored in ci.IDopt (4:5))
Fitting		model (see res page 212, stored in ci.IDopt (6))
	0	positive-imaginary poles only, complex mode residue
	1	complex mode residue, pairs of complex-conjugate poles (default)
	2	normal mode residue
ns, na		number of sensors/actuators (outputs/inputs) stored in ci.IDopt (7:8))
Recip		method selection for the treatment of reciprocity (stored in ci.IDopt (12))
	1	means that only iC1 (ci.IDopt(13)) is declared as being collocated. id_rm assumes that only this transfer is reciprocal even if the system has more collocated FRFs
	na	(number of actuators) is used to create fully reciprocal (and minimal of course) MIMO models using id_rm na must match non-zero values declared in iCi.
		(with nc the number of collocated FRFs) is used to declare collocated FRFs while not enforcing reciprocity when using id_rm.
iC1		indices of collocated transfer functions in the data matrix (see the xf format page 214)

To make a copy of the data, and no longer point to the figure, use ci.IDopt.GetData.
iop2 = idopt returns a SDT handle to a set options that may differ from those of used by idcom See also
xfopt, idcom, iiplot

id_dspi

Purpose

Direct structural system parameter identification.

Syntax

[a,b,c,d] = id_dspi(y,u,w,idopt,np)

Description

The direct structural system parameter identification algorithm [55] considered here, uses the displacement frequency responses $y(s)$ at the different sensors corresponding to the frequency domain input forces $u(s)$ (both given in the xf format). For example in a SIMO system with a white noise input, the input is a column of ones $u=0$ enes(size(w)) and the output is equal to the transfer functions $y=x f$. The results of this identification algorithm are given as a state-space model of the form

$$
\left\{\begin{array}{c}
\dot{p} \tag{10.26}\\
\ddot{p}
\end{array}\right\}=\left[\begin{array}{cc}
0 & I \\
-K_{T} & -C_{T}
\end{array}\right]\left\{\begin{array}{c}
p \\
\dot{p}
\end{array}\right\}+\left[\begin{array}{c}
0 \\
b_{T}
\end{array}\right]\{u\} \quad \text { and }\{y\}=\left[\begin{array}{ll}
c_{T} & 0
\end{array}\right]\left\{\begin{array}{l}
p \\
\dot{p}
\end{array}\right\}
$$

where the pseudo-stiffness K_{T} and damping C_{T} matrices are of dimensions np by np (number of normal modes). The algorithm, only works for cases where np is smaller than the number of sensors (ci.IDopt.ns).
ci=iicom('curveload sdt_id');
R1=ci.Stack\{'Test'\};
[a,b, c, d] = id_dspi(R1.xf,ones(size(R1.w)),R1.w,R1.idopt,4);
For SIMO tests, normal mode shapes can then be obtained using
[mode,freq] $=\operatorname{eig}(-\mathrm{a}(\mathrm{np}+[1: \mathrm{np}], 1: \mathrm{np}))$ where it must be noted that the modes are not mass normalized as assumed in the rest of the Toolbox and thus cannot be used directly for predictions (with nor2xf for example). Proper solutions to this and other difficulties linked to the use of this algorithm (which is provided here mostly for reference) are not addressed, as the main methodology of this Toolbox id_rc, id_rm, and id_nor was found to be more accurate.

For MIMO tests, id_dspi calls id_rm to build a MIMO model.
The identification is performed using data within ci.IDopt. SelectedRange. y is supposed to be a displacement. If ci.IDopt.DataType gives y as a velocity or acceleration, the response is integrated to displacement as a first step.

See also

idopt, id_rc, id_rm, psi2nor, res2nor

id_nor

Purpose

Identification of normal mode model, with optimization of the complex mode output shape matrix.

```
NOR = id_nor(ci.Stack{'IdMain'})
NOR = id_nor( ... )
[om,ga,phib,cphi] = id_nor( ... )
[new_res,new_po] = id_nor( ... )
[ ...] = id_nor(IdResult,ind,opt,res_now)
```


Description

id_nor is meant to provide an optimal transformation (see details in [12] or section 2.8.3) between the residue (result of id_rc) and non-proportionally damped normal mode forms

$$
\{y(s)\}=\sum_{j=1}^{2 N} \frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}}\{u\} \quad \text { and } \begin{gather*}
{\left[I s^{2}+\Gamma s+\Omega^{2}\right]\{p\}=\left[\phi^{T} b\right]\{u\}} \tag{10.27}\\
\{y\}=[c \phi]\{p\}
\end{gather*}
$$

The output arguments are either

- the standard normal mode model freq, ga, phib, cphi (see nor) when returning 4 outputs.
- the associated normal model data structure NOR when returning one output.
- or the residues of the associated model new_res and poles po (see res page 212) when returning 2 outputs. With this output format, the residual terms of the initial model are retained.

The algorithm combines id_rm (which extracts complex mode output shape matrices $c \psi$ from the residues res and scales them assuming the system reciprocal) and psi2nor (which provides an optimal second order approximation to the set of poles po and output shape matrices $c \psi$).

Since the results of psi2nor can quite sensitive to small errors in the scaling of the complex mode outputs $c \psi$, an optimization of all or part (using the optional argument ind to indicate the residues of which poles are to be updated) collocated residues can be performed. The relative norm between the identified residues res and those of the normal mode model is used as a criterion for this optimization.

Three optimization algorithms can be selected using opt (1: id_min of the Structural Dynamics Toolbox, 2: fmins of Matlab, 3: fminu of the Optimization Toolbox). You can also restart the optimization using the residues old_res while still comparing the result with the nominal res using the call
[new_res,po] = id_nor(res,po,idopt,ind,opt,old_res)
\qquad

Notes

id_nor is only defined if IDopt. Reciprocity is 1 FRF or MIMO (12) and for cases with more sensors than modes (check IDopt. NSNA). id_nor may not work for identifications that are not accurate enough to allow a proper determination of normal mode properties.

In cases where id_nor is not applicable, normal mode residues can be identified directly using id_rc with IDoptFit='Normal' or an approximate transformation based on the assumption of proportional damping can be obtained with res2nor.
id_nor does not handle cases with more poles than sensors. In such cases res2nor can be used for simple approximations, or id_nor can be used for groups of modes that are close in frequency.

Residual terms can be essential in rebuilding FRFs (see figure above taken from demo_id) but are not included in the normal mode model (freq, ga, phib, cphi). To include these terms you can use either the residues new_res found by id_nor

```
xf = res2xf(new_res,po,w,idopt)
```

or combine calls to nor 2 xf and res 2 xf

```
xf = nor2xf(om,ga,phib,cphi,w) + ...
    res2xf(res,po,w,idopt,size(po,1)+1:size(res,1))
```


Example

```
ci=demosdt('demo gartidest')
if ci.Stack{'Test'}.dof(4,2)~=1012.03;% Needed to have positive driving point FRFs
    ci.Stack{'Test'}.xf=-ci.Stack{'Test'}.xf;
    ci.Stack{'Test'}.dof(:,2)=1012.03; idcom('est');
end
nor = id_nor(ci.Stack{'IdMain'});
ci.Stack{'curve','IIxh'}=nor2xf(nor,ci.Stack{'Test'}.w,'hz struct acc');
iicom('iixhon')
```


See also

id_rc, res2nor, id_rm, psi2nor, demo_id

id_poly

Purpose

Parametric identification using xf-orthogonal polynomials.

Syntax

[num, den] = id_poly (xf,w,nn,nd)
[num,den] = id_poly(xf,w,nn,nd,idopt)

Description

A fit of the provided frequency response function $x f$ at the frequency points w is done using a rational fraction of the form $H(s)=\operatorname{num}(s) / \operatorname{den}(s)$ where num is a polynomial of order nn and den a polynomial of order nd. The numerically well conditioned algorithm proposed in Ref. [8] is used for this fit.

If more than one frequency response function is provided in $x f$, the numerator and denominator polynomials are stacked as rows of num and den. The frequency responses corresponding to the identified model can be easily evaluated using the command qbode (num, den,w).

The identification is performed using data within IDopt. SelectedRange. The idcom poly command gives easy access to this function.

See also

id_rc, invfreqs of the Signal Processing Toolbox.

id_rc, id_rcopt

Purpose

Broadband pole/residue model identification with the possibility to update an initial set of poles.

```
[res,po,xe] = id_rc (xf,po,w,idopt)
[res,new_po,xe] = id_rc (xf,po,w,idopt,dst,fst)
[res,new_po,xe] = id_rcopt(xf,po,w,idopt,step,indpo)
```


Description

This function is typically accessed using the idcom GUI figure as illustrated in section 2.2 .
For a given set of poles, idrc (xf,po,w,idopt) identifies the residues of a broadband model, with poles po, that matches the FRFs xf at the frequency points w. This is implemented as the idcom est command and corresponds to the theory in section 2.6.5.

As detailed in section 2.6, the poles can (and should) be tuned 9 using either id_rc (ad-hoc dichotomy algorithm, accessible through the idcom eup command) or id_rcopt (gradient or conjugate gradient minimization, accessible through the idcom eopt command). id_rc performs the optimization when initial step sizes are given (see details below).

After the identification of a model in the residue form with id_rc, other model forms can be obtained using id_rm (minimal/reciprocal residue model), res2ss (state-space), res2xf (FRF) and res2tf (polynomial), id_nor (normal mode model).
The different input and output arguments of id_rcand id_rcopt are

xf

Measured data stored in the xf format where each row corresponds to a frequency point and each column to a channel (actuator/sensor pair).

Although it may work for other types of data, id_rc was developed to identify model properties based on transfer functions from force actuators to displacement sensors. IDopt(2) lets you specify that the data corresponds to velocity or acceleration (over force always). An integration (division by $s=j \omega$) is then performed to obtain displacement data and a derivation is performed to output estimated FRFs coherent with the input data (the residue model always corresponds to force to displacement transfer functions).

The phase of your data should loose 180° phase after an isolated lightly damped but stable pole. If phase is gained after the pole, you probably have the complex conjugate of the expected data.

If the experimental set-up includes time-delays, these are not considered to be part of the mechanical
system. They should be removed from the data set xf and added to the final model as sensor dynamics or actuator dynamics . You can also try to fit a model with a real poles for Pade approximations of the delays but the relation between residues and mechanical modeshapes will no longer be direct.
w
Measurement frequencies are stored as a column vector which indicates the frequencies of the different rows of xf. IDopt(3) is used to specify the frequency unit. By default it is set to 11 (FRF and pole frequencies in Hz) which differs from the $S D T$ default of $\mathrm{rad} / \mathrm{s}$ used in functions with no frequency unit option. It is assumed that frequencies are sorted (you can use the Matlab function sort to order your frequencies).

```
po, new_po
```

Initial and updated pole sets. id_rc estimates residues based on a set of poles po which can be updated (leading to new_po, see ii_pof for the format). Different approaches can be used to find an initial pole set:

- create narrow-band single pole models ii_poest available as the idcom ecommand).
- pick the pole frequencies on plots of the FRF or MMIF and use arbitrary but realistic values (e.g. 1%) for damping ratios (ii_fin available as the idcom f command).
- use pole sets generated by any other identification algorithm id_poly and id_dspi for example).

Poles can be stored using different formats (see ii_pof) and can include both conjugate pairs of complex poles and real poles. id_rc uses the frequency/damping ratio format).

The id_rc algorithms are meant for iterations between narrow-band estimates, used to find initial estimates of poles, and broadband model tuning using id_rc or id_rcopt. To save the poles to a text file, use idcom Table. If these are your best poles, id_rc will directly provide the optimal residue model. If you are still iterating you may replace these poles by the updated ones or add a pole that you might have omitted initially.

IDopt

Identification options (see idopt for details). Options used by id_rc are Residual, DataType, AbscissaUnits, PoleUnits, SelectedRange and FittingModel.

The definition of channels in terms of actuator/sensor pairs is only considered by id_rm which should be used as a post-treatment of models identified with id_rc.
dstep, fstep (for id_rc)
Damping and frequency steps. To update pole locations, the user must specify initial step sizes on the frequency and damping ratio (as fractions of the initial values). id_rct then uses the gradient of the quadratic FRF cost to determine in which direction to step and divides the step size by two every time the sign changes. This approach allows the simultaneous update of all poles and has proved over the years to be extremely efficient.

For lightly damped structures, typical step values (used by the idcom command eup) are 10% on all damping ratios (dstep $=0.1$) and 0.2% on all frequencies (fstep $=0.002$). If you only want to update a few poles fstep and dstep can be given as vectors of length the number of poles in po and different step values for each pole.
idcom('eup 0.050 .002 local') can be used to specify dstep and fstep. The optional local at the end of the command specifies that zero steps should be used for poles whose resonance is outside the selected frequency band.

```
step, indpo (for id_rcopt)
```

Methods and selected poles. step specifies the method used for step length, direction determination method, line search method, reference cost and pole variations. You should use the default values (empty step matrix). indpo gives the indices of poles to be updated (po(indpo,:) for poles in format 2 are the poles to be updated, by default all poles are updated).

The idcom eopt command can be used to access id_rcopt, eoptlocal calls id_rcopt with indpo set to only update poles whose resonance is within the selected frequency band.

```
res
```

Residues are stored in the res format (see section 5.6). If the options IDopt are properly specified this model corresponds to force to displacement transfer functions (even if the data is acceleration or velocity over force). Experts may want to mislead id_rc on the type of data used but this may limit the achievable accuracy.
xe
Estimated FRFs correspond to the identified model with appropriate derivation if data is acceleration or velocity over force.

See also

idcom, id_rm, res2xf, res2ss
Tutorial section section 2.2
gartid and demo_id demonstrations

id_rm

Purpose

Create minimal models of MIMO systems and apply reciprocity constraints to obtain scaled modal inputs and outputs.

```
OUT = id_rm(IN,multi)
[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt)
[phib,cphi,new_res,new_po] = id_rm(Rres,po,ci.IDopt)
[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt,multi)
OUT = id_rm('Command',Curve) % See accepted commands at end of doc
```


Description

id_rm is more easily called using the idcom GUI figure Postprocessing tab, see section 2.8 .
IN is a data structure (see Shapes at DOFs). Required fields are IN.res residues, IN.po poles, and IN.idopt identification options. Options used by id_rm are .FittingModel (Posit, Complex or Normal modes), .NSNA (number of sensors/actuators), . Reciprocity (not used, 1 FRF or true MIMO), . Collocated (indices of colloc. FRF when using reciprocity).
multi is an optional vector giving the multiplicity for each pole in IN.po.
OUT is a structure with fields (this format is likely to change in the future)
.po poles with appropriate multiplicity
.def output shape matrix (CPSI)
.DOF Sensor DOFs at which .DEF is defined
.psib input shape matrix (PSIB)
.CDOF indices of collocated FRFs
.header header (5 text lines with a maximum of 72 characters)
The low level calls giving res, po and ci. IDopt as arguments are obsolete and only maintained for backward compatibility reasons.

As shown in more detail in section 2.8 , the residue matrix R_{j} of a single mode is the product of the modal output by the modal input. For a model in the residue form (residue res, poles po and options IDopt identified using id_rc for example), id_rm determines the modal input psib and output cpsi matrices such that

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{2 N} \frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}} \approx \sum_{j=1}^{2 N} \frac{\left[R_{j}\right]}{s-\lambda_{j}} \tag{10.28}
\end{equation*}
$$

The residues can be either complex mode residues or normal mode residues. In that case the normal mode input phib and output cphi matrices are real.

The new_res matrix is the minimal approximation of res corresponding to the computed input and output matrices. id_rm uses the number of sensors IDopt (7) and actuators IDopt (8).

For MIMO systems (with the both the number of sensors IDopt (7) and actuators IDopt (8) larger than 1), a single mode has only a single modal output and input which implies that the residue matrix should be of rank 1 (see section 2.8.1). Residue matrices identified with id_rc do not verify this rank constraint. A minimal realization is found by singular value decomposition of the identified residue matrices. The deviation from the initial model (introduced by the use of a minimal model with isolated poles) is measured by the ratio of the singular value of the first deleted dyad to the singular value of the dyad kept. For example the following output of id_rm

```
Po # freq mul Ratio of singular values to maximum
    1 7.10e+02 2 : 0.3000 k 0.0029
```

indicates that the ratio of the second singular value to the first is significant (0.3) and is kept, while the second dyad can be neglected (0.0029).

For a good identification, the ratios should be small (typically below 0.1). Large ratios usually indicate poor identification and you should update the poles using id_rcin a broad or narrow band update. Occasionally the poles may be sufficiently close to be considered as multiple and you should keep as many dyads as the modal multiplicity using the input argument multi which gives the multiplicity for each pole (thus the output shown above corresponds to a multiplicity of 2).

id_rm also enforces reciprocity conditions in two cases

- IDopt (12)=1. One transfer function is declared as being collocated. Reciprocity is only applied on the input and output coefficients linked to the corresponding input/output pair.
- IDopt (12) =na. As many collocated transfer functions as actuators are declared. The model found by id_rm is fully reciprocal (and minimal of course).
- in other cases IDopt (12) should be either 0 (no collocated transfer) or equal to -nc (nc collocated transfers but reciprocal scaling is not desired).

It is reminded that for a reciprocal system, input and output shape matrices linked to collocated inputs/outputs are the transpose of each other $\left(b=c^{T}\right)$. Reciprocal scaling is a requirement for the determination of non-proportionally damped normal mode models using id_nor.

In MIMO cases with reciprocal scaling, the quality indication given by id_rm is
Po\# freq mul sym. rel.e.

$$
1 \quad 7.10 \mathrm{e}+02 \quad 2: 0.0038 \quad 0.0057
$$

which shows that the identified residue was almost symmetric (relative norm of the anti-symmetric part is 0.0038), and that the final relative error on the residue corresponding to the minimal and reciprocal MIMO model is also quite small (0.0057).

Warnings

- id_rm is used by the functions: id_nor, res2nor, res2ss
- Collocated force to displacement transfer functions have phase between 0 and -180 degrees, if this is not true you cannot expect the reciprocal scaling of id_rm to be appropriate and should not use id_nor
- id_rm only handles complete MIMO systems with $N S$ sensors and $N A$ actuators.

PermuteIO

The C1=id_rm('permuteIO', C1) ; command renumbers transfer functions to use the reference order of sensors at each actuator in the case of hammer tests where there are more input locations than outputs.

FixSign

The C1=id_rm('FixSign', C1) ; applies sign changes on sensors and inputs to generate positive sign transfers or modeshapes.

Mass

id_rm('Mass', Id) ; is the low level implementation of generalized mass extraction.

See also

idcom, id_rc, id_nor, the demo_id demonstration

iicom

Purpose

UI command function for FRF data visualization.

Syntax

iicom CommandString
iicom(ci,'CommandString') \% specify target figure with pointer out = iicom('CommandString')

Description

iicom is a standard UI command function which performs operations linked to the data visualization within the iiplot interface. A tutorial can be found in section 2.1 .

Commands are text strings telling iicom what to do. If many iiplot figures are open, one can define the target giving an iiplot figure handle ci as a first argument.
iicom uses data stored in a stack (see section 2.1.2). iicom does not modify data. A list of commands available through iicom is given below. These commands provide significant extensions to capabilities given by the menus and buttons of the iiplot command figure.

Commands

command;

The commode help details generic command building mechanisms. Commands with no input (other than the command) or output argument, can be chained using a call of the form iicom ('; Com1; Com2'). commode is then used for command parsing.

```
cax i, ca+
```

Change current axes. cax i makes the axis i (an integer number) current. ca+ makes the next axis current. For example, iicom(';cax1;show rea;ca+;show ima') displays the real part of the current FRFs in the first axis and their imaginary part in the second. (See also the iicom Sub command). The button indicates the number of the current axis. Pressing the button executes the ca+ command.
ch+, ch-, ch[+,-]i : next/previous
Next/Previous $\boldsymbol{-} \boldsymbol{+}$. These commands/buttons are used to scan through plots of the same kind. For iiplot axes, this is applied to the current data sets. For feplot axes, the current deformation is changed. You can also increment/decrement channels using the + and - keys when the current axis is a plot axis or increment by more than 1 using iicom (' ch $+i^{\prime}$).
ch i, chc i, chall,.. select channel
Display channels/poles/deformations i. Channels refer to columns of datasets, poles or deformations. ch / chc respectively define the indices of the channels to be displayed in all /the current drawing axes. The vector of indices is defined by evaluating the string i. For example iicom ch [1:3], displays channels 1 to 3 in all axes.

For curve Multi-dim curve with dimension labels in the .Xlab field,ChAllMyLabel selects all channels associated with dimension MyLabel. This can be used to show responses at multiple operating conditions (typically stored as third or fourth dimension of curve.Y).

For multi-channel curves one can define the dimension name referring to the Xlab field in a cell array iicom(ci,'ch', 'Xlabname',i). For this to work properly note that all Xlabname entries must be different (e.g. several Unknown entries must thus be avoided).

```
% Build a multi-dim curve, see sdtweb('demosdt.m#DemoGartteCurve')
r1=demosdt('demoGartteCurve')
ci=iicom('curveInit','Example',r1);
iicom('ChAllzeta') % All channels that correspond to 'zeta' r1.Xlab{4}
% Cell selection with Xlab string and indices (each row picks a dimension)
iicom('ch',{'Output DOFs',4;'Input DOFs',[1,2]}) % Accessible with 'pick' button
iicom('curtabChannel')
```

Cursor, ods
The cursor is usually started with the axes context menu (right click on a given axis).
iicom CursorOnFeplotshows a cursor on the iiplot curve that let you show corresponding time deformation in feplot.
fecom Cursor NodeIiplot gives more details.
iicom('ods') provides an operational deflection shape cursor.

```
Curve [Init,Load,Save,Reset, ...]
```

These commands are used to manipulate datasets,
Most of them are of the form iicom('Curve...', CurveNames). Then CurveNames can be a string with a curve name, a cell array of string with curve names or a regular expression (beginning by \#) to select some curve names. If CurveNames is omitted, a curve a dialog box is opened to select targeted curves. Otherwise these commands can be accessed through the GUI, in the Stack tab of the iiplot properties figure.

- CurveInit is used to initialize a display with a new dataset. iicom('CurveInit', 'Name' , C1) is used to initialize a display with a new dataset. iicom('CurveInit','Name', C1) adds a 'curve', 'Name' entry and displays this set in a new tab. To add dans display multiple curves use

```
iicom('CurveInit',{'curve','N1',C1; 'curve','N2',C2})
```

The field PlotInfo can be used to control how this initial display is performed.

- CurveLoad lets you load datasets.
iicom('CurveLoad FileName') loads curves stored in Filename.
iicom('CurveLoad') opens a dialog box to choose the file containing curves to load. If the file contains multiple curves, one can select the curves to be loaded in a cell array given as a second argument. For example,
ci=iicom('CurveLoad', 'gartid.mat')
loads the gartid data in an iiplot figure. Command option -append (iicom(ci, 'CurveLoad -append MyFile')) lets you append loaded curves to existing curves in the stack (by default existing curves are replaced). Command option -hdf (iicom(ci, 'CurveLoad -hdf MyFile')) lets you load curves under the sdthdf format. Only pointers to the data stacked in iiplotare thus loaded. Visualizations and data transformation can be performed afterwards. Command option -back does not generate any visualization in iiplot. This can be useful in combination to -hdf, as the user can then fully control the data loaded in RAM.
- CurveSave lets you save iiplotstack data.
iicom('CurveSave FileName', CurveNames) saves the curves CurveNames in the .mat file given by FileName. If FileName is omitted a GUI is opened. To save more than 2 GB of data, or to save in the new MATLAB file formats (-v7.3), use the SDT V6Flag:
setpref('SDT', 'V6Flag','-v7.3').
fname=fullfile(sdtdef('tempdir'), 'IicomSaveTestmat')
iicom(['CurveSave' fname],\{'IIxi';'IdMain'\})
- CurveNewId CurveName opens new iiplot figure for identification of the curve CurveName of the ci stack with idcom iicom('CurveLoadId', FileName) loads from FileName into for identification.
- CurveRemove removes the curves from the stack of the iiplot figure.
iicom('CurveRemove', CurveNames);
- CurveReset defines an empty curve stack to renew your work.
- CurveJoin combines datasets that have comparable dimensions. In particular first dimension (time, frequencies ...) must be the same. For example it is useful to combine dataset from parameter studies (same dimension). iicom('CurveJoin', CurveNames);
Curves targeted by CurveNames (or selected curves in iiplot) are joined and replace the first curve in the iiplot stack.
- CurveCat concatenates dataset that have the same dimensions. For example it is useful to combine dataset from successive time simulation. Syntax is the same as for iicom CurveJoin command. One can use following command options:
- -follow to remove last value of first abscissa before concatenate.
- -shift to shift abscissa of second dataset of the last value of first dataset abscissa.

Dock Id, MAC, TestBas
Starting with SDT 7, classical SDT uses are guided through multiple figures combined in docks.

- DockId is used for identification of modeshapes.
ga i
Get handle to a particular axis. This is used to easily modify handle graphics properties of iiplot axes accessed by their number. For example, you could use set(iicom('ga1:2'), 'xgrid', 'on') to modify the grid property of iiplot axes 1 and 2.

If you use more than onefeplot or iiplot figure, you will prefer the calling format $\mathrm{cf}=\mathrm{iiplot}$; set(cf.ga(1:2),'xgrid','on').

```
head [Main,Text,Clear]
```

Note : the preferred approach is now to define fixed displays using comgui objSet commands stored in the curve PlotInfo ua. axProp entry. For example

```
C1=fe_curve('testSin T 0.2',linspace(0,10,100e3));
C1.Xlab={'Time','Resp'};
r1={'@title',{'String','Main Title','FontSize',16}};
C1=sdsetprop(C1,'PlotInfo.ua.axProp',r1{:});
iicom('curveinit','SineWithFixedTitle',C1);
```

For backward compatibility, header axes are still supported (the change is to objSet allows better tab switching). Header axes are common to all plot functions and span the full figure area (normalized position [0 $\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]$). You can get a pointer to this axis with cf. head and add any relevant object there.

```
ci=iicom('curveload','gartid'); % Load a test case
h=text(0,0,'Main Title', ...
    'parent',ci.head,'unit','normalized','position',[.05 .95], ...
    'fontsize',20,'fontname','Times', ...
    'tag','iimain');
iimouse('textmenu',h); % Allow Editing
```

iicom('HeadClear') deletes all objects from the header axis of the current figure.

IIxData set selection iicomIIx:name [On,Off,Only], cIIx ...
Curve set selection for display in the current axis.
IIx:TestOnly displays the ci.Stack\{'Test'\} data set only in all axes (on and off turn the display on or off respectively). By adding a c in front of the command (cIIx:Test for example), the choice is only applied to the current axis. You can also toggle which of the data sets are shown using the Variables menu (applies to all axes) or axis context menu applies to (current axis).

The alternate calling format iicom('iix', \{'Test', 'IdFrf'\}) can be used to specify multiple sets to display. iicom('iixOnly', \{'Test', 'IdFrf'\}) will display those two sets only.

IIxf, IIxe, IIxh, IIxi [0n,0ff] are still supported for backward compatibility.

Polar

Polar plots are used for cases where the abscissa is not the standard value. Accepted values (use a command of the form Polar val) are

- -1 abscissa is the channel before the one displayed. In a curve with channels [X Y] display Y, channel 2, and use X,channel 1, as abscissa.
- $\mathrm{x} i$ uses $i^{\text {th }}$ column of def. data when displaying FEM time signals. This is typically used when this second column is an other form of abscissa (angle for rotating machines, ...)
- i with $i_{¿} 0$ uses the specified channel as abscissa.
- Off or 0 turns off polar plots.

```
PoleLine [ ,c] [ ,3], IIpo, ...
```

Pole line display. are dotted vertical lines placed at relevant abscissa values. These lines can come from

- standard curves with an curve.ID field, see ii_plp Call from iiplot.
- frequencies of poles in ci.Stack\{'IdMain'\} in black and ci.Stack\{'IdAlt'\} in red.

By itself, PoleLine toggles the state of pole line display. The c option applies the command to the current axis only. PoleLine3 places the lines on the pole norm rather than imaginary part used by default (this corresponds to the ii_plp formats 2 and 3).

The state of the current axis (if it is aniplot axis) can also be changed using the IIplot:PoleLine menu (PoleLineTog command).

Low level commands IIpo and IIpo1 are low level commands force/disable display of pole lines in the main identified model ci.Stack\{'IdMain'\}.po or the alternate set ci.Stack\{'IdAlt'\}.po. With cIIpo the choice is only applied to the current axis. These options are usually accessed through menus.

ImWrite, ...

comgui ImWrite is the generic command used to generate a clean printout of figures. It supports many basic capabilities, filename generation, cropping, ... When using iiplot and feplot, it may often be interesting to generate multiple images by scanning through a selected range of channels. A command of the form iicom (cf,'ImWrite', RO) is then used with RO a structure containing generic image capture fields (see comgui ImWrite) and fields specific to multi-image capture

- . ShowFcn the callback that is executed for each image to be generated. The default is fecom(cf,sprintf('ch \%i', ch)); for feplot. The loop index is j 1 .
- .ch a vector of channel indices that will give an index for each image. With the string all, all the channels are used.
-. ImWrite is the command used to call comgui with the default 'imwrite -ftitle'.
- .FileName if present replaces any other file name generation mechanism. Your ShowFcn callback can thus implement your own file name generation mechanism.
- . Movie can be a structure for movie generation using fecom AnimMovie,
- .HtmWidth can specify an HTML view size which differs from the image size. The input is either a string in the format width=val height=val1, or a line with 4 columns in the format [Width Height MaxWidth MaxHeight], it is possible to let free a value by provided Inf instead of a numerical value. At least Height or Width must be defined. Depending on the input, the behavior is
- if a scalar is given or if the Height is set to Inf, the width is fixed and the height is set to keep the image ratio. If a MaxHeight is provided and the resulting height overcomes it, the width is adapted to maximize the possible size.
- if Width is set to Inf, the height must be defined and the width is set to keep the image ratio. If a MaxWidth is provided and the resulting width overcomes it, the height is adapted to maximize the possible size.
- is both Width and Height are provided, the values are fixed and non further control is performed.
- . RestoreFig=1 can be used to restore the figure and display after image generation.
- .RelPath optional integer giving the level of relative path to be retained (1 keeps just the file name, 2 the directory containing the images, ...). This is useful to create HTML report files that can be moved.

To automate figure generation, it is typically desirable to store image capture information in the set of deformations or the curve. A curve.ImWrite field in iiplot can be used to predefine the option structure, for user defined dynamic change of settings, defining a ua.PostFcn callback (see iiplot PlotInfo is typically the appropriate approach. For feplot, def.ImWrite is used for multi-image capture but more evolved file name generation is found using comgui def.Legend

```
% Example of 4 views in feplot
    cf=demosdt('DemoGartFEplot')
    cingui('PlotWd',cf,'@OsDic(SDT Root)','FniiLeg');
    cf.def=sdsetprop(cf.def,'Legend', ...
        'string',{'Garteur FE';'$Title'}) % Define a two line title
```

```
    RO=comgui('imfeplot4view'); % Predefined strategy to generate 4 views
    comgui('PlotWd',cf,'FileName', ...
        {'@PlotWd','Root','@ii_legend(1:2)','@cf.ga.View','.png'});
fecom(cf,'ImWrite');comgui('iminfo',cf)
% Example of two channels in iiplot, with finish on same view
    ci=iicom('curveload','gartid');iicom('ch20')
    cingui('PlotWd',ci,'@OsDic(SDT Root)','FniiLeg');
    RO=struct('ch',1:2, ...
            'FileName',{{'@PlotWd','Test','@cf.ua.ch','.png'}}, ...
            'RestoreFig',1, ... % reset at the end
            'ImWrite','ImWrite'); % Avoid the -ftitle
    iicom(ci,'ImWrite',RO)
comgui('ImFeplot') returns a list of standard calls to options for image generation.
```


Pro

iicom('ProFig') shows or hides the properties figure.
iicom(ci,'ProRefreshIfVisible') refreshes the property figure when it is visible.
iicom(ci,'ProInit') reinits the property figure.

Show plot type

Specify the current axis type. The iiplot plot functions support a number of plot types which can be selected using the Show menu/command. From command line, you can specify the target axis with a-cax i option.

The main plot types are

- 2D $(f(x))$ plots are associated with the following buttons $\|\mathrm{H}\|$ Abs (absolute value), fit Pha
 imaginary, \bigcirc Nyq Nyquist.
- 3D $(f(x, y))$ plots are image, mesh, contour and surface. Show3D gives time-frequency representation of the log of the abs of the signal displayed as and image. The ua.yFcn callback operates on the variable called r3 and can be used for transformations (absolute value, phase, ...). Note that you may then want to define a colorbar see iiplot PlotInfo,

```
R1=d_signal('Resp2d'); % load 2d map
R1.PlotInfo= ii_plp('plotinfoTimeFreq -yfcn="r3=r3" type "contour");
ci=iicom('curveinit','2DMap',R1);
% or
R1.PlotInfo={}; ci=iicom('curveinit','2DMap',R1);
ci=iicom('curveinit','2DMap',R1);
iicom('show3D -yfcn="r3=log10(abs(r3))" type "contour"')
```

- idcom specialized plots see iiplot TypeIDcom : mmi MMIF of Test, fmi forces of MMIF of Test, ami alternate mode indicator of Test, SUM of Test, CMIF of Test, sumi sum imaginary part of Test, pol poles in IdMain, fre freq. vs. damping in IdMain, rre real residue in IdMain, cre complex residue of IdMain, Iny local Nyquist of Test (superposition around current pole), err Nyquist Error for current pole, Quality for all poles
- feplot plots.

SubSave, SubSet

SubSave i saves the current configuration of the interface in a stack entry TabInfo. This configuration can then be recalled with SubSet i. The TabInfo entry is also augmented when new curves are shown so that you can come back to earlier displays. SubSetI i selects an index in the TabInfo stack.

SubToFig

SubToFig copies the iiplot figure visualization to a standard matlab figure, thus allowing an easier handling to produce customized snapshots (see also iicom ImWrite). Reformatting is then typically performed with comgui objSet.

Command option $-c f i$ forces the visualization output to figure i.
Command option leg i allows iiplot legend handling in the visualization. leg0 removes the legend, leg1 keeps it as in iiplot, leg2 transforms the iiplot legend in a standard matlab legend. The legend is removed by default.

Sub plot init
This command is the entry point to generate multiple drawing axes within the same figure. iicom Sub by itself checks all current axes and fixes anything that is not correctly defined.

Accepted command options are

- MagPha gives a standard subdivision showing a large amplitude plot and a small wrapped phase plot below.
- Iso gives a standard 2 by 2 subdivision showing four standard 2-D projections of a 3-D structure (this is really used by feplot).
- $i j k$ divides the figure in the same manner as the Matlab subplot command. If k is set to zero all the i times j axes of the subplot division are created. Thus the default call to the Sub command is Sub 21 which creates two axes in the current figure. If k is non zero only one of these axes is created as when calling subplot (i, j, k).

As the subplot function, the Sub command deletes any axis overlapping with the new axis. You can prevent this with command option nd.
Standard subdivisions are accessible by the IIplot:Sub commands menu.
Note that set (cf.ga(i), 'position',Rect) will modify the position of iiplotaxis i. This axis will remain in the new position for subsequent refreshing with iiplot.

- step increments the deformation shown in each subplot. This is generally used to show various modeshapes in the same figure.
- Reset forces a reinit of all properties. For example SubMapha Reset.

TitOpt [, c]i, title and label options
Automated title/label generation options. TitOpt i sets title options for all axes to the value i. i is a 5 digit number with

- units corresponding to title. For modes [None,ModeNumber,Name].
- decades to xlabel 0 none, 1 label and units, 2 label.
- hundreds to ylabel 0 none, 1 label and units, 2 label.
- thousands to zlabel 0 none, 1 label and units, 2 label.
- 1e4 to legend/title switching.

The actual meaning of options depends on the plot function (see iiplot for details). By adding a c after the command (titoptc 111 for example), the choice is only applied to the current axis.

When checking the axes data (using iicom Sub command), one rebuilds the list of labels for each dataset using iicom('chlab'). This cell array of labels, stored in ci.ua.chlab, gives title strings for each channel (in rows) of datasets (in columns) with names given in ci.ua.sList. The label should start with a space and end with a comma. The dataset name is added if multiple datasets are shown. Not to display the curve name in the legend you can define and set ci.ua.LegName $=$ 0 , going back to default behavior is obtained by ci.ua. LegName $=1$.

Modifying the ci.IDopt.unit value changes the unit assumed for identification but not the dataset units.

Titles and labels are not regenerated when using ch commands. If something is not up to date, use iicom Sub which rechecks everything.

```
Scale : xlin, xlog ...
```

Default values for xscale and yscale. xlin, xlog, ylin, ylog, set values. $x y+1$, $x y+2$ are used to toggle the xscale and yscale respectively (you can also use the IIplot:xlin and IIplot:ylin menus). Other commands are xy 1 for x -lin/ y -lin, xy 2 for $\mathrm{x}-\log / \mathrm{y}$-lin, xy 3 for x -lin/ $\mathrm{y}-\log$, xy 4 for $\mathrm{x}-\log / \mathrm{y}-\log$.

You can all use the all option to change all axes: iicom('xlog all').
ytight[on,off,] can be used to obtain tight scales on the y axis. The x axis is typically always tight. Automated ztight is not yet supported.

```
Limits : wmin, xlim, xmin, xmax, wmo, wO, ...
```

Min/max abscissa selection is handled using the fixed zoom (graphically use 㤽. button). Accepted commands are

- xlim min max (or the legacy wmin $f 1 f 2$). For 2D plots, use xlim $x \min x \max y m i n ~ y m a x ~ t o ~$ allow selection of a 2D area.
- xmin min (or the legacy wmin f1)
- xmax max (or the legacy wmax f1)
- wmo allows a mouse selection of the minimum and maximum value (same as 怍. button).
- w0 resets values (same as double click after hitting the button)

The limit value(s) can also be forwarded as last argument: iicom('xlim', [min max]).

When performing identification with idcom the fixed zoom corresponds to the working frequency range and corresponds to indices in ci.IDopt (4:5) (see IDopt, turn off with idcom('Off')). The index of the frequency closest to the specified min/max is used. When viewing general responses, the information for the abscissa limits is stored in the axis and is thus lost if that axis is cleared.

See also

iiplot, section 2.1 , idcom

iimouse

Purpose

Mouse related callbacks for GUI figures.

Syntax

iimouse
iimouse('ModeName')
iimouse('ModeName', Handle)

Description

iimouse is the general function used by feplot and iiplot to handle graphical inputs. While it is designed for $S D T$ generated figures, iimouse can be used with any figure (make the figure active and type iimouse).

The main mouse mode is linked supports zooming and axis/object selection (see zoom). Context menus are associated to many objects and allow typical modifications of each object. When an axis is selected (when you pressed a button while your mouse was over it), iimouse reacts to a number of keys (see key). An active cursor mode (see Cursor) has replaced the information part of previous versions of iimouse. 3-D orientation is handled by view commands.

On,Off

iimouse with no argument (which is the same as iimouse('on')) turn zoom, key and context menu on.

In detail, the figure is made Interruptible, WindowButtonDownFcn is set to iimouse('zoom') and KeyPressFcn to iimouse('key')).
Plot functions iiplot, feplot start iimouse automatically.
iimouse off turns all iimouse callbacks off.

```
clip [Start,Undo]
```

This command is used to eliminate faces not contained within the area that the user selects with a dragging box. ClipUndo clears the current axis and calls feplot to reinitialize the plot.
zoom
This is basic mode of iimouse, it supports

- click and drag zoom into an area for both 2-D and 3-D plots (even when using perspective).
- zoom out to initial limits is obtained with a double click or the i key (on some systems the double click can be hard to control).
- active axis selection. iimouse makes the axis on which you clicked or the closest to where you clicked active (it becomes the current axis for feplot and iiplot figures).
- colorbar and triax axes automatically enter the move mode when made active
- legend axes are left alone but kept on top of other axes.

Context menus are described in section 2.1.1 and section 4.4.1.

Cursor

When you start the cursor mode (using the context menu opened with the right mouse button or by typing the c key), you obtain a red pointer that follows your mouse while displaying information about the object that you are pointing at. You can stop the cursor mode by clicking in the figure with your right mouse button or the c key. The object information area can be hidden by clicking on it with the right mouse button.

For feplot figures, additional information about the elements linked to the current point can be obtained in the Matlab command window by clicking in the figure with the left button. By default, the cursor follows nodes of the first object in the feplot drawing axis. If you click on another object, the cursor starts pointing at it. In the wire-frame representation, particularly when using OpenGL rendering, it may be difficult to change object, the n key thus forces the cursor to point to the next object.

For iiplot axes, the cursor is a vertical line with circles on each data set and the information shows the associated data sets and values currently pointed at.

For ii mac axes the current value of the MAC is shown.

key

Keyboard short-cuts. Some commands are directly available by pressing specific keys when a plot axis is active (to make it active just click on it with your mouse). The short cuts are activated by setting the KeyPressFcn to iimouse('key') (this is done by iimouse on). Short cuts are:

The list of the associated call is accessible using the call sdt_table_generation('KeyPressTable.feplot') or sdt_table_generation('KeyPressTable.iiplot').

For feplot axes the translations are based on camera movements and correspond to the horizontal, vertical and line of sight for the current view. Translating along the line of sight has no effect without perspective and is similar to zooming with it. For other axes, the xyz keys translate along the data xyz directions.

move

The object that you decided to move (axes and text objects) follows your mouse until you click on a final desired position. This mode is used for triax (created by feplot) and colorbar axes, as well as text objects when you start move using the context menu (right button click to open this menu).

The moveaxis used for legend as a slightly different behavior. It typically moves the axis while you keep the button pressed.

You can call move yourself with iimouse('move', Handle) where Handle must be a valid axes or text object handle.

text

This series of commands supports the creation of a context menu for text objects which allows modification of font properties (it calls uisetfont), editing of the text string (it calls edtext), mouse change of the position (it calls iimouse), and deletion of the text object.

You can make your own text objects active by using iimouse('textmenu', Handle) where Handle must contain valid text object handle(s).

```
view,cv
```

iimouse supports interactive changes in the 3-D perspective of axes. Object views are controlled using azimuth and elevation (which control the orientation vector linking the CameraTarget and the CameraPosition) and self rotation (which control the CameraUpVector). You can directly modify the view of the current axis using the Matlab view and cameramenu functions but additional capabilities and automated orientation of triax axes are supported by iimouse.

```
1
2
3
4 standard view. Default n+x.
n[+,-][x,y,z] 2-D views defined by the direction of the camera from target.
n[+,-][+,-][+,-] 3-D views defined by the signs projection of line of sight vector along
the xyz axes.
dn ... dn commands allow setting of default }1234\mathrm{ views. Thus viewdn-x will
set the 4 view to a normal along negative x
az el sr specify azimuth, elevation and rotation around line of sight
g rz ry rz
[x,y,z][+,-] ang
[h,v,s][+,-] ang
first standard view. Default n+y. Changed using the View default context menu.
2 standard xy view ( \(n+z\) ). Similar to Matlab view (2) with resetting of CameraUpVector. Changed using the View default context menu.
3 standard view. Default to Matlab view (3).
standard view. Default \(\mathrm{n}+\mathrm{x}\).
2-D views defined by the direction of the camera from target.
\(\mathrm{n}[+,-][+,-][+,-] \quad 3\)-D views defined by the signs projection of line of sight vector along the xyz axes.
\(d n\)... dn commands allow setting of default 1234 views. Thus viewdn- x will set the 4 view to a normal along negative x
az el sr
specify azimuth, elevation and rotation around line of sight
specify rotations around global \(x y z\) axes
rotation increments around global xyz axes
current horizontal, vertical and line of sight axes
```

All angles should be specified in degrees.
iimouse key supports rotations by $+/-10$ degrees around the current horizontal, vertical and line
 2, 3, 4 return to basic 2-D and 3-D views.
iimouse (' Cv ') returns current view information you can then set other axes with
iimouse('view', AxesHandles, cv).

See also

iicom, fecom, iiplot

iiplot

Purpose

Refresh all the drawing axes of the iiplot interface.

Syntax

iiplot

Description

iiplot is used to scan through multiple sets of 1D (function of time or frequency) and 2D responses (functions of two variables) as discussed in Type. Section 2.1 gives an introduction to the use of iiplot and the companion function iicom.

- The data is stored in a Stack using one of the accepted curve formats.
iicom CurveInit is the base command to add curves in the stack. You can also create a new iiplot axis using a curve data structure Curve (generated by fe_curve for example), simply calling iiplot (Curve).
- Each iiplot axis (see iicom Sub \square) can display some or all data sets in their stack. The selection of what is displayed is obtained using the iicom IIX commands or the Variables menu.
- iiplot with no arguments refreshes all the drawing axes.
- Plot Type supported by iiplot are described below. The plot type can be selected using the PlotType menu of the toolbar or through iicom Show commands.
- Selected channels (columns of the data sets) are shown for all plots. The iicom commands +, -, ch and the associated keys and toolbar buttons can be used to change selected channels.
- Pole lines for the indication of pole frequencies, or other lines to be shown (harmonics, thresholds, ...), are available for many plots. In general the information for these lines is stored as a Curve.ID field. The IIplot:PoleLine menu can be used to change how these lines appear. For identification (see idcom) ci.Stack\{'IdMain'\} pole lines are shown in white/black. ci.Stack\{'IdAlt'\} pole lines in red.

ci : handle

ci=iiplot returns a SDT handle to the current iiplot figure (2nd optional output argument is XF , a pointer to the curve stack, see section 2.1.2). You can create more than one iiplot figure with ci=iiplot(FigHandle).

PlotInfo

Curves to be displayed can contain a C1.PlotInfo cell array of stringTag, data. An alternate form using matrix where the first column gives tag and the second the data is accepted if that matrix has at least two rows.

- LineProp specifies properties to be used as properties for lines. For example C1=sdsetprop(C1, 'PlotInfo', 'LineProp', \{'LineWidth', 2$\}$). This is checked at each display.
- sub, show, scale commands to be executed when initializing a display tab with iicom Sub.
- ua. PostFcn commands executed at the end of a refresh. This gives the user a chance to introduce modifications to the result of iiplot.
- ua.TickFcn commands executed whenever a mouse zoom is done, see TickFcn.
- ua. axProp is a cell array containing properties to be applied with an comgui objSetcommand.
- ColorBar is a cell array containing properties to be used to generate a colorbar. See fecom ColorBar for more details. For example

```
C1=d_signal('Resp2D');
C1=sdsetprop(C1,'PlotInfo','ColorBar',{'YAxisLocation','left'});
iicom('curveinit','2D',C1);
```

- LDimPos specifies the dimension used to generate the label on the response axis (y for $f(x)$, z for $f(x, y))$.

The ii_plp('PlotInfo', C1) command provides default values for classical configurations.

Type

- 2D $(f(x))$ plots are associated with the following buttons and iicom Show commands $\boldsymbol{H} \boldsymbol{H}$
 imaginary part, 9ォ5 R\&I real and imaginary, \bigcirc Nyq Nyquist.
- 3D $(f(x, y))$ plots are image, mesh, contour and surface. For this plots ua.XDimPos should give the positions of dimensions associated with the x and y variations. Proper . PlotInfo can be generated with ii_plp('PlotInfo2D -type "contour"', C1).
\qquad

DimPos and channel

When displaying multi-dimensional curves as 2D plots $f(x)$, the abscissa x is taken to be the first dimension declared in the C1.DimPos field (with a default at 1).

When displaying as $3 \mathrm{D}(f(x, y))$ plots, the x, y are taken to be the first two dimensions declared in the C1.DimPos field (with a default at 1,2). You can then flip the positions in the plot axis by setting ci.ua. XDimPos=[21 $\left.\begin{array}{ll}2 & 1\end{array}\right]$.

Channels are indices for remaining dimensions.
The y (z for 3D) axis label is built using the C1.DimPos (2) dimension unless the curve contains a LDimPos entry.

TypeIDcom

Specialized plots for idcom are

- Local Nyquist plots (initialized by show lny) show a comparison of Test (measured FRFs) and IdFrf (identified model) in a reduced frequency band

$$
\left[\begin{array}{cc}
\omega_{j}\left(1-\zeta_{j}\right) & \omega_{j}\left(1+\zeta_{j}\right) \tag{10.29}
\end{array}\right]
$$

near the currently selected pole (the current pole is selected by clicking on a pole line in another plot axis). Local Nyquist plots allow a local evaluation of the quality of the fit. The error and quality plots give a summary of the same information for all the frequency response functions and all poles.

- Multivariate Mode Indicator Function (initialized by show mmi), forces associated to the MMIF (initialized by show fmi), Alternate Mode Indicator Function (show ami), and Channel Sum (show sum) are four ways to combine all the FRFs or a set to get an indication of where its poles are located.

These indicators are discussed in the ii mmif Reference section. They are automatically computed by iiplot based on data in the 'Test' set.

- Pole locations in the complex plane (initialized by show pol).
- Poles shown as damping vs. frequency are initialized by show fre.
- Position of residues in the complex plane are initialized by show cre. This plot can be used to visualize the phase scatter of identified residues.
- Value of real residue for each measured channel are initialized by show rre.
- Error Local Nyquist error (initialized by show err). For the current pole, error plots select frequency points in the range $\left[\omega_{j}\left(1-\zeta_{j}\right) \omega_{j}\left(1+\zeta_{j}\right)\right]$. For each channel (FRF column), the normalized error (RMS response of ci.Stack\{'Test'\}.xf - ci.Stack\{'IdMain'\}.xf divided by RMS response of ci.Stack\{'Test'\}) is shown as a dashed line with + markers and a normalized response level (RMS response of ci.Stack\{'Test'\}) as a dashed line with x markers.

Normalized errors should be below 0.1 unless the response is small. You can display the error using the nominal sensor sort with ci.Stack\{'IdError'\}.sort=0 and with increasing error using sort $=1$.

- Quality Mode quality plot (initialized by show qua), gives a mean of the local Nyquist plot. The dashed lines with + and \times markers give a standard and amplitude weighted mean of the normalized error. The dotted line gives an indication of the mean response level (to see if a mode is well excited in the FRFs). Normalized errors should be below 0.1 unless the response is small.

See also

iicom, iiplot, setlines, xfopt

ii cost

Purpose

Compute the quadratic and log-least-squares cost functions comparing two sets of frequency response functions.

Syntax

```
[cst] = ii_cost(xf,xe)
```


Description

For two sets of FRFs H and \hat{H}, the quadratic cost function is given by

$$
\begin{equation*}
J_{i j}(\Omega)=\sum_{i j \text { measured }, k \in \Omega}\left|\hat{H}_{i j}\left(s_{k}\right)-H_{i j}\left(s_{k}\right)\right|^{2} \tag{10.30}
\end{equation*}
$$

and the log-least-square cost function by

$$
\begin{equation*}
J_{i j}(\Omega)=\sum_{i j \text { measured }, k \in \Omega}|\log | \frac{\hat{H}_{i j}\left(s_{k}\right)}{H_{i j}\left(s_{k}\right)}| |^{2} \tag{10.31}
\end{equation*}
$$

For sets xf and xe stored using the xf format (see page 214), ii_cost computes both those costs which are used in identification and model update algorithms (see section 3.2.3).

See also

```
id_rc, up_ixf
```


ii_mac

Purpose

User interface function for MAC and other vector correlation criteria.

Syntax

```
    ii_mac(cpa,cpb)
VC = ii_mac(cpa,cpb,'PropertyName',PropertyValue, ...)
[VC,ReS] = ii_mac('PropertyName',PropertyValue, ... ,'Command')
    ii_mac(Fig,'PropertyName',PropertyValue, ... ,'Command')
Result = ii_mac(Fig ,'Command')
VC.PropertyName = PropertyValue
```


Description

The ii_mac function gives access to vector correlation tools provided by the SDT starting with the Modal Assurance Criterion (MAC) but including many others.
The high level implentation of tools provided by ii macs interfaced in the dock CoShape. A summary of typical applications is given in section 3.2 and examples in the d_cor demo.

You can also use low level calls to just display a figure or a table, as illustrated by the expamples below.

Vector correlations are SDT objects which contain deformations, see va, typically given at test sensors. For criteria using model mass or stiffness matrices see m. Other details about possible fields of $V C$ objects are given after the listing of supported commands below.

GUI

If you use ii_mac without requesting graphical output, the vector correlation object is deleted upon exit from ii_mac. In other cases, the object is saved in the figure so that you can reuse it.

```
[model,sens,ID,FEM]=demosdt('demopairmac'); % Sample data
cf=comgui('guifeplot-reset',2); % force feplot in figure(2);
cf.model=model; % Display FEM (contains topology correl in Test)
VC=ii_mac(ID,FEM,'sens',sens,'mac plot -cf1');
```

You can add data to other fields or call new commands from the command line by starting the ii mac call with a pointer to the figure where the vector correlation is stored (iimac (fig, 'Command'), ...). An alternate calling form is to set a field of the vector correlation object.

The following commands

```
[cf,def_fem,res_test]=demosdt('demo gartte cor plot');
Sens=fe_case(cf.mdl,'sens');
figure(1); subplot(221); VC=ii_mac(1);% Make figure(1) current so that ii_mac uses it
ii_mac(VC,res_test,def_fem,'labela','Test','labelb','FEM', ...
    'sens',Sens,'Mac Pair Plot');
subplot(212);ii_mac(VC,'comac'); % set new axis and display other criterion
subplot(222); ii_mac(VC,'MacMPairPlot');
```

illustrate a fairly complex case where one shows the MAC in subplot(221), all three COMAC indicators in subplot (212), then provide mass and a mass-shifted stiffness to allow computation of the mass condensed on sensors and finally show the reduced mass weighted MAC in subplot (222).

The II_MAC menu lets you choose from commands that can be computed based on the data that you have already provided. The context menu associated with plots generated by ii mac lets you start the cursor, display tabular output, ...

You can link deformations shown in a feplot figure to a MAC plot using

```
[model,sens,ID,FEM]=demosdt('demopairmac');
cf=feplot(model);
cf.def(1)=ID; % display test as first def set
cf.def(2)=FEM; % display FEM as second def set
% overlay & show interactive MAC in fig 1:
figure(1);clf;fecom('show2def-mac1')
```


Main commands

Options ... [Plot,Table,Tex,Thtml]

By default, the commands plot the result in a figure. Options valid for all commands are

- plot generates figure in the current axis. You can use figure and subplot to set the current axis.
- Table generates a text output
- Tex generates a format suitable for direct inclusion in LATeX
- Thtml creates and open an html file in the Matlab browser.

Data fields

Data fields are defined using name, value pairs.

- 'cpa', dataAsCols sets shapes . But calls with data structures are preferable, see va
- 'sens', sens sets sensor observation matrix, see sens.
- 'labela', 'name' sets the name of data set A. Typical values are Test, FEM, ...
- 'inda', ind selects vectors given by ind when computing a criterion. For example, rigid body modes are often not included in correlation. Thus 'indb' , 7:20 would skip the first 6 modes.
- 'SubDofInd', ind allows the selection a subset of sensors when computing correlation criteria.

```
MAC [,M] [ ,PairA,PairB,AutoA, ...] ...
```

The Modal Assurance Criterion (MAC) [4] is the most widely used criterion for vector correlation (mainly because of its simplicity).

The MAC is the correlation coefficient of vector pairs in two vector sets cpa and cpb defined at the same DOFs (see ii mac val for more details). In general cpa corresponds to measured modeshapes at a number of sensors $\left\{c \phi_{\mathrm{id} j}\right\}$ while cpb corresponds to the observation of analytical modeshapes $[c]\left\{\phi_{k}\right\}$. The MAC is given by

$$
\begin{equation*}
\operatorname{MAC}_{j k}=\frac{\left|\left\{c \phi_{\mathrm{id} j}\right\}^{H}\left\{c \phi_{k}\right\}\right|^{2}}{\left|\left\{c \phi_{\mathrm{id} j}\right\}^{H}\left\{c \phi_{\mathrm{id} j}\right\}\right|\left|\left\{c \phi_{k}\right\}^{H}\left\{c \phi_{k}\right\}\right|} \tag{10.32}
\end{equation*}
$$

For two vectors that are proportional the MAC equals 1 (perfect correlation). Values above 0.9 are generally considered as well correlated. Values below 0.6 should be considered with much caution (they may or may not indicate correlation).

The commands and figure below shows the standard 2-D (obtained using the context menu or view (2)) and 3-D (obtained using the context menu or view $(-130,20)$) representations of the MAC supported by ii_mac. The color and dimensions of the patches associated to each vector pair are proportional to the MAC value.
\qquad

The basic MAC shows vector pairs for all vectors in the two sets. Specific command options are

- MacM should be used when a mass is provided, see MacM
- MacPairA command seeks for each vector in cpa (cpb with PairB) the vector in cpb (cpa) that is best correlated. MacPairB pairs against cpb vectors.
- MacAutoA Since the objective of the MAC is to estimate the correlation between various vectors, it is poor practice to have vectors known to be different be strongly correlated.

Strong correlation of physically different vectors is an indication of poor test design or poor choice of weighting. MacAutoA (B) compute the correlation of $\mathrm{cpa}(\mathrm{cpb})$ with itself. Off diagonal terms should be small (smaller than 0.1 is generally accepted as good practice).

- -combineval allows orthogonal linear combinations of vectors whose frequencies are closer than val relatively. This is meant for cases with very closely spaced modes where subspaces rather than individual vectors should be compared.
- Error computes the MAC (or MAC-M), does pairing and plots a summary combining the MAC value found for paired modes and the associated error on frequencies ($(\mathrm{fb}-\mathrm{fa}$)./fa). Typical calls can be found in gartco example.
By default this command displays a plot similar to the one shown below where the diagonal of the paired MAC and the corresponding relative error on frequencies are shown. For text output see general command options.

This is an example of how to use of the MACError command. In this example, the only significant errors are associated with mode crossing so that the . Combine gives a nearly perfect coerrelation.

```
[model,sens,ID,FEM]=demosdt('demopairmac');
if ishandle(1);close(1);end;figure(1);
VC=ii_mac(1,ID,FEM,'sens',sens)
ii_mac(1,'SetMAC',struct('Pair','A','MacPlot','do'))
ii_mac(1,'macerror table',struct('MinMAC',.6,'Df',.2,'Combine',.1));
ii_mac(1,'SetMAC',struct('MacError','do'))
```


A few things you should know ...

- The MAC measures the shape correlation without any reference to scaling of each vector (because of the denominator in (10.32)). This makes the MAC easy to use but also limits its applicability (since the modeshape scaling governs the influence of a given mode on the overall system response, a proper scaling is necessary when comparing the relative influence of different modes). In other terms, the MAC is not a norm (two vectors can be very correlated and yet different), so care must be taken in interpreting results.
- As the MAC is insensitive to mode scaling, it can be used with identified normal mode residues. You do not have to determine modal masses (see id_rm) to compute a MAC.
- The main weakness of the MAC is linked to scaling of individual components in the correlation. A change in sensor calibration can significantly modify the MAC. If the natures of various sensors are different (velocity, acceleration, deformation, different calibration...) this can induce significant problems in interpretation.
- The reference weighting in mechanics is energy. For vectors defined at all DOFs, the MAC is a poor criterion and you should really use its mass weighted counter part. For incomplete measurements, kinetic energy can be approximated using a static condensation of the mass on the chosen sensors which can be computed using the MacM command.
- In certain systems where the density of sensors is low on certain parts, cross-correlation levels with the mass weighted MAC can be much lower than for the non weighted MAC. In such cases, you should really prefer the mass weighted MAC for correlation.

```
MACCo [ ,M] [,ns]
```

The MACCo criterion is a what if analysis. It takes modes in cpa, cpb and computes the paired MAC or MAC-M with one sensor removed. The sensor removal leading to the best mean MAC for the paired modes is a direct indication of where the poorest correlation is found. The algorithm removes this first sensor then iteratively proceeds to remove $n s$ other sensors (the default is 3). The MACCo command used with command option text prints an output of the form

Test		1	2	3	4	5	6	7
FEM		7	8	11	10	11	12	13
Sensor	Mean							
All	87	100	99	60	86	53	100	98
$1112 z$	88	100	99	59	90	62	100	98
100								
$1301 z$	89	100	99	62	90	64	100	98
$1303 z$	90	100	98	66	90	66	100	98

where the indices for the vectors used in the pairing are shown first, then followed by the initial mean MAC and MAC associated to each pair. The following lines show the evolution of these quantities when sensors are removed. Here sensor 1112 z has a strong negative impact on the MAC of test mode 5.

The sensor labels are replaced by sensor numbers if the sensor configuration sens is not declared.
By default the MACCO command outputs a structure in which field .data contains in its first column the sensor or index removed and the resulting MAC evolution of paired modes in the following columns. The field .xlabel contains the sensor labels or indices.

Command option plot will plot in the ii_mac figure the MAC evolutions as function of the sensors removed. Command option text will output the result as text.

This is an example of how to use of the MACCO command

```
% To see the result
    [model,sens,ID,FEM]=demosdt('demopairmac');
    figure(1);clf;VC=ii_mac(1);
    ii_mac(VC,ID,FEM,'sens',sens, ...
        'inda',1:8, ... % Select test modes to pair
    'macplot')
% See sensors for each mode
```

```
r1=ii_mac(VC,'inda',1:8,'MacCo',struct('Table',1,'ByMode',1,'N',5));
% See sensors improving mean modes
r2=ii_mac(VC,'inda',1:8,'MacCo',struct('Table',1,'N',5));
% Numeric values stored in r1 and r2.
```


MacM . . .

When cpa and cpb are defined at finite element DOFs, it is much more appropriate to use a mass weighted form of the MAC defined as

$$
\begin{equation*}
\mathrm{MAC}^{-\mathrm{M}_{j k}}=\frac{\left|\left\{\phi_{j A}\right\}^{T}[M]\left\{\phi_{k B}\right\}\right|^{2}}{\left|\left\{\phi_{j A}\right\}^{T}[M]\left\{\phi_{j A}\right\} \|\left\{\phi_{k B}\right\}^{T}[M]\left\{\phi_{k B}\right\}\right|} \tag{10.33}
\end{equation*}
$$

called with ii_mac (. . 'm', m, 'MacM Plot'). If vectors are defined as sensors, the problem is to define what the mass should be. The standard approach is to use the static condensation of the full order model mass on the sensor set. When importing an external reduced mass matrix, just define the mass as shown above, when using $S D T$, see the ii_mac mc section below.

If cpa is defined at sensors and cpb at DOFs, ii_mac uses the sensor configuration sens to observe the motion of cpb at sensors. If cpa is defined at DOFs and cpb at sensors, ii_mac calls fe_exp to expand cpb on all DOFs.

The MAC-M can be seen as a scale insensitive version of the Pseudo-Orthogonality check (also called Cross Generalized Mass criterion) described below.

```
COMAC [ ,M][,A,B][,N][,S][,E] [,sort]
```

The COMAC command supports three correlation criteria (N nominal, S scaled and E enhanced) whose objective is to detect sensors that lead to poor correlation. You can compute all or some of these criteria using the n , s , or e options (with no option the command computes all three). Sensors are given in the nominal order or sorted by decreasing COMAC value (sort command option).

These criteria assume the availability of paired sets of sensors. The COMAC commands thus start by pairing modes (it calls MacPair or MacMPair) to pair vectors in cpb to vectors in cpa. The B command option can be used to force pairing against vectors in set B (rather than A which is the default value).

The nominal Coordinate Modal Assurance Criterion (COMAC) measures the correlation of two sets of similarly scaled modeshapes at the same sensors. The definition used for the SDT is

$$
\begin{equation*}
\mathrm{COMAC}_{l}=1-\frac{\left\{\sum_{j}^{N M}\left|c_{l} \phi_{j A} c_{l} \phi_{j B}\right|\right\}^{2}}{\sum_{j}^{N M}\left|c_{l} \phi_{j A}\right|^{2} \sum_{j}^{N M}\left|c_{l} \phi_{j B}\right|^{2}} \tag{10.34}
\end{equation*}
$$

which is 1 minus the definition found in [56] in order to have good correlation correspond to low COMAC values.

The assumption that modes a similarly scaled is sometimes difficult to ensure, so that the scaled COMAC is computed with shapes in set B scaled using the Modal Scale Factor (MSF)

$$
\begin{equation*}
\left\{c \widehat{\phi_{j B}}\right\}=\left\{c \phi_{j B}\right\} \mathrm{MSF}_{j}=\left\{c \phi_{j B}\right\} \frac{\left\{c \phi_{j B}\right\}^{T}\left\{c \phi_{j A}\right\}}{\left\{c \phi_{j B}\right\}^{T}\left\{c \phi_{j B}\right\}} \tag{10.35}
\end{equation*}
$$

which sets the scaling of vectors in set B to minimize the quadratic norm of the difference between $\left\{c \phi_{j A}\right\}$ and $\left\{\widehat{c \phi_{j B}}\right\}$.
The enhanced COMAC (eCOMAC), introduced in [57, is given by

$$
\begin{equation*}
\mathrm{eCOMAC}_{l}=\frac{\sum_{j}^{N M}\left\|\left\{\widetilde{c_{l} \phi_{j A}}\right\}-\left\{\widetilde{c \phi_{j B}}\right\}\right\|}{2 N M} \tag{10.36}
\end{equation*}
$$

where the comparison is done using modeshapes that are vector normalized to 1

$$
\begin{equation*}
\left\{c_{l} \widetilde{\phi_{j A}}\right\}=\left\{c \phi_{j A}\right\} /\left\|c \phi_{j A}\right\| \tag{10.37}
\end{equation*}
$$

This is an example of how to use of the COMAC command

```
[model, sens,ID, FEM]=demosdt('demopairmac');
figure(1);clf;VC=ii_mac(1);
ii_mac(VC,ID,FEM,'sens',sens,'comac plot')
ii_mac(VC,'comac table');
```

```
POC [,Pair[A,B]] ...
```

The orthogonality conditions (6.96) lead to a number of standard vector correlation criteria. The pseudo-orthogonality check (POC) (also called Cross Generalized Mass (CGM)) and the less commonly used cross generalized stiffness (CGK) are computed using

$$
\begin{equation*}
\mu_{j k}=\left\{\phi_{j A}\right\}^{T}[M]\left\{\phi_{k B}\right\} \quad \kappa_{j k}=\left\{\phi_{j A}\right\}^{T}[K]\left\{\phi_{k B}\right\} \tag{10.38}
\end{equation*}
$$

where for mass normalized test and analysis modes one expects to have $\mu_{j k} \approx \delta_{j k}$ and $\kappa_{j k} \approx \omega_{j}^{2} \delta_{j k}$. For matched modes, POC values differing significantly from 1 indicate either poor scaling or poor correlation. To distinguish between the two effects, you can use a MAC-M which corresponds to the square of a POC where each vector would be normalized first (see the MacM command).

Between unmatched modes, POC values should be close to zero. In some industries, off-diagonal cross POC values below 0.1 are required for the test verification of a model.

The PairA, PairB, Plot, Table options are available for POC just as for the MAC.

Rel [,scaled] [,m]

For scaled matched modeshapes, the relative error

$$
\begin{equation*}
e_{j}=\frac{\left\|\left\{c \phi_{j A}\right\}-\left\{c \phi_{j B}\right\}\right\|}{\left\|\left\{c \phi_{j A}\right\}\right\|+\left\|\left\{c \phi_{j B}\right\}\right\|} \tag{10.39}
\end{equation*}
$$

is one of the most accurate criteria. In particular, it is only zero if the modeshapes are exactly identical and values below 0.1 denote very good agreement.
The rel command calls MacPair to obtain shape pairs and plots the result of 10.39 .
For uncalled matched modeshapes, you may want to seek for each vector in set B a scaling coefficient that will minimize the relative error norm. This coefficient is known as the modal scale factor and defined by

$$
\begin{equation*}
\mathrm{MSF}_{j}=\frac{\left\{c \phi_{j A}\right\}^{T}\left\{c \phi_{j B}\right\}}{\left\{c \phi_{j B}\right\}^{T}\left\{c \phi_{j B}\right\}} \tag{10.40}
\end{equation*}
$$

The RelScale command calls MacPair to obtain shape pairs, multiplies shapes in set B by the modal scale factor and plots the result of (10.39).

With the M option, the MacPairM is used to obtain shape pairs, kinetic energy norms are used in equations 10.39- -10.40 .

This is an example of how to use the Rel command

```
[model,sens,ID,FEM]=demosdt('demopairmac');
ii_mac(ID,FEM,'sens',sens,'rel');
```

\qquad
VC
The following sections describe standard fields of VC vector correlation objects and how they can be set.

VC.va vector set A detailed below
VC.vb vector set B detailed below.
VC.sens sensor description array describing the relation between the DOFs of cpb and the sensors on which cpa is defined.
VC.m full order mass matrix
VC.mc reduced mass matrix defined at sensors (see definition below)
VC.qi sensor confidence weighting
VC.k full order stiffness matrix
VC.kd factored stiffness or mass shifted stiffness matrix
VC.T reduced basis used for dynamic expansion
va, vb, sens
ii_mac uses two data sets referenced in VC.va and VC.vb and extracts shapes at sensors using the get_da_db command shown below. All standard input formats for shape definition are accepted

- FEM result with . def and .DOF fields, see section 7.8.
- Shapes at DOFs or pole residue with .res and .po fields (see section 5.6)
- Response data with .w and .xf fields
- simple matrix with rows giving DOFs and columns shapes. These will be stored in the va.def field, called cpa which stands for $[c]\left\{\phi_{a}\right\}$ since these vectors typically represent the observation of modeshapes at test sensors, see section 5.1. A typical call would thus take the form

```
FigHandle=figure(1);
ii_mac(FigHandle,'cpa',shapes_as_col,'labela','Test', ...
            'cpb',shape2, ... % Define vb
            'mac'); % define command
```

sens, when defined (see section 4.6 for the generation of sensor configurations), does not use the results defined in VC.va but their observation given by VC.sens.cta*VC.va.def (same for VC.vb).

The illustration below uses a typical identification result ID, a FEM result FEM and observes on sensors.

```
[model,sens,ID,FEM]=demosdt('demopairmac -open')
figure(1);[r1,VC]=ii_mac(ID,FEM,'sens',sens, ...
    'indb',7:20,'mac plot');
[da,db]=ii_mac(VC,'get_da_db')
```

The da.def and db.def fields are always assumed to be observed at the same sensors (correspond to the cpa, cpb fields if these are defined).

To support expansion, cpa is defined at DOFs and cpb at sensors, ii_mac calls fe_exp to expand cpb on all DOFs.
m,k,kd
For criteria that use vectors defined at DOFs, you may need to declare the mass and stiffness matrices. For large models, the factorization of the stiffness matrix is particularly time consuming. If you have already factored the matrix (when calling fe_eig for example), you should retain the result and declare it in the kd field.

The default value for this field is $k d=o f a c t\left(k,{ }^{\prime} d e '\right)$ which is not appropriate for structures with rigid body modes. You should then use a mass-shift (kd $=\operatorname{ofact}(\mathrm{k}+\mathrm{alpha*m}$, 'de'), see section 6.2.4).
mc
The SDT supports an original method for reducing the mass on the sensor set. Since general test setups can be represented by an observation equation (4.1), the principle of reciprocity tells that $[c]^{T}$ corresponds to a set of loads at the location and in the direction of the considered sensors. To obtain a static reduction of the model on the sensors, one projects the mass (computes $T^{T} M T$) on the subspace

$$
\begin{equation*}
[T]=[\tilde{T}][c \tilde{T}]^{-1} \quad \text { with } \quad[K][\tilde{T}]=[c]^{T} \tag{10.41}
\end{equation*}
$$

In cases where the model is fixed $[K]$ is non-singular and this definition is strictly equivalent to static/Guyan condensation of the mass [16]. When the structure is free, $[K]$ should be replaced by a mass shifted $[K]$ as discussed under the kd field above.

Reduced basis expansion methods were introduced in [16. Static expansion can be obtained by using T defined by (10.41).

To work with dynamic or minimum residual expansion methods, T should combine static shapes, low frequency modes of the model, the associated modeshape sensitivities when performing model updating.

Modeshape expansion is used by ii_mac when cpa is full order and cpb is reduced. This capability is not currently finalized and will require user setting of options. Look at the HTML or PDF help for the latest information.

See also

ii_comac, fe_exp, the gartco demonstration, section 3.2

ii_mmif

Purpose

Mode indicator functions and signal processing.

Syntax

```
OUT = ii_mmif('command',IN,'waitbar')
ci=iiplot; ii_mmif('command',ci,'CurveName')
```


Description

This function supports all standard transformations of response datasets in particular mode indicator functions and signal processing.

With data stored in a iiplot figure, from the GUI, open the Stack tab of the property figure (accessible through iicom('CurtabStack') or by clicking on $\stackrel{\text { I....) }}{\text {) }}$ then select Compute . . . in the context menu to transform a given dataset. This has the advantage of allowing interactive changes to signal processing results, see section 2.1.7.

From the command line, use iimmif ('command', ci, Curve) (where ci is a handle referring to iiplot figure). Curve can be a string defining a curve name or a regular expression (beginning by \#) defining a set of curves. One can also give some curve names as strings in a cell array. Without output argument, computed mmif is stored in the stack with name mmif (CurveName). Accepted command options are

- -reset to compute a mmif which has already been computed before (otherwise old result is reused). The existence is based on the name in the iiplot stack.
- -display displays the result in the associated iiplot figure.

```
ci=iicom('curveload','gartid'); % load curve gartid example
ii_mmif('mmif',ci,'Test'); % compute mmif of set named Test
iicom('iixonly',{'mmif(Test)'});% display result
```

When used with idcom, the Show ... context menu supports the automated computation of a number of transformations of ci.Stack\{'Test'\}. These mode indicator functions combine data from several input/output pairs of a MIMO transfer function in a single response that gives the user a visual indication of pole locations. You can then use the idcom ecommand to get a pole estimate.

With data structures not in iiplot use mmif=ii mmif (command, Curve). Use command option -struct to obtain output as curve data structure.

```
ci=iicom('curveload','gartid'); % load curve gartid example
R1=ci.Stack{'Test'}; % get Test dataset in variable R1
R2=ii_mmif('mmif-struct',R1); % compute mmif
```


MMIF

The Multivariate Mode Indicator Function (MMIF) (can also be called using iicom Show mmi) was introduced in [58]. Its introduction is motivated by the fact that, for a single mode mechanical model, the phase at resonance is close to -90°. For a set of transfer functions such that $\{y(s)\}=$ $[H(s)]\{u(s)\}$, one thus considers the ratio of real part of the response to total response

$$
\begin{equation*}
q(s,\{u\})=\frac{\{u\}^{T}\left[\operatorname{Re}(H)^{T} \operatorname{Re}(H)\right]\{u\}}{\{u\}^{T} \operatorname{Re}\left(\left[H^{H} H\right]\right)\{u\}}=\frac{\{u\}^{T}[B]\{u\}}{\{u\}^{T}[A]\{u\}} \tag{10.42}
\end{equation*}
$$

For structures that are mostly elastic (with low damping), resonances are sharp and have properties similar to those of isolated modes. The MMIF (q) thus drops to zero.

Note that the real part is considered for force to displacement or acceleration, while for force to velocity the numerator is replaced by the norm of the imaginary part in order to maintain the property that resonances are associated to minima of the MMIF. A MMIF showing maxima indicates improper setting of idopt. DataType.

For system with more than one input (u is a vector rather than a scalar), one uses the extreme of q for all possible real valued u which are given by the solutions of the eigenvalue problem $[A]\{u\} q+$ $[B]\{u\}=0$.

The figure below shows a particular set for MMIF. The system has 3 inputs, so that there are 3 indicator functions. The resonances are clearly indicated by minima that are close to zero.

The second indicator function is particularly interesting to verify pole multiplicity. It presents a minimum when the system presents two closely spaced modes that are excited differently by the two inputs (this is the case near 1850 Hz in the figure). In this particular case, the two poles are sufficiently close to allow identification with a single pole with a modeshape multiplicity of 2 (see id_rm) or two close modes. More details about this example are given in 9$]$.

This particular structure is not simply elastic (the FRFs combine elastic properties and sensor/actuator dynamics linked to piezoelectric patches used for the measurement). This is clearly visible by the fact that the first MIF does not go up to 1 between resonances (which does not happen for elastic structures).

At minima, the forces associated to the MMIF (eigenvector of $[A]\{u\} q+[B]\{u\}=0$) tend to excite a single mode and are thus good candidates for force appropriation of this mode [59]. These forces are the second optional output argument ua.

CMIF

The Complex Mode Indicator Function (CMIF) (can also be called using iicom Show cmmi, see [60] for a thorough discussion of CMIF uses), uses the fact that resonances of lightly damped systems mostly depend on a single pole. By computing, at each frequency point, the singular value decomposition of the response

$$
\begin{equation*}
[H(s)]_{N S \times N A}=[U]_{N S \times N S}[\Sigma]_{N S \times N A}\left[V^{H}\right]_{N A \times N A} \tag{10.43}
\end{equation*}
$$

one can pick the resonances of Σ and use U_{1}, V_{1} as estimates of modal observability / controllability (modeshape / participation factor). The optional u, v outputs store the left/right singular vectors associated to each frequency point.

AMIF

ii_mmif provides an alternate mode indicator function defined by

$$
\begin{equation*}
q(s)=1-\frac{|\operatorname{Im}(H(s))||H(s)|^{T}}{|H(s)||H(s)|^{T}} \tag{10.44}
\end{equation*}
$$

which has been historically used in force appropriation studies [59]. Its properties are similar to those of the MMIF except for the fact that it is not formulated for multiple inputs.
This criterion is supported by iiplot (use iicom Show amif).

SUM, SUMI, SUMA
Those functions are based upon the sum of data from amplitude of sensors for a given input. One can specify dimensions affected by the sum using command option - dim i (i is one ore more integers).

SUM,

$$
\begin{equation*}
S(s, k)=\sum_{j}\left\|H_{j, k}(s)\right\|^{2} \tag{10.45}
\end{equation*}
$$

is the sum of the square of all sensor amplitude for each input.

SUMI,

$$
\begin{equation*}
S(s, k)=\sum_{j} \operatorname{Im}\left(H_{j, k}(s)\right)^{2} \tag{10.46}
\end{equation*}
$$

is the sum of the square of the imaginary part of all sensors for each input.

SUMA,

$$
\begin{equation*}
S(s, k)=\sum_{j}\left\|H_{j, k}(s)\right\| \tag{10.47}
\end{equation*}
$$

is the sum of the amplitude of all sensors for each input.

Those functions are sometimes used as mode indicator functions and are thus supported by ii_mmif (you can also call them using iicom Show sumi for example).

NODEMIF

Undocumented.

Signal processing

Following commands are related to signal processing. Section section 2.1.7 illustrates the use of those functions through iiplot,

Integrate, DoubleInt, Vel, Acc

- Integrate integrates the frequency dependent signal

$$
\begin{equation*}
I_{j, k}(s)=\frac{H_{j, k}(0)}{s^{2}}+\frac{H_{j, k}(s)}{s} \tag{10.48}
\end{equation*}
$$

- DoubleInt integrates twice the frequency dependent signal

$$
\begin{equation*}
I 2_{j, k}(s)=\frac{H_{j, k}(0)}{s^{3}}+\frac{H_{j, k}(s)}{s^{2}} . \tag{10.49}
\end{equation*}
$$

- Vel computes the velocity (first derivative) of the signal. For a frequency dependent signal

$$
\begin{equation*}
V_{j, k}(s)=s \cdot H_{j, k}(s) \tag{10.50}
\end{equation*}
$$

For a time dependent signal, finite differences are used

$$
\begin{equation*}
V_{j, k}\left(t_{n}\right)=\frac{H_{j, k}\left(t_{n+1}\right)-H_{j, k}\left(t_{n}\right)}{t_{n+1}-t_{n}} \tag{10.51}
\end{equation*}
$$

$V_{j, k}\left(t_{\text {end }}\right)$ is linearly interpolated in order to obtain a signal of the same length.

- Acc computes the acceleration (second derivative) of the signal. For a frequency dependent signal

$$
\begin{equation*}
A_{j, k}(s)=s^{2} \cdot H_{j, k}(s) \tag{10.52}
\end{equation*}
$$

For a time dependent signal, finite differences are used

$$
\begin{equation*}
A_{j, k}\left(t_{n}\right)=\frac{h_{n} \cdot\left(H_{j, k}\left(t_{n+1}\right)-H_{j, k}\left(t_{n}\right)\right)-h_{n+1} \cdot\left(H_{j, k}\left(t_{n}\right)-H_{j, k}\left(t_{n-1}\right)\right)}{h_{n+\frac{1}{2}} \cdot h_{n} \cdot h_{n+1}} \tag{10.53}
\end{equation*}
$$

with $h_{n+1}=t_{n+1}-t_{n}$ and $h_{n+\frac{1}{2}}=\frac{h_{n}+h_{n+1}}{2}$.
$A_{j, k}\left(t_{e n d}\right)$ and $A_{j, k}\left(t_{1}\right)$ are linearly interpolated in order to obtain a signal of the same length.

FFT, FFTShock, IFFT, IFFTShock

Computes the Discrete Fourier Transform of a time signal. FFT normalizes according to the sampling period whereas FFTShock normalizes according to the length of the signal (so that it is useful for shock signal analysis).

IFFT and IFFTShock are respectively the inverse transform.
Accepted command options are

- -nostat to remove static component $(\mathrm{f}=0)$ from fft response.
- -newmark to shift frequencies of computed time integration with a mean acceleration Newmark scheme $(\gamma=0.5, \beta=0.25)$ in order to correct the periodicity error $\frac{\Delta T}{T}=\frac{\omega^{2} h^{2}}{12}$. This correction is especially true for low frequencies. Command option -newmark-betaval allows specifying another value of β, using the general shift value $\frac{\Delta T}{T}=\frac{1}{2}\left(\beta-\frac{1}{12}\right) \omega^{2} h^{2}$.
- tmin value, tmax value, fmin value, fmax value to use parts of the time trace or spectrum.
- zp value is used to apply a factor value on the length of the signal and zero-pad it.
- -window name is used to apply a window on the time signal. Use fe_curve('window') to get a list of implemented windows. For windows with parameters, use double quotes. For example R1_FFT=ii_mmif('FFTShock -struct -window "Exponential 1020 100"',R1).
- -display force display in iiplot after computing

```
[model,def]=fe_time('demobar10-run');
R1=ii_mmif('FFT-struct -window "hanning" wmax 400',def);
% To allow interaction
ci=iiplot;ci.Stack{'curve','def'}=def;
ii_mmif('FFT-struct -window "hanning" fmax 400 -display',ci,'def');
iicom('CurtabStack') % Show the property figure
```


BandPass

iimmif('BandPass fmin fmin fmax fmax') Performs a true band pass filtering (i.e. using fft, truncating frequencies and go back to time domain with ifft) between f min and fmax frequencies.

OctGen, Octave
filt=ii_mmif('OctGen $n t h h^{\prime}, f$) computes filters to perform a $\frac{1}{n t h}$-octave analysis.
As many filters as frequencies at the $\frac{1}{n t h}$-octave of 1000 Hz in the range of f (vector of frequencies) are computed. Each band pass filter is associated to a frequency f_{0} and a bandwidth $B w$ depending on f_{0}. Filters are computed so that their sum is almost equal to 1 . Filter computed are, for each f_{0}

$$
\begin{equation*}
H\left(f, f_{0}\right)=\frac{1}{1+\left(\frac{1}{B w\left(f_{0}\right)} \cdot \frac{f^{2}-f_{0}^{2}}{f}\right)^{6}} \tag{10.54}
\end{equation*}
$$

With command option plot, filters are plotted.
iimmif('Octave $n t h$ ', ci) performs the $\frac{1}{n t h}$ octave analysis of active curve displayed in iplot figure.
The $\frac{1}{n t h}$ octave analysis consists in applying each filter on the dataset. Energy in each filtered signal is computed with $10 \log (S)$ (where S is the trapezium sum of the filtered signal, or of the square of the filtered signal if it contains complex or negative values) and associated to the center frequency of corresponding filter.

See also

iiplot, iicom, idopt, fe_sens

ii_plp

Purpose

Pole line plots and other plot enhancement utilities.

Syntax

```
ii_plp(po)
ii_plp(po,color,Opt)
```


Description

plp

Generation of zoomable vertical lines with clickable information.
ii_plp(po) will plot vertical dotted lines indicating the pole frequencies of complex poles in po and dashed lines at the frequencies of real poles. The poles po can be specified in any of the 3 accepted formats (see ii_pof).

When you click on these lines, a text object indicating the properties of the current pole is created. You can delete this object by clicking on it. When the lines are part of iiplot axes, clicking on a pole line changes the current pole and updates any axis that is associated to a pole number (local Nyquist, residue and error plots, see iiplot.

.ID PoleLine Call from iiplot

When displaying a curve in iiplot, one can generate automatic calls to ii_plp. Curve.ID field can be used to generate automatically vertical lines in iiplot. It is a cell array with as many cell as line sets. Each cell is a data structure defining the line set. Following fields can be defined:

- . po can be a column vector defining abscissa of vertical lines. It can also be a string, possibly depending on the displayed curve XF1 and the channel through variable ch to be evaluated to define the ro.po vector, for example 'r1.po=XF1.Y2(: , ch) ;'.
- . LineProp is optional. One can specify some MATLAB line properties in this field as a cell array \{'prop1', value1, 'prop2', value2, ...\}, for example \{'LineStyle',': ', 'color', 'r'\}.

When using line sequencing, it is preferable to set the property using the line object tag now. Thus

```
R1=sdsetprop(R1,'PlotInfo.ua.axProp', ...
    '@now',{'LineStyle','--','color','k','marker','none'});
```

- .marker supports alternative strategies for line generation. horizontal assumes . po to given horizontal values. xy allows .po to contain a curve. If defined .po.MainDim='y' the curves are assumed to be $x=f(y)$ rather than the traditional $y=f(x)$.
- . name is used to generate a text info displayed when the user clicks on the line.
- . unit(obsolete) is used for Hz vs. rad/s unit conversion. With tens set to 1 (11 or 12) is used for poles in Hz , while those with tens set to 2 correspond to Rad/s. This value is typically obtained from IDopt (3).
- .format an integer that specifies whether the imaginary part $\operatorname{Im}(\lambda)$ (Format=2 which is the default) or the amplitude $|\lambda|$ (using Format=3 corresponding to format 3 of ii_pof) should be used as the "frequency" value for complex poles.

Legend

Dynamic multi-line legend generation used by iiplot and feplot.
ii_plp('legend',ga,prop) with properties a cell array detailed with in comgui def.Legend (typical legend generation associated with FEM solutions).

- 'set', 'legend -cornerx y^{\prime} gives the position of the legend corner with respect to the current axis. -reset option deletes any legend existing in the current axis.
- 'string',StringCell cell array of strings with one per line of legend. Line specific text properties can be given in second column of StringCell.
- 'PropertyName', PropertyValue additional properties to be set on the created text.
ii_plp('legend -corner . 01.01 -reset ', ga, ua, StringCell,legProp) is an older format found in some calls, with ga handle to the axis where the axes is to be placed, see gca. ua if not empty provides additional properties .legProp, .Corner.

PlotSubMark

Generate subsampled markers.
ii_plp('spy',k); Generates a spy plot with color coding associated with the non-zero element values of matrix k.

- unsymm is used to force non symmetric plots.
- threshold is used force small terms to zero.
- msizeval allows specifying the plot MarkerSize to val
- -nopbar avoids customizing the figure PlotBoxAspectRatio to respect the matrix one.

To perform block-wise spy plots of a single matrix, it is possible to provide matrix k as a structure with fields

- K the matrix to spy
- ind a cell array of disjoint sets of indices standing for a sequenced block-wise reodering of matrix K.
- indC (optional) to provide a different ordering for columns than for lines (following ind), activated for the unsymm case. It can be useful to display rectangular matrices.

TickFcn

SDT implements a general mechanism for enhancing the basic dynamic tick label generation of MATLAB. This allows placement of strings are proper locations on an axis. ii_plp('TickFcn') list predefined ticks.

This functionality is not fully documented and you are encouraged to look-up the source code. SDT generated plots expect the following fields in the axis userdata ua.TickInfo for data and ua.TickFcn for the callback. A sample usage would be

```
C1=struct('X',{{num2cell(2:4)' 2}},'Xlab',{{'x','y'}}, ...
    'Y',(1:3)')
figure(1);plot(1:3,C1.Y);ii_plp('tickXCell',C1,gca);
C1=ii_plp('tickXCell',C1); %Defines the PlotInfo
iiplot(C1);
```


ColorMap [,RO]

FEM oriented color maps.
Predefined maps can be directly called and will apply to the current figure. feplot assignment can be performed by nesting the ColorMap call in a call to fecom. fecom('colormapjet (5)') thus generates a map with 5 colors and grey level bands on the currentfeplot figure. This is called using

Sample colormaps are featured in the example below,

```
% Example of colormaps provided by ii_plp
figure(1);h=mesh(peaks(300));
set(h,'edgecolor','none','facecolor','interp');
ii_plp('ColormapBandjet(5)')
ii_plp('ColormapFireIce 20')
ii_plp('ColormapSamcef')
```

An exhaustive list can be obtained using ii_plp('ColorMap') with no argument. This will open the tag list for colormap thus showing the currently available maps.

- ii_plp('ColorMapWCenter Thres.1',jet(20)) uses the map given as second argument with a symmetric clim and a white band for values below the specified Thres.

In a more general context, one can define in any MATLAB figure a custom colormap with custom and unevenly spread thresholds by providing a structure in second argument with fields

- map the chosen map in rgb format.
- cval a vector of values at which colors switches. The color limits CLim properties of the figure current axis will be set to the extrema of cval. It is thus recommended to use clean min max values. Color distribution is performed sequentially, so that only one color per cval step is used. It is thus recommended to use a map with N-1 colors, N being the vector size.
- refine, optional. This is used to provide the colormap refinement needed to place color switches accurately. The default is set to 100 .
- bSplit, optional. This is used to add black split lines between colors, with a specified thickness.
- Band, optional. This is used to add a darkening nuance to each color step.
- cf, optional. To provide a feplot or figure handle, by default the current figure is taken.

```
% Custom colormap setting using ii_plp
demosdt('demoubeam')
cf=feplot;
fecom(cf,'colordataa')
fecom(cf,'colorscale Unit 1e3');
fecom(cf,'colorbaron')
ii_plp('colormap',struct('map',[1 1 1;jet(7)], ...
    'cval',[0:4:10 11:2:21],'Band',0,'refine',10,'bSplit',2))
```

Cb
Callbacks for comgui objSet properties of colorbar. Accepted options are

- No north (main location), eot east outside top.
- String label of colorbar
- map color map command.
- cf figure number

```
figure(1);clf;mesh(peaks);
ii_plp('cbNo',struct('String','Z', ...
    'map','ii_plp(''ColormapBandjet(5)'')', ...
    'cf',1));
```


See also

ii_pof, idopt, iiplot, iicom

ii_poest

Purpose

Identification of a narrow-band single pole model.

Syntax

idcom('e')
[res, po]= ii_poest(ci.Stack\{'Test'\},opt)

Description

ii_poest idcom e command and associated button in the idcom GUI figure, see section 2.8) provides local curve fitting capabilities to find initial estimates of poles by simply giving an indication of their frequency.

The central frequency for the local fit is given as opt (2) or, if opt(2)==0, by clicking on a plot whose abscissas are frequencies (typically FRF of MMIF plots generated by iiplot).

The width of the selected frequency band can be given in number of points (opt (1) larger than 1) or as a fraction of the central frequency (points selected are in the interval opt (2) $*(1+[-$ opt (1) opt (1)]) for opt (1) <1). The default value is opt (1) $=0.01$.

A single pole fit of the FRFs in xf is determined using a polynomial fit followed by an optimization using a special version of the id_rcalgorithm. The accuracy of the results can be judged graphically (when using the idcome command, Test and IdFrf are automatically overlaid as shown in the plot above) and based on the message passed

```
>> ci=idcom;iicom(ci,'CurveLoad','gartid');
>> idcom('e . 01 16.5');
>> disp(ci.Stack{'IdAlt'}.po)
    1.6427e+001 1.3108e-002
LinLS: 5.337e-001, LogLS 5.480e-001, nw 18
    mean(relE) 0.00, scatter 0.47 : acceptable
```

Found pole at $1.6427 \mathrm{e}+001 \quad 1.3108 \mathrm{e}-002$
\% manual call would be [res,po]=ii_poest(ci.Stack\{'Test'\},[.01 16.5]);
which indicates the linear and quadratic costs (see ii_cost) in the narrow frequency band used to find the pole, the number of points in the band, the mean relative error (norm of difference between test and model over norm of response, see iiplot error) which should be below 0.1, and the level of scatter (norm of real part over norm of residues, which should be small if the structure is close to having proportional damping).

If you have a good fit and the pole differs from poles already in your current model, you can add the estimated pole (add IdAlt to IdMain) using the idcom ea command.

The choice of the bandwidth can have a significant influence on the quality of the identification. As a rule the bandwidth of your narrow-band identification should be larger than the pole damping ratio (opt (1) $=0.01$ for a damping of 1% is usually efficient). If, given the frequency resolution and the damping of the considered pole, the default does not correspond to a frequency band close to $2 \zeta_{j} \omega_{j}$, you should change the selected bandwidth (for example impose the use of a larger band with opt (1) $=.02$ which you can obtain simply using idcom ('e.02')).
This routine should be used to obtain an initial estimate of the pole set, but the quality of its results should not lead you to skip the pole tuning phase idcom eup or eopt commands) which is essential particularly if you have closely spaced modes.

See also

```
idcom, id_rc, iiplot
```


ii_pof

Purpose

Transformations between the three accepted pole formats.

Syntax

[pob] = ii_pof(poa,DesiredFormatNumber)
[pob] = ii_pof(poa,DesiredFormatNumber,SortFlag)

Description

The Structural Dynamics Toolbox deals with real models so that poles are either real or come in conjugate pairs

$$
\begin{equation*}
\{\lambda, \bar{\lambda}\}=\{a \pm i b\}=\left\{-\zeta \omega \pm \omega \sqrt{1-\zeta^{2}}\right\} \tag{10.55}
\end{equation*}
$$

Poles can be stored in three accepted formats which are automatically recognized by ii_pof (see warnings below for exceptions).

Format 1: a column vector of complex poles. ii_pof puts the pairs of complex conjugate poles $\lambda, \bar{\lambda}$ first and real poles at the end

$$
\mathrm{po}=\left\{\begin{array}{c}
\lambda_{1} \tag{10.56}\\
\bar{\lambda}_{1} \\
\vdots \\
\lambda_{R e} \\
\vdots
\end{array}\right\} \text { for example } \quad \begin{gathered}
\\
\end{gathered}
$$

Because non-real poles come in conjugate pairs with conjugate eigenvectors, it is generally easier to only view the positive-imaginary and real poles, as done in the two other formats.

Format 2: real and imaginary part

$$
\mathrm{po}=\left[\begin{array}{cc}
a & b \tag{10.57}\\
\vdots & \vdots
\end{array}\right] \text { for example } \begin{array}{rll}
\mathrm{po}=\left[\begin{array}{lll}
-0.0200 & 1.9999 \\
-1.0000 & 0.0000
\end{array}\right]
\end{array}
$$

Format 3: frequency ω and damping ratio ζ

$$
\mathrm{po}=\left[\begin{array}{cc}
\omega_{1} & \zeta_{1} \tag{10.58}\\
\vdots & \vdots
\end{array}\right] \quad \text { for example } \quad \begin{array}{r}
\mathrm{po}=\left[\begin{array}{l}
2.00000 .0100 \\
-1.00001 .0000
\end{array}\right]
\end{array}
$$

To sort the poles while changing format use an arbitrary third argument SortFlag.

Warnings

The input format is recognized automatically. An error is however found for poles in input format 2 (real and imaginary) with all imaginary below 1 and all real parts positive (unstable poles). In this rare case you should change your frequency unit so that some of the imaginary parts are above 1.

Real poles are always put at the end. If you create your own residue matrices, make sure that there is no mismatch between the pole and residue order (the format for storing residues is described in section 5.6).

See also

idcom, id_rc, ii_plp

lsutil

Purpose

Level set utilities.

Syntax

```
model=lsutil('cut',model,li,RO)
```

def=lsutil('gen', model,li)
lsutil('ViewLs', model,li)

Description

lsutil provides a number of tools for level-set creation and manipulation.
Some commands return the model structure while others return the value of the level-set. Plot outputs are also available.

Available lsutil commands are
edge
gen
Level-set computation.
rect(lx,ly,xc,yc,alpha);
$\operatorname{circ}(\mathrm{rc}, \mathrm{xc}, \mathrm{yc})$;
box(lx,ly,lz,xc,yc,zc,nx,ny,nz);
sphere(rc,xc,yc,zc));
$\operatorname{cyl}(x c, y c, z c, n x, n y, n z, r c, z 0, z 1) ;$
cut
Accepted options are

- .doCut start by dividing elements
- .tolE fractional distance to edge end considered used to enforce node motion.
- .Fixed nodes that should not be moved.

Here a first example with placement of circular piezo elements

```
RO=struct('dim',[400 300 8],'tolE',.3);
[mdl,li]=ofdemos('LS2d',RO);lsutil('ViewLs',mdl,li);
li{1} % Specification of a circular level set
RO.doSplit=1; mo3=lsutil('cut',mdl,li,RO);
lsutil('ViewLs',mo3,li); % display the level set
fecom('ShowFiPro') % Show element properties
```

Now a volume example

```
RO=struct('dim',[10 10 40],'tolE',.1,'doSplit',1);
[model,li]=ofdemos('LS3d',RO);li{1} % Spherical cut
mo3=lsutil('cut -dosplit',model,li,RO);
cf=feplot(mo3);feplot('ShowFiMat')
% Now do a cylinder cut
li={struct('shape','cyl','xc',.5,'yc',.5,'zc',1,'nx',0,'ny',0,'nz',-1, ...
    'rc',.2,'z0',-.4,'z1',.4,'mpid',[200 300])};
mo3=lsutil('cut',model,li,RO);feplot(mo3);
cf.sel={'innode {x>=.5}','colordatamat -edgealpha.1'}
fecom('ShowFiPro') % Show element properties
```


See also

feplot

nasread

Purpose

Read results from outputs of the MSC/NASTRAN finite element code. This function is part of FEMLink.

Syntax

```
out = nasread('FileName','Command')
```


Description

nasread reads bulk data deck (NASTRAN input), direct reading of model and result information in OUTPUT2 and OUTPUT4 files generated using NASTRAN PARAM, POST, $-i$ cards. This is the most efficient and accurate method to import NASTRAN results for post-processing (visualization with feplot, normal model handling with nor2ss, ...) or parameterized model handling with upcom. Results in the . $f 06$ text file (no longer supported).

Available commands are

Bulk file
model=nasread('FileName', 'bulk') reads NASTRAN bulk files for nodes (grid points), element description matrix, material and element properties, and coordinate transformations, MPC, SPC, DMIG, SETS, ...

Use 'BulkNo' for a file with no BEGIN BULK card. Unsupported cards are displayed to let you know what was not read. You can omit the 'bulk' command when the file name has the . dat or . bdf extension.

Each row of the bas.bas output argument contains the description of a coordinate system.
The following table gives a partial conversion list. For an up to date table use nas2up ('convlist')
\qquad

NASTRAN	SDT
CELAS1, CELAS2, RBAR	celas
RBE2	rigid
RBE3	rbe3 in Case
CONROD	bar1
CBAR, CBEAM, CROD	beam1
CBUSH	cbush
CSHEAR	quad4
CONM1, CONM2	hexa8, hexa20
CHEXA	penta6, penta15
CPENTA	tetra4, tetra10
CTETRA	tria3
CTRIA3, CTRIAR	tria6
CTRIA6	quad4
CQUAD4, CQUADR	quadb

Details on properties are given under naswrite WritePLIL, NASTRAN Scalar points are treated as standard SDT nodes with the scalar DOF being set to DOF . 01 (this has been tested for nodes, DMIG and MPC).

OUTPUT2 binary

model=nasread('FileName', 'output2') reads output2 binary output format for tables, matrices and labels. You can omit the output2 command if the file names end with 2. The output model is a model data structure described in section 7.6 . If deformations are present in the binary file, the are saved OUG(i) entries in the stack (see section 7.8). With no output argument, the result is shown in feplot.

Warning: do not use the FORM = FORMATTED in the eventual ASSIGN OUTPUT2 statement.

The optional out argument is a cell array with fields the following fields
Header data block name (table, matrix) or label (label)

```
.name
dname
.data
.trl
```

Data block name (table, matrix) or NASTRAN header (label)
cell array with logical records (tables), matrix (matrix), empty (label)
Trailer (7 integers) followed by record 3 data if any (for table and matrix), date (for label)

Translation is provided for the following tables
GEOM1 nodes with support for local coordinates and output of nodes in global coordinates GEOM2 elements with translation to SDT model description matrix (see bulk command).
GEOM4 translates constraints (MPC, OMIT, SPC) and rigid links (RBAR, RBE1, RBE2, RBE3, RROD, ...) to SDT model description matrix
GPDT with use of GPL and CSTM to obtain nodes in global coordinates
KDICT reading of element mass (MDICT, MELM) and stiffness (KDICT, KELM) matrix dictionaries and transformation of a type 3 superelement handled by upcom. This is typically obtained from NASTRAN with PARAM, POST, -4. To choose the file name use Up.file='FileName'; Up=nasread(Up, 'Output2.op2');
MPT material property tables
OUG
transformation of shapes (modes, time response, static response, ...) as curve entries in the stack (possibly multiple if various outputs are requested).
Note : by default deformations are in the SDT global coordinate system (basic in NASTRAN terminology). You may switch to output in the local (global in NASTRAN terminology) using PARAM, OUGCORD, GLOBAL.
To avoid Out of Memory errors when reading deformations, you can set use a smaller buffer sdtdef ('OutOfCoreBufferSize', 10) (in MB). When too large, def.def is left in the file and read as a v-handle object that lets you access deformations with standard indexing commands. Use def.def=def.def (: ,:) to load all.
To get the deformation in the stack use calls of the form def=stack_get(model,' curve', 'OUG(1)','get ')
OEE tables of element energy
OES tables of element stresses or strains.
This translation allows direct reading/translation of output generated with NASTRAN PARAM, POST commands simply using out=nasread('FileName.op2'). For model and modeshapes, use PARAM,POST,-1. For model and element matrices use PARAM,POST,-4 or PARAM,POST,-5 (see BuildUp command below).

BuildUp, BuildOrLoad
A standard use of FEMLink is to import a model including element matrices to be used later with upcom. You must first run NASTRAN SOL103 with PARAM, POST, -4 to generate the appropriate . op2 file (note that you must include the geometry in the file, that is not use PARAM, OGEOM, NO). Assuming that you have saved the bulk file and the .op2 result in the same directory with the same name (different extension), then

```
Up=nasread('FileName.blk','buildup')
```

reads the bulk and .op2 file to generate a superelement saved in FileName.mat.
It is necessary to read the bulk because linear constraints are not saved in the .op2 file during the NASTRAN run. If you have no such constraints, you can read the .op2 only with Up=upcom('load FileName) ; Up=nasread (Up, 'FileName.op2').
The BuildOrLoad command is used to generate the upcom file on the first run and simply load it if it already exists.

```
nasread('FileName.blk','BuildOrLoad') % result in global variable Up
```


OUTPUT4 binary

out=nasread('FileName', 'output4') reads output4 binary output format for matrices (stiffness, mass, restitution matrices ...). The result out is a cell array containing matrix names and values stored as Matlab sparse matrices.

All double precision matrix types are now supported. If you encounter any problem, ask for a patch which will be provided promptly.

Output4 text files are also supported with less performance and no support for non sequential access to data with the SDT v_handle object.

Supported options

- -full : assumes that the matrix to be read should be stored as full (default sparse).
- -transpose : transpose data while reading.
- -hdf : save data in a hdf file. Reading is performed using buffer (sdtdef('OutOfCoreBufferSize', 100) for a 100 MB buffer). It is useful to overcome the 2GB limit on 32 bit Matlab: see sdthdf for details about how to build v_handle on hdf file.

```
.f06 output (obsolete)
```

ASCII reading in.$f 06$ files is slow and often generates round-off errors. You should thus consider reading binary OUTPUT2 and OUTPUT4 files, which is now the only supported format. You may try reading matrices with nasread('FileName', 'matprt'), tables with nasread('F', 'tabpt') and real modes with

```
[vector,mdof]=nasread('filename','vectortype')
```

Supported vectors are displacement (displacement), applied load vector (oload) and grid point stress (gpstress).

See also

```
naswrite, FEMLink
```


naswrite

Purpose

Formatted ASCII output to MSC/NASTRAN bulk data deck. This function is part of FEMLink.

Syntax

```
naswrite('FileName',node,elt,pl,il)
naswrite('FileName','command', ...)
naswrite('-newFileName','command', ...)
naswrite(fid,'command', ...)
```


Description

naswrite appends its output to the file FileName or creates it, if it does not exist. Use option -newFileName to force deletion of an existing file. You can also provide a handle fid to a file that you opened with fopen. fid=1 can be used to have a screen output.

EditBulk
Supports bulk file editing. Calls take the form nas2up('EditBulk', InFile, edits, Outfile), where InFile and OutFile are file names and edits is a cell array with four columns giving command, BeginTag, EndTag, and data. Accepted commands are

```
Before inserts data before the BeginTag.
Insert inserts data after the EndTag.
Remove removes a given card. Warning this does not yet handle multiple line cards.
Set used to set parameter and assign values. For example
```

```
edits={'Set','PARAM', 'POST','-2'};
```

edits={'Set','PARAM', 'POST','-2'};
rootname='my_job';
rootname='my_job';
f0={'OUTPUT4',sprintf('%s_mkekvr.op4',rootname),'NEW',40,'DELETE',
f0={'OUTPUT4',sprintf('%s_mkekvr.op4',rootname),'NEW',40,'DELETE',
'OUTPUT4',sprintf(%%s_TR.op4',rootname), 'NEW',41,'DELETE'};
'OUTPUT4',sprintf(%%s_TR.op4',rootname), 'NEW',41,'DELETE'};
edits(end+1,1:4)={'set','ASSIGN','',f0}

```
edits(end+1,1:4)={'set','ASSIGN','',f0}
```

When writing automated solutions, the edits should be stored in a stack entry info,EditBulk.
naswrite('FileName', model) the nominal call, it writes everything possible : nodes, elements, material properties, case information (boundary conditions, loads, etc.). For example naswrite(1,femesh('testquad4')).

The following information present in model stack is supported

- curves as TABLED1 cards if some curves are declared in the model. Stack seefe_curve for the format).
- Fixed DOFs as SPC1 cards if the model case contains FixDof and/or KeepDof entries. FixDof, AutoSPC is ignored if it exists.
- Multiple point constraints as MPC cards if the model case contains MPC entries.
- coordinate systems as CORDi cards if model.bas is defined (see basis for the format).

The obsolete call naswrite('FileName', node, elt, pl,il) is still supported.
node, elt
You can also write nodes and elements using the low level calls but this will not allow fixes in material/element property numbers or writing of case information.

```
femesh('reset');
femesh('testquad4')
fid=1 % fid=fopen('FileName');
naswrite(fid,'node',FEnode)
naswrite(fid,'node',FEnode)
%fclose(fid)
```

Note that node (: 4) which is a group identifier in SDT, is written as the SEID in NASTRAN. This may cause problems when writing models from translated from other FEM codes. Just use model. $\operatorname{Node}(:, 4)=0$ in such cases.

dmig

DMIG writing is supported through calls of the form naswrite(fid,'dmigwrite NAME', mat,mdof). For example

```
naswrite(1,'dmigwrite KAAT',rand(3), [1:3]'+.01)
```

A nastran, dmig entry in model. Stack, where the data is a cell array where each row gives name, DOF and matrix, will also be written. You can then add these matrices to your model by adding cards of the form K2GG=KAAT to you NASTRAN case.
\qquad
job
NASTRAN job handling on a remote server from the MATLAB command line is partially supported. You are expected to have ssh and scp installed on your computer. On windows, it is assumed that you have access to these commands using CYGWIN. You first need to define your preferences

```
setpref('FEMLink','CopyFcn','scp');
setpref('FEMLink','RunNastran','nastran');
setpref('FEMLink','RemoteShell', 'ssh');
setpref('FEMLink','RemoteDir','/tmp2/nastran');
setpref('FEMLink', 'RemoteUserHost', 'user@myhost.com')
setpref('FEMLink','DmapDir',fullfile(fileparts(which('nasread')),'dmap'))
```

You can define a job handler customized to your needs and still use the nas2up calls for portability by defining setpref('FEMLink', 'NASTRANJobHandler', 'FunctionName').

You can then run a job using nas2up('joball', 'BulkFileName.dat'). Additional arguments can be passed to the RunNastran command by simply adding them to the joball command. For example nas2up('joball', 'BulkFileName.dat',struct('RunOptions','memory=1GB')).

It is possible provide specific options to your job handler by storing them as a info, Nas JobOptentry in your model.Stack. nas2up('JobOptReset') resets the default. The calling format in various functions that use the job handling facility is then

```
model=stack_set('info','NasJobOpt', nas2up('jobopt'));
nas2up('joball','step12.dat',model);
```

RunOpt.RunOptions stores text options to be added to the nastran command. RunOpt.BackWd can be used to specify an additional relative directory for the JobCpFrom command. RunOpt.RemoteRelDir can be used to specify the associated input for the JobCpTo command.
nas2up('JobCpTo', 'LocalFileName', 'RemoteRelDir') puts (copies) files to the remote directory or to fullfile(RemoteDir, RemoteRelativeDir) if specified.
nas2up('JobCpFrom', 'RemoteFileName') fetches files. The full remote file name is given by fullfile(RemoteDir, RemoteFileName). Any relative directory is ignored for the local directory.

Here is a simple script that generates a model, runs NASTRAN and reads the result

```
wd=sdtdef('tempdir');
model=demosdt('demoubeam-2mat'); cf=feplot;
model=fe_case(model,'dofload','Input', ...
    struct('DOF',[349.01;360.01;241.01;365.03], 'def', [1;-1;1;1], 'ID',100));
model=nas2up('JobOpt',model);
```

```
model=stack_set(model,'info','Freq', [20:2:150]);
% write bulk but do not include eigenvalue options
naswrite(['-new' fullfile(wd,'ubeam.bdf')],stack_rm(model,'info','EigOpt'))
% generate a job by editing the reference mode.dat file
fname='ubeam.dat';
edits={'Set','PARAM', 'POST','-2';
    'replace','include ''model.bdf',','','include ''ubeam.bdf','';
    'replace','EIGRL','',nas2up('writecard',-1,[1 0 0 30],'ijji','EIGRL')};
nas2up('editbulk','mode.dat',edits,fullfile(wd,fname));
cd(wd);type(fname)
nas2up('joball',fname,model)
cg=feplot(4);mo1=nasread('ubeam.op2');
```


Wop4

Matrix writing to OUTPUT4 format. You provide a cell array with one matrix per row, names in first column and matrix in second column. The optional byte swapping argument can be used to write matrices for use on a computer with another binary format.

```
kv=speye(20);
ByteSwap=0; % No Byte Swapping needed
nas2up('wop4','File.op4',{'kv',kv},ByteSwap);
```

For ByteSwap you can also specify ieee-le for little endian (Intel PC) or ieee-be depending on the architecture NASTRAN will be running on. You can omit specifying ByteSwap at every run by setting

```
setpref('FEMLink','OutputBinaryType','ieee-le')
```


WriteFreqLoad

edits=naswrite('Target.bdf', 'WriteFreqLoad', model) (or the equivalent nas2up call when the file is already open as show below) writes loads defined in model (and generated with
Load $\left.=f e _l o a d(m o d e l)\right)$ as a series of cards. FREQ1 for load frequencies, TABLED1 for the associated curve, RLOAD1 to define the loaded DOFs and DAREA for the spatial information about the load. The return edits argument is the entry that can be used to insert the associated subcase information in a nominal bulk.

The identifiers for the loads are supposed to be defined as Case. Stack\{j1, end $\}$.ID fields.
\qquad

```
% Generate a model with sets of point loads
model=demosdt('Demo ubeam dofload noplot')
% Define the desired frequencies for output
model=stack_set(model,'info','Freq', ...
    struct('ID',101,'data',linspace(0,10,12)));
fid=1 % fid=fopen('FileName');
edits=nas2up('writefreqload',fid,model);
fprintf(%%s\n',edits{end}{:}); % Main bulk to be modified with EditBulk
%fclose(fid)
```

Write[Curve, Set, SetC, Uset]

Write commands are used to WriteCurve lets you easily generate NASTRAN curve tables.
WriteSet lets you easily generate NASTRAN node and elements sets associated with node and element selection commands.

WriteSetC formats the sets for use in the case control section rather than the bulk.
WriteUset generates DOFs sets.

```
model=demosdt('demogartfe');
fid=1; % display on screen (otherwise use FOPEN to open file)
nas2up('WriteSet',fid,3000,model,'findnode x>.8');
selections={'zone_1','group 1';'zone_2','group 2:3'};
nas2up('WriteSet',fid,2000,model,selections);
st=nas2up('WriteSet',-1,2000,model,selections);
curves={'curve','Sine',fe_curve('testEval -id1 sin(t)',linspace(0,pi,10)) ; ...
    'curve','Exp.',fe_curve('testEval -id100 exp(-2*t)',linspace(0,1,30))};
nas2up('WriteCurve',fid,curves)
DOF=feutil('getdof',model);
nas2up('WriteUset U4',fid,DOF(1:20))
```


WritePLIL

The WritePLIL is used to resolve identifier issues in MatId and ProId (elements in SDT have both a MatId and an ProID while in NASTRAN they only have a ProId with the element property information pointing to material entries). While this command is typically used indirectly while writing a full model, you may want to access it directly. For example

```
model=demosdt('demogartfe');
nas2up('Writeplil',1,model);
```

- p_solid properties are implemented somewhat differently in NASTRAN and SDT, thus for a il row giving [ProID type Coordm In Stress Isop Fctn]
In NASTRAN In is either a string or an integer. If it is an integer, this property is the same in il. If it is a string equal to resp. TWO or THREE, this property is equal to resp. 2 or 3 in il.

In NASTRAN Stress is either a string or an integer. If it is an integer, this property is the same in il. If it is a string equal GAUSS, this property is equal to 1 in il.
In NASTRAN, Isop is either a string or an integer. If it is an integer, this property is the same in il. If it is a string equal FULL, this property is equal to 1 in il.

If Fctn is equal to FLUID in the NASTRAN Bulk file, it is equal to 1 in il and elements are read as flui* elements.

- MAT9 and m_elastic 3 differ by the order of shear stresses $y z, z x, G x y$ in SDT and $x y, y z, z x$ in NASTRAN. The order of constitutive values is thus different, which is properly corrected in SDT 6.5.

See also

nasread, ufread, ufwrite

nor2res, nor2ss, nor2xf

Purpose

Transformations from normal mode models to other model formats.

Syntax

```
[res,po,psib,cpsi] = nor2res( ... ) % sdtweb('res') for format
    RES = nor2res( ... )
    [a,b,c,d] = nor2ss ( ... ) % sdtweb('ss') for format
    SYS = nor2ss ( . . )
        xf = nor2xf ( ... ) % sdtweb('xf') for format
        ... = nor2.. (DEF,MODEL, ... ) % high level input
    ... = nor2.. (DEF,ga,MODEL, ... )
    ... = nor2.. (ga,om,pb,cp, ... ) % low level input
... = nor2ss ( ... , ind,fc,OutputCmd) % frequency,truncation...
    ... = nor2xf ( ... , w,ind,fc,OutputCmd)
```


Description

These functions provide detailed access, for simple high level calls see fe2ss. Normal mode models are second order models detailed in the Theory section below. nor2res, nor2ss, and nor2xf provide a number of transformations from the normal mode form to residue, state-space, and transfer function formats.

The normal mode model is specified using either high level structure arguments DEF, MODEL (where the model is assumed to contain load and sensor case entries) or low level numeric arguments om, ga, pb, cp. Additional arguments w,ind,fc,OutputCmd can or must be specified depending on the desired output. These arguments are listed below.

DEF, MODEL

The normal mode shapes are given in a DEF structure with fields . def, .DOF, . data (see section 7.8).

These mode shapes are assumed mass normalized and the first column of the .data field is assumed to give modal frequencies in $\mathbf{H z}$. They can be computed with fe_eig or imported from an external FEM code (see FEMLink). See also fe2ss.

Damping can be declared in different ways

- modal damping ratio can be given in DEF.data (: ,2). When this column exists other damping input is ignored. This is illustrated as variable damping below.
- damp a vector of modal damping ratio can be given as the second argument nor2ss (DEF , damp, MODEL), or as an info, DefaultZeta entry as shown in the example below.
- a modal damping matrix ga can be given as the second argument. Note that this modal damping matrix is assumed to use frequency units consistent with the specified frequencies. Thus a physical viscous damping matrix will need to be divided by $2 *$ pi (see demo_fe).
- hysteretic modal damping is not systematically supported since it leads to complex valued state-space models. You can compute FRFs with an hysteretic modal damping model using

```
def.data=sqrt(real(def.data.^2)).*sqrt(1+i*damp*2);
IIxh=nor2xf(def,[],model,w, 'hz');
as illustrated in section 5.3.2.
```

Inputs and outputs are described by a model containing a Case (see section 4.5). Giving the model is needed when inputs correspond to distributed loads FVol or FSurf case entries detailed under fe_load). SensDof are the only output entries currently supported (see fe_case).

Note that DofSet entries are handled as acceleration inputs. The basis described by DEF must allow a correct representation of these inputs. This can be achieved by using a basis containing static corrections for unit displacements or loads on the interface (seefe2ss CraigBampton or Free commands). A proper basis can also be generated using acceleration inputs at single nodes where a large seismic mass is added to the model. This solution is easier to implement when dealing with external FEM codes.

Examples

Here is a sample call that compares responses for two damping levels

```
[model,def]=demosdt('demogartfe');
InDof=[4.03;55.03;2.03]; OutDof=[4 55 30]'+.03;
freq=linspace(5,70,500)';
model=fe_case(model, ...
    'DofLoad','Force',InDof, ...
    'SensDof','Sensors',OutDof);
model=stack_set(model,'info','Freq',freq, ...
    'info','DefaultZeta',.01); % Ignored when def.data(:,2) exists
nor2xf(def,model,'acc iiplot "Test" -po -reset');
```

```
% Another variation
    % define variable damping in def.data(:,2)
    def.data(def.data(:,1)<30,2)=.005; % 0.5% damping below 30 Hz
    def.data(def.data(:,1)>30,2)=.02; % 2% damping above 30 Hz
    % Truncate to first 10 modes (static correction is lost)
    d1=fe_def('subdef',def,1:12);
    % Define inputs and ouputs using DOFs (less general than fe_case)
    nor2xf(d1,InDof,OutDof,freq,'acc iiplot "Variable damping"');
iicom('ch2');ci=iiplot;ci.Stack
```

When using distributed loads (pressure, etc.), the model elements are needed to define the load so that the model rather than a Case must be given as in the following example

```
model = demosdt('demo ubeam');
def=fe_eig(model,[106 20 10000 11 1e-5]);
%Pressure load
data=struct('sel','x==-.5', ...
    'eltsel','withnode {z>1.25}','def',1,'DOF',.19);
model=fe_case(model,'Fsurf','Surface load',data)
%Sensors
model=fe_case(model,'sensdof','Sensors', [50:54]'+.03);
fe_case(model,'info')
model=stack_set(model,'info','Freq',linspace(10,240,460));
nor2xf(def,0.01,model,'iiplot "Test" -po -reset');
```

Example of transmissibility prediction using the large mass method where one defines a rigid base and a large mass such that one has 6 rigid body modes and fixed interface modes

```
model = demosdt('demo ubeam');
```

```
% define rigid base
i1=feutil('findnode z==0',model);
model = fe_case(model,'reset', ...
    'rigid append','Base',[i1(1);123456;i1(2:end)]);
% Add large mass on the base
model.Elt(end+[1:2],1:7)=[Inf abs('mass1') 0;
    i1(1) [1 1 1 1 1 1]*1e6];
```

```
def=fe_eig(model,[5 20 1e3]); % This can be computed elsewhere
% Transmissibility for unit acceleration along x
model=fe_case(model,'DofSet','IN', ...
    struct('def',[1;0;0;0;0;0],'DOF',i1(1)+[1:6]'/100), ...
    'SensDof','OUT', [1.01;314.01]);
f=linspace(50,500,1024)';
nor2xf(def,.01,model,f,'acc iiplot "Trans-Large" -reset');
% Clean approach without the large mass
mo2=stack_set(model,'info','EigOpt',[5 14 1e3]);
mo2=fe_case(mo2,'DofSet','IN',i1(1));
SE=fe_reduc('CraigBampton -se',model); % craig-bampton reduction
% Free modes of Craig-Bampton basis
TR=fe_eig({SE.K{:} SE.DOF});TR.DOF=SE.TR.DOF;TR.def=SE.TR.def*TR.def;
nor2xf(TR,.01,model,f,'acc iiplot "Trans-Craig"');
iicom('ch2');
om,ga,pb,cp
```

Standard low level arguments om (modal stiffness matrix), ga (modal viscous damping matrix), pb (modal controllability) and cp (modal observability) used to describe normal mode models are detailed in section section 5.2. A typical call using this format would be
[model, def]=demosdt('demogartfe');
b = fe_c(def.DOF,[4.03;55.03])'; c = fe_c(def.DOF,[1 30 40]'+.03);
IIw=linspace ($5,70,500$)';
nor2xf(def.data,0.01,def.def'*b,c*def.def,IIw*2*pi, ...
'Hz iiplot "Simul" -po -reset');

w,ind,fc,OutputCmd

Other arguments are

- w frequencies (in rad/s unless Hz is specified in OutputCmd) where the FRF should be computed (for nor2xf). Can also be given as a model. Stack\{'info', 'Freq'\} entry.
- ind (optional) gives the indices of modes to be retained (truncated modes are then added to the static correction).
- fc (optional) roll-off frequency : that is frequency assigned to the static correction poles. Since static correction is meant for low frequency behavior, its dynamics must be above the bandwidth of interest but where exactly can be tuned. This applies only to load input cases and a static correction must exist.
- OutputCmd (optional) is a string that can contain. ' Hz ' to specify that w and wj are given in Hz. Non diagonal om or ga are always given in rad/s. 'dis', 'vel', or 'acc' are used to obtain displacement (default), velocity or acceleration output. 'struct' is used to obtain a curve structure.
'iiplot "StackName" -po -reset' can be used to display results in iiplot see section 2.1.2). The optional -po is used to save poles in ci.Stack' IdMain' so that they can be displayed. -reset reinitializes the curve stack.
-zoh Ts or -foh Ts can be used to obtained a discrete state-space model based on zero or first order hold approximations with the specified time step.

res

nor2res returns a complex mode model in the residue form

$$
\begin{equation*}
[\alpha(s)]=\sum_{j=1}^{2 N} \frac{\left\{c \psi_{j}\right\}\left\{\psi_{j}^{T} b\right\}}{s-\lambda_{j}}=\sum_{j=1}^{2 N} \frac{\left[R_{j}\right]}{s-\lambda_{j}} \tag{10.59}
\end{equation*}
$$

This routine is particularly useful to recreate results in the identified residue form res for comparison with direct identification results from id_rc.

Pole residue models are always assumed to correspond to force to displacement transfer functions. Acceleration input or velocity, acceleration output specifications are thus ignored.

SS
nor2ss returns state-space models (see the theory section below).
When no roll-off frequency is specified, nor2ss introduces a correction, for displacement only, in the state-space models through the use of a non-zero d term. If a roll-off frequency $f c$ is given, the static correction is introduced in the state-space model through the use of additional high frequency modes. Unlike the non-zero D term which it replaces, this correction also allows to correct for velocity contributions of truncated modes.

You can also specify fc as a series of poles (as many as inputs) given in the frequency/damping format (see ii_pof).

You force use of SDT structure and rather than Control Toolbox LTI object using setpref('SDT', 'UseControlToolbox', 0). You can convert between formats using ss_lti=nor2ss('ss2struct',ss_sdt) or ss_sdt=nor2ss('ss2struct',ss_lti).
xf
nor2xf computes FRF (from u to y) associated to the normal mode model. When used with modal frequencies freq and a subset of the modes (specified by a non empty ind), nor2xf introduces static corrections for the truncated modes.
lab_in,lab_out
SDT uses fields lab_in and lab_out, while the control toolbox objects use InputName and OutputName. The commands lab_in are used to robust handling based on the object type.

```
lab_in =nor2ss('lab_in', sys) % Get in
lab_out=nor2ss('lab_out',sys) % Get out
sys=nor2ss('lab_in' ,sys,lab_in) % Set in
sys=nor2ss('lab_out',sys,lab_out) % Set out
```


Theory

The basic normal mode form associated with load inputs $[b]\{u\}$ is (see section 5.2)

$$
\begin{gather*}
{\left[[I] s^{2}+[\Gamma] s+\left[\Omega^{2}\right]\right]_{N P \times N P}\{(s)\}=\left[\phi^{T} b\right]_{N P \times N A}\{u(s)\}_{N A \times 1}} \tag{10.60}\\
\{y(s)\}=[c \phi]_{N S \times N P}\{p(s)\}_{N P \times 1}
\end{gather*}
$$

where the coordinates p are such that the mass is the identity matrix and the stiffness is the diagonal matrix of frequencies squared.

The associated state-space model has the form

$$
\begin{align*}
&\left\{\begin{array}{l}
\dot{p}(t) \\
\ddot{p}(t)
\end{array}\right\}= {\left[\begin{array}{cc}
{[0]} & {[I]} \\
-\left[\begin{array}{l}
\left.\backslash \Omega^{2} \backslash\right]
\end{array}\right. & -[\Gamma]
\end{array}\right]\left\{\begin{array}{l}
p(t) \\
\dot{p}(t)
\end{array}\right\}+\left[\begin{array}{c}
0 \\
\phi^{T} b
\end{array}\right]\{u(t)\} } \tag{10.61}\\
&\{y\}=\left[\begin{array}{ll}
c \phi & 0
\end{array}\right]\left\{\begin{array}{l}
p(t) \\
\dot{p}(t)
\end{array}\right\}+[0]\{u(t)\}
\end{align*}
$$

When used with modal frequencies wj and a subset of the modes (specified by ind), nor2ss introduces static corrections for the truncated modes. When requesting velocity or acceleration output, static correction can only be included by using additional modes.

In cases with displacement output only, the static corrections are ranked by decreasing contribution (using a SVD of the d term). You can thus look at the input shape matrix b to see whether all corrections are needed.
nor2ss (and nor2xf by calling nor2ss) supports the creation of state-space models of transmissibilities (transfer functions from acceleration input to displacement, velocity or acceleration. For such models, one builds a transformation such that the inputs u_{a} associated with imposed accelerations correspond to states

$$
\left\{\begin{array}{c}
u_{a} \tag{10.62}\\
q_{c}
\end{array}\right\}=\left[\begin{array}{ll}
T_{I} & T_{C}
\end{array}\right]\{p\}
$$

and solves the fixed interface eigenvalue problem

$$
\begin{equation*}
\left[T_{C}^{T} \Omega T_{C}-\omega_{j C}^{2} T_{C}^{T} I T_{C}\right]\left\{\phi_{j C}\right\}=\{0\} \tag{10.63}
\end{equation*}
$$

leading to basis $\left[\begin{array}{ll}T_{I} & \hat{T}_{C}\end{array}\right]=\left[\begin{array}{ll}T_{I} & \left.T_{C}\left[\phi_{j C}\right]\right] \text { which is used to build the state space model }\end{array}\right.$

$$
\begin{gather*}
\left\{\begin{array}{c}
\dot{u} \\
\dot{q}_{C} \\
\ddot{u} \\
\ddot{q}_{C}
\end{array}\right\}=\left[\begin{array}{c}
{[0]} \\
0 \\
{\left[\begin{array}{cc}
{\left[\hat{T}_{C}^{T} \Omega\left[\begin{array}{ll}
T_{I} & \hat{T}_{C}
\end{array}\right]\right.}
\end{array}\right]\left[\begin{array}{c}
{[I]} \\
0 \\
\left.-\hat{T}_{C}^{T} \Gamma\left[\begin{array}{ll}
T_{I} & \left.\hat{T}_{C}\right]
\end{array}\right]\right] \\
{\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & I \\
\hat{T}_{C}^{T} b & \hat{T}_{C}^{T} T_{I}
\end{array}\right]\left\{\begin{array}{c}
u \\
q_{C} \\
\dot{u} \\
\dot{q}_{C}
\end{array}\right\}+} \\
u_{F} \\
\ddot{u}_{a}
\end{array}\right\}} \\
\{y\}=\left[\begin{array}{llll}
c T_{I} & c \hat{T}_{C} & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
u_{a} \\
q_{C} \\
\dot{u}_{a} \\
\dot{q}_{C}
\end{array}\right\}+[0]\left\{\begin{array}{c}
u_{F} \\
\ddot{u}_{a}
\end{array}\right\}
\end{array}\right.
\end{gather*}
$$

Simple adjustments lead to velocity and acceleration outputs.
When using acceleration input, care must be taken that the initial shapes of the normal mode model form an appropriate basis. This can be achieved by using a basis containing static corrections for
unit displacements or loads on the interface (see fe2ss CraigBampton or Free commands) or a seismic mass technique.

See also

res2nor, id_nor, fe_c, psi2nor
demo_fe

of2vtk

Purpose

Export model and deformations to VTK format for visualization purposes.

Syntax

opfem2VTK(FileName, model)
opfem2VTK(FileName, model, val1, ..., valn)

Description

Simple function to write the mesh corresponding to the structure model and associated data currently in the "Legacy VTK file format" for visualization.

To visualize the mesh using VTK files you may use ParaView which is freely available at http://www.paraview.org or any other visualization software supporting VTK file formats.
try; tname=nas2up('tempname.vtk'); catch; tname=[tempname '.vtk'];end model=femesh('testquad4');

```
NodeData1.Name='NodeData1';NodeData1.Data=[1 ; 2 ; 3 ; 4];
```

NodeData2.Name='NodeData2';NodeData2.Data=[0 0 1;0 0 2;0 0 3;0 0 4];
of2vtk('fic1', model,NodeData1,NodeData2);
EltData1.Name ='EltData1' ;EltData1.Data =[1];
EltData2.Name ='EltData2' ;EltData2.Data =[$\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]$;
of2vtk('fic2',model,EltData1,EltData2);

def. $D 0 F=r e s h a p e(r e p m a t((1: 4), 6,1)+r e p m a t((1: 6) ' / 100,1,4),[], 1)$
def.lab=\{'NodeData3', 'NodeData4' $\}$;
of2vtk('fic3', model, def);
EltData3.EltId=[1];EltData3.data=[1];EltData3.lab=\{'EltData3'\};
EltData4.EltId=[2];EltData4.data=[2];EltData4.lab=\{'EltData4'\};
of2vtk('fic4',model,EltData3,EltData4);

The default extention .vtk is added if no extention is given.
Input arguments are the following:

FileName
file name for the VTK output, no extension must be given in FileName, "FileName.vtk" is automatically created.
model
a structure defining the model. It must contain at least fields .Node and .Elt.
FileName and model fields are mandatory.
vali
To create a VTK file defining the mesh and some data at nodes/elements (scalars, vectors) you want to visualize, you must specify as many inputs vali as needed. vali is a structure defining the data: vali $=$ struct('Name', ValueName, 'Data', Values). Values can be either a table of scalars (Nnode $\times 1$ or Nelt $\times 1$) or vectors (Nnode $\times 3$ or Nelt $\times 3$) at nodes/elements. Note that a deformed model can be visualized by providing nodal displacements as data (e.g. in ParaView using the "warp" function).

Purpose

Factored matrix object.

Syntax

```
ofact
ofact('method MethodName');
kd=ofact(k); q = kd\b; ofact('clear',kd);
kd=ofact(k,'MethodName')
```


Description

The factored matrix object ofact is designed to let users write code that is independent of the library used to solve static problems of the form $[K]\{q\}=\{F\}$. For FEM applications, choosing the appropriate library for that purpose is crucial. Depending on the case you may want to use full, skyline, or sparse solvers. Then within each library you may want to specify options (direct, iterative, in-core, out-of-core, parallel, ...).

Using the ofact object in your code, lets you specify method at run time rather than when writing the code. Typical steps are

```
ofact('method spfmex'); % choose method
kd = ofact(k); % create object and factor
static = kd\b % solve
ofact('clear',kd) % clear factor when done
```

For single solves static=ofact (k, b) performs the three steps (factor, solve clear) in a single pass. The first step of method selection provides an open architecture that lets users introduce new solvers with no need to rewrite functions that use of act objects. Currently available methods are listed simply by typing

```
>> ofact
Available factorization methods for OFACT object
-> spfmex : SDT sparse LDLt solver
    sp_util : SDT skyline solver
            lu : MATLAB sparse LU solver
    mtaucs : TAUCS sparse solver
    pardiso : PARDISO sparse solver
        chol : MATLAB sparse Cholesky solver
        *psldlt : SGI sparse solver (NOT AVAILABLE ON THIS MACHINE)
```

and the method used can be selected with ofact('method MethodName'). SDTools maintains pointers to pre-compiled solvers at http://www.sdtools.com/faq/FE_ofact.html.

The factorization $k d=o f a c t(k)$; and resolution steps static $=k d \backslash b$ can be separated to allow multiple solves with a single factor. Multiple solves are essential for eigenvalue and quasi-newton solvers. static $=$ ofact $(k) \backslash b$ is of course also correct.

The clearing step is needed when the factors are not stored as Matlab variables. They can be stored in another memory pile, in an out-of-core file, or on another computer/processor. Since for large problems, factors require a lot of memory. Clearing them is an important step.

Historically the object was called skyline. For backward compatibility reasons, a skyline function is provided.

umfpack

To use UMFPACK as a ofact solver you need to install it on your machine. This code is available at www.cise.ufl.edu/research/sparse/umfpack.

```
pardiso
```

Based on the Intel MKL (Math Kernel Library), you should use version 8 and after.
By default the pardiso call used in the ofact object is set for symmetric matrices. For non-symmetric matrices, you have to complement the ofact standard command for factorization with the character string 'nonsym'. Moreover, when you pass a matrix from Matlab to PARDISO, you must transpose it in order to respect the PARDISO sparse matrix format.
Assuming that k is a real non-symmetric matrix and b a real vector, the solution q of the system $k . q=b$ is computed by the following sequence of commands:

```
ofact pardiso % select PARDISO solver
kd = ofact('fact nonsym',k'); % factorization
q=kd\b; % solve
ofact('clear',kd); % clear ofact object
```

The factorization is composed of two steps: symbolic and numerical factorization. For the first step the solver needs only the sparse matrix structure (i.e. non-zeros location), whereas the actual data stored in the matrix are required in the second step only. Consequently, for a problem with a unique factorization, you can group the steps. This is done with the standard command ofact('fact',...).
In case of multiple factorizations with a set of matrices having the same sparse structure, only the second step should be executed for each factorization, the first one is called just for the first factorization. This is possible using the commands 'symbfact' and 'numfact' instead of 'fact' as follows:

```
kd = ofact('symbfact',k); % just one call at the beginning
kd = ofact('numfact',k,kd); % at each factorization
q=kd\b;
%
ofact('clear',kd); % just one call at the end
```

You can extend this to non-symmetric systems as described above.

spfmex

spfmex is a sparse multi-frontal solver based on spooles a compiled version is provided with SDT distributions.

```
sp_util
```

The skyline matrix storage is a traditional form to store the sparse symmetric matrices corresponding to FE models. For a full symmetric matrix kfull

```
kfull=[1 2
    10
        6 0}
            9 7
        sym. 11 19
        20]
```

The non-zero elements of each column that are above the diagonal are stored sequentially in the data field k. data from the diagonal up (this is known as the reverse Jenning's representation) and the indices of the elements of k corresponding to diagonal elements of the full matrix are stored in an index field k.ind. Here

```
k.data = [1; 10; 2; 6; 5; 9; 0; 8; 11; 7; 1; 14; 20; 19; 0]
k.ind = [1; 2; 4; 6; 9; 13; 15];
```

For easier manipulations and as shown above, it is assumed that the index field k .ind has one more element than the number of columns of kfull whose value is the index of a zero which is added at the end of the data field k.data.

If you have imported the ind and data fields from an external code, $\mathrm{ks}=$ ofact (data, ind) will create the ofact object. You can then go back to the Matlab sparse format using sparse(ks) (but
this needs to be done before the matrix is factored when solving a static problem).

Generic commands

verbose

Persistent solver verbosity handling. By default, solvers tend to provide several information for debugging purposes. For production such level of verbosity can be undesirable as it will tend to fill-up logs and slow down the process due to multiple display outputs. One can then toggle the silent option of ofact with this command.
ofact('silent', 'on') ; , or ofact('silent') will make the solver silent. ofact('silent','off'); will switch back the solver to verbose.

It is possible to activate the verbosity level during the solver selection, using token -silent to get a silent behavior or -v to get a verbose behavior. Note that a space must exist between the solver name and other tokens.

```
ofact('spfmex -silent') % selected the spfmex_utils solver with silent option
ofact('spfmex -v') % selects the spfmex_utils solver with verbose option
```

sel
Advanced solver selection with parameter customization. Solvers use default parameters to work, but it is sometimes usefull to tweak these values for specific configurations. This command further allows generic solver selection from GUI inputs.

By default, one can call of act('_sel', 'solver'), possibly with the -silent token. Direct parameter tweaking is currently supported for spfmex only, where the MaxDomainSize (default to 32), and MaxZeros (default to 0.01) can be provided. For larger models, it is suggested to use a MaxZeros value set to 0.1.

```
ofact('_sel','spfmex 32 .1') % tweaks the MaxZeros spfmex solver value to 0.1
```


Your solver

To add your own solver, simply add a file called MySolver_utils.m in the @ofact directory. This function must accept the commands detailed below.

Your object can use the fields .ty used to monitor what is stored in the object (0 unfactored ofact, 1 factored ofact, $2 \mathrm{LU}, 3$ Cholesky, 5 other), .ind, .data used to store the matrix or factor in true ofact format, . dinv inverse of diagonal (currently unused), . 1 L factor in 1 l decomposition or transpose of Cholesky factor, .u U factor in lu decomposition or Cholesky factor, .method other free format information used by the object method.
ofact
method

Is used to define defaults for what the solver does.
fact
This is the callback that is evaluated when ofact initializes a new matrix.
solve
This is the callback that is evaluated when ofact overloads the matrix left division (\backslash)
clear
clear is used to provide a clean up method when factor information is not stored within the ofact object itself. For example, in persistent memory, in another process or on another computer on the network.
silent
silent handled the verbosity level of your solver.
See also fe_eig, fe_reduc

perm2sdt

Purpose

Read results from outputs of the PERMAS (V7.0) finite element code.

Syntax

```
out = perm2sdt('Read Model_FileName')
out = perm2sdt('Read Result_FileName')
out = perm2sdt('merge',model)
out = perm2sdt('binary.mtl Matrix_FileName')
out = perm2sdt('ascii.mtl Matrix_FileName')
```


Description

The perm2sdtfunction reads PERMAS model, result and matrices files. Binary and ASCII files are supported.

```
filesModel files
```

To read a FE model, use the following syntax: model = perm2sdt('Read FileName')
To deal with sub-components, you may use the merge command.
The current element equivalence table is

```
SDT PERMAS
mass2 MASS3, MASS6, X1GEN6
bar1 FLA2
beam1 PLOTL2, BECOC, BECOS, BECOP, BETOP, BETAC, FDPIPE2,
                                    X2GEN6
celas SPRING3, SPRING6, SPRING1, X2STIFF3
t3p TRIM3
tria3 TRIA3, TRIA3K, TRIA3S, FSINTA3
quad4 QUAD4, FSINTA4, QUAD4S, PLOTA4, SHELL4
flui4 FLTET4
tetra4 TET4
tetra10 TET10
penta6 PENTA6, FLPENT6
hexa8 HEXE8, FLHEX8
pyra5 PYRA5, FLPYR5
```

Merging model
The merge command integrates subcomponents into the main model.

Result files
The syntax is
perm2sdt('read result_file')

Matrix files
perm2sdtreads binary and ASCII .mtl file format. The syntax is
perm2sdt('binary.mtl File.mtl') for binary files and perm2sdt('ascii.mtl File.mtl') for ASCII files.

See also

FEMLink

polytec

Purpose

Reading of POLYTEC .svd files.

Syntax

```
wire = polytec('ReadMesh',fname);
list = polytec('ReadList',fname)
XF = polytec('ReadSignal',fname,RO)
[cmap,fname] = polytec('ReadImg',fname);
polytec('ToMat',fname,RO);
```


Description

The polytecfunction reads files generated by polytec measurement systems. Actual files successfully read are :

- *.set : Setting file from which the wireframe can be loaded if defined (useful for pretest analysis before measurement)
- *.pvd : File containing a unique channel from which measurements can be extracted
- *.svd : File containing several channels from which the wireframe geometry and the data can be extracted depending what measurements have been performed (Time/Frequency domain, Transfers...)

Prior to use this function, the Polytec File Access provided by Polytec must be installed : Download the Polytec Update software (freely available in their website) and install it with all the dependencies.

This function has been tested only with a few versions of Polytec File Access (4.7, 5.0 and 5.6), but we experienced no problem at each update so that it is likely to work with all versions in between.

It is possible for some application to merge several measurements files with the Polytec applications. This is handled by this function : simply provide the file defining the merge (and eventually the individual files if links are made and not data copy).

ReadMesh

The ReadMesh command allows to extract the test wireframe in the SDT format. It contains the node locations and the sensor orientions (depending on the type of laser used : monopoint, with mirror, 3D laser)
\qquad

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
wire=polytec('ReadMesh',fname); % Set the wireframe in the variable wire
polytec('ReadMesh',fname); % Without output, directly open the model in feplot
```


ReadList

Three parameters are needed to access the data:

- pointdomain : Time, FFT, $1 / 3$ octave...
- channel : Vib, Ref1, Vib \& Ref1 (transfers)...
- signal : Displacement, Velocity, Acceleration, H1 Displacement / Force...

The ReadList command allows to see all the combinations of these parameters that are allowed for a given file. With an output, the call sends back a cell array containg all the cominations. Without, it opens a tree in a tab in the SDTRoot window, from which it is posibble to do a right click on the wanted data and select Read Selected : data are read and display in an iiplot window.

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
% Provide a cell array with all readable measured data
list=polytec('ReadList',fname);
display(list);
polytec('ReadList',fname); % Open a tree in SDTRoot to interactively select data
```


ReadSignal

The ReadSignal command allows to read the measurement data specified by the three parameters (point domain, channel and signal) given in a structure as a third argument.

It is also possible to provide the wanted parameters by extracting the corresponding line of the cell array provided by the command ReadList (as a parameter list).

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
RO=struct('pointdomain','FFT','channel','Vib & Ref1',...
'signal','H1 Displacement / Voltage');
XF=polytec('ReadSignal',fname,RO);
% alternative call using one row of the cell array "list"
list=polytec('ReadList',fname);
XF=polytec('ReadSignal',fname,struct('list',{list(20,:)}));
```


ReadImg

The ReadImg command allows to read the image used to construct the test geometry. The image is displayed in a figure, the RGB colormap is provided as first output and it creates a .png file whose name is given as second output.

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
[cmap,fname] = polytec('ReadImg',fname);
```

ToMat
The ToMat command allows to extract wanted data and save them as a .mat file in the SDT format. This is useful especially if the scripts that read the Polytec files must be run on a Linux OS or on computers where Polytec File Access is not installed.

Once the ToMat file has been executed, the .mat file is used insted of the Polytec one to load data (the ReadMesh and ReadSignal commands remain the same).

```
fname=sdtcheck('patchget',struct('fname','PolytecMeas.svd'));
RO=struct('pointdomain','FFT','channel','Vib & Ref1',...
'signal','H1 Displacement / Voltage');
% Create a .mat file next to the Polytec one with the mesh, the data and the image.
polytec('ToMat',fname,RO);
r1=load(strrep(fname,'.svd','.mat'));
r1.TEST
r1.XF
r1.img
```


psi2nor

Purpose

Estimation of normal modes from a set of scaled complex modes.

Syntax

[wj,ga,cps,pbs] = psi2nor(po,cp)
[wj,ga,cps,pbs] = psi2nor(po,cp,ncol,NoCommentFlag)

Description

psi2nor should generally be used through id_nor. For cases with as many and more sensors than modes, psi2nor gives, as proposed in Ref. [12], a proper approximation of the complex mode outputs $\mathrm{cp}=[c][\psi]$ (obtained using id_rm), and uses the then exact transformation from complex to normal modes to define the normal mode properties (modal frequencies wj , non-proportional damping matrix ga, input pbs $=[\phi]^{T}[b]$ and output $\mathrm{cps}=[c][\phi]$ matrices).
The argument ncol allows the user to specify the numbers of a restricted set of outputs taken to have a collocated input ($\left.\mathrm{pbs}=\mathrm{cps}(\mathrm{ncol},:)^{\prime}\right)$.

If used with less than four arguments (not using the NoCommentFlag input argument), psi2nor will display two indications of the amount of approximation introduced by using the proper complex modes. For the complex mode matrix ψ_{T} (of dimensions $N T$ by $2 N T$ because of complex conjugate modes), the properness condition is given by $\psi_{T} \psi_{T}^{T}=0$. In general, identified modes do not verify this condition and the norm $\left\|\psi_{T} \psi_{T}^{T}\right\|$ is displayed

```
The norm of psi*psi' is \(3.416 \mathrm{e}-03\) instead of 0
```

and for well identified modes this norm should be small (10^{-3} for example). The algorithm in psi2nor computes a modification $\Delta \psi$ so that $\psi_{P T}=\psi_{T}+\Delta \psi$ verifies the properness condition $\psi_{P T} \psi_{P T}^{T}=0$. The mean and maximal values of abs (dpsi./psi) are displayed as an indication of how large a modification was introduced

```
The changes implied by the use of proper cplx modes are
0.502 maximum and 0.122 on average
```

The modified modes do not necessarily correspond to a positive-definite mass matrix. If such is not the case, the modal damping matrix cannot be determined and this results in an error. Quite often, a non-positive-definite mass matrix corresponds to a scaling error in the complex modeshapes and one should verify that the identification process (identification of the complex mode residues with id_rc and determination of scaled complex mode outputs with id_rm has been accurately done.

Warnings

The complex modal input is assumed to be properly scaled with reciprocity constraints (see id_rm). After the transformation the normal mode input/output matrices verify the same reciprocity constraints. This guarantees in particular that they correspond to mass-normalized analytical normal modes.

For lightly damped structures, the average phase of this complex modal output should be close to the -45° line (a warning is given if this is not true). In particular a sign change between collocated inputs and outputs leads to complex modal outputs on the $+45^{\circ}$ line.

Collocated force to displacement transfer functions have phase between 0 and -180°, if this is not verified in the data, one cannot expect the scaling of id_rm to be appropriate and should not use psi2nor.

See also

id_rm, id_nor, id_rc, res2nor, nor2xf, nor2ss, the demo_id demonstration

qbode

Purpose

Frequency response functions (in the xf format) for linear systems.

Syntax

```
xf = qbode(a,b,c,d,w)
xf = qbode(ss,w)
xf = qbode(num,den,w)
XF = qbode( ... ,'struct')
    qbode( ... ,'iiplot ...')
```


Description

For state-space models described by matrices a, b, c, d, or the LTI state-space object sys (see Control System Toolbox), qbode uses an eigenvalue decomposition of a to compute, in a minimum amount of time, all the FRF xf at the frequency points w

$$
\begin{equation*}
\mathrm{xf}=[C]\left(s\left[\backslash I_{\backslash}\right]-[A]\right)^{-1}[B]+[D] \tag{10.65}
\end{equation*}
$$

The result is stored in the xf format (see details page 214). 'iiplot "Test" -po -reset' can be used to display results in iiplot(see section 2.1.2). The option -po is used to save poles in ci. Stack\{'IdMain'\} so that they can be displayed. -reset reinitializes the curve stack.
qbode will not work if your model is not diagonalizable. A specific algorithm was developed to deal with systems with rigid-body modes (double pole at zero associated to non-diagonalizable matrices). This algorithm will not, however, indicate the presence of incoherent b and c matrices. In other cases, you should then use the direct routines res 2 xf , nor2xf, etc. or the bode function of the Control System Toolbox.
For the polynomial models num, den (see details page 214), qbode computes the FRF at the frequency points w

$$
\begin{equation*}
x f=\frac{\operatorname{num}(j \omega)}{\operatorname{den}(j \omega)} \tag{10.66}
\end{equation*}
$$

Warnings

- All the SISO FRF of the system are computed simultaneously and the complex values of the FRF returned. This approach is good for speed but not always well numerically conditioned when using state space models not generated by the SDT.
- As for all functions that do not have access to options IDopt for identification and Up.copt for FE model update) frequencies are assumed to be given in the mathematical default (rad/s). If your frequencies w are given in Hz , use qbode (sys,w*2*pi).
- Numerical conditioning problems may appear for systems with several poles at zero.

See also

demo_fe, res2xf, nor2xf, and bode of the Control System Toolbox

res2nor

Purpose

Approximate transformation from complex residues to normal mode residue or proportionally damped normal mode forms.

Syntax

[Rres,po,Ridopt] = res2nor(Cres,po,Cidopt)
[wj,ga,cp,pb] = res2nor(Cres,po,Cidopt)

Description

The contributions of a pair of conjugate complex modes (complex conjugate poles λ and residues R) can be combined as follows

$$
\begin{equation*}
\frac{[R]}{s-\lambda}+\frac{[\bar{R}]}{s-\bar{\lambda}}=2 \frac{(s \operatorname{Re}(R))+\left(\zeta \omega \operatorname{Re}(R)-\omega \sqrt{1-\zeta^{2}} \operatorname{Im}(R)\right)}{s^{2}+2 \zeta \omega s+\omega^{2}} \tag{10.67}
\end{equation*}
$$

Under the assumption of proportional damping, the term $s \operatorname{Re}(R)$ should be zero. res2nor, assuming that this is approximately true, sets to zero the contribution in s and outputs the normal mode residues Rres and the options Ridopt with Ridopt.Fit = 'Normal'.

When the four arguments of a normal mode model (seenor page 202) are used as output arguments, the function id.rmis used to extract the input pbs and output cps shape matrices from the normal mode residues while the frequencies wj and damping matrix ga are deduced from the poles.

Warning

This function assumes that a proportionally damped model will allow an accurate representation of the response. For more accurate results use the function id_nor or identify using real residues id_rc with idopt. Fit='Normal').

See also

id_rm, id_rc, id_nor, res2ss, res2xf

res2ss, ss2res

Purpose

Transformations between the residue res and state-space ss forms.

Syntax

```
SYS = res2ss(RES)
SYS = res2ss(RES,'AllIO')
[a,b,c,d] = res2ss(res,po,idopt)
RES = ss2res(SYS)
[res,po,idopt] = ss2res(a,b,c,d)
```


Description

The functions res2ss and ss2res provide transformations between the complex / normal mode residue forms res (see section 5.6) and the state space forms (see section 5.4). You can use either high level calls with data structures or low level calls providing each argument

```
ci=demosdt('demo gartid est')
SYS = res2ss(ci.Stack{'IdMain'});
RES = ss2res(SYS);
ID=ci.Stack{'IdMain'};
[a,b,c,d] = res2ss(ID.res,ID.po,ID.idopt);
```

Important properties and limitations of these transformations are

- The residue model should be minimal (a problem for MIMO systems). The function id_rm is used within res2ss to obtain a minimal model (see section 2.8.1). To obtain models with multiple poles use id_rm to generate new_res and new_po matrices.
- you can bypass the id_rm call by providing complex mode modal controllability $\psi_{j}^{T} b$ in a . psib field and modal observability $c \psi_{j}$ in a . def field. This is in particular used by fe2ss with the -cpx command option.
- idopt. Reciprocity='1 FRF' or MIMO id_rm then also constrains the system to be reciprocal, this may lead to differences between the residue and state-space models.
- The constructed state-space model corresponds to a displacement output.
- Low frequency corrections are incorporated in the state-space model by adding a number (minimum of ns and na) of poles at 0 .
\qquad
Asymptotic corrections (see idopt. ResidualTerms) other than the constant and s^{-2} are not included.
- See below for the expression of the transformation.
- The 'AllIo' input can be used to return all input/output pairs when assuming reciprocity.

res

- Contributions of rigid-body modes are put as a correction (so that the pole at zero does not appear). A real pole at 0 is not added to account for contributions in $1 / \mathrm{s}$.
- To the exception of contributions of rigid body modes, the state-space model must be diagonalizable (a property verified by state-space representations of structural systems).

Theory

For control design or simulation based on identification results, the minimal model resulting from id_rm is usually sufficient (there is no need to refer to the normal modes). The state-space form is then the reference model form.

As shown in section 2.8.1, the residue matrix can be decomposed into a dyad formed of a column vector (the modal output), and a row vector (the modal input). From these two matrices, one derives the $[B]$ and $[C]$ matrices of a real parameter state-space description of the system with a bloc diagonal $[A]$ matrix

$$
\begin{gather*}
\left\{\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right\}=\left[\begin{array}{cc}
{[0]} & {[\backslash I \backslash]} \\
-\left[\grave{\omega}_{j}^{2}\right] & -\left[\begin{array}{l}
\backslash \zeta_{j} \omega_{j} \backslash
\end{array}\right]
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+\left\{\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right\}\{u(t)\} \tag{10.68}\\
\{y(t)\}=\left[\begin{array}{ll}
C_{1} & \left.C_{2}\right]
\end{array}\right\}\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}
\end{gather*}
$$

where the blocks of matrices $B_{1}, B_{2}, C_{1}, C_{2}$ are given by

$$
\begin{align*}
& \left\{\begin{array}{l}
C_{1 j} \\
C_{2 j}
\end{array}\right\}=\left[\operatorname{Re}\left(c \psi_{j}\right)\right. \\
& \left.\operatorname{Im}\left(c \psi_{j}\right)\right] \frac{1}{\omega_{j} \sqrt{1-\zeta_{j}^{2}}}\left[\begin{array}{cc}
\omega_{j} \sqrt{1-\zeta_{j}^{2}} & 0 \\
\zeta_{j} \omega_{j} & 1
\end{array}\right] \tag{10.69}\\
& \left\{\begin{array}{l}
B_{j 1} \\
B_{j 2}
\end{array}\right\}=2\left[\begin{array}{cc}
1 & 0 \\
-\zeta_{j} \omega_{j} & -\omega_{j} \sqrt{1-\zeta_{j}^{2}}
\end{array}\right]\left[\begin{array}{l}
\operatorname{Re}\left(\psi_{j}^{T} b\right) \\
\operatorname{Im}\left(\psi_{j}^{T} b\right)
\end{array}\right]
\end{align*}
$$

Form the state space model thus obtained, FRFs in the xf format can be readily obtained using
qbode. If the state space model is not needed, it is faster to use res2xf to generate these FRFs. See also
demo_fe, res2xf, res2nor, qbode, id_rm, id_rc

res2tf, res2xf

Purpose

Create the polynomial representation associated to a residue model.
Compute the FRF corresponding to a residue model.

Syntax

```
[num,den] = res2tf(res,po,idopt)
xf = res2xf(res,po,w,idopt)
xf = res2xf(res,po,w,idopt,RetInd)
```


Description

For a set of residues res and poles po (see res page 212), res2tf generates the corresponding polynomial transfer function representation (seetf page 214).

For a set of residues res and poles po, res2xf generates the corresponding FRFs evaluated at the frequency points w. res2xf uses the options idopt. Residual, .DataType, AbscissaUnits, PoleUnits, FittingModel. (see idopt for details).

The FRF generated correspond to the FRF used for identification with id_rcexcept for the complex residue model with positive imaginary poles only idopt. Fit='Posit' where the contributions of the complex conjugate poles are added.

For MIMO systems, res2tf and res2xf do not restrict the pole multiplicity. These functions and the res2ss, qbode sequence are thus not perfectly equivalent. A unit multiplicity residue model for which the two approaches are equivalent can be obtained using the matrices new_res and new_po generated by id_rm

```
[psib,cpsi,new_res,new_po]=id_rm(IIres,IIpo,idopt,[\begin{array}{llll}{1}&{1}&{1}&{1]);}\end{array}]=\mp@code{l}
IIxh = res2xf(new_res,new_po,IIw,idopt);
```

The use of id_rm is demonstrated in demo_id.

See also

res2ss, res2nor, qbode, id_rm, id_rc

rms

Purpose

Computes the RMS response of the given frequency response function $x f$ or auto-spectra a to a unity white noise input over the frequency range w.

Syntax

```
rm = feval(id_rc('@rms'),t,w)
rm = feval(id_rc('@rms'),a,w,1)
```


Description

The presence of a third input argument indicates that an auto-spectrum a is used (instead of frequency response function xf).

A trapezoidal integration is used to estimate the root mean squared response

$$
\begin{equation*}
\mathrm{rms}=\sqrt{\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}}|t(\omega)|^{2} d \omega}=\sqrt{\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}} a(\omega) d \omega} \tag{10.70}
\end{equation*}
$$

If $x f$ is a matrix containing several column FRF, the output is a row with the RMS response for each column.

Warning

If only positive frequencies are used in w, the results are multiplied by 2 to account for negative frequencies.

See also

samcef

Purpose

Interface function with SAMCEF FEM code.

Syntax

```
Up=samcef('read model.u18')
Up=samcef('read model.u18','buildup')
Up=samcef('read model.bdf','buildup')
a=samcef('lectmat','FileRoot')
samcef('write FileName',model)
```


Description

```
read
```

The read command import : models from .dat files, results from .u18 file. With the 'buildup' argument, the .u11 and .u12 files are also read to import element matrices into a superelement. Additional DOFs linked to reduced shear formulations are properly condensed. Note that to export a standardized form of the model, you should use the .SAUV BANQUE "FileName.dat" command in SAMCEF.

When reading a .u18 file, it may be necessary to import the properties from the model to clarify which DOFs are actually used in the model. You should thus have a . data file with the same root name in the same directory. Modeshapes are stored in the model stack entry curve,record(12) _disp. Other imported results are also stored in the stack.

write

Basic writing is supported with samcef('write FileName', model). Please send requests to extend these capabilities.

```
conv
```

This command lists conversion tables for elements, topologies, facetopologies. You can redefine (enhance) these tables by setting preferences of the form setpref ('FEMLink', 'samcef.list', value), but please also request enhancements so that the quality of our translators is improved.

See also

FEMLink

sd_pref

Purpose

Safe MATLAB preferences handling.

Syntax

```
sd_pref('set','Group','Pref','val'); % setpref
flag=sd_pref('get','Group','Pref'); % getpref
i1=sd_pref('is','Group'); % ispref
sd_pref('rm','Group','Pref'); % rmpref
```


Description

MATLAB, and MCR, have known issues of preference file corruption if accessed by several instances at once. To avoid this issue sd_pref implements a safe access strategy using fjlock.

The syntax is equivalent to ususal MATLAB *pref commands, the additional first argument provides the function prefix to be used.

setlines

Purpose

Line color and style sequencing utility.

Syntax

setlines
setlines (ColorMap,LineSequence)
setlines (ColorMapName, LineSequence, MarkerSequence)

Description

The M-by-3 ColorMap or ColorMapName (standard color maps such as jet, hsv, etc.) is used as color order in place or the ColorMap given in the ColorOrder axis property (which is used as a default).

The optional LineSequence is a matrix giving the linestyle ordering whose default is ['- ';'--';'-.';': '].

The optional MarkerSequence is a matrix giving the marker ordering. Its default is empty (marker property is not set).

For all the axes in the current figure, setlines finds solid lines and modifies the Color, LineStyle and Marker properties according the arguments given or the defaults. Special care is taken to remain compatible with plots generated by feplot and iiplot.
setlines is typically used to modify line styles before printing. Examples would be

```
setlines k
setlines([],'-','ox+*s')
setlines(get(gca,'colororder'),':','0+`>')
```


sdtcheck

Purpose

Installation handling and troubleshooting.

Description

For SDT to run in Matlab the path to SDT functions must be added to the Matlab search path. Additional libraries are also required that sometimes need an explicit declaration in Matlab. sdtcheck then packages manual input to alter the user Matlab settings if needed.

Commands

```
path
```

This command properly defines the Matlab search path to run SDT. It has to be used at startup if the search path was not saved in your Matlab session with SDT installed.

```
% Initialization of SDT in MATLAB path
pw0=pwd;
cd('path_to_my_sdt')
sdtcheck path
cd(pw0)
```

```
patchJavaPath[,set]
```

SDT GUI utilities are based on Java and require additional Java libraries to be loaded by Matlab. To ensure proper SDT GUI running the user needs to alter the default Matlab classpath.txt.

- Command patchJavaPath checks whether the Java classpath contains the libraries needed by SDT. If not a warning will be issued along with an executable link to modify the Java classpath.
- Command patchJavaPathSet generates a custom Java classpath for the user Matlab configuration to add the libraries required by SDT. Note that you will need to restart MatLab for the modification to be effective.

This setup is highly depending on the MATLAB version

- For MATLAB versions greater or equal to 8.0 (from R2012b). There is no known issue for the Java path setup.
- For MATLAB versions up to 7.14 (up to R2012a). The setup strategy allows local customization but using a file that will impact all MATLAB versions. By default this function thus attemps to alter the base MATLAB file. For certain users, this operation can be not permitted, and it is then advised to run the following command
sdtcheck('PatchJavaPathSet-forceStartupDir')
Be aware that this command will add a file in your startup directory. Make sure to delete it before launching other MATLAB versions from the same startup directory. Corruption and failed Desktop launches can otherwise occur.

```
patchFile[,set]
```

To distribute more intricate examples, SDTools uses patches in the form of zip files downloaded to the fullfile(sdtdef('tempdir'), 'sdtdemos') directory and possibly extracted in the same directory. For example

```
fname=sdtcheck('PatchFile',struct('fname','DbTest.unv','in','DrumBrake.zip'));
```

will search a DbTest.unv file and if not found will download the DrumBrake.zip set of files where DbTest.unv is expected to be located.

```
patchMkl[,path,_rt]
```

The newofactsolver based on MKL Pardiso requires additional libraries to run. patchMkl packages its installation.

- patchMkl downloads and installs the libraries.
- patchMklPath verifies the search path and library path.
- patchMkl_rt provides troubleshooting information regarding library installation.

SdtRootDir

Provides the SDT root directory.
wd=sdtcheck('SdtRootDir')

sdtdef

Purpose

Internal function used to handle default definitions.

Syntax

```
sdtdef('info')
[i1,r1]=sdtdef('in','Pref')
sdtdef('Pref')
sdtdef('Group.Pref')
sdtdef('Pref',Value)
sdtdef('Pref-safe',Value)
sdtdef('Pref-SetPref',Value)
```


Description

Allows to handle preferences of SDT, FEMLink and OpenFEM.
This function was initially developped to limit the risks of curruption of the MATLAB preference file, which can occur if multiple instances of MATLAB try to access this file at the same time with standard commands getpref/setpref.

To handle preferences of SDT, FEMLink and OpenFEM, the recommended use is to

- setpref('[SDT,OpenFEM,FEMLink]','Pref', 'value') for the first creation of the preference.
- [i1,r1]=sdtdef('in','Pref') to check if a preference is defined and get back the value .
- sdtdef('[,OpenFEM.,FEMLink.]Pref', 'value') to perform a local modification of the preference value (in the current MATLAB session).
- sdtdef('[,OpenFEM., FEMLink.]Pref-safe', 'value') only perfoms the local modification if the preference does not exist (previous call fail in this case)
- sdtdef('[,OpenFEM.,FEMLink.]Pref-SetPref', 'value') performs a hard modification of the preference (through a setpref). Only works if the preference already exists, only setpref can be used to create a preference for the first time.

To reset values to factory defaults use sdtdef('factory').
info

The command sdtdef('info') provides the full list of preferences of SDT.
The command sdtdef ('info', 'OpenFEM') provides the full list of preferences of OpenFEM.
The command sdtdef ('info', 'FEMLink') provides the full list of preferences of FEMLink.
The command sdtdef('info', 'SDTools') provides the full list of preferences of SDTools.
in
To check if a preference already exists in order to create it with setpref if not, use [i1,r1]=sdtdef('in','[,OpenFEM., FEMLink.]Pref'). It tells if 'Group', 'Pref' exists in i1 as bool, and provides value r1 if true, empty if false.

With an empty Pref, the full list of preferences in the Group is forwarded in r1 if the group exists.

SDT preferences

Preferences of SDT are accessed directly by the call sdtdef ('Pref') (replaced by the standard call getpref ('SDT', 'value'). It returns an error if the preference does not exist.

Here is a partial list of SDT preferences :

- avi : cell array of default AVI properties, see the Matlab avifile command.
- DefaultZeta :Default value for the viscous damping ratio. The nominal value is $1 \mathrm{e}-2$. The value can also be specified in a model stack and is then handled by fe_def defzeta and fe_def defeta commands.
- KikeMemSize : Memory in megabytes used to switch to an out-of-core saving of element matrix dictionaries.
- DefaultFeplot : cell array of default feplot figure properties. For MATLAB versions earlier than 6.5 , the OpenGL driver is buggy so you will typically want to set the value with sdtdef('DefaultFeplot',\{'Renderer' 'zbuffer' ... 'doublebuffer' 'on'\})
- epsl : tolerance on node coincidence used by femesh, feutil. Defaults to 1e-6 which is generally OK except for MEMS applications, ...
- tempdir : can be used to specify a directory different than the tempdir returned by Matlab. This is typically used to specify a faster local disk.
- OutOfCoreBufferSize : Memory in bytes used to decide switching to an out-of-core procedure. This is currently used by nasread when reading large OUTPUT2 files.

FEMLink preferences

Preferences of SDT are accessed directly by the call sdtdef('FEMLink.Pref') (replaced by the standard call getpref ('FEMLink' , 'value'). It returns an error if the preference does not exist.

Here is a partial list of FEMLink preferences :

- CopyFcn : command used to copy file to remote locations. See naswrite job commands.
- DmapDir : directory where FEMLink is supposed to look for NASTRAN DMAP and standard files.
- NASTRAN : NASTRAN version. This is used to implement version dependent writing of NASTRAN files.
- RemoteDir : location of remote directory where files can be copied. See naswrite job commands.
- SoftwareDocRoot : defines the path or URL for a given software. You can use
sdtweb('\$Software/file.html') commands to access the proper documentation. For example setpref('FEMLink','SdtDocRoot', ...
'http://www.sdtools.com/help/');
sdtweb('\$sdt/sdt.html');
- TextUnix : set to 1 if text needs to be converted to UNIX (rather than DOS) mode before any transfer to another machine.

OpenFEM preferences

Preferences of SDT are accessed directly by the call sdtdef('OpenFEM.Pref') (replaced by the standard call getpref ('OpenFEM', 'value'). It returns an error if the preference does not exist. Here is a partial list of OpenFEM preferences :

sdth

Purpose

Class constructor for $S D T$ handle objects.

Description

The Structural Dynamics Toolbox now supports SDT handles (sdth objects). Currently implemented types for sdth objects are

SDTRoot	global context information used by the toolbox
IDopt	identification options (see idopt
FeplotFig	feplot figure handle
IiplotFig	iiplot figure handle
VectCor	Vector correlation handle (see ii mac
XF	stack pointer (see xfopt

SDT handles are wrapper objects used to give easier access to user interface functions. Thus idopt displays a detailed information of current identification options rather than the numeric values really used.

Only advanced programmers should really need access to the internal structure of SDT handles. The fixed fields of the object are opt, type, data, GHandle (if the sdth object is stored in a graphical object), and vfields.

Most of the information is stored in the variable field storage field vfields and a field of vfields is accessible using GetData. To get the model of a cf FeplotFig, you may use the syntax cf.mdl. GetData.

See also

feplot, idopt, iiplot, ii_mac, Xfopt

sdthdf

Purpose

Description

sdthdf handles MATLAB data/metadata information. Its main purpose if to deal efficiently with the binary MATLAB file format .mat that is based on the HDF file format.

The new hdf5 file format, supported by MATLAB since version 7.3, allows very efficient data access from files. Partial loading is possible, as well as data location by pointers. sdthdf allows the user to unload RAM by saving specific data to dedicated files, and to optimize file loading using pointers. To be able to use these functionalities, the file must have been saved in hdf5 format, which is activated in MATLAB using the -v7. 3 option of the save function.

File handling commands based on HDF5

The following commands are supported.

hdfReadRef

This command handles partial data loading, depending on the level specified by the user.
For unloaded data, a handlepointer respecting the data structure and names is generated, so that the access is preserved. Further hdfreadref application to this specific data can be done later.

By default, the full file is loaded. Command option -level allows specifying the desired loading level. For structured data, layers are organized in which substructures are leveled. This command allows data loading until a given layer. Most common levels used are given in the following list

- -level0 Load only the data structure using pointers.
- -level1 Load the data structure and fully load fields not contained in substructures.
- -level2 Load the data structure, and fully load fields including the ones contained in the main data substructures
- -level100 Load the data structure, and fully load all fields (Until level 100, which is generally sufficient).

It takes in argument either a file, or a data structure containing hdf5 v_handle pointers. In the case where a file is specified, the user can precise the data to be loaded, by giving its named preceded by a slash /, substructure names can also be specified giving the name path to the variable to be loaded with a succession of slashes.

```
% To load an hdf5 file
r1=sdthdf('hdfreadref','my_file.mat');
% To load it using \vhandle pointers
r1=sdthdf('hdfreadref-level0','my_file.mat');
% To load a specified variable
r2=sdthdf('hdfreadref-level0','my_file.mat','/var2');
% To load a specified sub data
r3=sdthdf('hdfreadref-level1','my_file.mat','/var2/subvar1');
% To load a subdata from a previously loaded pointer
r4=sdthdf('hdfreadref',r2.subvar1);
```


hdfdbsave

This command handles partial data saving to a temporary file. It is designed to unload large numerical data, such as sparse matrices, or deformation fields. Command option -struct however allows to save more complex data structures.

The function takes in argument the data to save and a structure with a field Dbfile containing the temporary file path (string). The function outputs the v_handleto the saved data. The v_handlehas the same data structure than the original. The v_handledata can be recovered by hdfreadref.

```
opt.Dbfile=nas2up('tempname_DB.mat');
r1=sdthdf('hdfdbsave',r1,opt);
r2=sdthdf('hdfdbsave-struct',r2,opt);
```


hdfmodelsave

This command handles similar saving strategy than hdfdbsave but is designed to integratefeplotmodels in hdf5 format. The file linked to the model is not supposed to be temporary, and data names are linked to an SDT model data structure, which are typically in the model stack. The variable data names, must be of format field_name to store model.field in hdf5 format.

For model stack entries, the name must be of the type Stack_type_name to store cf.Stack\{'type', 'name'\}.

The function takes in argument the data base file, the feplot handle and the data name, which will be interpreted to be found in the feplotmodel. The data will be replaced by v-handlepointers in the feplotmodel. Data can be reloaded with command hdfmodel

```
sdthdf('hdfmodelsave','my_file.mat',cf,'Stack_type_name');
```


hdfmodel

This command loads v_handledata pointers in the feplotmodel at locations where hdf5 data have been saved. This command works from the hdf file side, and loads all the data contained with standard names in the feplot model. See hdfmodelsave for more information on the standard data names. Commando option -check only loads the data contained in the hdf file that is already instanced in the feplotmodel.

```
sdthdf('hdfmodel','my_file.mat',cf);
```


hdfclose

Handling hdf5 files in data structures can become very complex when multiple handles are generated in multiple data. This command thus aims to force a file to be closed.

```
sdthdf('hdfclose','my_file.mat');
```

A lower level closing call allows clearing the hdf5 libraries, when needed,

```
sdthdf('hdfH5close')
```

Here is an example of offload to HDF5 based mat files, and how to access the data afterwards.

```
fname=fullfile(sdtdef('tempdir'),'ubeam_Stack_SE.mat');
fname2=fullfile(sdtdef('tempdir'),'ubeam_model.mat');
model=demosdt('demoubeam');cf=feplot;
cf.mdl=fe_case(cf.mdl,'assemble -matdes 2 1 NoT -SE');
cf.Stack{'curve','defR'}=fe_eig(cf.mdl,[5 50 1e3]);
% save(off-load) some stack entries to a file
sdthdf('hdfmodelsave',fname,cf,'Stack_curve_defR')
% save model but not the off-loaded entries
fecom('save',fname2);
cf=fecom('load',fname2); % reload the model
sdthdf('hdfmodel',fname,cf); % reload pointers to the entries
cf.Stack{'defR'}
```

For MATLAB ¿7.3 HDF based . mat files, you can open a v_handle pointer to a variable in the file using
fname=fullfile(sdtdef('tempdir'),'ubeam_Stack_SE.mat');
var=sdthdf('hdfreadref -level0',fname,'Stack_curve_defR')
ioClearCache,ioLoad, ...
io commands are meant to allow I/O operations tailored to memory demanding operations.
sdthdf('ioFreeCache','fname') or sdthdf('ioFreeCache',' vhandlename') free the cache of a given file or the file associated with a specific v-handle.
sdthdf('ioLoadVarName', 'fname') loads VarName from file fname and frees the associated cache. This operation still requires memory to store the variable and the file cache and may thus fail for large variables.
sdthdf('ioBufReadVarName','fname') will load VarName from file fname while controlling the cache used. This is only intended for large data sets written to file as contiguous uncompressed data.

MATLAB data handling utilities

```
compare
```

The compare command checks the data equivalence of two MATLAB variables. This is an efficient utility to spot local differences in large or complex data.

Any data compound can be input, mixing any native MATLAB classes. The compare command will then recursively check the equivalence of the data compound structure and content.Its output will be a cell array with as many lines as differences were found. The cell array output is empty if all fields were found equal.

```
% Comparing two sets of data compounds
r1=struct('data1',{{speye(15)}},'data2',rand(15,1));
r2=struct('data1',{{speye(14)}},'data2',rand (15,1),\ldots
'data3',1);
sdthdf('compare',r1,r2)
```

```
pointerList[sortm,-mb]
```

The pointerList command outputs the internal memory address of each variable, (expanded for structures and cell arrays) specified in input and provides a statistic on the total amount of data pointed in memory versus the total memory allocated to the storage. As MATLAB performs lazy variable copy, copied variables share the same pointed memory data until one of the instances is modified, the traditional output of the who command may thus be inappropriate to assess memory usage. The following command options allow output variations

- sortm sorts the output in increasing memory, so that the user sees the largest memory usage at the bottom of the command window.
- -mb converts the memory sizes outputs from Bytes to Megabytes.

If not output is specified, the statistics are directly printed on screen, else a cell array with as many lines as found variables is output, and three columns. First column is the variable name, second is the memory address, third is the memory size.

The input is required to be a structure, cell array, v_handle object or a string containing whos. In the latter case, a reformatting of the output of the whos command is performed.

```
% Getting information on data sizes in memory
% Generate a sample data structure
r1=struct('data1',speye(12),'data2',rand(15,1));
r1.data3=r1.data1; % lazy copy
% reformat the output of whos
sdthdf('pointerlistsortm','whos')
% Get memory information on r1
sdthdf('pointerlistsortm',r1)
```


See also

SDT handle

sdtroot, sdt_locale

Purpose

Base SDT gui figure handling.

Description

This function is used to implement base SDT mechanisms for tabs shown in JAVA GUI. It also supports advanced structure manipulations (stored here due to interactions with structure like objects aka handles and other SDT objects)

Init
Commands for tab initialisation/refreshing. InitPTree is an example of initialization of the navigation pane. InitProject implements the typical project tab which is detailed in section 8.1.2. InitPref opens the SDT preference editor.

Set

Commands for property setting. Implements SetPref for preferences, SetProject for generic project parameters and and generic setting of fields defined in PARAM.

The default mechanism for set is to specify the tab in the command and provide data to be set a structure where each field describes a cell in the tab. An example for the Project tab.

```
tdir=sdtdef('tempdir');
sdtroot('SetProject',struct('ProjectWd',tdir, ... % Root file location
    'PlotWd',fullfile(tdir,'plots'), ... % Plot directory
    'PlotWord',fullfile(tdir,'tmp_word.docx'))); % Word file for image insert
```


PARAM

PARAM commands are used to retrieve data stored normally stored in the userdata of the project figure.

- PA=sdtroot ('paramVH') gives a v_handle to the main project data structure.
- RO=sdtroot ('PARAM2RO') resolves all java dependencies and returns a basic MATLAB struct containing all parameters.
- To access individual data prefer calls with field names. The -safe option performs inits if needed.

```
st=sdtroot('PARAM.Project.ProjectWd -safe')
r1=sdtroot('PARAM.Project')
```

- sdtroot('PARAMWord') initializes for potential export based on content of PlotWd and PlotWord

OsDic

Each project figure supports a dictionnary (or OsDic) of named comgui objSet styles that can be used to format figures, images, ... The following illustrates simple manipulations, for a list of usual categories see section 8.1.

```
% Sample style definition, see examples in d_imw
my_style={'position',[NaN,NaN,1087,384],'@line',{'linewidth',5}};
sdtroot('InitOsDic'); % Display list of named styles
sdtroot('setOsDic',{'ImMyStyle',my_style}) % Associate ImMyStyle name to this style
figure(1);plot([0 1]);
comgui('objset',1,{'@OsDic(SDT Root)','ImMyStyle'}); % Apply named style
```


@sfield

Subcommand sfield provides structure manipulation utilities. It can be accessed by calling sfield=sdtroot('@sfield');

The following commands are available

- AddMissing Completes a structure with fields found missing from a default structure. $r 1=s f i e l d(' A d d M i s s i n g ', r 1, r 2)$. Inputs $r 1$ is the working structure, $r 2$ is a default structure. Output $r 1$ is the input structure for which fields of $r 2$ that were not present have been added. Field names are case sensitive.

```
r1=struct('PostCheck',1,'Opt','test','PostName', 'NameP', 'run',true);
r2=struct('Opt','ttt','other','value');
r1=feval(sdtroot('@sfield'),'AddMissing',r1,r2);
```

- AddSelected Completes a structure with fields found missing from a default structure, for a given list of field names to intersect. r1=sfield('AddSelected', r1, r2, list); . Inputs r1 is the working structure, $r 2$ is a default structure, list is a list of field names to consider. Output r1 is the input structure for which fields of $r 2$ that were not present and intersected in list have been added. Field names are case sensitive.

```
r1=struct('PostCheck',1,'Opt','test','PostName','NameP','run',true);
r2=struct('Opt','ttt','other','value','field',true);
r1=feval(sdtroot('@sfield'),'AddSelected',r1,r2,{'field'});
```

- AddIncF Adds to a main structure the fields from another structure, fields names in the second structure that are already present are incremented with a number added to the field name end. r1=sfield('AddIncF', r1, r2).

```
r1=struct('PostCheck',1,'Opt','test','PostName','NameP','run',true);
r2=struct('Opt','ttt');
r1=feval(sdtroot('@sfield'),'AddIncF',r1,r2);
```

- Cell2Struct Robust transform of a cell array in format \{tag, data,...\}, or \{tag, data; $\ldots\}$ to a structure. r1=sfield('Cell2Struct', list);
list $=\{$ 'tag', $\{$ 'value', 'test'\},'opt', 1\};
r1=feval(sdtroot('@sfield'), 'Cell2Struct', list);
- GetField Case insensitive field recovery. val=sfield('GetField',r1,field,typ); r1 is an input structure, field is the field name to recover, typ is the output wanted, if set to 'name' the fieldname is output, the associated value is provided otherwise.

```
r1=struct('PostCheck',1,'Opt','test','PostName','NameP','run',true);
v1=feval(sdtroot('@sfield'),'GetField',r1,'postname','field');
f1=feval(sdtroot('@sfield'),'GetField',r1,'postname','name');
```

- MergeI Merge two structures into a single one with case insensitive field name union. $r 1=s f i e l d(' M e r g e I ', r 1, r 2)$; Output $r 1$ is a structure with merged fields of inputs $r 1$ and r2 with priority given on r1.

```
r1=struct('PostCheck',1,'Opt','test','PostName','NameP','run',true);
r2=struct('opt','ttt','other','value');
r1=feval(sdtroot('@sfield'),'MergeI',r1,r2);
```

- Sub Recovers fields from a structures whose names match a given pattern (through a regular expression). r2=sfield('Sub',r1, pat,typ) :. Output r2 is a structure whose fields are fields from input structure r1 that were matched with pat as a regular expression. If typ is set to true, the matched pattern is removed from the output field name, kept otherwise.
r1=struct('PostCheck', 1, 'Opt', 'test', 'PostName', 'NameP', 'run', true) ;
r2=feval(sdtroot('@sfield'), 'Sub', r1,' ${ }^{\prime}$ Post', 1);

sdtweb

Purpose

SDT file navigation function.

Description

This function allows opening the SDT documentation, opening classical file types outside Matlab, and source code navigation.

OpenFileAtTag

When not called by a command starting with _, sdtweb opens a file.
The documentation can be displayed at two locations :

- In the MATLAB help browser : define this location as default with sdtdef('browser-SetPref','') or sdtdef('browser-SetPref','-helpbrowser')
- In the MATLAB web browser : : define this location as default with sdtdef('browser-SetPref', 'hack')
(Note that without the -SetPref, the displayed location is only modified for the current session, which is useful to temporarily switch from one display to the other.)

Their is a MATLAB bug when displayed in the help browser : links to locations on a page sometimes do not work properly, so that using the web browser is more convienient for now. It is recommended to use the help browser only to do a research in the documentation or if the table of content is really needed.

The main cases are

```
sdtweb feutil % Html documentation of feutil
sdtweb feutil#Renumber % at a tag in the HTML file
sdtweb feutil#Renumber -browser % same but in external browser
sdtweb feutil('renumber') % open .m file at tag 'renumber'
sdtweb source.c#tag % source.c file at tag
sdtweb file.doc % opens word for a given file.doc
```

sdtweb('_path') lists the help search path. sdtweb('_pathReset') redefines preferences.

Utils
sdtweb('_link','callback','comment') creates a clickable link.
sdtweb('_links', 'callback', 'comment') creates a clickable link showing just the comment.
sdtweb (' _wd' , wd0, wd1) recursively searches for a subdirectory of wd0 named wd1. Command option -reset regenerates the underlying directory scan.
sdtweb('_fname', fname, wd0) recursively searches for a file named fname in wd0 or any of its subdirectories, or the current directory.
sdtweb('_find', 'base_wd', 'filename') searches for a file within the base working directory.
sdtweb('_tracker', 'support', 979) opens a tracker on the support web site.
sdtweb(' BP' , 'FunctionName' , 'Tag') Find Tag in FunctionName (result of sdtweb FunctionName Tag and set breakup here for debug.
sdtweb('_TexFromHTML', 'HmtlFileName') Find .tex and line source corresponding to the HmtlFileName.html help file.
_taglist
This commands opens the TagList figure (tree view of your file providing links for source code navigation)

```
sdtweb _taglist % Open taglist of current editor file (if not docked)
sdtweb _taglist feutil % Open taglist of feutil
```

Accepted command options are

- -sortABC will display the navigation tree alphabetically sorted.
- -levelval in combination with sortABC perform the alphabetical sorting up to level val.

The coding styles convention associated to the TagList parsing are detailed in section 7.17 (sdtweb('syntax')).

sp_util

Purpose

Sparse matrix utilities.

Description

This function should be used as a mex file. The .m file version does not support all functionalities, is significantly slower and requires more memory.

The mex code is not Matlab clean, in the sense that it often modifies input arguments. You are thus not encouraged to call sp_util yourself.

The following comments are only provided, so that you can understand the purpose of various calls to sp_util.

- sp_util with no argument returns its version number.
- sp_util('ismex') true if sp_util is a mex file on your platform/path.
- ind=sp_util('profile', k) returns the profile of a sparse matrix (assumed to be symmetric). This is useful to have an idea of the memory required to store a Cholesky factor of this matrix.
- ks=sp_util('sp2sky', sparse(k)) returns the structure array used by the ofactobject.
- ks = sp_util('sky_dec',ks) computes the LDL' factor of a ofact object and replaces the object data by the factor. The sky_inv command is used for forward/backward substitution (take a look at the @ofact $\backslash m l d i v i d e . m$ function). sky_mul provides matrix multiplication for unfactored ofact matrices.
- $\mathrm{k}=$ sp_util('nas2sp',K,RowStart, InColumn,opt) is used by nasread for fast transformation between NASTRAN binary format and MATLAB sparse matrix storage.
- $\mathrm{k}=$ sp_util('spind', k, ind) renumbering and/or block extraction of a matrix. The input and output arguments k MUST be the same. This is not typically acceptable behavior for Matlab functions but the speed-up compared with $\mathrm{k}=\mathrm{k}$ (ind,ind) can be significant.
- $\mathrm{k}=\mathrm{sp}_{\mathrm{u}} \mathrm{util}\left({ }^{\prime} \mathrm{xkx}{ }^{\prime}, \mathrm{x}, \mathrm{k}\right.$) coordinate change for x a 3 by 3 matrix and DOFs of k stacked by groups of 3 for which the coordinate change must be applied.
- ener = sp_util('ener',ki,ke,length(Up.DOF) ,mind, T) is used by upcom to compute energy distributions in a list of elements. Note that this function does not handle numerical round-off problems in the same way as previous calls.
- $\mathrm{k}=\mathrm{sp}$ _util('mind', ki,ke,N,mind) returns the square sparse matrix k associated to the vector of full matrix indices ki (column-wise position from 1 to $\mathrm{N}^{\wedge} 2$) and associated values ke. This is used for finite element model assembly by fe_mk and upcom. In the later case, the optional argument mind is used to multiply the blocks of ke by appropriate coefficients. mindsym has the same objective but assumes that ki, ke only store the upper half of a symmetric matrix.
- sparse $=$ sp_util('sp2st',k) returns a structure array with fields corresponding to the Matlab sparse matrix object. This is a debugging tool.
- sp_util('setinput', mat, vect, start) places vector vect in matrix mat starting at C position start. Be careful to note that start is modified to contain the end position.

stack_get,stack_set,stack_rm

Purpose

Stack handling functions.

Syntax

```
[StackRows,index]=stack_get(model,typ);
[StackRows,index]=stack_get(model,typ,name);
[StackRows,index]=stack_get(model,typ,name,opt);
Up=stack_set(model,typ,name,val)
Up=stack_rm(model,typ,name);
Up=stack_rm(model,typ);
Up=stack_rm(model,'',name);
[model,r1]=stack_rm(model,typ,name,opt);
```


Description

The . Stack field is used to store a variety of information, in a N by 3 cell array with each row of the form \{'type', 'name', val\} (see section 7.6 or section 7.7 for example). The purpose of this cell array is to deal with an unordered set of data entries which can be classified by type and name.

Since sorting can be done by name only, names should all be distinct. If the types are different, this is not an obligation, just good practice.

In get and remove calls, typ and name can start by \# to use a regular expression based on matching (use doc regexp to access detailed documentation on regular expressions). To avoid selection by typ or name one can set it to an empty string.

Command options can be given in opt to recover stack lines or entries.

- stack_get outputs selected sub-stack lines by default.
- Using opt set to get or to GetData allows directly recovering the content of the stack entry instead of the stack line.
- Using opt set to multi asks to return sub stack lines for multiple results, this is seldom used.
- stack_rm outputs the model from which stack lines corresponding to typ and name have been removed.
- Using opt set to get will output in a second argument the removed lines.
- Using opt set to GetData will output in a second argument the content of the removed lines. If several lines are removed,

Syntax

```
% Sample calls to stack_get and stack_rm
Case.Stack={'DofSet', 'Point accel', [4.03;55.03];
    'DofLoad', 'Force', [2.03];
    'SensDof','Sensors', [4 55 30]'+.03};
% Replace first entry
Case=stack_set(Case,'DofSet','Point accel', [4.03;55.03;2.03]);
Case.Stack
% Add new entry
Case=stack_set(Case, 'DofSet', 'P2', [4.03]);
Case.Stack
% Remove entry
Case=stack_rm(Case,'', 'Sensors'); Case.Stack
% Get DofSet entries and access
[Val,ind]=stack_get(Case, 'DofSet')
Case.Stack{ind(1),3} % same as Val{1,3}
% Direct access to cell content
[Val,ind]=stack_get(Case,'DofSet','P2','get')
% Regular expression match of entries starting with a P
stack_get(Case,'','#P*')
% Remove Force entry and keep it
[Case,r1]=stack_rm(Case,', ,'Force','get')
```

SDT provides simplified access to stacks in feplot (see section 4.4.3) and iiplot figures (see section 2.1.2). cf. Stack\{ 'Name'\} can be used for direct access to the stack, and cf.CStack\{ 'Name'\} for access to FEM model case stacks.

ufread

Purpose

Read from Universal Files.

Syntax

```
            ufread
            ufread('FileNameOrList')
UFS = ufread('FileName')
UFS = ufread('FileList*.uff')
```


Description

The Universal File Format is a set of ASCII file formats widely used to exchange analysis and test data. As detailed below ufread supports test related UFF (15 grid point, UFF55 analysis data at node, UFF58 response data at DOF) and with the FEMLink extension FEM related datasets.
ufread with no arguments opens a GUI to let you select a file and displays the result using feplot and/or iiplot, ufread('FileName') opens an feplot or iiplot figure with the contents. UFS=ufread('FileName') returns either a FEM model (if only model information is given) or a curve stack UFS pointing to the universal files present in FileName grouped by blocks of files read as a single dataset in the SDT (all FRFs of a given test, all trace lines of a given structure, etc.). You can specify a file list using the $*$ character in the file name.

You get a summary of the file contents by displaying UFS

```
>> UFS
UFS = UFF curve stack for file 'example.uff'
{1} [.Node (local) 107x7, .Elt (local) 7x156] : model
    2 [.w (UFF) 512x1, .xf (UFF) 512x3] : response data
    3 [.po (local) 11x2, .res (local) 11x318] : shape data
```

which indicates the content of each dataset in the stack, the current data set between braces \{ \}, the type and size of the main data fields. For response data (UFF type 58), the data is only imported when you refer to it (UFS (i) call) but it is imported every time you do so unless you force loading into memory using UFS (i)=UFS (i).

The UFS object gives you direct access to the data in each field. In the example above, you can display the modeshapes using

```
cf = feplot;
```

```
cf.model = UFS(1);
cf.def = UFS(3);
```

When loading response data, you may want to transfer all options from the universal file to an iiplot stack entry using calls of the form ci.Stack\{ 'curve' , 'Test' $\}=$ UFS (3).If you need to extract partial sets of DOF, consider fe_def SubDof.

15 Grid point
Grid points stored in a node matrix (see node page 273) in a UFS (i) . Node field.
The format is a (4I10,1P3E13.5) record for each node with fields
[NodeID PID DID GID x y z]
where NodeID are node numbers (positive integers with no constraint on order or continuity), PID and DID are coordinate system numbers for position and displacement respectively (this option is not currently used), GID is a node group number (zero or any positive integer), and $\mathrm{x} y \mathrm{z}$ are the coordinates.

55 Analysis data at node
UFF55 Analysis data at nodes are characterized by poles . po and residues .res (corresponding to DOFs .dof) and correspond to shape at DOF datasets (see more info under the xfopt help).

The information below gives a short description of the universal file format. You are encouraged to look at comments in the ufread and ufwrite source codes if you want more details.

Header1 (80A1). The UFF header lines are stored in the .header field
Header2 (80A1)
Header3 (80A1) DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1)
Header5 (80A1)
Fun (6I10) This is stored in the .fun field
SpeInt (8I10) NumberOfIntegers on this line (3-N are type specific), NumberOfReals on the next line, SpeInt type specific integers (see table below for details)
SpeRea Type specific real parameters
NodeID (I10) Node number
Data
(6E13.5) Data At This Node : NDV Real Or Complex Values (real imaginary for data $1, \ldots$)
Records 9 And 10 Are Repeated For Each Node.
Type specific values depend on the Signification value and are stored in the .r55 field.

0 Unknown	[111 ID Number]
	[0.0]
1 Static	[1 1 LoadCase]
	[0.0]
2 Normal model	[2 4 LoadCase ModeNumber]
	[FreqHz ModalMass DampRatioViscous DampRatioHysteretic]
3 Complex eigenvalue	[2 6 LoadCase ModeNumber]
	[ReLambda ImLambda ReModalA ImModalA ReModalB ImModalB]
4 Transient	[2 1 LoadCase TimeStep]
	[TimeSeconds]
5 Frequency response	[2 1 LoadCase FreqStepNumber]
	[FrequencyHz]
6 Buckling	[1 1 LoadCase]
	[Eigenvalue]

58 Function at nodal DOF
UFF58 Functions at nodal DOF (see Response data) are characterized by frequencies w, a data set xf , as well as other options. The information below gives a short description of the universal file format. You are encouraged to look at comments in the ufread and ufwrite source codes if you want more details. Functions at nodal DOFs are grouped by type and stored in response data sets of UFS.

Header1 (80A1) Function description
Header2 (80A1) Run Identification
Header3 (80A1) Time stamp DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1) Load Case Name
Header5 (80A1)

DOFID This is stored in .dof field (which also has a file number as address in column 3). Values are

- 2(I5,I10) : FunType (list with xfopt ('_funtype'), stored in .fun(1)), FunID (ID in. $\operatorname{dof}(:, 5)$), VerID version or sequence number, LoadCase (0 single point)
- (1X,10A1,I10,I4) : ResponseGroup (NONE if unused, ID in .dof(:,4)), ResponseNodeID, ResponseDof ID (1:6 correspond to SDT DOFs . 01 to .06, $-1:-6$ to $S D T$ DOFs .07 to .12). DOF coding stored in. $\operatorname{dof}(:, 1))$.
- (1X,10A1,I10,I4) : ReferenceGroup (NONE if unused, ID in .dof(:,4)), ReferenceNodeID, ReferenceDofID. These are only relevant if LoadCase is zero. DOF coding stored in .dof (: ,2)).

DataForm (3I10,3E13.5)
DFormat (2 : real, single precision, 4 : real, double precision, 5 : complex, single precision, 6 : complex, double precision), NumberOfDataPoints, XSpacing (0 - uneven, 1 - even (no abscissa values stored)), XMinimum (0.0 if uneven), XStep (0.0 if spacing uneven), ZAxisValue (0.0 if unused)
XDataForm (I10,3I5,2(1X,20A1)) DataType (list with xfopt('_datatype')), lue length unit exponents, fue force, tue temperature, AxisLabel, AxisUnits
Note : exponents are used to define dimensions. Thus Energy (Force * Length) has

YNDataForm Ordinate (or ordinate numerator) Data Form (same as XDataForm
YDDataForm Ordinate Denominator Data Characteristics
ZDataForm
Z-axis Data Characteristics
DataValue a series of x value (if uneven x spacing, always with format E13.5), real part, imaginary part (if exists) with precision (E13.5 or E20.12) depending on DFormat.

82, Trace Line

UFF82 Trace Line matrix LDraw where each non-empty row corresponds to a line to be traced. All trace lines, are stored as element groups of UFS (1). Elt.

LDraw can be used to create animated deformation plots using feplot.
$\begin{array}{ll}\text { Opt } & \text { (3I10) LineNumber, NumberOfNodes, Color } \\ \text { Label } & \text { (80A1) Identification for the line } \\ \text { Header3 } & \text { (8I10) node numbers with } 0 \text { for discontinuities }\end{array}$
(, 1:2) [NumberOfNodes GroupID]
(, 3:82) [LineName] (which should correspond to the group name)
(, 83:end) [NodeNumbers] (NumberDfNodes of them, with zeros to break the line)

151, Header
Header stored as a string matrix header (with 7 rows).

780, 2412, Elements
These universal file formats are supported by the SDT FEMLink extension.
SDT UNV element (UNV Id)
beam1 rod (11), linear beam (21)
tria3 thin shell lin triangle (91), plane stress lin tri (41), plan strain lin tri (51), flat plate lin triangle (74)
tria6 thin shell para tri (92), plane stress para tri (42), plane strain para tri (51), flat plate para tri (62), membrane para tri (72)
quad4 thin shell lin quad (94), plane stress lin quad (44), plane strain lin quad (54), flat plate lin quad (64), membrane lin quad (71)
quadb thin shell para quad (95), plane stress para quad (54), plane strain para quad(55), flat plate para quad (65), membrane para quad(75)
tetra4 solid lin tetra (111)
tetra10 solid para tetra (118)
penta6 solid lin wedge (112)
penta15 solid para wedge (113)
hexa8 solid lin brick (115)
hexa20 solid para brick (116)
rigid rigid element (122)
bar1 node-node trans spring (136), node-node rot spring (137)
mass2 lumped mass (161)

773, 1710 Material Database

These universal file formats are supported by the SDT FEMLink extension.
All materials properties are read, but obviously only those currently supported by the SDT are translated to the corresponding row format (see m_elastic and section 7.4).

772, 788, 789, 2437, Element Properties
These universal file formats are supported by the SDT FEMLink extension.
All element (physical) properties are read, but obviously only those currently supported by the SDT are translated to the corresponding row format (see p_beam, p_shell, section 7.3).

2414, Analysis data
These universal file formats are supported by the SDT FEMLink extension.
Note that the list of FEMLink supported dataset is likely to change between manual editions. Please get in touch with SDTools if a dataset you want to read is not supported.

See also

nasread, ufwrite, xfopt

ufwrite

Purpose

Write to a Universal File.

Syntax

ufwrite(FileName, UFS, i)
ufwrite(FileName, model)

Description

You can export to UFF using the feplot and iiplot export menus.
ufwrite (FileName, UFS , i) appends the dataset i from a curve stack UFS to the file FileName. For details on curve stacks see section 2.1.2. ufwrite (FileName, model) can be used to export FEM models.

For datasets representing

- models, ufwrite writes a UFF of type 15 for the nodes and a trace line (UFF 82) for test wire frames (all EGID negative) or without FEMLink. With FEMLink, nodes are written in UFF 2411 format and elements in UFF 2412.
- response data, ufwrite writes a response at DOF (UFF 58) for each column of the response set.
- shape data, ufwrite writes a data at nodal DOF (UFF 55) for each row in the shape data set.

Starting from scratch, you define an curve stack DB=xfopt ('empty'). You can then copy data sets from the stack XF (previously initialized by iiplot or Xfopt) using DB $(i)=X F(j)$. You can also build a new data set by giving its fields (see xfopt for the fields for the three supported dataset types). The following would be a typical example

```
UF=xfopt('empty')
UF(1)={'node',FEnode,'elt',FEelt};
UF(2)={'W',IIW, 'xf',IIxf };
UF(3)={'po',IIres,'res',IIres,'dof',XFdof };
```

Once the curve stack built, ufwrite('NewFile', UF , 1:3) will write the three datasets.
With iiplot, you can use the stack to change properties as needed then write selected datasets to a file. For example,

```
tname=nas2up('tempname .uf');
ci=iicom('CurveLoad', 'gartid');
```

```
ci.Stack{'Test'}.x='frequency'; % modify properties, see xfopt('_datatype')
ci.Stack{'Test'}.yn='accele';
iicom('sub'); % reinitialize plot to check
ufwrite(tname,ci,'Test');
% write a model
ci.Stack{'SE','model'}=demosdt('demo gartte');
ufwrite(tname,ci,'model');
% write a time trace
C1=fe_curve('TestRicker .6 2',linspace(0,1.2,120));
C1=ufwrite('_toxf',C1); % Transform to xf format
C1.x= xfopt('_datatype','time');
C1.yn= xfopt('_datatype','Acceleration');
C1.fun= xfopt('_funtype',1);
ufwrite(tname,ci,'Ricker');
UFS=ufread(tname); % reread the UFF to check result
```

Note that you can edit these properties graphically in the iiplot properties ... figure.

See also

ufread, iiplot, nasread

upcom

Purpose

User interface function for parameterized superelements.

Description

The upcominterface supports type 3 superelements which handle parameterization by storing element matrix dictionaries and thus allowing reassembly of mass and stiffness matrices computed as weighted sums of element matrices 6.120).

By default, upcom uses a special purpose superelement stored in the global variable Up. You can however use more than one type 3 superelement by providing the appropriate variables as input/output arguments. upcom('info') applies to Up whereas upcom(model,'info') applies to model.

The par commands are used to dynamically relate the element matrix weights to physical parameters thus allowing fairly complex parametric studies on families of models. The main objective for upcom is to enable finite element model updating, but it can also be used for optimization and all problems using with families of models or hysteretic damping modeling as illustrated in section 5.3.2.

The following paragraphs detail calling formats for commands supported by upcom and are followed by an explanation of the signification of the fields of Up (see the commode help for hints on how to build commands and understand the variants discussed in this help).

More details on how these commands are typically sequenced are given in the Tutorial section 6.4 and section 6.5.

Commands

Clear, Load File, Save File
upcom('clear') clears the global variable Up and the local and base variables Up if they exist. If these local variables are not cleared then the global variable Up is reset to that value.
upcom ('load File') loads the superelement fields from File.mat and creates the file if it does not currently exist. upcom('save File') makes sure that the current values of the various fields are saved in File.mat. Certain commands automatically save the superelement but efficiency mandates not to do it all the time. The working directory field Up.wd lets you work in a directory that differs from the directory where the file is actually located.

```
Assemble [,m,k] [,coef cur],[,delta i][,NoT][,Point]
```

[m,k] = upcom('assemble') returns the mass and stiffness parameters associated with the parameters by the last parcoef command. You should look up newer assembly calls in section 4.8.8 .

Assemble Coef cur uses the parameter values cur for the assembly. Assemble CoefNone does not use any parameter definitions (all the element matrices are used with a unit weighting coefficient). AssembleMind uses columns 5 and 6 of Up.mind for element matrix coefficients.

Assemble Delta i assembles the derivative of matrices with respect to parameter i. To assemble a derivative with non zero components on more than one parameter, use [dm, dk]=upcom('assemble delta', dirp) where dirp (with Npar rows) characterizes the amplitude of the derivative on each parameter for the current change. dirp can for example be used to describe simultaneous changes in mass and stiffness parameters.
$\mathrm{k}=\mathrm{upcom}\left(\right.$ 'assemble k coef 23^{\prime}) only assembles the stiffness with parameter coefficients set to 2 and 3. Similarly, dm=upcom ('assemble m delta 2') will assemble the mass derivative with respect to parameter 2.

The NoT option can be used to prevent the default projection of the matrices on the master DOFs defined by the current case.

The Point option can be used return the vhandle object pointing to the non assembled matrix. This matrix can then be used in feutilb('tkt') and feutilb('a*b') out of core operations.

ComputeMode [,full, reduced] [,eig_opt]
[mode,freq] = upcom('ComputeMode') assembles the model mass and stiffness based on current model parameters (see the parcoef command) and computes modes. The optional full or reduced can be used to change the current default (see the opt command). The optional eig_opt can be used to call fe_eig with options other than the current defaults (see the opt command).

```
upcom('load GartUp');
def = upcom('computemode full 105 10 1e3');
```

For reduced model computations, the outputs are [moder,freq,modefull].

ComputeModal [,full,reduced]

Given a parameterized model, the command ComputeModal computes the frequency response associated to all the inputs and outputs of the model, taken into account the damping ratio. ComputeModal computes the normal modes and static corrections for inputs of the full or reduced order models based on the full or reduced model. nor2xf is then called to build the responses (for sensor load definitions within the model, see nor 2 xf).

```
Up=upcom('load GartUp');
Up=fe_case(Up,'SensDof ','sensors', [3.03;54.03], 'DofLoad', 'input', 3.03);
upcom(Up,'compute modal full acc iiplot "updated" -po -reset');
```

You may want to compute the direct frequency response associated the inputs on all the DOFs structure. It does not compute modes and is thus faster than ComputeModal for a full order model and a few frequency points. The high level call uses the fe_simul function

```
cf=fecom('load',which('GartUp.mat'));
cf.mdl=fe_case(cf.mdl,'DofLoad','input',3.03);
cf.mdl=stack_set(cf.mdl,'info','Freq',linspace(0,15,50)');
cf.def=fe_simul('DFRF',cf.mdl);fecom('ch22');
```

Ener [m, k]
ener = upcom('ener k', def) computes the strain energy in each element for the deformations def. ener is a data structure with fields. IndInElt specifying the element associated with each energy row described in the . data field. You can display the kinetic energy in an arbitrary element selection of a structure, using a call of the form

```
cf.sel={'group6','colordata elt',upcom('ener m','group6',mode)};
```

Fix
upcom('fix0') eliminates DOFs with no stiffness contribution. upcom('fix',adof) only retains DOFs selected by adof.

This command is rather inefficient and you should eliminate DOFs with FixDOF case entries (see fe_case or assemble directly with the desired DOFs (specify adof in the SetNominal command).

Get
Information about the superelement is stored in fields of the global variable Up. The easiest way to access those fields is to make the variable local to your workspace (use global Up) and to access the fields directly. The superelement also has pseudo-fields mi,me, ki,ke which are always stored in Up.file. Commands of the form load(Up.file,'ke') are used to get them.

femesh

upcom femesh copies Up.Elt to FEelt and Up.Node to FEnode so that femesh commands can be applied to the model.

IndInElt

upcom('IndInElt') returns a vector giving the row position in Up.Elt of each row in Up.mind. This is in particular used for color coded energy plots which should now take the form
feplot('ColorDataElt', upcom('eners', res), upcom('indinelt'));
Although it is typically easier to use high level calls of the form

```
upcom('load GartUp');upcom('plotelt');
cf=feplot;cf.def=fe_eig(Up,[5 10 1e3]);fecom('ch7');
cf.sel={'groupall','colordata enerk'};
```

Info [,par,elt]
upcom('info') prints information about the current content of Up: size of full and reduced model, values of parameters currently declared, types, etc.

InfoPar details currently defined parameters. InfoElt details the model.

Opt
upcom('opt Name ' ') sets the option Name to a given Value. Thus upcom ('opt gPrint 11') sets the general printout level to 11 (maximum). Accepted names and values are detailed in the Up.copt field description below.

Par [add type values,reset]
These commands allow the creation of a parameter definition stack. Each parameter is given a type (k for stiffness, m for mass, t for thickness) optional current, min and max values, a name, and an element selection command

```
Up=upcom('load GartUp'); % Load sample model
Up=fe_case(Up,'ParReset') % Reset parameters
Up=fe_case(Up,'ParAdd k 1.0 0.5 2.0','Tail','group3');
Up=fe_case(Up,'ParAdd t 1.0 0.9 1.1','Constrained Layer','group6');
Up=fe_case(Up,'parcoef',[1.2 1.3]);
upcom(Up,'info par');
```

Parameters are stored in the case stack and can be selected with

```
des=fe_case(Up,'stack_get','par')
```

des is a cell array where each row has the form \{'par', 'name', data\} with data containing fields
.sel string or cell array allowing selection of elements affected by the parameter
. coef vector of parameter coefficients (see format description under upcom ParCoeff).
.pdir Boolean vector giving the positions of affected elements in Up.mind (for upcommodels)
.name Parameter name
.zCoef optional string definition of the zcoef associated to the parameter.

ParCoef

The value of each physical parameter declared using upcom Par or fe_case par commands is described by a row of coefficients following the format
[type cur min max vtype]
with

- type 1 stiffness proportional to parameter value. This is the case for a variable Young's modulus. 2 mass proportional to parameter. This is the case for a variable mass density.

3 variable thickness upcom only). Currently only valid for quad4 and quadb elements. tria3 elements can be handled with degenerate quad4. Element groups with variable thickness must be declared at assembly during upcom('SetNominal').

- cur for current value
- min for minimum value
- max for maximum value
- vtype deals with the type of variation 1 linear, $2 \log$ (not fully implemented)
upcom(Up, 'parcoef', cur) is used to set current values (cur must be a vector of length the number of declared parameters), while upcom(Up, 'parcoef ', par) also sets min, max and vtype values. You can also use [cur, par]=upcom(Up, 'parcoef') or par=upcom(Up, 'parcoefpar') to obtain current values or the parameter value matrix.

An example of parameter setting is thus

```
Up=demosdt('gartup'); % see sdtweb demosdt('gartup')
% MatType cur min max vtype
par = [ 1 1.0 0.1 3.0 1 ; ... % Linear
        3 0.0 -1 2.0 2 ]; % Log variation
Up=upcom(Up,'parcoef',par);
```

```
upcom(Up,'info par');
```

[cur, par]=upcom(Up,'parcoef ')

Note that to prevent user errors, upcomdoes not allow parameter overlap for the same type of matrix (modification of the modulus and/or the thickness of the same element by two distinct parameters).

ParRed

upcom('par red', T) projects the current full order model with the currently declared parameters on the basis T. Typical reduction bases are discussed in section 6.2 .7 and an example is shown in the gartup demo. Matrices to be projected are selected based on the currently declared variable parameters in such a way that projected reduced model is able to make predictions for new values of the parameters.

ParTable

$t t=u p c o m(' p a r t a b l e ')$ returns a cell array of string describing the parameters currently declared. This cell array is useful to generate formatted outputs for inclusion in various reports using comstr (tt, -17 , 'excel') for example.

PlotElt

upcom plotelt initializes a feplot figure displaying the model in upcom. If Up has deformations defined in a .def field, these are shown using cf=feplot;cf.def=Up.

Profile [,fix]
Renumbers DOFs and pseudo-fields mi,me,ki,ke using symrcm to minimize matrix bandwidth. ProfileFix eliminates DOFs with no stiffness on the diagonal at the same time.
upcom('ProfileFix',fdof) profiles and eliminates DOFs in fdof and DOFs with no stiffness on the diagonal.

Support for case entries (see fe_case) makes this command obsolete.

SensMode [,reduced]

[fsen,mdsen,mode,freq] = upcom('SensMode', dirp,indm, T) returns frequency and modeshape sensitivities of modes with indices given in indm for modifications described by dirp.

For a model with $N P$ parameters (declared with the Par commands), dirp is a matrix with Npar rows where each column describe a case of parameter changes of the form par $=\operatorname{dirp}(:, j)$. The default for dirp the identity matrix (unit change in the direction of each parameter).

The optional argument T can be used to give an estimate of modeshapes at the current design point. If T is given the modes are not computed which saves time but decreases accuracy if the modes are not exact.
fsen gives, for modes indm, the sensitivities of modal frequencies squared to all parameters (one column of fsen per parameter). mdsen stores the modeshape sensitivities sequentially (sensitivities of modes in indm to parameter 1, parameter 2, ...).

When modeshape sensitivities are not desired (output is [fsen] or [fsen, mode, freq]), they are not computed which takes much less computational time.

By default SensMode uses the full order model. The first order correction to the modal method discussed in Ref. [42] is used. You can access the reduced order model sensitivities using SensModeReduced but should be aware that accuracy will then strongly depend on the basis you used for model reduction (ParRed command).

SetNominal [, t groups]

To generate a new model, you should first clear any Up variable in the workspace, specify the file that where you will want the element matrices to be saved, then perform the assembly. For example

```
model=demosdt('demogartfe');
model.wd=sdtdef('tempdir');model.file='GartUp_demo.mat';
Up=upcom(model,'setnominal')
% delete(fullfile(Up.wd,[Up.file,'.mat'])) % to remove the result
```

Case information (boundary conditions, ... see fe_case) in model is saved in Up. Stack and will be used in assembly unless the NoT option is included in the Assemble command.

If the parameter that will be declared using the Par commands include thickness variations of some plate/shell elements, the model will use element sub-matrices. You thus need to declare which element groups need to have a separation in element submatrices (doing this separation takes time and requires more final storage memory so that it is not performed automatically). This declaration is done with a command of the form SetNominal T groups which gives a list of the groups that need separation.

Obsolete calling formats upcom('setnominal', FEnode, FEelt, pl,il) and upcom('setnominal', FEnode,FEelt,pl,il, [],adof) (where the empty argument [] is used for coherence with calls to fe_mk are still supported but you should switch to using FEM model
structures.

Fields of Up

Up is a generic superelement (see description underfe_super) with additional fields described below.
The Up.Opt $(1,4)$ value specifies whether the element matrices are symmetric or not.

Up.copt

The computational options field contains the following information

```
    (1,1:7) = [oMethod gPrint Units Wmin Wmax Model Step]
oMethod optimization algorithm used for FE updates
            1: fmins of Matlab (default)
            2: fminu of the Optimization Toolbox
            3: up_min
gPrint printout level (0 none to 11 maximum)
Units for the frequency/time data vector w and the poles
    01: w in Hertz 02: w in rad/s 03: w time seconds
    10: po in Hertz 20: po in rad/s
    example: Up.copt (1,3) = 12 gives w in rad/sec and po in Hz
Wmin index of the first frequency to be used for update
Wmax index of the last frequency to be used for update
Model flag for model selection (0 full Up, 1 reduced UpR)
Step step size for optimization algorithms (foptions(18))
(2,1:5) = [eMethod nm Shift ePrint Thres MaxIte]
```

are options used for full order eigenvalue computations (see fe_eig for details).

```
(3,1) = [exMethod ]
```

exMethod expansion method (0: static, 1: dynamic, 2: reduced basis dynamic, 3: modal, 4: reduced basis minimum residual)

```
Up.mind, Up.file, Up.wd, mi, me, ki, ke
```

Up stores element submatrices in pseudo-fields mi,me,ki,ke which are loaded from Up.file when needed and cleared immediately afterwards to optimize memory usage. The working directory Up.wd field is used to keep tract of the file location even if the user changes the current directory. The
upcom save command saves all Up fields and pseudo-fields in the file which allows restarts using upcom load.
ki, mi are vectors of indices giving the position of element matrix values stored in ke , me. The indices use the column oriented numbering from 1 to N^{2} where N is the assembled matrix size.

Up.mind is a NElt $\times 6$ matrix. The first two columns give element (sub-)matrix start and end indices for the mass matrix (positions in mi and me). Columns 3:4 give element (sub-)matrix start and end indices for the stiffness matrix (positions in ki and ke). Column 5 (6) give the coefficient associated to each element mass (stiffness) matrix. If columns 5:6 do not exist the coefficients are assumed equal to 1 . The objective of these vectors is to optimize model reassembly with scalar weights on element matrices.

Up.Node, Up.Elt, Up.pl, Up.il, Up.DOF, Up.Stack
Model nodes (see section 7.1), elements (see section 7.2), material (see section 7.3) and element (see section 7.4) property matrices, full order model DOFs. These values are set during the assembly with the setnominal command.

Up.Stack contains additional information. In particular parameter information (see upcom par commands) are stored in a case (see section 7.7) saved in this field.

```
Up.sens
```

Sensor configuration array built using fe_sens. This is used for automatic test / analysis correlation during finite element update phases.

See also

fesuper, up_freq, up_ixf

up_freq, up_ifreq

Purpose

Sensitivity and iterative updates based on a comparison of modal frequencies.

Syntax

[coef, mode,freq]=up_freq('Method',fID, modeID, sens);
[coef,mode,freq]=up_ifreq('Method',fID,modeID,sens);

Description

up_freq and up_ifreq seek the values coef of the currently declared Up parameters (see the upcom Par command) such that the difference between the measured fID and model normal mode frequencies are minimized.

Currently 'basic' is the only Method implemented. It uses the maximum MAC (see ii mac) to match test and analysis modes. To allow the MAC comparison modeshapes. You are expected to provide test modeshapes modeID and a sensor configuration matrix (initialized with fe_sens).
The cost used in both functions is given by

```
norm(new_freq(fDes(:,1))-fDes(:,2))/ norm(fDes(:,2))
```

up_freq uses frequency sensitivities to determine large steps. As many iterations as alternate matrices are performed. This acknowledges that the problem is really non-linear and also allows a treatment of cases with active constraints on the coefficients (minimum and maximum values for the coefficients are given in the upcom Par command).
up_ifreq uses any available optimization algorithm (see upcom opt) to minimize the cost. The approach is much slower (in particular it should always be used with a reduced model). Depending on the algorithm, the optimum found may or may not be within the constraints set in the range given in the upcom Par command.

These algorithms are very simple and should be taken as examples rather than truly working solutions. Better solutions are currently only provided through consulting services (ask for details at info@sdtools.com).

See also

up_ixf, up_ifreq, fe_mk, upcom

Purpose

Iterative FE model update based on the comparison of measured and predicted FRFs.

Syntax

```
[jump]=up_ixf('basic',b,c,IIw,IIxf,indw)
```


Description

up_ixf seeks the values coef of the currently declared Up parameters (see the upcom Par command) such that the difference Log least-squares difference (3.4) between the desired and actual FRF is minimized. Input arguments are

```
method Currently 'basic' is the only Method implemented.
range a matrix with three columns where each row gives the minimum, maximum and initial
    values associated the corresponding alternate matrix coefficient
b,c input and output shape matrices characterizing the FRF given using the full order
    model DOFs. See section 5.1.
IIw selected frequency points given using units characterized by Up.copt (1,3)
IIxf reference transfer function at frequency points IIw
indw indices of frequency points where the comparison is made. If empty all points are
    retained.
```

Currently 'basic' is the only Method implemented. It uses the maximum MAC (see ii_mac) to match test and analysis modes. To allow the MAC comparison modeshapes. You are expected to provide test modeshapes modeID and a sensor configuration matrix (initialized with fe_sens).
up_ixf uses any available optimization algorithm (see upcom opt) to minimize the cost. Depending on the algorithm, the optimum found may or may not be within the constraints set in the range given in the upcom Par command.

This algorithm is very simple and should be taken as an example rather than an truly working solution. Better solutions are currently only provided through consulting services (ask for details at info@sdtools.com).

See also

up_freq, upcom, fe_mk

v_handle

Purpose

Description

Class constructor for variable handle objects.

v_handle

The Structural Dynamics Toolbox supports variable handle objects, which act as pointers to variables that are actually stored as

- uo user data of graphical objects (init with v_handle('uo', go)). This is in particular used in feplot to store the model in cf.mdl. For easier access, the format v_handle('uo', parent,'tag', 'TipCh') allows search by tag and possible creation as a invisible uicontrol.

It is possible to associate a callback executed when the variable is modified using vhandle('uo', go, SetFcn)

- so reference to another (stored) object.
- mat data in files. This latter application may become very useful when handling very large models. sdthdf indeed allows RAM unloading by keeping data on drive while using a pointed to it. A trade-off between data access performance (limited to your drive I/O performance) and amount of free memory will occur. Some supported file formats are MATLAB 6 . mat files (use v_handle('mat', 'varname','filename')), NASTRAN .op2, op4 (see nasread), ABAQUS .fil ...

For data in files, methods of interest are extraction def (rows, cols), total read def. GetData or $\operatorname{def}(:,:)$, and matrix multiplication $c * \operatorname{def}$.

- hdf data in MATLAB i7.3 HDF based .mat files (see sdthdf hdfReadRef)
- base global variables (init with v_handle('global', 'name')), use is discontinued
- mkls 32 bit sparse (init with v handle('mkls', k)) used for improved time response
v handle objects essentially behave like global variables with the notable exception that a clear command only deletes the handle and not the pointed data.
Only advanced programmers should really need access to the internal structure of v -handle.

xfopt

Purpose

User interface for curve stack pointer objects. Stack, see section 2.1.2, are now preferred so this function is documented mostly for compatibility.

Syntax

```
xfopt command
XF(1).FieldName=FieldValue
XF(1).command='value'
XF.check
r1=XF(1).GetData
curve=XF(1).GetAsCurve
XF.save='FileName'
```


Description

SDT considers data sets in curve, curve Response data or Shapes at DOFs formats. Handling of datasets is described in the iiplot tutorial which illustrates the use of curve stacks (previously called database wrappers).
ufread and ufwrite also use curve stacks which can be stored as variables. In this case, FEM models can also be stored in the stack.

The use of a stack pointer (obtained with XF=iicom(ci,'curvexf');) has side advantages that further checks on user input are performed.

XF.check verifies the consistency of information contained in all data sets and makes corrections when needed. This is used to fill in information that may have been left blank by the user.
disp(XF) gives general information about the datasets. XF (i).info gives detailed and formatted information about the dataset in $\mathrm{XF}(i) \mathrm{XF}(i)$ only returns the actual dataset contents.

Object saving is overloaded so that data is retrieved from a iiplot figure if appropriate before saving the data to a mat file.

Object field setting is also overloaded (consistency checks are performed before actually setting a field) This is illustrated by the following example

```
[ci,XF]=iiplot
XF (1)
XF(1). x='time'; XF(1).x
```

where XF (1) is a Response data set (with abscissa in field . w, responses in field . xf, ...).
$\mathrm{XF}(1) . \mathrm{x}=$ 'time' sets the $\mathrm{XF}(1) . \mathrm{x}$ field which contains a structure describing its type. Notice how you only needed to give the 'time' argument to fill in all the information. The list of supported axis types is given using xfopt('_datatype')

XF (1). $w=[1: 10]$ ' sets the $\mathrm{XF}(1) . \mathrm{w}$ field.

FunType, _DataType, _FieldType
These commands are used internally by SDT. xfopt _FunType returns the current list of function types (given in the format specification for Universal File 58).
label=xfopt('FunType', type) and type=xfopt('FunType','label') are two other accepted calls.
xfopt _DataType returns the current list of data types (given in the format specification for Universal File 58). xfopt(' DataType', type) and
xfopt(' DataType', 'label') are two other accepted calls.
For example XF.x.label='Frequency' or XF.x=18.
Data types are used to characterize axes (abscissa (x), ordinate numerator (yn), ordinate denominator (yd) and z-axis data (z)). They are characterized by the fields
.type four integers describing the axis function type fun (see list with xfopt('_datatype')), length, force and temperature unit exponents
.label a string label for the axis
.unit a string for the unit of the axis
xfopt _FieldType returns the current list of field types.

See also

idopt, id_rm, iiplot, ufread

Bibliography

[1] N. Lieven and D. Ewins, "A proposal for standard notation and terminology in modal analysis," Int. J. Anal. and Exp. Modal Analysis, vol. 7, no. 2, pp. 151-156, 1992.
[2] K. McConnell, Vibration Testing. Theory and Practice. Wiley Interscience, New-York, 1995.
[3] W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven, Belgium, 1997.
[4] D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY, 1984.
[5] E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale Paris, 1997-2012.
[6] "Vibration and shock - experimental determination of mechanical mobility," ISO 7626, 1986.
[7] R. J. Craig, A. Kurdila, and H. Kim, "State-space formulation of multi-shaker modal analysis," Int. J. Anal. and Exp. Modal Analysis, vol. 5, no. 3, 1990.
[8] M. Richardson and D. Formenti, "Global curve fitting of frequency response measurements using the rational fraction polynomial method," International Modal Analysis Conference, pp. 390397, 1985.
[9] E. Balmes, "Frequency domain identification of structural dynamics using the pole/residue parametrization," International Modal Analysis Conference, pp. 540-546, 1996.
[10] E. Balmes, "Integration of existing methods and user knowledge in a mimo identification algorithm for structures with high modal densities," International Modal Analysis Conference, pp. 613-619, 1993.
[11] P. Guillaume, R. Pintelon, and J. Schoukens, "Parametric identification of multivariable systems in the frequency domain : a survey," International Seminar on Modal Analysis, Leuven, September, pp. 1069-1080, 1996.
[12] E. Balmes, "New results on the identification of normal modes from experimental complex modes," Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229-243, 1997.
[13] A. Sestieri and S. Ibrahim, "Analysis of errors and approximations in the use of modal coordinates," Journal of sound and vibration, vol. 177, no. 2, pp. 145-157, 1994.
[14] D. Kammer, "Effect of model error on sensor placement for on-orbit modal identification of large space structures," J. Guidance, Control, and Dynamics, vol. 15, no. 2, pp. 334-341, 1992.
[15] E. Balmes, "Review and evaluation of shape expansion methods," International Modal Analysis Conference, pp. 555-561, 2000.
[16] E. Balmes, "Sensors, degrees of freedom, and generalized modeshape expansion methods," International Modal Analysis Conference, pp. 628-634, 1999.
[17] A. Chouaki, P. Ladevèze, and L. Proslier, "Updating Structural Dynamic Models with Emphasis on the Damping Properties," AIAA Journal, vol. 36, pp. 1094-1099, June 1998.
[18] E. Balmes, "Optimal ritz vectors for component mode synthesis using the singular value decomposition," AIAA Journal, vol. 34, no. 6, pp. 1256-1260, 1996.
[19] D. Kammer, "Test-analysis model development using an exact modal reduction," International Journal of Analytical and Experimental Modal Analysis, pp. 174-179, 1987.
[20] J. O'Callahan, P. Avitabile, and R. Riemer, "System equivalent reduction expansion process (serep)," IMAC VII, pp. 29-37, 1989.
[21] R. Guyan, "Reduction of mass and stiffness matrices," AIAA Journal, vol. 3, p. 380, 1965.
[22] R. Kidder, "Reduction of structural frequency equations," AIAA Journal, vol. 11, no. 6, 1973.
[23] M. Paz, "Dynamic condensation," AIAA Journal, vol. 22, no. 5, pp. 724-727, 1984.
[24] M. Levine-West, A. Kissil, and M. Milman, "Evaluation of mode shape expansion techniques on the micro-precision interferometer truss," International Modal Analysis Conference, pp. 212218, 1994.
[25] E. Balmes and L. Billet, "Using expansion and interface reduction to enhance structural modification methods," International Modal Analysis Conference, February 2001.
[26] MSC/NASTRAN, Quick Reference Guide 70.7. MacNeal Shwendler Corp., Los Angeles, CA, February,, 1998.
[27] E. Balmes, "Model reduction for systems with frequency dependent damping properties," International Modal Analysis Conference, pp. 223-229, 1997.
[28] T. Hasselman, "Modal coupling in lightly damped structures," AIAA Journal, vol. 14, no. 11, pp. 1627-1628, 1976.
[29] A. Plouin and E. Balmes, "A test validated model of plates with constrained viscoelastic materials," International Modal Analysis Conference, pp. 194-200, 1999.
[30] E. Balmes and S. Germès, "Tools for viscoelastic damping treatment design. application to an automotive floor panel.," ISMA, September 2002.
[31] E. Balmes, Viscoelastic vibration toolbox, User Manual. SDTools, 2004-2013.
[32] J.-M. Berthelot, Materiaux composites - Comportement mecanique et analyse des structures. Masson, 1992.
[33] N. Atalla, M. Hamdi, and R. Panneton, "Enhanced weak integral formulation for the mixed (u,p) poroelastic equations," The Journal of the Acoustical Society of America, vol. 109, pp. 30653068, 2001.
[34] J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials. Wiley, 2009.
[35] A. Girard, "Modal effective mass models in structural dynamics," International Modal Analysis Conference, pp. 45-50, 1991.
[36] R. J. Craig, "A review of time-domain and frequency domain component mode synthesis methods," Int. J. Anal. and Exp. Modal Analysis, vol. 2, no. 2, pp. 59-72, 1987.
[37] M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics. John Wiley \& Wiley and Sons, 1994, also in French, Masson, Paris, 1993.
[38] C. Farhat and M. Géradin, "On the general solution by a direct method of a large-scale singular system of linear equations: Application to the analysis of floating structures," International Journal for Numerical Methods in Engineering, vol. 41, pp. 675-696, 1998.
[39] R. J. Craig and M. Bampton, "Coupling of substructures for dynamic analyses," AIAA Journal, vol. 6, no. 7, pp. 1313-1319, 1968.
[40] E. Balmes, "Use of generalized interface degrees of freedom in component mode synthesis," International Modal Analysis Conference, pp. 204-210, 1996.
[41] E. Balmes, "Parametric families of reduced finite element models. theory and applications," Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381-394, 1996.
[42] E. Balmes, "Efficient sensitivity analysis based on finite element model reduction," International Modal Analysis Conference, pp. 1168-1174, 1998.
[43] T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall International, 1987.
[44] H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley \& Sons 1995, Masson, 1992.
[45] J. Imbert, Analyse des Structures par Eléments Finis. E.N.S.A.E. Cépaques Editions.
[46] J. Batoz, K. Bathe, and L. Ho, "A study of tree-node triangular plate bending elements," Int. J. Num. Meth. in Eng., vol. 15, pp. 1771-1812, 1980.
[47] R. G. and V. C., "Calcul modal par sous-structuration classique et cyclique," Code_Aster, Version 5.0, R4.06.02-B, pp. 1-34, 1998.
[48] S. Smith and C. Beattie, "Simultaneous expansion and orthogonalization of measured modes for structure identification," Dynamics Specialist Conference, AIAA-90-1218-CP, pp. 261-270, 1990.
[49] E. Balmes, "Orthogonal maximum sequence sensor placements algorithms for modal tests, expansion and visibility.," IMAC, January 2005.
[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: Nsga-ii," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
[51] C. Johnson, "Discontinuous galerkin finite element methods for second order hyperbolic problems," Computer methods in Applied Mechanics and Engineering, no. 107, pp. 117-129, 1993.
[52] M. Hulbert and T. Hughes, "Space-time finite element methods for second-order hyperbolic equations," Computer methods in Applied Mechanics and Engineering, no. 84, pp. 327-348, 1990.
[53] G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2010.
[54] M. Jean, "The non-smooth contact dynamics method," Computer methods in Applied Mechanics and Engineering, no. 177, pp. 235-257, 1999.
[55] R. J. Craig and M. Blair, "A generalized multiple-input, multiple-ouptut modal parameter estimation algorithm," AIAA Journal, vol. 23, no. 6, pp. 931-937, 1985.
[56] N. Lieven and D. Ewins, "Spatial correlation of modeshapes, the coordinate modal assurance criterion (comac)," International Modal Analysis Conference, 1988.
[57] D. Hunt, "Application of an enhanced coordinate modal assurance criterion," International Modal Analysis Conference, pp. 66-71, 1992.
[58] R. Williams, J. Crowley, and H. Vold, "The multivariate mode indicator function in modal analysis," International Modal Analysis Conference, pp. 66-70, 1985.
[59] E. Balmes, C. Chapelier, P. Lubrina, and P. Fargette, "An evaluation of modal testing results based on the force appropriation method," International Modal Analysis Conference, pp. 47-53, 1995.
[60] A. W. Phillips, R. J. Allemang, and W. A. Fladung, The Complex Mode Indicator Function (CMIF) as a parameter estimation method. International Modal Analysis Conference, 1998.

Index

.ID, 794
,497
actuator dynamics, 748
addresses, 290
adof, 292
AMIF, 789
animation, 156,506
AnimMovie, 161
assembly, 671
asymptotic correction, 738
attachment mode, 245, 701
automated meshing, 146
b, 200, 609, 663
bar element, 386
beam element, 387
boundary condition, 166,610
BuildConstit, 325
c, 200,609
Case.GroupInfo, 308
cases, 284, 612
cf, $150,589,770,870$
channel, 288
CMIF, 789
collocated, 105, 212, 751
color mode, 508
ColorMap, 510, 797
COMAC, 122, 781
command formatting, 489
command function, 489
complex mode
computation and normalization, 631
definition, 210
identification, 96, 747, 751
Complex Mode Indicator Function, 789
Component Mode Synthesis, 247, 633
connectivity line matrix, 97,873
coordinate, 273, 475
cost function
$\operatorname{logLS}, 774$
quadratic, 96, 774
cp, 202
Craig Bampton reduction, 246, 698
Cross generalized mass, 782
curve, 286
curve stack, 46, 890
Cyclic symmetry, 643
damping, 203
non-proportional, 108, 205, 742
proportional or modal, 107, 204, 840
Rayleigh, 205
structural, 205, 206, 816
viscoelastic, 205, 206
damping ratio, 284
data structure
case, 284
curve, 286
deformation, 285
element constants, 309
element property, 277
GroupInfo, 308
material, 276
model, 280
sens, 623
database wrapper, 46, 50, 64, 870, 890
def, 285
DefaultZeta, 853
degree of freedom (DOF), 201
active, 609, 631, 650
definition vector, 278, 290, 292, 609
element, 279
master, 301
nodal, 278
selection, 292, 609
demonstrations, 12
design parameters, 258
DID, 273, 392, 476
dirp, 262
dock, 483
drawing axes, 762
effective mass, 244
EGID, 275, 279, 297
eigenvalue, 189, 631, 650
element
bar, 386
beam, 387
EGID, 275,279
EltID, 325
fluid, 396, 398
function, 274, 311, 321, 594
group, 274,518
identification number (EltId), 279
plate, $394,444,447,451$
property row, 275, 409, 438, 668
rigid link, 390, 448
selection, 296, 518, 528, 546
solid, 399
user defined, 311
EltId, 275
EltOrient, 299
eta, 206, 284
expansion, 132, 654
family of models, 258
FE model update, 265267
based on FRFs, 888
based on modal frequencies, 887
command function, 878
FEelt, 144, 524
FEMLINK, 460, 471, 498
FEMLink, 805, 831, 846
FEnode, 144,524
feplot, 139, 149, 589
frequency
unit, 650
frequency response function (FRF), 214, 747
frequency units, $738,748,839,885$
frequency vector w, 215, 748
ga, 202
generalized mass, 189, 243, 735
GID, 273
global variable, 17, 144, 524, 538, 594
Guyan condensation, 246, 698
hexahedron, 406
identification, 54
direct system parameter, 76,740
minimal model, 103, 105, 751
normal mode model, 742
options, 737
orthogonal polynomials, 77, 746
poles, complex mode residues, 96,747
poles, normal mode residues, 107,747
reciprocal model, 751
scaled modeshapes, 108,751
IDopt, 66, 291, 737, 890
iiplot, 44,770
IIxf, 49, 50, 74
il, 277
importing data, 63, 65, 146
ImWrite, 161
input shape matrix b, 200, 609
integinfo, 325
isostatic constraint, 701
LabFcn, 513, 686
load, 200, 663
localization matrix, 201
loss factor, 206, 284
MAC, 122, 775, 777
MACCO, 122, 780
Map, 548
mass
effective, 244
generalized, 243
normalization, 108, 243, 650, 677
material function, 276
material properties, 276, 668
MatID, 509
MatId, 275, 276, 297, 325
matrix
ofact, 826, 866
sparse/full, 826, 866
mdof, 278
meshing, 146
MIMO, 103
minimal model, 103,751
MMIF, 788
modal
damping, 107
input matrix, 204,210
mass, 189, 243, 735
output matrix, 204,210
participation factor, 212
scale factor, 783
stiffness, 243
Modal Scale Factor, 782
mode
acceleration method, 245
attachment, 701
complex, 210, 631
constraint, 698
displacement method, 245
expansion, 132,654
normal, 242, 650
scaling, 211, 243
model, 280
description matrix, 274
reduction, 501
multiplicity, 103,752
Multivariate Mode Indicator Function, 788
NASTRAN, 805,810
node, 139, 273
group, 273
selection, 273, 293, 528, 546
NodeId, 273
nor, 202, 816
normal, 548
normal mode
computation and normalization, 650
definition, 242
format, 202
identification, 108, 742
model, 816
residue, 107
NoT, 301
notations, 17
object
ofact, 826
sdth, 855
v-handle, 889
observation, 200
om, 202
orientation
triax, 523
orthogonality conditions, 243, 631, 650, 677
output shape matrix c, 200, 609
ParamEdit, 331
pb, 202
pentahedron, 405
PID, 273, 475
pl, 276
plate element, $394,444,447,451$
po, 801
POC, 122, 782
pole, 212, 244
formats, 801
lines, 770, 794
multiplicity, 103,751
pole residue format, 212
polynomial model format, 214
ProID, 509
ProId, 275, 277, 297, 325
property function, 277
quadrilateral, 403
Rayleigh, 205
reciprocity, 105, 211, 610, 751
reduction basis, 241,698
renderer, 516
res, 212, 840,841
residual
dynamic, 128130
high frequency, 212, 244
low frequency, 212
residue matrix, 103, 107, 204, 210, 213
rigid body modes, 245,698
rigid link, 390, 448
scalar spring, 390
scaling, 517, 751, 779
scatter, 772
segment, 401
selection
element, 296
node, 293
sensor, 168
dynamics, 748
placement, 120,703
simulate, 187
solid element, 399
sparse eigensolution, 650
ss, 209, 838
stack, 16, 281
stack entries, 281
state-space models, 209, 838, 841
static correction, 192, 212, 244, 245, 501
static flexible response, 701
structural modification, 134
subplot, 522, 762
superelement
command function, 594
tempdir, 853
test/analysis correlation, 703
tetrahedron, 404
tf, 214, 838, 844
time-delays, 748
triangle, 402
two-bay truss, 139
UFS, 870, 876
Universal File Format, 870
VectMap, 310
vector correlation, 775
view, 767, 769
wire-frame plots, $97,525,541,873$
XF, 50, 871, 890
xf, 214,890
XFdof, 51
zeta, 204, 284

[^0]: Structural Dynamics Toolbox is a registered trademark of SDTools
 OpenFEM is a registered trademark of INRIA and SDTools
 MATLAB is a registered trademark of The MathWorks, Inc.
 Other products or brand names are trademarks or registered trademarks of their respective holders.

