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1 Preface

1.1 Key areas

This section is intended for people who don’t want to read the manual. It summarizes what you
should know before going through the SDT demos to really get started.

You can find a primer for beginners at http://www.sdtools.com/help/primer.pdf.

Self contained code examples are distributed throughout the manual. Additional demonstration
scripts can be found in the sdt/sdtdemos directory which for a proper installation should be in your
Matlab path. If not, use sdtcheck path to fix your path.

The MATLAB doc command no longer supports non MathWorks toolboxes, documentation access
is thus now obtained with sdtweb FunctionName.

The SDT provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification (data acquisition
and signal processing, followed parametric identification) with information about the spatial position
of multiple sensors and actuators.

An experimental modal analysis project can be decomposed in following steps

• before the test, preparation and design (see section 2.7 )

• acquisition of test data, import into the SDT, direct exploitation of measurements (visualization,
operational deflection shapes, ...) (see section 2.1 )

• identification of modal properties from test data (see section 2.2 )

• handling of MIMO tests and other model transformations (output of identified models to state-
space, normal mode, ... formats, taking reciprocity into account, ...) (see section 2.8 )

The series of gart.. demos cover a great part of the typical uses of the SDT. These demos are
based on the test article used by the GARTEUR Structures & Materials Action Group 19 which
organized a Round Robin exercise where 12 European laboratories tested a single structure between
1995 and 1997.
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Figure 1.1: GARTEUR structure.

• gartfe builds the finite element model using the femesh pre-processor

• gartte shows how to prepare the visualization of test results and perform basic correlation

• gartid does the identification on a real data set

• d cor(’TutoSensPlace’) discusses sensor/shaker placement

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation for modal
tests. Chapter 3 addresses topology correlation, test preparation, correlation criteria, modeshape
expansion, and structural dynamic modification. Details on the complete range of sensor definitions
supported by SDT can be found in 4.6. Indications on how to use SDT for model updating are
given in section 6.5 .

• gartco shows how to use fe sens and fe exp to perform modeshape expansion and more
advanced correlation

• gartup shows how the upcom interface can be used to further correlate/update the model
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1 Preface

Area 3: Basic finite element analysis

Chapter 4 gives a tutorial on FEM modeling in SDT. Developer information is given in chapter 7.
Available elements are listed in chapter 9.

A good part of the finite element analysis capabilities of the SDT are developed as part of the
OpenFEM project. OpenFEM is typically meant for developers willing to invest in a stiff learning
curve but needing an Open Source environment. SDT provides an integrated and optimized access
to OpenFEM and extends the library with

• solvers for structural dynamics problems (eigenvalue (fe eig), component mode synthesis
(section 6.3 ), state-space model building (fe2ss), ... (see fe simul);

• solvers capable of handling large problems more efficiently than Matlab;

• a complete set of tools for graphical pre/post-processing in an object oriented environment
(see section 4.4 );

• high level handling of FEM solutions using cases;

• interface with other finite element codes through the FEMLink extension to SDT.

Area 4: Advanced FE analysis (model reduction, component mode synthesis,
families of models)

Advanced model reduction methods are one of the key applications of SDT. To learn more about
model reduction in structural dynamics read section 6.2 . Typical applications are treated in sec-
tion 6.3 .

Finally, as shown in section 6.4 , the SDT supports many tools necessary for finite element model
updating.

1.2 Key notions in SDT architecture

functions, commands

To limit the number of functions SDT heavily relies on the use of string commands. Functions group
related commands (feutil for mesh manipulation, iiplot for curve visualization, ...). Within each
functions commands (for example iicom ImWrite), are listed with their options.
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command string and structure options (CAM,Cam,RO)

Most SDT functions accept inputs of the form function(’command’,data, ...).

Command options can be specified within the command (parsed from the string). iicom(’ch+5’)
is thus parsed to ask for a step of +5 channels. See commode for conventions linked to parsed
commands (case insensitive, ...).

When reading SDT source code, look for the CAM (original command) and Cam (lower case version
of the command). Section 7.17 gives more details on SDT coding style.

While command parsing is very often convenient, it many become difficult to use in graphical user
interfaces or when to many options are required. SDT thus typically supports a mechanism to
provide options using either commands options, or option values as a data structure typically called
RO (for Run Options but any variable name is acceptable). Support for both string and structure
options is documented and is being generalized to many commands.

% Equivalent command an structure calls

figure(1);plot(sin(1:10));title(’Test’);legend(’sin’);

cd(sdtdef(’tempdir’)); % Use SDT temp dir

% Give options in string

comgui(’ImWrite -NoCrop Test.png’)

% Give options as structure (here allows dynamic generation of title)

RO=struct(’NoCrop’,1,’FileName’,{{pwd,’@Title’,’@legend’,’.png’}});
comgui(’ImWrite’,RO);

structures used for typical data

The SDT supports a number of data structures used to store common structures. The main struc-
tures are

• model for FEM models and wire frame displays

• def for responses at DOF

• curve for multi-dimensional data

• sens sensor definition, see section 4.6.3 .
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Stack

When extensible and possibly large lists of mixed data are needed, SDT uses .Stack fields which
are N by 3 cell arrays with each row of the form {’type’,’name’,val}. The purpose of these cell
arrays is to deal with unordered sets of data entries which can be classified by type and name.

stack get, stack set and stack rm are low level functions used to get/set/remove single or multiple
entries from stacks.

Higher level pointer access to stacks stored in iiplot (curve stacks) and feplot (model and case
stacks) are described in section 2.1.2 and section 4.5.3 .

GUI Graphical User Interfaces

GUI functions automatically generate views of data and associated parameters. The main GUI in
SDT are

• iiplot and the associated iicom (commands to edit plots) to view frequency and time re-
sponses defined at multiple channels.

• feplot and the associated fecom (commands to edit plots) to view 3D FEM and test meshes
and responses.

• idcom for experimental modal analysis.

• ii mac for test/analysis correlation.

• sdtroot for project handling, parameter editing.

Graphically supported operations (interactions between the user and plots/ menus/mouse move-
ments/key pressed) are documented under iimouse.

The policy of the GUI layer is to let the user free to perform his own operations at any point.
Significant efforts are made to ensure that this does not conflict with the continued use of GUI
functions. But it is accepted that it may exceptionally do so, since command line and script access
is a key to the flexibility of SDT. In most such cases, clearing the figure (using clf) or in the worst
case closing it (use close or delete) and replotting will solve the problem.

pointers (and global variables)

Common data is preferably stored in the userdata of graphical objects. SDT provides two object
types to ease the use of userdata for information that the user is likely to modify
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• SDT handle objects implement methods used to access data in the feplot figure (see sec-
tion 4.4.3 ), the iiplot figure (see section 2.1.2 ), or the ii mac menu.

• v handle to allow editing of user data of any userdata.

For example in a feplot figure, cf=feplot(5) retrieves the SDT handle object associated with the
figure, while cf.mdl is a SDT handle method that retrieves the v handle object where the model
data structure is stored.

global variables are no longer used by SDT, since that can easily be source of errors. The only
exceptions are upcom which will use the global variable Up if a model is not provided as argument and
the femesh user interface for finite element mesh handling (feutilimplements the same commands
without use of global variables), which uses the global variables shown below

FEnode main set of nodes (also used by feplot)
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

By default, femesh automatically use base workspace definitions of the standard global variables:
base workspace variables with the correct name are transformed to global variables even if you
did not dot it initially. When using the standard global variables within functions, you should
always declare them as global at the beginning of your function. If you don’t declare them as global
modifications that you perform will not be taken into account, unless you call femesh, ... from your
function which will declare the variables as global there too. The only thing that you should avoid is
to use clear and not clear global within a function and then reinitialize the variable to something
non-zero. In such cases the global variable is used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual
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courier blue monospace font : Matlab function names, variables
feplot light blue monospace font: SDT function names
command pink : strings and SDT Commands

var italic pink: part of command strings that have to be replaced by their value
% comment green: comments in script examples
Italics Matlab Toolbox names, mathematical notations, and new terms when they are

defined
Bold key names, menu names and items
Small print comments
(1,2) the element of indices 1, 2 of a matrix
(1,:) the first row of a matrix
(1,3:end) elements 3 to whatever is consistent of the first row of a matrix

Programming rules are detailed under section 7.17 . Conventions used to specify string commands
used by user interface functions are detailed under commode.

Usual abbreviations are

CMS Component Mode Synthesis (see section 6.3.3 )
COMAC Coordinate Modal Assurance Criterion (see ii mac)
DOF,DOFs degree(s) of freedom (see section 7.5 )
FE finite element
MAC Modal Assurance Criterion (see ii mac)
MMIF Multivariate Mode Indicator Function (see ii mmif)
POC Pseudo-orthogonality check (see ii mac)

For mathematical notations, an effort was made to comply with the notations of the International
Modal Analysis Conference (IMAC) which can be found in Ref. [1]. In particular one has
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[ ],{ } matrix, vector
¯ conjugate
[b] input shape matrix for model with N DOFs and NA inputs (see section 5.1 ).{

φTj b
}
,
{
ψTj b

}
modal input matrix of the jth normal / complex mode

[c] sensor output shape matrix, model with N DOFs and NS outputs (see sec-
tion 5.1 ). {cφj} , {cψj} modal output matrix of the jth normal / complex mode

[E]NS×NA correction matrix for high frequency modes (see section 5.6 )
[F ]NS×NA correction matrix for low frequency modes (see section 5.6 )
M,C,K mass, damping and stiffness matrices
N,NM numbers of degrees of freedom, modes
NS,NA numbers of sensors, actuators
{p}NM×1 principal coordinate (degree of freedom of a normal mode model) (see section 5.2

)
{q}N×1 degree of freedom of a finite element model
s Laplace variable (s = iω for the Fourier transform)

[Rj ] = {cψj}
{
ψTj b

}
residue matrix of the jth complex mode (see section 5.6 )

[Tj ] = {cφj}
{
φTj b

}
residue matrix of the jth normal mode (used for proportionally

damped models) (see section 5.6 )
{u(s)}NA×1 inputs (coefficients describing the time/frequency content of applied forces)
{y(s)}NS×1 outputs (measurements, displacements, strains, stresses, etc.)
[Z(s)] dynamic stiffness matrix (equal to

[
Ms2 + Cs+K

]
)

[α(s)] dynamic compliance matrix (force to displacement transfer function)
p, α design parameters of a FE model (see section 6.4.2 )
∆M,∆C,∆K additive modifications of the mass, damping and stiffness matrices (see sec-

tion 6.4.2 )
[Γ] non-diagonal modal damping matrix (see section 5.3 )
λj complex pole (see section 5.5 )
[φ]N×NM real or normal modes of the undamped system(NM ≤ N)[
\Ω2

\
]

modal stiffness (diagonal matrix of modal frequencies squared) matrices (see
section 5.2 )

[θ]N×NM NM complex modes of a first order symmetric structural model (see section 5.5
)

[ψ]N×NM NM complex modes of damped structural model (see section 5.5 )

1.4 Other toolboxes from SDTools

SDTools also develops other modules that are distributed under different licensing schemes. These
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modules are often much less documented and address specialized themes, so that only a technical
discussion of what you are trying to achieve will let us answer the question of whether the module
is useful for you.

• Viscoelastic tools : an SDT extension for the analysis and design of viscoelastic damping. Beta
documentation at http://www.sdtools.com/help/visc.pdf.

• Rotor tools : an SDT extension for rotor dynamics and cyclic symmetry. Beta documentation
at http://www.sdtools.com/help/rotor.pdf.

• Contact tools : an SDT extension for contact/friction handling (generation observation ma-
trices, tangent coupling matrices, various post-treatments). Beta documentation at http:

//www.sdtools.com/help/contactm.pdf.

• non linear vibration tools : an SDT extension for non-linear vibration and in particular time
and frequency domain simulation of problems with contact and friction.

• OSCAR : a module for the study of pantograph/catenary interaction developed with SNCF.

Selected cross references to these other modules are listed here.

• fevisco Range this command is part of the viscoelastic tools.

• fe2xf this function is part of the viscoelastic tools.

• fe cyclicb ShaftEig this command is part of the rotor tools.

• Follow is part of the contact and rotor tools. nl spring is the generic implementation of time
domain non-linearities in SDT.

• ExtEqhttp://www.sdtools.com/help/eq_dyn.html#eq*ce_shell

• ExtEqhttp://www.sdtools.com/help/eq_dyn.html#eq*pze_c

• ExtEqhttp://www.sdtools.com/help/eq_dyn.html#Electrode

1.5 Licensing utilities
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1.5.1 Node locked licenses

For a node locked license. To obtain license information, download https://www.sdtools.com/

distrib/RLMmex.zip.

• For windows, save the mex file in sdt/804/sdtrlm.mexw64.

• For Linux, save the mex file in sdt/7.5/sdtrlm.mexw64

• To obtain configuration information for license generation, at the MATLAB prompt use

which sdtrlm % to check the mex is visible (possibly rehash toolboxreset may be needed)

sdtrlm hostid

• Send the associated information by email to request@sdtools.com, so that we can generate a
license sdt.lic file. This will need to be saved in your MATLAB prefdir or in the directory
where the sdtrml mex is located.

• You will need to restart MATLAB to access your license.

1.5.2 Floating licenses

Floating SDT licenses can use the RLM license manager. To install the server, download https:

//www.sdtools.com/distrib/RLM.zip.

• For windows, save the RLM.zip/win64 directory to the target location of your server and start
a shell (cmd.exe)

• For Linux, save the RLM.zip/glnxa64 directory to the target location of your server and start
a shell.

• Obtain configuration information for the license generation (note the second line will fail if you
do not yet have a RLM server on that machine).

cd MyServerLocation

rlmutil rlmhostid

rlmutil rlmstat

• Send the associated information by email, so that we can generate a license sdt.lic file for
your license server.
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1 Preface

• Once you have received the sdt.lic file and placed it in the server directory where you will
also find the sdt.set file. You can start the server using

cd MyServerLocation

rlm > outputfile

rlmutil rlmhostid

Note that you should NEVER run the RLM server as a priviledged user (root on unix or
administrator on Windows). You can also find more administration help at http://www.

reprisesoftware.com/RLM_License_Administration.pdf. In particular, the
-install service option is useful for windows, and boot time init is described for Linux.

On the client side (local copies of SDT), you will need to follow the procedure for SDT installation at
https://www.sdtools.com/faq/Release.html, you must in particular provide the license request
of the first installation matchine (further copies can then later be made as detailed below) and check
that your SDT

• has the sdtrlm mex file. Use which sdtrlm to verify where this is located.

• have a license file sdt.lic located in the MATLAB preference directory (prefdir).
sdtkey(’licfile’) returns the currently used location.

• That the license file is correct. Typically when a license server is used, the file only contains
two lines HOST specifying the server name and port, ISV sdt specifying the use of an SDT
server. The port specification on the second line may be necessary in configurations with
firewalls but may be deleted otherwise.

# type(fullfile(prefdir,’sdt.lic’)) % for display in MATLAB

HOST NameOfServer ANY 5053

ISV sdt port=50175

• To check the status of licenses used in your current MATLAB session use the following and
possibly send the result to SDTools for diagnostic

sdtcheck(’rlm’)

• For details on the server status sdtcheck(’rlmstat’).

• Please note that for multiple installations, you simply need to use a network location (windows
: windows server or Linux server with SAMBA, linux: NFS mount or equivalent) or copy the
full SDT directory and possibly the license file sdt.lic to the user preference directory using

copyfile(which(’sdt.lic’),prefdir);
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1.6 Release notes for SDT and FEMLink 7.1

1.6.1 Key features

SDT 7.1 is the only version fully compatible with MATLAB 9.4 (2018b) to 9.6 (2019a) mostly due
to changes in the representation of complex numbers in MATLAB. Key changes of this release are

• A continued effort in making the experimental modal analysis part of SDT section 2.2 fully
accessible without any script is nearly complete. Functions however obviously remain accessible
from the command line to users will to learn how to use them. The associated docks Id (for
experimental modal analysis see section 2.2 ), CoTopo (topology correlation see section 3.1 ) and
CoShape (test/FEM correlation see section 3.2 ) have been extended and tutorials have been
introduced.

• A major effort was put on the documentation. The new structuration of demos into tutori-
als helps training. You can for example see tutorials in various files with d mesh(’tuto’),

gartid(’tuto’), d cor(’tuto’), d cms(’tuto’), .... Equations are now shown as SVG files
which improves readabily, but may pose problems on some older versions of MATLAB where the
help browser does not support SVG.

• We are still working with the MathWorks on improving reliability of the help browser. To
bypass some bugs, you may have to change default location where the help is shown using
sdtdef(’browser-SetPref’,’-helpbrowser’) or sdtdef(’browser-SetPref’,’-webbrowser’).
For clickable areas of SVG figures, use Ctrl-Click to open in a new window or right-click and select
Open in a new tab.

Outside improved robustness of the femlink GUI, key changes for FEMLink are

• ans2sdt extended BDF reading in particular for orthotropic materials and substructure export (to
ease superelement import). Job submission integration is now supported as a consulting project
feature.

• nasread compatibility with NX Nastran BGSET and BSURFS cards. Documentation of superele-
ment (see d cms(’TutoNasCb’)). Performance of MAT9 and set reading.

• abaqus significant .inp reading improvements *distribution,*hyperelastic, set handling, ...
Performance of large .fil reading. Robustness and performance enhancements of resolve com-
mands. Introduction of a .dat reading framework for customer use, with complex modes output
reading support.

For Matlab compatibility see section 1.6.3 .

23



1 Preface

1.6.2 Detail by function

comgui improved robustness and performance of Java interfaces, dock handling,
menu generation mechanism associated with OsDic.

demosdt Tutorials underwent a major rewrite. d cms now documents direct NASTRAN su-
perelement import.

fe2ss extended and improved documentation of damping handling strategies.
fecom robustness of Show commands. In particular, ShowFi... now allows custom inits and

is automatically added to the context menu.
fesuper improvement of SE definition strategies with SEAdd, improved support of p super

definitions with SEinitCoef, and assembly calls with MatTyp -1 and -2. New com-
mand SeDofShow to display selected superelement active DOF on a full FE model in
feplot.

feutil Notable performance and generality improvements in the handling of sets. Support
of pyra elements.
Support of regular expression on sename searches selet eltname SE:#se[0-9]*,
introduction of exclusion type in node and element selection operations. New oper-
ator &~ to subtract a selection from a current result. Introduction of element set
exclusion using :exclude token following setname. Introduction of element selection
type safesetname that returns empty elements instead of an exception. Support of
setnames in double quotes for robust handling of setnames with special characters
and spaces.

fe caseg Introduction of high level parametrization procedures for isotropic materials, any
structural element and superelement, with command series Par*

fe cyclic improved support for multi-dimensional periodicity. This can be used with the
support/fe homo.m file which SDTools provides for free but with no support guar-
antee.

fe eig continued performance enhancements associated with memory management tech-
niques, introduction of an Out-Of-Core modal basis storage support for method 5
(Lanczos).

fe exp MDRE expansion has been significantly enhanced and an initial version of an expan-
sion tab is now provided.

fe gmsh introduced support for the new GMSH 4.0 format.
fe mat Improved robustness of unit conversion commands.
fe mpc Extended Rbe3 and CleanUsed commands.
fe norm major performance improvement of MSeq procedure. Introduction of an option to

force vector collinearity tolerance estimation in the normalization procedure.
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fe range Introduction of a Genetic algorithm framework with command GeneLoop. Introduc-
tion of an output data handling command Res that allows extracting and/or reformat-
ting output data. Improvement of data sampler object getXFslice and introduction
of an interpolation mode for coarse gridded data.

fe reduc continued performance enhancements associated with memory management tech-
niques.

fe shapeoptim partially supported function for mesh morphing field projection is now included
in the distribution.

fe stress Extended CritFcn calls, support of piezoelectric volumes, and export of weighted
volumes associated with Gauss points in the .wjdet field.

mex all SDT mex files now properly support the new complex number storage of MATLAB.
idcom major improvement of band selection and pole extraction in stabilization diagrams.

Improved dock functionality, performance and robustness. Menus for data manip-
ulation (permute IO, SvdCur, ...) are introduced. Keyboard interaction has been
improved.
performance and robustness of the Channel tab has been improved.

id rc improvements of signal utilities dbsdt, filter, rms, a weights

iicom improved file and dock reloading. Improved robustness of linked plots (magni-
tude/phase), keyboard interactions, java interaction.

ii mac the dockCoShape was notably extended and documented.
m piezo see sdtweb(’pz new’) for specific release notes.
moldflow This FEMLink function provides partial support of import of models exported by

MoldFlow in Nastran, Universal and ANSYS formats.
polytec improved translation of metadata associated with measurements.
p shell Merge commands have been extended for piezo applications.
p solid Support for element by element changes of properties has been notable extended.
pyra5 a new 5 node pyramid element is supported to ease mesh refining strategies in par-

ticular with level set strategies in lsutil.
sdtcheck Utilities for sdtrootdir, rlmstat, rlm, patchfile were extended and robustified

for use in patching and demos.
sdtroot Subcommand @sfield for advanced struct manipulations is now supported.
sdtdef clear definition of preferences with session scope (by default) or permanent scope

(-setpref). Revision to alleviate preference file corruption with simultaneous
statups. New commands envSet, envWrite to allow preferences load/ in .env files
independently from the MATLAB session, compatible with deployed applications.
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sdtacx now supports section insertion in Word for easier report generation.
sdtweb tuto command provides generic support of tutorials the new base format for SDT

demos.
comstr robustness enhancements. -39 exports matlab variables to Python script. Support

of nested string parsing with ””” tokens in -25 calls.
mkl utils this mex file used to optimize time integration processes is now included in the base

SDT.
ofact sdtcheck(’’patchMkl’’’ can be used to install the Pardiso solver which now sup-

ports complex matrices and can be notably faster for solutions with few right hand
side solves. umfpack method is now properly supported for recent MATLAB.

1.6.3 Notes by MATLAB release

• Matlab 8.0 (2012b) to 9.6 (2019a). SDT & FEMLink 7.0 are developed for these versions of
Matlab and are fully compatible with them.

• For best performance, using MATLAB 9.0 (2016a) and higher is advised.

• For efficient FEM rendering, it is strongly advised to use HG2 : Matlab 8.4, R2014b and later.

• Matlab 7.14 (2012a) to 8.3 (2014a) SDT & FEMLink 7.0 are being phased out but can
be used for a number of operations. Equations are not being shown correctly in the HTML
documentation.

• Earlier Matlab releases are no longer supported.

• Matlab 8.5 has known bugs in the handling of colorbar.
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1.7 Release notes for SDT and FEMLink 7.0

1.7.1 Key features

SDT 7.0 is the only version compatible with MATLAB 9.2 (2017a), 9.3 (2017b) and 9.4 (2018b)
mostly due to ongoing improvements of MATLAB graphics. Key changes of this release are

• A full rewrite and major extension of modal analysis graphical interfaces and documentation
detailed in section 2.2 . Step-by-step tutorials, such as section 2.2.1 , include buttons of the form

which you can use to execute a step. LSCF and stabilization diagrams are now supported.

• The new notion of docks corresponds to MATLAB docks where multiple figures are combined for
a typical use. Currently supported docks are

• Id : for experimental modal analysis see section 2.2

• TestFEM : topology correlation see section 3.1

• MAC : test/FEM correlation see ii mac.

• A major update of SDT GUI with most existing tabs ported to Java mode and necessary in
docks. You can set the default tab to Java mode using sdtdef(’JavaUI’,1) or turn it off with
sdtdef(’JavaUI’,0). User documentation of tabs can be found in section 8.2 . Developer level
documentation of GUI functions is now included in section 8 .

• Use sdtweb(’feplot’,’webbrowser’) to bypass the not yet fixed MATLAB bug where the links
within pages are not called appropriately.

Key changes for FEMLink are

• ans2sdt improved import of .cdb and support of contacts.

• nasread Direct import of EXTESOUT output to SDT superelement format. Continued enhance-
ments of bulk and op2 reading. Initial support of .op2 format writting of responses.

• abaqus continued enhancements of .INP reading in particular for composites and superelements,
contact, ... Significant writing enhancements.

• GUI import of models is supported with the FEMLink tab, section 8.2.2 .

For Matlab compatibility see section 1.7.3 .
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1.7.2 Detail by function

This list is not yet complete.
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basis Clarified error for repeated BasId. New methods for multibody transformations.
cbush major rewrite of documentation and introduced support commands for non-linear

applications.
comgui comgui gui command clarifies robust opening of feplot, iiplot figures linked to

projects. Robustness in presence of mixed MATLAB/Java figures was improved.
fe case robustness enhancements in name matching. getFixDof implemented as subfunction

to allow external calls.
fe cyclic compatibility with multi-physic periodic problems was enhanced.
fe curve Improved sweep generation and many minor improvements
fe def many detail improvements on silent operation and robustness. SubResample com-

mand implements optimized resampling.
fe eig tolerance strategy was changed in solver 5 for improved convergence.
fe exp underwent a major revision allowing the use of MDRE and MDRE-WE algorithms

with the use of reduced models as well as proposing associated energy displays.
fe load Improved generality of DofSet case entries.
fe mk Improved support of orientation maps in particular for stress computations.
fe quality introduced a clean command to clean meshes in particular by straightening edges.
fe range major improvement of GUI operations and stat commands.
fe reduc Improved compatibility with parametric models, performance for large models, static

correction in poorly conditionned cases.
fe sens Major rewrite of TestBas tab section 8.2.4 and associated commands.

TdofTable now supports callbacks Distance view and SensorZoom selection.
FEMLink GUI operation is now supported.
fe stress Corrected stress computation problems in bar1 elements.
fesuper

SeRestit was enhanced for restitution of multibody results.
id rc Robustness enhancements for QualTable, see section 2.5.2
id rm new commands such as PermuteIO, ...
ii mac Significant enhancements of GUI, context menus and docked operations.
iimouse Robustness enhancements in particular for multi-figure interactivity used in docks
m elastic Continued extensions of orthotropic material support with orientation maps.
polytec Official support of Polytec file access interfacing.
p piezo Bug correction in cases with material orientation.
p beam Revised handling of 3D section views.
sdtroot Robustness enhancements for project handling and export to Word/PowerPoint.

Evolution of Java tables with MATLAB changes.
ufread Support of GUI operation.

29



1 Preface

1.7.3 Notes by MATLAB release

• Matlab 8.0 (2012b) to 9.3 (2017b). SDT & FEMLink 7.0 are developed for these versions
of Matlab and are fully compatible with them. Minor incompatibilities with 9.4 (2018a) are
associated with the new complex number handling in MATLAB and and will be fixed with
SDT 7.1.

• For best performance, using MATLAB 9.0 (2016a) and higher is advised.

• For efficient FEM rendering, it is strongly advised to use HG2 (Matlab 8.4, R2014b).

• Matlab 7.6 (2008a) to 7.14 (2012a). SDT & FEMLink 7.0 are being phased out but can be
used for a number of operations.

• Earlier Matlab releases are no longer supported.

• Matlab 8.5 has known bugs in the handling of colorbar.
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1.8 Release notes for SDT and FEMLink 6.8

1.8.1 Key features

SDT 6.8 is the only version compatible with MATLAB 8.6 (2015b) and 9.0 (2016a) mostly due to
ongoing improvements of MATLAB graphics. Key changes of this release are

• A continued upgrade for SDT GUI with additional interactive java tabs. Image generation,
described in section 8.1 , illustrates definition of projects Project for output file generation and
handling of style sheets in OsDic. The java library cinguj.jar must be on the static path (check
with sdtcheck(’PatchJavapath’)). Developer level documentation of GUI functions is now
included in section 8 .

• A major rewrite of numerical experiment handling capabilities in fe range. In particular uses as
scheduler of hierarchical parametric computations and post-processor for parametric results are
documented.

• Continued extension of file generation with capabilities to generate multiple movies
fecom AnimMovie, save the figure in multiple formats (.fig,.png, see comgui ImWrite), ...

• extensions Java based result tables with introduction of export capabilities, see comstr -17.

• continued development of the piezo manual. In particular extension of patch meshing in
sdtweb(’d piezo#MeshPlate’) and introduction of a shunt damping example (sdtweb(’shunt’))

Key changes for FEMLink are

• ans2sdt significant enhancements to CDB reading and writing with extended element and mate-
rial/section property support. Performance fixes for emat reading.

• nasread fixed problems with multiple case importing, implementation of gravity translation.
Automated writing of superelements as DMIG.

• abaqus significant robustness enhancements of .INP reading. Robustness of the BuildUp com-
mand.

• GUI in femlink

For Matlab compatibility see section 1.8.3 .
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1.8.2 Detail by function

beam1 supports the Beam1In flag to avoid use of inertia correction.
cbush fixed problems with use of node in element for local orientation definition and hys-

teretic damping computations.
comgui major extensions of the image writing capabilities. Export to Word and PowerPoint

is now included with the project definition. Movie generation with the .gif exten-
sion and multi-extension (for example .png and .fig) are now included. Improved
cropping options. Improved file name generation and interaction with projects, see
comgui PlotWd. Introduction of style sheets, see OsDic.

fe coor robustness enhancements for enforced motion problems opt(1)=4.
fe cyclic enhanced support of long and double formats used to store solutions of cyclic and

periodic systems. See also the unsupported fe homo function.
fe def

SubDef enhanced to support HDF formats and exports from fe time results. SubCh
and SubDOF extensions. CurveJoin supports definition of interpolation functions.

fe exp Major rewrite to support all expansion methods based on a reduced superelement.
fe gmsh Notable extension of job writing call to GMSH capabilities.
fe mknl Robustness of map merging.
fe range Major extension of GUI for visualization of experiments and the command loop for

manipulating hierarchical computations.
fe reduc Minor robustness enhancements and introduction of a Free float=2 option where

loads are orthogonalized with respect to known modes which improves conditioning.
fe sens Significant robustness and interactivity enhancements of GUI. Extension of fe sens

tdofTable.
fe simul GUI for mode computations.
fe time Rewrite of follow timers to allow checks during time integration.
feutil

setMat "Steel" Rho=1e-9 is how accepted. Significant extensions of set manipula-
tion capabilities. Extended support of silent operation when using commands ending
with an ;. Major rewrite of Refine operations for improved performance. Fixes to
FixMpcMaster. GeomSmoothEdge places edge mid-node based on normals. Robust
operation of GetDD to recover constitutive properties. Node manipulation operators
(symmetry, shift, ...).
performance and robustness enhancements for matching and connectivity based al-
gorithms.
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fecom fecom AnimMovie supports generation of a directory of animated shapes. ColorMatId
is documented. Synchronized figures are used in ii mac. TextMatId places a label in
the middle of each material area.

fegui CritFcn provides a first documentation of criterion functions used to formalize ob-
jective functions with coloring and threshold strategies.

fesuper Robustness enhancements in SE generation, stack splitting, and handling of v handle.
id rc

QualTable sensor sets by mode and I/O pair.
id rm Added new commands: PermuteIO to ease handling of hammer tests, FlipdataSign

to handle sensors with flipped sign, Mass for low level implementation of modal mass
estimation.

idcom Rewrite of generalized mass estimation. Rewrite of menu structure.
ii mac

MacCo was extended with a ByMode option. Options .MinMAC, .Df documented for
pairing. Continued efforts in output formatting and export to Word/Excel/TeX.
ShowDock documented to obtain MAC and two deformations, PlotMacTick accessi-
ble from main menu Edit view, MacText accessible from context menu display text
values. MacError table supports navigation in modes.

ii mmif robustness enhancements vel,acc, FFT properly detects spatial and time transforms.
Stats introduced to handle typical feature extraction, MMIF ByIn/Out.

ii plp
plp supports significant extensions of line markers.

iicom Extended export to word. Notable robustness and documentation enhancements to
all comgui objSet commands.

iimouse compatibility with recent evolutions of MATLAB. Improved datatip handling.
Rewrite of context menus. Support of ViewClone for multiple feplot figures. Sub-
function LinkedCh was extended to enhance table interactivity with more table types
(Java tables in particular). Docking commands how support topology definition.

of mk improved parallel operations and compatibility with MATLAB 2016a (affects multiple
OpenFEM functions).

p beam improved support of stress computations.
p piezo Robustness enhancements in the support of multiple consitutive law formats.
p shell formulations 5x support rotation inertia for explicit time integration. SetThick can

be used to introduced variable thickness areas.
p zt implementation of a zero thickness element family used to constrain normal and

tangential displacement on possibly curved interfaces.
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sdtcheck robustness enhancements in particular for PatchJavapath which is necessary for new
GUI operations.

sdtroot has been notably extended with many new tabs, support floating tabs in GUI devel-
opment, ... Related changes affect sdt locale, sdcedit, sdt dialogs, ....

sdtweb notable extensions of support commands wd, find, ...

1.8.3 Notes by MATLAB release

• Matlab 7.14 (2012a) to 9.0 (2016a). SDT & FEMLink 6.8 are developed for these versions
of Matlab and are fully compatible with them.

• Matlab 7.6 (2008a) to 7.13 (2011b). SDT & FEMLink 6.8 are being phased out but can be
used for a number of operations.

• On Linux MATLAB 8.1 (2013a) is required.

• Earlier Matlab releases are no longer supported.

• Matlab 8.5 has known bugs in the handling of colorbar.

• Matlab 7.9 has known compatibility problems in its HDF library and should be avoided for
large FEM applications using sdthdf.
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1.9 Release notes for SDT and FEMLink 6.7

1.9.1 Key features

SDT 6.7 is the only version compatible with MATLAB 8.4 (2014b) and later. Key changes of this
release are

• A major revision of all the SDT interfaces for compatibility with the new graphical system of
MATLAB 8.4 (2014b).

• Major extensions legend/filename generation capabilities, see comgui.

• Significant enhancement of documentation with more readable links to be reused in sdtweb calls.

• introduction of more readable Java based results tables in many functions.

Key changes for FEMLink are

• ans2sdt major extension of CDB reading capabilities and bug fixes associated to changes in
MATLAB R2013a behavior and 64 bit pointers in newer ANSYS versions. Reading of mapping
is now supported. Reading of stresses and other ESL output in .rst files.

• nasread better handling of CROD cases that correspond to bar1. Support of rectangular DMIG
writing. Enhanced PBEAM,PROD translation.

• abaqus more consistent reading of steps the BuildCase command allows setting-up the case
relative to a desired step. Revision of the resolve command to enhance handling of node and
element sets in general cases (compatibility with assembly of part instances). Translation of
contact (for the *CONTACT PAIR command) to the contact module or SDT/NL, see section 1.4 ,
is now supported for most classical rules. *Orientation properly translated into pro.MAP.

• samcef improved multiple files with INPUT cards. Detailed improvement of .AEL, .FRA, .MCT,

.STI, ...

For Matlab compatibility see section 1.9.3 .
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1.9.2 Detail by function

comgui major revision of image (ImWrite), filename (ImFtitle) and legend (def.Legend)
generation utilities.
Major extensions of the grouped object setting objSet commands used by SDT for
figure and object formatting. Name generation extended and properly documented
in objString

Export of java tables to LaTeX/csv/text formats.
cinguj major rewrite of the JAVA based GUI part of the toolbox with many bug fixes. A

static javapath is now desired and fixed with sdtcheck(’PatchJavaPath’).
fe2ss introduced -cpx command option for complex mode state-space support where hys-

teretic damping models can be used. This complements the alternative -loss2C.
fe2ss SysDef now support restitution of enforced displacement.

feplot significant extensions of colormaps. Full rewrite of fecom AnimMovie.
feutil extended support for non OpenFEM face numbering schemes. OptimDegen trans-

forms degenerate elements to their lower node number counterpart. Extended support
of silent mode with ; at end of command.

feutilb provides commands CombineModel and SubModel to support combination of models
or extraction of submodels with clean handling of Stack, Mat/Pro, Case entries.

fe case more robust handling of hysteretic damping assembly for interpolated materials. In-
troduced fe case SetCurve commands to easier handling of time/frequency varying
loads.

fe ceig first order correction is now supported with CeigMethod=2.
fe cyclic support of inertial loading on partial model.
fe eig

GenMass command generates table of generalized masses.
fe exp major rewrite of function and documentation to support newer data structures and

optimize performance.
fe load improved support of DofLoad.
fe mat robustness of unit handling, extensions of material law interpolation.
fe mpc

FixDofBas2mpc supports transform of local basis FixDof to MPC entries.
DofSetMerge combines multiple DOFSet into one, which is the only case supported
by most solvers.

fe sens
tdofTable handling of sensor definitions as tables has been further documented and
robustified.
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fe range significantly extend commands previously in fe def(’range’) for DOE handling.
fe simul extended support of damping and enforced input (DofSet) entries in direct frequency

response.
fe time support for enforced displacement with DOFSet entries has been introduced.
fe time significant extensions and performance enhancements for explicit solvers.
fe mknl optimized support for node numbers above 2e9. Robustness and documentation ex-

tensions for pro.MAP.
fe stress computation of Von Mises stress is now compiled.
iicom significant extension of support for 2D plots (contour, image, ...). Robustness and

documentation improvements of multiple image generation ImWrite.
iimouse major rewrite for R2014b compatibility, interactivity with java tables (comstr -17).

Support of docking and datatip interactivity. Additional keyboard callbacks (press ?
in iiplot or feplot).

id rc enhanced support of error and quality indicators of identification quality.
id rm robustness and GUI enhancements.
ii mac significant GUI rewrite in particular for table generation.
ii mmif robustness enhancements for signal processing capabilities.
ii plp major extensions of Legend, TickFcn, introduction of new ColorMap

m piezo support for a database of commercial piezo patches has been introduced. Materials
have been added and properties corrected.

nor2ss fixed compatibility issues with the Control Toolbox and Simulink. Improved warnings.
p piezo introduced new Tab commands to display model and material properties in a easily

readable forms.
p solid improved support of anisotropic materials and composite shell.
res2ss notable rewrite and fixed compatibility issues with the Control Toolbox and Simulink.
sdtweb significant robustness enhancements. Improved TagList. Introduction of find

command for file search.
setlines improved compatibility with comgui objSet.
ufread,ufwriteimproved compatibility LMS-Testlab and performance enhancements.
cbush,celas improved support for gyroscopic matrices and loss factor.

1.9.3 Notes by MATLAB release

• Matlab 7.6 (2008a) to 8.5 (2015a). SDT & FEMLink 6.7 are developed for these versions of
Matlab and are fully compatible with them.

• Matlab 7.9 has known compatibility problems in its HDF library and should be avoided for
large FEM applications using sdthdf.
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• Earlier Matlab releases are no longer supported.
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An experimental modal analysis project can be decomposed in following steps

• before the test, preparation and design (see section 2.7 )

• after data acquisition, import into the SDT (see section 2.2 )

• navigation through data in the iiplot figure (see section 2.1 )

• identification procedure :

• initialize the pole list (see section 2.3 )

• setup the identification options (see section 2.4 )

• identify the pole residues and evaluate the identification quality (see section 2.5 )

• optimize poles to improve the identification quality (see section 2.6 )

• handling of MIMO tests and other model transformations (output of identified models to state-
space, normal mode, ... formats, taking reciprocity into account, ...) (see section 2.8 )
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Prepare test
Section 2.7

Measurement
Load data
Section 2.2

Navigate through data
Section 2.1

List of poles
Section 2.3

Identification options
Section 2.4

Residue estimation
Section 2.5

Identification quality
Section 2.5.2

Optimize
Section 2.6

Impose constraints
Section 2.8

Figure 2.1: Modal test protocol with links to corresponding sections

Further steps (test/analysis correlation, shape expansion, structural dynamics modification) are
discussed in chapter section 3 .

2.1 iiplot figure tutorial

iiplot is the response viewer used by SDT. It is essential for the identification procedures but can
also be used to visualize FEM simulation results.

As detailed in section 2.2 , identification problems should be solved using the standard commands
for identification provided in idcom while running the iiplot interface for data visualization. To
perform an identification correctly, you need to have some familiarity with the interface and in
particular with the iicom commands that let you modify what you display.
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2.1.1 The main figure

For simple data viewing you can open an iiplot figure using ci=iiplot (or ci=iiplot(2) to specify
a figure number). For identification routines you should use ci=idcom (standard datasets are then
used see section 2.2 ).

To familiarize yourself with the iiplot interface, run demosdt(’demogartidpro’). Which opens
the iiplot figure and the associated iiplot(2) properties figure whose tabs are detailed in the
following sections.

Figure 2.2: Display figure of the iiplot interface.
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Toolbar

Toggles the display or not of the iiplot property figure.

Previous channel/deformation, see iicom ch+.

Next channel/deformation.

Fixed zoom on FRF, see iicom wmin. Note that the variable zoom (drag box)
is always active, see iimouse zoom.

Start cursor, see iimouse Cursor.

Refresh the displayed axes.

No subplot. See iicom Sub[1,1].

2 subplots. See iicom Sub[2,1].

Amplitude and phase subplots. See iicom Submagpha.

switch lin/log scale for x axis. See iicom xlin.

switch lin/log scale for y axis. See iicom ylog.

switch lin/log scale for z axis. See iicom xlog.

Show absolute value. See iicom Showabs.

Show phase. See iicom Showpha.
Show real part. See iicom Showrea.
Show imaginary part. See iicom Showima.
Show real and imaginary part. See iicom Showr&i.

Show Nyquist diagram. See iicom Shownyq.

Show unwrapped phase. See iicom Showphu.

Snapshot. See iicom ImWrite

Mouse operation and keyboard shortcuts

Mouse and keypress operations are handled by iimouse within iiplot, feplot, and ii mac figures.
For a list of active keys press ? in the current figure.

Drag your mouse on the plot to select a region of interest and see how you directly zoom to this
region. Double click on the same plot to go back to the initial zoom. On some platforms the double
click is sensitive to speed and you may need to type the i key with the axis of interest active. An
axis becomes active when you click on it.

Open the ContextMenu associated with any axis (click anywhere in the axis using the right mouse
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button), select Cursor, and see how you have a vertical cursor giving information about data in the
axis. To stop the cursor use a right click or press the c key. Note how the left click gives you detailed
information on the current point or the left click history. In iiplot you can for example use that
to measure distances.

Click on pole lines (vertical dotted lines) and FRFs and see how additional information on what you
just clicked on is given. You can hide the info area by clicking on it.

Context menus

The axes ContextMenu (click on the axis using the right mouse button) lets you select , set axes
title options, set pole line defaults, ...

• Cursor tracks mouse movements and displays information about pointed object. For ODS
cursor see iicom ods.

• Show chooses what to display.

• Compute... [MMIF,CMIF...] chooses what to compute and display. The iicom(’show

[MMIF,CMIF...]’) command line is similar. Details on what can be computed are given in
ii mmif.

• Variables in current axis... chooses which variable to display, see iicom IIx.

• iiplot properties, same as iicom(’pro’), opens the property figure.

• Scale...[x lin, x log...] chooses the axis scale as the. See iicom xlin or use
iimouse(’axisscale[xlin,xlog...]’) commands.

• TitOpt chooses the title, axis and legend labels-format.

• PoleLine pole line selection.

• Views... chooses the views, see iimouse view.

• colorbar shows the colorbar and is equivalent to cingui(’ColorBarMenu’) command line.

• Zoom reset is the same as the iimouse(’resetvie’) command line to reset the zoom.

• setlines calls the associated function.

The line ContextMenu lets you can set line type, width, color ...

The title/label ContextMenu lets you move, delete, edit ... the text
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2 Modal test tutorial

After running through these steps, you should master the basics of the iiplot interface. To learn
more, you should take time to see which commands are available by reading the Reference sections
for iicom (general list of commands for plot manipulations), iimouse (mouse and key press support
for SDT and non SDT figures), iiplot (standard plots derived from FRFs and test results that are
supported).

2.1.2 The curve stack

iiplot considers data sets in the following format

• Response data related to UFF58 format

• Curves generated by SDT

• Shapes at DOFs related to UFF55 format

This data is stored in iiplot figures as a Stack field (a cell array with the first column giving
’curve’ type entries, the second giving a name for each dataset and the last containing the data,
see stack get). To allow easier access to the data, SDT handle objects are used. Thus the following
calls are equivalent ways to get access to the data

ci=iicom(’curveload’,’gartid’);

iicom(ci,’pro’);iicom(ci,’CurTab Stack’); % show stack tab

% Normal use : the figure pointer stack

ci.Stack % show content of iiplot stack

ci.Stack{’Test’} % a copy of the same data, selected by name

ci.Stack{1,3} % the same by index

% Use regular expresion (’II.*’ here) for multiple match

ci=stack_rm(ci,’curve’,’#II.*’)

% If you really insist on low level calls

gf=sdtdef(’cf’); % recover current sdth handle, number may vary

r1=get(gf,’userdata’); % object containing the data (same as ci)

s=ci.vfields.Stack.GetData % get a copy of the stack (cell array with

% type,name,data where data is stored)

s{1,3} % the first data set

% Alternative use (obsolete) : the XF stack pointer
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XF1=iicom(ci,’curvexf’);

XF1(’Test’) % still the same dataset, indexed by name

XF2=XF1.GetData; % Copy the data from the figure to variable XF2

The ci.Stack handler allows regular expression based access, as for cf.Stack. The text then begins
by the # character.

Figure 2.3: Stack tab of the iiplot interface.

The graphical representation of the stack shown in figure 2.3 lets you do a number of manipulations
witch are available trough the context menu of the list of datasets in the stack

• Compute gives access to data processing commands in ii mmif. You perform the analysis
from the command line with iicom(ci,’sum’,’Test’). The list of available post processing
functions is given by ii mmif list.

• Load lets you load more data with iicom(ci,’curveload-append’,’gartid’), replace the
current data with iicom(ci,’curveload’,’gartid’)

• Display lets you display one or more selected dataset in the iiplot figure (see corresponding
command iicom IIx).

• Save lets you save one or more dataset (see corresponding command iicom CurveSave).

• Join combines selected datasets that have comparable dimensions (see corresponding command
iicom CurveJoin).

• Cat concatenates selected datasets along time or frequency dimension (see corresponding com-
mand iicom CurveCat).
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• Remove removes selected dataset (see corresponding command iicom CurveRemove).

• NewId opens a new idcom figure with the selected dataset (see corresponding command iicom

CurveNewId).

2.1.3 Handling what you display, axes and channel tabs

iiplot lets you display multiple axes see iicom Sub. Information about each axis is show in the
axes tab.

Figure 2.4: Axes tabs of the iiplot interface.

For example open the interface with the commands below and see a few thing you can do

ci=idcom;iicom(ci,’CurveLoad sdt_id’);

ci.Stack{’curve’,’IdFrf’}=ci.Stack{’Test’}; % copy dataset

ci.Stack{’IdFrf’}.xf=ci.Stack{’Test’}.xf*2; % double amplitude

iicom(’CurTab Axes’);

• Sub Subplots : Type iicom submagpha to display a standard magnitude/phase plot. Open the
IIplot:sub commands menu and see that you could have achieved the same thing using this
pull-down menu. Note that using ci=iiplot(2); iicom(ci,’SubMagPha’) gives you control
on which figure the command applies to.
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• Show Type iicom(’;cax1;showmmi’); to display the MMIF in the lower plot. Go back to the
phase, by making axis 1 active (click on it) and selecting phase(w) in the axis type menu
(which is located just on the right of the current axis button).

• IIx select sets you want to display using iicom(’;showabs;ch1’);

iicom(’iix only’,{’Test’,’IdFrf’}). You could also achieve the same thing using the
IIplot:Variables menu.

• Note that when you print the figure, you may want to use the
comgui(’ImWrite’,’FileName.ext’) command or -noui switch so that the GUI is not printed.
It is the same command as for feplot image printing (see iicom ImWrite).

2.1.4 Channel tab usage

Once you have selected the datasets to be displayed, you can use the channel tab to scan trough the
data. Major commands you might want to know

• use the to scan trough different transfer functions. Note that you can also use the + or
- keys when a drawing axis is active.

• Go the Channel tab of the property figure (open with iicom(’InitChannel’)) and select one
more than one channel in the list. In the figure, the >10 is used to illustrate that the tab
supports channel selection. For datasets with string labels use 10*.

• Note that you can also select channels from the command line using iicom(’ch 1 5’).
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Figure 2.5: Channel tabs of the iiplot interface.

2.1.5 Handling displayed units and labels

ci=iicom(’curveload gartid’);

ci.Stack{’Test’}.yn.unit=’N’;
ci.Stack{’Test’}.yd.unit=’M’;
iicom sub

2.1.6 SDT 5 compatibility

With SDT 6, global variables are no longer used and iiplot supports display of curves in other
settings than identification.

If you have saved SDT 5 datasets into a .mat file, iicom(’CurveLoad FileName’) will place the data
into an SDT 6 stack properly. Otherwise for an operation similar to that of SDT 5, where you use
XF(1).xf rather than the new ci.Stack{’Test’}.xf, you should start iiplot in its identification
mode and obtain a pointer XF (SDT handle object) to the data sets (now stored in the figure itself)
as follows

>> ci=iicom(’curveid’);XF=iicom(ci,’curveXF’)
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XF (curve stack in figure 2) =

XF(1) : [.w 0x0, xf 0x0] ’Test’ : response (general or unknown)

XF(2) : [.w 0x0, xf 0x0] ’IdFrf’ : response (general or unknown)

XF(3) : [.w 0x0, xf 0x0] ’IIxh’ : response (general or unknown)

XF(4) : [.w 0x0, xf 0x0] ’IIxi’ : response (general or unknown)

XF(5) : [.po 0x0, res 0x0] ’IdMain’ : shape data

XF(6) : [.po 0x0, res 0x0] ’IdAlt’ : shape data

The following table lists the global variables that were used in SDT 5 and the new procedure to
access those fields which should be defined directly.

XFdof described DOFs at which the responses/shapes are defined, see .dof field for
response and shape data in the xfopt section, was a global variable pointed at
by the ci.Stack{’name’}.dof fields.

IDopt which contains options used by identification routines, see idopt) is now stored
in ci.IDopt.

IIw was a global variable pointed at by the ci.Stack{’name’}.w fields.
IIxf (main data set) was a global variable pointed at by the ci.Stack{’Test’}.xf

fields.
IIxe (identified model) was a global variable pointed at by the

ci.Stack{’IdFrf’}.xf fields.
IIxh (alternate data set) was a global variable pointed at by the

ci.Stack{’IIxh’}.xf fields.
IIxi (alternate data set) was a global variable pointed at by the

ci.Stack{’IIxi’}.xf fields.
IIpo (main pole set) was a global variable pointed at by the ci.Stack{’IdMain’}.po

fields.
IIres (main residue set) was a global variable pointed at by the

ci.Stack{’IdMain’}.res fields.
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IIpo1 (alternate pole set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.po fields.

IIres1 (alternate residue set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.res fields.

XF was a global variable pointed holding pointers to data sets (it was called a
database wrapper). The local pointer variable XF associated with a given
iiplot figure can be found using CurrentFig=2;ci=iiplot(CurrentFig);

XF=iicom(ci,’curveXF’).
The normalized datasets for use with idcom are generated using
ci=idcom;XF=iicom(ci,’curvexf’). They contain four response datasets
(XF(’Test’) to XF(’IdFrf’)) and two shape datasets (XF(’IdMain’) and
XF(’IdAlt’)).

2.1.7 iiplot for signal processing
iiplot figure lets you perform standard signal processing operations (FFT, MMIF, filtering...)

directly from the GUI. Opening iiplot properties figure, they are accessible trough the contextual
menu compute (right click on the curve list in the Stack tab). Once an operation has been performed,
its parameters can be edited in the GUI, and it can be recomputed using the Recompute button.

Following example illustrates some signal processing commands.

[mdl,def]=fe_time(’demobar10-run’); % build mdl and perform time computation

cf=feplot(2); cf.model=mdl; cf.def=def;

ci=iiplot(3);

fecom(cf,’CursorOnIiplot’) % display deformations in iiplot

% all following operations can be performed directly in the GUI:

% see the list of curves contained in iiplot figure, Stack tab:

iicom(ci,’pro’);iicom(ci,’curtab Stack’);

% compute FFT of deformations. Name of entry ’feplot(2)_def(1)’

ename=ci.Stack(:,2); ename=ename{strncmp(ename,’feplot’,5)};
ii_mmif(’FFT’,ci,ename) % compute

fname=sprintf(’fft(%s)’,ename);

iicom(ci,’curtab Stack’,fname); % show FFT options that are editable

% edit options & Recompute:

ci.Stack{fname}.Set={’fmax’,50};
iicom(ci,’curtab Stack’,fname,’Recompute’);
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% filter and display (the bandpass removes a lot of transient)

ii_mmif(’BandPass -fmin 40 -fmax 50’,ci,ename) % compute

fname=sprintf(’bandpass(%s)’,ename);

ci.Stack{fname}.Set={’fmin’,10,’fmax’,20};
iicom(ci,’curtab Stack’,fname,’Recompute’);

iicom(ci,’iix’,{ename,fname});

Figure 2.6: GUI for FFT computation

2.1.8 iiplot FAQ

This section lists various questions that were not answered elsewhere.

• How do I display a channel with an other channel in abscissa?
The low level call ci.ua.ob(1,11)=channel; defines the channel number channel of the
displayed curve as the abscissa of other channels.

ci.ua.ob(1,11)=3; % define channel 3 as abscissa

iiplot; % display the changes

set(ci.ga,’XLim’,[0 1e-3]); % redefine axis bounds

• Channel selection in multi-dimensional arrays

% sdtweb(’demosdt.m#DemoGartteCurve’) % FRF with 2 damping levels

ci=iiplot(demosdt(’demogarttecurve’))

ci.Stack{’New’}
iicom(ci,’ChAllzeta’)
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2.2 Identification of modal properties (Id dock)

Identification is the process of estimating a parametric model (poles and modeshapes) that accurately
represents measured data. The identification process is typically performed using the dock shown
below opened with iicom(’dockId’).

2.2.1 Opening and description of used data

The following procedure loads data from a .unv file but other way to open and load data are available.

• Open an empty dock iicom(’dockid’) and load data from the interface by selecting files
(see below). A list of acquisition software from which data have been successfully loaded is
described in section 2.2.3 .

• Reopen a dock previously saved in SDT format (.mat).

– For saving : in idcom figure, use File:Save, chose the data that need to be saved (all
selected by default) and then chose the saving file name.

– For reloading: execute the command iicom(’curveLoad File.mat’)

• Load data from variables in the workspace. It is then possible to load data from files directly
into variables (see section 2.2.3 , which is useful if data customization is required) or to deal
with user-built transfers (see section section 2.2.4 ) and finally pass the result to Id dock.

% Unv with wire-frame, transfer and poles

% Open empty dockid get pointer to feplot (cf) and iiplot (ci)

[ci,cf]=iicom(’dockid’);

% Build gartid.unv file the first time, then provide file name

fname=demosdt(’build gartid.unv’);
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% Data are stored into a variable to help you build custom loading procedure

UFS=ufread(fname);

wire=UFS(1); % Test wireframe

XF=UFS(2); % Transfers

ID=UFS(3); % List of modes

cf.mdl=wire; % Store the wireframe in the feplot figure

% Put transfers to iiplot figure (Transfers named test are the ones

ci.Stack{’curve’,’Test’}=XF; concerned by the current identification)

ci.Stack{’curve’,’IdMain’}=ID; % Store the poles in the iiplot figure

iicom(’iix:TestOnly’); % Equivalent to : idcom figure, tab Stack,

% right click on Test and select ’Display selected data’

When manual assignation is performed, do not forget to click on to refresh the tables (for
instance the pole list in idcom). Note that to perform identification, only the transfers are
needed: the wireframe allows visualizing the identified mode shapes and the list of poles is
helpful if previous identification has been performed.

On top of the Test and IdMain data discussed above, other useful data used throughout the iden-
tification process and stored in the iiplot Stack are

• Test contains measured frequency response functions. See section 2.2.3 ways to initialize this
data set.

• IdFrf contains the synthesis of transfers associated with given set of transfers (shown in red
in the figure above).

• IdAlt contains the alternate set of modes (poles and residues). These are listed on the left list
of the Ident tab below.

• IdMain contains the main set of modes (poles and residues). These are listed on the right list
of the Ident tab.

[ci,cf]=gartid; % Open dockid with stored data and performs identification

ci.Stack % Display list of stored data in the Stack of iiplot

Test=ci.Stack{’curve’,’Test’}; % Retrieve data from iiplot

IdFrf=ci.Stack{’curve’,’IdFrf’};
IdMain=ci.Stack{’curve’,’IdMain’};
IdAlt=ci.Stack{’curve’,’IdAlt’};

wire=cf.mdl.GetData; % GetData is used to retrieve a copy.

% Otherwise all modifications are propagated to feplot
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2 Modal test tutorial

Here is a tutorial for interactive data loading in DockId

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the adress https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the the folder SDTPath/sdtdemos.

1. Execute the command iicom(’dockid’) to open an empty dock.

The dock is divided in three parts:

• At right, the iiplot figure where are displayed all curves (measured transfers, synthesized
transfers, mode indicators...)

• At the top left hand corner, the idcom figure which is used to interact with the data in
iiplot, especially here using the Ident tab to perform the identification process

• At the bottom left hand corner, the feplot figure where the wireframe is displayed. It
lets you animate the identified modeshapes. The feplot(’mdl’) is accessible behind and
lets you visualize the information about the wireframe.
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2. The loading of .unv files can be realized from iiplot or feplot. Activate for instance the
idcom figure and select File:ImportData...

Here are the 4 possible menus in this order: iiplot, idcom, feplot and feplot(’mdl’).

In the opening window, select the file to load. For this tutorial, the file is located at SDT-
Path/sdtdemos/gartid.unv.

Once selected, the Unv tab is displayed in the idcom or the feplot(’mdl’) figure (depending
the chosen menu for ImportData.

It shows that three types of data are present in the file: a wireframe, transfers and identified
mode shapes. Select the three check boxes to load everything.

3. Click on Import (or Import in DockId which is used to build dockId if the loading is
performed in a feplot or an iiplot figure outside a dockid).
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2 Modal test tutorial

The data are loaded: transfers are shown in the iiplot figure, the wireframe in the feplot

figure and the list of poles in the tab Ident of the idcom figure.

4. Once an identification is performed, click on Save in the idcom figure.
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A windows pops-up to ask what data must be saved. Save all (by default) to set all the data
and info on the dockid in the saving file.

Close the dock. A pop-up should appear to ask if you really want to close iiplot (this is to
ensure that no data is lost if no saving has been performed), click on Close without saving.

5. To reload the saved dock, two possibilities are available:

• Execute the command iicom(’curveload filename’)

• Open an empty iiplot figure and load the saved file with File:Import Data...

2.2.2 General process

The proposed identification process is outlined below. The main steps of the methodology are

• Initial pole estimates are placed in IdAlt using advanced pole picking, LSCF (see section 2.3
) or any other algorithm outside SDT.

• A user validated list of poles is kept in IdMain. The arrows between the two list in the interface
(which correspond to the ea and er commands) can be used to move poles between the two
lists: add missed poles, remove computational or undesired poles .
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2 Modal test tutorial

• Shapes (pole/residue models, residual terms, modeshapes derived from residues) are then es-
timated for each pole given in IdMain. Several strategies exist and are more deeply explained
at section 2.5

– Broad band estimation on the whole frequency band : est command/button

– Narrow band estimation on the selected band : estlocal command/button

– Iterative local estimation around each pole : estlocalpole command/button

• Optimizing poles (and residues) of the current model depending on the quality obtained by the
previous passes. As for the estimation of shapes, there three strategies for the optimization:

– Broad band update : eup for high number of poles and eopt for up to 2-3 poles

– Narrow band update on the selected band: euplocal and eoptlocal

– Iterative local updates around each pole: eoptSeq
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Alternate set of poles
ci.Stack{’IdAlt’}
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Other algo
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• Data type : [disp, vel, acc]/Force
• Collocated measurements
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’est’,’estlocal’,’estlocalpole’
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’e’ Advanced pole picking
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• narrowband :’wmo’+’eoptlocal’
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See next section

’ea’ add ’er’ remove

Section 2.3

Section 2.4

Section 2.5Section 2.6

Section 2.8

Figure 2.7: Modal identification process with links to corresponding sections
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2 Modal test tutorial

This process is handled through the Ident tab opened with iicom(’InitIdent’) or with the inter-
face by clicking on Tab : Ident from the iiplot or idcom figure.

The main steps, associated with level 1 lines in the GUI tree are the topics of specific sections of the
documentation:

• AddPoles : use an initial algorithm to estimate poles (single pole estimator or selection in a
stabilization diagram LSCF).

• IDopt : select frequency range and possibly define properties of transfers (displacement, ve-
locity, acceleration, MIMO,...)

• Estimate shapes using a frequency domain output error method that builds a model in the
pole residue form (see section 5.6 ). Theoretical details about the underlying algorithm are
given in section 2.6.5 . Section 2.5.3 addresses its typical shortcomings.
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• Adjust poles using one of the non-linear optimization algorithms.

• Transform the output to a format dealing with MIMO constraints, reciprocity, ...

The gartid script gives real data and an identification result for the GARTEUR example. The
demo id script analyses a simple identification example.

2.2.3 Importing FRF data

SDT stores transfer functions in the Response data (.w,.xf fields) or curve (.X,.Y fields) formats.
The following table gives a partial list of systems with which the SDT has been successfully interfaced.

Vendor Procedure used
Bruel & Kjaer Export data from Pulse to the UFF and read into SDT with ufread or use

the Bridge To Matlab software and pulse2sdt.
LMS Export data from LMS CADA-X to UFF or MATLAB format.
Polytec Install the Polytec File Access library on your computer and use the

polytec function to import .svd files directly. Alternatively, export data
from PSV software to UFF.

Dactron Export data from RT-Pro software to the UFF. Use the Active-X API to
drive the Photon from Matlab see photon.

MathWorks Use Data Acquisition and Signal Processing toolboxes to estimate FRFs
and create a script to fill in SDT information (see section 2.2.3 ).

MTS Export data from IDEAS-Pro software to UFF.
Spectral Dynamics Create a Matlab script to format data from SigLab to SDT format.

• Universal files are easiest if generated by your acquisition system. Writing of an import script
defining fields used by SDT is also fairly simple and described below (you can then use ufwrite
to generate universal files for export).

The ufread and ufwrite functions allow conversions between the xf format and files in the
Universal File Format which is supported by most measurement systems. A typical call would
be

% generate gartid.unv (or retrieve file name if already generated)

fname=demosdt(’build gartid.unv’);

UFS=ufread(fname); % read the unv file

UFS % This command display in the command window the content of the file

xf=UFS(2); % Read the transfers in the file and store in the variable xf
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2 Modal test tutorial

%% Do everything needed with the data for customization if needed %%%

% For instance extract channels 1:4

xf=fe_def(’SubDofInd’,xf,1:4)

% Then pass to iiplot for view and ID purposes

ci=idcom; % For identification purposes open IDCOM

% Store transfers in ’Test’ which are transfers to be identified

ci.Stack{’curve’,’Test’}=xf;

% To only view data in figure(11) the following would be sufficient

cj=iiplot(11); % open an iiplot in figure 11

iiplot(cj,UFS(1)); % show UFS(1) there

where you read the database wrapper UFS (see xfopt), initialize the idcom figure, assign dataset
2 of UFS to dataset ’Test’ 1 of ci (assuming that dataset two represents frequency response
functions of interest).

Note that some acquisition systems write many universal files for a set of measurements (one
file per channel). This is supported by ufread with a stared file name
UFS=ufread(’FileRoot*.unv’);

• Polytec files need many options to extract data (Time/Transfers, Estimator H1/H2, Veloc-
ity/Force...). Please read the dedicated polytec documentation to adapt the example below
to your needs. Note that the code below needs Polytec File Access to be installed.

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

% Provide a cell array with all readable measured data

list=polytec(’ReadList’,fname);

display(list);

% Extract the transfer function Vib/Ref1

% with the estimator H1 Displacement/Voltage

RO=struct(’pointdomain’,’FFT’,’channel’,’Vib & Ref1’,...

’signal’,’H1 Displacement / Voltage’);

XF=polytec(’ReadSignal’,fname,RO);

% alternative call using one row of the cell array "list"

XF=polytec(’ReadSignal’,fname,struct(’list’,{list(20,:)}));

To avoid the manual filling of the reading options, it is also possible to simply load data from
the interface : follow the tutorial in section section 2.2.1 ) but select the .svd file instead of
the .unv file and do right-click+Read selected on the line you want to read. Loaded transfers
can then be stored to variables with the command ci=iiplot;xf=ci.Stack{’Test’};
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2.2.4 Write a script to build a transfer structure

When writing your own script to transcript data to xfstruct format, you must have a MATLAB

structure composed at minimum of the fields

• .w : a column vector of frequencies

• .xf : a matrix of measured frequency responses (one row per frequency, one column per
measurement channel).

Other fields may be required to specify the type of data and the type of model to use for identification.
Two main optional fields are presented here:

• .dof field can be used to specify the meaning of each transfer (input and output DOF).

This field should be set for title/legend generation (this is a label).

For correct display of shapes in feplot, the .dof may be a direct specification of direction
in simple cases where the sensors are really oriented in global axes, but in general is just a
label for the sensor orientation map stored in a sens.tdof field. See section 2.7 for details
on geometry declaration.
In the example below one considers a MIMO test with 2 inputs and 4 outputs stored as columns
of field .xf with the rows corresponding to frequencies stored in field .w. You script will look
like

ci=idcom;

[XF1,cf]=demosdt(’demo2bay xf’);% sample data and feplot pointer

out_dof=[3:6]+.02’; % output dofs for 4 sensors in y direction

in_dof=[6.02 3.01]; % input dofs for two shakers at nodes 1 and 10

out_dof=out_dof(:)*ones(1,length(in_dof));

in_dof=ones(length(out_dof),1)*in_dof(:)’;

XF1=struct(’w’,XF1.w, ... % frequencies in Hz

’xf’,XF1.xf, ... % responses (size Nw x (40))

’dof’,[out_dof(:) in_dof(:)]);

XF1=xfopt(’check’,XF1);

ci.Stack{’curve’,’Test’}=XF1; % sets data

iicom(ci,’submagpha’); % display

ci.Stack{’Test’}.idopt % field now points to ci.IDopt

ci.IDopt.nsna=size(out_dof,1); % Possibly correct number of outputs

65



2 Modal test tutorial

ci.IDopt.recip=’mimo’;ci.IDopt % Set reciprocity to mimo

cf.def=ci.Stack{’Test’}; fecom(’ch35’); % frequency of first mode

You can check these values in the iicom(’InitChannel’) tab.

• .idopt field should also be filled for correct identification using id rc,. For the main
data set called Test the .idopt field is that of the figure which is more easily accessed from
ci.IDopt. These correspond to the IDopt part of the Ident tab (see section 2.4 ). You can
also edit these values in a script. For correct identification, you should set

ci=demosdt(’demogartid’);

ci.IDopt.Residual=’3’;

ci.IDopt.DataType=’Acc’;

ci.IDopt.Absci=’Hz’;

ci.IDopt.PoleU=’Hz’;

iicom(’wmin 6 40’) % sets ci.IDopt.Selected

ci.IDopt.Fit=’Complex’;

ci.IDopt % display current options

For correct transformations using id rm, you should also verify ci.IDopt.NSNA (number of
sensors/actuators), ci.IDopt.Reciprocity and ci.IDopt.Collocated.

For correct labels using iiplot you should set the abscissa, and ordinate numerator/denominator
types in the data base wrapper. You can edit these values using the iiplot properties:channel

tab. A typical script would declare frequencies, acceleration, and force using (see list with xfopt

datatype)

UFS(2).x=’Freq’;UFS(2).yn=’Acc’;UFS(2).yd=’Load’;UFS(2).info

2.2.5 Data acquisition

The SDT does not intend to support the acquisition of test data since tight integration of acquisition
hardware and software is mandatory. A number of signal processing tools are gradually being
introduced in iiplot (see ii mmif FFT or fe curve h1h2). But the current intent is not to use
SDT as an acquisition driver. The following example generates transfers from time domain data

frame=fe_curve(’Testacq’); % 3 DOF system response

% Time vector in .X field, measurements in .Y columns

frf=fe_curve(’h1h2 1’,frame); % compute FRF

ci=iicom(’Curveid’);iicom(’curveinit’,’Test’,struct(’w’,frf.X,’xf’,frf.H1))

iicom(’SubMagPha’);

You can find theoretical information on data acquisition for modal analysis in Refs. [2][3][4][5][6].
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2.3 Pole initialization (IdAlt and IdMain filling)

The first step of the model identification (see the whole process at section section 2.2.2 ) is to build
an initial list of poles. This list can be provided from various ways:

• Using an external algorithm. The list of poles is then manually imported (section 2.3.1 )

• Using the LSCF algorithm (section 2.3.2 )

• By iteratively adding poles using a single pole estimator (section 2.3.3 )

In the GUI, algorithms linked to the pole initialization are grouped under AddPoles :

• e + .01 : Perform single pole estimation around a given frequency with damping of the order
of 1%. (section 2.3.3 )

• BandToPole : Sequential single pole estimation by band (to be implemented in further release
section 2.3.4 )

• Stab : Open the tab associated to the LSCF algorithm to build a stabilization diagram and
extract poles. The button AutoId opens this tab and automatically performs a pole extraction
with default values of the algorithm. (section 2.3.2 )

2.3.1 External pole estimation

The iteratively refined model is fully characterized by its poles (and the measured data). The
initialization of the model optimization process can thus easily be performed from any external
modal identification algorithm.

If the external software or script used to perform the identification is able to save the result in the
universal file format, simply load it like described in section section 2.2.1 .

Else, after storing the measured transfers as a curve named Test in a iiplot figure (see section 2.2.1
), add poles with the command

ci.Stack{’IdMain’}.po =[...

1.1298e+02 1.0009e-02

1.6974e+02 1.2615e-02

2.3190e+02 8.9411e-03];

% ci is the pointer to the iiplot figure containing the Test curve

67



2 Modal test tutorial

where the array contains as many lines as poles : the first column provides the pole frequencies in
Hz and the second one the pole dampings.

With the list of poles and the measured transfers, you have all you need to recreate an identified
model (even if you delete the current one, see section section 2.5 ) but it also lets you refine the
model by adding the line corresponding to a pole that you might have omitted.

2.3.2 LSCF

The LSCF algorithm is based a rational fraction description of the transfers. The interest of this
algorithm is that polynomials are expressed on the base of the z transform which deeply improves
the numerical conditioning (often problematic for high order models in the rational fraction form).
Moreover, classical stabilization diagram resulting from the identification at various model orders is
often very ”clean”: numerical modes which either compensate noise or residual terms have negative
damping and or thus easily removed from the diagram.

The following tutorial describes how to initialize the poles using the LSCF algorithm.

1. Execute the command iicom(’dockid’) to open an empty dock and load the wireframe and
the transfers contained in the file SDTPath/sdtdemos/gartid.unv (Do not load the identification
result because it will be performed in the following). See section 2.2.1 for the data loading
procedure, or just click on Run in the html version of the documentation.
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2. In the tab Ident, click on the button Stab to open the Tab StabD which allows interaction
with the stabilization diagram built with the LSCF algorithm.

The button AutoId open this StabD tab and directly performs diagram building and pole
extraction with default values of the algorithm. It is often useful for a quick evaluation.
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2 Modal test tutorial

3. The StabD tab contains options to build the stabilization diagram in the sub-list under
Generate :

• order : Maximum order of the model. The order of the model equals the number of poles
used to fit the measured data. It is often necessary to select an order significantly higher
than the expected number of physical poles in the band because the identification results
in many numerical poles which compensate out-of-band modes and noise. Selecting at
least ten times the number of expected poles often gives good results according to our
experiment.

• norder : Minimum order to start the stabilization diagram (low model orders often show
very few stabilized poles)

• fmin : Minimum frequency defining the beginning of the band of interest

• fmax : Maximum frequency defining the end of the band of interest

• band : Sequential iteration can be performed by band of the specified frequency width.
The interest is that in presence of many modes, it is more efficient to perform several
identifications by band rather than increasing the model order.

The building of a stabilization diagram with a maximum order of 100 is not very costly and
should be used for most applications. We advise then to estimate the total number of poles in
the whole band of interest (fmax-fmin), to divide this total bandwidth by this number and to
multiply the result by 5 in order to find the band width which contains in average 5 expected
modes (20 times less than the maximum model order).

In our test case, we attempt to find 12 modes in a total bandwidth of 60Hz) : set the band

parameter to 60/12*5=25 Hz.

4. Click on Generate to build the stabilization diagramm.

In the diagram, the status of the poles are marked by

• A red circle when a new poles with positive damping is found

• A yellow triangle when a consecutive poles are stable in frequency or damping

• A blue cross when consecutive poles are stable in frequency and damping for since at least
5 consecutive orders

Frequency and damping stability are defined by the parameters Ftol and Dtol under the
sub-list Display. If relative frequency or damping of poles from consecutive model orders are
below the parameter values (in %), they are considered stable.

In presence of very clean measurements of a very strictly linear system, these values could be
more restrictive. In the opposite, they should be increase for noisier data and/or in presence
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of small non-linearities. When the values of Ftol and Dtol are modified, click on Display to
refresh the diagram.

To improve the analysis of the stabilization diagram, mode estimators can be displayed on
top of it : the list of all available mode estimators at the right of DispMode (see ii mmif for
details)

The stabilization diagram displayed with the logSumI mode estimator leads to this picture.

5. To automatically extract all stabilized poles (with a blue cross at the last model order),
click on Renew at the line AutoIdMain. The button specifies ”Renew” because all current poles
in the fmin - fmax band will be deleted and replaced by the extracted ones from the diagram.

The extracted poles are displayed at the right table of the tab Ident. On the transfers, pole
locations are specified by the vertical lines.
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6. Back to the stabilization diagram, two columns are started but not stabilized around 12Hz
and 50Hz. For the column at 12Hz, the logSumI indicator shows almost no resonance. For the
column at 50Hz, the resonance is well visible but more damped than the close mode.

To evaluate the pertinence of the poles despite that they do not fully satisfy the stabilization

criteria, click on the icon and select the last order of the column.

In the StabD tab, click on Estimate at the line CurLocal. This action performs a local
estimation with the selected pole around its frequency. The channel presenting the highest
contribution for this mode is automatically selected and the synthesized transfer is superposed
to the measurement.
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The synthesized transfer does not exactly fit the measurements (which is very noisy around
this frequency) but is enough representative to be selected as initial pole prior to optimization.

7. The pole used to perform the local estimation is stored in the left table of the tab Ident

: the list of the alternate poles. Because it is representative enough to describe the mode, it
can be added to the list of main poles (the right table) by clicking on the arrow.

Do the same for the not stabilized column around 12Hz. The result is much more doubtful
because the mode is almost not visible and the measurement very noisy. More over the local
estimation does not fit very well. Nevertheless, add this pole to the main list: we will analyze
its pertinence in the following using Quality criteria and trying to optimize it.

Finally, the mode estimator on top of the stabilization diagram shows that a mode at the right of
the frequency band is probably there but not identified by the LSCF algorithm. This case can be
handled by manually adding a pole using the single pole estimator.
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2.3.3 Single pole estimate

Because getting an initial estimate of the poles of the model is the often tedious, algorithms like
LSCF or other broadband algorithms are very helpful to quickly extract most of the poles: dynamic
responses of structures typically show lightly damped resonances which are most of the time well
detected. Nevertheless, using such algorithm often leads to two issues that need to be handled:

• The poles from some modes visible in the transfer have not been extracted

• Some extracted poles do not correspond to physical modes

To deal with missing poles, the easiest way to enrich the initial estimate of the poles is to use a
narrow band single pole estimation near considered resonances of the response or minima of the
Multivariate Mode Indicator function (use iicom Showmmi and see ii mmif for a full list of mode
indicator functions).

The idcom e command (based on a call to the ii poest function) lets you to indicate a frequency
(with the mouse or by giving a frequency value) and seeks a single pole narrow band model near this
frequency (the pole is stored in ci.Stack{’IdAlt’}. Once the estimate found, the iiplot drawing
axes are updated to overlay ci.Stack{’Test’} (the measured transfers) and ci.Stack{’IdFrf’}
(the narrow band transfer synthesis).

Figure 2.8: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the information
displayed by ii poest

LinLS: 1.563e-11, LogLS 8.974e-05, nw 10

mean(relE) 0.00, scatter 0.00

Found pole at 1.1299e+02 9.9994e-03

which indicates the linear and quadratic costs in the narrow frequency band used to find the pole,
the number of points in the band, the mean relative error (norm of difference between test and model
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over norm of response which should be below 0.1), and the level of scatter (norm of real part over
norm of residues, which should be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in your current model, you can add the
estimated pole (add poles in ci.Stack{’IdAlt’} to those in ci.Stack{’IdMain’}) using the idcom
ea command (or the associated button : arrow pointing to the right). If the fit is not appropriate
you can change the number of selected points/bandwidth and/or the central frequency.

Remark : In the interface or using idcom e command, an initial guess of the damping value is
used to search for the local mode. The algorithm sometimes fails if this value is too far from the
real damping.

In rare cases where the local pole estimate does not give appropriate results you can add a pole by
just indicating its frequency (f command) or you can use the polynomial (id poly), direct system
parameter (id dspi), or any other identification algorithm to find your poles. You can also consider
the idcom find command which uses the MMIF to seek poles that are present in your data but not
in ci.Stack{’IdMain’}.

To deal with cases where you have added too many poles to your current model, use the idcom er

(or the associated button : arrow pointing to the left) command to remove certain poles.

This phase of the identification relies heavily on user involvement. You are expected to visualize the
different FRFs (use the +/- buttons/keys), check different frequency bands (zoom with the mouse
and use iicom w commands), use Bode, Nyquist, MMIF, etc. (see iicom Show commands). The
iiplot graphical user interface was designed to help you in this process and you should learn how
to use it (you can get started in section 2.1 ).

gartid % Open interface with gartid demo

idcom(’e .1 6’)

%idcom(’Est 0.1 6.0000); % does click

%LinLS: 2.110e+02, LogLS Inf, nw 63

% mean(relE) 0.03, scatter 0.16 : good

%Found pole at 6.4901e+00 8.7036e-03

Let’s go back to the previous tutorial to add the missing pole at the end of the frequency band.

If you have not performed previous tutorial (or if you closed everything at the end), click on in
the HTML version of the documentation to get ready for the following.

8. Click on the button e in the tab Ident. Then click approximatively at the location of
the resonance to start the single estimation algorithm at that frequency. Please note that,
especially in presence of very lightly damped structure, it is sometimes necessary to edit the
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value of the expected damping in the list on the right of the button e for the algorithm to find
the correct pole.

The fit is correct at the resonance: add the pole to the main list by clicking on the arrow − >

2.3.4 Band to pole estimate

A procedure allowing to add several poles by dragging the mouse to select a band for the single pole
estimator will be implemented in further release. Currently the procedure only takes the maximum
of the band and does not estimate damping.

2.3.5 Direct system parameter identification algorithm

(Obsolete) A class of identification algorithms makes a direct use of the second order parameteri-
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zation. Although the general methodology introduced in previous sections was shown to be more
efficient in general, the use of such algorithms may still be interesting for first-cut analyses. A major
drawback of second order algorithms is that they fail to consider residual terms.

The algorithm proposed in id dspi is derived from the direct system parameter identification algo-
rithm introduced in Ref. [7]. Constraining the model to have the second-order form[

−ω2I + iωCT +KT

]
{p(ω)} = [bT ] {u(ω)}

{y(ω)} = [cT ] {p(ω)} (2.1)

it clearly appears that for known [cT ], {yT }, {uT } the system matrices [CT ], [KT ], and [bT ] can be
found as solutions of a linear least-squares problem.

For a given output frequency response {yT } =xout and input frequency content {uT } =xin, id dspi

determines an optimal output shape matrix [cT ] and solves the least squares problem for [CT ], [KT ],
and [bT ]. The results are given as a state-space model of the form{

q′

q′′

}
=

[
0 I
−KT −CT

]{
q
q′

}
+

[
0
bT

]
{u(t)}

{y(t)} = [cT 0]

{
q
q′

} (2.2)

The frequency content of the input {u} has a strong influence on the results obtained with id dspi.
Quite often it is efficient to use it as a weighting, rather than using a white input (column of ones)
in which case the columns of {y} are the transfer functions.

As no conditions are imposed on the reciprocity (symmetry) of the system matrices [CT ] and [KT ]
and input/output shape matrices, the results of the algorithm are not directly related to the normal
mode models identified by the general method. Results obtained by this method are thus not directly
applicable to the prediction problems treated in section 2.8.2 .

2.3.6 Orthogonal polynomial identification algorithm

(Obsolete) Among other parameterizations used for identification purposes, polynomial representa-
tions of transfer functions (5.31) have been investigated in more detail. However for structures with
a number of lightly damped poles, numerical conditioning is often a problem. These problems are
less acute when using orthogonal polynomials as proposed in Ref. [8]. This orthogonal polynomial
method is implemented in id poly, which is meant as a flexible tool for initial analyses of frequency
response functions. This function is available as idcom poly command.

2.4 Identification options
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2 Modal test tutorial

Several options need to be defined in order to well specify the frequency domain on which data must
be identified, the type of mesured data, the model used to fit, informations on colocated measurents
and how to use them.

Identification options accessible from the Ident tab or from the command line through the pointer
ci.IDopt (see idopt for the full documentation).

Description of the buttons line by line :

• Idopt The working frequency band selection specify on which frequencies must the data be
identified.

– w0 : Resets the working frequency band to the min-max boudaries. This button is

similar to clicking on the button and double clicking on the measurements in the
iiplot window.

– wmo : Allows to specify min and max frequency by clicking two times at the minimum
and then the maximum frequency locations on the measurements in the iiplot window.

This button is similar to clicking on the button .

– bandwidth history : Each modification of the working frequency band is stored in this
history list and allows to quickly going back to previous selections.

• Fit : Several pole/residue models can be used to extract shapes from a list of identified poles,
whose complete description can be found in section section 5.6

– residue type : Specify which type of pole/residue model to use : complex mode residues
with symmetric pole structure, complex mode residues with asymmetric pole structure
or normal mode residues with symmetric pole structure.

– residual terms : To takes into account the influence of out of band modes, residual terms
should be used.

• data : Specify if the measured transfers are of type displacement/force, velocity/force or
acceleration/force

• I/O : Information on colocated measurements are needed to enforce the constraint of reci-
procity (see section 2.8.2 ) using the id rm algorithm

– nsna : Display to check if the number of sensors and actuators is correct (if it is not
correct, the .dof table defining inputs and outputs of each transfers should be verified, see
curve Response data)
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– Recip : Specify how the colocated informations should be used (see section 2.8.2 and
idopt for more details)

2.5 Estimate shapes from poles

Once a model is created (you have estimated a set of poles in IdMain), the residues need to be
computed. The classical way to do so in the litterature is to determine residues on the whole
frequency band for the synthesized FRFs stored in ci.Stack{’IdFrf’} to be as close as possible
to the measured data in the least square sense. This strategy and others using narrow bands are
detailed in section section 2.5.1 .

To analyze the quality of the identification, several criteria definined by mode and by transfer have
been developped to help navigate through the data. The quality table and its analysis are described
in section section 2.5.2 .

A non exhaustive list of classical issues using the id rc algorithm is given in section section 2.5.3 .

2.5.1 Broadband, narrowband, ... selecting the strategy

The standard estimation of residues on the whole frequency band is performed with the command
idcom est (or the equivalent button in the interface).

This method can give good results if the measurements are very clean and the system very close
to a perfectly linear system. If noise, non-linear distorsion badly identified pole is present at some
frequency bands, especially if it worresponds to high amplitudes in the transfers, fitting all modes
together on the whole frequency band can engender strong bias in the identification of residue with
low amplitude.

In this case, and if a broadband model is not necessary, it is most of the time preferable to perform
a sequential identification with a narrow band arround each mode to extract the residuals. This
is automaticaly achived using the command idcom estlocalpole (or the equivalent button in the
interface).

An alternative way to handle these problems of bias for some modes is to perform local identifications
which update residues only on a smaller working frequency band. To do so, you need to select a

close frequency band inside which the residues are poorly identified with the button and then
use the command idcom estlocal (or the equivalent button in the interface).
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2 Modal test tutorial

To highlight the differences between these strategies, the following tutorial uses the GARTEUR test
case with the initial poles identified in the previous section section 2.3 .

1. Click on the link in the HMTL version to initialize the tutorial. Else, execute the command
sdtweb(’ tuto’,’gartid’) to open the list of tutorials and execute the first step of the
tutorial Estimate.

2. In the Ident tab, click on the button est to identify the residues using the broadband
method.

For some transfers the superposition seems quite good like for the first figure whereas it is
clearly bad for many modes for some others like the second figure.

3. In the Ident tab, click on the button estLocalPole to identify the residues using the
sequential narrowband method.
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Each local identification is clearly closer to the measurements than using the broadband strat-
egy. It should be noted that residues correspond to mode shapes and that consequences on
proper identification of shapes can be important. The figure below shows the MAC between
the set of mode shapes obtained with the est versus the estLocalPole algorithms.

The two modes 3 and 5 which are very less excited (the physical meaning of these poles is
even still question for the moment) are very impacted. Modes 2 which is less excited is quite
different. Mode 10 is well visible but the pole seems badly identified as shown on the figure
below (zoom on modes 9 and 10) : the residues are differently biased to compensate in the
two strategies.
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2 Modal test tutorial

2.5.2 Qual: Estimation of pole and shape quality

The need to add/remove poles is determined by careful examination of the match between the test
data ci.Stack{’Test’} and identified model ci.Stack{’IdFrf’}. For a very small amount of data,
you could take the time to scan through different sensors, look at amplitude, phase, Nyquist, ... but
when the number of sensors and the number of modes become high, the manual scanning is too
much time consuming.

Too help navigate through a large amount of data to efficiently analyze the quality of the measure-
ments, several criteria have be defined and can be used to sort sensors by mode. In the following,
each pair of sensor/actuator corresponding to a column of the measured transfers HTest associated
to a column of the synthesized transfers Hid will be indexed by c.

A perfect identification is obtained if measured and synthesized transfers are perfectly superposed.
Because the contribution of a mode is characterized by the fact that its amplitude is maximum
around the resonance frequency, a classical method to analyze the quality of the fit is to compare
the measurement and the identification around each mode. We thus define the identification error
for a mode j and input/output pair c by

ej,c =

∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)−Hid,c(s)|2∫ ωj(1+αζj)

ωj(1−αζj) |Hid,c(s)|2
(2.3)

with ωj the modal frequency and ζj the modal damping. α is a scale factor of the frequency
bandwidth, with α = 1 corresponding to the classical bandwidth at -3dB and α = 5, a pertinent
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value used here. This error criterion can be seen as a numerical evaluation of the quality of the
historical ”circle fit” method. The figure 2.9 shows a simple case on the mode at 4050Hz. On the
left, the measurement in blue line is noisy so that the correspondence with the identification in red
dotted line is not good. This is coherent with the value of the error criterion evaluated at 30%. On
the right, the resonance of the mode is well visible and the superposition with the identification is
almost perfect. This visual analysis is well confirmed by the error criterion evaluated at 0.4%

Figure 2.9: Transfer function examples with a high (30%, at left) and low (0.4%, at right) error
criterion

For most applications, high error is expected close to vibration nodes where the observability is
weak. To avoid taking into account such transfers as badly identified, the level criterion for a given
mode j and a given sensor/actuator pair c is defined as the ratio between the quadratic mean for
the channel c around the resonance and the maximum quadratic mean on all the channels.

Lj,c =

∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)|2

maxc
∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)|2

(2.4)

Problematic sensors are those presenting a high error despite a significant level. Thus, considering
the error criterion and the level criterion is often not appropriate. A new criterion called Noise
Over Signal (NOS) is obtained by multiplying both criteria together

NOSj,c = ej,c × Lj,c ≈
∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)−Hid,c(s)|2

maxc
∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)|2

(2.5)

in order to highlight transfers where high error is associated to a un level, and thus critical. For a
reasonable identification, the approximation made on (2.5) use the fact that HTest,c et HId,c should
be close and so that∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c(s)|2/

∫ ωj(1+αζj)
ωj(1−αζj) |Hid,c(s)|2 ≈ 1. This approximation illustrate that the product

ej,c × Lj,c is close to the ratio of the identification error (hence a estimation of the noise) over the
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2 Modal test tutorial

maximum response (hence the signal level), which explains the origin of the NOS terminology.

The figure 2.10 (first) shows an example of a transfer function with a high NOS value (8.3%) : the
error is very high at 40.4% whereas the level is still significant at 20.5%. The mode is very badly
identified (barely visible on this transfer) but the amplitude of the identified residue is important
for the definition of the mode shape. The existence of sensor/actuator pairs with high noise level at
high amplitude, highlighted by NOS, is typical of weekly excited modes (the controllability is weak
for the chosen excitation location). On the second image, the transfer function also shows a high
NOS value (24.7%) and a high error (24.7%) but graphically, the mode is very visible. The high
NOS value is here due to a bad identification of the pole, which induces a bias in the residue to
compensate. This second example illustrates that this criterion is also well adapted to the detection
of problems of coherence between measurements (different settings between measurement systems,
behavior evolution of the system during measurement,...).

Figure 2.10: Examples of transfer functions showing high NOS values induced by a weak excitation
(left) and a bad poles identification (right)

After manual analysis of many measurements, two intermediate cases are often found: the measure-
ment is noisy but still has a sufficient contribution to be identified with confidence or the contribution
of a mode is so weak that it cannot be separated from other modes without raising questions on a
more or less important estimation bias. To distinguish the two cases, a last contribution criterion
is introduced

Cj,c = 1−
∫ ωj(1+αζj)
ωj(1−αζj) |HTest,c −Hid,j,c|2∫ ωj(1+αζj)

ωj(1−αζj) |HTest,c|2
. (2.6)

to measure the modal contribution of a specific mode j relatively to the global response of all the
other modes around its resonance frequency, thus giving an indication of its visibility (Hid,j,c is the
transfer synthesis containing only the mode j). For highly noisy transfer functions, this indicator
can be negative and is then set to 0.
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Figure 2.11 shows transfer functions for which this kind of question is raised. On the first image,
around 4050Hz, the mode is well visible despite a relatively high noise level. It could be useful to
keep this channel to well interpret the correlation. On the second image, a transfer function is shown
where the error is very low but for which the resonance of the considered mode is not visible at all.
The capacity to identify the residue with confidence is low because the identification could clearly
be significantly biased

Figure 2.11: Examples of transfer functions: High error of 18.7% with a high contribution of 73.5%
(left) and low error of 0.1% with a low contribution of 0% (right).

Proposed criteria allow decomposing identification error sources in contributions by mode and by
transfer function (sensor/actuator pair). For each mode, clearly problematic sensors showing high
error with low contribution and a low level can be automatically discarded and only results properly
identified can be kept with a high confidence on the quality.

Intermediate results can be analyzed in more details using sorting by level, contribution or NOS to
highlight problematic transfer functions, as illustrated in the following tutorial.

Let’s go back to the previous tutorial. If you have not performed it (or if you closed everything at
the end), click on in the HTML version of the documentation to get ready for the following.

4. In the Ident tab, click on est to perform an broad band identification of the residues.
Click then on the button Qual to open the tab Qual which synthesizes all the quality criteria
defined above.
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2 Modal test tutorial

The identification quality is globaly poor, with a mean error quite high arround most modes.
Two modes show a very low mean contribution (3 and 5), four modes show a bad MPC
whereas expected modes are real (2,3,5 and 10) and finally, three modes present a high
max(NOS) (9 10 and 12).

Clicking on a line of the first table Modes updates the second table I/O Pairs with the four
quality criteria on all sensors for the selected mode. Each criterion can be sorted by clicking on
the corresponding column header and clicking on a line perfoms a zoom on the corresponding
transfer arround the mode frequency.

This way, we can for example easily zoom on the transfer with the highest contribution for
the mode 3 and the transfer with the highest NOS for the mode 10 :
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This highlight the bias in the identification of the residues.

5. Now click in the Ident tab on estlocalpole to perform a sequential identification by mode
with the same poles and click again on Qual to update the Qual tab.

The identification quality is clearly better than using the brodband strategy : mean error is
improved everywhere. Nevertheless, modes 3 and 5 still show very low contribution and MPC
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2 Modal test tutorial

and mode 10 presents a lower but still high max(NOS).

The zoom on the transfer with the highest contribution for the mode 3 and the transfer with
the highest NOS for the mode 10 can again be displayed :

For mode 3, the resonance is not very visible and the measurement very noisy : this mode is
probably not well enough excited and is moreover visible very locally (2 sensors higher than
1% contibution). For mode 10, the high NOS do not highlight bad identification anymore
(measurement and synthesis are quite well superposed) but shows that the error due to the
high measurement noise is present even at sensors where the mode has a high level : a better
excitation of the mode should reduce the noise and improve the identification quality.

At this step, quality has been evaluated but we are aware that identified poles are possibly biased.
Indeed, the strategy of extraction of poles does not use the exact same model than the one used as a
second stage to identify the residues. Non-linear optimization of this initial state should be performed
and the impact of this optimization on the identification quality is analyzed in Section section 2.6

2.5.3 When id rc fails

This section gives a few examples of cases where a direct use of id rc gave poor results. The
proposed solutions may give you hints on what to look for if you encounter a particular problem.
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Figure 2.12: Identification problem with low frequency error found for piezoelectric accelerometers

In many cases frequencies of estimated FRFs go down to zero. The first few points in these estimates
generally show very large errors which can be attributed to both signal processing errors and sensor
limitations. The figure above, shows a typical case where the first few points are in error by orders
of magnitude. Of two models with the same poles, the one that keeps the low frequency erroneous
points (- — -) has a very large error while a model truncating the low frequency range (- - -) gives
an extremely accurate fit of the data (—).

Figure 2.13: Identification problem linked to the proximity of influent out of band modes

The fact that appropriate residual terms are needed to obtain good results can have significant
effects. The figure above shows a typical problem where the identification is performed in the band
indicated by the two vertical solid lines. When using the 7 poles of the band, two modes above the
selected band have a strong contribution so that the fit (- - -) is poor and shows peaks that are more
apparent than needed (in the 900-1100 Hz range the FRF should look flat). When the two modes
just above the band are introduced, the fit becomes almost perfect (- — -) (only visible near 750
Hz).
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2 Modal test tutorial

Keeping out of band modes when doing narrow band pole updates is thus quite important. You may
also consider identifying groups of modes by doing sequential identifications for segments of your
test frequency band [9].

The example below shows a related effect. A very significant improvement is obtained when doing
the estimation while removing the first peak from the band. In this case the problem is actually
linked to measurement noise on this first peak (the Nyquist plot shown in the lower left corner is far
from the theoretical circle).

Figure 2.14: Identification problem linked to measurement noise at a major resonance

Other problems are linked to poor test results. Typical sources of difficulties are

• mass loading (resonance shifts from FRF to FRF due to batch acquisition with displaced
sensors between batches),

• leakage in the estimated FRFs,

• significant non-linearities (inducing non-symmetric resonances or resonance shifts for various
excitation positions),

• medium frequency range behavior (the peaks of more than a few modes overlay significantly
it can be very hard to separate the contributions of each mode even with MIMO excitation).
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2.6 Update poles

The various procedures used to build the initial pole set (see step 1 above) tend to give good but
not perfect approximations of the pole sets. In particular, they tend to optimize the model for a
cost that differs from the broadband quadratic cost that is really of interest here and thus result in
biased pole estimates.

It is therefore highly desirable to perform non-linear update of the poles in ci.Stack{’IdMain’}.
This update, which corresponds to a Non-Linear Least-Squares minimization[10][9] which can be
performed using different algorithms below.

The optimization problem is very non linear and non convex, good results are thus only found when
improving results that are already acceptable (the result of phase 2 looks similar to the measured
transfer function).

2.6.1 Eup : for a clean measurement with multiple poles

idcom eup (id rc function) starts by reminding you of the currently selected options (accessible
from the figure pointer ci.IDopt) for the type of residual corrections, model selected and, when
needed, partial frequency range selected

Low and high frequency mode correction

Complex residue symmetric pole pattern

the algorithm then does a first estimation of residues and step directions and outputs

% mode# dstep (%) zeta fstep (%) freq

1 10.000 1.0001e-02 -0.200 7.1043e+02

2 -10.000 1.0001e-02 0.200 1.0569e+03

3 10.000 1.0001e-02 -0.200 1.2176e+03

4 10.000 1.0001e-02 -0.200 1.4587e+03

Quadratic cost

4.6869e-09

Log-mag least-squares cost

6.5772e+01

how many more iterations? ([cr] for 1, 0 to exit) 30
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2 Modal test tutorial

which indicates the current pole positions, frequency and damping steps, as well as quadratic and
logLS costs for the complete set of FRFs. These indications and particularly the way they improve
after a few iterations should be used to determine when to stop iterating.

Here is a typical result after about 20 iterations

% mode# dstep (%) zeta fstep (%) freq

1 -0.001 1.0005e-02 0.000 7.0993e+02

2 -0.156 1.0481e-02 -0.001 1.0624e+03

3 -0.020 9.9943e-03 0.000 1.2140e+03

4 -0.039 1.0058e-02 -0.001 1.4560e+03

Quadratic cost

4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10

Log-mag least-squares cost

6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01

how many more iterations? ([cr] for 1, 0 to exit) 0

Satisfactory convergence can be judged by the convergence of the quadratic and logLS cost function
values and the diminution of step sizes on the frequencies and damping ratios. In the example,
the damping and frequency step-sizes of all the poles have been reduced by a factor higher than
50 to levels that are extremely low. Furthermore, both the quadratic and logLS costs have been
significantly reduced (the leftmost value is the initial cost, the right most the current) and are now
decreasing very slowly. These different factors indicate a good convergence and the model can be
accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which generally corre-
sponds passing over the optimal value). Thus, you need to have all (or at least most) steps divided by
8 for an acceptable convergence. Upon exit from id rc, the idcom eup command displays an overlay
of the measured data ci.Stack{’Test’} and the model with updated poles ci.Stack{’IdFrf’}.
As indicated before, you should use the error and quality plots to see if mode tuning is needed.

The optimization is performed in the selected frequency range (idopt wmin and wmax indices). It
is often useful to select a narrow frequency band that contains a few poles and update these poles.
When doing so, model poles whose frequency are not within the selected band should be kept but
not updated (use the euplocal and eoptlocal commands). You can also update selected poles
using the ’eup ’ i’ command (for example if you just added a pole that was previously missing).

2.6.2 Eopt : for a band with few poles

eopt (id rcopt function) performs a conjugate gradient optimization with a small tolerance to allow
faster convergence. But, as a result, it may be useful to run the algorithm more than once. The
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algorithm is guaranteed to improve the result but tends to get stuck at non optimal locations.

eup(id rc function) uses an ad-hoc optimization algorithm, that is not guaranteed to improve the
result but has been found to be efficient during years of practice.

You should use the eopt command when optimizing just one or two poles (for example using
eoptlocal or ’eopt ’ i’ to optimize different poles sequentially) or if the eup command does
not improve the result as it could be expected.

2.6.3 EupSeq and EoptSeq : sequential narrowband pole updating

In many practical applications the results obtained after this first set of iterations are incomplete.
Quite often local poles will have been omitted and should now be appended to the current set of
poles (going back to step 1). Furthermore some poles may be diverging (damping and/or frequency
step not converging towards zero). This divergence will occur if you add too many poles (and these
poles should be deleted) and may occur in cases with very closely spaced or local modes where the
initial step or the errors linked to other poles change the local optimum for the pole significantly (in
this case you should reset the pole to its initial value and restart the optimization).

A way to limit the divergence issue is to perform sequential local updating arround each pole : one
pole is updated at a time so that it is more likely to converge. This sequential optimization as been
packaged for both

2.6.4 Example for practice

To pratice, the GARTEUR test case already used in previous sections is loaded with an initial set
of poles by clicking on .

Many strategies can be used to perform the optimization. In the following tutorial, we only propose
to guide you through the use of some optimization steps, but the reader is encouraged to test local,
broadband, narrowband strategies as he whish to better understand their strengths and weaknesses.

1. In the Ident tab, click on eopt to perform an broad band optimization (on the selected
bandwidth so here on the full bandwidth) using the eopt strategy. Because many poles are
present in the band, this algorithm is stuck in a local minimum and the result does not improve
much the result.

The figure below shows the transfer and the identification of the sensor 1001.03 (channel 2 in
iiplot).
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2 Modal test tutorial

2. Click now on eup to use the other strategy, still on the whole bandwidth. The result deeply
improves the identification quality : the same transfer is shown below after the optimization.

Nevertheless, some transfers still present a quite bad identification, like for instance sensors
2201.08 and 2301.07.
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An interesting observation is that if a smaller band is selected where the fit is poor, without
updating the poles, a new identification of the residues may lead to a better identification
quality.

3. Select a narrow band with the button wmo between 8 and 18 Hz. Click then on the button
est to perform a new identification of the residues inside this band without updating the poles.
Looking at the same channels as before (sensors 2201.08 and 2301.07), the fitting quality is
clearly improved.

This is due to the fact that taking into account the poles outside this frequency band (especially
the noisy first mode) leads to a bias of identification inside this band.

The difficulty is that it is not easy to define which frequency bands can be identified together.
To deal with this issue, the sequential local identification of residuals estlocalpole can be
used. Two version of this strategy have been developped to perform pole updating in addition
to residue identification on narrow bands arround each mode : eoptSeq and eupSeq.
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4. Click on eoptSeq to perform the sequential optimization. You can perform this optimization
several times until convergence if needed.

The vizualisation of the identification on the same band than previously shows a very good fit
arround each mode.

Once a good complex residue model obtained, one often seeks models that verify other properties
of minimality, reciprocity or represented in the second order mass, damping, stiffness form. These
approximations are provided using the id rm and id nor algorithms as detailed in section 2.8 .

2.6.5 Background theory

The id rc algorithm (see [10][9]) seeks a non linear least squares approximation of the measured
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data

pmodel = arg min
NS,NA,NW∑
j,k,l=1

(
αjk(id)(ωl, p)− αjk(test)(ωl)

)2
(2.7)

for models in the nominal pole/residue form (also often called partial fraction expansion [11])

[α(s)] =
∑

jidentified

(
[Rj ]

s− λj
+

[
R̄j
]

s− λ̄j

)
+ [E] +

[F ]

s2
= [Φ(λj , s)] [Rj , E, F ] (2.8)

or its variants detailed under res page 212.

These models are linear functions of the residues and residual terms [Rj , E, F ] and non linear func-
tions of the poles λj . The algorithm thus works in two stages with residues found as solution of a
linear least-square problem and poles found through a non linear optimization.

The id rc function (idcom eup command) uses an ad-hoc optimization where all poles are optimized
simultaneously and steps and directions are found using gradient information. This algorithm is
usually the most efficient when optimizing more than two poles simultaneously, but is not guaranteed
to converge or even to improve the result.

The id rcopt function (idcom eopt command) uses a gradient or conjugate gradient optimization.
It is guaranteed to improve the result but tends to be very slow when optimizing poles that are
not closely spaced (this is due to the fact that the optimization problem is non convex and poorly
conditioned). The standard procedure for the use of these algorithms is described in section 2.2.2 .
Improved and more robust optimization strategies are still considered and will eventually find their
way into the SDT.

2.7 Display shapes : geometry declaration, pre-test

Before actually taking measurements, it is good practice to prepare a wire frame-display (sec-
tion 2.7.1 and section 4.1.1 for other examples) and define the sensor configuration (section 2.7.2
).

The information is typically saved in a specific .m file which should look like the d mesh(’TutoPre-s3’)

demo without the various plot commands. The d pre demo also talks about test preparation.

2.7.1 Modal test geometry declaration

A wire-frame model is composed of node and connectivity declarations.
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Figure 2.15: Test analysis : wire-frame model.

Starting from scratch (if you have not imported your geometry from universal files). You can declare
nodes and wire frame lines using the fecom Add editors. Test wire frames are simply groups of beam1
elements with an EGID set to -1. For example in the two bay truss (see section 4.1.1 )

cf=feplot;cf.model=’reset’;

% fecom(’AddNode’) would open a dialog box

fecom(’AddNode’,[0 1 0; 0 0 0]); % add nodes giving coordinates

fecom(’AddNode’,[3 1 1 0;4 1 0 0]); % NodeId and xyz

fecom(’AddNode’,[5 0 0 0 2 0 0;

6 0 0 0 2 1 0]);

% fecom(’AddLine’) would add cursor to pick line (see below)

fecom(’AddLine’,[1 3 2 4 3]); % continuous line in first group

fecom(’AddLine’,[3 6 0 6 5 0 4 5 0 4 6]); % 0 for discontinuities

fecom(’Curtab:Model’,’Edit’)

%fecom(’save’) % will let you save the model to a mat file

feutilb(’write’,cf.mdl) % generates a script

Note that

• fecom(cf,’AddLine’), use after node declaration, starts a cursor letting you build the wire-frame
line graphically. Click on nodes continue the line, while the context menu allows breaks, last point
removal, exit, and display of the commands in the Matlab command window. This procedure is
particularly useful if you already have a FEM model of your test article.

• fecom(cf,’AddElt’) accessible in the Model:Edit tab can be used to add surface or volume
elements graphically.

• the curor:3DLinePick command in the feplot axis context menu is a general SDT mechanism
to pick node numbers.

• other GUI based mesh editing tools are described in section 4.4.5 .
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• femesh ObjectBeamLine and related commands are also typically used to define the experimental
mesh (see also feutil).

• If you have a FE mesh, you should define the wireframe as a set of sensors, see section 3.1.1 .

The feplot and fecom functions provide a number of tools that are designed to help in visualizing
test results. You should take the time to go through the gartid, gartte and gartco demos to learn
more about them.

2.7.2 Sensor/shaker configurations

The geometry declaration defines fields .Node and .Elt. The next step is to declare sensors. Once
a sensor configuration defined and consistent with input/output pair declarations in measurements
(see section 2.2.3 ), you can directly animate measured shapes (called Operational Deflection Shapes)
as detailed in section 2.7.3 . Except for roving hammer tests, the number of input locations is usually
small and only used for MIMO identification (see section 2.8 ).

In the basic configuration with translation sensors, sensor declaration is simply done with a .tdof

field. Acceptable forms are

• a DOF definition vector (see mdof) allows the description of translation DOFs in global di-
rections. The convention that DOFs .07 to .09 correspond to translations in the −x,−y,−z
directions is implemented specifically for the common case where test sensors are oriented this
way.

• a 5 column format ([SensID NodeID tx ty tz] giving a sensor identifier (integer or real), a
node identifier (positive integer), and the measurement direction in the test mesh axes. This
format supports arbitrary orientation.

• a 2 column form DOF where each DOF is associated with a local basis, that must be defined in
TEST.bas.

• the tabular (cell array) definition of sensors and their position, which is more appropriate for
large configurations, and is described in section 4.6.2 .

The definition of sensors trough a .tdof field is the simplest configuration. For more general setups,
see section 4.6 for sensor definitions and section 4.6.4 for topology correlation.

For interpolation of unmeasured DOFs see section 3.3.2 .

The following illustrates the first two forms
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TEST=demosdt(’DemoGartteWire’);

% simply give DOFs (as a column vector)

TEST.tdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...

1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 ...

2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 1303.03]’;

% Transfor to 5 column format, which allow arbitrary orientation

TEST.tdof=fe_sens(’tdof’,TEST);TEST.tdof

feplot(TEST) % With a .tdof field, a SensDof,Test is defined automatically

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’)

% You can now display FRFs or modes using

ci=iicom(’curveload gartid’); % load data

fecom(’;ProviewOff;Showline’)

% Display FRF

cf.def=ci.Stack{’Test’}; % automatically uses sensor definition ’Test’

% Identify and display mode

idcom(’e .05 6.5’)

cf.def=ci.Stack{’IdAlt’}; % automatically uses sensor definition ’Test’

This new example, mixes all 3 forms

cf=demosdt(’demogartteplot’) % Load data

% simply give DOFs

cf.mdl=fe_case(cf.mdl,’sensdof’,’Test’, ...

[1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...

1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07]’);

% Give DOF defined in a local basis

cf.mdl=fe_case(cf.mdl,’sensdof append’,’Test’, ...

[2201.01 1; 3201.03 0; 1206.03 0; 1205.01 1; 1302.01 1]);

% Give identifier, node and measurement direction

cf.mdl=fe_case(cf.mdl,’sensdof append’,’Test’, ...

[1 2301 -1 0 0; 2 1301 0 0 1; 3 2303 -1 0 0; 4 1303 0 0 1]);

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’)
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It is also fairly common to glue sensors normal to a surface. The sensor array table (see section 4.6.2
) is the easiest approach for this objective since it allows mixing global, normal, triax, laser, ...
sensors. The following example shows how this can also be done by hand how to obtain normals to
a volume and use them to define sensors.

% This is an advanced code sample

model=demosdt(’demo ubeam’);

MAP=feutil(’getnormal node MAP’,model.Node, ...

feutil(’selelt selface’,model)); % select outer boundary for normal

i1=ismember(MAP.ID,[360 365 327 137]); % nodes where sensors are placed

MAP.ID=MAP.ID(i1);MAP.normal=MAP.normal(i1,:);

model=fe_case(model,’sensdof’,’test’, ...

[(1:length(MAP.ID))’ MAP.ID MAP.normal]);

% display the mesh and sensors

cf=clean_get_uf(’feplotcf’,model);

cf.sel(1)=’groupall’;cf.sel(2)=’-test’;

cf.o(1)={’sel2ty7’,’edgecolor’,’r’,’linewidth’,2}

2.7.3 Animating test data, operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial relation of forced
vibration measured at two or more sensors. Time responses of simultaneously acquired measure-
ments, frequency responses to a possibly unknown input, transfer functions, transmissibilities, ...
are example of ODS.

When the response is known at global DOFs no specific information is needed to relate node
motion and measurements. Thus any deformation with DOFs will be acceptable. The two basic
displays are a wire-frame defined as a FEM model or a wire-frame defined as a SensDof entry.

% A wire frame and Identification results

[TEST,IdMain]=demosdt(’DemoGartteWire’)

cf=feplot(TEST); % wire frame

cf.def=IdMain; % to fill .dof field see sdtweb(’diiplot#xfread’)

% or the low level call : cf.def={IdMain.res.’,IdMain.dof,IdMain.po}

% Sensors in a model and identification results

cf=demosdt(’demo gartfeplot’); % load FEM
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2 Modal test tutorial

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

cf.mdl=fe_case(cf.mdl,’sensdof’,’outputs’,TEST)

cf.sel=’-outputs’; % Build a selection that displays the wire frame

cf.def=IdMain; % Display motion on sensors

fecom(’curtab Plot’);

When the response is known at sensors that need to be combined (non global directions,
non-orthogonal measurements, ...) a SensDof entry must really be defined.

When displaying responses with iiplot and a test geometry with feplot, iiplot supports an ODS
cursor. Run demosdt(’DemoGartteOds’) then open the context menu associated with any iiplot

axis and select ODS Cursor. The deflection show in the feplot figure will change as you move the
cursor in the iiplot window.

More generally, you can use fecom InitDef commands to display any shape as soon as you have a
defined geometry and a response at DOFs. The Deformations tab of the feplot properties figure
then lets you select deformations within a set.

[cf,ci]=demosdt(’DemoGartteOds’)

cf.def=ci.Stack{’Test’};
% or the low level call :

% cf.def={ci.Stack{’Test’}.xf,ci.Stack{’Test’}.dof,ci.Stack{’Test’}.w}
fecom(’CurTab Plot’);

You can also display the actual measurements as arrows using

cf.sens=ci.Stack{’Test’}.dof; fecom ShowArrow; fecom scc1;

For a tutorial on the use of feplot see section 4.4 .

102



2.8 MIMO, Reciprocity, State-space, ...

The pole/residue representation is often not the desired format. Access to transformations is pro-
vided by the post-processing tab in the idcom properties figure. There you can select the desired
output format and the name of the variable in the base Matlab workspace you want the results to
be stored in.

Figure 2.16: idcom interface

The id rm algorithm is used for the creation of minimal and/or reciprocal pole/residue models (from
the command line use sys=id rm(ci.Stack{’IdMain’})). For the extra step of state-space model
creation use sys=res2ss(ci.Stack{’IdMain’}).
nor=res2nor(ci.Stack{’IdMain’}) or nor=id nor(ci.Stack{’IdMain’}) allow transformations
to the normal mode form. Finally direct conversions to other formats are given by
struct=res2xf(ci.Stack{’IdMain’},w) with w=ci.Stack’Test’.w, and
[num,den]=res2tf(ci.Stack{’IdMain’}).

These calls are illustrated in demo id.

2.8.1 Multiplicity (minimal state-space model)
Theory

As mentioned under res page 212, the residue matrix of a mode can be written as the product of
the input and output shape matrices, so that the modal contribution takes the form

Rj
s− λj

=
{cψj}

{
ψTj b

}
s− λj

(2.9)

For a single mode, the product {cψj}
{
ψTj b

}
has rank 1. Thus for a truly MIMO test (with more

than one input and output), the residue matrix found by id rc usually has full rank and cannot
be written as shown in (2.9). In some cases, two poles of a structure are so close that they can be
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considered as a multiple pole λj = λj+1, so that

Rj
s− λj

=
{cψj}

{
ψTj b

}
+ {cψj+1}

{
ψTj+1b

}
s− λj

(2.10)

In such cases, the residue matrix [Rj ] has rank two. Minimality (i.e. rank constraint on the
residue matrix) is achieved by computing, for each mode, the singular value decomposition of the
residue matrix Rj = UΣV T . By definition of the singular value decomposition

[Rj1]NS×NA = {U1}NS×1 σ1 {V1}TNA×1 (2.11)

is the best rank 1 approximation (in the matrix norm sense) of Rj . Furthermore, the ratio σ2/σ1

is a measure of the relative error made by retaining only the first dyad. This ratio gives, for MIMO
tests, an indication of the coherence of estimated mode shapes and occasionally an indication of
the pole multiplicity if two poles are sufficiently close to be considered as identical (see the example
below).

Minimal pole/residue models are directly linked to a state-space model of the form(
s [I]2N×2N −

[
\λj\

])
{η} =

[
ψT b

]
{u}

{y} = [cψ] {η}
(2.12)

which can then be transformed to a real valued state-space model (see res2ss) or a second order
normal mode model (see section 2.8.3 ).

Practice

id rm builds a rank constrained approximation of the residue matrix associated to each pole. When
not enforcing reciprocity, the output of the call

ci=demosdt(’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.reci=’no’;

RES = id_rm(ci.Stack{’IdMain’},[1 2 1 1]);

% or low level call

[pb,cp,new_res]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 2 1 1]);

returns an output that has has the form

The system has 5 sensors and 2 actuators

FRF 7 (actuator 2 sensor 2) is collocated

Po # freq mul Ratio of sing. val. to max

1 7.10e+02 2 : 0.3000 k 0.0029

2 9.10e+02 1 : 0.1000 0.0002

3 1.20e+03 1 : 0.0050 0.0001

4 1.50e+03 1 : 0.0300 0.0000
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where the first three columns indicate pole number, frequency and retained multiplicity and the
following give an indication of the difference between the full rank residue matrix and the rank
constrained one (the singular value ratio should be much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between the full order
residue matrix and a rank 1 approximation is of the order of 30% while the difference with a rank 2
approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual multiplicity but more
often indicates poor identification or incoherent data. For poor identification the associated pole
should be updated as shown in section 2.6 . For incoherent data (for example modes slightly modified
due to changing shakers during sequential SIMO tests), one should perform separate identifications
for each set of coherent measurements. The rank constrained approximation can then be a way to
reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try to update
the identification in the vicinity of the pole: select a narrow frequency range near this pole, then
create and optimize a two or more pole model as shown section 2.2.2 . True modal multiplicity
being almost impossible to design into a physical structure, it is generally possible to resolve such
problems. Keeping multiple poles should thus only remain an intermediate step when not having
the time to do better.

2.8.2 Reciprocal models of structures
Theory

In many cases, the structures tested are assumed to be reciprocal (the transfers force at A/response
at B and force at B/response at A are equal) and one wants to build a reciprocal model. For modal
contributions of the form (2.9), reciprocity corresponds to the equality of collocated input and output
shape matrices

([ccol] {ψj})T = {ψj}T [bcol] (2.13)

For reciprocal structures, the residue matrix associated to collocated FRFs should be symmetric.

id rm thus starts computing the symmetric part of the collocated residuesRjcolS =
(
Rjcol +RTjcol

)
/2.

This matrix being symmetric, its singular value decomposition is given by RjcolS = UcolΣcolV
T
col

which leads to the reciprocal input and output shape matrices

{ccolψj} =
{
ψTj bcol

}T
=
√
σ1col {U1col} (2.14)

Typically, there are many more sensors than inputs. The decomposition (2.14) is thus only used
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to determine the collocated input shape matrices and the output shape matrices at all sensors are

found as solution of a least square problem {cψj} = [Rj ]
{
ψTj bcol

}+
which does require that all

inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the same as that
obtained with the analytical scaling condition (5.24). The interest of using reciprocal models is to
predict non measured transfer functions.

Practice

When collocated transfer functions are declared and ci.IDopt.Reciprocity=’1 FRF’ or MIMO,
id rm seeks a minimal and reciprocal approximation to the model. For the call

ci=demosdt(’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.Col=[1 7];

ci.IDopt.reci=’mimo’;

RES = id_rm(ci.Stack{’IdMain’},[1 1 1 1]);

ci.Stack{’curve’,’IIxh’}=res2xf(RES,ci.Stack{’Test’}.w); iicom(’IIxhOn’)

% or low level call

[pb,cp,new_res,new_po]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 1 1 1]);

ci.Stack{’curve’,’IIxh’} = ...

res2xf(struct(’res’,new_res,’po’,new_po,’idopt’,ci.IDopt),ci.Stack{’Test’}.w);
iicom(’IIxhOn’)

id rm shows information of the form

The system has 5 sensors and 2 actuators

FRF 1 (actuator 1 sensor 1) is collocated

FRF 7 (actuator 2 sensor 2) is collocated

Reciprocal MIMO system

Po# freq mul sym. rel.e.

1 1.13e+02 1 : 0.0001 0.0002

2 1.70e+02 1 : 0.0020 0.0040

3 1.93e+02 1 : 0.0003 0.0005

4 2.32e+02 1 : 0.0022 0.0044

where the output indicates the number of sensors and actuators, the collocated FRFs, the fact the
resulting model will enforce MIMO reciprocity, and details the accuracy achieved for each mode.

The algorithm first enforces symmetry on the declared collocated transfer functions the symmetry
error sym. shows how asymmetric the original residue matrices where. If for a given mode this
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number is not close to zero, the mode is poorly identified or the data is far from verifying reciprocity
and building a reciprocal model makes no sense.

The algorithm then seeks a rank constrained approximation, the relative error number rel. e.

shows how good an approximation of the initial residue matrix the final result is. If this number is
larger than .1, you should go back to identifying a minimal but non reciprocal model, determine
the actual multiplicity, and update the pole, if it is not very well identified, or verify that your data
is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the synthesized FRFs
(IIxh/ci.Stack{’IIxh’} in the example above). An alternate FRF generation call would be

[a,b,c,d]=res2ss(res,po,idopt);

IIxh=qbode(a,b,c,d,IIw*2*pi);

This more expensive computationally, but state-space models are particularly useful for coupled
system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer functions. For
example the response associated to a shaker placed at the uind sensor (not a collocated one) can be
computed using

ci=demosdt(’Demo demo_id’)

[psib,cpsi]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 1 1 1]);

uind=3; res_u = (cpsi*diag(cpsi(uind,:))).’;

RES=struct(’res’,res_u,’po’,ci.Stack{’IdMain’}.po,’idopt’,ci.IDopt);
ci.Stack{’curve’,’IdFrf’}=res2xf(RES,ci.Stack{’Test’}.w);
iiplot

You should note that the res u model does not contain any residual terms, since reciprocity does
not give any information on those. Good predictions of unmeasured transfers are thus limited to
cases where residual terms can be neglected (which is very hard to know a priori).

2.8.3 Normal mode form

Modal damping assumption

While the most accurate viscous damping models are obtained with a full damping matrix Γ (sup-
ported by psi2nor and id nor as detailed in the next section), modal damping (where Γ is

107



2 Modal test tutorial

assumed diagonal which is valid assumption when (2.19) is verified) is used in most industrial ap-
plications and is directly supported by id rc, id rm and res2nor. The use of this functionality is
demonstrated in demo id.

For a modally damped model (diagonal modal damping matrix Γ), the normal mode model (5.4)
can be rewritten in a rational fraction form (with truncation and residual terms)

[α(s)] =
NM∑
j=1

{cφj}
{
bTφj

}T
s2 + 2ζjωjs+ ω2

j

+ [E] +
[F ]

s2
=

NM∑
j=1

[Tj ]NS×NA
s2 + 2ζjωjs+ ω2

j

+ E(s) (2.15)

This parameterization, called normal mode residue form, has a symmetric pole pattern and is sup-
ported by various functions (id rc, id rm, res2xf , ...) through the use of the option
ci.IDopt.Fit=’Normal’. As for the complex residues (5.30), the normal mode residue matrix given
by id rc and used by other functions is stacked using one row for each pole or asymptotic correction
term and, as the FRFs (see the xf format), a column for each SISO transfer function (stacking NS
columns for actuator 1, then NS columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue matrix Tj is
directly related to the true normal modes

[Tj ] = {cφj}
{
φTj b

}
(2.16)

and the dyadic decomposition of the residue matrix can be used as in the complex mode case (see
section 2.8.1 and the function id rm) to obtain a minimal and/or reciprocal models (as well as
scaled input and output shape matrices).

The scaling implied by equations (2.15) and (2.16) and used in the functions of the Toolbox is
consistent with the assumption of unit mass normalization of the normal modes (see details under
nor page 202). This remains true even for multiple modes. A result rarely obtained by other
methods.

When a complex mode identification has been performed (ci.IDopt.Fit=’Complex’ or ’Posit’),
the function res2nor also provides a simple approximation of the complex residue model by a normal
mode residue model.

Non proportional damping assumption

Theory

The complex modes of a minimal/reciprocal model are related to the mass / damping / stiffness
matrices by (see Ref. [12])

M =
(
ψ̃Λψ̃T

)−1
, C = −Mψ̃Λ2ψ̃TM, and K =

(
ψ̃Λ−1ψ̃T

)−1
(2.17)
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if and only if the complex modes are also proper. That is, they verify verify
2N∑
j=1

{
ψ̃j
}{

ψ̃j
}T

=
[
ψ̃
]
N×2N

[
ψ̃
]T
N×2N

= [0]N×N (2.18)

The transformation id nor is thus done in two stages. id rm is used to find a minimal and reciprocal
approximation of the identified residue model of the form (2.12). psi2nor then determines c and
ψ̃ such that the ψ̃ verify the condition (2.18) and cψ̃ is “optimally” close to the cψ resulting from
id rm. Using the complex modes ψ̃ and the identified poles λ, the matrices are then computed and
the model transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered group of
modes is not significantly coupled to other modes by damping [12]. Groups of modes which can be
approximated by a second order non proportionally damped model can be easily detected using the
frequency separation criterion which must be verified between modes j in the group and modes k
outside the group

ζjωjζkωk
ωjωk

2

� 1 (2.19)

If there does not exist a normal mode model that has complex modes close to the identification
result cψ, the algorithm may not work. This will happen in particular if cψΛψT cT = cM−1cT does
not have NQ positive eigenvalues (estimated mass not positive definite).

Practice

For comparisons with undamped FE models, it is essential to obtain estimates of normal modes.
The most accurate results are obtained using a non-proportionally damped normal mode model
obtained with id nor. A coarse approximation is given by res2nor(useful if the identification is not
good enough to build the minimal and reciprocal model used by id nor). In such cases you can also
consider using id rc with the assumption of proportional damping which directly identifies normal
modes (see more details in section 2.8.3 ).

Scaling problems are often encountered when using the reciprocity to condition to scale the complex
modes in id rm. The function id nor allows an optimization of collocated residues based on a
comparison of the identified residues and those linked to the normal mode model. You should be
aware that id nor only works on very good identification results, so that trying it without spending
the time to go through the pole update phase of id rc makes little sense.

The use of this functionality is demonstrated in the following example.

ci=demosdt(’demodemo_id’) % load data and identify

f=ci.Stack{’Test’}.w;
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nor = id_nor(ci.Stack{’IdMain’});
nor2xf(nor,f,’hz iiplot "IdFrf"’); % Compute response

% compute residual effects and add normal model contributions

res2xf(ci.Stack{’IdMain’},f,ci.IDopt,[5 6],’iiplot "Nor+Stat"’);% residues

ci.Stack{’Nor+Stat’}.xf=ci.Stack{’Nor+Stat’}.xf+nor2xf(nor,f,’hz’);
iicom(’ch1’);

The normal mode input nor.pb and output nor.cp matrices correspond to those of an analytical
model with mass normalized modes. They can be compared (ii mac) or combined (fe exp) with
analytical models and the modal frequencies nor.freq and damping matrix nor.ga can be used for
predictions (see more details in section 3.4 ).

The id nor and res2nor algorithms only seek approximations the modes. For FRF predictions
one will often have to add the residual terms. The figure below (taken from demo id) shows an
example where including residual terms tremendously improves the prediction. Out of band modes
and residual terms are here represented by the E(s) term. Second order models are said to be
complete when E(s) can be neglected [13]. The addition of residual terms was illustrated in the
example above.

Figure 2.17: FRF xx
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3 Test/analysis correlation tutorial

Modal testing differs from system identification in the fact that responses are measured at a number
of sensors which have a spatial distribution which allows the visualization of the measured motion.
Visualization is key for a proper assessment of the quality of an experimental result. One typically
considers three levels of models.

• Input/output models are defined at sensors. In the figure, one represents these sensors as arrows
corresponding to the line of sight measurements of a laser vibrometer. Input/output models are
the direct result of the identification procedure described in chapter 2.

• Wire frame models are used to visualize test results. They are an essential verification tool for the
experimentalist. Designing a test well, includes making sure that the wire frame representation
is sufficiently detailed to give the experimentalist a good understanding of the measured motion.
With non-triaxial measurements, a significant difficulty is to handle the perception of motion
assumed to be zero.

• Finite element models are used for test/analysis correlation. In most industrial applications, test
and FEM nodes are not coincident so that special care must be taken when predicting FEM
motion at test nodes/sensors (shape observation) or estimating test motion at FEM DOFs (shape
expansion).

Figure 3.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are detailed in section 2.7
. Topology correlation and sensor/shaker placement tools are details in section 3.1 . A summary of
general tools used to compare sets of shapes is made in section 3.2 . Shape expansion, which deals
with the transformations between the wire-frame and FE models, is introduced in section 3.3 . The
results of correlation can be used for hybrid models combining experimental and analytical results
(see section 3.4 ) or for finite element model updating (see section 6.5 ).
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Figure 3.2: Modal identification process with links to corresponding sections

3.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical and sensor/shaker
configurations. Most of this effort is handled by fe sens with some use of femesh.

Starting with SDT 6.0, FEM sensors (see section 4.6 ) can be associated with wire frame model, the
strategy where the two models where merged is thus obsolete.

As described in the following sections the three important phases of topology correlation are

• combining test and FEM model including coordinate system definition for the test nodes if
there is a coordinate system mismatch,

• building of an observation matrix allowing the prediction of measurements based on FEM
deformations,

• sensor and shaker placement.
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3 Test/analysis correlation tutorial

3.1.1 Defining sensors in the FEM model : data handling

Two types of data are needed to properly associate a test wire frame model to a FEM :

• a FEM model (see section 4.5 ). For this simple example, the FEM model (stored in cf.mdl in
the demo) must describe nodes, elements and DOFs

• a test wire-frame model (stored in TEST in the demo) with sensors in the .tdof field, as detailed
in section 2.7.1 for the geometry and section 2.7.2 for sensors

One then declares the wire frame (with sensors) as SensDof case entry as done below (see also the
gartte demo). The objective of this declaration is to allow observation of the FEM response at
sensors (see sensor Sens).

model=demosdt(’DemoGartFE’) % load FEM

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

% Store Test as SensDof (linked test wireframe) in the FEM

model=fe_case(model,’sensdof’,’sensors’,TEST);

cf=feplot(2); cf.mdl=model; % Display the model in feplot

% Display the superposition of the test wireframe over the FEM

fecom(cf,’ShowFiCoTopo’);

% Open the CoShape Dock from cf, already containing needed data

fecom(cf,’dockCoShape’);

Section 4.6 gives many more details the sensor GUI : the available sensors (sensor trans, sensor
triax, laser, ...). Section 4.6.4 discusses topology correlation variants in more details.

If the data come from files, it can be more convenient to load them directly from the GUI.

Here is a tutorial for interactive data loading in DockCoTopo with the TestBas tab.

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom(’dockCoTopo’) to open an empty dock. You can also click on
the button CoTopo on the tree in SDT Root.

114



2. Click on Select associated to MasterMesh. This will open the import model window. Select
the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart mdl.inp. Data
is loaded and displayed in the feplot figure.

3. Do the same for the SlaveMesh. The test mesh file is located at SDTPath/sdtdemos/gartid.unv.
Data is loaded and displayed in the feplot figure. Once selected, the Unv tab is displayed in
the feplot(’mdl’) figure : it shows the content of what is inside the Unv file.

Check the box corresponding to model and click on Import.

The test wireframe is loaded and displayed in the feplot figure in red.
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3 Test/analysis correlation tutorial

Depending on the loaded data for the the SlaveMesh, it contains already or not the sensor
definitions : they are shown as red arrows. It is not the case here.

4. To retrieve sensors definition from a Unv file, the mesured data need to be loaded.

Click on Select associated to DefineTDof. Select again the Unv file and in the Unv tab, check
this time the box corresponding to response and click on Import.

The arrows are then built depending on the measured channels (+X,+Y,+Z,-X,-Y,-Z directions
associated to each nodes in the geometry), and displayed.
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The system coordinate is not the same between the test wireframe and the FEM : the test ge-
ometry needs to be moved and superposed to the FEM (this tutorial continues in the following
subsection).

3.1.2 Test and FEM coordinate systems

In many practical applications, the coordinate systems for test and FEM differ. fe sens supports
the use of a local coordinate system for test nodes with the basis command.

Interactive test mesh placement is available in the SDT GUI, using command fe sensGuiTestBas.

% Loading the interactive test mesh placement GUI

cf=demosdt(’demo garttebasis’); % Load the demo data

cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe

fecom(cf,’setTestBas’); % Open interactive tab in feplot properties

Operations permitted through the GUI implementation are available in script commands. The
modus operandi considers a three steps process.

• Phase 1 is used get the two meshes oriented and coarsely aligned. The guess is more precise if
a list of paired nodes on the FEM and TEST meshes can be provided.

• In phase 2, the values displayed by fe sens, in phase 1 are fine tuned to obtain the accurate
alignment.

• In phase 3, the local basis definition is eliminated thus giving a cf.CStack{’sensors’} entry
with both .Node and .tdof fields in FEM coordinates which makes checks easier.

In peculiar cases, the FEM and TEST mesh axes differ, and a correction in rotation in the Phase
2 may be easier to use. An additional rotation to apply in the TEST mesh basis can be obtained
by fulfilling the field rotation in Phase 2. The rotations are applied after other modifications so
that the user can directly interpret the current feplot display. The rotation field corresponds to
a basis rotate call. The command string corresponding to a rotation of 10 degrees along axis y
is then ’ry=10;’. Several rotations can be combined: ’ry=10; rx=-5;’ will thus first perform a
rotation along y of 10 degrees and a rotation along x of -5 degrees. These combinations are left to
the user’s choice since rotation operations are not symmetric (e.g. ’rz=5;rx=10;’ is a different call
from ’rx=10;rz=5;’).

The following example demonstrates the 3 phases in a script.

cf=demosdt(’demo garttebasis’); % Load the demo data

cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe
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3 Test/analysis correlation tutorial

% Phase 1: initial adjustments done once

% if the sensors are well distributed over the whole structure

fe_sens(’basis estimate’,cf,’sensors’);

% Phase 1: initial adjustments done once, when node pairs are given

% if a list of paired nodes on the TEST and FEM can be provided

% For help on 3DLinePick see sdtweb(’3DLinePick’)

cf.sel=’reset’; % Use 3DLinePick to select FEM ref nodes

cf.sel=’-sensors’; % Use 3DLinePick to select TEST ref

i1=[62 47 33 39; % Reference FEM NodeId

2112 2012 2301 2303]’;% Reference TEST NodeId

cf.sel=’reset’; % show the FEM part you seek

fe_sens(’basis estimate’,cf,’sensors’,i1);

%Phase 2 save the commands in an executable form

% The ’BasisEstimate’ command displays these lines, you can

% perform slight adjustments to improve the estimate

fecom(cf,’initTestBas’) % When you change a value script below displayed

fe_sens(’basis’,cf,’sensors’, ...

’x’, [0 1 0], ... % x_test in FEM coordinates

’y’, [0 0 1], ... % y_test in FEM coordinates

’origin’,[-1 0 -0.005],... % test origin in FEM coordinates

’scale’, [0.01]); % test/FEM length unit change

%Phase 3 : Force change of TEST.Node and TEST.tdof to FEM coordinates

fecom(’SetTestBas’,struct(’BasisToFEM’,’do’));

fe_case(cf.mdl,’sensmatch’)

sens=fe_case(cf.mdl,’sens’)

Note that FEM that use local coordinates for displacement are discussed in sensor trans.

Here is the continuation of the tutorial for interactive way to superpose and match sensors over the
FEM.

If you have not performed previous tutorial (or if you closed everything at the end), click on this
link in the HTML version of the documentation to get ready for the following.

5. To begin with, it is often useful, if the test geometry globally describes well the model geometry,
to perform an automatic initial guess for the superposition. To so so, click on the button run
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associated to basEst.

6. From this better relative position, one needs to iterate manually with small translations tx,
ty, tz and rotations rx, ry, rz until the optimum is reached.

7. Finally, click on the button Accept associated to BasisToFEM to apply the coordinate trans-
formation to the test wireframe and perform the compute the observation matrix of the FEM
at sensors.
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3 Test/analysis correlation tutorial

8. Clicking on Finalize will save the result in the corresponding project.

Another strategy using Iterative Closest Point algorithm is also implemented (in the NodePairs

subtable). This will be documented in further release.

3.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test, it is good practice
to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

• Wire frame representations resulting from the placement should allow a good visualization of
test results without expansion. Achieving this objective, enhances the ability of people doing
the test to diagnose problems with the test, which is obviously very desirable.

• seen at sensors, it is desirable that modes look different. This is measured by the condition
number of [cφ]T [cφ] (modeshape independence, see [14]) or by the magnitude of off-diagonal
terms in the auto-MAC matrix (this measures orthogonality). Both independence and orthog-
onality are strongly related.

• sensitivity of measured modeshape to a particular physical parameter (parameter visibility)

Sensor placement capabilities are accessed using the fe sens function as illustrated in the
d cor(’TutoSensPlace’) demo. This function supports the effective independence [14] and max-
imum sequence algorithms which seek to provide good placement in terms of modeshape indepen-
dence.

It is always good practice to verify the orthogonality of FEM modes at sensors using the auto-MAC
(whose off-diagonal terms should typically be below 0.1)
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cphi = fe_c(mdof,sdof)*mode; ii_mac(’cpa’,cphi,’mac auto plot’)

For shaker placement, you typically want to make sure that

• you excite a set of target modes,

• or will have a combination of simultaneous loads that excites a particular mode and not other
nearby modes.

The placement based on the first objective is easily achieved looking at the minimum controllability,
the second uses the Multivariate Mode Indicator function (see ii mmif). Appropriate calls are
illustrated in the d cor(’TutoSensPlace’) demo.

3.2 Test/analysis correlation

Correlation criteria seek to analyze the similarity and differences between two sets of results. Usual
applications are the correlation of test and analysis results and the comparison of various analysis
results.

Ideally, correlation criteria should quantify the ability of two models to make the same predictions.
Since, the predictions of interest for a particular model can rarely be pinpointed precisely, one has
to use general qualities and select, from a list of possible criterion, the ones that can be computed
and do a good enough job for the intended purpose.

3.2.1 Shape based criteria

The ii mac interface implements a number of correlation criteria. You should at least learn about the
Modal Assurance Criterion (MAC) and Pseudo Orthogonality Checks (POC) (theoretical description
can be found in ii mac). These are very popular and should be used first. Other criteria should be
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3 Test/analysis correlation tutorial

used to get more insight when you don’t have the desired answer or to make sure that your answer
is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific as to what you
are trying to do with your model. Since that rarely happens, you should know the possibilities and
stick to what is good enough for the job.

The following table gives a list of criteria implemented in the ii mac interface.

MAC Modal Assurance Criterion (10.32). The most popular criterion for correlating vectors.
Insensitive to vector scaling. Sensitive to sensor selection and level of response at each
sensor. Main limitation : can give very misleading results without warning. Main advan-
tage : can be used in all cases. A MAC criterion applied to frequency responses is called
FRAC.

POC Pseudo Orthogonality Checks (10.38). Required in some industries for model validation.
This criterion is only defined for modes since other shapes do verify orthogonality condi-
tions. Its scaled insensitive version (10.33) corresponds to a mass weighted MAC and is
implemented as the MAC M commands. Main limitation: requires the definition of a mass
associated with the known modeshape components. Main advantage : gives a much more
reliable indication of correlation than the MAC.

Error Modeshape pairing (based on the MAC or MAC-M) and relative frequency error and MAC
correlation.

Rel Relative error (10.39). Insensitive to scale when using the modal scale factor. Extremely
accurate criterion but does not tell much when correlation poor.

COMAC Coordinate Modal Assurance Criteria (three variants implemented in ii mac) compare
sets of vectors to analyze which sensors lead poor correlation. Main limitation : does not
systematically give good indications. Main advantage : a very fast tool giving more insight
into the reasons of poor correlation.

MACCO What if analysis, where coordinates are sequentially eliminated from the MAC. Slower but
more precise than COMAC.

ii mac describes the low-level calls to shape based correlation tools implemented in SDT, but to
ease their practical usage, a dedicated MAC tab has been developed in the dock CoShape.

Here is a tutorial to present the classical GUI usage.

You will need the garteur example files, which can be found in SDTPath/sdtdemos/gart*.m. If these
files are not present, click on the first step on the following tutorial in the HTML version of the
documentation or download the patch at the address https://www.sdtools.com/contrib/garteur.zip
and unzip the content in the folder SDTPath/sdtdemos.

1. Execute the command fecom(’dockCoShape’) to open an empty dock. You can also click on
the button CoShape on the tree in SDT Root.
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2. Click on associated to the line sens to open the file containing the result of the superpo-
sition between a test wireframe and a FEM. This will open the import model window. Select
the file to load : for this tutorial, the file is located at SDTPath/sdtdemos/gart CoTopo.mat

(it corresponds to the dock CoTopo saved file of the tutorial in section 3.1.1 ). Data is loaded
and displayed in the two feplot figures. A brief description of the number of the observation
is given in the table providing the number of sensors Nsens and the number of FEM DOFs
NDof for the observation matrix.
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3 Test/analysis correlation tutorial

3. Click on associated to the line da to load the identified modes. In the opening window,
select the file SDTPath/sdtdemos/gartid.unv. This will open the Unv tab in which you need
to select the line containing the shape data and click on import.

Do the same with the line db to load numerical modes. Select the file
SDTPath/sdtdemos/gart mdl.fil (mode computation result from abaqus).

The modeshapes are visible in both feplot figures.
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A brief description the data is displayed:

• for thee test da, the number of identified residues NsensNact and the number of shapes
Nshape

• for thee FEM db, the number of DOF Ndof and the number of shapes Nshape

4. Click on associated to the line MacPlot to open the MAC matrix in a new window.
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3 Test/analysis correlation tutorial

You can click on the square in the MAC matrix to interactively select the corresponding mode
shapes in the feplot figure.

5. To pair more modes, expand the row MacError and allow a frequency shift Df of 20%.
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Click then on associated to the line MACError to open the MACError display in a new
window.

You can see here on the left the MAC value and on the right the relative frequency shift
between the two sets of paired modes.

3.2.2 Energy based criteria
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3 Test/analysis correlation tutorial

The criteria that make the most mechanical sense are derived from the equilibrium equations. For
example, modes are defined by the eigenvalue problem (6.95). Thus the dynamic residual

{
R̂j
}

=
[
K − ω2

jidM
]
{φidj} (3.1)

should be close to zero. A similar residual (3.5) can be defined for FRFs.

The Euclidean norm of the dynamic residual has often been considered, but it tends to be a rather
poor choice for models mixing translations and rotations or having very different levels of response
in different parts of the structure.

To go to an energy based norm, the easiest is to build a displacement residual

{Rj} =
[
K̂
]−1 [

K − ω2
jidM

]
{φidj} (3.2)

and to use the strain |R̃j |K = R̃Tj KR̃j or kinetic |R̃j |M = R̃Tj MR̃j energy norms for comparison.

Note that
[
K̂
]

need only be a reference stiffness that appropriately captures the system behavior.

Thus for cases with rigid body modes, a pseudo-inverse of the stiffness (see section 6.2.4 ), or a mass
shifted stiffness can be used. The displacement residual R̃j is sometimes called error in constitutive
law (for reasons that have nothing to do with structural dynamics).

This approach is illustrated in the gartco demo and used for MDRE in fe exp. While much more
powerful than methods implemented in ii mac, the development of standard energy based criteria
is still a fairly open research topic.

3.2.3 Correlation of FRFs

Comparisons of frequency response functions are performed for both identification and finite element
updating purposes.

The quadratic cost function associated with the Euclidean norm

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2 (3.3)

is the most common comparison criterion. The main reason to use it is that it leads to linear
least-squares problem for which there are numerically efficient solvers. (id rc uses this cost function
for this reason).

The quadratic cost corresponds to an additive description of the error on the transfer functions and,
in the absence of weighting. It is mostly sensitive to errors in regions with high levels of response.
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The log least-squares cost, defined by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)

Hij(sk)

∣∣∣∣∣ |2 (3.4)

uses a multiplicative description of the error and is as sensitive to resonances than to anti-resonances.
While the use of a non-linear cost function results in much higher computational costs, this cost
tends to be much better at distinguishing physically close dynamic systems than the quadratic cost
(except when the difference is very small which is why the quadratic cost can be used in identification
phases).

The utility function ii cost computes these two costs for two sets of FRFs xf1 and xf2 (obtained
through test and FE prediction using nor2xf for example). The evaluation of these costs provides
a quick and efficient way to compare sets of MIMO FRF and is used in identification and model
update algorithms.

Note that you might also consider the complex log of the transfer functions which would give a
simple mechanism to take phase errors into account (this might become important for extremely
accurate identification sometimes needed for control synthesis).

If the response at a given frequency can be expanded to the full finite element DOF set, you should
consider an energy criterion based on the dynamic residual in displacement, which in this case takes
the form

{Rj} =
[
K̂
]−1

[[Z(ω)] {qex(ω)} − [b] {u(ω)}] (3.5)

and can be used directly of test/analysis correlation and/or finite element updating.

Shape correlation tools provided by ii mac can also be used to compare frequency responses. Thus
the MAC applied to FRFs is sometimes called FRAC.

3.3 Expansion methods

Expansion methods seek to estimate the motion at all DOFs of a finite element model based on
measured information (typically modeshapes or frequency response functions) and prior, but not
necessarily accurate, information about the structure under test in the form of a reference finite
element model. As for all estimation techniques, the quality of expansion results is deteriorated by
poor test results and/or poor modeling, but good results can be obtained when one or both are
accurate.

The d cor demonstration illustrates modeshape expansion in the SDT. This section summarizes the
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theory and you are encouraged to download [15][16] from sdtools.com if you want more details.

3.3.1 Underlying theory for expansion methods

The unified perspective driving the SDT architecture is detailed in [15][16]. The proposed classifi-
cation is based on how various methods combine information about test and modeling errors.

Test results yTest and expanded shapes qex are related by the observation equation (4.1). Test error
is thus measured by a norm of the difference between the test quantity and the observed expanded
shape

ε = ‖{yTest} − [c] {qex}‖2Q (3.6)

where the choice of the Q norm is an important issue. While the Euclidian norm (Q = I) is used
in general, a norm that takes into account an estimated variance of the various components of yTest
seems most appropriate. Various energy based metrics have also been considered in [17] although
the motivation for using a energy norm on test results is unclear.

The expanded vector is also supposed to verify an equilibrium condition that depends on its nature.
Since the model and test results don’t match exactly one does not expect the expanded vector
to verify this equation exactly which leads to the definition of a residual. Standard residuals are
Rj = Z(ωj)φj for modeshapes and Rj = Z(ω)q− F for frequency response to the harmonic load F .

Dynamic residuals correspond to generalized loads, so they should be associated to displacement
residuals and an energy norm. A standard solution [18] is to compute the static response to the
residual and use the associated strain energy, which is a good indicator of modeling error,

‖Rj(qex)‖2K = {Rj}T
[
K̂
]−1
{Rj} (3.7)

where K̂ is the stiffness of a reference FEM model and can be a mass-shifted stiffness in the presence
of rigid body modes (see section 6.2.4 ). Variants of this energy norm of the dynamic residual can
be found in [17].

like all estimation techniques, expansion methods should clearly indicate a trade-off between test and
modeling errors, since both test and model are subject to error. But modeling errors are not easily
taken into account. Common expansion techniques thus only use the model to build a subspace of
likely displacements.

Interpolation methods, the simplest form of subspace method are discussed in section 3.3.2 . Stan-
dard subspace methods and their implementation are discussed in section section 3.3.3 . Methods
taking modeling errors into account are discussed in section 3.3.4 .
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3.3.2 Basic interpolation methods for unmeasured DOFs

Translations are always measured in a single direction. By summing the measurements of all sensors
at a single physical node, it is possible for triaxial measurements to determine the 3-D motion.
Using only triaxial measurements is often economically/technically impossible and is not particularly
desirable. Assuming that all unmeasured motions are zero is however often not acceptable either
(often distorts the perception of test modeshapes in 3-D wire frame displays).

Historically, the first solutions to this problem used geometrical interpolation methods estimating
the motion in less important directions based on measurements at a few selected nodes.

Wire-frame displays can be considered as trivial interpolation methods since the motion between
two test nodes is interpolated using linear shape functions.

In the SDT, you can easily implement interpolation methods using matrices which give the relation
between measured DOFs tdof and a larger set of deformation DOFs ndof. The easiest approach is
typically a use of the fe sens WireExp command as in the example below

% generate example, see sdtweb(’demosdt.m#Sleeper’)

cf=demosdt(’sleeper’);

TR=fe_sens(’wireexp’,cf.CStack{’Test’})
fe_sens(’WireExpShow’,cf,TR)

% display partial shapes as cell array

disp(TR)

r1=[{’’} fe_c(TR.adof([1 3 5]))’;

fe_def(’subdof-cell’,fe_def(’subdef’,TR,[1 3 5]),[1 2 46 48]’)]

Given an interpolation matrix TR, you can animate interpolated shapes using
cf.def={def,exp}. The interpolation (expansion) matrix TR has fields

• TR.DOF lists DOFs where the response is interpolated

• TR.adof lists input DOFs, these should match identifiers in the first column of a sens.tdof

field.

• TR.def give the displacement at all DOFs corresponding to a unit sensor motion. Note as
shown in the example above that a 1.08 (1− y) measurement should lead to a negative value
on the 1.02 (1y) DOF. The same holds for measurements in arbitrary directions, TR.def should
be unity when projected in the measurement direction.

The fe sens WireExp command considers the wire frame as a coarse FEM model and uses expansion
(see section 3.3.3 for details) to generate the interpolation. This is much more general than typical
geometric constructions (linear interpolations, spline), which cannot handle arbitrary geometries.
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Manual building of the interpolation matrix can be done by filling in the TR.def columns.
fe sens(’WireExpShow’,cf,TR) can then be used to verify the interpolation associated with each
sensor (use the +/- buttons to scan trough sensors).

Starting from a basis of vectors exp.def with non unit displacements at the measurement DOFs,
you can use

TR=exp;TR.adof=tdof(:,1);

TR.def=exp.def*pinv(fe_c(exp.DOF,tdof)*exp.def);

to minimize the norm of the test error (3.6) for a response within the subspace spanned by exp.def

and thus generate a unmeasured DOF interpolation matrix.

3.3.3 Subspace based expansion methods

If one can justify that true motion can be well represented by a vector within the subspace char-
acterized by a basis T with no more columns than there are sensors (one assumes that the true
displacement is of the form {qEx} = [T ] {qR}), an estimate of the true response simply obtained by
minimizing test error, that is solving the least-squares problem

{qR} = arg min || {yTest} − [c] [T ] {qR} ||22 (3.8)

Modeshape expansion based on the subspace of low frequency modes is known as modal [19] or
SEREP [20] expansion. The subtle difference between the two approaches is the fact that, in
the original paper, modal expansion preserved test results on test DOFs (DOFs and sensors were
assumed to coincide) and interpolated motion on other DOFs. The SDT supports modal expansion
using

yExp = fe_exp(yTest,sens,T)

where yTest are the measured vectors, sens is the sensor configuration (see fe sens) or an obser-
vation matrix c, and T is a set of target modes (computed using fe eig or imported from an other
FE code).

An advantage of the modal methods is the fact that you can select less target modes that you have
sensors which induces a smoothing of the results which can alleviate some of the problems linked to
measurement/identification errors.

The study presented in [15] concludes that modal based methods perform very well when an ap-
propriate set of target modes is selected. The only but essential limitation seems to be the absence
of design/verification methodologies for target mode selection. Furthermore it is unclear whether a
good selection always exists.
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Modeshape expansion based on the subspace of static responses to unit displacements at sensors is
known as static expansion or Guyan reduction [21].

When expanding modeshapes or FRFs, each deformation is associated to a frequency. It thus
seems reasonable to replace the static responses by dynamic responses to loads/displacements at
that frequency. This leads to dynamic expansion [22]. In general, computing a subspace for each
modeshape frequency is too costly. The alternative of using a single “representative” frequency for
all modes was proposed in [23] but suffers from the same limitations as choosing this frequency to
be zero (Guyan reduction).

The SDT supports full order static and dynamic expansion using

yExp=fe_exp(yTest,fTest,sens,m,k,mdof)

where fTest can a single frequency (0 for static) or have a value for each shape. In the later case,
computational times are usually prohibitive so that reduced basis solutions discussed below should
be used.

For tests described by observation matrices, the unit displacement problem defining static modes
can be replaced by a unit load problem [T ] = [K]−1 [c]T . For structures without rigid body modes
this generates the same subspace as the unit displacement problem. In other cases [K] is singular
and can be simply mass-shifted (replaced by K + αM with α usually taken small when compared
to the square of the first flexible frequency, see section 6.2.4 ).

In practice, static expansion can be restated in the form (3.8) where T corresponds to constraint
or modes associated to the load collocated to the output shape matrix characterizing sensors (see
section 6.2 ). Restating the problem in terms of minimization is helpful if you want to compute your
static responses outside the SDT (you won’t need to import your mass and stiffness matrices but
only the considered static responses).

The weakness of static expansion is the existence of a frequency limit found by computing modes of
the structure with all sensors fixed. In many practical applications, this frequency limit is not that
low (typically because of lack of sensors in certain areas/directions). You can easily compute this
frequency limit using fe exp.

Full order dynamic expansion is typically too expensive to be considered for a full order model.
The SDT supports reduced basis dynamic expansion where you compute dynamic expansion on
a subspace combining modes and static responses to loads at sensors. A typical calling sequence
combining modeshape computations and static correction would be

[md0,f0,kd] = fe_eig(m,k,[105 30 1e2]);

T = [kd \ ((sens.ctn*sens.cna)’) md0];

mdex = fe_exp(IIres.’,IIpo(:,1)*2*pi,sens,m,k,mdof,T);

133



3 Test/analysis correlation tutorial

You should note however that the minimum dynamic residual expansion (MDRE) discussed in
the next section typically gives better results at a marginal computational cost increase, so that you
should only use dynamic expansion to expands FRFs (MDRE for FRFs is not currently implemented
in fe exp) or operational deflection shapes (for which modeling error is hard to define).

3.3.4 Model based expansion methods

Given metrics on test (3.6) and modeling (3.7) error, one uses a weighted sum of the two types of
errors to introduce a generalized least-squares problem

minqj,ex ‖R(qj,ex)‖2K + γjεj (3.9)

MDRE (Minimum Dynamic Residual Expansion) assumes test errors to be zero. MDRE-WE (MDRE
With test Error) sets the relative weighting (γj coefficient) iteratively until the desired bound on test
error is reached (this is really a way to solve the least-squares problem with a quadratic inequality
as proposed in [24]).

These methods are currently only implemented for modeshape expansion. When they can be used,
they are really superior to subspace methods. The proper strategy to choose the error bound in
MDRE-WE is still an open issue but it directly relates to the confidence you have in your model
and test results.

3.4 Structural dynamic modification

While test results are typically used for test/analysis correlation and update, experimental data have
direct uses. In particular,

• experimental damping ratios are often used for finite element model predictions;

• identified models can be used to predict the response after a modification (if this modification
is mechanical, one talks about structural modification, if it is a controller one does closed loop
response prediction);

• identified models can be used to generate control laws in active control applications;

• if some input locations of interest for structural modification have only been tested as output
locations, the reciprocity assumption (see section 2.8.2 ) can be used to predict unmeasured
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transfers. But these predictions lack residual terms (see section 6.2.3 ) which are often impor-
tant in coupled predictions.

Structural modification and closed loop predictions are important application areas of SDT. For
closed loop predictions, users typically build state-space models with res2ss and then use control
related tools (Control Toolbox, Simulink). If mechanical modifications can be modeled with a
mass/damping/stiffness model directly connected to measured inputs/outputs, predicting the effect
of a modification takes the same route as illustrated below. Mass effects correspond to acceleration
feedback, damping to velocity feedback, and stiffness to displacement feedback.

The following illustrates on a real experimental dataset the prediction of a 300 g mass loading effect
at a locations 1012 − z and 1112 − z (when only 1012 − z is excited in the gartid dataset used
below).

ci=demosdt(’demo gartid est’);

ci.Stack{’Test’}.xf=-ci.Stack{’Test’}.xf;% driving 1012-z to 1012z

ci.Stack{’Test’}.dof(:,2)=12.03;
ci.IDopt.reci=’1 FRF’; idcom(ci,’est’);

ind=fe_c(ci.Stack{’IdMain’}.dof(:,1),[1012;1112],’ind’);
po_ol=ci.Stack{’IdMain’}.po;

% Using normal modes

NOR = res2nor(ci.Stack{’IdMain’}); NOR.pb=NOR.cp’;

S=nor2ss(NOR,’hz’); % since NOR.idopt tells acc. SS is force to Acc

mass=.3; a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;

po_cln=ii_pof(eig(a_cl)/2/pi,3,2)

if sdtdef(’UseControlToolbox-safe’,1) && any(exist(’ss’,’file’)==[2 6]);

SS=S;set(SS,’b’,S.b(:,4),’d’,S.d(:,4),’InputName’,S.InputName(4))

else % Without CTbox

SS=S;SS.b=SS.b(:,4);SS.d=SS.d(:,4);SS.dof_out=SS.dof_out(4,:);

end

qbode(SS,ci.Stack{’Test’}.w*2*pi,’iiplot "Normal"’);

% Using complex modes

SA = res2ss(ci.Stack{’IdMain’},’AllIO’);
a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;

po_clx=ii_pof(eig(a_cl)/2/pi,3,2)

if sdtdef(’UseControlToolbox-safe’,1) && any(exist(’ss’,’file’)==[2 6]);

SS=SA;set(SS,’b’,S.b(:,4),’d’,S.d(:,4)*0,’InputName’,S.InputName(4))

else % Without CTbox
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3 Test/analysis correlation tutorial

SS=SA;SS.b=SS.b(:,4);SS.d=SS.d(:,4)*0;SS.dof_out=S.dof_out(4,:);

end

qbode(SS,ci.Stack{’Test’}.w*2*pi,’iiplot "Cpx"’);

iicom(’ch4’);

% Frequencies

figure(1);in1=1:8;subplot(211);

bar([ po_clx(in1,1) po_cln(in1,1)]./po_ol(in1,[1 1]))

ylabel(’\Delta F / F’);legend(’Complex modes’,’Normal modes’)

set(gca,’ylim’,[.5 1])

% Damping

subplot(212);bar([ po_clx(in1,2) po_cln(in1,2)]./po_ol(in1,[2 2]))

ylabel(’\Delta \zeta / \zeta’);legend(’Complex modes’,’Normal modes’)

set(gca,’ylim’,[.5 1.5])

Notice that the change in the sign of ci.Stack{’Test’}.xf needed to have a positive driving
point FRFs (this is assumed by id rm). Reciprocity was either applied using complex (the ’AllIO’

command in res2ss returns all input/output pairs assuming reciprocity) or normal modes with
NOR.pb=NOR.cp’.

Closed loop frequency predictions agree very well using complex or normal modes (as well as with
FEM predictions) but damping variation estimates are not very good with the complex mode state-
space model.

There is much more to structural dynamic modification than a generalization of this example to
arbitrary point mass, stiffness and damping connections. And you can read [25] or get in touch with
SDTools for our latest advances on the subject.
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This chapter introduces notions needed to use finite element modeling in the SDT. It illustrates how
to define mechanical problems (model, boundary conditions, loads, etc.), compute and post-process
the response

• using the feplot Graphical User Interface,

• or using script commands.

The GUIs are described and the connections between graphical and low level data are detailed for

• the model data structures,

• the case (i.e. DOFs, boundary conditions, loads, ...),

• the response to a specified case,

• the results post-processing .

4.1 FE mesh declaration

This section gives a summary of FE mesh declaration with pointers to more detailed documentation.

4.1.1 Direct declaration of geometry (truss example)

Hand declaration of a model can only be done for small models and later sections address more
realistic problems. This example mostly illustrates the form of the model data structure.

Figure 4.1: FE model.

In d mesh(’TutoBmesh-s1’) , the geometry is declared in the model.Node matrix (see section 7.1
and section 7.1.1 ). In this case, one defines 6 nodes for the truss and an arbitrary reference node
to distinguish principal bending axes (see beam1)
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4 FEM tutorial

% NodeID unused x y z

model.Node=[ 1 0 0 0 0 1 0;

2 0 0 0 0 0 0;

3 0 0 0 1 1 0;

4 0 0 0 1 0 0;

5 0 0 0 2 0 0;

6 0 0 0 2 1 0;

7 0 0 0 1 1 1]; % reference node

The model description matrix (see section 7.1 ) describes 4 longerons, 2 diagonals and 2 battens.
These can be declared using three groups of beam1 elements

model.Elt=[ ...

% declaration of element group for longerons

Inf abs(’beam1’) ; ...

%node1 node2 MatID ProID nodeR, zeros to fill the matrix

1 3 1 1 7 0 ; ...

3 6 1 1 7 0 ; ...

2 4 1 1 7 0 ; ...

4 5 1 1 7 0 ; ...

% declaration of element group for diagonals

Inf abs(’beam1’) ; ...

2 3 1 2 7 0 ; ...

4 6 1 2 7 0 ; ...

% declaration of element group for battens

Inf abs(’beam1’) ; ...

3 4 1 3 7 0 ; ...

5 6 1 3 7 0 ];

4.2 Building models with feutil
Declaration by hand is clearly not the best way to proceed in general.feutil provides a number of

commands for finite element model creation.feutil should be preferred to femesh which is a lower
level command. One can find meshing examples through the feutil commands in

• d truss : this demo builds a truss model using beam elements.

• d ubeam : the beginning of the demo builds a volume model that is used is various examples
of this documentation.
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The principle of feutil meshing strategy is to build sub model parts using the feutil basic meshing
commands (extrusion, rotation, revolution, division, ...) and to assemble those models to form the
resulting model thanks to the feutil AddTest commands.

Following detailed example builds the GARTEUR model.

First the model data structure is initialized (see sdtweb model), with fields Node (that contains some
initial nodes that will be used to begin building of elements by elementary operations), Elt (which
is empty at this step), unit (that contains the unit of the mesh, that must be coherent with material
properties defined later. Here the SI system is used that means that node positions are defined in
meters.), and name (that contains model name that is used to identify the model in the assembly
steps for example).

%% Step1 : Initialize model

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 0.15;

3 0 0 0 0.4 1.0 0.176; 4 0 0 0 0.4 0.9 0.176],...

’Elt’,[],’unit’,’SI’,’name’,’GARTEUR’);

Now the fuselage is built by creating an initial beam between nodes 1 and 2 (see feutil Object

commands to easily create a number of elementary models). Then the beam is extruded with an
irregular spatial step in the x direction, to form quad4 elements that represents the fuselage.

%% Step2 Fuselage

model.Elt=feutil(’ObjectBeamLine 1 2’,model);

model=feutil(’Extrude 0 1.0 0.0 0.0’,model,...

[linspace(0,.55,5) linspace(.65,1.4,6) 1.5]);

The same strategy is used to mesh the quads corresponding to the plane tail. The extremities of
the initial beam to be extruded are not explicitely defined as previously, but are found in the nodes
created in the last step through the feutil FindNode command (that returns the NodeId of nodes
found by FindNode). Here nodes are found at z position equal to .15, and x upper than 1.4. The
vertical tail is built in a temporary model named mo0. Note that mo0 is first initialized with principal
model nodes (mo0=model;) so that new nodes that will be added during the extrusion respect the
NodeId numerotation of the main model. Then we can simply add the vertical tail mo0 to the
main model using the feutil AddTestCombine command (if node numerotation was not coherent
for the new part mo0 and the main model already defined nodes, we would have to use the feutil

AddTestMerge command that can be really time consuming).

%% Step3 vertical tail

n1=feutil(’FindNode z==.15 & x>=1.4’,model);

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Extrude 3 0 0 .1’,mo0);

model=feutil(’AddTestCombine-noori’,model,mo0);
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4 FEM tutorial

Then the vertical horizontal tail, the right and left drums, the wings and the connection plate are
built and added to main model using the same strategy:

%% Step4 Vertical horizontal tail

n1=feutil(’FindNode z==.45’,model)

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Extrude 0 0.0 0.2 0.0’,mo0,[-1 -.5 0 .5 1]);

model=feutil(’AddTestCombine;-noori’,model,mo0);

%% right drum

mo0=model; mo0.Elt=feutil(’ObjectBeamLine 3 4’);

mo0=feutil(’Extrude 1 .4 0 0’,mo0);

mo0=feutil(’Divide’,mo0,[0 2/40 15/40 25/40 1],[0 .7 1]);

model=feutil(’AddTestCombine;-noori’,model,mo0);

%% left drum

mo0=feutil(’SymSel 1 0 1 0’,mo0);

model=feutil(’AddTestCombine;-noori’,model,mo0);

%% wing

n1=feutil(’FindNode y==1 & x>=.55 & x<=.65’,model);

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Divide’,mo0,[0 1-.762 1]);

mo0=feutil(’Extrude 0 0.0 -1.0 0.0’,mo0,[0 0.1 linspace(.15,.965,9) ...

linspace(1.035,1.85,9) 1.9 2.0]);

model=feutil(’AddTestCombine;-noori’,model,mo0);

%% Connection plate

n1=feutil(’FindNode y==0.035 | y==-0.035 & x==.55’,model)

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Divide 2’,mo0);

mo0=feutil(’TransSel -.02 0 0’,mo0);

mo0=feutil(’Extrude 0 1 0 0’,mo0,[0 .02 .12 .14]);

i1=intersect(feutil(’FindNode group6’,model),feutil(’FindNode group1’,mo0));

mo0=feutil(’TransSel 0.0 0.0 -0.026’,mo0);

model=feutil(’AddTestCombine;-noori’,model,mo0);

The stiffness connecting the connection plate are built extruding a mass object to form a beam, and
then changing the name of the beam group as celas which are the spring elements in SDT.

%% Step5 Stiff links for the connection

142



mo0=model; mo0.Elt=feutil(’Object mass’,i1);

mo0=feutil(’Extrude 1 0 0 -.026’,mo0);

mo0.Elt=feutil(’set group1 name celas’,mo0);

The celas properties are defined in the element matrix (see sdtweb celas for more details). First
row of mo0 is the header, the springs are stored as following rows (2nd row to the end). The springs
connect the master DOF (column 3) x, y, z, θx and θy to the same DOF on the slave nodes (column
4, 0 that mean the same as master). The stiffness (column 7) is defined at 1e12. The 4 springs inmo0
are then added to the main model.

%% Step6 set connected DOFs and spring value

mo0.Elt(2:end,3)=12345; % master dof

mo0.Elt(2:end,4)=0; % same dof as master

mo0.Elt(2:end,7)=1e12; % stiffness

model=feutil(’AddTestCombine;-noori’,model,mo0); % add springs to main model

Then group 6 is divided in 2 groups to get the part covered by constraining layer in a separated
group (in order to help the later manipulations of this part, such as material identifier definition).

%% Step7 Make a group of the part covered by the constraining layer

model.Elt=feutil(’Divide group 6 InNode {x>.55 & y<=.85 & y>=-.85}’,model);

Then some masses are added through the ObjectMass command. Then all masses are regrouped in
a same group.

%% Step8 Tip masses

i1=feutil(’FindNode y==0.93 | y==-0.93 & x==0.42’,model)

mo0=model; mo0.Elt=feutil(’Object mass’,i1,[0.2 0.2 0.2]); %200g

model=feutil(’AddTestCombine;-noori’,model,mo0);

i1=feutil(’FindNode z==.45 & y==0’,model)

mo0=model; mo0.Elt=feutil(’Object mass’,i1,[0.5 0.5 0.5]); %500g

model=feutil(’AddTestCombine;-noori’,model,mo0);

model=feutil(’Join mass1’,model); % all mass in the same group

Then plates are oriented (see the feutil Orient command) so that offset in correct direction can
be defined. Offset (distances in the normal direction from element plane to reference plane) are
defined in element matrices in the 9th column for quad4 elements. The feutil FindElt command
is used to find the indices of considered elements in the model element matrix model.Elt.

%% Step9 Orient plates that will need an off-set

model.Elt=feutil(’Orient 4:8 n 0 0 3’,model);

i1=feutil(’FindElt group4:5’,model);

model.Elt(i1,9)=0.005; % drums (positive off-set)

i1=feutil(’FindElt group6:7’,model);
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model.Elt(i1,9)=-0.005; % wing

i1=feutil(’FindElt group8’,model);

model.Elt(i1,9)=0.008; % wing

Now ProId (element property identifier) and MatId (material identifier) are defined for each element.
In last meshing steps, elements have been added by group (or separated), so that we only attribute
a material and element property identifier for each group.

%% Step10 Deal with material and element properties identifier:

model.Elt=feutil(’Set group1 mat1 pro3’,model);

model.Elt=feutil(’Set group2:7 mat1 pro1’,model);

model.Elt=feutil(’Set group8 mat2 pro2’,model);

model.Elt=feutil(’Set group6 pro4’,model);

And following lines define associated properties:

%% Step11 Define associated properties:

model.pl=[m_elastic(’dbval 1 aluminum’);

m_elastic(’dbval 2 steel’)];

model.il = [1 fe_mat(’p_shell’,’SI’,1) 2 1 0 .01

2 fe_mat(’p_shell’,’SI’,1) 2 1 0 .016

3 fe_mat(’p_shell’,’SI’,1) 2 1 0 .05

4 fe_mat(’p_shell’,’SI’,1) 2 1 0 .011];

The result is then displayed in feplot, coloring each material differently:

%% Step12 Display in feplot

cf=comgui(’guifeplot -project "SDT Root"’,3); % Robust open in figure(3)

cf.model=model; % display model

fecom(’;sub 1 1;view3; colordatamat-edgealpha.1’); % 1 subplot, specify view, color,

4.3 Building models with femesh

Declaration by hand is clearly not the best way to proceed in general.femesh provides a number of
commands for finite element model creation. The first input argument should be a string containing
a single femesh command or a string of chained commands starting by a ; (parsed by commode

which also provides a femesh command mode).

To understand the examples, you should remember that femesh uses the following standard global
variables
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FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

In the example of the previous section (see also the d truss demo), you could use femesh as follows:
initialize, declare the 4 nodes of a single bay by hand, declare the beams of this bay using the
objectbeamline command

%% Step1 Declare nodes and build single bay

FEel0=[]; FEelt=[];

FEnode=[1 0 0 0 0 0 0;2 0 0 0 0 1 0; ...

3 0 0 0 1 0 0;4 0 0 0 1 1 0]; ...

femesh(’objectbeamline 1 3 0 2 4 0 3 4 0 1 4’);

The model of the first bay in is now selected (stored in FEel0). You can now put it in the main
model, translate the selection by 1 in the x direction and add the new selection to the main model

%% Step2 Put in main model, translate seclection and add to main model

femesh(’;addsel;transsel 1 0 0;addsel;info’);

model=femesh(’model’); % export FEnode and FEelt geometry in model

cf=feplot; cf.model=model;

fecom(’;view2;textnode;triax;’);

You could also build more complex examples. For example, one could remove the second bay, make
the diagonals a second group of bar1 elements, repeat the cell 10 times, rotate the planar truss thus
obtained twice to create a 3-D triangular section truss and show the result (see d truss)

%% Step3 Create a 3D struss based on a single 2D bay

femesh(’reset’);

femesh(’test2bay’);

femesh(’removeelt group2’);

femesh(’divide group 1 InNode 1 4’);

femesh(’set group1 name bar1’);

femesh(’;selgroup2 1;repeatsel 10 1 0 0;addsel’);

femesh(’;rotatesel 1 60 1 0 0;addsel;’);

femesh(’;selgroup3:4;rotatesel 2 -60 1 0 0;addsel;’);

femesh(’;selgroup3:8’);

model=femesh(’model0’); % export FEnode and FEel0 in model

cf=feplot; cf.model=model;

fecom(’;triaxon;view3;view y+180;view s-10’);
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femesh allows many other manipulations (translation, rotation, symmetry, extrusion, generation
by revolution, refinement by division of elements, selection of groups, nodes, elements, edges, etc.)
which are detailed in the Reference section.

Other more complex examples are treated in the tutorial scripts listed using d mesh(’Tuto’) or in
scripts beambar, d ubeam, gartfe.

4.3.1 Automated meshing capabilities

While this is not the toolbox focus, SDT supports some free meshing capabilities.

fe gmsh is an interface to the open source 3D mesher GMSH. Calls to this external program can be
used to generate meshes by direct calls from MATLAB. Examples are given in the function reference.

fe tetgen is an interface to the open source 3D tetrahedral mesh generator. See help fe tetgen

for commands.

fe fmesh(’qmesh’) implements a 2D quad mesher which meshes a coarse mesh containing triangles
or quads into quads of a target size. All nodes existing in the rough mesh are preserved. The
-noTest option removes the initial mesh.

% build rough mesh

model=feutil(’Objectquad 1 1’,[0 0 0;2 0 0; 2 3 0; 0 3 0],1,1);

model=feutil(’Objectquad 1 1’,model,[2 0 0;8 0 0; 8 1 0; 2 1 0],1,1);

% start the mesher with characteristic length of .1

model=fe_fmesh(’qmesh .1’,model.Node,model.Elt);

feplot(model);

Other resources in the MATLAB environment are initmesh from the PDE toolbox and the Mesh2D

package.

4.3.2 Importing models from other codes

The base SDT supports reading/writing of test related Universal files. All other interfaces are
packaged in the FEMLink extension. FEMLink is installed within the base SDT but can only be
accessed by licensed users.

To open the FEMLink GUI use sdtroot(’InitFEMLink’). for a reference on the FEMLink Tab,
see section 8.2.2 . You will find an up to date list of interfaces with other FEM codes at
www.sdtools.com/tofromfem.html). Import of model matrices in discussed in section 4.3.3 .

These interfaces evolve with user needs. Please don’t hesitate to ask for a patch even during an SDT
evaluation by sending a test case to info@sdtools.com.
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Interfaces available when this manual was revised were

ans2sdt reads ANSYS binary files, reads and writes .cdb input (see FEMLink)
abaqus reads ABAQUS binary output .fil files, reads and writes input and matrix files

(.inp,.mtx) (see FEMLink)
nasread reads the MSC/NASTRAN [26] .f06 output file (matrices, tables, real modes, dis-

placements, applied loads, grid point stresses), input bulk file (nodes, elements, prop-
erties). FEMLink provides extensions of the basic nasread, output2 to model format
conversion including element matrix reading, output4 file reading, advanced bulk
reading capabilities).

naswrite writes formatted input to the bulk data deck of MSC/NASTRAN (part of SDT),
FEMLink adds support for case writing.

nopo This OpenFEM function reads MODULEF models in binary format.
perm2sdt reads PERMAS ASCII files (this function is part of FEMLink)
samcef reads SAMCEF text input and binary output .u18, .u11 , .u12 files (see FEMLink)
ufread reads results in the Universal File format (in particular, types: 55 analysis data at

nodes, 58 data at DOF, 15 grid point, 82 trace line). Reading of additional FEM
related file types is supported by FEMLink through the uf link function.

ufwrite writes results in the Universal File format. SDT supports writing of test related
datasets. FEMLink supports FEM model writing.

4.3.3 Importing model matrices from other codes

FEMLink handles importing element matrices for NASTRAN (nasread BuildUp), ANSYS (ans2sdt
Build), SAMCEF (samcef read) and ABAQUS (abaqus read).

Reading of full matrices is supported for NASTRAN in the binary .op2 and .op4 formats (writing to
.op4 is also available). For ANSYS, reading of .matrix ASCII format is supported. For ABAQUS,
reading of ASCII .mtx format is supported.

Note that numerical precision is very important when importing model matrices. Storing matrices
in 8 digit ASCII format is very often not sufficient.

To incorporate full FEM matrices in a SDT model, you can proceed as follows. A full FEM model
matrix is most appropriately integrated as a superelement. The model would typically be composed
of

• a mass m and stiffness matrix k linked to DOFs mdof which you have imported with your own
code (for example, using nasread output2 or output4 and appropriate manipulations to create
mdof). Note that the ofact object provides translation from skyline to sparse format.
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4 FEM tutorial

• an equivalent mesh defined using standard SDT elements. This mesh will be used to plot the
imported model and possibly for repeating the model in a periodic structure. If you have no
mesh, define nodes and associated mass elements.

fesuper provides functions to handle superelements. In particular, fesuper SEAdd lets you define a
superelement model, without explicitly defining nodes or elements (you can specify only DOFs and
element matrices), and add it to another model.
Following example loads ubeam model, defines additional stiffness and mass matrices (that could
have been imported) and a visualization mesh.

% Load ubeam model :

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

% Define superelement from element matrices :

SE=struct(’DOF’,[180.01 189.01]’,...

’K’,{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},...
’Klab’,{{’m’,’k’}},...
’Opt’,[1 0;2 1]); % Matrix types, sdtweb secms#SeStruct

% Define visualization mesh :

SE.Node=feutil(’GetNode 180 | 189’,model);

SE.Elt=feutil(’ObjectBeamLine 180 189 -egid -1’);

% Add as a superelement to model :

model=fesuper(’SEadd -unique 1 1 selt’,model,SE);

You can easily define weighting coefficient associated to matrices of the superelement, by defining
an element property (see p super for more details). Following line defines a weighting coefficient of
1 for mass and 2 for stiffness (1001 is the MatId of the superelement).

% Define weighting coefficients for mass and stiffness matrices

model.il=[1001 fe_mat(’p_super’,’SI’,1) 1 2];

You may also want to repeat the superelement defined by element matrices. Following example
shows how to define a model, from repeated superelement:

% Define matrices (can be imported from other codes) :

model=femesh(’testhexa8’);

[m,k,mdof]=fe_mk(model);

% Define the superelement:

SE=struct(’DOF’,[180.01 189.01]’,...

’K’,{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},...
’Klab’,{{’m’,’k’}},...
’Opt’,[1 0;2 1]);
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SE.Node=model.Node; SE.Elt=model.Elt;

% Add as repeated superelement:

% (need good order of nodes for nodeshift)

model=fesuper(’SEAdd -trans 10 0.0 0.0 1.0 4 1000 1000 cube’,[],SE);

cf=feplot(model)

Superelement based substructuring is demonstrated in d cms2 which gives you a working example
where model matrices are stored in a generic superelement. Note that numerical precision is very
important when importing model matrices. Storing matrices in 8 digit ASCII format is very often
not sufficient.

4.4 The feplot interface

Three kinds of manipulations are possible using the feplot GUI

• viewing the model and post-processing the responses,

• setting and displaying the mechanical problem (model properties and cases),

• setting the view properties.

4.4.1 The main feplot figure

feplot figures are used to view FE models and hold all the data needed to run simulations. Data
in the model can be viewed in the property figure (see section 4.4.4 ). Data in the figure can be
accessed from the command line through pointers as detailed in section 4.4.3 . The feplot help
gives architecture information, while fecomlists available commands. Most demonstrations linked to
finite element modeling (see section 1.1 for a list) give examples of how to use feplot and fecom.
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Figure 4.2: Main feplot figure.

The first step of most analyzes is to display a model in the main feplot figure. Examples of possible
commands are (see fecom load for more details)

• cf=feplot(model) display the model in a variable and returns a pointer object cf to the figure.

• cf=feplot(5);cf.model=model; do the same thing but in figure 5.
cf=feplot;cf.model={node,elt}; will work for just nodes and elements. Note that cf.model

is a method to define the model and is not a pointer. cf.mdl is a pointer to the model, see
section 4.4.3 .

• feplot(’load’,’File.mat’) load a model from a .mat file.

As an example, you can load the data from the gartfe demo, get cf a SDT handle for a feplot

figure, set the model for this figure and get the standard 3D view of the structure

model=demosdt(’demogartfe’)

cf=feplot; % open FEPLOT and define a pointer CF to the figure

cf.model=model;

The main capabilities the feplot figure are accessible using the figure toolbar, the keyboard short-
cuts, the right mouse button (to open context menus) and the menus.
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Toolbar

List of icons used in GUIs

Model properties used to edit the properties of your model.

Start/stop animation

Previous Channel/Deformation

Next Channel/Deformation

iimouse zoom

Orbit. Remaining icons are part of MATLAB cameratoolbar functionality.

Snapshot. See iicom ImWrite.

Keyboard shortcuts

At this level note how you can zoom by selecting a region of interest with your mouse (double click
or press the i key to zoom back). You can make the axis active by clicking on it and then use any of
the u, U, v, V, w, W, 3, 2 keys to rotate the plot (press the ? key for a list of iimousekey shortcuts).

Menus and context menu

The contextmenu associated with your plot may be opened using the right mouse button and select
Cursor. See how the cursor allows you to know node numbers and positions. Use the left mouse
button to get more info on the current node (when you have more than one object, the n key is used
to go to the next object). Use the right button to exit the cursor mode.

Notice the other things you can do with the ContextMenu (associated with the figure, the axes and
objects). A few important functionalities and the associated commands are

• Cursor Node tracks mouse movements and displays information about pointed object. This
is equivalent to the iimouse(’cursor’) command line.

• Cursor...[Elt,Sel,Off] selects what information to display when tracking the mouse. The
iimouse(’cursor[onElt,onSel,Off]’) command lines are possible.

• Cursor... 3DLinePick (which can be started with fe fmesh(’3DLineInit’)) allows node
picking. Once started, the context menu gives access info (lists picked nodes and distances)
and done prints the list of picked nodes.

• TextNode activates the node labeling. It is equivalent to the fecom(’TextNode’) command
line.
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• Triax displays the orientation triax. It is equivalent to the fecom(’triax’) command line.

• Undef shows the undeformed structure. Other options are accessible with the
fecom(’undef[dot,line]’) command line.

• Views... [View n+x,...] selects default plot orientation. The
iimouse(’[vn+x,...]’) command lines are available.

• colorbar on shows the colorbar, for more accurate control see fecom ColorBar.

• Zoom Reset is the same as the iimouse(’resetvie’) command line to reset the zoom.

• setlines is the same as the setlines command line.

The figure Feplot menu gives you access to the following commands (accessible by fecom)

• Feplot:Feplot/Model properties opens the property figure (see section 4.4.4 ).

• Feplot:Sub commands:Sub IsoViews (same as iicom(’subiso’)) gets a plot with four views
of the same mode. Use iicom(’sub2 2 step’) to get four views of different modes.

• Feplot:Show menu generates standard plots. For FE analyses one will generally use surface
plots color-coded surface plots using patch objects) or wire-frame plots (use Feplot:Show

menu to switch).

• Feplot:Misc shows a Triax or opens the channel selector.

• Feplot:Undef is used to show or not the undeformed structure.

• Feplot:Colordata shows structure with standard colors.

• Feplot:Selection shows available selections.

• Feplot:Renderer is used to choose the graphical rendering. Continuous animation in OpenGL
rendering is possible for models that are not too large. The fecom SelReduce can be use to
coarsen the mesh otherwise.

• Feplot:Anim chooses the animation mode.

• Feplot:View defaults changes the orientation view.
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4.4.2 Viewing stack entries

You can typically view stack entries by clicking on the associated entry and using ProViewOn (
icon). Handling of which deformation is shown in multi-channel entries is illustrated below

model=demosdt(’demo UbeamDofLoad’);cf=feplot;

fecom(’curtabCases’,’Point load 1’);fecom(’proViewOn’);

% Control channel in multi column DOFLoad

cf.CStack{’Point load 1’}.Sel.ch=2;fecom(’proViewOn’);

4.4.3 Pointers to the figure and the model

cf1=feplot returns a pointer to the current feplot figure. The handle is used to provide simplified
calling formats for data initialization and text information on the current configuration. You can
create more than one feplot figure with cf=feplot(FigHandle). If many feplot figures are open,
one can define the target giving an feplot figure handle cf as a first argument to fecom commands.

The model is stored in a graphical object. cf.model is a method that calls fecom InitModel.
cf1.mdl is a method that returns a pointer to the model. Modifications to the pointer are reflected
to the data stored in the figure. However mo1=cf.mdl;mo1=model makes a copy of the variable
model into a new variable mo1.

cf.Stack gives access to the model stack as would cf.mdl.Stack but allows text based access. Thus
cf.Stack{’EigOpt’} searches for a name with that entry and returns an empty matrix if it does not
exist. If the entry may not exist a type must be given, for example cf.Stack{’info’,’EigOpt’}=[5
10 1].

cf.CStack gives access to the case stack as would calls of the form

Case=fe case(cf.mdl,’getcase’);stack get(Case,’FixDof’,’base’) but it allows more conve-
nient string based selection of the entries.

cf.Stack and cf.CStack allow regular expressions text based access. First character of such a
text is then #. One can for example access to all of the stack entries beginning by the string test

with cf.Stack{’#test.*’}. Regular expressions used by SDT are standard regular expressions of
Matlab. For example . replaces any character, * indicates 0 to any number repetitions of previous
character...

4.4.4 The property figure
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Finite element models are described by a data structures with the following main fields (for a full
list of possible fields see section 7.6 )

.Node nodes

.Elt elements

.pl material properties

.il element properties

.Stack stack of entries containing additional information cases (boundary conditions,
loads, etc.), material names, etc.

The model content can be viewed using the feplot property figure. This figure is opened using the

icon, or fecom(’ProInit’).

Figure 4.3: Model property interface.

This figure has the following tabs

• Model tab gives general information on the model nodes and elements. You can declare those
by hand as shown in section 4.1.1 , through structured mesh manipulations with feutil see sec-
tion 4.3 , or through import see section 4.3.2 . (see section 4.5 and Figure 4.3). You can visualize
one or more groups by selecting them in the left group list of this tab.

• Mat tab lists and edits all the material. In the mode, associated elements in selection are shown.
See section 4.5.1 .

• ElProp tab lists and edits all the properties. See section 4.5.1 .

• Stack tab lists and edits general information stored in the model (see section 7.7 for possible
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entries). You can access the model stack with the cf.Stack method.

• Cases tab lists and edits load and boundary conditions (see section 4.5.3 and Figure 4.9). You
can access the case stack with the cf.CStack method.

• Simulate tab allows to launch the static and dynamic simulation (see section 4.8 and Figure 4.12).

The figure icons have the following uses

Model properties used to edit the properties of your model.

Active display of current group, material, element property, stack or case entry.
Activate with fecom(’ProViewOn’);

Open the iiplot GUI.

Open/close feplot figure

Refresh the display, when the model has been modified from script.

4.4.5 GUI based mesh editing

This section describes functionality accessible with the Edit list item in the Model tab. To force
display use fecom(’CurtabModel’,’Edit’).

• AddNode opens a dialog that lets you enter nodes by giving their coordinates x y z, their node
number and coordinates NodeId x y z or all the node information NodeId CID DID GID x y

z.

• AddNodeCG starts the 3D line picker. You can then select a group of nodes by clicking with
the left button on these nodes. When you select Done with the context menu (right click), a
new node is added at the CG of the selected nodes.

• AddNodeOnEdge starts the 3D line picker to pick two nodes and adds nodes at the middle point
of the segment.

• AddElt Name starts the 3D line picker and lets you select nodes to mesh individual elements.
With Done the elements are added to the model as a group.

• AddRbe3 starts a line picker to define an RBE3 constraint. The first node picked is slave to
the motion of other nodes.

• RemoveWithNode starts the 3D line picker. You can then select a group of nodes by clicking
with the left button on these nodes. When you select Done with the context menu (right click),
elements containing the selected nodes are removed.
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• RemoveGroup opens a dialog to remove some groups.

Below are sample commands to run the functionality from the command line.

model=demosdt(’demoubeam’);cf=feplot;

fecom(’CurtabModel’,’Edit’)

fecom(cf,’addnode’)

fecom(cf,’addnodecg’)

fecom(cf,’addnodeOnEdge’)

fecom(cf,’RemoveWithNode’)

fecom(cf,’RemoveGroup’)

fecom(cf,’addElt tria3’)

fe_case(cf.mdl,’rbe3’,’RBE3’,[1 97 123456 1 123 98 1 123 99]);

fe_case(cf.mdl,’rbe3 -append’,’RBE3’,[1 100 123456 1 123 101 1 123 102]);

fecom addRbe3

4.4.6 Viewing shapes

feplot displays shapes and color fields at nodes. The basic def data structure provides shapes in
the .def field and associates each value with a .DOF (see mdof). For other inits see fecom InitDef.

[model,def]=demosdt(’Demo gartfe’); % Get example

cf=feplot(model,def); % display model and shapes

fecom(’ch7’); % select channel 7 (first flex mode)

fecom(’pro’); % Show model properties

Scan through the various deformations using the +/- buttons/keys or clicking in the deformations
list in the Deformations tab. From the command line you can use fecom ch commands.

Animate the deformations by clicking on the button. Notice how you can still change the current
deformation, rotate, etc. while running the animation. Animation properties can be modified with
fecom Anim commands or in the General tab of the feplot properties figure.

Modeshape scaling can be modified with the l/L key, with fecom Scale commands or in the Axes

tab of the feplot properties figure.

You may also want to visualize the measurement at various sensors (see section 4.6 and fe sens)
using a stick or arrow sensor visualization (fecom showsens or fecom showarrow). On such plots,
you can label some or all degrees of freedom using the call fecom (’doftext’,idof).

Look at the fecom reference section to see what modifications of displayed plots are available.
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Superposing shapes

Modeshape superposition is an important application (see plot of section 2.7.1 ) which is supported by
initializing deformations with the two deformation sets given sequentially and a fecom ch command
declaring more than one deformation. For example you could compare two sets of deformations
using

[model,def]=demosdt(’demo gartfe’);cf=feplot(model); % demo init

cf.def(1)=def; % First set of deformations

def.def=def.def+rand(size(def.def))/5;

cf.def(2)=def; % second set of deformations

fecom(’show2def’); fecom(’scalematch’);

where the scalematch command is used to compare deformations with unequal scaling. You could
also show two deformations in the same set

cf=demosdt(’demo gartfe plot’);

fecom(’;showline; ch7 10’)

The -,+ buttons/commands will then increment both deformations numbers (overlay 8 and 11, etc.).

Element selections

Element selections play a central role in feplot. They allow selection of a model subpart (see
section 7.12 ) and contain color information. The following example selects some groups and defines
color to be the z component of displacement or all groups with strain energy deformation (see fecom

ColorData commands)

cf=demosdt(’demo gartfe plot’);

cf.sel(1)={’group4:9 & group ~=8’,’colordata z’};
pause

cf.def=fe_eig(cf.mdl,[6 20 1e3]);

cf.sel(1)={’group all’,’colordata enerk’};
fecom(’colorbar’);

You can also have different objects point to different selections. This model has an experimental
mesh stored in element group 11 (it has EGID -1). The following commands define a selection for
the FEM model (groups 1 to 10) and one for the test wire frame (it has EGID<0). The first object
cf.o(1) displays selection 1 as a surface plot (ty1 with a blue edge color. The second object displays
selection to with a thick red line.

cf=demosdt(’demo gartfe plot’);
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cf.sel(1)={’group1:10’}; cf.sel(2)=’egid<0’;

cf.o(1)={’ty1 def1 sel1’,’edgecolor’,’b’}
cf.o(2)={’ty2sel2’,’edgecolor’,’r’,’linewidth’,2}

Note that you can use FindNode commands to display some node numbers. For example try
fecom(’textnode egid<0 & y>0’).

Figure 4.4: Stress level plot.

4.4.7 Viewing property colors

For reference information on colors, see fecom ColorData.

When preparing a model, one often needs to visualize property colors.

cf=feplot(demosdt(’demogartfe’));

fecom(’ColorDataMat’); % Display color associated with MatId

% Now a partial selection with nicer transparency

cf.sel={’eltname~=mass’,’ColorDataPro-alpha.1-edgealpha .05’}

How do I keep group colors constant when I select part of a model?

One can define different types of color for selection using fecom ColorData. In particular one can
color by GroupId, by ProId or by MatId using respectively fecom colordatagroup, colordatapro
or colordatamat. Without second argument, colors are attributed automatically. One can define a
color map with each row of the form [ID Red Green Blue] as a second argument:
fecom(’colordata’,colormap). All ID do not need to be present in colormap matrix (colors for
missing ID are then automatically attributed). Following example defines 3 color views of the same
GART model:

cf=demosdt(’demo gartFE plot’);

158



% ID Red Green Blue

r1=[(1:10)’ [ones(3,1); zeros(7,1)] ...

[zeros(3,1); ones(7,1)] zeros(10,1)]; % colormap

fecom(’colordatagroup’,r1) % all ID associated with color

% redefine groups 4,5 color

cf.Stack{’GroupColor’}(4:5,2:4)=[0 0 1;0 0 1];

fecom(’colordatagroup’);

% just some ID associated with color

fecom(’colordatapro’,[1 1 0 0; 3 1 0 0])

fecom(’colordatamat’) % no color map defined

cf.Stack

4.4.8 Viewing colors at nodes

Color at nodes can be based on the current display. In particular, ColorDataEvalA, EvalX, ...
EvalRadZ, EvalTanZ use the information of current motion from initial position to generate a color
field dynamically. The advantage of this strategy is that no prior computation is needed.

Display of specific fields is another common application. Thus ColorDataDOF 19 displays DOF .19
(pressure). This the field is not needed to display the motion of nodes, prior extraction from the
deformations is needed.

4.4.9 Viewing colors at elements

Display of energies is a typical case of color at elements. Since computing energies for many defor-
mations can take time, it is considered best practice to compute energies first and display energies
next.

cf=demosdt(’demo gartFE plot’);

% If EltId are not consistent you may need to fix them

% The ; in ’eltidfix;’ is used to prevent display of warning messages

[eltid,cf.mdl.Elt]=feutil(’eltidfix;’,cf.mdl);

Ek=fe_stress(’Enerk -curve’,cf.mdl,cf.def);

fecom(cf,’ColorDataElt’,Ek) % Values for each element

% Sum by group

fecom(cf,’ColorDataElt -bygroup -frac -colorbartitle "Frac %"’,Ek)

More details are given in fe stress feplot.
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4.4.10 feplot FAQ

feplot lets you define and save advanced views of your model, and export them as .png pictures.

• How do I display part of the model as wire frame? (Advanced object handling)

What is displayed in a feplot figure is defined by a set of objects. Once you have plotted
your model with cf=feplot(model), you can access to displayed objects through cf.o(i)

(i is the number of the object). Each object is defined by a selection of model elements
(’seli’) associated to some other properties (see fecom SetObject). Selections are defined
as FindElt commands through cf.sel(i). Displayed objects or selections can be removed
using cf.o(i)=[] or cf.sel(i)=[].
Following example loads ubeam model, defines 2 complementary selections, and displays the
second as a wire frame (ty2):

model=demosdt(’demoubeam’); cf=feplot

% define visualisation

cf.sel(1)=’WithoutNode{z>1 & z<1.5}’;
cf.sel(2)=’WithNode{z>1 & z<1.5}’;
cf.o(1)={’sel1 ty1’,’FaceColor’,[1 0 0]}; % red patch

cf.o(3)={’sel2 ty2’,’EdgeColor’,[0 0 1]}; % blue wire frame

% reinit visualisation :

cf.sel(1)=’groupall’;

cf.sel(2)=[]; cf.o(3)=[];

• Is feplot able to display very large models?

There is no theoretical size limitation for models to be displayed. However, due to the use of
Matlab figures, and although optimization efforts have been done, feplot can be very slow for
large models. This is due to the inefficient use of triangle strips by the Matlab calls to OpenGL,
but to ensure robustness SDT still sticks to strict Matlab functionality for GUI operation.

When encountering problems, you should first check that you have an appropriate graphics
card, that has a large memory and supports OpenGL and that the Renderer is set to opengl.
Note also that any X window forwarding (remote terminal) can result in very slow operation:
large models should be viewed locally since Matlab does not support an optimized remote
client.

To increase fluidity it is possible to reduce the number of displayed patches using fecom

command SelReducerp where rp is the ratio of patches to be kept. Adjusting rp, fluidity can
be significantly improved with minor visual quality loss.
Following example draws a 50x50 patch, and uses fecom(’ReduceSel’) to keep only a patch
out of 10:
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model=feutil(’ObjectQuad’,[-1 -1 0;-1 1 0;1 1 0;1 -1 0],50,50);

cf=feplot(model); fecom(cf,’showpatch’);

fecom(cf,’SelReduce .1’); % keep only 10% of patches.

If you encounter memory problems with feplot consider using fecom load-hdf.

• How do I save figures?

You should not save feplot figures but models using fecom Save.

To save images shown in feplot, you should see iicom ImWrite. If using the MATLAB
print, you should use the -noui switch so that the GUI is not printed. Example print -noui

-depsc2 FileName.eps.

• MATLAB gives the warning Warning: RGB color data not yet supported in Painter’s
mode. This is due to the use of true colors for ColorDataMat and other flat colors. You
should save your figure as a bitmap or use the fecom ShowLine mode.

• How do I define a colorbar scale and keep it constant during animation?

When using fecom ColorDataEval commands (useful when displayed deformation is restituted
from reduced deformation at each step), color scaling is updated at each step.
One can use fecom(’ScaleColorOne’) to force the colorbar scale to remain constant. In that
case one can define the limit of the color map with set(cf.ga,’clim’,[-1 1]) where cf is a
pointer to target feplot figure, and -1 1 can be replaced by color map boundaries.

• How do I make an animation based on my deformation field displayed in feplot ?

Several strategies are available depending on the user needs.

– The simplest way to do this is to generate an avi file using the feplot figure menu:
Feplot > Anim > MakeAVI. Equivalent command line inputs with variants are provided
in fecom AnimMovie documentation.

– SDT allows generating animated gif from feplot animations using the convert function.
convert(’AnimMovie25’) will generate a 25 steps feplot animation as an animated gif.
To pilot a subsampling of steps, see fecom Anim. Note that the convert function is a
gateway function to the convert function of ImageMagick, that should be installed on
your system. You can look up http://www.imagemagick.org for more information.

– Better avi results can be obtained in recent MATLAB by using the VideoWriter object
with lower level feplot calls. The following code allows doing this

writerObj = VideoWriter([’TEST2_ANIM.avi’]); %’Archival’);

writerObj.FrameRate=830; % fps

writerObj.Quality=100;

open(writerObj);
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cf.ua.PostFcn=sprintf([’evalin(’’base’’,’...

’’’frame = getframe(gcf);writeVideo(writerObj,frame);’’)’]);

frame = getframe;

writeVideo(writerObj,frame); % frame will contain the film

close(writerObj);

4.5 Other information needed to specify a problem

Once the mesh defined, to prepare analysis one still needs to define

• material and element properties associated to the various elements.

• boundary conditions, constraints (see section 4.5.4 ) and applied loads (see section 4.5.5 )

Graphical editing of case properties is supported by the case tab of the model properties GUI
(see section 4.5.3 ). The associated information is stored in a case data structure which is an entry
of the .Stack field of the model data structure.

4.5.1 Material and element properties

You can edit material properties using the Mat tab of the Model Properties figure which lists
current materials and lets you choose new ones from the database of each material type. m elastic

is the only material function defined for the base SDT. It supports elastic materials, linear acoustic
fluids, piezo-electric volumes, etc.

Figure 4.5: Material tab.

Similarly the ElProp tab lets you edit element properties. p beam p shell p solid and p spring

are supported element property functions.
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Figure 4.6: Property tab.

When the view mode is selected ( icon pressed), you can see the elements affected by each material
or element property by selecting it in the associated tab.

You can edit properties using the Pro tab of the Model Properties figure which lists current
properties and lets you choose new ones from the database of each property type (Figure 4.6).

The properties are stored with one property per row in model.il (see section 7.3 ) and model.il

(see section 7.4 ). When using scripts, it is often more convenient to use low level definitions of the
material properties. For example (see demo fe), one can define aluminum and three sets of beam
properties with

femesh(’reset’);

model=femesh(’test 2bay plot’);

model.pl = m_elastic(’dbval 1 steel’)

model.il = [ ...

... % ProId SecType J I1 I2 A

1 fe_mat(’p_beam’,’SI’,1) 5e-9 5e-9 5e-9 2e-5 0 0 ; ...

p_beam(’dbval 2’,’circle 4e-3’) ; ... % circular section 4 mm

p_beam(’dbval 3’,’rectangle 4e-3 3e-3’)...% rectangular section

];

Unit system conversion is supported in property definitions, through two command options.

• -unit command option asks for a specific unit system output. It thus expects possible input
data in SI, prior to converting (and generating a proper typ value).
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• -punit command option tells the function that a specific unit system is used. It thus expects
possible input data in the specified unit system, and generates a proper typ value.

The 3 following calls are thus equivalent to define a beam of circular section of 4mm in the MM unit
system:

il = p_beam(’dbval -unit MM 2 circle 4e-3’); % given data in SI, output in MM

il = p_beam(’dbval -punit MM 2 circle 4’); % given data in MM, output in MM

il = p_beam(’dbval -punit CM -unit MM circle 0.4’); % given data in CM, output in MM

To assign a MatID or a ProID to a group of elements, you can use

• the graphical procedure (in the context menu of the material and property tabs, use the Select
elements and affect ID procedures and follow the instructions);

• the simple femesh set commands. For example femesh(’set group1 mat101 pro103’) will
set values 101 and 103 for element group 1.

• more elaborate selections based on FindElt commands. Knowing which column of the Elt

matrix you want to modify, you can use something of the form (see gartfe)

FEelt(femesh(’find EltSelectors’), IDColumn)=ID;

You can also get values with mpid=feutil(’mpid’,elt), modify mpid, then set values with
elt=feutil(’mpid’,elt,mpid).

4.5.2 Other information stored in the stack

The stack can be used to store many other things (options for simulations, results, ...). More details
are given in section 7.7 . You can get a list of current default entry builders with fe def(’new’).

info, EigOpt, sdtdef(’DefaultEigOpt-safe’,[5 20 1e3])

info, Freq, sdtdef(’DefaultFreq-safe’,[1:2])

sel, Sel, struct(’data’,’groupall’,’ID’,1)

...

4.5.3 Cases GUI
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Figure 4.7: Stack tab.

Figure 4.8: Cases properties tab.

When selecting New ... in the case property list, as shown in the figure, you get a list of currently
supported case properties. You can add a new property by clicking on the associated new cell in the
table. Once a property is opened you can typically edit it graphically. The following sections show
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you how to edit these properties trough command line or .m files.

Figure 4.9: Cases properties tab.

4.5.4 Boundary conditions and constraints

Boundary conditions and constraints are described in in Case.Stack using FixDof, Rigid, ... case
entries (see fe case and section 7.7 ). (KeepDof still exists but often leads to misunderstanding)

FixDof entries are used to easily impose zero displacement on some DOFs. To treat the two bay
truss example of section 4.1.1 , one will for example use

femesh(’reset’);

model=femesh(’test 2bay plot’);

model=fe_case(model, ... % defines a new case

’FixDof’,’2-D motion’,[.03 .04 .05]’, ...

’FixDof’,’Clamp edge’,[1 2]’);

fecom(’ProInit’) % open model GUI

When assembling the model with the specified Case (see section 4.5.3 ), these constraints will be
used automatically.
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Note that, you may obtain a similar result by building the DOF definition vector for your model
using a script. FindNode commands allow node selection and fe c provides additional DOF selection
capabilities. Details on low level handling of fixed boundary conditions and constraints are given
in section 7.14 .

4.5.5 Loads

Loads are described in Case.Stack using DOFLoad, FVol and FSurf case entries (see fe case and
section 7.7 ).

To treat a 3D beam example with volume forces (x direction), one will for example use

femesh(’reset’);

model = femesh(’test ubeam plot’);

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volume load’,data);

Load = fe_load(model);

feplot(model,Load);fecom(’;undef;triax;ProInit’);

To treat a 3D beam example with surface forces, one will for example use

femesh(’reset’);

model = femesh(’testubeam plot’);

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);

To treat a 3D beam example and create two loads, a relative force between DOFs 207x and 241x
and two point loads at DOFs 207z and 365z, one will for example use

femesh(’reset’);

model = femesh(’test ubeam plot’);

data = struct(’DOF’,[207.01;241.01;207.03],’def’,[1 0;-1 0;0 1]);

model = fe_case(model,’DOFLoad’,’Point load 1’,data);

data = struct(’DOF’,365.03,’def’,1);

model = fe_case(model,’DOFLoad’,’Point load 2’,data);

Load = fe_load(model);

feplot(model,Load);

fecom(’textnode365 207 241’); fecom(’ProInit’);

The result of fe load contains 3 columns corresponding to the relative force and the two point loads.
You might then combine these forces, by summing them
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Load.def=sum(Load.def,2);

cf.def= Load;

fecom(’textnode365 207 241’);

4.6 Sensors

Sensors are used for test/analysis correlation and in analysis for models where one wants to post-
process partial information by using an observation equation {y} = [c] {q}. This general objective
is supported by the use of SensDof entries. This section addresses the following issues

• translation measurements associated simplified views (often wire-frame) is classical for modal
testing and FEM post-processing. These can be simply defined using a .tdof field, see also
section 2.7.1 and section 2.7.2 for wire frame geometry and sensor declaration. Commands
trans, triax and laser provide simplified calls to generate the associated translation sensors.

• other sensor types typically used in analysis are

– rel relative displacement sensor.

– general general sensor (low level).

– resultant resultant force sensor.

– strain strain or stress sensor.

• topology correlation is the process in which sensor output is related to the DOFs of the
underlying FEM. This is implemented as the SensMatch command detailed section 4.6.4 .
In the case of translation measurements, this is only needed for test/analysis correlation.

4.6.1 Sensor GUI, a simple example

Using the feplot properties GUI, one can edit and visualize sensors. The following example loads
ubeam model, defines some sensors and opens the sensor GUI.

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

model=fe_case(model,’SensDof append trans’,’output’,...

[1,0.0,0.5,2.5,0.0,0.0,1.0]); % add a translation sensor
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model=fe_case(model,’SensDof append triax’,’output’,8); % add triax sensor

model=fe_case(model,’SensDof append strain’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]); % add strain sensor

model=fe_case(model,’sensmatch radius1’,’output’); % match sensor set ’output’

fecom(cf,’promodelviewon’);

fecom(cf,’curtab Cases’,’output’); % open sensor GUI

Clicking on Edit Label one can edit the full list of sensor labels.
The whole sensor set can be visualized as arrows in the feplot figure clicking on the eye button on the
top of the figure. Once visualization is activated one can activate the cursor on sensors by clicking
on CursorSel. Then one can edit sensor properties by clicking on corresponding arrow in the feplot
figure.

The icons in the GUI can be used to control the display of wire-frame, arrows and links.

Figure 4.10: GUI for sensor edition

4.6.2 Sensor definition from a cell array

Experimental setups can be defined with a cell array containing all the information relative to the
sensors (only displacement/velocity/acceleration sensors are currently supported). This array is
meant to be filled any table editor, possibly outside MATLAB. Using EXCEL you can read it with
data=sdtacx(’excel read filename’,sheetnumber).

The first row gives column labels (the order in which they are given is free). Each of the following
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rows defines a sensor. Known column headers are

• ’lab’ contains the names of the sensors. Providing a name for each sensor is mandatory.

• ’SensType’ contains optional information such as the name of the sensor manufacturer, their
types, etc.

• ’SensId’ contains the identification numbers of the sensors. Each sensor must have a unique
SensId. If the identification is non integer, the integer part is taken to be a NodeId. For
example 10.01 will be taken to be node 10.

• ’X’, ’Y’ and ’Z’ contain the cartesian coordinates of each sensor in the reference frame.
For cylindrical coordinates replace the column headers by ’R’, ’Theta’ and ’Z’ (mixing
both types of coordinates inside the cell array is not currently supported). Such columns are
mandatory except of localization is given by FEMId.

• ’FEMId’ can be used to specify localization and help node matching.

• ’DirSpec’ contains a specification of the direction in which the measurement is done at each
sensor. A minus in front of any specification can be used to generate the opposite direction
(-TX for example). Available entries are
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’dir x y

’’

Direction of measurement specified trough its components in global
coordinates (the vector is normalized).

’X’ [1 0 0], in the reference frame

’Y’ [0 1 0], in the reference frame

’Z’ [0 0 1], in the reference frame

’N’
normal to the element(s) to which the sensor is matched (automatically
detected in the subsequent call to SensMatch)

’TX’
tangent to matched surface in the N,X plane.

’TY’
tangent to matched surface in the N,Y plane

’TZ’
tangent to matched surface in the N,Z plane

’N^TX’
tangent orthogonal to the N,X plane

’N^TY’
tangent orthogonal to the N,Y plane

’N^TZ’
tangent orthogonal to the N,Z plane

’laser

xs ys

zs’

where (xs, ys, zs) are the coordinates of the primary or secondary
source (when mirrors are used).

’FEM

10.01’

associated FEM DOF

triax sensors are dealt with by defining three sensors with the same ’lab’ but different ’SensId’
and ’DirSpec’. In this case, a straightforward way to define the measurement directions is to make
the first axis be the normal to the matching surface. The second axis is then forced to be parallel to
the surface and oriented along a preferred reference axis, allowed by the possibility to define ’T*’.
The third axis is therefore automatically built so that the three axes form a direct orthonormal basis
with a specification such as N^T*. Note that there is no need to always consider the orthonormal
basis as a whole and a single trans sensor with either ’T*’ or N^T* as its direction of measure can
be specified.

In the example below, one considers a pentahedron element and aims to observe the displacement
just above the slanted face. The first vector is the normal to that face whose coordinates are
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[−
√

2/2,
√

2/2, 0]. The second one is chosen (i.) parallel to the observed face, (ii.) in the (x, y) plane
and (iii.) along x axis, so that its coordinates are [

√
2/2,
√

2/2, 0]. Finally, the coordinates of the
last vector can only be [0, 0,−1] to comply with the orthonormality conditions. The resulting sensor
placement is depicted in figure 4.11

cf=feplot;cf.model=femesh(’testpenta6’);fecom(’triax’);

% sensor definition as cell array

tcell={’lab’, ’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...

’sensor 1’,’’, 1.02,.4,.6,.5,’N’;

’sensor 2’,’’, 1.01,.4,.6,.5,’TX’;

’sensor 3’,’’, 2.01,.4,.6,1.,’dir 1 -1 1’;

’sensor 4’,’’, 1.09,.4,.6,.5,’N^TX’

’sensor 5’,’’, 3.01,[],[],[],’FEM 5.01’

’sensor 6’,’’, 4.02, 1, 0, 1,’Y’

};disp(tcell)
%sens=fe_sens(’tdoftable’,tcell);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Test’,tcell);

cf.mdl=fe_case(cf.mdl,’SensMatch radius1’,’Test’,’selface’);

fecom(cf,’curtab Cases’,’Test’); fecom(cf,’ProViewOn’)% open sensor GUI

sens=fe_case(cf.mdl,’sens’);

fe_sens(’tdoftable’,cf,’Test’) % see summary of match results

fname=fullfile(sdtdef(’tempdir’),’SensSpec.xls’);

if ~isunix % Test write to excel to illustrate ability to reread

xlswrite(fname,tcell,’Sensors’);

sdtweb(’_link’,sprintf(’open(’’%s’’)’,fname))

end
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Figure 4.11: Typical axis definition of a triax sensor attached to a penta6

It is now possible to generate the experimental setup of the ubeam example described in the previous
section by the means of a single cell array containing the data relative to both the trans and triax

sensors.

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

n8=feutil(’getnode NodeId 8’,model); % triax pos.

tdof={’lab’,’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...
’sensor1 - trans’,’’,1,0.0,0.5,2.5,’Z’;

’sensor2 - triax’,’’,2,n8(:,5),n8(:,6),n8(:,7),’X’;

’sensor2 - triax’,’’,3,n8(:,5),n8(:,6),n8(:,7),’Y’;

’sensor2 - triax’,’’,4,n8(:,5),n8(:,6),n8(:,7),’Z’};
sens=fe_sens(’tdoftable’,tdof);

cf.mdl=fe_case(cf.mdl,’SensDof’,’output’,sens);

cf.mdl=fe_case(cf.mdl,’SensMatch radius1’);

fecom(cf,’curtab Cases’,’output’); % open sensor GUI

4.6.3 Sensor data structure and init commands

This is a reference section on SensDof case entries. A tutorial on the basic configuration with a test
wire frame and translation sensors is given in section 2.7 . SensDof entries can contain the following
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fields

sens.Node (optional) node matrix for sensor nodes that are not in the model. When
defined, all node numbers in sens.tdof should refer to these nodes. The
order typically differs from that in .tdof, you can get the positions with
fe sens(’tdofNode’,model,SensName).

sens.Elt element description matrix for a wire-frame display of the sensors (typically for
test wire-frames).

sens.bas Coordinate system definitions for sens.Node, see fe sens basis

sens.tdof see details below.
sens.DOF DOF definition vector for the analysis (finite element model). It defines the

meaning of columns in sens.cta.
sens.cta is an observation matrix associated with the observation equation {y} = [c] {q}

(where q is defined on sens.DOF ). This is built using the fe case sens command
illustrated below.

sens.Stack cell array with one row per sensor giving ’sens’,’SensorTag’,data with data

is a structure. SensorTag is obtained from SensId (first column of tdof) using
feutil(’stringdof’,SensId). It is used to define the tag uniquely and may
differ from the label that the user may want to associated with a sensor which
is stored in data.lab.

The sens.tdof field declares translation sensors and their directions

• nominally is 5 column matrix with rows containing [SensID NodeID nx ny nz] giving a sensor
identifier (integer or real), a node identifier (positive integer, if relevant), a direction.

• can be single column DOF definition vector which can be transformed to 5 column format
using tdof = fe sens(’tdof’,sens.tdof)

• SensId gives an identifier for each sensor. It should thus be unique and there may be conflicts
if it is not.

• NodeId specifies a node identifier for the spatial localization of the sensor. If not needed
(resultant sensors for example), NodeId can be set for zero.

NodeId>0 corresponds is for use of model.Node locations and sens.Node should not be defined.

NodeId<0 is used to look for the node position in sens.Node rather than model.Node. Mixed
definitions (some NodeId positive and other negative) are not supported.

Most initialization calls accept the specification of a physical x y z position, a .vert0 field is
then defined.

• nx ny nz specifies a measurement direction for sensors that need one.
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All sensors are generated with the command
fe case(model,’SensDof <append, combine> Sensor type’,Sensor,data,SensLab)

Sensor is the case entry name to which sensors will be added. data is a structure, a vector, or a
matrix, which describes the sensor to be added. The nature of data depends on Sensor type as
detailed below. SensLab is an optional cell array used to define sensor labels. There should be as
much elements in SensLab as sensors added. If there is only one string in the cell array SensLab, it
is used to generate labels substituting for each sensor $id by its SensId, $type by its type (trans,
strain ...), $j1 by its number in the set currently added. If SensLab is not given, default label
generation is $type $id.
In the default mode (’SensDof’ command), new sensors replace any existing ones. In the append
mode (’SensDof append’), if a sensor is added with an existing SensID, the SensID of new sensor
will changed to a free SensID value. In the combine mode (’SensDof combine’), existing sensor
with the same SensID will be replaced by the new one.

rel

Relative displacement sensor or relative force sensor (spring load). Data passed to the command is
[NodeID1 NodeID2].

This sensor measures the relative displacement between NodeID1 and NodeID2, along the direction
defined from NodeID1 to NodeID2. One can use the command option -dof in order to measure along
the defined DOF directions (mandatory if the two nodes are coincident). As many sensors as DOF
are then added. For a relative force sensor, on can use the command option -coef to define the
associated spring stiffness (sensor value is the product of the relative displacement and the stiffness
of the spring).

If some DOF are missing, the sensor will be generated with a warning and a partial observation
corresponding to the found DOF only.

The following example defines 3 relative displacement sensors (one in the direction of the two nodes,
and two others along x and y):

model=demosdt(’demo ubeam-pro’)

data=[30 372];

model=fe_case(model,’SensDof append rel’,’output’,data);

model=fe_case(model,’SensDof append rel -dof 1 2’,’output’,data);

general

General sensors are defined by a linear observation equation. This is a low level definition that
should be used for sensors that can’t be described otherwise. Data passed to the command is a
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structure with field .cta (observation matrix), .DOF DOF associated to the observation matrix, and
possibly .lab giving a label for each row of the observation matrix.

The following example defines a general sensor

model=demosdt(’demo ubeam-pro’);

Sensor=struct(’cta’,[1 -1;0 1],’DOF’,[8.03; 9.03]);

model=fe_case(model,’SensDof append general’,’output’,Sensor);

trans

Translation sensors (see also section 2.7.2 ) can be specified by giving

[DOF]

[DOF, BasID]

[SensID, NodeID, nx, ny, nz]

[SensID, x, y, z, nx, ny, nz]

This is often used with wire frames, see section 2.7.2 . The definition of test sensors is given
in section 3.1.1 .

The basic case is the measurement of a translation corresponding the main directions of a coordinate
system. The DOF format (1.02 for 1y, see section 7.5 ) can then be simply used, the DOF values are
used as is then used as SensID. Note that this form is also acceptable to define sensors for other
DOFs (rotation, temperature, ...).

A number of software packages use local coordinate systems rather than a direction to define sensors.
SDT provides compatibility as follows.

If model.bas contains local coordinate systems and deformations are given in the global frame (DID
in column 3 of model.Node is zero), the directions nx ny nz (sens.tdof columns 3 to 5) must reflect
local definitions. A call giving [DOF, BasID] defines the sensor direction in the main directions of
basis BasID and the sensor direction is adjusted.

If FEM results are given in local coordinates, you should not specify a basis for the sensor definition,
the directions nx ny nz (sens.tdof columns 3 to 5) should be [1 0 0], ... as obtained with a
simple [DOF] argument in the sensor definition call.

When specifying a BasId, it the sensor direction nx ny nz is adjusted and given in global FEM
coordinates. Observation should thus be made using FEM deformations in global coordinates (with
a DID set to zero). If your FEM results are given in local coordinates, you should not specify a basis
for the sensor definition. You can also perform the local to global transformation with

cGL= basis(’trans E’,model.bas,model.node,def.DOF)

def.def=cGL*def.def
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The last two input forms specify location as x y z or NodeID, and direction nx ny nz (this vector
need not be normalized, sensor value is the scalar product of the direction vector and the displace-
ment vector).

One can add multiple sensors in a single call fe case(model,’SensDof <append> trans’, Name,

Sensor) when rows of sensors contain sensor entries of the same form.

Following example defines a translation sensor using each of the forms

model=demosdt(’demo ubeam-pro’)

model.bas=basis(’rotate’,[],’r=30;n=[0 1 1]’,100);

model=fe_case(model,’SensDof append trans’,’output’,...

[1,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append trans’,’output’,...

[2,8,-1.0,0.0,0.0]);

model=fe_case(model,’SensDof append trans’,’output’,...

[314.03]);

model=fe_case(model,’SensDof append trans’,’output’,...

[324.03 100]);

cf=feplot;cf.sel(2)=’-output’;cf.o(1)={’sel2 ty 7’,’linewidth’,2};

Sens.Stack entries for translation can use the following fields

.vert0 physical position in global coordinates.

.ID
NodeId for physical position. Positive if a model node, negative if SensDof
entry node.

.match cell array describing how the corresponding sensor is matched to the refer-
ence model. Columns are ElemF,elt,rstj,StickNode.

dof

One can simply define a set of sensors along model DOFs with a direct SensDof call
model=fe case(model,’SensDof’,’SensDofName’,DofList). There is no need in that case to pass
through SensMatch step in order to get observation matrix.

model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof’,’output’,[1.01;2.03;10.01]);

Sens=fe_case(model,’sens’,’output’)
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triax, laser

A triax is the same as defining 3 translation sensors, in each of the 3 translation DOF (0.01, 0.02
and 0.03) of a node. Use fe case(model,’SensDof append triax’, Name, NodeId) with a vector
NodeId to add multiple triaxes. A positive NodeId refers to a FEM node, while a negative refers to
a wire frame node.

For scanning laser vibrometer tests
fe sens(’laser px py pz’,model,SightNodes,’SensDofName’)

appends translation sensors based on line of sight direction from the laser scanner position px py pz

to the measurement nodes SightNodes. Sighted nodes can be specified as a standard node matrix
or using a node selection command such as ’NodeId>1000 & NodeId<1100’ or also giving a vector
of NodeId. If a test wire frame exists in the SensDofName entry, node selection command or NodeId
list are defined in this model. If you want to flip the measurement direction, use a call of the form

cf.CStack{’output’}.tdof(:,3:5)=-cf.CStack{’output’}.tdof(:,3:5)

The following example defines some laser sensors, using a test wire frame:

cf=demosdt(’demo gartfeplot’); model=cf.mdl;% load FEM

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

TEST.tdof=[];%Define test wire frame, but start with no tdof

model=fe_case(model,’SensDof’,’test’,TEST)

model=fe_case(model,’SensDof Append Triax’,’test’,-TEST.Node(1))

% Add sensors on TEST wire frame location

model=fe_sens(’laser 0 0 6’,model,-TEST.Node(2:end,1),’test’);

% Show result

fecom(’curtab Cases’,’output’); fecom(’proviewon’);

To add a sensor on FEM node you would use model=fe sens(’laser 0 0 6’,model,20,’test’);

but this is not possible here because SensDof entries do not support mixed definitions on test and
FEM nodes.

strain,stress

Note that an extended version of this functionality is now discussed in section 4.7 . Strain sensors
can be specified by giving

[SensID, NodeID]

[SensID, x, y, z]

[SensID, NodeID, n1x, n1y, n1z]
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[SensID, x, y, z, n1x, n1y, n1z]

[SensID, NodeID, n1x, n1y, n1z, n2x, n2y, n2z]

[SensID, x, y, z, n1x, n1y, n1z, n2x, n2y, n2z]

when no direction is specified 6 sensors are added for stress/strains in the x, y, z, yz, zx, and
xy directions (SensId is incremented by steps of 1). With n1x n1y n1z (this vector need not be
normalized) on measures the axial strain in this direction. For shear, one specifies a second direction
n2x n2y n2z (this vector need not be normalized) (if not given n2 is taken equal to n1). The sensor
value is given by {n2}T [ε] {n1}.
Sensor can also be a matrix if all rows are of the same type. Then, one can add a set of sensors
with a single call to the fe case(model,’SensDof <append> strain’, Name, Sensor) command.

Following example defines a strain sensor with each possible way:

model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof append strain’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append strain’,’output’,...

[6,134,0.5,0.5,0.5]);

model=fe_case(model,’SensDof append strain’,’output’,...

[5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append strain’,’output’,...

[7,370,0.0,0.0,1.0,0.0,1.0,0.0]);

Stress sensor.
It is the same as the strain sensor. The sensor value is given by {n2}T [σ] {n1}.
Following example defines a stress sensor with each possible way:

model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof append stress’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append stress’,’output’,...

[6,134,0.5,0.5,0.5]);

model=fe_case(model,’SensDof append stress’,’output’,...

[5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append stress’,’output’,...

[7,370,0.0,0.0,1.0,0.0,1.0,0.0]);

Element formulations (see section 6.1 ) include definitions of fields and their derivatives that are
strain/stress in mechanical applications and similar quantities otherwise. The general formula is
{ε} = [B(r, s, t)] {q}. These (generalized) strain vectors are defined for all points of a volume and
the default is to use an exact evaluation at the location of the sensor.
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In practice, the generalized strains are more accurately predicted at integration points. Placing the
sensor arbitrarily can generate some inaccuracy (for example stress and strains are discontinuous
across element boundaries two nearby sensors might give different results). The -stick option can
be used to for placement at specific gauss points. -stick by itself forces placement of the sensor and
the center of the matching element. This will typically be a more appropriate location to evaluate
stresses or strains.

To allow arbitrary positioning some level of reinterpolation is needed. The procedure is then to
evaluate strain/stresses at Gauss points and use shape functions for reinterpolation. The process
must however involve multiple elements to limit interelement discontinuities. This procedure is
currently implemented through the fe caseg(’StressCut’) command, as detailed in section 4.7 .

resultant

Resultant sensors measure the resultant force on a given surface. Note that the observation of
resultant fields is discussed in section 4.7.3 . They can be specified by giving a structure with fields

.ID sensor ID.

.EltSel FindElt command that gives the elements concerned by the resultant.

.SurfSel FindNode command that gives the surface where the resultant is computed.

.dir with 3 components direction of resultant measurement, with 6 origin and direction of
resulting moment in global coordinates. This vector need not be normalized (scalar
product). For non-mechanical DOF, .dir can be a scalar DOF ( .21 for electric field
for example)

.type contains the string ’resultant’.

Following example defines a resultant sensor:

model=demosdt(’demo ubeam-pro’)

Sensor.ID=1;

Sensor.EltSel=’WithNode{z==1.25} & WithNode{z>1.25}’;
Sensor.SurfSel=’z==1.25’;

Sensor.dir=[0.0 0.0 1.0];

Sensor.type=’resultant’;

model=fe_case(model,’SensDof append resultant’,’output’,Sensor);

Resultant sensors are not yet available for superelements model.

4.6.4 Topology correlation and observation matrix
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Sens, observation

This command is used after SensMatch to build the observation equation that relates the response
at sensors to the response a DOFs

{y(t)}NS×1 = [c]NS×N {q(t)}N×1 (4.1)

where the c matrix in stored in the sens.cta field and DOFs expected for q are given in sens.tdof.

After the matching phase, one can build the observation matrix with
SensFull=fe case(model,’sens’,SensDofEntryName) or when using a reduced superelement model
SensRed=fe case(model,’sensSE’,SensDofEntryName). Note that with superelements, you can
also define a field .UseSE=1 in the sensor entry to force use of the reduced model. This is needed
for the generation of reduced selections in feplot (typically cf.sel=’-Test’).

The following example illustrates nominal strategies to generate the observed shape, here for a static
response.

model=demosdt(’demoUbeamSens’); def=fe_simul(’static’,model);

% Manual observation, using {y} = [c] {q}
sens=fe_case(model,’sens’);

def=feutilb(’placeindof’,sens.DOF,def); % If DOF numbering differs

% could use sens=feutilb(’placeindof’,def.DOF,sens); if all DOF present

y=sens.cta*def.def

% Automated curve generation

C1=fe_case(’sensObserve’,model,’sensor 1’,def)

SensMatch

Once sensors defined (see trans, ...), sensors must be matched to elements of the mesh. This is done
using
model = fe case(model,’sensmatch’,SensDofEntryName);

You may omit to provide the name if there is only one sensor set. The command builds the observa-
tion matrix associated to each sensor of the entry Name, and stores it as a .cta field, and associated
.DOF, in the sensor stack.

Storing information in the stack allows multiple partial matches before generating the global obser-
vation matrix. The observation matrix is then obtained using
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Sens = fe case(model,’sens’,SensDofEntryName);

The matching operation requires finding the elements that contain each sensor and the position
within the reference element shape so that shape functions can be used to interpolate the response.
Typical variants are

• a radius can be specified to modify the default sphere in which a match is sought. This is
typically needed in cases some large elements.

model=fe case(model,’sensmatch radius1.0’,Name)

• elements on which to match can be specified as a FindElt string. In particular, matching
nodes outside volumes is not accepted. To obtain a match in cases where test nodes are
located outside volume elements, you must thus match on the volume surface using
fe case(model,’sensmatch radius1.0’,Name,’selface’)

which selects external surface of volumes and allows a normal projection towards the surface
and thus proper match of sensors outside the model volume.

Note that this selection does not yet let you selected implicit elements within a superelement.

• Matching on elements is not always acceptable, one can then force matching to the closest
node. SensMatch-Near uses the motion at the matched node. SensMatch-Rigid uses a rigid
body constraints to account for the distance between the matched node and the sensor (but is
thus only applicable to cases with rotations defined at the nearby node).

In an automated match, the sensor is not always matched to the correct elements on which the
sensor is glued, you may want to ensure that the observation matrices created by these commands
only use nodes associated to a subset of elements. You can use a selection to define element subset
on which perform the match. If you want to match one or more specific sensors to specific element
subset, you can give cell array with SensId of sensor to match in a first column and with element
string selector in a second column.
model=fe case(model,’SensMatch’,Name,{SensIdVector,’FindEltString’});

This is illustrated below in forcing the interpolation of test node 1206 to use FEM nodes in the plane
where it is glued.

cf=demosdt(’demo gartte cor plot’);

fe_case(cf,’sensmatch -near’)

fecom(’curtabCases’,’sensors’);fecom(’promodelviewon’);

% use fecom CursorSelOn to see how each sensor is matched.

cf.CStack{’sensors’}.Stack{18,3}
% modify link to 1206 to be on proper surface
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cf.mdl=fe_case(cf.mdl,’SensMatch-near’,...

’sensors’,{1206.02,’withnode {z>.16}’});
cf.CStack{’sensors’}.Stack{18,3}
% force link to given node (may need to adjust distance)

cf.mdl=fe_case(cf.mdl,’SensMatch-rigid radius .5’,’sensors’,{1205.07,21});
cf.CStack{’sensors’}.Stack{19,3}

fecom(’showlinks sensors’);fecom(’textnode’,[1206 1205])

DofLoadSensDof

The generation of loads is less general than that of sensors. As a result it may be convenient to use
reciprocity to define a load by generating the collocated sensor. When a sensor is defined, and the
topology correlation performed with SensMatch, one can define an actuator from this sensor using
model=fe case(model,’DofLoad SensDof’,Input Name,’Sens Name:Sens Nb’) or for model us-
ing superelements
model=fe case(model,’DofLoad SensDofSE’,Input Name,’Sens Name:Sens Nb’).
Sens Name is the name of the sensor set entry in the model stack of the translation sensor that
defines the actuator, and Sens Nb is its number in this stack entry. Thus Sensors:1 2 5 will de-
fine actuators with sensors 1, 2 and 5 for SensDof entry Sensors. Input Name is the name of the
DofLoad entry that will be created in the model stack to describe the actuator.

Note that a verification of directions can be performed a posteriori using feutilb GeomRB.

Animation of sensor wire-frame models

This is discussed in section 2.7.3 .

Obsolete

SDT 5.3 match strategies are still available. Only the arigid match has not been ported to SDT
6.1. This section thus documents SDT 5.3 match calls.

For topology correlation, the sensor configuration must be stored in the sens.tdof field and active
FEM DOFs must be declared in sens.DOF. If you do not have your analysis modeshapes yet, you
can use sens.DOF=feutil(’getdof’,sens.DOF). With these fields and a combined test/FEM model
you can estimate test node motion from FEM results. Available interpolations are

• near defines the projection based on a nearest node match.
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• rigid defines the projection based on a nearest node match but assumes a rigid body link
between the DOFs of the FE model and the test DOFs to obtain the DOF definition vector
adof describing DOFs used for FEM results.

• arigid is a variant of the rigid link that estimates rotations based on translations of other
nodes. This interpolation is more accurate than rigid for solid elements (since they don’t
have rotational DOFs) and shells (since the value of drilling rotations is often poorly related
to the physical rotation of a small segment).

At each point, you can see which interpolations you are using with
fe sens(’info’,sens). Note that when defining test nodes in a local basis, the node selection
commands are applied in the global coordinate system.

The interpolations are stored in the sens.cta field. With that information you can predict the
response of the FEM model at test nodes. For example

[model,def]=demosdt(’demo gartte cor’);

model=fe_sens(’rigid sensors’,model); % link sensors to model

% display sensor wire-frame and animate FEM modes

cf=feplot; cf.model=model; cf.sel=’-sensors’;

cf.def=def;fecom(’;undefline;scd.5;ch7’)

4.7 Stress observation

Observation of stress and resultant fields is an application that requires specific tools for performance.
A number of commands are thus available for this purpose. The two main commands are fe caseg

StressCut for generation of the observation and fe caseg StressObserve for the generation of a
curve Multi-dim curve showing observations as a table.

This functionality has been significantly stabilized for SDT 6.5 but improvements and minor format
changes are still likely for future releases.

4.7.1 Building view mesh

Stresses can be observed at nodes of arbitrary meshes (view meshes that are very much related
to test wireframes). You should look-up feutil(’object’) commands for ways to build simple
shapes. A few alternate model generation calls are provided in fe caseg StressCut as illustrated
below and in the example for resultant sensors.
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% Build straight line by weighting of two nodes

VIEW=fe_caseg(’stresscut’, ...

struct(’Origin’,[0 0 0;0 0 1], ... % [n1,n2]

’steps’,linspace(0,1,10)))

% Automated build of a cut (works on convex cuts)

model=demosdt(’demoubeam-pro’);cf=feplot;

RO=struct(’Origin’,[0 0 .5],’axis’,[0 0 1]);

VIEW=fe_caseg(’StressCut’,RO,cf);

feplot(VIEW) % note problem due to non convex cut

%View at Gauss points

model=demosdt(’demoubeam-pro’);cf=feplot;

cut=fe_caseg(’StressCut-SelOut’,struct(’type’,’Gauss’),model);

cuts= fe_caseg(’stresscutToStrain’,cut);

% Observe beam strains at Gauss points

[model,def]=beam1t(’testeig’)

mo1=fe_caseg(’StressCut’,struct(’type’,’BeamGauss’),model);

cut=fe_caseg(’StressCut -radius 10 -SelOut’,mo1,model);

C1=fe_caseg(’StressObserve -crit""’,cut,def) % Observation as CURVE

Generic command is :
VIEW=fe caseg(’StressCut’,RO,model);

RO is a data structure defining the view mesh. Different views are available according to RO.type or
RO fields:

• RO.type=’conform’ When one wants to define a mesh that is a subpart of the model, there
is no need to perform the match step, and the type ’conform’ can be used. The selection of
the subpart of the model is performed through a FindElt command provided in RO.sel.

• RO.type=’gauss’ gauss points of the elements. A FindElt command can be provided in
RO.sel (if omitted, all Gauss point are computed). For mechanical problems, to obtain the
displacement gradient rather than the usual strain set il(6)=100.

• RO.type=’beamgauss’ : gauss points of a beam model.

• Plane cut mesh. RO.Origin and RO.axis must be filled. Cut is done in the plane defined
by RO.Origin and RO.axis. If RO.planes is defined, as many planes (orthogonal to axis) as
positions from the RO.Origin are defined.
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• Cut line : RO.Origin defining line extremities (each row defines an extremity position, 3
columns for X Y and Z) and RO.steps defining the number of observation nodes must be
filled.

4.7.2 Building and using a selection for stress observation

The first use of StressCut is to build a feplot selection to be used to view/animate stress fields on
the view mesh. A basic example is shown below.

% build model

model=demosdt(’volbeam’);cf=feplot(model);

% build view mesh

VIEW=fe_caseg(’stresscut’, ...

struct(’Origin’,[0 .05 .05;1 .05 .05], ... % [n1,n2]

’steps’,linspace(1,0,10)))

% build stress cut view selection

sel=fe_caseg(’stresscut -selout’,VIEW,cf);cla(cf.ga);feplot % generation observation

cf.def=fe_eig(model,[5 10 0]);

fe_caseg(’stresscut’,sel,cf) % Overlay view and nominal mesh

fecom(’scc2’) % Force equal scaling

The result of StressCut is found in sel.StressObs.cta which is an observation matrix giving
the linear relation between motion at DOF of the elements connected to target points, to stress
components at these target points. The procedure used to build this observation matrix in fe caseg

is as follows

• match desired nodes to the interior of elements and keep the resulting element coordinates.
One then adds to the selected element set, one layer of elements with the same material and
property ID (all elements that have one node in common with the matched elements);

• generate stress observation at Gauss points of the selected elements;

• for each stress component compute the stress at nodes that would lead to the same values at
Gauss points. In other words one resolves∑

g

(wgJg {Ni(g)}T {Nj(g)}σj) =
∑
g

(wgJg {Ni(g)}T σg) (4.2)

• finally use the element shape functions to interpolate each stress component from nodal values
to values at the desired points using element coordinates found at the first step.
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Note that typically, a sel.StressObs.trans field gives the observation matrix associated with
translations at the target points to allow animation of positions as well as colors.

4.7.3 Observing resultant fields

StressCut sensors provide stress post-treatments in model cutoffs. The command interprets a data
structure with fields

.EltSel FindElt command that gives the elements concerned by the resultant.

.SurfSel FindNode command that gives the selection where the resultant is computed.

.type contains the string ’resultant’.

Following example defines a StressCut call to show modal stresses in an internal surface of a volumic
model

demosdt(’demoubeam’)

cf=feplot;fecom(’showpatch’)

cf.mdl=feutil(’lin2quad’,cf.mdl); % better stress interpolation

def=fe_eig(cf.mdl,[5 10 1e3]);

cf.def=def;

r1=struct(’EltSel’,’withnode {z<2}’, ...

’SurfSel’,’inelt{innode{z==2}}’, ...

’type’,’Resultant’);

fe_caseg(’stresscut’,r1,cf);

% adapt transparencies

fecom(cf,’SetProp sel(1).fsProp’,’FaceAlpha’,0.01,’EdgeAlpha’,0.2);

The observation in feplot is performed on the fly, with data stored in cf.sel(2).StressObs (for
the latter example).

Command option -SelOut allows recovering the observation data. Field .cta is here compatible
with general sensors, for customized observation.

cta=fe_caseg(’StressCut-SelOut’,r1,cf);

4.8 Computing/post-processing the response

4.8.1 Simulate GUI
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Access to standard solvers is provided through the Simulate tab of the Model properties figure.
Experienced users will typically use the command line equivalent to these tabs as detailed in the
following sections.

Figure 4.12: Simulation properties tab.

4.8.2 Static responses

The computation of the response to static loads is a typical problem. Once loads and boundary
conditions are defined in a case as shown in previous sections, the static response may be computed
using the fe simul function.

This is an example of the 3D beam subjected to various type of loads (points, surface and volume
loads) and clamped at its base:

model=demosdt(’demo ubeam vol’); % Initialize a test

def=fe_simul(’static’,model’);% Compute static response

cf=feplot; cf.def=def;% post-process

cf.sel={’Groupall’,’ColorDataStressMises’}

Low level calls may also be used. For this purpose it is generally simpler to create system matrices
that incorporate the boundary conditions.

fe c (for point loads) and fe load (for distributed loads) can then be used to define unit loads
(input shape matrix using SDT terminology). For example, a unit vertical input (DOF .02) on node
6 can be simply created by
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model=demosdt(’demo2bay’); Case=fe_case(model,’gett’); %init

% Compute point load

b = fe_c(Case.DOF,[6.02],1)’;

In many cases the static response can be computed using Static=kr \b. For very large models, you
will prefer

kd=ofact(k); Static = kd\b; ofact(’clear’,kd);

For repeated solutions with the same factored stiffness, you should build the factored stiffness
kd=ofact(k) and then Static = kd \b as many times are needed. Note that fe eig can return the
stiffness that was used when computing modes (when using methods without DOF renumbering).

For models with rigid body modes or DOFs with no stiffness contribution (this happens when setting
certain element properties to zero), the user interface function fe reduc gives you the appropriate
result in a more robust and yet computationally efficient manner

Static = fe reduc(’flex’,m,k,mdof,b);

4.8.3 Normal modes (partial eigenvalue solution)

fe eig computes mass normalized normal modes.

The simple call def=fe eig(model) should only be used for very small models (below 100 DOF).
In other cases you will typically only want a partial solution. A typical call would have the form

model = demosdt(’demo ubeam plot’);

cf.def=fe_eig(model,[6 12 0]); % 12 modes with method 6

fecom(’colordata stress mises’)

You should read the fe eig reference section to understand the qualities and limitations of the
various algorithms for partial eigenvalue solutions.

You can also load normal modes computed using a finite element package (see section 4.3.2 ). If the
finite element package does not provide mass normalized modes, but a diagonal matrix of generalized
masses mu (also called modal masses). Mass normalized modeshapes will be obtained using

ModeNorm = ModeIn * diag( diag(mu).^(-1/2) );

If a mass matrix is given, an alternative is to use mode = fe norm(mode,m). When both mass
and stiffness are given, a Ritz analysis for the complete problem is obtained using [mode,freq] =

fe norm(mode,m,k).

Note that loading modes with in ASCII format 8 digits is usually sufficient for good accuracy
whereas the same precision is very often insufficient for model matrices (particularly the stiffness).
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4.8.4 State space and other modal models

A typical application of SDT is the creation of input/output models in the normal mode nor,
state space ss or FRF xf form. (The SDT does not replicate existing functions for time response
generation such as lsim of the Control Toolbox which creates time responses using a model in the
state-space form).

The creation of such models combines two steps creation of a modal or enriched modal basis; building
of input/output model given a set of inputs and outputs.

As detailed in section 4.8.3 a modal basis can be obtained with fe eig or loaded from an external
FEM package. Inputs and outputs are easily handled using case entries corresponding to loads
(DofLoad, DofSet, FVol, FSurf) and sensors (SensDof).

Figure 4.13: Truss example.

For the two bay truss examples shown above, the following script defines a load as the relative force
between nodes 1 and 3, and translation sensors at nodes 5 and 6

model=demosdt(’demo2bay’);

DEF=fe_eig(model,[2 5]); % compute 5 modes

% Define loads and sensors

Load=struct(’DOF’,[3.01;1.01],’def’,[1;-1]);

Case=fe_case(’DofLoad’,’Relative load’,Load, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);

% Compute FRF and display

w=linspace(80,240,200)’;

nor2xf(DEF,.01,Case,w,’hz iiplot "Main" -reset’);

You can easily obtain velocity or acceleration responses using
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xf=nor2xf(DEF,.01,Case,w,’hz vel plot’);

xf=nor2xf(DEF,.01,Case,w,’hz acc plot’);

Figure 4.14: FRF synthesis : with and without static correction.

As detailed in section 6.2.3 , it is desirable to introduce a static correction for each input. fe2ss builds
on fe reduc to provide optimized solutions where you compute both modes and static corrections
in a single call and return a state-space (or normal mode model) and associated reduction basis.
Thus

model=demosdt(’demo ubeam sens -pro’);

model=stack_set(model,’info’,’Freq’,linspace(10,1e3,500)’);

model=stack_set(model,’info’,’DefaultZeta’,.01);

[SYS,T]=fe2ss(’free 6 10’,model); %ii_pof(eig(SYS.a),3)

qbode(SYS,linspace(10,1e3,1500)’*2*pi,’iiplot "Initial" -reset’);

nor2xf(T,[.04],model,’hz iiplot "Damped" -po’);

computes 10 modes using a full solution (Eigopt=[6 10 0]), appends the static response to the
defined loads, and builds the state-space model corresponding to modal truncation with static cor-
rection (see section 6.2.3 ). Note that the load and sensor definitions where now added to the case
in model since that case also contains boundary condition definitions which are needed in fe2ss.

The different functions using normal mode models support further model truncation. For example,
to create a model retaining the first four modes, one can use

model=demosdt(’demo2bay’);

DEF=fe_eig(model,[2 12]); % compute 12 modes

Case=fe_case(’DofLoad’,’Horizontal load’,3.01, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);

SYS =nor2ss(DEF,.01,Case,1:4);

ii_pof(eig(SYS.a)/2/pi,3) % Frequency (Hz), damping
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A static correction for the displacement contribution of truncated modes is automatically introduced
in the form of a non-zero d term. When considering velocity outputs, the accuracy of this model can
be improved using static correction modes instead of the d term. Static correction modes are added
if a roll-off frequency fc is specified (this frequency should be a decade above the last retained mode
and can be replaced by a set of frequencies)

SYS =nor2ss(DEF,.01,Case,1:4,[2e3 .2]);

ii_pof(eig(SYS.a)/2/pi,3,1) % Frequency (Hz), damping

Note that nor2xf always introduces a static correction for both displacement and velocity.

For damping, you can use uniform modal damping (a single damping ration damp=.01 for exam-
ple), non uniform modal damping (a damping ratio vector damp), non-proportional modal damping
(square matrix ga), or hysteretic (complex DEF.data). This is illustrated in demo fe.

4.8.5 Viewing shapes, stress, energy, ...

NEED TO INTRODUCE PROPER REFERENCES XXX

4.8.6 Time computation

To perform a full order model time integration, one needs to have a model, a load and a curve
describing time evolution of the load.

% define model and load

model=fe_time(’demo bar’);fe_case(model,’info’)

% Define curves stack (time integration curve will be chosen later):

% - step with ones from t=0 to t=1e-3, 0 after :

model=fe_curve(model,’set’,’input’,’TestStep t1=1e-3’);

% - ramp from t=.1 to t=2 with final value 1.1;

model=fe_curve(model,’set’,’ramp’,’TestRamp t0=.1 tf=2 Yf=1.1’);

% - Ricker curve from t=0 to t=1e-3 with max amplitude value 1:

model=fe_curve(model,’set’,’ricker’,’TestRicker t0=0 dt=1e-3 A=1’);

% - Sinus (with evaluated string depending on t time vector) :

model=fe_curve(model,’set’,’sinus’,...

’Test eval sin(2*pi*1000*t)’);

% - Another sinus definition, explicit curve (with time vector,

% it will be interpolated during the time integration if needed)

model=fe_curve(model,’set’,’sinus2’,...

struct(’X’,linspace(0,100,10)’,...
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’Y’,sin(linspace(0,100,10)’))); % tabulated

% - Have load named ’Point load 1’ reference ’input’

% curve (one can choose any of the model stack

% curve from it stack entry name) :

model=fe_case(model,’SetCurve’,’Point load 1’,’input’);

cf=feplot(model) % plot the model

Once model is plotted in feplot one can edit each curve under the model properties Stack tab.
Parameters can be modified. Curve can be plotted in iiplot using the Show pop-up button. One
has to define the number of steps (NStep) and the total time to be displayed (Tf) and click Using

NStep & Tf. One can also display curve on the info TimeOpt time options by clicking on Using

TimeOpt.

Figure 4.15: GUI associated to a curve

One can change the curve associated to the load in the Case tab.

% Define time computation options : dt=1e-4, 100 time steps

cf.Stack{’info’,’TimeOpt’}=...
fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

% Compute and store/display in feplot :

cf.def=fe_time(cf.mdl);

figure;plot(cf.def.data,cf.def.def(cf.def.DOF==2.01,:)); % show 2.01 result
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Time domain responses can also be obtained by inverse transform of frequency responses as illus-
trated in the following example

model=demosdt(’demo ubeam sens’);DEF=fe_eig(model,[5 10 1e3]);

w=linspace(0,600,6000)’; % define frequencies

R1=nor2xf(DEF,.001,model,w,’hz struct’); % compute freq resp.

R2=ii_mmif(’ifft -struct’,R1);R2.name=’time’; % compute time resp.

iiplot(R2);iicom(’;sub 1 1 1 1 3;ylin’); % display

4.8.7 Manipulating large finite element models

The flexibility given by the Matlab language comes at a price for large finite element computations.
The two main bottlenecks are model assembly and matrix inversion (static and modal computations).

During assembly compiled elements provided with OpenFEM allow much faster element matrix eval-
uations (since these steps are loop intensive they are hard to optimize in Matlab). The sp util.mex

function alleviates element matrix assembly and large matrix manipulation problems (at the cost of
doing some very dirty tricks like modifying input arguments).

Starting with SDT 6.1, model.Dbfile can be defined to let SDT know that the file can be used as a
database. In particular optimized assembly calls (see section 4.8.8 ) make use of this functionality.
The database is a .mat file that uses the HDF5 format defined for MATLAB versions over 7.3.

For matrix inversion, the ofact object allows method selection. Currently the easiest to use solver
(and default ofact method) is the multi-frontal sparse solver spfmex. For very large models it is
recommended to use mklserv utils (an implementation of IntelMKL pardiso solver), the spfmex

solver will perform perform poorly mainly because its current implementation is not parallelized.
These solvers automatically perform equation reordering so this needs not be done elsewhere. They
do not use the Matlab memory stack which is more efficient for large problems but requires
ofact(’clear’) calls to free memory associated with a given factor.

With other static solvers, that should be used only for very specific cases, (Matlab lu or chol,
or SDT true skyline sp util method) you need to pay attention to equation renumbering. When
assembling large models, fe mk (obsolete compared to fe mknl) will automatically renumber DOFs
to minimize matrix bandwidth (for partial backward compatibility automatic renumbering is only
done above 1000 DOF).

As SDT is an in-core oriented program, the real limitation on size is linked to performance drops
when swapping. If the factored matrix size exceeds physical memory available to Matlab in your
computer, performance tends to decrease drastically. The model size at which this limit is found is

194



very much model/computer dependent. It has to be noted that the most recent linux distributions
(Kernel versions 4.4 and above) handle swapping quite well for large amounts of memory.

Memory management can be optimized to some extent in SDT with dedicated preferences. There
is a distinction between blockwise in-core operations, where an intensive operation is performed by
blocks to avoid large memory duplications, and out-of-core operations where data is written on disc
to unload RAM and intensive operations involve reading file buffers and writing results buffers to
temporary files. The following SDT preferences are available (they should be set by sdtdef command)

• BlasBufSize in GB, provides a block size for in-core operations, mainly matrix products with
large bases, used by fe eig, fe norm, feutilb.

• EigOOC in GB provides a global vector basis size to trigger out-of-core operations. If a vector
basis size is estimated over the specified value, it will be written to disc, used by fe eig,
fe reduc, fe cyclic.

• OutOfCoreBufferSize in MB provides a buffer size for out-of-core and file database operations.
File database operations are common in FEMLink while handling results files. It is common
not to load large files in memory. This buffer provides the amount of RAM that will still be
used while in out-of-core mode, so this one should remain reasonable, and at least 10 times
smaller than the EigOOC value.

• KiKeMemSize in MB provides a buffer size for out-of-core matrix assemblies, this is mostly
used when exploiting FEMLink results files with matrices.

• MklServOOC a 1x2 line with [OOC Mode MemSize(GB)]. Specific to the mklserv utils solver
with ofact allows specifying the out-of-core mode of the Pardiso solver and the associated
memory threshold. OOC Mode can take values 0 to force in-core, 2 to force out-of-core, and 1
to let the solver decide depending on MemSize. MemSize in GB is the total amount of RAM
available for the solver, if the estimated factor size overcomes this value, the out-of-core mode
is triggered. Beware that the solver will still need a fair amount of RAM to work, so that
MemSize cannot be too small.

• MklServBufSize in GB provides a right hand size block size for in-core resolution with the
mklserv utils solver. An optimum exists around 1 GB for reasonable workstations.

fe eig, method 6 (IRA/Sorensen) uses low level BLAS code and thus tends to have the best memory
performance for eigenvalue computations.

For batch computations (in nodesktop mode) you may want to run Matlab with the -nojvm option
turned on since it increases the memory addressable by Matlab(version ¡=6.5).

For out-of-core operations (supported by fe mk, upcom, nasread and other functions). SDT creates
temporary files whose names are generated with nas2up(’tempnameExt’). You may need to set
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4 FEM tutorial

sdtdef(’tempdir’,’your dir’) to an appropriate location. The directory should be located on a
local disk or a high speed disk array. If you have a RAID array or FLASH array, use a directory
there.

4.8.8 Optimized assembly strategies

The handling of large models, often requires careful sequencing of assembly operations. While
fe mknl, fe load, and fe case, can be used for user defined procedures, SDT operations typically
use the an internal (closed source) assembly call to fe case Assemble . Illustrations of most calls
can be found in fe simul.

[k,mdl,Case,Load]=fe case(mdl,’assemble matdes 1 NoT loadback’,Case); return the stiff-
ness without constraint elimination and evaluates loads.

[SE,Case,Load,Sens]=fe case(mdl,’assemble -matdes 2 1 3 4 -SE NoTload Sens’) returns
desired matrices in SE.K, the associated case, load and sensors (as requested in the arguments).

Accepted command options for the assemble call are

• -fetime forces the nominal assembly using mass, viscous damping and stiffness, output in this
order: 2 3 1. If a reduced model is defined as an SE,MVR, the assembly is shortcut to output
MVR as the assembled model, and MVR.Case as the Case. If the field .Case is absent, the case
stacked in the base model is output.

• -reset forces reassembly even if the .K field is defined and filled.

• keep retains model.DOF even if some DOF are unused.

• load requires load assembly and output.

• sens requires sensor assembly and output.

• GetT outputs a struct containing Case.Stack, Case.T and Case.DOF.

• NoT is the usual option to prevent constraint elimination (computation of T TKT ). With NoT

DOFs are given in model.DOF or Case.mDOF. Without the option they are consistent with
Case.DOF.

• -MatDes specifies the list of desired matrices. Basic types are 2 for mass and 1 for stiffness,
for a complete list see MatType.

– -1 is used separate matrices associated with parameters (see upcom Par)
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– -1.1 removes the subparameters from the nominal matrix.

– -2 is used to obtain matrices associated with assembled superelements with a split based
on the matrix labels (.Klab) only. Matrices with common labels through SE are thus
assembled together. With a model having only SE, all matrices found in all SE are as-
sembled. When the model combines SE and standard elements, the non SE elements
are integrated in the first matrix of each type. To avoid this behavior specify a matrix
type 1, ... where all SE and non SE elements will be assembled, then followed by SE only
matrices by labels. Note that this strategy only works with a single matrix type at a time.
Possibly defined matrix coefficients with a p super entry are not taken into account in
the SE specific matrix types.

– -2.1 performs the same task than -2 but accounting for p super based SE matrix coef-
ficients.

– 5 (geometric stiffness) uses a predefined deformation stored as stack entry
’curve’,’StaticState’. Furthermore, the internal load is computed and added to re-
turned loads.

• InitFcn allows pre-emptive behavior at the beginning of assembly. ExitFcn does the same at
exit.

• -SE returns the assembled result as a superelement structure. One can use -SeCDof (superele-
ment Case DOF) to fill .DOF field with constrained DOF (Case.DOF).

• -cell sets the first output as a cell array containing all assembled matrices.

• -cfield keeps the Case.MatGraph to allow further reassembly.
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5 Structural dynamic concepts

This theoretical chapter is intended as a reference for the fundamental notions and associated vari-
ables used throughout the SDT. This piece of information is grouped here and hypertext reference
is given in the HTML version of the manual.

Models of dynamic systems are used for identification phases and links with control applications
supported by other Matlab toolboxes and Simulink. Key concepts and variables are

b,c input/output shape matrices (b,c,pb,cp variables)
nor normal mode models (freq,damp,cp,pb variables)
damp damping for full and reduced models
cpx complex mode models (lambda, psi variables)
res pole/residue model (res,po variables)
ss state space model (a,b,c,d variables)
tf parametric transfer function (num,den variables)
xf non-parametric transfer function (w,xf variables)

5.1 I/O shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a product {F}q =
[b] {u(t)} where

• the input shape matrix [b] is time invariant and characterizes spatial properties of the applied
forces

• the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses, etc.) are
linearly related to the model coordinates {q} through the sensor output shape matrix ({y} =
[c] {q}).

Input and output shape matrices are typically generated with fe c or fe load. Understanding what
they represent and how they are transformed when model DOFs/states are changed is essential.

Linear mechanical models take the general forms

[
Ms2 + Cs+K

]
N×N {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(5.1)

in the frequency domain (with Z(s) = Ms2 + Cs+K), and
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[M ] {q′′}+ [C] {q′}+ [K] {q} = [b] {u(t)}
{y(t)} = [c] {q(t)} (5.2)

in the time domain.

In the model form (5.1), the first set of equations describes the evolution of {q}. The components of
q are called Degrees Of Freedom (DOFs) by mechanical engineers and states in control theory. The
second observation equation is rarely considered by mechanical engineers (hopefully the SDT may
change this). The purpose of this distinction is to lead to the block diagram representation of the
structural dynamics

{u(s)}
- [b]

{F (s)}
- [

Ms2 + Cs+K
]−1

{q(s)}
- [c]

{y(s)}
-

which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ql, the input shape matrix is equal to zero
except for DOF l where it takes the value 1

[bl] =



...
0
1
0
...

 ← l
(5.3)

Since {ql} = [bl]
T {q}, the transpose this Boolean input shape matrix is often called a localization

matrix. Boolean input/output shape matrices are easily generated by fe c (see the section on DOF
selection page 292).

Input/output shape matrices become really useful when not Boolean. For applications considered
in the SDT they are key to

• distributed FEM loads, see fe load.

• test analysis correlation. Since you often have measurements that do not directly correspond to
DOFs (accelerations in non global directions at positions that do not correspond to finite element
nodes, see section 2.7.2 ).
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5 Structural dynamic concepts

• model reduction. To allow the changes to the DOFs q while retaining the physical meaning of the
I/O relation between {u} and {y} (see section 6.2 ).

5.2 Normal mode models

The spectral decomposition is a key notion for the resolution of linear differential equations and the
characterization of system dynamics. Predictions of the vibrations of structures are typically done
for linear elastic structures or, for non-linear cases, refer to an underlying tangent elastic model.

Spectral decomposition applied to elastic structures leads to modal analysis. The main objective is
to correctly represent low frequency dynamics by a low order model whose size is typically orders of
magnitude smaller than that of the finite element model of an industrial structure.

The use of normal modes defined by the spectral decomposition of the elastic model and corrections
(to account for the restricted frequency range of the model) is fundamental in modal analysis.

Associated models are used in the normal mode model format

[
[I] s2 + [Γ] s+

[
Ω2
]]
{p(s)} =

[
φT b

]
{u(s)}

{y(s)} = [cφ] {p(s)}
(5.4)

where the modal masses (see details below) are assumed to be unity.

The nor2res, nor2ss, and nor2xf functions are mostly based on this model form (see nor2ss theory
section). They thus support a low level entry format with four arguments

om modal stiffness matrix Ω2. In place of a full modal stiffness matrix om, a vector of modal
frequencies freq is generally used (in rad/s if Hz is not specified in the type string). It
is then assumed that om=diag(freq.^2). om can be complex for models with structural
damping (see the section on damping page 203).

ga modal damping matrix Γ (viscous). damping ratios damp corresponding to the modal fre-
quencies freq are often used instead of the modal damping matrix ga (damp cannot be used
with a full om matrix). If damp is a vector of the same size as freq, it is then assumed that
ga=diag(2*freq.*damp). If damp is a scalar, it is assumed that ga=2*damp*diag(freq).
The application of these models is discussed in the section on damping page 203).

pb modal input matrix {φj}T [b] (input shape matrix associated to the use of modal coordi-
nates).

cp modal output matrix [c] {φj} (output shape matrix associated to the use of modal coordi-
nates).

Higher level calls, use a data structure with the following fields

202



.freq frequencies (units given by .fsc field, 2*pi for Hz). This field may be empty if a non
diagonal nor.om is defined.

.om alternate definition for a non diagonal reduced stiffness. Nominally om contains
diag(freq.^2).

.damp modal damping ratio. Can be a scalar or a vector giving the damping ratio for each
frequency in nor.freq.

.ga alternate definition for a non diagonal reduced viscous damping.

.pb input shape matrix associated with the generalized coordinates in which nor.om and
nor.ga are defined.

.cp output shape matrix associated with the generalized coordinates in which nor.om

and nor.ga are defined.
.dof in A six column matrix where each row describes a load by [SensID NodeID nx ny nz

Type] giving a sensor identifier (integer or real), a node identifier (positive integer),
the projection of the measurement direction on the global axes (if relevant), a Type.

.lab in A cell array of string labels associated with each input.

.dof out A six column matrix describing outputs following the .dof in format.

.lab out A cell array of string labels associated with each output.

General load and sensor definitions are then supported using cases (see section 4.5.3 ).

Transformations to other model formats are provided using nor2ss (state-space model), nor2xf

(FRFs associated to the model in the xf format), and nor2res (complex residue model in the res

format). The use of these functions is demonstrated in demo fe.

Transformations from other model formats are provided by fe2ss, fe eig, fe norm, . . . (from
full order finite element model), id nor and res2nor (from experimentally identified pole/residue
model).

5.3 Damping

Models used to represent dissipation at the local material level and at the global system level should
typically be different. Simple viscous behavior is very often not appropriate to describe material
damping while a viscous model is appropriate in the normal mode model format (see details in Ref.
[27]). This section discusses typical damping models and discusses how piece-wise Rayleigh damping
is implemented in SDT.

5.3.1 Viscous damping in the normal mode model form

In the normal mode form, viscous damping is represented by the modal damping matrix Γ which is
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typically used to represent all the dissipation effects at the system level.

Models with modal damping assume that a diagonal Γ is sufficient to represent dissipation at
a system level. The non-zero terms of Γ are then usually expressed in terms of damping ratios
Γjj = 2ζjωj . The damping ratio ζj are accepted by most SDT functions instead of a full Γ. The
variable name damp is then used instead of ga in the documentation.

For a model with modal damping, the matrices in (6.99) are diagonal so that the contributions of
the different normal modes are uncoupled and correspond exactly to the spectral decomposition of
the model (see cpx page 210for the definition of complex modes). The rational fraction expression
of the dynamic compliance matrix (transfer from the inputs {u} to displacement outputs {y}) takes
the form

[α(s)] =
N∑
j=1

{cφj}
{
bTφj

}T
s2 + 2ζjωjs+ ω2

j

=
N∑
j=1

[Tj ]NS×NA
s2 + 2ζjωjs+ ω2

j

(5.5)

where the contribution of each mode is characterized by the pole frequency ωj , damping ratio ζj ,
and the residue matrix Tj (which is equal to the product of the normal mode output shape matrix

{cφj} by the normal mode input shape matrix
{
φTj b

}
).

Modal damping is used when lacking better information. One will thus often set a uniform damping
ratio (ζj = 1% or damp = 0.01) or experimentally determined damping ratios that are different for
each pole (po=ii pof(po,3); damp=po(:,2);).

Historically, modal damping was associated to the proportional damping model introduced by
Lord Rayleigh which assumes the usefulness of a global viscously damped model with a dynamic
stiffness of the form

[Z(s)] =
[
Ms2 + (αM + βK)s+K

]
(5.6)

While this model indeed leads to a modally damped normal mode model, the α and β coefficients
can only be adjusted to represent physical damping mechanisms over very narrow frequency bands.
The modal damping matrix thus obtained writes

Γ =
[
\α+ βω2

j \

]
(5.7)

which leads to damping ratios
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2ζj =
α

ωj
+ βωj (5.8)

Mass coefficient α leads to high damping ratios in the low frequency range. Stiffness coefficient β
leads to a damping ratio linearly increasing with the frequency.

Using a diagonal [Γ] can introduce significant errors when normal mode coupling through the spatial
distribution of damping mechanisms is possible. The condition

2ζjωj/|ωj − ωk| � 1 (5.9)

proposed by Hasselman [28], gives a good indication of when modal coupling will not occur. One
will note that a structure with a group of modes separated by a few percent in frequency and levels
of damping close to 1% does not verify this condition. The un-coupling assumption can however
still be applied to blocks of modes [12].

A normal mode model with a full Γ matrix is said to be non-proportionally damped and is clearly
more general/accurate than the simple modal damping model. The SDT leaves the choice between
the non-proportional model using a matrix ga and the proportional model using damping ratio for
each of the pole frequencies (in this case one has ga=2*diag(damp.*freq) or ga=2*damp*diag(freq)
if a scalar uniform damping ratio is defined).

For identification phases, standard approximations linked to the assumption of modal damping are
provided by (id rc, id rm and res2nor), while id nor provides an original algorithm of the deter-
mination of a full Γ matrix. Theoretical aspects of this algorithm and details on the approximation
of modal damping are discussed in [12]).

5.3.2 Viscous damping in finite element models

Standard damped finite element models allow the incorporation of viscous and structural damping
in the form of real C and complex K matrices respectively.

fe mk could assemble a viscous damping matrix with user defined elements that would support
matrix type 3 (viscous damping) using a call of the form
fe mk(MODEL,’options’,3) (see section 7.16 for new element creation). Viscous damping models
are rarely appropriate at the finite element level [27], so that it is only supported by celas and cbush

elements. Piece-wise Rayleigh damping where the viscous damping is a combination of element mass
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and stiffness on element subsets

C =
NS∑
j=1

[
αSjM

S
j + βSj K

S
j

]
(5.10)

is supported as follows. For each material or group that is to be considered in the linear combination
one defines a row entry giving GroupId MatId AlphaS BetaS (note that some elements may be
counted twice if they are related to a group and a material entry). One can alternatively define ProId
as a 5th column (useful for celas element that have no matid). Note that each line is separately
accounted for, so that duplicated entries or multiple references to same GroupId, MatId or ProId

will also be combined. For example

model=demosdt(’demogartfe’);

model=stack_set(model,’info’,’Rayleigh’, ...

[10 0 1e-5 0.0; ... % Elements of group 10 (masses)

9 0 0.0 1e-3; ... % Elements of group 9 (springs)

0 1 0.0 1e-4; ... % Elements with MatId 1

0 2 0.0 1e-4]); % Elements with MatId 2

% Note that DOF numbering may be a problem when calling ’Rayleigh’

% See sdtweb simul#feass for preferrred assembly in SDT

c=feutilb(’Rayleigh’,model); figure(1);spy(c);

dc=fe_ceig(model,[1 5 20 1e3]);cf=feplot(model,dc);

Such damping models are typically used in time integration applications. Info,Rayleigh entries
are properly handled by Assemble commands.

You can also provide model=stack set(model,’info’,’Rayleigh’,[alpha beta]).

Note that in case of Rayleigh damping, celas element viscous damping will also be taken into account.

5.3.3 Hysteretic damping in finite element models

Structural or hysteretic damping represents dissipation by giving a loss factor at the element level
leading to a dynamic stiffness of the form

Z(s) =
[
Ms2 +K + iB

]
= Ms2 +

NE∑
j=1

[
Ke
j

]
(1 + iηej ) (5.11)

The name loss factor derives from the fact that η is equal to the ratio of energy dissipated for one
cycle Ed =

∫ T
0 σε′dt by 2π the maximum potential energy Ep = 1/2E.

If dissipative materials used have a loss factor property, these are used by Assemble commands with
a desired matrix type 4. If no material damping is defined, you can also use DefaultZeta to set a
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global loss factor to eta=2*DefaultZeta.

Using complex valued constitutive parameters will not work for most element functions. Hysteretic
damping models can thus be assembled using the Rayleigh command shown above (to assemble the
imaginary part of K rather than C or using upcom (see section 6.4 ). The following example defines
two loss factors for group 6 and other elements of the Garteur FEM model. Approximate damped
poles are then estimated on the basis of real modes (better approximations are discussed in [29])

Up=upcom(’load GartUp’); cf=feplot(Up);

Up=fe_case(Up,’parReset’, ...

’Par k’,’Constrained Layer’,’group 6’, ...

’Par k’,’Main Structure’,’group~=6’);

% type cur min max vtype

par = [ 1 1.0 0.1 3.0 1 ; ...

1 1.0 0.1 3.0 1 ];

Up=upcom(Up,’ParCoef’,par);

% assemble using different loss factors for each parameter

B=upcom(Up,’assemble k coef .05 .01’);

[m,k]=upcom(Up,’assemble coef 1.0 1.0’);

Case=fe_case(Up,’gett’);

% Estimate damped poles on real mode basis

def=fe_eig({m,k,Case.DOF},[6 20 1e3]);

mr=def.def’*m*def.def; % this is the identity

cr=zeros(size(mr));

kr=def.def’*k*def.def+i*(def.def’*B*def.def);

dr=fe_ceig({mr,cr,kr,[]});dr.def=def.def*dr.def;dr.DOF=def.DOF;
cf.def=dr

Note that in this model, the poles λj are not complex conjugate since the hysteretic damping model
is only valid for positive frequencies (for negative frequencies one should change the sign of the
imaginary part of K).

Given a set of complex modes you can compute frequency responses with res2xf, or simply use the
modal damping ratio found with fe ceig. Continuing the example, above one uses

Up=fe_case(Up,’Dofload’,’Point loads’,[4.03;55.03], ...

’SensDof’,’Sensors’,[4 55 30]’+.03);

Sens=feutilb(’placeindof’,def.DOF,fe_case(Up,’sens’));

Load=fe_load(Up);
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ind=find(dr.data(:,1)>5); % flexible modes

% Standard elastic response with modal damping

f=linspace(5,60,2048);

d1=def; d1.data(7:20,2)=dr.data(ind,2);

nor2xf(d1,Up,f,’hz iiplot "Normal" -reset -po’);

% Now complex modes

RES=struct(’res’,[],’po’,dr.data(ind,:),’idopt’,idopt(’new’));

RES.idopt.residual=2;RES.idopt.fitting=’complex’;

for j1=1:length(ind); % deal with flexible modes

Rj=(Sens.cta*dr.def(:,ind(j1))) * ... % c psi

(dr.def(:,ind(j1)).’*Load.def); % psi^T b

RES.res(j1,:)=Rj(:).’;

end

% Rigid body mode residual

RES.res(end+1,:)=0;

for j1=1:6;

Rj=(Sens.cta*def.def(:,j1))*(def.def(:,j1)’*Load.def);

RES.res(end,:)=RES.res(end,:)+Rj(:).’;

end

res2xf(RES,f,’hz iiplot "Res2xf"’);

damp=dr.data(ind,2);

d2=def;d2.data(7:20)=sqrt(real(d2.data(7:20).^2)).*sqrt(1+i*damp*2);

nor2xf(d2,Up,f,’hz iiplot "Hysteretic"’);

iicom(’submagpha’);

Note that the presence of rigid body modes, which can only be represented as residual terms in
the pole/residue format (see section 5.6 ), makes the example more complex. The plot illustrates
differences in responses obtained with true complex modes, viscous modal damping or hysteretic
modal damping (case where one uses the pole of the true complex mode with a normal mode shape).
Viscous and hysteretic modal damping are nearly identical. With true complex modes, only channels
2 and 4 show a visible difference, and then only near anti-resonances.

To incorporate static corrections, you may want to compute complex modes on bases generated by
fe2ss, rather than simple modal bases obtained with fe eig.

The use of a constant loss factor can be a crude approximation for materials exhibiting significant
damping. Methods used to treat frequency dependent materials are described in Ref. [30].
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5.4 State space models

While normal mode models are appropriate for structures, state-space models allow the represen-
tation of more general linear dynamic systems and are commonly used in the Control Toolbox or
Simulink. The standard form for state space-models is

{ẋ} = [A] {x(t)}+ [B] {u(t)}
{y} = [C] {x(t)}+ [D] {u(t)} (5.12)

with inputs {u}, states {x} and outputs {y}. State-space models are represented in the SDT, as
generally done in other Toolboxes for use with Matlab, using four independent matrix variables a,
b, c, and d (you should also take a look at the LTI state-space object of the Control Toolbox).

The natural state-space representation of normal mode models (5.4) is given by{
p′

p′′

}
=

[
0 I
−Ω2 −Γ

]{
p
p′

}
+

[
0
φT b

]
{u(t)}

{y(t)} = [cφ 0]

{
p
p′

} (5.13)

Transformations to this form are provided by nor2ss and fe2ss. Another special form of state-space
models is constructed by res2ss.

A state-space representation of the nominal structural model (5.1) is given by{
q′

q′′

}
=

[
0 I

−M−1K −M−1C

]{
q
q′

}
+

[
0

M−1b

]
{u(t)}

{y(t)} = [c 0]

{
q
q′

} (5.14)

The interest of this representation is mostly academic because it does not preserve symmetry (an
useful feature of models of structures associated to the assumption of reciprocity) and because M−1K
is usually a full matrix (so that the associated memory requirements for a realistic finite element
model would be prohibitive). The SDT thus always starts by transforming a model to the normal
mode form and the associated state-space model (5.13).

The transfer functions from inputs to outputs are described in the frequency domain by

{y(s)} =
(
[C] [s I −A]−1 [B] + [D]

)
{u(s)} (5.15)

assuming that [A] is diagonalizable in the basis of complex modes, model (5.12) is equivalent to
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the diagonal model (
s [I]−

[
\λj\

])
{η(s)} =

[
θTLb

]
{u}

{y} = [cθR] {η(s)}
(5.16)

where the left and right modeshapes (columns of [θR] and [θL]) are solution of
{θjL}T [A] = λj {θjL}T and [A] {θjR} = λj {θjR} (5.17)

and verify the orthogonality conditions

[θL]T [θR] = [I] and [θL]T [A] [θR] =
[
\λj\

]
(5.18)

The diagonal state space form corresponds to the partial fraction expansion

{y(s)} =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

=
2N∑
j=1

[Rj ]NS×NA
s− λj

(5.19)

where the contribution of each mode is characterized by the pole location λj and the residue matrix

Rj (which is equal to the product of the complex modal output {cθj} by the modal input
{
θTj b

}
).

The partial fraction expansion (5.19) is heavily used for the identification routines implemented in
the SDT (see the section on the pole/residue representation ref page 212.

5.5 Complex mode models

The standard spectral decomposition discussed for state-space models in the previous section can
be applied directly to second order models of structural dynamics. The associated modes are called
complex modes by opposition to normal modes which are associated to elastic models of struc-
tures and are always real valued.

Left and right eigenvectors, which are equal for reciprocal structural models, can be defined by the
second order eigenvalue problem, [

Mλ2
j + Cλj +K

]
{ψj} = {0} (5.20)

In practice however, mathematical libraries only provide first order eigenvalue solvers to that a
transformation to the first order form is needed. Rather than the trivial state-space form (5.14), the
following generalized state-space form is preferred[

C M
M 0

]{
q′

q′′

}
+

[
K 0
0 −M

]{
q
q′

}
=

[
b
0

]
{u}

{y} =
[
c 0

]{ q
q′

} (5.21)
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The matrices M,C and K being symmetric (assumption of reciprocity), the generalized state-space
model (5.21) is symmetric. The associate left and right eigenvectors are thus equal and found by
solving ([

C M
M 0

]
λj +

[
K 0
0 −M

])
{θj} = {0} (5.22)

Because of the specific block from of the problem, it can be shown that

{θj} =

{
ψj
ψjλj

}
(5.23)

where it should be noted that the name complex modeshape is given to both θj (for applications
in system dynamics) and ψj (for applications in structural dynamics).

The initial model being real, complex eigenvalues λj come in conjugate pairs associated to conjugate
pairs of modeshapes {ψj}. With the exception of systems with real poles, there are 2N complex
eigenvalues for the considered symmetric systems (ψ[N+1...2N ] = ψ̄[1...N ] and λ[N+1...2N ] = λ̄[1...N ]).

The existence of a set of 2N eigenvectors is equivalent to the verification of two orthogonality
conditions

[θ]T
[
C M
M 0

]
[θ] = ψTCψ + ΛψTMψ + ψTMψΛ =

[
\I\
]

2N

[θ]T
[
K 0
0 −M

]
[θ] = ψTKψ − ΛψTMψΛ = −

[
\Λ\

]
2N

(5.24)

where in (5.24) the arbitrary diagonal matrix was chosen to be the identity because it leads to
a normalization of complex modes that is equivalent to the collocation constraint used to scale
experimentally determined modeshapes ([12] and section 2.8.2 ).

Note that with hysteretic damping (complex valued stiffness, see section 5.3.2 ) the modes are not
complex conjugate but opposite. To use a complex mode basis one thus needs to replace complex
modes whose poles have negative imaginary parts with the conjugate of the corresponding mode
whose pole has a positive imaginary part.

For a particular dynamic system, one will only be interested in predicting or measuring how complex

modes are excited (modal input shape matrix
{
θTj B

}
=
{
ψTj b

}
) or observed (modal output shape

matrix {Cθj} = {cψj}).

In the structural dynamics community, the modal input shape matrix is often called modal
participation factor (and noted Lj) and the modal output shape matrix simply modeshape.
A different terminology is preferred here to convey the fact that both notions are dual and that{
ψTj bl

}
= {clψj} for a reciprocal structure and a collocated pair of inputs and outputs (such that
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uẏ is the power input to the structure).

For predictions, complex modes can be computed from finite element models using fe ceig. Com-
puting complex modes of full order models is typically not necessary so that approximations on the
basis of real modes or real modes with static correction are provided. Given complex modes, you can
obtain state-space models with res2ss. For further discussions, see Ref. [31] and low level examples
in section 5.3.3 .

For identification phases, complex modes are used in the form of residue matrices product [Rj ] =

{cψj}
{
ψTj b

}
(see the next section). Modal residues are obtained by id rc and separation of the

modal input and output parts is obtained using id rm.

For lightly damped structures, imposing the modal damping assumption, which forces the use of
real modeshapes, may give correct result and simplify your identification work very much. Refer to
section 2.8.3 for more details.

5.6 Pole/residue models

The spectral decomposition associated to complex modes, leads to a representation of the transfer
function as a sum of modal contributions

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

 =
2N∑
j=1

(
[Rj ]

s− λj

)
(5.25)

For applications in identification from experimental data, one can only determine modes whose
poles are located in the test frequency range. The full series thus need to be truncated. The
contributions of out-of-band modes cannot be neglected for applications in structural dynamics.
One thus introduces a high frequency residual correction for truncated high frequency terms and,
when needed, (quite often for suspended test articles) a low frequency residual for modes below the
measurement frequency band.

These corrections depend on the type of transfer function so that the SDT uses ci.IDopt options
(see the reference section on the idopt function) to define the current type. ci.IDopt.Residual

specifies which corrections are needed (the default is 3 which includes both a low and high frequency
residuals). ci.IDopt.Data specifies if the FRF is force to displacement, velocity or acceleration. For
a force to displacement transfer function with low and high frequency correction), the pole/residue
model (also called partial fraction expansion) thus takes the form

[α(s)] =
∑

j∈identified

(
[Rj ]

s− λj
+

[
R̄j
]

s− λ̄j

)
+ [E] +

[F ]

s2
(5.26)

The SDT always stores pole/residue models in the displacement/force format. The expression of

212



the force to acceleration transfer function is thus

[A(s)] =
∑

j∈identified

(
s2 [Rj ]

s− λj
+
s2
[
R̄j
]

s− λ̄j

)
+ s2 [E] + [F ] (5.27)

The nominal pole/residue model above is used when ci.IDopt.Fit=’Complex’. This model as-
sumes that complex poles come in conjugate pairs and that the residue matrices are also conjugate
which is true for real system.

The complex residues with asymmetric pole structure (ci.IDopt.Fit=’Posit’) only keep
the poles with positive imaginary parts

[α(s)] =
∑

j∈identified

(
[Rj ]

s− λj

)
+ [E] +

[F ]

s2
(5.28)

which allows slightly faster computations when using id rc for the identification but not so much
so that the symmetric pole pattern should not be used in general. This option is only maintained
for backward compatibility reasons.

The normal mode residues with symmetric pole structure (ci.IDopt.Fit=’Nor’)

[α(s)] =
∑

j∈identified

(
[Tj ]

s2 + 2ζjωjs+ ω2
j

)
+ [E] +

[F ]

s2
(5.29)

can be used to identify normal modes directly under the assumption of modal damping (see damp
page 203).

Further characterization of the properties of a given pole/residue model is given by a structure
detailed under the Shapes at DOFs section.

The residue matrices res are stored using one row for each pole or asymptotic correction term and,
as for FRFs (see the xf format), a column for each SISO transfer function (stacking NS columns
for actuator 1, then NS columns for actuator 2, etc.).

res =



... . . . . . . . . .
Rj(11) Rj(21) . . . Rj(12) Rj(22) . . .

...
. . .

...
. . .

E11 E21 . . . E12 E22 . . .
F11 F21 . . . F12 F22 . . .


(5.30)

The normal mode residues (ci.IDopt.Fit=’Normal’) are stored in a similar fashion with for only
difference that the Tj are real while the Rj are complex.
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5.7 Parametric transfer function

Except for the id poly and qbode functions, the SDT does not typically use the numerous variants
of the ARMAX model that are traditional in system identification applications and lead to the ratio
of polynomials called transfer function format (tf) in other Matlab Toolboxes. In modal analysis,
transfer functions refer to the functions characterizing the relation between inputs and outputs. The
tf format thus corresponds to the parametric representations of sets of transfer functions in the
form of a ratio of polynomials

Hj(s) =
aj,1s

na−1 + aj,2s
na−2 + . . .+ aj,na

bj,1snb−1 + bj,2snb−2 + . . .+ bj,nb
(5.31)

The SDT stacks the different numerator and denominator polynomials as rows of numerator and
denominator matrices

num =

 a11 a12 . . .
a21 a22 . . .
...

. . .

 and den =

 b11 b12 . . .
b21 b22 . . .
...

. . .

 (5.32)

Other Matlab toolboxes typically only accept a single common denominator (den is a single row).
This form is also accepted by qbode which is used to predict FRFs at a number of frequencies in
the non-parametric xf format).

The id poly function identifies polynomial representations of sets of test functions and res2tf

provides a transformation between the pole/residue and polynomial representations of transfer func-
tions.

5.8 Non-parametric transfer function

Response data structures are the classical format to store non-parametric transfer functions.
Multi-dim curve can also be used.

For a linear system at a given frequency ω, the response vector {y} at NS sensor locations to a
vector {u} of NA inputs is described by the NS by NA rectangular matrix of Frequency Responses
(FRF) 

y1(ω)
...

yNS(ω)

 = [H] {u} =

 H11(ω) H12(ω) . . .
H21(ω) H22(ω)

...
. . .


NS×NA


u1(ω)

...
uNA(ω)

 (5.33)
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The SDT stores frequencies at which the FRF are evaluated as a column vector w

w =


ω1
...

ωNW


NW×1

(5.34)

and SISO FRFs Hij are stored as columns of the matrix xf where each row corresponds to a different
frequency (indicated in w). By default, it is assumed that the correspondence between the columns
of xf and the sensors and actuator numbers is as follows. The NS transfer functions from actuator
1 to the NS sensors are stored as the first NS columns of xf, then the NS transfer functions of
actuator 2, etc.

xf =

 H11(ω1) H21(ω1) . . . H12(ω1) H22(ω1) . . .
H11(ω2) H21(ω2) . . . H12(ω2) H22(ω2) . . .

...
. . .

...
. . .


NW×(NS×NA)

(5.35)

Further characterization of the properties of a given set of FRFs is given by a structure detailed
under Response data section.

Frequency response functions corresponding to parametric models can be generated in the xf for-
mat using qbode (transformation from ss and tf formats), nor2xf, or res2xf. These functions
use robustness/speed trade-offs that are different from algorithms implemented in other Matlab
toolboxes and are more appropriate for applications in structural dynamics.
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6.1 FEM problem formulations

This section gives a short theoretical reminder of supported FEM problems. The selection of the
formulation for each element group is done through the material and element properties.

6.1.1 3D elasticity

Elements with a p solid property entry with a non-zero integration rule are described under
p solid. They correspond exactly to the *b elements, which are now obsolete. These elements
support 3D mechanics (DOFs .01 to .03 at each node) with full anisotropy, geometric non-linearity,
integration rule selection, ... The elements have standard limitations. In particular they do not (yet)

• have any correction for shear locking found for high aspect ratios

• have any correction for dilatation locking found for nearly incompressible materials

With m elastic subtypes 1 and 3, p solid deals with 3D mechanics with strain defined by

εx
εy
εz
γyz
γzx
γxy


=



N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w

 (6.1)

where the engineering notation γyz = 2εyz, ... is used. Stress by
σx
σy
σz
σyz
σzx
σxy

=


d1,1N, x+d1,5N, z+d1,6N, y d1,2N, y+d1,4N, z+d1,6N, x d1,3N, z+d1,4N, y+d1,5N, x
d2,1N, x+d2,5N, z+d2,6N, y d2,2N, y+d2,4N, z+d2,6N, x d2,3N, z+d2,4N, y+d2,5N, x
d3,1N, x+d3,5N, z+d3,6N, y d3,2N, y+d3,4N, z+d3,6N, x d3,3N, z+d3,4N, y+d3,5N, x
d4,1N, x+d4,5N, z+d4,6N, y d4,2N, y+d4,4N, z+d4,6N, x d4,3N, z+d4,4N, y+d4,5N, x
d5,1N, x+d5,5N, z+d5,6N, y d5,2N, y+d5,4N, z+d5,6N, x d5,3N, z+d5,4N, y+d5,5N, x
d6,1N, x+d6,5N, z+d6,6N, y d6,2N, y+d6,4N, z+d6,6N, x d6,3N, z+d6,4N, y+d6,5N, x

{ u
v
w

}
(6.2)

Note that the strain states are {εx εy εz γyz γzx γxy} which may not be the convention of other
software.

Note that NASTRAN, SAMCEF, ANSYS and MODULEF order shear stresses with σxy, σyz, σzx
(MODULEF elements are obtained by setting p solid integ value to zero). Abaqus uses σxy, σxz, σyz

In fe stress the stress reordering can be accounted for by the definition of the proper TensorTopology
matrix.

For isotropic materials
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D =



E(1−ν)
(1+ν)(1−2ν)

 1 ν
1−ν

ν
1−ν

ν
1−ν 1 ν

1−ν
ν

1−ν
ν

1−ν 1

 0

0

 G 0 0
0 G 0
0 0 G




(6.3)

with at nominal G = E/(2(1 + ν)). For isotropic materials, interpolation of ρ, η, E, ν,G, α with
temperature is supported.

For orthotropic materials, the compliance is given by

{ε} = [D]−1 {σ} =



1/E1 −ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1/E2 −ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1/E3 0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0 0 0 0 0 1
G12




σx
σy
σz
σyz
σzx
σxy

 (6.4)

For constitutive law building, see p solid. Material orientation can be interpolated by defining
v1 and v2 fields in the InfoAtNode. Interpolation of non isotropic material properties was only
implemented for of mk ¿= 1.236.

6.1.2 2D elasticity

With m elastic subtype 4, p solid deals with 2D mechanical volumes with strain defined by (see
q4p constants)


εx
εy
γxy

 =

 N, x 0
0 N, y

N, y N, x

{ u
v

}
(6.5)

and stress by 
σεx
σεy
σγxy

 =

 d1,1N, x+ d1,3N, y d1,2N, y + d1,3N, x
d2,1N, x+ d2,3N, y d2,2N, y + d2,3N, x
d3,1N, x+ d3,3N, y d3,2N, y + d3,3N, x

{ u
v

}
(6.6)
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For isotropic plane stress (p solid form=1), one has

D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (6.7)

For isotropic plane strain (p solid form=0), one has

D =
E(1− ν

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (6.8)

6.1.3 Acoustics

With m elastic subtype 2, p solid deals with 2D and 3D acoustics (see flui4 constants) where
3D strain is given by 

p, x
p, y
p, z

 =

 N, x
N, y
N, z

{ p
}

(6.9)

This replaces the earlier flui4 ... elements.

The mass and stiffness matrices are given by

Mij =

∫
Ω

1

ρ0C2
{Ni} {Nj} (6.10)

Kij =

∫
Ω

1

ρ0
{Ni,k} {Nj,k} (6.11)

The source associated with a enforced velocity on a surface

Bi =

∫
∂Ω
{Ni} {Ve} (6.12)

When an impedance Z = ρCR(1 + iη) is considered on a surface, the associated viscous damping
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matrix is given by

Cij =

∫
∂ΩeZ

1

Z
{Ni} {Nj} (6.13)

6.1.4 Classical lamination theory
Both isotropic and orthotropic materials are considered. In these cases, the general form of the 3D

elastic material law is



σ11

σ22

σ33

τ23

τ13

τ12


=



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

(s) C55 0
C66





ε11

ε22

ε33

γ23

γ13

γ12


(6.14)

Plate formulation consists in assuming one dimension, the thickness along x3, negligible compared
with the surface dimensions. Thus, vertical stress σ33 = 0 on the bottom and upper faces, and
assumed to be neglected throughout the thickness,

σ33 = 0⇒ ε33 = − 1

C33
(C13ε11 + C23ε22) , (6.15)

and for isotropic material,

σ33 = 0⇒ ε33 = − ν

1− ν
(ε11 + ε22) . (6.16)

By eliminating σ33, the plate constitutive law is written, with engineering notations,



σ11

σ22

σ12

σ23

σ13


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55





ε11

ε22

γ12

γ23

γ13


. (6.17)

The reduced stiffness coefficients Qij (i,j = 1,2,4,5,6) are related to the 3D stiffness coefficients Cij
by
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Qij =

 Cij −
Ci3Cj3
C33

if i,j=1,2,

Cij if i,j=4,5,6.
(6.18)

The reduced elastic law for an isotropic plate becomes,

 σ11
σ22
τ12

 =
E

(1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 ε11
ε22
γ12

, (6.19)

and

{
τ23
τ13

}
=

E

2(1 + ν)

[
1 0
0 1

]{
γ23
γ13

}
. (6.20)

Under Reissner-Mindlin’s kinematic assumption the linearized strain tensor is

ε =

 u1,1 + x3β1,1
1
2(u1,2 + u2,1 + x3(β1,2 + β2,1)) 1

2(β1 + w,1)
u2,2 + x3β2,2

1
2(β2 + w,2)

(s) 0

 . (6.21)

So, the strain vector is written,

{ε} =



εm11 + x3κ11

εm22 + x3κ22

γm12 + x3κ12

γ23

γ13


, (6.22)

with εm the membrane, κ the curvature or bending, and γ the shear strains,

εm =


u1,1

u2,2

u1,2 + u2,1

 , κ =


β1,1

β2,2

β1,2 + β2,1

 , γ =

{
β2 + w,2
β1 + w,1

}
, (6.23)

Note that the engineering notation with γ12 = u1,2 +u2,1 is used here rather than the tensor notation
with ε12 = (u1,2 + u2,1)/2 . Similarly κ12 = β1,2 + β2,1, where a factor 1/2 would be needed for the
tensor.
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The plate formulation links the stress resultants, membrane forces Nαβ, bending moments Mαβ and
shear forces Qα3, to the strains, membrane εm, bending κ and shearing γ, N

M
Q

 =

 A B 0
B D 0
0 0 F

 εm

κ
γ

. (6.24)

The stress resultants are obtained by integrating the stresses through the thickness of the plate,

Nαβ =

∫ ht

hb
σαβ dx3, Mαβ =

∫ ht

hb
x3 σαβ dx3, Qα3 =

∫ ht

hb
σα3 dx3, (6.25)

with α, β = 1, 2.

Therefore, the matrix extensional stiffness matrix [A], extension/bending coupling matrix [B], and
the bending stiffness matrix [D] are calculated by integration over the thickness interval [hb ht]

Aij =

∫ ht

hb
Qij dx3, Bij =

∫ ht

hb
x3 Qij dx3,

Dij =

∫ ht

hb
x2

3 Qij dx3, Fij =

∫ ht

hb
Qij dx3.

(6.26)

An improvement of Mindlin’s plate theory with tranverse shear consists in modifying the shear
coefficients Fij by

Hij = kijFij , (6.27)

where kij are correction factors. Reddy’s 3rd order theory brings to kij = 2
3 . Very commonly,

enriched 3rd order theory are used, and kij are equal to 5
6 and give good results. For more details

on the assessment of the correction factor, see [32].

For an isotropic symmetric plate (hb = −ht = h/2), the in-plane normal forces N11, N22 and shear
force N12 become


N11

N22

N12

 =
Eh

1− ν2

 1 ν 0
1 0

(s) 1−ν
2




u1,1

u2,2

u1,2 + u2,1

 , (6.28)
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the 2 bending moments M11, M22 and twisting moment M12
M11

M22

M12

 =
Eh3

12(1− ν2)

 1 ν 0
1 0

(s) 1−ν
2




β1,1

β2,2

β1,2 + β2,1

 , (6.29)

and the out-of-plane shearing forces Q23 and Q13,{
Q23

Q13

}
=

Eh

2(1 + ν)

[
1 0
0 1

]{
β2 + w,2
β1 + w,1

}
. (6.30)

One can notice that because the symmetry of plate, that means the reference plane is the mid-plane
of the plate (x3(0) = 0) the extension/bending coupling matrix [B] is equal to zero.

Using expression (6.26) for a constant Qij , one sees that for a non-zero offset, one has
Aij = h [Qij ] Bij = x3(0)h [Qij ] Cij = (x3(0)2h+ h3/12) [Qij ] Fij = h [Qij ] (6.31)

where is clearly appears that the constitutive matrix is a polynomial function of h, h3, x3(0)2h
and x3(0)h. If the ply thickness is kept constant, the constitutive law is a polynomial function of
1, x3(0), x3(0)2.

6.1.5 Piezo-electric volumes

A revised version of this information is available at http://www.sdtools.com/pdf/piezo.

pdf. Missing PDF links will be found there.

The strain state associated with piezoelectric materials is described by the six classical mechanical
strain components and the electrical field components. Following the IEEE standards on piezoelec-
tricity and using matrix notations, S denotes the strain vector and E denotes the electric field vector
(V/m) :

{
S
E

}
=



εx
εy
εz
γyz
γzx
γxy
Ex
Ey
Ez



=



N, x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N, x 0
N, y N, x 0 0

0 0 0 −N, x
0 0 0 −N, y
0 0 0 −N, z




u
v
w
φ

 (6.32)

where φ is the electric potential (V ).
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6 Advanced FEM tools

The constitutive law associated with this strain state is given by{
T
D

}
=

[
CE eT

e −εS

]{
S
−E

}
(6.33)

in which D is the electrical displacement vector (a density of charge in Cb/m2), T is the mechanical
stress vector (N/m2). CE is the matrix of elastic constants at zero electric field (E = 0, short-
circuited condition, see section 6.1.1 for formulas (there CE is noted D). Note that using −E
rather than E makes the constitutive law symmetric.

Alternatively, one can use the constitutive equations written in the following manner :{
S
D

}
=

[
sE dT

d εT

]{
T
E

}
(6.34)

In which sE is the matrix of mechanical compliances, [d] is the matrix of piezoelectric constants
(m/V = Cb/N):

[d] =

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (6.35)

Matrices [e] and [d] are related through

[e] = [d]
[
CE
]

(6.36)

Due to crystal symmetries, [d] may have only a few non-zero elements.

Matrix
[
εS
]

is the matrix of dielectric constants (permittivities) under zero strain (constant volume)

given by [
εS
]

=

 εS11 εS12 εS13

εS21 εS22 εS23

εS31 εS32 εS33

 (6.37)

It is more usual to find the value of εT (Permittivity at zero stress) in the datasheet. These two
values are related through the following relationship :

[
εS
]

=
[
εT
]
− [d] [e]T (6.38)

For this reason, the input value for the computation should be
[
εT
]
.
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Also notice that usually relative permittivities are given in datasheets:

εr =
ε

ε0
(6.39)

ε0 is the permittivity of vacuum (=8.854e-12 F/m)

The most widely used piezoelectric materials are PVDF and PZT. For both of these, matrix
[
εT
]

takes the form [
εT
]

=

 εT11 0 0
0 εT22 0
0 0 εT33

 (6.40)

For PVDF, the matrix of piezoelectric constants is given by

[d] =

 0 0 0 0 0 0
0 0 0 0 0 0
d31 d32 d33 0 0 0

 (6.41)

and for PZT materials :

[d] =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 (6.42)

6.1.6 Piezo-electric shells

A revised version of this information is available at http://www.sdtools.com/pdf/piezo.

pdf.

Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field
components. It is assumed that in each piezoelectric layer i = 1...n, the electric field takes the form
~E = (0 0 Ezi). Ezi is assumed to be constant over the thickness hi of the layer and is therefore
given by Ezi = −∆φi

hi
where ∆φi is the difference of potential between the electrodes at the top

and bottom of the piezoelectric layer i. It is also assumed that the piezoelectric principal axes are
parallel to the structural orthotropy axes.

The strain state of a piezoelectric shell takes the form
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

εxx
εyy
2εxy
κxx
κyy
2κxy
γxz
γyz
−Ez1
...
−Ezn



=



N, x 0 0 0 0 0 ... 0
0 N, y 0 0 0 0 ... 0

N, y N, x 0 0 0 0 ... 0
0 0 0 0 −N, x 0 ... 0
0 0 0 N, y 0 0 ... 0
0 0 0 N, x −N, y 0 ... 0
0 0 N, x 0 N 0 ... 0
0 0 N, y −N 0 0 ... 0
0 0 0 0 0 − 1

h1
... 0

... ... ... ... ... 0 ... − 1
hn





u
v
w
ru
rw

∆φ1

...
∆φn


(6.43)

There are thus n additional degrees of freedom ∆φi, n being the number of piezoelectric layers in
the laminate shell

The constitutive law associated to this strain state is given by :



N
M
Q
Dz1

...
Dzn


=



A B 0 GT1 ... GTn
B D 0 zm1G

T
1 ... zmnG

T
n

0 0 F HT
1 ... HT

n

G1 zm1G1 H1 −ε1 ... 0
... ... ... 0 ... 0
Gn zmnGn Hn 0 ... −εn





ε
κ
γ
−Ez1
...
−Ezn


(6.44)

where Dzi is the electric displacement in piezoelectric layer (assumed constant and in the z-direction),
zmi is the distance between the midplane of the shell and the midplane of piezoelectric layer i, and
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Gi, Hi are given by

Gi =
{
e.1 e.2 0

}
i
[Rs]i (6.45)

Hi =
{
e.4 e.5

}
i
[R]i (6.46)

where . denotes the direction of polarization. If the piezoelectric is used in extension mode, the

polarization is in the z-direction, therefore Hi = 0 and Gi =
{
e31 e32 0

}
i

. If the piezoelectric

is used in shear mode, the polarization is in the x or y-direction, therefore Gi = 0, and Hi = {0 e15}i
or Hi = {e24 0}i . It turns out however that the hypothesis of a uniform transverse shear strain
distribution through the thickness is not satisfactory, a more elaborate shell element would be
necessary. Shear actuation should therefore be used with caution.

[Rs]i and [R]i are rotation matrices associated to the angle θ of the piezoelectric layer.

[Rs] =

 cos2 θ sin2 θ sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (6.47)

[R] =

[
cos θ − sin θ
sin θ cos θ

]
(6.48)

6.1.7 Geometric non-linearity

The following gives the theory of large transformation problem implemented in OpenFEM function
of mk pre.c Mecha3DInteg.

The principle of virtual work in non-linear total Lagrangian formulation for an hyperelastic medium
is ∫

Ω0

(ρ0u
′′, δv) +

∫
Ω0

S : δe =

∫
Ω0

f.δv ∀δv (6.49)

with p the vector of initial position, x = p+ u the current position, and u the displacement vector.
The transformation is characterized by

Fi,j = I + ui,j = δij + {N,j}T {qi} (6.50)

where the N, j is the derivative of the shape functions with respect to Cartesian coordinates at the
current integration point and qi corresponds to field i (here translations) and element nodes. The
notation is thus really valid within a single element and corresponds to the actual implementation
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of the element family in elem0 and of mk. Note that in these functions, a reindexing vector is
used to go from engineering ({e11 e22 e33 2e23 2e31 2e12}) to tensor [eij ] notations ind ts eg=[1

6 5;6 2 4;5 4 3];e tensor=e engineering(ind ts eg);. One can also simplify a number of
computations using the fact that the contraction of a symmetric and non symmetric tensor is equal
to the contraction of the symmetric tensor by the symmetric part of the non symmetric tensor.

One defines the Green-Lagrange strain tensor e = 1/2(F TF − I) and its variation

deij =
(
F TdF

)
Sym

=
(
Fki {N,j}T {qk}

)
Sym

(6.51)

Thus the virtual work of internal loads (which corresponds to the residual in non-linear iterations)
is given by ∫

Ω
S : δe =

∫
Ω
{δqk}T {N,j}FkiSij (6.52)

and the tangent stiffness matrix (its derivative with respect to the current position) can be written
as

KG =

∫
Ω
Sijδuk,iul,j +

∫
Ω
de :

∂2W

∂e2
: δe (6.53)

which using the notation ui,j = {N,j}T {qi} leads to

Ke
G =

∫
Ω
{δqm} {N,l}

(
Fmk

∂2W

∂e2 ijkl
Fni + Slj

)
{N,j} {dqn} (6.54)

The term associated with stress at the current point is generally called geometric stiffness or pre-
stress contribution.

In isotropic elasticity, the 2nd tensor of Piola-Kirchhoff stress is given by

S = D : e(u) =
∂2W

∂e2
: e(u) = λTr(e)I + 2µe (6.55)

the building of the constitutive law matrix D is performed in p solid BuildConstit for isotropic,
orthotropic and full anisotropic materials. of mk pre.c nonlin elas then implements element level
computations. For hyperelastic materials ∂2W

∂e2
is not constant and is computed at each integration

point as implemented in hyper.c.

For a geometric non-linear static computation, a Newton solver will thus iterate with

[K(qn)]
{
qn+1 − qn

}
= R(qn) =

∫
Ω
f.dv −

∫
Ω0

S(qn) : δe (6.56)

where external forces f are assumed to be non following.

For an example see staticNewton.
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6.1.8 Thermal pre-stress

The following gives the theory of the thermoelastic problem implemented in OpenFEM function
of mk pre.c nonlin elas.

In presence of a temperature difference, the thermal strain is given by [eT ] = [α] (T − T0), where in
general the thermal expansion matrix α is proportional to identity (isotropic expansion). The stress
is found by computing the contribution of the mechanical deformation

S = C : (e− eT ) = λTr(e)I + 2µe− (C : [α])(T − T0) (6.57)

This expression of the stress is then used in the equilibrium (6.49), the tangent matrix computa-
tion(6.53), or the Newton iteration (6.56). Note that the fixed contribution

∫
Ω0

(−C : eT ) : δe can
be considered as an internal load of thermal origin.

The modes of the heated structure can be computed with the tangent matrix.

An example of static thermal computation is given in ofdemos ThermalCube.

6.1.9 Hyperelasticity

The following gives the theory of the thermoelastic problem implemented in OpenFEM function
hyper.c (called by of mk.c MatrixIntegration).

For hyperelastic media S = ∂W/∂e with W the hyperelastic energy. hyper.c currently supports
Mooney-Rivlin materials for which the energy takes one of following forms

W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)2, (6.58)

W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)− (C1 + 2C2 +K) ln(J3), (6.59)

where (J1, J2, J3) are the so-called reduced invariants of the Cauchy-Green tensor
C = I + 2e, (6.60)

linked to the classical invariants (I1, I2, I3) by

J1 = I1I
− 1

3
3 , J2 = I2I

− 2
3

3 , J3 = I
1
2
3 , (6.61)

where one recalls that

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, I3 = detC. (6.62)
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Note : this definition of energy based on reduced invariants is used to have the hydrostatic pressure
given directly by p = −K(J3 − 1) (K “bulk modulus”), and the third term of W is a penalty on
incompressibility.

Hence, computing the corresponding tangent stiffness and residual operators will require the deriva-
tives of the above invariants with respect to e (or C). In an orthonormal basis the first-order
derivatives are given by:

∂I1

∂Cij
= δij ,

∂I2

∂Cij
= I1δij − Cij ,

∂I3

∂Cij
= I3C

−1
ij , (6.63)

where (C−1
ij ) denotes the coefficients of the inverse matrix of (Cij). For second-order derivatives we

have:
∂2I1

∂Cij∂Ckl
= 0,

∂2I2

∂Cij∂Ckl
= −δikδjl + δijδkl,

∂2I3

∂Cij∂Ckl
= Cmnεikmεjln, (6.64)

where the εijk coefficients are defined by
εijk = 0 when 2 indices coincide

= 1 when (i, j, k) even permutation of (1, 2, 3)
= −1 when (i, j, k) odd permutation of (1, 2, 3)

(6.65)

Note: when the strain components are seen as a column vector (“engineering strains”) in the form
(e11, e22, e33, 2e23, 2e31, 2e12)′, the last two terms of (6.64) thus correspond to the following 2 matrices

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1/2


, (6.66)



0 C33 C22 −C23 0 0
C33 0 C11 0 −C13 0
C22 C11 0 0 0 −C12

−C23 0 0 −C11/2 C12/2 C13/2
0 −C13 0 C12/2 −C22/2 C23/2
0 0 −C12 C13/2 C23/2 −C33/2


. (6.67)

We finally use chain-rule differentiation to compute

S =
∂W

∂e
=
∑
k

∂W

∂Ik

∂Ik
∂e

, (6.68)

∂2W

∂e2
=
∑
k

∂W

∂Ik

∂2Ik
∂e2

+
∑
k

∑
l

∂2W

∂Ik∂Il

∂Ik
∂e

∂Il
∂e
. (6.69)
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Note that a factor 2 arise each time we differentiate the invariants with respect to e instead of C.

The specification of a material is given by specification of the derivatives of the energy with respect
to invariants. The laws are implemented in the hyper.c EnPassiv function.

6.1.10 Gyroscopic effects

Written by Arnaud Sternchuss ECP/MSSMat.

In the fixed reference frame which is Galilean, the Eulerian speed of the particle in x whose initial
position is p is

∂x

∂t
=
∂u

∂t
+ Ω ∧ (p + u) (6.70)

and its acceleration is
∂2x

∂t2
=
∂2u

∂t2
+
∂Ω

∂t
∧ (p + u) + 2Ω ∧ ∂u

∂t
+ Ω ∧Ω ∧ (p + u) (6.71)

Ω is the rotation vector of the structure with

Ω =

 ωx
ωy
ωz

 (6.72)

in a (x, y, z) orthonormal frame. The skew-symmetric matrix [Ω] is defined such that

[Ω] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (6.73)

The speed can be rewritten

∂x

∂t
=
∂u

∂t
+ [Ω] (p + u) (6.74)

and the acceleration becomes
∂2x

∂t2
=
∂2u

∂t2
+
∂ [Ω]

∂t
(p + u) + 2 [Ω]

∂u

∂t
+ [Ω]2 (p + u) (6.75)

In this expression appear

• the acceleration in the rotating frame ∂2u
∂t2

,

• the centrifugal acceleration ag = [Ω]2 (p + u),

• the Coriolis acceleration ac = ∂[Ω]
∂t (p + u) + 2 [Ω] ∂u∂t .

Se0 is an element of the mesh of the initial configuration S0 whose density is ρ0. [N ] is the matrix of
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shape functions on these elements, one defines the following elementary matrices[
De
g

]
=

∫
Se0

2ρ0 [N ]> [Ω] [N ] dSe0 gyroscopic coupling

[Ke
a] =

∫
Se0
ρ0 [N ]> ∂[Ω]

∂t [N ] dSe0 Coriolis acceleration[
Ke
g

]
=

∫
Se0
ρ0 [N ]> [Ω]2 [N ] dSe0 centrifugal softening/stiffening

(6.76)

The traditional fe mknl MatType in SDT are 7 for gyroscopic coupling and 8 for centrifugal soften-
ing.

6.1.11 Centrifugal follower forces

This is the embryo of the theory for the future implementation of centrifugal follower forces.

δWω =

∫
Ω
ρω2R(x)δvR, (6.77)

where δvR designates the radial component (in deformed configuration) of δv. One assumes that
the rotation axis is along ez. Noting nR = 1/R{x1 x2 0}T , one then has

δvR = nR · δv. (6.78)

Thus the non-linear stiffness term is given by

−dδWω = −
∫

Ω
ρω2(dRδvR +RdδvR). (6.79)

One has dR = nR · dx(= dxR) and dδvR = dnR · δv, with

dnR = −dR
R
nR +

1

R
{dx1 dx2 0}T .

Thus, finally

−dδWω = −
∫

Ω
ρω2(du1δv1 + du2δv2). (6.80)

Which gives

du1δv1 + du2δv2 = {δqα}T {N}{N}T {dqα}, (6.81)

with α = 1, 2.

6.1.12 Poroelastic materials

The poroelastic formulation comes from [33], recalled and detailed in [34].
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Domain and variables description:

Ω Poroelastic domain
∂Ω Bounding surface of poroelastic domain
n Unit external normal of ∂Ω
u Solid phase displacement vector

uF Fluid phase displacement vector uF = φ
ρ̃22ω

2∇p−
ρ̃12
ρ̃22

u

p Fluid phase pressure
σ Stress tensor of solid phase

σt Total stress tensor of porous material σt = σ − φ
(

1 +
Q̃

R̃

)
pI

Weak formulation, for harmonic time dependence at pulsation ω:

∫
Ω
σ(u) : ε(δu) dΩ− ω2

∫
Ω
ρ̃ u.δu dΩ−

∫
Ω

φ

α̃
∇p.δu dΩ

−
∫

Ω
φ

(
1 +

Q̃

R̃

)
p∇.δu dΩ−

∫
∂Ω

(σt(u).n).δu dS = 0 ∀δu
(6.82)

∫
Ω

φ2

α̃ρoω2
∇p.∇δp dΩ−

∫
Ω

φ2

R̃
p δp dΩ−

∫
Ω

φ

α̃
u.∇δp dΩ

−
∫

Ω
φ

(
1 +

Q̃

R̃

)
δp∇.u dΩ−

∫
∂Ω
φ(uF − u).n δp dS = 0 ∀δp

(6.83)

Matrix formulation, for harmonic time dependence at pulsation ω:

[
K − ω2M −C1 − C2

−CT1 − CT2 1
ω2F −Kp

]{
u
p

}
=

{
F ts
Ff

}
(6.84)

where the frequency-dependent matrices correspond to:
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∫
Ω
σ(u) : ε(δu) dΩ ⇒ δuTKu∫

Ω
ρ̃ u.δu dΩ ⇒ δuTMu∫

Ω

φ2

α̃ρo
∇p.∇δp ⇒ δpTKpp∫

Ω

φ2

R̃
p δp ⇒ δpTFp∫

Ω

φ

α̃
∇p.δu dΩ ⇒ δuTC1p∫

Ω
φ

(
1 +

Q̃

R̃

)
p∇.δu dΩ ⇒ δuTC2p∫

∂Ω
(σt(u).n).δu dS ⇒ δuTF ts∫

∂Ω
φ(uF − u).n δp dS ⇒ δpTFf

(6.85)

N.B. if the material of the solid phase is homogeneous, the frequency-dependent parameters can be
eventually factorized from the matrices:

 (1 + iηs)K̄ − ω2ρ̃M̄ −φ
α̃ C̄1 − φ

(
1 + Q̃

R̃

)
C̄2

−φ
α̃ C̄

T
1 − φ

(
1 + Q̃

R̃

)
C̄T2

1
ω2

φ2

R̃
F̄ − φ2

α̃ρo
K̄p

{ u
p

}
=

{
F ts
Ff

}
(6.86)

where the matrices marked with bars are frequency independent:

K = (1 + iηs)K̄ M = ρ̃M̄ C1 = φ
α̃ C̄1

C2 = φ
(
1 + Q̃

R̃

)
C̄2 F = φ2

R̃
F̄ Kp = φ2

α̃ρo
K̄p

(6.87)

Material parameters:

236



φ Porosity of the porous material
σ̄ Resistivity of the porous material
α∞ Tortuosity of the porous material
Λ Viscous characteristic length of the porous material
Λ′ Thermal characteristic length of the skeleton
ρ Density of the skeleton
G Shear modulus of the skeleton
ν Poisson coefficient of the skeleton
ηs Structural loss factor of the skeleton
ρo Fluid density
γ Heat capacity ratio of fluid (= 1.4 for air)
η Shear viscosity of fluid (= 1.84× 10−5 kg m−1 s−1 for air)

Constants:

Po = 1, 01× 105 Pa Ambient pressure
Pr = 0.71 Prandtl number

Poroelastic specific (frequency dependent) variables:
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ρ11 Apparent density of solid phase ρ11 = (1− φ)ρ− ρ12

ρ22 Apparent density of fluid phase ρ22 = φρo − ρ12

ρ12 Interaction apparent density ρ12 = −φρo(α∞ − 1)

ρ̃ Effective density of solid phase ρ̃ = ρ̃11 −
(ρ̃12)2

ρ̃22

ρ̃11 Effective density of solid phase ρ̃11 = ρ11 + b̃
iω

ρ̃22 Effective density of fluid phase ρ̃22 = ρ22 + b̃
iω

ρ̃12 Interaction effective density ρ̃12 = ρ12 − b̃
iω

b̃ Viscous damping coefficient b̃ = φ2σ̄

√
1 + i

4α2
∞ηρoω

σ̄2Λ2φ2

γ̃ Coupling coefficient γ̃ = φ

(
ρ̃12
ρ̃22
− Q̃
R̃

)
Q̃ Elastic coupling coefficient

Biot formulation Q̃ =
1− φ− Kb

Ks

1− φ− Kb

Ks
+ φ

Ks

K̃f

φKs

Approximation from Kb/Ks << 1 Q̃ = (1− φ)K̃f

R̃ Bulk modulus of air in fraction volume

Biot formulation R̃ = φ2Ks

1− φ− Kb

Ks
+ φ

Ks

K̃f

Approximation from Kb/Ks << 1 R̃ = φK̃f

Kb Bulk modulus of porous material in vacuo Kb =
2G(1 + ν)
3(1− 2ν)

Ks Bulk modulus of elastic solid

est. from Hashin-Shtrikman’s upper bound Ks = 1+2φ
1−φ Kb

K̃f Effective bulk modulus of air in pores K̃f = Po

1− γ − 1

γα′

α′ Function in K̃f (Champoux-Allard model) α′ = 1 + ωT
2iω

(
1 + iω

ωT

) 1
2

ωT Thermal characteristic frequency ωT = 16η
PrΛ′2ρo

To add here:

• coupling conditions with poroelastic medium, elastic medium, acoustic medium

• dissipated power in medium

238



6.1.13 Heat equation

This section is based on an OpenFEM contribution by Bourquin Frédéric and Nassiopoulos Alexandre
from Laboratoire Central des Ponts et Chaussées.

The variational form of the Heat equation is given by

∫
Ω

(ρcθ̇)(v) dx+

∫
Ω

(Kgrad θ)(grad v) dx+

∫
∂Ω
αθv dγ =∫

Ω
fv dx+

∫
∂Ω

(g + αθext)v dγ

∀v ∈ H1(Ω)

(6.88)

with

• ρ the density, c the specific heat capacity.

• K the conductivity tensor of the material. The tensor K is symmetric, positive definite, and
is often taken as diagonal. If conduction is isotropic, one can write K = k(x)Id where k(x) is
called the (scalar) conductivity of the material.

• Acceptable loads and boundary conditions are

– Internal heat source f

– Prescribed temperature (Dirichlet condition, also called boundary condition of first kind)

θ = θext on ∂Ω (6.89)

modeled using a DofSet case entry.

– Prescribed heat flux g (Neumann condition, also called boundary condition of second kind)

(Kgrad θ) · ~n = g on ∂Ω (6.90)

leading to a load applied on the surface modeled using a FVol case entry.

– Exchange and heat flux (Fourier-Robin condition, also called boundary condition of third
kind)

(Kgrad θ) · ~n+ α(θ − θext) = g on ∂Ω (6.91)
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leading to a stiffness term (modeled using a group of surface elements with stiffness
proportional to α) and a load on the associated surface proportional to g+αθext (modeled
using FVol case entries).

Test case

One considers a solid square prism of dimensions Lx, Ly, Lz in the three directions (Ox), (Oy) and
(Oz) respectively. The solid is made of homogeneous isotropic material, and its conductivity tensor
thus reduces to a constant k.

The faces, Γi(i = 1..6,∪6
i=1Γi = ∂Ω), are subject to the following boundary conditions and loads

• f = 40 is a constant uniform internal heat source

• Γ1 (x = 0) : exchange & heat flux (Fourier-Robin) given by α = 1, g1 = αθext + αfL2
x

2k = 25

• Γ2 (x = Lx) : prescribed temperature : θ(Lx, y, z) = θext = 20

• Γ3 (y = 0), Γ4 (y = Ly), Γ5 (z = 0), Γ6 (z = Lz): exchange & heat flux g + αθext =

αθext + αf
2k (L2

x − x2) + g1 = 25− x2

20

The problem can be solved by the method of separation of variables. It admits the solution

θ(x, y, z) = − f

2k
x2 + θext +

fL2
x

2k
=
g(x)

α
= 25− x2

20

The resolution for this example can be found in demo/heat equation.
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Figure 6.1: Temperature distribution along the x-axis

6.2 Model reduction theory

Finite element models of structures need to have many degrees of freedom to represent the geo-
metrical detail of complex structures. For models of structural dynamics, one is however interested
in

• a restricted frequency range (s = iω ∈ [ω1 ω2])

• a small number of inputs and outputs (b, c)

• a limited parameter space α (updated physical parameters, design changes, non-linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models that accurately
represent the dynamics of the full order model in all the considered loading/parameter conditions.

Model reduction notions are key to many SDT functions of all areas: to motivate residual terms
in pole residue models (id rc, id nor), to allow fine control of model order (nor2ss, nor2xf), to
create normal models of structural dynamics from large order models (fe2ss, fe reduc), for test
measurement expansion to the full set of DOFs (fe exp), for substructuring using superelements
(fesuper, fe coor), for parameterized problems including finite element model updating (upcom).

6.2.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they seek solutions in
the subspace generated by a reduction matrix T . Assuming {q} = [T ] {qR}, the second order finite
element model (5.1) is projected as follows
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[
T TMTs2 + T TCTs+ T TKT

]
NR×NR

{qR(s)} =
[
T T b

]
NR×NA

{u(s)}NA×1

{y(s)}NS×1 = [cT ]NS×NR {qR(s)}NR×1

(6.92)

Modal analysis, model reduction, component mode synthesis, and related methods all deal with an
appropriate selection of singular projection bases ([T ]N×NR with NR � N). This section summa-
rizes the theory behind these methods with references to other works that give more details.

The solutions provided by SDT making two further assumptions which are not hard limitations but
allow more consistent treatments while covering all but the most exotic problems. The projection is
chosen to preserve reciprocity (left multiplication by T T and not another matrix). The projection
bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved for a given
frequency and parameter range

[c] [Z(s, α)]−1 [b] ≈ [cT ]
[
T TZ(s, α)T

]−1 [
T T b

]
(6.93)

Traditional modal analysis, combines normal modes and static responses. Component mode synthe-
sis methods extend the selection of boundary conditions used to compute the normal modes. The
SDT further extends the use of reduction bases to parameterized problems.

A key property for model reduction methods is that the input/output behavior of a model only
depends on the vector space generated by the projection matrix T . Thus range(T ) = range(T̃ )
implies that

[cT ]
[
T TZT

]−1 [
T T b

]
=
[
cT̃
] [
T̃ TZT̃

]−1 [
T̃ T b

]
(6.94)

This equivalence property is central to the flexibility provided by the SDT in CMS applications
(it allows the decoupling of the reduction and coupled prediction phases) and modeshape expansion
methods (it allows the definition of a static/dynamic expansion on sensors that do not correspond
to DOFs).

6.2.2 Normal mode models

Normal modes are defined by the eigenvalue problem

− [M ] {φj}ω2
j + [K]N×N {φj}N×1 = {0}N×1 (6.95)

242



based on inertia properties (represented by the positive definite mass matrix M) and underlying
elastic properties (represented by a positive semi-definite stiffness K). The matrices being positive
there are N independent eigenvectors {φj} (forming a matrix noted [φ]) and eigenvalues ω2

j (forming

a diagonal matrix noted
[
\ω2

j \

]
).

As solutions of the eigenvalue problem (6.95), the full set of N normal modes verify two orthogo-
nality conditions with respect to the mass and the stiffness

[φ]T [M ] [φ] =
[
\µj\

]
N×N

and [φ]T [K] [φ] =
[
\µjω

2
j \

]
(6.96)

where µ is a diagonal matrix of modal masses (which are quantities depending uniquely on the way
the eigenvectors φ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that [µ] = [I] (im-

plying [φ]T [M ] [φ] = [I] and [φ]T [K] [φ] =
[
\ω2

j \

]
). The mass normalization of modeshapes is

independent from a particular choice of sensors or actuators.

Another traditional normalization is to set a particular component of φ̃j to 1. Using an output shape
matrix this is equivalent to clφ̃j = 1 (the observed motion at sensor cl is unity). φ̃j , the modeshape
with a component scaled to 1, is related to the mass normalized modeshape by φ̃j = φj/(clφj).

mj(cl) = (clφj)
−2 (6.97)

is called the modal or generalized mass at sensor cl. A large modal mass denotes small output.
For rigid body translation modes and translation sensors, the modal mass corresponds to the mass
of the structure. If a diagonal matrix of generalized masses mu is provided and ModeIn is such that
the output cl is scaled to 1, the mass normalized modeshapes will be obtained by

ModeNorm = ModeIn * diag(diag(mu).^(-1/2));

Modal stiffnesses are are equal to

kj(cl) = (clφj)
−2 ω2

j (6.98)

The use of mass-normalized modes, simplifies the normal mode form (identity mass matrix) and
allows the direct comparison of the contributions of different modes at similar sensors. From the
orthogonality conditions, one can show that, for an undamped model and mass normalized modes,
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the dynamic response is described by a sum of modal contributions

[α(s)] =
N∑
j=1

{cφj}
{
φTj b

}
s2 + ω2

j

(6.99)

which correspond to pairs of complex conjugate poles λj = ±iωj .

In practice, only the first few low frequency modes are determined, the series in (6.99) is truncated,
and a correction for the truncated terms is introduced (see section 6.2.3 ).

Note that the concept of effective mass [35], used for rigid base excitation tests, is very similar to
the notion of generalized mass.

6.2.3 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition (6.99). In practice, one dis-
tinguishes modes that have a resonance in the model bandwidth and need to be kept and higher
frequency modes for which one assumes ω � ωj . This assumption leads to

[c]
[
Ms2 +K

]−1
[b] ≈

NR∑
j=1

[c] {φj} {φj}T [b]

s2 + ω2
j

+
N∑

j=NR+1

[c] {φj} {φj}T [b]

ω2
j

(6.100)

Figure 6.2: Normal mode corrections.

For the example treated in the demo fe script, the figure shows that the exact response can be
decomposed into retained modal contributions and an exact residual. In the selected frequency
range, the exact residual is very well approximated by a constant often called the static correction.

The use of this constant is essential in identification phases and it corresponds to the E term in the
pole/residue models used by id rc (see under res page 212).

For applications in reduction of finite element models, a little more work is typically done. From the
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orthogonality conditions (6.96), one can easily show that for a structure with no rigid body modes
(modes with ωj = 0)

[TA] = [K]−1 [b] =
N∑
j=1

{φj}
{
φTj b

}
ω2
j

(6.101)

The static responses K−1b are called attachment modes in Component Mode Synthesis applica-
tions [36]. The inputs [b] then correspond to unit loads at all interface nodes of a coupled problem.

One has historically often considered residual attachment modes defined by

[TAR] = [K]−1 [b]−
NR∑
j=1

{φj}
{
φTj b

}
ω2
j

(6.102)

where NR is the number of normal modes retained in the reduced model.

The vector spaces spanned by [φ1 . . . φNR TA] and [φ1 . . . φNR TAR] are clearly the same, so that
reduced models obtained with either are dynamically equivalent. For use in the SDT, you are
encouraged to find a basis of the vector space that diagonalizes the mass and stiffness matrices
(normal mode form which can be easily obtained with fe norm).

Reduction on modeshapes is sometimes called the mode displacement method, while the addition
of the static correction leads to the mode acceleration method.

When reducing on these bases, the selection of retained normal modes guarantees model validity
over the desired frequency band, while adding the static responses guarantees validity for the spatial
content of the considered inputs. The reduction is only valid for this restricted spatial/spectral
content but very accurate for solicitation that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer. The standard,
but conservative, criterion (attributed to Rubin) is to keep modes with frequencies below 1.5 times
the highest input frequency of interest.

6.2.4 Static correction with rigid body modes

For a system with NB rigid body modes kept in the model, [K] is singular. Two methods are
typically considered to overcome this limitation.

The approach traditionally found in the literature is to compute the static response of all flexible
modes. For NB rigid body modes, this is given by

[K]∗ [b] =
N∑

j=NB+1

{φj}
{
φTj b

}
ω2
j

(6.103)
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This corresponds to the definition of attachment modes for free floating structures [36]. The
flexible response of the structure can actually be computed as a static problem with an iso-static
constraint imposed on the structure (use the fe reduc flex solution and refer to [37] or [38] for
more details).

The approach preferred in the SDT is to use a mass-shifted stiffness leading to the definition of
shifted attachment modes as

[TAS ] = [K + αM ]−1 [b] =
N∑
j=1

{φj}
{
φTj b

}
(ω2
j + α)

(6.104)

While these responses don’t exactly span the same subspace as static corrections, they can be
computed using the mass-shifted stiffness used for eigenvalue computations. For small mass-shifts
(a fraction of the lowest flexible frequency) and when modes are kept too, they are a very accurate
replacement for attachment modes. It is the opinion of the author that the additional computational
effort linked to the determination of true attachment modes is not mandated and shifted attachment
modes are used in the SDT.

6.2.5 Other standard reduction bases

For coupled problems linked to model substructuring, it is traditional to state the problem in terms
of imposed displacements rather than loads.

Assuming that the imposed displacements correspond to DOFs, one seeks solutions of problems of
the form [

ZII(s) ZIC(s)
ZCI(s) ZCC(s)

]{
< qI(s) >
qC(s)

}
=

{
RI(s)
< 0 >

}
(6.105)

where < > denotes a given quantity (the displacement qI are given and the reaction forces RI
computed). The exact response to an imposed harmonic displacement qI(s) is given by

{q(s)} =

[
I

−Z−1
CCZCI

]
{qI} (6.106)

The first level of approximation is to use a quasistatic evaluation of this response (evaluate at s = 0,
that is use Z(0) = K). Model reduction on this basis is known as static or Guyan condensation
[21].

This reduction does not fulfill the requirement of validity over a given frequency range. Craig and
Bampton [39] thus complemented the static reduction basis by fixed interface modes : normal
modes of the structure with the imposed boundary condition qI = 0. These modes correspond to
singularities ZCC so their inclusion in the reduction basis allows a direct control of the range over
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which the reduced model gives a good approximation of the dynamic response.

The Craig-Bampton reduction basis takes the special form{
qI(s)
qC(s)

}
=

[
I 0

−K−1
CCKCI φC

]
{qR} (6.107)

where the fact that the additional fixed interface modes have zero components on the interface
DOFs is very useful to allow direct coupling of various component models. fe reduc provides a
solver that directly computes the Craig-Bampton reduction basis.

A major reason of the popularity of the Craig-Bampton reduction basis is the fact that the interface
DOFs qI appear explicitly in the generalized DOF vector qR. This is actually a very poor reason that
has strangely rarely been challenged. Since the equivalence property tells that the predictions of a
reduced model only depend on the projection subspace, it is possible to select the reduction basis
and the generalized DOFs independently. The desired generalized DOFs can always be characterized
by an observation matrix cI . As long as [cI ] [T ] is not rank deficient, it is thus possible to determine
a basis T̃ of the subspace spanned by T such that

[cI ]
[
T̃
]

=
[
[I]NI×NI [0]NI×(NR−NI)

]
(6.108)

The fe coor function builds such bases, and thus let you use arbitrary reduction bases (loaded
interface modes rather than fixed interface modes in particular) while preserving the main interest
of the Craig-Bampton reduction basis for coupled system predictions (see example in section 6.3.3
).

6.2.6 Substructuring

Substructuring is a process where models are divided into components and component models are
reduced before a coupled system prediction is performed. This process is known as Component
Mode Synthesis in the literature. Ref. [36] details the historical perspective while this section
gives the point of view driving the SDT architecture (see also [40]).

One starts by considering disjoint components coupled by interface component(s) that are physical
parts of the structure and can be modeled by the finite element method. Each component corresponds
to a dynamic system characterized by its I/O behavior Hi(s). Inputs and outputs of the component
models correspond to interface DOFs.
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Figure 6.3: CMS procedure.

Traditionally, interface DOFs for the interface model match those of the components (the meshes are
compatible). In practice the only requirement for a coupled prediction is that the interface DOFs
linked to components be linearly related to the component DOFs qjint = [cj ] [qj ]. The assumption
that the components are disjoint assures that this is always possible. The observation matrices cj
are Boolean matrices for compatible meshes and involve interpolation otherwise.

Because of the duality between force and displacement (reciprocity assumption), forces applied by
the interface(s) on the components are described by an input shape matrix which is the transpose
of the output shape matrix describing the motion of interface DOFs linked to components based on
component DOFs. Reduced component models must thus be accurate for all those inputs. CMS
methods achieve this objective by keeping all the associated constraint or attachment modes.

Considering that the motion of the interface DOFs linked to components is imposed by the compo-
nents, the coupled system (closed-loop response) is simply obtained adding the dynamic stiffness of
the components and interfaces. For a case with two components and an interface with no internal
DOFs, this results in a model coupled by the dynamic stiffness of the interface([

Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

]
[Zint]

[
c1 0
0 c2

]){
q1

q2

}
= [b] {u(s)} (6.109)

The traditional CMS perspective is to have the dimension of the interface(s) go to zero. This can
be seen as a special case of coupling with an interface stiffness

[
Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

] [ I −I
−I I

]
ε

[
c1 0
0 c2

]
{
q1

q2

}
= [b] {u(s)} (6.110)

where ε tends to zero. The limiting case could clearly be rewritten as a problem with a displacement
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constraint (generalized kinematic or Dirichlet boundary condition)[
Z1 0
0 Z2

]{
q1

q2

}
= [b] {u(s)} with [c1 − c2]

{
q1

q2

}
= 0 (6.111)

Most CMS methods state the problem this way and spend a lot of energy finding an explicit method
to eliminate the constraint. The SDT encourages you to use fe coor which eliminates the constraint
numerically and thus leaves much more freedom on how you reduce the component models.

In particular, this allows a reduction of the number of possible interface deformations [40]. But this
reduction should be done with caution to prevent locking (excessive stiffening of the interface).

6.2.7 Reduction for parameterized problems
Methods described up to now, have not taken into account the fact that in (6.93) the dynamic

stiffness can depend on some variable parameters. To apply model reduction to a variable model,
the simplest approach is to retain the low frequency normal modes of the nominal model. This
approach is however often very poor even if many modes are retained. Much better results can be
obtained by taking some knowledge about the modifications into account [41].

In many cases, modifications affect a few DOFs: ∆Z = Z(α)−Z(α0) is a matrix with mostly zeros

on the diagonal and/or could be written as an outer product ∆ZN×N = [bI ]
[
∆Ẑ

]
NB×NB

[bI ]
T with

NB much smaller than N . An appropriate reduction basis then combines nominal normal modes
and static responses to the loads bI

T =

[
φ1...NR

[
K̂
]−1

[bI ]

]
(6.112)

In other cases, you know a typical range of allowed parameter variations. You can combine normal
modes are selected representative design points to build a multi-model reduction that is exact at
these points

T = [φ1...NR(α1) φ1...NR(α2) ...] (6.113)

If you do not know the parameter ranges but have only a few parameters, you should consider a
model combining modeshapes and modeshape sensitivities [42] (as shown in the gartup demo)

T =

[
φ1...NR(α0)

∂φ1...NR

∂α
...

]
(6.114)

For a better discussion of the theoretical background of fixed basis reduction for variable models see
Refs. [41] and [42].
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6.3 Superelements and CMS

6.3.1 Superelements in a model

A superelement is a model that is included in another global model as an element. In general
superelements are reduced: the response at all DOFs is described by a linear combination of shapes
characterized by generalized DOFs. The use of multiple superelements to generate system predictions
is called Component Mode Synthesis (CMS). For a single superelement (SE structure not included
in a larger model) simply use fe reduc calls. This section addresses superelements integrated in a
model.

Starting with SDT 6, superelements are stored as ’SE’ entries in the model stack (of the form ’SE’,

SEname, SEmodel) with field detailed in section 6.3.2 . Superelements are then referenced by element
rows in a group of SE elements in the global model. A group of superelements in the Elt matrix be-
gins by the header row [Inf abs(’SE’) 0]. Each superelement is then defined by a row of the form

[NameCode N1 Nend BasId Elt1 EltEnd MatId ProId EltId].

• NameCode is an identifier encoding the superelement name using fesuper(’s name’). It is then
assumed that the model stack contains an ’SE’,name entry containing the model constituting
the superelement. The encoding uses base2dec and is limited to 8 alphabetic lower
case characters and numbers, you can use
NameCode = feval(fesuper(’@cleanSEname’),NameCode); to test the name compatibility.

• [N1 Nend] and [Elt1 EltEnd] are ranges of implicit NodeId and EltId of the superelement
nodes and elements in the global model. That is to say that each node or element of the
superelement is identified in the global model by an Id that can be different from the original
Id of the superelement model stored in the stack. For more details see Node.

• BasId is the basis identifier in the bas field of the global model. It allows repositioning of the
superelement in the global model.

• Elt1,EltEnd give the range of EltId used to identify elements constituting the superelement.
These numbers are distinct from the superelement identifier itself.

• MatId,ProId,EltId are used to associate properties to a given superelement. Superelements
support p super property entries. Material information can be used for selection purposes.
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The d cms demo illustrates the Component Mode Synthesis based on a superelement element strat-
egy. The model of this example (shown below) is composed by two stiffened plates. CMS here
consists in splitting the model into two superelement plates that will be reduced, before computa-
tion of the global model modes.

Figure 6.4: CMS example: 2 stiffened plates.

• step 1 builds the simple model shown above

• in step 2 the two parts are separated and defined as super-elements

• now display

Other examples of superelement use are given in section 6.3.3 .

6.3.2 SE data structure reference

The superelement data is stored as a ’SE’,Name,Data entry of the global model stack. The following
entries describe standard fields of the superelement Data structure (which is a standard SDT model
data structure with possible additional fields).

Opt

Options characterizing the type of superelement as follows:
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Opt(1,1) 1 classical superelements, 3 FE update unique superelements (see upcom).
Opt(1,4) 1 for FE update superelement uses non symmetric matrices.
Opt(2,:) matrix types for the superelement matrices. Each non zero value on the

second row of Opt specifies a matrix stored in the field K{i} (where i is
the column number). The value of Opt(2,i) indicates the matrix type of
K{i}. For standard types see MatType.

Opt(3,:) is used to define the coefficient associated with each of the matrices declared
in row 2. An alternative mechanism is to define an element property in the
il matrix. If these coefficients are not defined they are assumed to be equal
to 1. See p super for high level handling.

Node

Nominal node matrix. Contains the nodes used by the unique superelement or the nominal generic
superelement (see section 7.1 ). The only restriction in comparison to a standard model Node matrix
is that it must be sorted by NodeId so that the last node has the largest NodeId.

In the element row declaring the superelement (see above) one defines a node range N1 NEND. The
constraint on node numbers is that the defined range corresponds to the largest node number in the
superelement (NEND-N1+1=max(SE.Node(:,1))). Not all nodes need to be defined however.

Nodes numbers in the full model are given by
NodeId=SE.Node(:,1)-max(SE.Node(:,1))+NEND

N1 is really only used for coherence checking).

K{i},Klab{i},DOF

Superelement matrices. The presence and type of these matrices is declared in the Opt field (see
above) and should be associated with a label giving the meaning of each matrix.

All matrices must be consistent with the .DOF field which is given in internal node numbering. When
multiple instances of a superelement are used, node identifiers are shifted.

Elt, Node, il, pl

Initial model retrieval for unique superelements. Elt field contains the initial model description
matrix which allows the construction of a detailed visualization as well as post-processing operations.
.Node contains the nodes used by this model. The .pl and .il fields store material and element
properties for the initial model.

Once the matrices built, SE.Elt may be replaced by a display mesh if appropriate.
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TR

TR field contains the definition of a possible projection on a reduction basis. This information is
stored in a structure array with fields

• .DOF is the model active DOF vector.

• .def is the projection matrix. There is as many columns as DOFs in the reduced basis (stored
in the DOF field of the superelement structure array), and as many row as active DOFs (stored
in TR.DOF).

• .adof, when appropriate, gives a list of DOF labels associated with columns of TR.def

• .data, when appropriate, gives a list frequencies associated with columns of TR.def

• .LargeDOF can be used to specify DOFs used to track the large rotation of frame where the
superelement is defined in multi-body systems.

• .KeptDOF can be used to specify master DOFs not included TR.def but that should still be
used for display of the superelement.

6.3.3 An example of SE use for CMS

Following example splits the 2 stiffened plane models into 2 sub models, and defines a new model
with those 2 sub models taken as superelements.
First the 2 sub models are built

model=demosdt(’Tuto CMSSE -s1 model’);

SE1.Node=model.Node; SE2.Node=model.Node;

[ind,SE1.Elt]=feutil(’FindElt WithNode{x>0|z>0}’,model); % sel 1st plate

SE1.Node=feutil(’OptimModel’,SE1); SE1=feutil(’renumber’,SE1);

[ind,SE2.Elt]=feutil(’FindElt WithNode{x<0|z<0}’,model); % sel 2nd plate

SE2.Node=feutil(’OptimModel’,SE2); SE2=feutil(’renumber’,SE2);

Then mSE model is built including those 2 models as superelements

mSE.Node=[];

mSE.Elt=[Inf abs(’SE’) 0 0 0 0 0 0; % header row for superelements

fesuper(’s_se1’) 1 16 0 1 1 100 100 1 ; % SE1

fesuper(’s_se2’) 101 116 0 2 2 101 101 2]; % SE2

mSE=stack_set(mSE,’SE’,’se1’,SE1); mSE=stack_set(mSE,’SE’,’se2’,SE2);

feplot(mSE); fecom(’promodelinit’)
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This is a low level strategy. fesuper provides a set of commands to easily manipulate superelements.
In particular the whole example above can be performed by a single call to fesuper(’SelAsSE’)

command as shown in the CMS example in section 6.3.3 .

In this example one takes a full model split it into two superelements through element selections

model=demosdt(’Tuto CMSSE -s1 model’); % get the full model

feutil(’infoelt’,model)

mSE=fesuper(’SESelAsSE-dispatch’,model, ...

{’WithNode{x>0|z>0}’;’WithNode{x<0|z<0}’});
feutil(’infoelt’,mSE)

[eltid,mSE.Elt]=feutil(’eltidfix;’,mSE);

Then the two superelements are stored in the stack of mSE. Both of them are reduced using fe reduc

(with command option -SE for superelement, and -UseDof in order to obtain physical DOFs) Craig-
Bampton reduction. This operation creates the .DOF (reduced DOFs), .K (superelement reduced
matrices) and .TR (reduction basis) fields in the superelement models.
Those operations can be performed with following commands (see fesuper)

mSE=fesuper(mSE,’setStack’,’se1’,’info’,’EigOpt’,[5 20 1e3]);

mSE=fesuper(mSE,’settr’,’se1’,’CraigBampton -UseDof’);

mSE=fesuper(mSE,’setStack’,’se2’,’info’,’EigOpt’,[5 20 1e3]);

mSE=fesuper(mSE,’settr’,’se2’,’CraigBampton -UseDof’);

This is the same as following lower level commands

SE1=stack_get(mSE,’SE’,’se1’,’getdata’);

SE1=stack_set(SE1,’info’,’EigOpt’,[5 50.1 1e3]);

SE1=fe_reduc(’CraigBampton -SE -UseDof’,SE1);

mSE=stack_set(mSE,’SE’,’se1’,SE1);

SE2=stack_get(mSE,’SE’,’se2’,’getdata’);

SE2=stack_set(SE2,’info’,’EigOpt’,[5 50.1 1e3]);

SE2=fe_reduc(’CraigBampton -SE -UseDof’,SE2);

mSE=stack_set(mSE,’SE’,’se2’,SE2);

Then the modes can be computed, using the reduced superelements

def=fe_eig(mSE,[5 20 1e3]); % reduced model

dfull=fe_eig(model,[5 20 1e3]); % full model

The results of full and reduced models are very close. The frequency error for the first 20 modes is
lower than 0.02 %.

fesuper provides a set of commands to manipulate superelements. fesuper(’SEAdd’) lets you
add a superelement in a model. One can add a model as a unique superelement or repeat it with
translations or rotations.
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For CMS for example, one has to split a model into sub structure superelement models. It can be
performed by the fesuper SESelAsSE command. This command can split a model into superele-
ments defined by selections, or can build the model from sub models taken as superelements. The
fesuper SEDispatch command dispatches the global model constraints (FixDof, mpc, rbe3, DofSet
and rigid elements) into the related superelements and defines DofSet (imposed displacements) on
the interface DOFs between sub structures.

6.3.4 Obsolete superelement information

The following strategy is now obsolete and should not be used even though it is still tested.

Superelements are stored in global variables whose name is of the form SEName. fe super ensures
that superelements are correctly interpreted as regular elements during model assembly, visualiza-
tion, etc. The superelement Name must differ from all function names in your Matlab path. By
default these variables are not declared as global in the base workspace. Thus to access them from
there you need to use global SEName.

Reference to the superelements is done using element group headers of the form [Inf abs(’name’)].

The fesuper user interface provides standard access to the different fields (see fe super for a list
of those fields). The following sections describe currently implemented commands and associated
arguments (see the commode help for hints on how to build commands and understand the variants
discussed in this help).

Warnings. In the commands superelement names must be followed by a space (in most other cases
user interface commands are not sensitive to spaces).

• Info Outputs a summary of current properties of the superelement Name.

• Load, Save Load FileName loads superelements (variables with name of the form SEName)
present in the file.
SaveFileName Name1 Name2 ... saves superelements Name1, Name2 ... in the file.
Note that these commands are really equivalent to global SEName;save FileName SEName

and global SEName;load FileName SEName.

• Make elt=fesuper(’make Name generic’) takes a unique superelement and makes it generic
(see fe super for details on generic superelements). Opt(1,1) is set to 2. SEName.DOF is
transformed to a generic DOF form. The output elt is a model description matrix for the
nominal superelement (header row and one element property row). This model can by used
by femesh to build structures that use the generic superelement several times (see the d cms2

demo).
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make complete adds zero DOFs to nodes which have less than 3 translations (DOFs .01 to
.03) or rotations (DOFs .04 to .06). Having complete superelements is important to be able
to rotate them (used for generic superelements with a Ref property).

• New New unique superelement declaration using the general format
fesuper (’New Name’,FEnode,FEelt). If a superelement called Name exists it is erased. The
Node and Elt properties are set to those given as arguments. The Patch property used by
feplot for display is initialized.

Set calls of the form fesuper(’Set Name FieldOrCommand’, ’Value’) are obsolete and replaced
as follows

• ref field are now replaced by the definition of local bases for each instance of the superelement.

• patch simply replace the superelement .Elt field by another simplified model to be used for
viewing once the matrices have been defined.

• ki type fesuper(’set Name k i type’,Mat) sets the superelement matrix K{i} to Mat and
its type to type. The size of Mat must be coherent with the superelement DOF vector. type

is a positive integer giving the meaning of the considered matrix (see MatType).

6.3.5 Sensors and superelements

All sensors, excepted resultant sensor, are supported for superelement models. One can therefore
add a sensor with the same way as for a standard model with fe case (’SensDof’) commands:
fe case(model, ’SensDof [append, combine] SenType’, Name, Sensor). Name contains the
entry name in the stack of the set of sensors where Sensor will be added. Sensor is a struc-
ture of data, a vector, or a matrix, which describes the sensor (or sensors) to be added to model.
Command option append specifies that the SensId of latter added sensors is increased if it is the
same as a former sensor SensId. With combine command option, latter sensors take the place of
former same SensId sensors. See section 4.6 for more details.

Following example defines some sensors in the last mSE model

% First two steps define model and split as two SE

mSE=demosdt(’tuto CMSSE -s2 mSE’);

mSE=fesuper(mSE,’setStack’,’se1’,’info’,’EigOpt’,[5 50 1e3]);

mSE=fesuper(mSE,’settr’,’se1’,’CraigBampton -UseDof’);

mSE=fesuper(mSE,’setStack’,’se2’,’info’,’EigOpt’,[5 50 1e3]);
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mSE=fesuper(mSE,’settr’,’se2’,’CraigBampton -UseDof’);

Sensors={[0,0.0,0.75,0.0,0.0,1.0,0.0]; % Id,x,y,z,nx,ny,nz

[0,10,0.0,0.0,1.0]; % Id,NodeId,nx,ny,nz

[29.01]}; % DOF

for j1=1:length(Sensors);

mSE=fe_case(mSE,’SensDof append trans’,’output’,Sensors{j1});
end

mSE=fe_case(mSE,’SensDof append stress’,’output’,[111,22,0.0,1.0,0.0]);

fe case(’SensMatch’) command is the same as for standard models

mSE=fe_case(mSE,’SensMatch Radius2’,’output’);

Use fe case(’SensSE’) to build the observation matrix on the reduced basis

Sens=fe_case(mSE,’SensSE’,’output’);

For resultant sensors, standard procedure does not work at this time. If the resultant sensor only
relates to a specific superelement in the global model, it is however possible to define it. The
strategy consists in defining the resultant sensor in the superelement model. Then one can build the
observation matrix associated to this sensor, come back to the implicit nodes in the global model, and
define a general sensor in the global model with the observation matrix. This strategy is described
in following example.

One begins by defining resultant sensor in the related superelement

SE=stack_get(mSE,’SE’,’se2’,’GetData’); % get superelement

Sensor=struct(’ID’,0, ...

’EltSel’,’WithNode{x<-0.5}’); % left part of the plate

Sensor.SurfSel=’x==-0.5’; % middle line of the plate

Sensor.dir=[1.0 0.0 0.0]; % x direction

Sensor.type=’resultant’; % type = resultant

SE=fe_case(SE,’SensDof append resultant’,...

’output’,Sensor); % add resultant sensor to SE

Then one can build the associated observation matrix

SE=fe_case(SE,’SensMatch radius .6’,’output’); % SensMatch

Sens=fe_case(SE,’Sens’,’output’); % Build observation

Then one can convert the SE observation matrix to a mSE observation matrix, by renumbering DOF
(this step is not necessary here since the use of fesuper SESelAsSE command assures that implicit
numbering is the same as explicit numbering)

cEGI=feutil(’findelt eltname SE:se2’,mSE);
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% implicit nodes of SE in mSE

i1=SE.Node(:,1)-max(SE.Node(:,1))+mSE.Elt(cEGI,3);

% renumber DOF to fit with the global model node numbers:

NNode=sparse(SE.Node(:,1),1,i1);

Sens.DOF=full(NNode(fix(Sens.DOF)))+rem(Sens.DOF,1);

Finally, one can add the resultant sensor as a general sensor

mSE=fe_case(mSE,’SensDof append general’,’output’,Sens);

One can define a load from a sensor observation as following, and compute FRFs:

mSE=fe_case(mSE,’DofLoad SensDofSE’,’in’,’output:2’) % from 2nd output sensor

def=fe_eig(mSE,[5 20 1e3]); % reduced model

nor2xf(def,mSE,’acc iiplot’); ci=iiplot;

6.4 Model parameterization

6.4.1 Parametric models, zCoef

Different major applications use families of structural models. Update problems, where a comparison
with experimental results is used to update the mass and stiffness parameters of some elements
or element groups that were not correctly modeled initially. Structural design problems, where
component properties or shapes are optimized to achieve better performance. Non-linear problems
where the properties of elements change as a function of operating conditions and/or frequency
(viscoelastic behavior, geometrical non-linearity, etc.).

A family of models is defined (see [41] for more details) as a group of models of the general second
order form (5.1) where the matrices composing the dynamic stiffness depend on a number of design
parameters p

[Z(p, s)] =
[
M(p)s2 + C(p)s+K(p)

]
(6.115)

Moduli, beam section properties, plate thickness, frequency dependent damping, node locations,
or component orientation for articulated systems are typical p parameters. The dependence on p
parameters is often very non-linear. It is thus often desirable to use a model description in terms of
other parameters α (which depend non-linearly on the p) to describe the evolution from the initial
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model as a linear combination

[Z(p, s)] =
NB∑
j=1

αj(p) [Zjα(s)] (6.116)

with each [Zjα(s)] having constant mass, damping and stiffness properties.

Plates give a good example of p and α parameters. If p represents the plate thickness, one defines
three α parameters: t for the membrane properties, t3 for the bending properties, and t2 for coupling
effects.

p parameters linked to elastic properties (plate thickness, beam section properties, frequency depen-
dent damping parameters, etc.) usually lead to low numbers of α parameters so that the α should be
used. In other cases (p parameters representing node positions, configuration dependent properties,
etc.) the approach is impractical and p should be used directly.

par

SDT handles parametric models where various areas of the model are associated with a scalar
coefficient weighting the model matrices (stiffness, mass, damping, ...). The first step is to define a
set of parameters, which is used to decompose the full model matrix in a linear combination.

The elements are grouped in non overlapping sets, indexed m, and using the fact that element
stiffness depend linearly on the considered moduli, one can represent the dynamic stiffness matrix
of the parameterized structure as a linear combination of constant matrices

[Z(Gm, s)] = s2 [M ] +
∑
m

pm [Km] (6.117)

Parameters are case stack entries defined by using fe case par commands (which are identical to
upcom Par commands for an upcom superelement).

A parameter entry defines a element selection and a type of varying matrix. Thus

model=demosdt(’demoubeam’);

model=fe_case(model,’par k 1 .1 10’,’Top’,’withnode {z>1}’);
fecom(’proviewon’);fecom(’curtabCase’,’Top’) % highlight the area

zcoef

The weighting coefficients in (6.117) are defined formally using the
cf.Stack{’info’,’zCoef’} cell array viewed in the figure and detailed below.
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The columns of the cell array, which can be modified with the feplot interface, give

• the matrix labels Klab which must coincide with the defined parameters

• the values of coefficients in (6.117) for the nominal mass (typically mCoef=[1 0 0 ... ])

• the real valued coefficients zCoef0 in (6.117) for the nominal stiffness K0

• the values or strings zCoefFcn to be evaluated to obtain the coefficients for the dynamic
stiffness (6.117).

Given a model with defined parameters/matrices, model=fe def(’zcoef-default’,model) defines
default parameters.

zcoef=fe def(’zcoef’,model) returns weighting coefficients for a range of values using the fre-
quencies (see Freq) and design point stack entries

Frequencies are stored in the model using a call of the form
model=stack set(model,’info’,’Freq’,w hertz colum). Design points (temperatures, optimiza-
tion points, ...) are stored as rows of the ’info’,’Range’ entry, see fevisco Range for generation.

When computing a response, fe def zCoef starts by putting frequencies in a local variable w (which
by convention is always in rd/s), and the current design point (row of ’info’,’Range’ entry or row of
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its .val field if it exists) in a local variable par. zCoef2:end,4 is then evaluated to generate weight-
ing coefficients zCoef giving the weighting needed to assemble the dynamic stiffness matrix (6.117).
For example in a parametric analysis, where the coefficient par(1) stored in the first column of
Range. One defines the ratio of current stiffness to nominal Kvcurrent = par(1) ∗Kv(nominal) as
follows

% external to fexf

zCoef={’Klab’,’mCoef’,’zCoef0’,’zCoefFcn’;
’M’ 1 0 ’-w.^2’;

’Ke’ 0 1 1+i*fe_def(’DefEta’,[]);

’Kv’ 0 1 ’par(1)’};
model=struct(’K’,{cell(1,3)});
model=stack_set(model,’info’,’zCoef’,zCoef);

model=stack_set(model,’info’,’Range’, ...

struct(’val’,[1;2;3],’lab’,{{’par’}}));

%Within fe2xf

w=[1:10]’*2*pi; % frequencies in rad/s

Range=stack_get(model,’info’,’Range’,’getdata’);

for jPar=1:size(Range.val,1)

Range.jPar=jPar;zCoef=fe2xf(’zcoef’,model,w,Range);

disp(zCoef)

% some work gets done here ...

end

6.4.2 Reduced parametric models

As for nominal models, parameterized models can be reduced by projection on a constant reduction
basis T leading to input/output models of the form[

T TZ(p, s)T
]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR}
(6.118)

or, using the α parameters,∑NB
j=1 αj(p)

[
T T∆Zjα(s)T

]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR}
(6.119)

6.4.3 upcom parameterization for full order models
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Although superelements can deal with arbitrary models of the form (6.116), the upcom interface is
designed to allow easier parameterization of models. This interface stores a long list of mass M e and
stiffness Ke matrices associated to each element and provides, through the assemble command, a
fast algorithm to assemble the full order matrices as weighted sums of the form

[M(p)] =
NE∑
j=1

αk(p) [M e
k ] [K(p)] =

NE∑
j=1

βk(p) [Ke
k] (6.120)

where the nominal model corresponds to αk(p) = βk(p) = 1.

The basic parameterizations are mass pi and stiffness pj coefficients associated to element selections
ei, ej leading to coefficients

αk, βk = 1 for k /∈ ei
αk = pi for k ∈ ei
βk = pj for k ∈ ej

(6.121)

Only one stiffness and one mass parameter can be associated with each element. The element
selections ei and ej are defined using upcom Par commands. In some upcom commands, one can
combine changes in multiple parameters by defining a matrix dirp giving the pi, pj coefficients in
the currently declared list of parameters.

Typically each element is only associated to a single mass and stiffness matrix. In particular prob-
lems, where the dependence of the element matrices on the design parameter of interest is non-linear
and yet not too complicated more than one submatrix can be used for each element.

In practice, the only supported application is related to plate/shell thickness. If p represents the
plate thickness, one defines three α, β parameters: t for the membrane properties, t3 for the bending
properties, and t2 for coupling effects. This decomposition into element submatrices is implemented
by specific element functions, q4up and q8up, which build element submatrices by calling quad4 and
quadb. Triangles are supported through the use of degenerate quad4 elements.

Element matrix computations are performed before variable parameters are declared. In cases where
thickness variations are desired, it is thus important to declare which group of plate/shell elements
may have a variable thickness so that submatrices will be separated during the call to fe mk. This
is done using a call of the form upcom(’set nominal t GroupID’,FEnode,FEel0,pl,il).

6.4.4 Getting started with upcom

Basic operation of the upcom interface is demonstrated in gartup.

The first step is the selection of a file for the superelement storage using upcom(’load FileName’).
If the file already exists, existing fields of Up are loaded. Otherwise, the file is created.
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If the results are not already saved in the file, one then computes mass and stiffness element matrices
(and store them in the file) using

upcom(’setnominal’,FEnode,FEelt,pl,il)

which calls fe mk. You can of course eliminate some DOFs (for fixed boundary conditions) using a
call of the form

upcom(’setnominal’,FEnode,FEelt,pl,il,[],adof)

At any time, upcom info will printout the current state of the model: dimensions of full/reduced
model (or a message if one or the other is not defined)

’Up’ superelement (stored in ’/tmp/tp425896.mat’)

Model Up.Elt with 90 element(s) in 2 group(s)

Group 1 : 73 quad4 MatId 1 ProId 3

Group 6 : 17 q4up MatId 1 ProId 4

Full order (816 DOFs, 90 elts, 124 (sub)-matrices, 144 nodes)

Reduced model undefined

No declared parameters

In most practical applications, the coefficients of various elements are not independent. The upcom

par commands provide ways to relate element coefficients to a small set of design variables. Once
parameters defined, you can easily set parameters with the parcoef command (which computes
the coefficient associated to each element (sub-)matrix) and compute the response using the upcom

compute commands. For example

upcom(’load GartUp’);

upcom(’ParReset’)

upcom(’ParAdd k’,’Tail’,’group3’);

upcom(’ParAdd t’,’Constrained Layer’,’group6’);

upcom(’ParCoef’,[1.2 1.1]);

upcom(’info’)

cf=upcom(’plotelt’)

cf.def(1)=upcom(’computemode full 6 20 1e3 11’)

fecom(’scd.3’);

6.4.5 Reduction for variable models
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The upcom interface allows the simultaneous use of a full and a reduced order model. For any
model in a considered family, the full and reduced models can give estimates of all the qualities
(static responses, modal frequencies, modeshapes, or damped system responses). The reduced model
estimate is however much less numerically expensive, so that it should be considered in iterative
schemes.

The selection of the reduction basis T is essential to the accuracy of a reduced family of models.
The simplest approach, where low frequency normal modes of the nominal model are retained, very
often gives poor predictions. For other bases see the discussion in section 6.2.7 .

A typical application (see the gartup demo), would take a basis combining modes and modeshape
sensitivities, orthogonalize it with respect to the nominal mass and stiffness (doing it with fe norm

ensures that all retained vectors are independent), and project the model

upcom(’parcoef’,[1 1]);

[fsen,mdsen,mode,freq] = upcom(’sens mode full’,eye(2),7:20);

[m,k]=upcom(’assemble’);T = fe_norm([mdsen mode],m,k);

upcom(’par red’,[T])

In the gartup demo, the time needed to predict the first 20 modes is divided by 10 for the reduced
model. For larger models, the ratio is even greater which really shows how much model reduction
can help in reducing computational times.

Note that the projected model corresponds to the currently declared variable parameters (and in
general the projection basis is computed based on knowledge of those parameters). If parameters
are redefined using Par commands, you must thus project the model again.

6.4.6 Predictions of the response using upcom

The upcom interface provides optimized code for the computation, at any design point, of modes
(ComputeMode command), modeshape sensitivities (SensMode), frequency response functions using
a modal model (ComputeModal) or by directly inverting the dynamic stiffness (ComputeFRF). All
predictions can be made based on either the full or reduced order model. The default model can be
changed using upcom(’OptModel[0,1]’) or by appending full or reduced to the main command.
Thus

upcom(’ParCoef’,[1 1]);

[md1,f1] = upcom(’compute mode full 105 20 1e3’);

[md2,f2] = upcom(’compute mode reduced’);

would be typical calls for a full (with a specification of the fe eig options in the command rather
than using the Opt command) and reduced model.
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Warning: unlike fe eig, upcom typically returns frequencies in Hz (rather than rd/s) as the default
unit option is 11 (for rd/s use upcom(’optunit22’))

Given modes you could compute FRFs using

IIxh = nor2xf(freq,0.01,mode’*b,c*mode,IIw*2*pi);

but this does not include a static correction for the inputs described by b. You should thus compute
the FRF using (which returns modes as optional output arguments)

[IIxh,mode,freq] = upcom(’compute modal full 105 20’,b,c,IIw);

This approach to compute the FRF is based on modal truncation with static correction (see sec-
tion 6.2.3 ). For a few frequency points or for exact full order results, you can also compute the
response of the full order model using

IIxh = upcom(’compute FRF’,b,c,IIw);

In FE model update applications, you may often want to compute modal frequencies and shape
sensitivities to variations of the parameters. Standard sensitivities are returned by the upcom sens

command (see the Reference section for more details).

6.5 Finite element model updating

While the upcom interface now provides a flexible environment that is designed for finite element
updating problems, integrated methodologies for model updating are not stabilized. As a result,
the SDT currently only intends to provide an efficient platform for developing model updating
methodologies. This platform has been successfully used, by SDTools and others, for updating
industrial models, but the details of parameter selection and optimization strategies are currently
only provided through consulting services.
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Figure 6.5: FE updating process.

The objective of finite element updating is to estimate certain design parameters (physical proper-
ties of the model) based on comparisons of test and analysis results. All the criteria discussed in
section 3.2 can be used for updating.

The correlation tools provided by fe sens and fe exp are among the best existing on the market and
major correlation criteria can easily be implemented. With SDT you can thus easily implement most
of the existing error localization algorithms. No mechanism is however implemented to automatically
translate the results of this localization into a set of parameters to be updated. Furthermore, the
updating algorithms provided are very basic.

6.5.1 Error localization/parameter selection

The choice of design parameters to be updated is central to FE update problems. Update parameters
should be chosen based on the knowledge that they have not been determined accurately from initial
component tests. Whenever possible, the actual values of parameters should be determined using
refined measurements of the component properties as the identifiability of the parameters is then
clear. If such refined characterizations are not possible, the comparison of measured and predicted
responses of the overall system provide a way to assess the probable value of a restricted set of
parameters.

Discrepancies are always expected between the model and test results. Parameter updates made
based on experimentally measured quantities should thus be limited to parameters that have an
impact on the model that is large enough to be clearly distinguished from the expected residual
error. Such parameters typically are associated to connections and localized masses.
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In practice with industrial models, the FE model is initially divided into zones with one mass/stiffness
parameter associated with each zone. The feutil FindElt commands can greatly help zone defi-
nition.

Visualizing the strain/kinetic energy distribution of modeshapes is a typical way to analyze zones
where modifications will significantly affect the response. The gartup demo shows how the strain
energy of modeshapes and displacement residuals can be used in different phases of the error local-
ization process.

6.5.2 Update based on frequencies

As illustrated in demo fe, once a set of update parameters chosen, you should verify that the proper
range is set (see min and max values in section 6.4.4 ), make sure that Up.copt options are appro-
priately set to allow the computation of modes and sensitivities (see upcom copt commands), and
define a sensor configuration matrix sens using fe sens.

With test results typically stored in poles IIpo and residues IIres (see section 2.2 ), the update
based on frequencies is then simply obtained by a call of the form

i2=1:8; % indices of poles used for the update

[coef,md1,f1] = up_freq(’basic’,IIpo(i2,:),IIres(i2,:).’,sens);

The result is obtained by a sensitivity method with automated matching of test and analysis modes
using the MAC criterion. A non-linear optimization based solution can be found using up ifreq

but computational costs tend to prevent actual use of this approach. Using reduced order models
(see section 6.4.5 and start use with upcom(’opt model 1’)) can alleviate some of the difficulties
but the sensitivity based method (up freq) is clearly better.

6.5.3 Update based on FRF

An update algorithm based on a non-linear optimization of the Log-Least-Squares cost comparing
FRFs is also provided with up ixf. The call to up ixf takes the form

coef = up_ixf(’basic’,b,c,IIw,IIxf,indw)

Using up min for the optimization you will have messages such as

Step size: 1.953e-03

Cost Parameter jumps ...

3.9341e-01 -9.83e+00 4.05e+00

267



6 Advanced FEM tools

which indicate reductions in the step size (Up.copt(1,7)) and values of the cost and update pa-
rameters at different stages of the optimization. With Up.copt(1,2) set to 11 you can follow the
evolution of predictions of the first FRF in the considered set. The final result here is shown in the
figure where the improvement linked to the update is clear.

Figure 6.6: Updated FRF.

This algorithm is not very good and you are encouraged to use it as a basis for further study.
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6.6 Handling models with piezoelectric materials

This has been moved to the piezoelectric manual (see sdtweb(’piezo’)) and is no longer reproduced
here.

6.7 Viscoelastic modeling tools

The viscoelastic modeling tools are not part of the base SDT but licensed on an industrial basis
only. Their documentation can be found at http://www.sdtools.com/pdf/visc.pdf.

6.8 SDT Rotor

Work on the integration of cyclic symmetry capabilities into a complete SDT ROTOR package is
under progress. Their documentation can be found at http://www.sdtools.com/pdf/rotor.pdf.
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This chapter gives a detailed description of the formats used for variables and data structures. This
information is grouped here and hypertext reference is given in the HTML version of the manual.

7.1 Nodes

7.1.1 Node matrix

Nodes are characterized using the convention of Universal files. model.Node and FEnode are node
matrices. A node matrix has seven columns. Each row of gives

NodeId PID DID GID x y z

where NodeId are node numbers (positive integers with no constraint on order or continuity), PID and
DID are coordinate system numbers for position and displacement respectively (zero or any positive
integer), GID is a node group number (zero or any positive integer), and x y z are the coordinates
. For cylindrical coordinate systems, coordinates represent r teta z (radius, angle in degrees, and
z axis value). For spherical coordinates systems, they represent r teta phi (radius, angle from
vertical axis in degrees, azimuth in degrees). For local coordinate system support see section 7.1.1 .

A simple line of 10 nodes along the x axis could be simply generated by the command

node = [[1:10]’ zeros(10,3) linspace(0,1,10)’*[1 0 0]];

For other examples take a look at the finite element related demonstrations (see section 4.5 ) and
the mesh handling utility femesh.

The only restriction applied to the NodeId is that they should be positive integers. The earlier
limit of round((2^31-1)/100) ≈ 21e6 is no longer applicable.

In many cases, you will want to access particular nodes by their number. The standard approach is
to create a reindexing vector called NNode. Thus the commands

NNode=[];NNode(node(:,1))=1:size(node,1);

Indices_of_Nodes = NNode(List_of_NodeId)

gives you a simple mechanism to determine the indices in the node matrix of a set of nodes with iden-
tifiers List of NodeId. The feutil FindNode commands provide tools for more complex selection
of nodes in a large list.

273



7 Developer information

Coordinate system handling

Local coordinate systems are stored in a model.bas field (see NodeBas). Columns 2 and 3 of
model.Node define respectively coordinate system numbers for position and displacement.

Use of local coordinate systems is illustrated in section 3.1.1 where a local basis is defined for test
results.

feplot, fe mk, rigid, ... now support local coordinates. feutil does when the model is described
by a data structure with the .bas field. femesh assumes you are using global coordinate system
obtained with

[FEnode,bas] = basis(model.Node,model.bas)

To write your own scripts using local coordinate systems, it is useful to know the following calls:

[node,bas,NNode]=feutil(’getnodebas’,model) returns the nodes in global coordinate system,
the bases bas with recursive definitions resolved and the reindexing vector NNode.

To obtain, the local to global transformation matrix (meaning {qglobal} = [cGL] {qlocal}) use

cGL=basis(’trans l’,model.bas,model.Node,model.DOF)

7.2 Model description matrices

A model description matrix describes the model elements. model.Elt and FEelt are, for example,
model description matrices. The declaration of a finite element model is done through the use of
element groups stacked as rows of a model description matrix elt and separated by header rows
whose first element is Inf in Matlab or %inf in Scilab and the following are the ascii values for the
name of the element. In the following, Matlab notation is used. Don’t forget to replace Inf by %inf

in Scilab.
For example a model described by

elt = [Inf abs(’beam1’) 0 0

1 2 11 12 5 0 0 0

2 3 11 12 5 0 0 0

Inf abs(’mass1’) 0 102

2 1e2 1e2 1e2 5e-5 5e-5 5e-5 0 ];

has 2 groups. The first group contains 2 beam1 elements between nodes 1-2 and 2-3 with material
property 11, section property 12, and bending plane containing node 5. The second group contains
a concentrated mass on node 2.
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Note how columns unused for a given type element are filled with zeros. The 102 declared for the
mass corresponds to an element group identification number EGID.

You can find more realistic examples of model description matrices in the demonstrations (see
section 4.5 ).

The general format for header rows is

[Inf abs(’ElementName’) 0 opt ]

The Inf that mark the element row and the 0 that mark the end of the element name are required
(the 0 may only be omitted if the name ends with the last column of elt).

For multi-platform compatibility, element names should only contain lower case letters and num-
bers. In any case never include blanks, slashes, ... in the element name. Element names reserved
for supported elements are listed in the element reference chapter 9 (or doc(’eltfun’) from the
command line) .

Users can define new elements by creating functions (.m or .mex in Matlab, .sci in Scilab) files
with the element name. Specifications on how to create element functions are given in section 7.16 .

Element group options opt can follow the zero that marks the end of the element name. opt(1), if
used, should be the element group identification number EGID . In the example, the group of mass1
elements is this associated to the EGID 102. The default element group identification number is
its order in the group declaration. Negative EGID are ignored in FEM analyzes (display only, test
information, ...).

Between group headers, each row describes an element of the type corresponding to the previous
header (first header row above the considered row).

The general format for element rows is

[NodeNumbers MatId ProId EltId OtherInfo]

where

• NodeNumbers are positive integers which must match a unique NodeId identifier in the first column
of the node matrix.

• MatId and ProId are material and element property identification numbers. They should be
positive integers matching a unique identifier in the first column of the material pl and element
il property declaration matrices.

• EltId are positive integers uniquely identifying each element. See feutil EltId for a way to
return the vector and verify/fix identifiers.
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• OtherInfo can for example be the node number of a reference node (beam1 element). These
columns can be used to store arbitrary element dependent information. Typical applications
would be node dependent plate thickness, offsets, etc.

Note that the position of MatId, ProId and EltId in the element rows are returned by calls of the
form ind=elem0(’prop’) (elem0 is a generic element name, it can be bar1, hexa8, . . . ).

Element property rows are used for assembly by fe mk, display by feplot, model building by femesh,
...

7.3 Material property matrices and stack entries

This section describes the low level format for material properties. The actual formats are de-
scribed under m functions m elastic, m piezo, ... For Graphical edition and standard scripts see
section 4.5.1 .

A material is normally defined as a row in the material property matrix pl. Such rows give a
declaration of the general form [MatId Type Prop] with

MatId a positive integer identifying a particular material property.
Type a positive real number built using calls of the form

fe mat(’m elastic’,’SI’,subtype), the subtype integer is described in m

functions.
Prop as many properties (real numbers) as needed (see fe mat, m elastic for details).

Additional information can be stored as an entry of type ’mat’ in the model stack which has data
stored in a structure with at least fields
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.name Description of material.

.pl a single value giving the MatId of the corresponding row in the model.pl matrix or
row of values.
Resolution of the true .pl value is done by pl=fe mat(’getpl’,model). The prop-
erty value in .pl should be -1 for interpolation in GetPl, -2 for interpolation using
the table at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see fe mat Convert and Unit

commands).
.type the name of the material function handling this particular type of material (for ex-

ample m elastic).
.field can be a structure allowing the interpolation of a value called field based on the

given table. Thus
mat.E=struct(’X’,[-10;20],’Xlab’,{{’T’}},’Y’,[10 20]*1e6) will interpolate
value E based on field T. The positions of interpolated variables within the pl row
are given by list=feval(mat.type, ’propertyunittype cell’, subtype).

7.4 Element property matrices and stack entries

This section describes the low level format for element properties. The actual formats are described
under p functions p shell, p solid, p beam, p spring. For Graphical edition and standard scripts
see section 4.5.1 .

An element property is normally defined as a row in the element property matrix il. Such rows
give a declaration of the general form [ProId Type Prop] with

ProId a positive integer identifying a particular element property.
Type a positive real number built using calls of the form fe mat(’p beam’,’SI’,1), the

subtype integer is described in the p functions.
Prop as many properties (real numbers) as needed (see fe mat, p solid for details).

Additional information can be stored as an entry of type ’pro’ in the model stack which has data
stored in a structure with fields
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.name description of property.

.il a single value giving the ProId of the corresponding row in the il matrix or row of
values
Resolution of the true .il value is done by il=fe mat(’getil’,model). The prop-
erty value in .il should be -1 for interpolation in GetIl, -2 for interpolation using
the table at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see the fe mat Convert and Unit

commands)
.type the name of the property function handling this particular type of element properties

(for example p beam)
.NLdata used to stored non-linear property information. See nl spring.
.MAP specifications of a field at node, see section 7.13
.gstate specifications of a field at integration points, see section 7.13
.field can be a structure allowing the interpolation of a value called field based on the

given table. Thus
pro.A=struct(’X’,[-10;20],’Xlab’,{{’x’}},’Y’,[10 20]*1e6) will interpolate
value A based on field x. The positions of interpolated variables within the il row
are given by list=feval(pro.type, ’propertyunittype cell’, subtype).

The handling of a particular type of constants should be fully contained in the p * function. The
meaning of various constants should be defined in the help and TeX documentation. The subtype
mechanism can be used to define several behaviors of the same class. The generation of the integ

and constit vectors should be performed through a BuildConstit call that is the same for a full
family of element shapes. The generation of EltConst should similarly be identical for an element
family.

7.5 DOF definition vector

The meaning of each Degree of Freedom (DOF) is handled through DOF definition vectors typically
stored in .DOF fields (and columns of .dof in test cases where a DOF specifies an input/output
location). All informations defined at DOFs (deformations, matrices, ...) should always be stored
with the corresponding DOF definition vector. The fe c function supports all standard DOF ma-
nipulations (extraction, conversion to label, ...)

Nodal DOFs are described as a single number of the form NodeId.DofId where DofId is an integer
between 01 and 99. For example DOF 1 of node 23 is described by 23.01. By convention

• DOFs 01 to 06 are, in the following order u, v, w (displacements along the global coordinate axes)
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and θu, θv, θw (rotations along the same directions)

• DOFs 07 to 12 are, in the following order −u, −v, −w (displacements along the reversed global
coordinate axes) and −θu, −θv, −θw (rotations along the same directions). This convention is
used in test applications where measurements are often made in those directions and not corrected
for the sign change. It should not be used for finite element related functions which may not all
support this convention.

While these are the only mandatory conventions, other typical DOFs are .19 pressure, .20 temper-
ature, .21 voltage, .22 magnetic field.

In a small shell model, all six DOFs (translations and rotations) of each node would be retained and
could be stacked sequentially node by node. The DOF definition vector mdof and corresponding
displacement or load vectors would thus take the form

mdof =



1.01

1.02

1.03

1.04

1.05

1.06
...


, q =



u1 u2

v1 v2

w1 w2

θu1 θu2 . . .
θv1 θv2

θw1 θw2
...

. . .


and F =



Fu1 Fu2

Fv1 Fv2

Fw1 Fw2

Mu1 Mu2 . . .
Mv1 Mv2

Mw1 Mw2
...

. . .


(7.1)

Typical vectors and matrices associated to a DOF definition vector are

• modes resulting from the use of fe eig or read from FE code results (see nasread, ufread).

• input and output shape matrices which describe how forces are applied and sensors are placed
(see fe c, fe load, bc page 200 ).

• system matrices : mass, stiffness, etc. assembled by fe mk.

• FRF test data. If the position of sensors is known, it can be used to animate experimental
deformations (see feplot , xfopt, and fe sens ).

Note that, in Matlab version, the functions fe eig and fe mk, for models with more than 1000
DOFs, renumber DOF internally so that you may not need to optimize DOF numbering yourself.
In such cases though, mdof will not be ordered sequentially as shown above.

Element DOFs are described as a single number of the form -EltId.DofId where DofId is an
integer between 001 and 999. For example DOF 1 of the element with ID 23001 is described by
-23001.001. Element DOFs are typically only used by superelements (see section 6.3 ). Due to the
use of integer routines for indexing operations, you cannot define element DOFs for elements with
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and EltId larger than 2 147 484.

7.6 FEM model structure

Finite element simulations are best handled using standard data structures supported by OpenFEM.
The two main data structures are model which contains information needed to specify a FEM
problem, and DEF which stores a solution.

Finite element models are described by their topology (nodes, elements and possibly coordinate
systems), their properties (material and element). Computations performed with a model are further
characterized by a case as illustrated in section 4.5.3 and detailed in section 7.7 .

Data structures describing finite element models have the following standardized fields, where only
nodes and elements are always needed.
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.bas local coordinate system definitions.

.cta sensor observation matrix. Used by fe sens.

.copt solver options. For use by upcom. This field is likely to disappear in favor of
defaults in sdtdef.

.DOF DOF definition vector for the matrices of the model. Boundary conditions can be
imposed using cases.

.Elt elements. This field is mandatory.

.file Storage file name. Used by upcom.

.il element property description matrix. Can also be stored as ’pro’ entries in the
Stack.

.K{i} cell array of constant matrices for description of model as a linear combination. In-
dices i match definitions in .Opt(2,:) and .Opt(3,:). Should be associated with
a .Klab field giving a string definition of each matrix. See details in the fe super

reference.
.mind element matrix indices. Used by upcom.
.Node nodes. This field is mandatory.
.Opt options characterizing models that are to be used as superelements.
.pl material property description matrix. Can also be stored as ’mat’ entries in the

Stack.
.Patch Patch face matrix. See fe super.
.Stack A cell array containing optional properties further characterizing a finite element

model. See stack get for how to handle the stack and the next section for a list of
standardized entries.

.TR projection matrix. See fe super.

.unit main model unit system (see fe mat Convert for a list of supported unit systems
and the associated two letter codes). Specifying this field let you perform conversion
from materials defined in US system unit from the GUI.

.wd working directory

Obsolete fields are .Ref Generic coordinate transformation specification, .tdof test DOF field (now
in SensDof entries).

7.7 FEM stack and case entries

Various information are stored in the model.Stack field. If you use a SDT handle refering to a
feplot figure, modification of the model and case entries is often easier using cf.Stack calls (see
feplot).
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Currently supported entry types in the stack are
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case defines a case : boundary conditions, loading, ...
curve curve to be used for simulations (see fe curve).
info non standard information used by solvers or meshing procedures (see below).
info,map used to define a normal MAP, see feutil GetNormal for format
mat defines a material entry.
pro defines an element property entry.
SE defines a superelement entry.
sel defines a element selection.
seln defines a node selection. Typically a structure with fields .ID giving the reference

number and .data giving either node numbers or a node selection command.
set defines a set that is a structure with fields

• .ID (a reference number of the set),

• .data defines the data

• .type nature of the set.

The following set types are acceped:

NodeId data is a column of node numbers.

EltId data is a column of element numbers.

FaceId , EdgeId data is two columns giving EltId and face/edge number (as detailed
in integrules, or resulting from (tetra10(’faces’), ...). Face sets are often used
to define loaded surfaces.

• A third column can be added to specify subgroups within the set and a .NodeCon

sparse matrix can be used to specify nodes (rows) connected to each subgroup
(column).

• For FaceId sets, external code imports like used for FEMLinkface identifiers
conventions may vary, so that read data may not be in coherence with SDT
notations. To alleviate the problem, one can add field ConvFcn to provide a
conversion function. The conversion function can be called depending on the
element type ElemF with the syntax

– feval(ConvFcn,[’conv faceNum.’ ElemF]); that should rethrow a
renumbering vector giving in sorted SDT face numbering order the cor-
responding face index of the external convention.

– feval(ConvFcn,[’conv face.’ ElemF]); that should rethrow the list
of nodes per face (by line) in the original external face convention (but
with SDT node numbering convention).

DOF values for DOF sets.
set (meta-set
)

the most recent set format. This structure defines a list of sub-sets gathered in a
main set. The structure has fields

• .name The set name.

• .type a cell array of basic set types, either NodeId, EltId, FaceId, EdgeId.

• .SetNames A two column cell array of sub-set names and groups. One can thus
define for each set name a specific group to ease up navigation through levelling
per group.

• .EltId A one column vector of EltId, usually the complete model element
identifiers list.

• .NodeId A one column vector of NodeId, usually the complete model node
identifiers.

• .SConn A sparse logical connectivity matrix of size length(EltId) by
size(SetNames,1) with true values when the EltId indexed by the line number
of SConn belongs to the sub-set indexed by the column number of .SConn.

• .NConn A sparse logical connectivity matrix of size length(NodeId) by
size(SetNames,1) with true values when the NodeId indexed by the line num-
ber of .NConn belongs to the sub-set indexed by the column number of .NConn.

• .NNode A sparse NodeId to node index transformation that has to be coherent
with the .NodeId field.

This structure is the most recent, and will support future integration developments.
One is able to call sub-sets in specific FindEltString calls.
The feutil AddSet commands let you define a set from a selection. meta-set is
accessible with the -Append command option.
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Currently reserved names for info entries are

DefaultZeta value to be used as default modal damping ratio (viscous damping). The
default loss factor if needed is taken to be twice that value.’ Default damp-
ing is only used when no other damping information is available.

DefaultEta (discontinued) value to be used as default loss factor should be replaced by
DefaultZeta=eta/2.

EigOpt gives real eigenvalue solver options (see fe eig).
FluidEta Default loss factor for use in vibroacoustic fluid computations.
Freq Frequencies given as a structure with field .data with frequency values and

.ID a integer identifier. A .unit field can specify rad/s,Hz,rev/mn,RPM.
f=fe def(’DefFreq’,model) is used to obtain the frequency vector in Hz.

NewNodeFrom integer giving the next NodeId to be used when adding nodes to the model
(used by some commands of feutil).

Omega rotation vector used for rotating machinery computations (see fe cyclic)
can be specified as a structure for unit selection. For example
r1=struct(’data’,250,’unit’,’RPM’);f hz=fe def(’deffreq’,r1)

OrigNumbering original node numbering (associated with feutil Renumber command).
Two int32 columns giving original and new node numbers.

StressCritFcn string to be evaluated for a specific stress criterion, see fe stress.

Rayleigh defines a Rayleigh damping entry.
MifDes defines the list of desired response output (see fe2xf).
NasJobOpt structure with options to be used for automated job runs by the NASTRAN

job handler.
NastranJobEdit cell array giving a list of job editing commands to be used through a

naswrite EditBulk call.

TimeOpt gives time solver options (see fe time).
TimeOptStat gives non-linear static solver options (see fe time).

Currently reserved names for curve entries are

• StaticState used to assemble prestressed matrices (type 5).

• q0 used to initialize time simulations and for non-linear analyses

A case type defines finite element boundary conditions, applied loads, physical parameters, ... The
associated information is stored in a case data structure with fields
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Case.Stack list of boundary conditions, constraints, parametric design point, and loading
cases that need to be considered. A table of accepted entries is given under
fe case. Each row gives {Type,Name,data}.

Case.T basis of subspace verifying fixed boundary conditions and constraints.
Case.DOF DOF definition vector describing the columns of T, the rows of T are described

by the .DOF field of the model.

The various cases are then stored in the .Stack field of the model data structure (this is done by
a call to fe case). If you use a SDT handle referring to a feplot figure, modification of the case
entries is often easier using cf.CStack calls (see feplot).

7.8 FEM result data structure

Deformations resulting from finite element computations (fe eig, fe load, . . . ) are described by
def structures with fields

.def deformations (NDOF by NDef matrix)

.DOF DOF definition vector

.data (optional) (NDef by Ninfo vector or matrix) characterizing the content of each de-
formation (frequency, time step, ...)

.Xlab (optional) {’DOF’,’Freq’;’Index’} cell array describing the columns of data.

.defL displacement field corresponding to the left eigenmodes obtained from fe ceig.

.fun function description [Model Analysis Field FieldType Format NDV]. This is
based on the UNV 55 format detailed below. Typically field with [0

fe curve(’TypeAnalysis’)]. This field is needed for proper automated display
setup.

.lab (optional) cell array of strings characterizing the content of each deformation (columns
of .def). For large arrays, the use of a .LabFcn is preferable.

.ImWrite
(optional) can be used to control automated multiple figure generation, see iicom

ImWrite.
.LabFcn callback for label generation see fecom LabFcn

.Legend data for legend generation, see fecom Legend

.label (optional) string describing the content

.DofLab optional cell array of strings specifying a label for each DOF. This is used for display
in iiplot.

.scale field used by feplot to store scaling information.
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The .fun field is a numeric row with values (a typical value for static responses is def.fun=[0 1

0])

• Model (0 Unknown, 1 Structural, 2 Heat Transfer, 3 Fluid Flow)

• Analysis see list with fe curve(’TypeAnalysis’)

• Field see list with 0: Unknown (or general SDT), 1: Scalar, 2: Tx Ty Tz, 3: Tx Ty Tz Rx
Ry Rz, 4: Sxx Sxy Syy Sxz Syz Szz, 5: Sxx Syx Szx Sxy Syy Szy Sxz Syz Szz

• FieldType see list with fe curve(’typefield’)

• Format 0 default, 2 Real, 5 Complex

• NDV Number Of Data Values Per Node (0 for variable number)

SDT provides a number of utilities to manipulate deformation structures. In particular you should
use

• def=fe def(’subdef’,def,ind) extracts some deformations (columns of def.def). You can
select based on the data field, for example with ind=def.data(:,1)>100.

• def=fe def(’AppendDef’,def,def1) combines two sets of deformations

• def=fe def(’SubDof’,def,DOF) extracts some DOF (rows of def.def). To select based on
DOF indices, use def=fe def(’SubDofInd’,def,ind).

• def=feutilb(’placeindof’,DOF,def) is similar but DOF may be larger than def.DOF.

• fe def(’SubDofInd-Cell’,def,ind dof,ind def) return clean display of deformation as a
cell array.

7.9 Curves and data sets

Curves are used to specify Inputs (for time or frequency domain simulation) and store results from
simulations. The basic formats are the Multi-dim curve and FEM result def. For experimental
modal analysis, Response data and Shapes at DOFs are also used.

All these formats can be displayed using the iiplot interface. For extraction see fe def SubCh.
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Multi-dim curve

A curve is a data structure with fields
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.X axis data. A cell array with as many entries as dimensions of .Y. Contents of
each cell can be

• a vector (for example vector of frequencies or time steps),

• a matrix with as many rows a steps in curve.Y. Each column then cor-
responds to a different definition of the same data (time and position for
example) and you can have as many rows in curve.Xlab{i} as colums.

• a cell array describing data vectors in .Y (for example response labels) with
as many rows as elements in corresponding dimension of .Y. In such a cell
array, column 2 is for units and 3 for unit type (see fe curve datatype).
To use a specific curve.X{i} to generate labels for the data, specify the
index of the associated dimension in curve.Ylab.

.X giving x-axis data as a vector is obsolete and should be avoided.
.Xlab a cell array giving the meaning of each entry in .X. Each cell can be a

string (giving the dimension name) or itself a cell array with columns giving
{’name’,’UnitString’,unitcode,’fmt’}. Typical entries are obtained using
the fe curve datatypecell command. Multiple rows can be used to describe
multiple columns in the .X entry (matrix input for curve.X{i}).

fmt, if provided, gives a formatting instruction for example ’length=%i

m’. If more intricate formatting is needed a callback can be obtained with
\zs{’#st3{’}}=sprintf(’’PK=%.2fkm’’,r2(j2)*1e-3);’.

.Y response data with as many dimensions as the length of curve.X and
curve.Xlab. If a 2D matrix rows correspond to .X{1} values and columns
are called channels described by .X{2}.

.Ylab describes content of .Y data. It can be a string, a 1x3 unit type cell array, or a
number that indicates which dimension (index in .X{i} field cell array) describes
the .Y unit.

.ID Optional. It can be used to generate automatically vertical lines in iiplot. See
ii plp Call from iiplot for more details.

.name name of the curve used for legend generation.

.type Optional. ’fe curve’.

.Interp optional interpolation method. Available interpolations are linear, log and
stair.

.Extrap optional extrapolation method. Available extrapolations are flat, zero (default
for fe load) and exp.

.PlotInfo indications for automated plotting, see iiplot PlotInfo

.DimPos order of dimensions to be shown by iiplot.
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The following gives a basis generation example.

t=linspace(0,10,100)’;lab={’ux’;’uy’};
C1=struct(’X’,{{t,lab}},’Xlab’,{{’Time’,’DOF’}}, ...

’Y’,[sin(t) cos(t)],’name’,’Test’);

iicom(’curveinit’,C1.name,C1);iicom(’ch1:2’);

FEM Result

See section 7.8 or sdtweb(’def’).

Inputs

Inputs for time or frequency simulations are stored as entries {’curve’, Name, data} in the model
stack or in the case of inputs in the load.curve cell array.

A curve can be used to define a time (or frequency) dependent load {F} = [B] {u}. [B] defines the
spatial distribution of the load on DOFs and its unit is the same as F . [B] is defined by a DOFLoad

entry in the Case. {u} defines the time (or frequency) dependency as a unitless curve. There should
be as many curves as columns in the matrix of a given load def. If a single curve is defined for a
multi-load entry, it will affect all the loads of this entry.

As an illustration, let us consider ways to define a time dependent load by defining a .curve field
in the load data structure. This field may contain a string referring to an existing curve (name is
’input’ here)

model=fe_time(’demo bar’);fe_case(model,’info’)

% Define input curve structure (single input step)

% For examples see: sdtweb fe_curve#Test

model=fe_curve(model,’set’,’input’,’TestStep t1=1e-3’);

% define load.curve{1} to use that input

model=fe_case(model,’setcurve’,’Point load 1’,’input’);

% Run a simulation

TimeOpt=fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); feplot(model,def); fecom ColorDataAll

It is also possible to directly define the .curve field associated with a load
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model=fe_time(’demo bar’);fe_case(model,’info’)

model=fe_case(model,’remove’,’fd’); % loads at both ends

data=struct(’DOF’,[1.01;2.01],’def’,1e6*eye(2),...

’curve’,{{’test ricker dt=1e-3 A=1’,...

’test ricker dt=2e-3 A=1’}});
model = fe_case(model,’DOFLoad’,’Point load 1’,data);

TimeOpt=fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); feplot(model,def); fecom ColorDataAll

Response data

Response data sets xfstruct correspond to groups of universal files of type UFF58 that have the
same properties (type of measurement, abscissa, units, ...). They are used for identification with
idcom while the newer curve format is used for simulation results. They are characterized by the
following fields

.w abscissa values

.xf response data, one column per response, see section 5.8

.dof characteristics of individual responses (one row per column in the response data as
detailed below)

.fun general data set options, contain [FunType DFormat NPoints XSpacing Xmin

XStep ZValue] as detailed in ufread 58.
.idopt options used for identification related routines (see idopt)
.header header (5 text lines with a maximum of 72 characters)
.x abscissa description (see xfopt(’ datatype’))
.yn numerator description (see xfopt(’ datatype’))
.yd denominator description (see xfopt(’ datatype’))
.z third axis description (see xfopt(’ datatype’))
.group (optional) cell array containing DOF group names. Get label with

c.group(c.dof(:,4)) for response and c.group(c.dof(:,5)) for excitation.
.load (optional) loading patterns used in the data set

The .w and .xf fields contain the real data while other fields give more precisions on its nature.

The .dof field describes DOF/channel dependent options of a MIMO data set. The dof field
contains one row per response/DOF with the following information (this corresponds to data in line
6 of ufread 58 except for address)

[RespNodeID.RespDOFID ExciNodeID.ExciDOFID Address ...
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RespGroupID ExciGroupID FunID LoadCase ZaxisValue]

• Standard DOF definitions of the form NodeID.DOFID are introduced in section 7.5 . When
considering sensors in general directions (see section 4.6 ) the SensId should match
RespNodeID.RespDOFID.

• Addresses are integer numbers used to identify columns of xf matrices. They typically corre-
spond to a measurement number.

• Sensor / actuator groups are correspond to the group names given in the group field (this is
really only supported by ufread).

• Other columns are given in the universal format specification but unused in SDT.

The idopt field is used to point to identification options used on the data set. These should point
to the figure options ci.IDopt.

The .group field is used to associate a name to the group identification numbers RespGroupID

ExciGroupID defined in the .dof columns 4 and 5. These names are saved by ufwrite and used for
geometry identification.

The load field describes loading cases by giving addresses of applied loads in odd columns and the
corresponding coefficients in even columns. This field is used in test cases with multiple correlated
inputs.

Shapes at DOFs

Shapes at DOFs is used to store modeshapes, time responses defined at all nodes, ... and are written
to universal file format 55 (response at nodes) by ufwrite. The fields used for such datasets are

.po pole values, time steps, frequency values ...
For poles, see ii pof which allows conversions between the different pole formats.

.res residues / shapes (one row per shape). Residue format is detailed in section 5.6 .

.dof characteristics of individual responses (follow link for description).

.fun function characteristics (see UFF58)

.header header (5 text lines with a maximum of 72 characters)

.idopt identification options. This is filled when the data structure is obtained as the result
of an idcom call.

.label string describing the content

.lab in optional cell array of names for the inputs

.lab out optional cell array of names for the outputs

.group optional cell group names
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7.10 DOF selection

fe c is the general purpose function for manipulating DOF definition vectors. It is called by many
other functions to select subsets of DOFs in large DOF definition vectors. DOF selection is very
much related to building an observation matrix c, hence the name fe c.

For DOF selection, fe c arguments are the reference DOF vector mdof and the DOF selection vector
adof. adof can be a standard DOF definition vector but can also contain wild cards as follows

NodeId.0 means all the DOFs associated to node NodeId

0.DofId means DofId for all nodes having such a DOF
-EltN.0 means all the DOFs associated to element EltId

Typical examples of DOF selection are

ind = fe c(mdof,111.01,’ind’); returns the position in mdof of the x translation at node 111.
You can thus extract the motion of this DOF from a vector using mode(ind,:). Note that the same
result would be obtained using an output shape matrix in the command fe c(mdof,111.01)*mode.

model = fe mk(model,’FixDOF’,’2-D motion’,[.03 .04 .05])

assembles the model but only keeps translations in the xy plane and rotations around the z axis
(DOFs [.01 .02 .06]’). This is used to build a 2-D model starting from 3-D elements.

The feutil FindNode commands provides elaborate node selection tools. Thus femesh(’findnode
x>0’) returns a vector with the node numbers of all nodes in the standard global variable FEnode

that are such that their x coordinate is positive. These can then be used to select DOFs, as shown
in the section on boundary conditions section 7.14 . Node selection tools are described in the next
section.
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7.11 Node selection

feutil FindNode supports a number of node selection criteria that are used by many functions. A
node selection command is specified by giving a string command (for example ’GroupAll’, or the
equivalent cell array representation described at the end of this section) to be applied on a model
(nodes, elements, possibly alternate element set).

Output arguments are the numbers NodeId of the selected nodes and the selected nodes node as a
second optional output argument. The basic commands are

• [NodeId,node]=feutil([’findnode ...’],model) or node=feutil([’getnode ...’],model)

this command applies the specified node selection command to a model structure. For exam-
ple, [NodeId,node] = feutil(’findnode x==0’,model);

selects the nodes in model.Node which first coordinate is null.

• [NodeId,node]=femesh([’findnode ...’])

this command applies the specified node selection command to the standard global matrices
FEnode, FEelt, FEel0, . . . For example,
[NodeId,node] = femesh(’findnode x==0’); selects the node in FEnode which first coordi-
nate is null.

Accepted selectors are
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GID i selects the nodes in the node group i (specified in column 4 of the node
matrix). Logical operators are accepted.

Group i selects the nodes linked to elements of group(s) i in the main model. Same
as InElt{Group i}

Groupa i selects nodes linked to elements of group(s) i of the alternate model
InElt{sel} selects nodes linked to elements of the main model that are selected by the

element selection command sel.
NodeId >i selects nodes selects nodes based relation of NodeId to integer i. The logical

operator >, <, >=, <=, ~=, or == can be omitted (the default is then ==).

feutil(’findnode 1 2’,model) interprets the values as NodeId

unless three values are given (then interpreted as x y z).
feutil(’findnode’,model,IdList) should then be used.

NotIn{sel} selects nodes not linked to elements of the main model that are selected by
the element selection command sel.

Plane == i nx ny nz selects nodes on the plane containing the node number i and orthogonal to
the vector [nx ny nz]. Logical operators apply to the oriented half plane.
i can be replaced by string o xo yo zo specifying the origin.

rad <=r x y z selects nodes based on position relative to the sphere specified by radius
r and position x y z node or number x (if y and z are not given). The
logical operator >, <, >=, <= or == can be omitted (the default is then <=).

cyl <=r i nx ny nz

z1 z2

selects nodes based on position relative to the cylinder specified by radius
r and axis of direction nx ny nz and origin the node i (NodeId i can
be replaced by string o xo yo zo). Optional arguments z1 and z2 define
bottom and top boundaries from origin along cylinder axis.

betweenn1 n2 selects nodes located between the two planes of normal directed by n1-n2
and respectively passing through n1 and n2.

Setname name finds nodes based on a set defined in the model stack. Note that the name
must not contain blanks or be given between double quotes "name". Set can
be a NodeId or even an EltId or FaceId, EdgeId set. "name:con IdList"

can be used to select a subset connected to nodes in the IdList.
x>a selects nodes such that their x coordinate is larger than a. x y z r (where

the radius r is taken in the xy plane) and the logical operators >, <, >=, <=,
== can be used.
Expressions involving other dimensions can be used for the right hand side.
For example r>.01*z+10.

x y z selects nodes with the given position. If a component is set to NaN it is
ignored. Thus [0 NaN NaN] is the same as x==0.
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Element selectors EGID, EltId, EltName, MatId and ProId are interpreted as InElt selections.

Command option epsl value can be used to give an evaluation tolerance for equality logical oper-
ators.

Different selectors can be chained using the following logical operations

• &, finds nodes that verify both conditions.

• |, finds nodes that verify one or both conditions.

• &~ finds nodes that verify the left condition and not the right condition (exclusion from
current selection state)

Condition combinations are always evaluated from left to right (parentheses are not accepted).

While the string format is typically more convenient for the user, the reference format for a node
selection is really a 4 column cell array :

{ Selector Operator Data
Logical Selector Operator Data
}
The first column gives the chaining between different rows, with Logical being either &, |, &~ , or
a bracket ( and ). The Selector is one of the accepted commands for node selection (or element
selection if within a bracket). The operator is a logical operator >, <, >=, <=, ~=, or ==. The data

contains numerical or string values that are used to evaluate the operator. Note that the meaning of
~= and == operators is slightly different from base Matlab operators as they are meant to operate
on sets.

The feutil FindNodeStack command returns the associated cell array rather than the resulting
selection.
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7.12 Element selection

feutil FindElt supports a number of element selection criteria that are used by many functions.
An element selection command is specified by giving a string command (for example ’GroupAll’)
to be applied on a model (nodes, elements, possibly alternate element set).

Basic commands are :

• [eltind,elt] = feutil(’findelt selector’,model);

or elt = feutil(’selelt selector’,model); this command applies the specified element
selection command to a model structure. For example,
[eltind,selelt] = feutil(’findelt eltname bar1’,model) selects the elements in
model.Elt which type is bar1.

• [eltind,elt] = feutil(’findelt selector’,model);

this command applies the specified element selection command to the standard global matri-
ces FEnode, FEelt, FEel0, . . . For example, [eltind,selelt] = feutil(’findelt eltname

bar1’,model) selects the elements in FEelt which type is bar1.

Output arguments are eltind the selected elements indices in the element description matrix and
selelt the selected elements.

Accepted selectors are
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ConnectedTo i finds elements in a group that contains the nodes i. This calls feutil

DivideInGroups and thus only operates on groups of elements of a single type.
EGID i finds elements with element group identifier i. Operators accepted.
EltId i finds elements with identifiers i in FEelt. Operators accepted.
EltInd i finds elements with indices i in FEelt. Operators accepted.
EltName s finds elements with element name s. EltName flui will select all elements with

name starting with flui. EltName ~ = flui will select all elements with name
not starting with flui. One can select superelements from their name using
EltName SE:SEName. Selection of all elements but a single SE from its name is
obtained using EltName ~ = SE:SEName. Regular expressions on superelement
names are accepted, one then replaces token SEName by the prefix # followed by
the desired expression, e.g. EltName SE:#tgm* to select all superlement whose
name starts with tgm.

Facing > cos x y

z

finds topologically 2-D elements whose normal projected on the direction from
the element CG to x y z has a value superior to cos. Inequality operations are
accepted.

Group i finds elements in group(s) i. Operators accepted.
InNode i finds elements with all nodes in the set i. Nodes numbers in i can be replaced

by a string between braces defining a node selection command. For example
feutil(’FindElt withnode {y>-230 & NodeId>1000}’,model).

MatId i finds elements with MatId equal to i. Relational operators are also accepted
(MatId =1:3, ...).

ProId i finds elements with ProId equal to i. Operators accepted.
WithNode i finds elements with at least one node in the set i. i can be a list of node

numbers. Replacements for i are accepted as above.
Set i finds elements in element set(s) based on the .ID field (see set stack entries).

Elements belonging to any set of ID of value i will be selected.
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SetName s finds elements in element set named s (see set stack entries).

• By default an error is thrown if the set name does not exist in stack. Use
command SafeSetName to get empty results instead.

• By default no spaces in set names are allowed. For more complicated set-
names, place the name into double quotes: SetName "my set name with

spaces".

• Selection by exclusion is possible with token :exclude. E.g. SetName

unused:exclude will return all elements excluding the elements present in
the set named unused.

• Alternative calls to more advanced sets based on connectivity are possible,

– SetName "name:con IdList" can be used to select a subset con-
nected to nodes in the IdList (assuming the .NodeCon field is de-
fined).

– SetName "name:subname" can be used to select a subset in the set
by connectivity format (see set).

WithoutNode i finds elements without any of the nodes in the set i. i can be a list of node
numbers. Replacements for i are accepted as above.

SelEdge type selects the external edges (lines) of the currently selected elements (any element
selected before the SelEdge selector), any further selector is applied on the model
resulting from the SelEdge command rather than on the original model. The
-All option skips the internal edge elimination step. It can be combined with
option -noUni to keep edge duplicates between elements.
Type g retains inter-group edges. m retains inter-material edges. Type p retains
inter-property edges. all retains all edges. The MatId for the resulting model
identifies the original properties of each side of the edge. The edge number is
stored in the column after EltId.

SelFace type selects the external faces (surfaces) of the currently selected elements. The face
number is stored in the column after EltId to allow set generation. See more
details under SelEdge. The -All option skips the internal face elimination
step. Warning: the face number stored in the column after the EltId column
interferes with the Theta property for shell elements (see quad4,tria3). If the
selection output will be used as elements in a model, ensure that the Theta

property is properly set for your application, see p shell setTheta.
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SelFace -trim

val

trims a surface selection to remove boundary elements that may overcome a
sharp edge. The base application is thus to be able to select interior surfaces
with robustness regarding the surface edges in a volume, where it is classical to
end up with a layer of side elements. The sharp edges detection uses feutilb

SurfaceAsQuad to whom the angle defined by val is passed. Sharp edge element
groups exclusively containing elements with nodes on the edge of the surface are
then removed from the selection.

Different selectors can be chained using the available logical operations

• & finds elements that verify both conditions.

• | finds elements that verify one or both conditions.

• &~ finds elements that verify the left condition and not the right condition (exclusion from
current selection state)

i1=feutil(’FindEltGroup 1:3 & with node 1 8’,model) for example. Condition combinations
are always evaluated from left to right (parentheses are not accepted). Note that SelEdge and
SelFace selectors do not output elements of the mesh but new elements of respectively 1D or 2D
topology, so that some combinations may not be directly possible (e.g. if later combined to Group

selector).

Command option epsl value can be used to give an evaluation tolerance for equality logical oper-
ators.

Numeric values to the command can be given as additional arguments. Thus the command above
could also have been written i1=feutil(’findelt group & withnode’,model,1:3,[1 8]).

7.13 Defining fields trough tables, expressions, ...

Finite element fields are used in four main formats

• def field at DOFs

• InfoAtNode field at nodes of an element group can be built from a pro.MAP field which can
be an VectFromDir structure, a structure with fields .bas and .EltId with EltId=0 to define
material orientations.
info,EltOrient is an alternative to specify the orientation of all elements rather than asso-
ciate values for each property entry. The format is a structure with field .EltId giving the
identifiers and .bas giving an orientation for each element in the basis format. To interpolate
constitutive properties as a function of temperature, ... see section 7.3 .
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• gstate field at integration points of an element group (can be built from a pro.gstate field).

• a field definition structure to be transformed to the other formats using a elem0(’VectFromDir’)
command as illustrated below.

The VectFromDir structure has fields

data.dir a cell array specifying the value of various fields. Each cell of data.dir can give
a constant value, a position dependent value defined by a string FcnName that is
evaluated using

fv(:,jDir)=eval(FcnName) or fv(:,jDir)=feval(FcnName,node) if the first fails.
Note that node corresponds to nodes of the model in the global coordinate system
and you can use the coordinates x,y,z for your evaluation.

data.lab cell array giving label for each field of an InfoAtNode or gstate structure.
data.DOF a vector defining the DOF associated with each .dir entry. The

transformation to a vector defined at model.DOF is done using
vect=elem0(’VectFromDirAtDof’,model,data,model.DOF).

For example

% Analytical expression for a displacement field

model=femesh(’testubeam’);

data=struct(’dir’,{{’ones(size(x))’,’y’,’1*x.^3’}}, ...

’DOF’,[.01;.02;.03]);

model.DOF=feutil(’GetDOF’,model);

def=elem0(’VectFromDirAtDof’,model,data,model.DOF)

% Orientation field at nodes

data=struct(’dir’,{{’x./sqrt(x.^2+y.^2)’,’y./sqrt(x.^2+y.^2)’,0}}, ...

’lab’,{{’v1x’,’v1y’,’v1z’}});
pro=struct(’il’,1,’type’,’p_solid’,’MAP’,data);

model=stack_set(model,’pro’,’WithMap’,pro);

C1=fe_mknl(’init’,model);InfoAtNode=C1.GroupInfo{7}
feplot(model);fecom(’showMap’,’WithMap’) % display map

% Material field at node

sdtweb(’_eval’,’d_mesh.m#RVEConstitInterp’)
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7.14 Constraint and fixed boundary condition handling

7.14.1 Theory and basic example

rigid links, FixDof, MPC entries, symmetry conditions, continuity constraints in CMS applications,
... all lead to problems of the form

[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)}
[cint] {q(s)} = 0

(7.2)

The linear constraints [cint] {q(s)} = 0 can be integrated into the problem using Lagrange multipliers
or constraint elimination. Elimination is done by building a basis T for the kernel of the constraint
equations, that is such that

range([T ]N×(N−NC)) = ker([cint]NS×N ) (7.3)

Solving problem [
T TMTs2 + T TCTs+ T TKT

]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR(s)}
(7.4)

is then strictly equivalent to solving (7.2).

The basis T is generated using [Case,NNode,model.DOF]=fe case(model,’gett’) where Case.T

gives the T basis and Case.DOF describes the active or master DOFs (associated with the columns
of T ), while model.DOF or the Case.mDOF field when it exists, describe the full list of DOFs.

The NoT command option controls the need to return matrices, loads, ... in the full of unconstrained
DOFs [M ] , {b} ... or constrained T TMT, T T b in fe mknl, fe load, ... .

For the two bay truss example, can be written as follows :

model = femesh(’test 2bay’);

model2=fe_case(model, ... % defines a new case

’FixDof’,’2-D motion’,[.03 .04 .05]’, ... % 2-D motion

’FixDof’,’Clamp edge’,[1 2]’); % clamp edge

Case=fe_case(’gett’,model) % Notice the size of T and

fe_c(Case.DOF) % display the list of active DOFs

model = fe_mknl(model)

% Now reassemble unconstrained matrices and verify the equality

% of projected matrices

301



7 Developer information

[m,k,mdof]=fe_mknl(model,’NoT’);

norm(full(Case.T’*m*Case.T-model.K{1}))
norm(full(Case.T’*k*Case.T-model.K{2}))

To compute resultants associated with constraint forces further details are needed. One separates
active DOF qa which will be kept and slave DOF that will be eliminated qe so that the constraint is
given by

[ca ce]N×Ne

{
qa
qe

}
= 0 ⇔

[
−(−c−1

e ca) I
]{ qa

qe

}
= [−G I] {q} = 0 (7.5)

The subspace with DOFs eliminated is spanned by

[T ]N×(N−Ne) =

[
I(N−Ne)×(N−Ne)
GNe×(N−Ne)

]
=

[
I

−c−1
e ca

]
(7.6)

The problem that verifies constraints can also be written using Lagrange multipliers, which leads
to  [Z(s)]

[
−G
I

]
[−G I] 0

{ q
Fc

}
=

{
F
0

}
(7.7)

The response can be computed using elimination (equation (7.4)) and the forces needed to verify
the constraints (resultant forces) can be assumed to be point forces associated with the eliminated
DOF qe which leads to

Fc = [[Zea(s)] + Zee(s) [G]] {q} − Fe =
[
T Te Z(s)T

]
{qa} − T Te F (7.8)

A common approximation is to ignore viscous and inertia terms in the resultant, that is assume
T Te Z(s)T ≈ T Te KT .

7.14.2 Local coordinates

In the presence of local coordinate systems (non zero value of DID in node column 3), the Case.cGL

matrix built during the gett command, gives a local to global coordinate transformation

{qall,global} = [cGL] {qall,local} (7.9)

Constraints (mpc, rigid, ...) are defined in local coordinates, that is they correspond to
{qall,local} = [Tlocal] {qmaster,local} (7.10)
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with qmaster,local master DOFs (DOFs in Case.DOF) defined in the local coordinate system and the
Case.T corresponding to

{qall,global} = [T ] {qmaster,local} = [cGL] [Tlocal] {qmaster,local} (7.11)

As a result, model matrices before constraint elimination (with NoT) are expected to be defined in
the global response system, while the projected matrix T TMT are defined in local coordinates.

celas use local coordinate information for their definition. cbush are defined in global coordinates
but allow definition of orientation through the element CID.

An example of rigid links in local coordinates can be found in se gimbal(’ScriptCgl’).

7.14.3 Enforced displacement

For a DofSet entry, one defines the enforced motion in Case.TIn and associated DOFs in Case.DofIn.
The DOFs specified in Case.DofIn are then fixed in Case.T.

7.14.4 Resolution as MPC and penalization transformation

Whatever the constraint formulation it requires a transformation into an explicit multiple point
constraint during the resolution. This transformation is accessible for RBE3 and rigidconstraints, a
cleaned resolution of MPC constraints is also accessible using fe mpc.

• RBE3c provides the resolution for RBE3 constraints.

• RigidC provides the resolution for rigidconstraints.

• MPCc provides the resolution for MPC constraints.

The output is of the format struct with fields

• c the constraint matrix.

• DOF the DOF vector relative to the constraint.

• slave slave DOF indices in DOF.

Such format allows the user to transform a constraint into a penalization using the constraint matrix
as an observation matrix. One can indeed introduce for each constraint equation a force penalizing
its violation through a coefficient kc so that {f}penal = kc [c]Nc×N {q}N×1. This can be written by

means of a symmetric stiffness matrix [kpenal]N×N = kc [c]T [I]Nc×Nc [c]Nc×N added to the system
stiffness.
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% Transformation of a constraint into a penalty

% Generation of a screw model example

model=demosdt(’demoscrew layer 1 40 20 3 3 space .2 layer 2 40 20 4’);

% Model a screw connection with a RBE3 constraint

% see sdtweb fe_case.html#ConnectionScrew

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[0 0 111 1 0;3 0 111 1 0; % [z0 type ProId zTol rTol]

5.2 0 112 1 6; 7.2 0 112 1 6], ...

’MatProId’,[101 101],’rigid’,[Inf abs(’rigid’)],’NewNode’,0);

r1.planes(:,2)=1; % RBE3

mo2=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

% display the connection in feplot

cf=feplot(mo2);fecom(’colordatamat -alpha .1’);

% Replace RBE3 by a penalized coupling

% Get the constraint matrix

r1=fe_mpc(’rbe3c’,mo2,’screw1’);

% remove the RBE3 constraint

mo2=fe_case(mo2,’reset’);

% Generate the penalization stiffness with default kc

kc=sdtdef(’kcelas’);

SE=struct(’DOF’,r1.DOF,’Opt’,[1;1],...

’K’,{{feutilb(’tkt’,r1.c,kc*speye(length(r1.slave)))}});
% Instance the superelement in the model

mo2=fesuper(’seadd -unique 1 1 screw1’,mo2,SE,[1 1]);

% Compute the system modes

def=fe_eig(cf.mdl,[5 20 1e3]);

7.14.5 Low level examples

A number of low level commands (feutil GetDof, FindNode, ...) and functions fe c can be used
to operate similar manipulations to what fe case GetT does, but things become rapidly complex.
For example

% Low level handling of constraints

femesh(’reset’); model = femesh(’test 2bay’);

[m,k,mdof]=fe_mknl(model)
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i1 = femesh(’findnode x==0’);

adof1 = fe_c(mdof,i1,’dof’,1); % clamp edge

adof2 = fe_c(mdof,[.03 .04 .05]’,’dof’,1); % 2-D motion

adof = fe_c(mdof,[adof1;adof2],’dof’,2);

ind = fe_c(model.DOF,adof,’ind’);

mdof=mdof(ind); tmt=m(ind,ind); tkt=k(ind,ind);

Handling multiple point constraints (rigid links, ...) really requires to build a basis T for the
constraint kernel. For rigid links the obsolete rigid function supports some constraint handling.
The following illustrates restitution of a constrained solution on all DOFs

% Example of a plate with a rigid edge

model=femesh(’testquad4 divide 10 10’);femesh(model)

% select the rigid edge and set its properties

femesh(’;selelt group1 & seledge & innode {x==0};addsel’);
femesh(’setgroup2 name rigid’);

FEelt(femesh(’findelt group2’),3)=123456;

FEelt(femesh(’findelt group2’),4)=0;

model=femesh;

% Assemble

model.DOF=feutil(’getdof’,model);% full list of DOFs

[tmt,tkt,mdof] = fe_mknl(model); % assemble constrained matrices

Case=fe_case(model,’gett’); % Obtain the transformation matrix

[md1,f1]=fe_eig(tmt,tkt,[5 10 1e3]); % compute modes on master DOF

def=struct(’def’,Case.T*md1,’DOF’,model.DOF) % display on all DOFs

feplot(model,def); fecom(’;view3;ch7’)

7.15 Internal data structure reference

7.15.1 Element functions and C functionality
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Pre-/Post-
feutil,femesh

fe case, femesh

-

fe mknl init re-
solves
DOF
Materials
Element constants

-�
�
�
�
�
�
�
�
��

Element level
fe mk

fe mknl assemble

Element function :
nodes, face, DOFs, ...

Element function :
constitutive law
integ,constit,
element constants
EltConst

�
�
�
�
�
�
�
�
��

Property function :
p solid Resolve mate-
rial constants Resolve
element integration rule

Element function :
matrix building

�
�
�
�
�
�
���

-

of mk.c :
- of mk subs.c MODULEF
- MatrixIntegration new el-
ements

In OpenFEM, elements are defined by element functions. Element functions provide different pieces
of information like geometry, degrees of freedom, model matrices, . . .

OpenFEM functions like the preprocessor femesh, the model assembler fe mk or the post-processor
feplot call element functions for data about elements.

For example, in the assembly step, fe mk analyzes all the groups of elements. For each group, fe mk

gets its element type (bar1, hexa8, . . . ) and then calls the associated element function.
First of all, fe mk calls the element function to know what is the right call form to compute the
elementary matrices (eCall=elem0(’matcall’) or eCall=elem0(’call’), see section 7.16.6 for
details). eCall is a string. Generally, eCall is a call to the element function. Then for each
element, fe mk executes eCall in order to compute the elementary matrices.

This automated work asks for a likeness of the element functions, in particular for the calls and the
outputs of these functions. Next section gives information about element function writing.

7.15.2 Standard names in assembly routines
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cEGI vector of element property row indices of the current element group (without the
group header)

constit real (double) valued constitutive information. The constit for each group is stored
in Case.GroupInfo{jGroup,4};.

def.def vector of deformation at DOFs. This is used for non-linear, stress or energy compu-
tation calls that need displacement information.

EGID Element Group Identifier of the current element group (different from jGroup if an
EGID is declared).

elt model description matrix. The element property row of the current element is given
by elt(cEGI(jElt),:) which should appear in the calling format eCall of your
element function.

ElemF name of element function or name of superelement
ElemP parent name (used by femesh in particular to allow property inheritance)
gstate real (double) valued element state information.
integ

int32 valued constitutive information.
jElt number of the current element in cEGI

jGroup number of the current element group (order in the element matrix).
[EGroup,nGroup]=getegroup(elt); finds the number of groups and group start
indices.

nodeE nodes of the current element. In the compiled functions, NodeId is stored in column
4, followed by the values at each node given in the InfoAtNode. The position of
known columns is identified by the InfoAtNode.lab labels (the associated integer
code is found with comstr(’lab’,-32)). Of particular interest are

• v1x (first vector of material orientation, which is assumed to be followed by
v1y,v1z and for 3D orientation v2x,y,z), see stack entry info,EltOrient

• v3x,v3y,v3z for normal maps

• T is used for temperature (stack entry info,RefTemp)

NNode node identification reindexing vector. NNode(ID) gives the row index (in the node

matrix) of the nodes with identification numbers ID. You may use this to extract nodes
in the node matrix using something like node(NNode(elt(cEGI(jElt),[1 2])),:)

which will extract the two nodes with numbers given in columns 1 and 2 of the current
element row (an error occurs if one of those nodes is not in node). This can be built
using NNode=sparse(node(:,1),1,1:size(node,1).

pointers one column per element in the current group gives.
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7.15.3 Case.GroupInfo cell array

The meaning of the columns of GroupInfo is as follows

DofPos Pointers Integ Constit gstate ElMap InfoAtNode EltConst

DofPos int32 matrix whose columns give the DOF positions in the full matrix of the associ-
ated elements. Numbering is C style (starting at 0) and -1 is used to indicate a fixed
DOF.

pointers int32 matrix whose columns describe information each element of the group. Pointers
has one column per element giving
[OutSize1 OutSize2 u3 NdNRule MatDes IntegOffset ConstitOffset

StateOffset u9 u10]

Outsize1 size of element matrix (for elements issued from MODULEF), zero other-
wise.
MatDes type of desired output. See the MatType section for a current list.
IntegOffset gives the starting index (first element is 0) of integer options for the
current element in integ.
ConstitOffset gives the starting index (first element is 0) of real options for the
current element in constit.
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integ int32 matrix storing integer values used to describe the element formulation of the
group. Meaning depends on the problem formulation and should be documented in
the property function (p solid BuildConstit for example).
The nominal content of an integ column (as return by the element integinfo call)
is
MatId,ProId,NDofPerElt,NNodePerElt,IntegRuleType

where integrules(ElemP,IntegRuleType) is supposed to return the appropriate
integration rule.

constit double matrix storing integer values used to describe the element formulation of the
group. Meaning depends on element family and should be documented in the element
property function (p solid BuildConstit for example).

gstate a curve with field .Y describing the internal state of each element in the group. Typical
dimensions stress, integration points, elements so that .Y has size Nstrain ×Nw ×
NElt. The labels in .X{1} can be used to find positions in the .Y matrix. The .X{2}
should contain the gauss point locations within the reference element. Automated
generation of initial states is discussed in section 7.13 .
Users are of course free to add any appropriate value for their own elements, a typical
application is the storage of internal variables. For an example of gstate initialization
see fe stress thermal.
the old format with a double matrix with one column per element is still supported
but will be phased out.

ElMap int32 element map matrix used to distinguish between internal and external element
DOF numbering (for example : hexa8 uses all x DOF, then all y ... as internal
numbering while the external numbering is done using all DOFs at node 1, then
node 2, ...). The element matrix in external sort is given by k ext=ke(ElMap).
EltConst.VectMap gives similar reordering information for vectors (loads, ...).

InfoAtNode a structure with .NodePos (int32) with as many columns as elements in the group
giving column positions in a .data field. Each row in .data corresponds to a field
that should be described by a cell array of string in .lab used to identify fields in
assembly, see nodeE. Initialization for a given element type is done the GroupInit

phase, which uses pro.MAP fields (see section 7.13 ). Typical labels for orientation
are {’v1x’,’v1y’,’v1z’,’v2x’,’v2y’,’v2z’}
Obsolete format : double matrix whose rows describe information at element nodes
(as many columns as nodes in the model).

EltConst struct used to store element formulation information (integration rule, constitutive
matrix topology, etc.) Details on this data structure are given in section 7.15.4 .

7.15.4 Element constants data structure
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The EltConst data structure is used in most newer generation elements implemented in of mk.c.
It contains geometric and integration rule properties. The shape information is generated by calls
to integrules. The formulation information is generated p function const calls (see p solid,
p heat, ...).

.N nw ×Nnode shape functions at integration points

.Nr nw×Nnode derivative of shape function with respect to the first reference coordinate
r

.Ns nw ×Nnode derivative of shape function with respect to the second reference coor-
dinate s

.Nt nw ×Nnode derivative of shape function with respect to the second reference coor-
dinate t

.NDN Nshape × nw(1 + Ndim) memory allocation to store the shape functions and their
derivatives with respect to physical coordinates [N N,x N, y N, z]. of mk currently
supports the following geometry rules 3 3D volume, 2 2D volume, 23 3D surface,
13 3D line (see integrules BuildNDN for calling formats). Cylindrical and spherical
coordinates are not currently supported. In the case of rule 31 (hyperelastic elements),
the storage scheme is modified to be (1+Ndim)×Nshape×nw which preserves data
locality better.

.jdet Nw memory allocation to store the determinant of the jacobian matrix at integration
points.

.bas 9 × Nw memory allocation to store local material basis. This is in particular used
for 3D surface rules where components 6:9 of each column give the normal.

.Nw number of integration points for output (inferior to size(EltConst.N,1) when dif-
ferent rules are used inside a single element)

.Nnode number of nodes (equal to size(EltConst.N,2)=size(EltConst.NDN,1))

.xi Nnode× 3 reference vertex coordinates

.VectMap index vector giving DOF positions in external sort. This is needed for RHS compu-
tations.

.CTable low level interpolation of constitutive relation based on field values. Stor-
age as a double vector is given by [Ntables CurrentValues (Ntables x

7) tables] with CurrentValues giving [i1 xi si xstartpos Nx nodeEfield

constit(pos Matlab)]. Implementation is provided for m elastic to account for
temperature dependence, fe mat to generate interpolated properties.
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7.16 Creating new elements (advanced tutorial)

In this section one describes the developments needed to integrate a new element function into
OpenFEM. First, general information about OpenFEM work is given. Then the writing of a new
element function is described. And at last, conventions which must be respected are given.

7.16.1 Generic compiled linear and non-linear elements

To improve the ease of development of new elements, OpenFEM now supports a new category of
generic element functions. Matrix assembly, stress and load assembly calls for these elements are
fully standardized to allow optimization and generation of new element without recompilation. All
the element specific information stored in the EltConst data structure.

Second generation volume elements are based on this principle and can be used as examples. These
elements also serve as the current basis for non-linear operations.

The adopted logic is to develop families of elements with different topologies. To implement a family,
one needs

• shape functions and integration rules. These are independent of the problem posed and grouped
systematically in integrules.

• topology, formatting, display, test, ... information for each element. This is the content of the
element function (see hexa8, tetra4, ...) .

• a procedure to build the constit vectors from material data. This is nominally common to
all elements of a given family and is used in integinfo element call. For example
p solid(’BuildConstit’).

• a procedure to determine constants based on current element information. This is nominally
common to all elements of a given family and is used in groupinit phase (see fe mk). The
GroupInit call is expected to generate an EltConst data structure, that will be stored in the
last column of Case.GroupInfo. For example hexa8 constants which calls
p solid(’ConstSolid’).

• a procedure to build the element matrices, right hand sides, etc. based on existing informa-
tion. This is compiled in of mk MatrixIntegration and StressObserve commands. For
testing/development purposes is expected that for sdtdef(’diag’,12) an .m file implemen-
tation in elem0.m is called instead of the compiled version.

The following sections detail the principle for linear and non-linear elements.
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7.16.2 What is done in the element function

Most of the work in defining a generic element is done in the element property function (for initial-
izations) and the compile of mk function. You do still need to define the commands

• integinfo to specify what material property function will be called to build integ, constit
and elmap. For example, in hexa8, the code for this command command is

if comstr(Cam,’integinfo’)

%constit integ,elmap ID,pl,il

[out,out1,out2]= ...

p_solid(’buildconstit’,[varargin{1};24;8],varargin{2},varargin{3});

input arguments passed from fe mknl are ID a unique pair of MatId and ProId in the current
element group. pl and il the material and element property fields in the model. Expected out-
puts are constit, integ and elmap, see Case.GroupInfo. Volume elements hexa8, q4p, ...

are topology holders. They call p solid BuildConstit which in turn calls as another prop-
erty function as coded in the type (column two of il coded with fe mat(’p fun’,’SI’,1)).
When another property function is called, it is expected that constit(1:2)=[-1 TypeM] to
allow propagation of type information to parts of the code that will not analyze pl.

• constants to specify what element property function will be called to initialize EltConst data
structure and possibly set the geometry type information in pointers(4,:). For example, in
hexa8, the code for this command is

...

elseif comstr(Cam,’constants’)

integ=varargin{2};constit=varargin{3};
if nargin>3; [out,idim]=p_solid(’const’,’hexa8’,integ,constit);

else; p_solid(’constsolid’,’hexa8’,[1 1 24 8],[]);return;

end

out1=varargin{1};out1(4,:)=idim; % Tell of_mk(’MatrixInt’) this is IDIM

...

input arguments passed from fe mknl are pointers,integ,constit the output arguments
are EltConst and a modified pointers where row 4 is modified to specify a 3D underlying
geometry.

If constit(1:2)=[-1 TypeM] p solid calls the appropriate property function.

For elements that have an internal orientation (shells, beams, etc.) it is expected that orienta-
tion maps are built during this command (see beam1t, ...). Note, that the ’info’,’EltOrient’
stack entry can also be used for that purpose.
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• standard topology information (commands node, dof, prop, line, patch, face, edge, parent)
see section 7.16.6 .

hexa8 provides a clean example of what needs to be done here.

7.16.3 What is done in the property function

p fcn

Commands specific to p * are associated to the implementation of a particular physical formulation
for all topologies.

BuidConstit

As shown in section 7.15.1 and detailed under fe mknl the FEM initialization phase needs to resolve

• constitutive law information from model constants (elem0 integinfo call to the element func-
tions, which for all topology holder elements is forwarded to p solid BuildConstit)

• and to fill-in integration constants and other initial state information (using groupinit to
generate the call and constant build the data).

Many aspects of a finite element formulation are independent of the supporting topology. Element
property functions are thus expected to deal with topology independent aspects of element constant
building for a given family of elements.

Thus the element integinfo call usually just transmits arguments to a property function that does
most of the work. That means defining the contents of integ and constit columns. For example

for an acoustic fluid, constit columns generated by p solid BuildConstit contain
[

1
ρC2 η 1

ρ

]
.

Generic elements (hexa8, q4p, ...) all call p solid BuildConstit. Depending on the property type
coded in column 2 of the current material, p solid attempts to call the associated m mat function
with a BuildConstit command. If that fails, an attempt to call p mat is made (this allows to define
a new family of elements trough a single p fcn p heat is such an example).

integ nominally contains MatId,ProId,NDofPerElt,NNodePerElt,IntegRuleNumber.
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Const

Similarly, element constant generation of elements that support variable integration rules is per-
formed for an element family. For example, p solid const supports for 3D elastic solids, for 2D
elastic solids and 3D acoustic fluid volumes. p heat supports 2D and 3D element constant building
for the heat equation.

Generic elements (hexa8, q4p, ...) all use the call
[EltConst,NDNDim] = p solid(’Const’,ElemF, integ, constit).
User extendibility requires that the user be able to bypass the normal operation of p solid const.
This can be achieved by setting constit(1)=-1 and coding a property type in the second value (for
example constit(1)=fe mat(’p heat’,’SI’,1). The proper function is then called with the same
arguments as p solid.

* fcn

Expected commands common to both p * and m * functions are the following

Subtype

With no argument returns a cell array of strings associated with each subtype (maximum is 9). With
a string input, it returns the numeric value of the subtype. With a numeric input, returns the string
value of the subtype. See m elastic for the reference implementation.

database

Returns a structure with reference materials or properties of this type. Additional strings can be
used to give the user more freedom to build properties.

dbval

Mostly the same as database but replaces or appends rows in model.il (for element properties) or
model.pl (for material properties).

PropertyUnitType

i1=p function(’PropertyUnitType’,SubType) returns for each subtype the units of each value in
the property row (column of pl).

This mechanism is used to automate unit conversions in fe mat Convert.
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[list,repeat]=p function(’PropertyUnitTypeCell’,SubType) returns a cell array describing
the content of each column, the units and possibly a longer description of the variable. When
properties can be repeated a variable number of times, use the repeat (example in p shell for
composites). This mechanism is used to generate graphical editors for properties.

Cell arrays describing each subtype give

• a label. This should be always the same to allow name based manipulations and should not
contain any character that cannot be used in field names.

• a conversion value. Lists of units are given using fe mat(’convertSITM’). If the unit is within
that list, the conversion value is the row number. If the unit is the ratio of two units in the
list this is obtained using a non integer conversion value. Thus 9.004 corresponds to kg/m (9
is kg and 4 is m).

• a string describing the unit

7.16.4 Compiled element families in of mk

of mk is the C function used to handle all compiled element level computations. Integration rules
and shape derivatives are also supported as detailed in BuildNDN.

Generic multi-physic linear elements

This element family supports a fairly general definition of linear multi-physic elements whose element
integration strategy is fully described by an EltConst data structure. hexa8 and p solid serve
as a prototype element function. Element matrix and load computations are implemented in the
of mk.c MatrixIntegration command with StrategyType=1, stress computations in the of mk.c

StressObserve command.

EltConst=hexa8(’constants’,[],[1 1 24 8],[]);

integrules(’texstrain’,EltConst)

EltConst=integrules(’stressrule’,EltConst);

integrules(’texstress’,EltConst)

Elements of this family are standard element functions (see section 7.16 ) and the element functions
must thus return node, prop, dof, line, patch, edge, face, and parent values. The specificity is
that all information needed to integrate the element is stored in an EltConst data structure that is
initialized during the fe mknl GroupInit phase.
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For DOF definitions, the family uses an internal DOF sort where each field is given at all nodes
sequentially 1x2x...8x1y...8y... while the more classical sort by node 1x1y...2x... is still used for
external access (internal and external DOF sorting are discussed in section 7.16.6 ).

Each linear element matrix type is represented in the form of a sum over a set of integration points

k(e) =
∑
ji,jj

∑
jw

[
{Bji}Dji jk(w(jw)) {Bjj}T

]
J(w(jw))W ((jw)) (7.12)

where the jacobian of the transformation from physical xyz to element rst coordinates is stored in
EltConst.jdet(jw) and the weighting associated with the integration rule is stored in
EltConst.w(jw,4).

The relation between the Case.GroupInfo constit columns and the Dij constitutive law matrix is
defined by the cell array EltConst.ConstitTopology entries. For example, the strain energy of a
acoustic pressure formulation (p solid ConstFluid) is given by

EltConst.MatrixTopology{1} = [3 0 0

0 3 0

0 0 3]

constit(:,j1)=[1/rho/C2; eta ; 1/rho]

D =

 1/ρ 0 0
0 1/ρ 0
0 0 1/ρ


The integration rule for a given element is thus characterized by the strain observation matrix
Bji(r, s, t) which relates a given strain component εji and the nodal displacements. The generic
linear element family assumes that the generalized strain components are linear functions of the
shape functions and their derivatives in euclidian coordinates (xyz rather than rst).

The first step of the element matrix evaluation is the evaluation of the EltConst.NDN matrix whose
first Nw columns store shape functions, Nw next their derivatives with respect to x, then y and z
for 3D elements

[NDN ]Nnode×Nw(Ndims+1) =

[
[N(r, s, t)]

[
∂N

∂x

] [
∂N

∂y

] [
∂N

∂z

]]
(7.13)

To improve speed the EltConst.NDN and associated EltConst.jdet fields are preallocated and
reused for the assembly of element groups.

For each strain vector type, one defines an int32 matrix

EltConst.StrainDefinition{jType} with each row describing row, NDNBloc, DOF, NwStart,

NwTot giving the strain component number (these can be repeated since a given strain component
can combine more than one field), the block column in NDN (block 1 is N , 4 is ∂N/∂z, a nega-
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tive number can be used to specify −N , ...), the field number, and the starting integration point
associated with this strain component and the number of integration points needed to assemble the
matrix. The default for NwStart NwTot is 1, Nw but this formalism allows for differentiation of the
integration strategies for various fields. The figure below illustrates this construction for classical
mechanical strains.

EltConst.StrainDefinition{1} = [1 2 1 1 8

2 3 2 1 8

3 4 3 1 8

4 4 2 1 8

4 3 3 1 8

5 4 1 1 8

5 2 3 1 8

6 3 1 1 8

6 2 2 1 8]



εx
εy
εz
γyz
γzx
γxy


=



N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w



[NDN ]Nnode×Nw(Ndims+1) =

[
[N(r, s, t)]

[
∂N

∂x

] [
∂N

∂y

] [
∂N

∂z

]] 8∑
jw=1

To help you check the validity of a given rule, you should fill the

EltConst.StrainLabels{jType} and EltConst.DofLabels fields and use the
integrules( ’texstrain’, EltConst) command to generate a LATEX printout of the rule you
just generated.

The .StrainDefinition and .ConstitTopology information is combined automatically in integrules

to generate .MatrixIntegration (integrules MatrixRule command) and .StressRule fields
(integrules StressRule command). These tables once filed properly allow an automated inte-
gration of the element level matrix and stress computations in OpenFEM.

Phases in of mk.c matrix integration

The core of element computations is the matrixintegration command that computes and assembles
a group of elements.

After a number of inits, one enters the loop over elements.

The nodeE matrix, containing field at element nodes, is filled with information at the element nodes
as columns. The first 3 columns are positions. Column 4 is reserved for node numbers in case
a callback to MATLAB makes use of the information. The following columns are based on the
InfoAtNode structure whos indexing strategy is compatible with both continuous and discontinuous
fields at each node. See sdtweb elem0(’get nodeE’) for details.
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Initialization of InfoAtNode is performed with fe mknl(’Init -gstate’) calls. The m elastic

AtNodeGState command is an illustration of init used to interpolate material properties in volume
elements.

The defe vector/matrix contains the values at the current element DOF of the provided deforma-
tion(s).

Generic RHS computations

Right hand side (load) computations can either be performed once (fixed set of loads) through
fe load which deals with multiple loads, or during an iterative process where a single RHS is
assembled by fe mknl into the second column of the state argument dc.def(:,2) along with the
matrices when requiring the stiffness with MatDes=1 or MatDes=5 (in the second case, the forces are
assumed following if implemented).

There are many classical forms of RHS, one thus lists here forms that are implemented in of mk.c

MatrixIntegration. Computations of these rules, requires that the EltConst.VectMap field by
defined. Each row of EltConst.RhsDefinition specifies the procedure to be used for integration.

Two main strategies are supported where the fields needed for the integration of loads are stored
either as columns of dc.def (for fields that can defined on DOFs of the model) or as nodeE columns.

Currently the only accepted format for rows of EltConst.RhsDefinition is

101(1) InfoAtNode1(2) InStep(3) NDNOff1(4) FDof1(5) NDNCol(6)

NormalComp(7) w1(8) nwStep(9)

Where InfoAtNode1 gives the first row index in storing the field to be integrated in InfoAtNode.
InStep gives the index step (3 for a 3 dimensional vector field), NDNOff1 gives the block offset in
the NDN matrix (zero for the nominal shape function). FDof1 gives the offset in force DOFs for the
current integration. NDNCol. If larger than -1, the normal component NormalComp designs a row
number in EltConst.bas, which is used as a weighting coefficient. tt w1 gives the index of the first
gauss point to be used (in C order starting at 0). nwStep gives the number of gauss points in the
rule being used.

• volume forces not proportional to density

∫
Ω0

fv(x).du(x) = {Fv}k =
∑
jw

({Nk(jw)} {Nj(jw)} fv(xj)) J(jw)W (jw) (7.14)

are thus described by

opt.RhsDefinition=int32( ...
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[101 0 3 0 0 0 -1 rule+[-1 0];

101 1 3 0 1 0 -1 rule+[-1 0];

101 2 3 0 2 0 -1 rule+[-1 0]]);

for 3D solids (see p solid).

Similarly, normal pressure is integrated as 3 volume forces over 3D surface elements with
normal component weighting

Fm =
∫
∂Ω0

p(x)nm(x).dv(x)

=
∑
jw ({Nk(jw)} {Nj(jw)} p(xj)nm) J(jw)W (jw)

(7.15)

• inertia forces (volume forces proportional to density)

F =

∫
Ω0

ρ(x)fv(x).dv(x) (7.16)

• stress forces (will be documented later)

Large transformation linear elasticity

Elastic3DNL fully anisotropic elastic elements in geometrically non-linear mechanics problems. Ele-
ment matrix are implemented in the of mk.c MatrixIntegration command with StrategyType=2

for the linear tangent matrix (MatType=5). Other computations are performed using generic ele-
ments (section 7.16.4 ) (mass MatType=2). This formulation family has been tested for the prediction
of vibration responses under static pre-load.

Stress post-processing is implemented using the underlying linear element.

Hyperelasticity

Simultaneous element matrix and right hand side computations are implemented in the of mk.c

MatrixIntegration command with StrategyType=3 for the linear tangent matrix (MatType=5). In
this case (and only this case!!), the EltConst.NDN matrix is built as follow:
for 1 ≤ jw ≤ Nw

[NDN ](Ndims+1)×Nnode(Nw) =
[
[NDN ]jw

]
(7.17)
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with

[NDN ]jw(Ndims+1)×Nnode =


[N(r, s, t)]jw[

∂N
∂x

]
jw[

∂N
∂y

]
jw[

∂N
∂z

]
jw

 (7.18)

This implementation corresponds to case 31 of NDNSwitch function in of mk pre.c. The purpose
is to use C-BLAS functions in element matrix and right hand side computations implemented in the
same file (function Mecha3DintegH) to improve speed.

Other computations are performed using generic elements (section 7.16.4 ) (mass MatType=2). This
formulation family has been tested for the RivlinCube test.

Stress post-processing is not yet implemented for hyperelastic media.

7.16.5 Non-linear iterations, what is done in of mk

Non linear problems are characterized by the need to perform iterations with multiple assemblies
of matrices and right hand sides (RHS). To optimize the performance, the nominal strategy for
non-linear operations is to

• perform an initialization (standard of mknl init call)

• define a deformation data structure dc with two columns giving respectively the current state
and the non linear RHS.

At a given iteration, one resets the RHS and performs a single fe mknl call that returns the current
non-linear matrix and replaces the RHS by its current value (note that fe mknl actually modifies the
input argument dc which is not an normal Matlab behavior but is needed here for performance)

% at init allocate DC structure

dc=struct(’DOF’,model.DOF,’def’,zeros(length(model.DOF),2);

% ... some NL iteration mechanism here

dc.def(:,2)=0; % reset RHS at each iteration

k=fe_mknl(’assemble not’,model,Case,dc,5); % assemble K and RHS

Most of the work for generic elements is done within the of mk MatrixIntegration command that
is called by fe mknl. Each call to the command performs matrix and RHS assembly for a full group
of elements. Three strategies are currently implemented

• Linear multiphysics elements of arbitrary forms, see section 7.16.4
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• Elastic3DNL general elastic elements for large transformation, see section 7.16.4

• Hyperelastic elements for large transformation problems. see section 7.16.4 . These elements
have been tested through the RivlinCube example.

7.16.6 Element function command reference

Nominally you should write topology independent element families, if hard coding is needed you can
however develop new element functions.

In Matlab version, a typical element function is an .m or .mex file that is in your Matlab path. In
Scilab version, a typical element function is an .sci or .mex file that is loaded into Scilab memory
(see getf in Scilab on-line help).

The name of the function/file corresponds to the name of the element (thus the element bar1 is
implemented through the bar1.m file)

General element information

To build a new element take q4p.m or q4p.sci as an example.

As for all Matlab or Scilab functions, the header is composed of a function syntax declaration and a
help section. The following example is written for Matlab. For Scilab version, don’t forget to replace
% by //. In this example, the name of the created element is elem0.

For element functions the nominal format is

function [out,out1,out2]=elem0(CAM,varargin);

%elem0 help section

The element function should then contain a section for standard calls which let other functions know
how the element behaves.

if isstr(CAM) %standard calls with a string command

[CAM,Cam]=comstr(CAM,1); % remove blanks

if comstr(Cam,’integinfo’)

% some code needed here

out= constit; % real parameter describing the constitutive law

out1=integ; % integer (int32) parameters for the element

out2=elmap;
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elseif comstr(Cam,’matcall’)

out=elem0(’call’);

out1=1; % SymFlag

elseif comstr(Cam,’call’); out = [’AssemblyCall’];

elseif comstr(Cam,’rhscall’); out = [’RightHandSideCall’];

elseif comstr(Cam,’scall’); out = [’StressComputationCall’];

elseif comstr(Cam,’node’); out = [NodeIndices];

elseif comstr(Cam,’prop’); out = [PropertyIndices];

elseif comstr(Cam,’dof’); out = [ GenericDOF ];

elseif comstr(Cam,’patch’);

out = [ GenericPatchMatrixForPlotting ];

elseif comstr(Cam,’edge’); out = [ GenericEdgeMatrix ];

elseif comstr(Cam,’face’); out = [ GenericFaceMatrix ];

elseif comstr(Cam,’sci_face’); out = [ SciFaceMatrix ];

elseif comstr(Cam,’parent’); out = [’ParentName’];

elseif comstr(Cam,’test’)

% typically one will place here a series of basic tests

end

return

end % of standard calls with string command

The expected outputs to these calls are detailed below.

call,matcall

Format string for element matrix computation call. Element functions must be able to give fe mk

the proper format to call them (note that superelements take precedence over element functions with
the same name, so avoid calling a superelement beam1, etc.).

matcall is similar to call but used by fe mknl. Some elements directly call the of mk mex function
thus avoiding significant loss of time in the element function. If your element is not directly supported
by fe mknl use matcall=elem0(’call’).

The format of the call is left to the user and determined by fe mk by executing the command
eCall=elem0(’call’). The default for the string eCall should be (see any of the existing element
functions for an example)

[k1,m1]=elem0(nodeE,elt(cEGI(jElt),:),...

pointers(:,jElt),integ,constit,elmap);

322



To define other proper calling formats, you need to use the names of a number of variables that are
internal to fe mk. fe mk variables used as output arguments of element functions are

k1 element matrix (must always be returned, for opt(1)==0 it should be the stiffness,
otherwise it is expected to be the type of matrix given by opt(1))

m1 element mass matrix (optional, returned for opt(1)==0, see below)

[ElemF,opt,ElemP]=

zrfeutil(’getelemf’,elt(EGroup(jGroup),:),jGroup)

returns, for a given header row, the element function name ElemF, options opt, and parent name
ElemP.

fe mk and fe mknl variables that can be used as input arguments to element function are listed in
section 7.15.2 .

dof, dofcall

Generic DOF definition vector. For user defined elements, the vector returned by elem0(’dof’)

follows the usual DOF definition vector format (NodeId.DofId or -1.DofId) but is generic in the
sense that node numbers indicate positions in the element row (rather than actual node numbers)
and -1 replaces the element identifier (if applicable).

For example the bar1 element uses the 3 translations at 2 nodes whose number are given in position
1 and 2 of the element row. The generic DOF definition vector is thus
[1.01;1.02;1.03;2.01;2.01;2.03].

A dofcall command may be defined to bypass generic dof calls. In particular, this is used to
implement elements where the number of DOFs depends on the element properties. The com-
mand should always return out=elem0(’dofcall’);. The actual DOF building call is performed
in p solid(’BuildDof’) which will call user p *.m functions if needed.

Elements may use different DOF sorting for their internal computations.

edge,face,patch,line,sci face

face is a matrix where each row describes the positions in the element row of nodes of the oriented
face of a volume (conventions for the orientation are described under integrules). If some faces
have fewer nodes, the last node should be repeated as needed. feutil can consider face sets with
orientation conventions from other software.
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edge is a matrix where each row describes the node positions of the oriented edge of a volume or a
surface. If some edges have fewer nodes, the last node should be repeated as needed.

line (obsolete) is a vector describes the way the element will be displayed in the line mode (wire
frame). The vector is generic in the sense that node numbers represent positions in the element row
rather than actual node numbers. Zeros can be used to create a discontinuous line. line is now
typically generated using information provided by patch.

patch. In MATLAB version, surface representations of elements are based on the use of Matlab
patch objects. Each row of the generic patch matrix gives the indices nodes. These are generic in the
sense that node numbers represent positions in the element row rather than actual node numbers.

For example the tetra4 solid element has four nodes in positions 1:4. Its generic patch matrix is [1
2 3;2 3 4;3 4 1;4 1 2]. Note that you should not skip nodes but simply repeat some of them if
various faces have different node counts.

sci face is the equivalent of patch for use in the SCILAB implementation of OpenFEM. The
difference between patch and sci face is that, in SCILAB, a face must be described with 3 or 4
nodes. That means that, for a two nodes element, the last node must be repeated (in generality,
sci_face = [1 2 2];). For a more than 4 nodes per face element, faces must be cut in subfaces.
The most important thing is to not create new nodes by the cutting of a face and to use all nodes.
For example, 9 nodes quadrilateral can be cut as follows :

Figure 7.1: Lower order patch representation of a 9 node quadrilateral

but a 8 nodes quadrilaterals cannot by cut by this way. It can be cut as follows:
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Figure 7.2: Lower order patch representation of a 8 node quadrilateral

integinfo, BuildConstit

integinfo, BuildConstit are commands to resolve constants in elements and p function respec-
tively.

[constit,integ,elmap]=elem0(’integinfo’,[MatId ProId],pl,il,model,Case) is supposed to
search pl and il for rows corresponding to MatId and ProId and return a real vector constit de-
scribing the element constitutive law and an integer vector integ.

ElMap is used to build the full matrix of an element which initially only gives it lower or upper
triangular part. If a structure is return, fe mknl can do some group wise processing (typically
initialization of internal states).

In most elements, one uses
[constit,integ,elmap]=p solid(’buildconstit’, [varargin{1};Ndof;Nnode],varargin{2:end})
since p solid passes calls to other element property functions when needed.

elmap can also be used to pass structures and callbacks back to fe mknl.

node

Vector of indices giving the position of nodes numbers in the element row. In general this vector
should be [1:n] where n is the number of nodes used by the element.

prop
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Vector of indices giving the position of MatId, ProId and EltId in the element row. In general this
vector should be n+[1 2 3] where n is the number of nodes used by the element. If the element
does not use any of these identifiers the index value should be zero (but this is poor practice).

parent

Parent element name. If your element is similar to a standard element (beam1, tria3, quad4, hexa8,
etc.), declaring a parent allows the inheritance of properties. In particular you will be able to use
functions, such as fe load or parts of femesh, which only recognize standard elements.

rhscall

rhscall is a string that will be evaluated by fe load when computing right hand side loads (volume
and surface loads). Like call or matcall, the format of the call is determined by fe load by
executing the command eCall=elem0(’call’). The default for the string eCall should be :

be=elem0(nodeE,elt(cEGI(jElt),:),pointers(:,jElt),...

integ,constit,elmap,estate);

The output argument be is the right hand side load. The inputs arguments are the same as those
for matcall and call.

Matrix, load and stress computations

The calls with one input are followed by a section on element matrix assembly. For these calls the
element function is expected to return an element DOF definition vector idof and an element matrix
k. The type of this matrix is given in opt(1). If opt(1)==0, both a stiffness k and a mass matrix m

should be returned. See the fe mk MatType section for a current list.

Take a look at bar1 which is a very simple example of element function.

A typical element assembly section is as follows :

% elem0 matrix assembly section

% figure out what the input arguments are

node=CAM; elt=varargin{1};
point=varargin{2}; integ=varargin{3};
constit=varargin{4}; elmap=varargin{5};
typ=point(5);
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% outputs are [k,m] for opt(1)==0

% [mat] for other opt(1)

switch point(5)

case 0

[out,out1] = ... % place stiffness in out and mass in out1

case 1

out= ... % compute stiffness

case 2

out= ... % compute mass

case 100

out= ... % compute right hand side

case 200

out= ... % compute stress ...

otherwise

error(’Not a supported matrix type’);

end

Distributed load computations (surface and volume) are handled by fe load. Stress computations
are handled by fe stress.

There is currently no automated mechanism to allow users to integrate such computations for their
own elements without modifying fe load and fe stress, but this will appear later since it is an
obvious maintenance requirement.

The mechanism that will be used will be similar to that used for matrix assembly. The element
function will be required to provide calling formats when called with elem0(’fsurf’) for surface
loads, elem0(’fvol’) for volume loads, and
elem0(’stress’) for stresses. fe load and fe stress will then evaluate these calls for each element.

7.17 Variable names and programming rules (syntax)

The following rules are used in programming SDT and OpenFEM as it makes reading the source
code easier.

All SDT functions are segmented and tagged so that the function structure is clearly identified. Its
tree structure can be displayed and browsable through the sdtweb taglist interface. You should
produce code compatible with this browser including tags (string beginning by # in a comment), in
particular at each command of your function.
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In addition, input parsing section 7.17.3 and some utilities for directory handling section 7.17.4
, post-treatment display section 7.17.4 and figure formatting/capturing section 7.17.4 have been
standardized.

7.17.1 Variable naming conventions

Standardized variable names are

carg index of current argument. For functions with variable number of inputs, one
seeks the next argument with NewArg=varargin{carg};carg=carg+1;

CAM, Cam string command to be interpreted. Cam is the lower case version of CAM.
j1,j2,j3 ... loop indices.
jGroup,jElt,jW indices for element groups, elements, integration points. For code samples use

help(’getegroup’)

i,j unit imaginary
√
−1. i,j should never be used as indices to avoid any problem

overloading their default value.
i1,i2,i3 ... integer values intermediate variables
r1,r2,r3 ... real valued variables or structures
ind,in2,in3 ... vectors of indices, cind is used to store the complement of ind when applicable.
out,out1,out2 ... output variables.

The following names are also used throughout the toolbox functions
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model, mo1, mo2

...
SDT model structures.

node,FEnode, n1,

n2 ...
nodes, FEnode is reserved as a global variable.

elt, FEelt, el1,

el2 ...
elements, FEelt is reserved as a global variable.

EGroup, nGroup starting index of each group and number of groups in an element structure, see
help(’getegroup’).

cEGI index of elements for a given group in an element structure, see
help(’getegroup’).

NNode reindexing vector, verifies NodeInd=NNode(NodeId). Can be built using
NNode=sparse(node(:,1),1,1:size(node,1)).

nd reindexing object for DOF, verifies DofPos=feval(nd.getPosFcn,nd,DOF). Is
built using nd=feval(fe mknl(’@getPosFromNd’),[],DOF);

RunOpt run options, a structure used to store options that are used in a command. RO

can also be used.
adof current active DOF vector.
cf pointer to a feplot figure.
gf, uf, ga, ua,

go, uo

respectively handle and userdata to a figure, handle and userdata to an axis,
handle and userdata to a graphics subobject.

gc, evt respectively active object and associated event in Java triggered callbacks.

7.17.2 Coding style

The coding styles convention are detailed in the example below.

• Tags for taglist are marked with the # token, not to interfere with pragma tokens, ensure that
it is not directly following a %, but leave at least one space.

– The tag level can be specified by placing -i at the end of the line, i being the level. If
not each tag is assumed to be level 1. Tags with lines finishing by - - - or after the
#SubFunc tag are assumed level 2.

– By default, the taglist will concatenate consecutive tags with the same starting letters,
the subsequent tags will thus be shifted.

• Code sections are usually delimited using the cell display %%.

• The first input argument should be a string whose parsing will determine the command to
execute and associated command options.
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• An error should be returned if the command is unknown.

• Access from the outside to subfunction handles should be made possible through a call
suf=my func(’@my sub fun’).

• Subversion tags should be present to allow easy administration using cvs or svn, in a unique
command cvs, that will output a string containing the cvs or svn tags.

function [out,out1,out2,out3]=my_func(varargin);

% Here you should place your help

% SDT functions always use varargin for input and [out,out1, ...] for

% output.

% ask MATLAB to avoid some warnings the in the editor MLint

%#ok<*NASGU,*ASGLU,*CTCH,*TRYNC,*NOSEM>

% Get the command in varargin{1} and strip front/end blanks with comstr

% CAM is as input, Cam is lower case.

[CAM,Cam]=comstr(varargin{1},1);carg=2;

%% #Top : main level command Top ------------------------------

% the %% is to use Matlab cell, while #Top is a sdtweb _taglist tag

% by default tags are set to level 1

% Now test that Cam starts by ’top’ and then strip 3 characters and trim (+1)

if comstr(Cam,’top’);[CAM,Cam]=comstr(CAM,4);

if comstr(Cam,’manual’)

%% #TopLevel2 : subcommand level 2 - - - - - - - - - -2

% - - - tells sdtweb this is a level 2 tag

% if sufficies to end the line with -2 in practice

% any other level can be used by adding a higher number at the end of the tag line

% recover other inputs

r1=varargin{carg}; carg=carg+1; % get input and increment counter

% get optionnal input arguments

if carg<=nargin; r2=carargin{carg}; carg=carg+1; else; r2=[]; end

% ...
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%% #TopEnd -2

else; error(’Top%s unknown’,CAM);

end

%% #End : typical commands placed at end of function

elseif comstr(Cam,’@’);out=eval(CAM);

elseif comstr(Cam,’cvs’)

out=’$Revision: 1.17 $ $Date: 2019/02/15 17:37:30 $’;

else; error(’my_func %s unknown’,CAM);

end

%% #SubFunc : indicates start of subfunctions to taglist parsing

%% #my_sub_fun - - ------------------------------------------

function out=my_sub_fun(varargin)

7.17.3 Input parsing conventions

Passing command options is a critical feature to enable little behavior alteration as function of the
user needs although most of the functionality is the same. This allows in particular limiting code
duplication.

From the input CAM variable, command option parsing utilities have been defined and standardized.
The goal is to build a run option structure from the input command string while keeping the
possibility to provide it as an extra argument.

The command parsing code is then

% Usual run options handling

% first possible to recover in extra input

if carg>nargin||~isstruct(varargin{carg});RO=struct;
else;RO=varargin{carg};carg=carg+1;
end

% then parse CAM for command options,

% and assign default values to unspecified options

% values declared prior to the paramedit call are not overriden

[RO,st,CAM]=cingui(’paramedit -DoClean’,[ ...

’param(val#%g#"Description")’ ...

’token(#3#"token modes does...")’ ...

’-parS("string"#%s#"parS modes available...")’ ...
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],{RO,CAM}); Cam=lower(CAM);

The paramEdit call from cingui performs standard operations for each token in the second input
string of the command. Each token follows the format token(val#typ#"info"), and will generate a
case sensitive field token in the structure RO. val is a default value that is applied if the field token

is missing before the call. info is a string providing information on the token effect. typ tells the
type of input that should be parsed after the token, with the following rules:

• 3 Only checks for the presence of token in the command without any other value. Sets field
token to 1(double) if found, 0(as double) if not. val must remain empty. e.g. Top token, will
set RO.token=1.

• 31 Behaves as type 3 but also checks for an optional integer input. Sets field token to 1(double)
if found, 0(as double) if not, or to the found integer if found. val must remain empty. e.g.
Top token 2 will set RO.token=2, and Top token will set RO.token=1.

• %g Checks for token followed by a float. If found RO.token is set to the float, if no float is
found the field is left empty. If the token is not found, the default value val is set. e.g. Top

token 3.14 will set RO.token=3.14.

• %i Checks for token followed by an integer. If found RO.token is set to the integer, if no integer
is found the field is left empty. If the token is not found, the default value val is set. e.g. Top

token 31 will set RO.token=31.

• %s Checks for token followed by a string (delimited by two "). If found RO.token is set to the
string, if no string is found the field is left empty. If the token is not found, the default value
val is set. e.g. Top token"test" will set RO.token=’test’. Note that for this type if val is
not empty one defines the token as token("val"#%s#"info"), but if val is empty, one should
use token(#%s#"info").

The output CAM has been stripped from any parsed data.

The format -token(val#typ#"info") will require the presence of -token in the command to gen-
erate the token field in RO.

By convention, to handle interferences between the extra input argument RO and default values
overriding, any field present in RO prior to calling paramEdit will be left unchanged by the command.

7.17.4 Commands associated to project application functions
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The development of project application functions follow some must have such as project directory
handling section 7.17.4 , post-treatment handling section 7.17.4 , image capture generation sec-
tion 7.17.4 . Some of these steps have been standardized over the years, which are documented in
the present sections.

wd,fname

The files relative to a specific application are usually stored in a specific file arborescence. It is thus
useful to access standardly defined save directories in a robust manner, regardless of the operating
system or the user. Standard applications developed by SDTools usually involve a user defined root
directory from which the following subdirectories are defined

• m contains the project source code.

• tex contains the project documentation source code.

• mat contains reference data files.

• plots contains the image captures.

• doc contains other project support documentation.

Each of these directories may contain any further arborescence to class data as desired.

To allow efficient recovery of a specific subdirectory or file in the final project file architecture,
sdtweb provides commands in its utilities (see sdtweb Utils) that should be used by the main
project function to search the project architecture subdirectories.

The wd command should package a search in its known subdirectories.

%% #wd -------------------------------------------------

elseif comstr(Cam,’wd’)

if nargin==1 % output the possible root directories

% assume this function is stored in root/m

out=fileparts(which(’my_func’));

% possibly add specific root dirs outside the project

% should be better handled with a preference

wd2={’/p/my_files’}; % add as many as needed

out=[out wd2];

else % get the subdirectory searched
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wd1=varargin{carg}; carg=carg+1;

% get the project root directory (several ones admitted)

wd0=my_func(’wd’);

% find the subdirectory

out=sdtweb(’_wd’,wd0,wd1);

end

The fname command should package a file search in the known subdirectories

%% #fname -----------------------------------------------

elseif comstr(Cam,’fname’)

fname=varargin{carg}; carg=carg+1;

% get the available root directories

wd=my_func(’wd’);

% search for the file

out=sdtweb(’_fname’,fname,wd);

view

The generation of displayed post-treatments should be handled by a command named View, that
will centralize the feplot manipulations required to generate ad hoc displays. Variations of display
are handled in the command, first and second input should be the feplot pointer and optionally a
deformation data.

• Handling of legend (location, labels, ...) can be performed by defining a Legend field to
deformation curves, see comgui def.Legend for more details.

• Handling of colorbars and their legends can be performed using fecom ColorBar and fecom

ColorLegend commands.

• Stress post-treatments can be handled through a fe caseg StressCut command.

• Energy post-treatment can be handled through fe stress Ener and their corresponding dis-
play through fe stress feplot

• Handling of color scales can be handled with fecom ColorScale.

A sample call to be handled by the view command could then be.

my_project(’ViewUpStress’,cf);
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im
The generation of image captures from figures (feplot iiplot or standard MATLAB figures) should
be handled by a command named im, that will centralize formatting and saving. This command
should

• Provide figure formatting data for implemented modes

• Perform figure formatting according to a required mode

• Perform figure capture and save to an appropriate directory

For details on figure formatting, see comgui objSet, for details on figure naming strategy see comgui
ImFtitle, for low level image capturing calls, see comgui ImWrite.

A suggested layout for the im command of a sample my func function is then

%% #im : figure formatting ---------------------------------------------------

elseif comstr(Cam,’im’)

% sdt_table_generation(’Rep{SmallWide}’);comstr(ans,-30)

if nargin==2 % generate the calling string

pw0=pwd;

if isfield(varargin{2},’ch’) % multiple generation with imwrite ch

RO=varargin{2};cf=feplot;
% Create an possibly change to directory

sdtkey(’mkdircd’,my_func(’wd’,’plots’,sscanf(cf.mdl.name,’%s’,1)));

RO.RelPath=1; % Save links with path relative to current position

RO=iicom(cf,’imwrite’,RO);

fid=fopen(’index.html’,’w’);fprintf(fid,’%s’,RO.Out{:});fclose(fid);
cd(pw0);

elseif ~ischar(varargin{2}); % Apply reshaping to figure

gf=varargin{2};if ~ishandle(gf);figure(gf);plot([0 1]);end

cingui(’objset’,gf,my_func(CAM))

% if feplot, center the display

if strcmpi(get(gf,’tag’),’feplot’);iimouse(’resetvie’);end

elseif strcmpi(varargin{2},’.’) % if ’.’ get automatic naming

st=sprintf(’imwrite-objSet"@my_func(’’%s’’)"-ftitle’,varargin{1});
comgui(st);
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else

cd(my_func(’wd’,’plots’));

st=sprintf(’imwrite-objSet"@my_func(’’%s’’)"-ftitle%s’,varargin{1:2});
comgui(st);

cd(pw0);

end

elseif comstr(Cam,’imw1’) % Figure formatting options for w1

out={’position’,[NaN,NaN,450*[1.5 2]],’paperpositionmode’,’auto’, ...

’@exclude’,{’legend.*’},’@text’,{’FontSize’,14}, ...

’@axes’,{’FontSize’,14,’box’,’on’}, ...

’@ylabel’,{’FontSize’,14,’units’,’normalized’}, ...

’@zlabel’,{’FontSize’,14,’units’,’normalized’}, ...

’@title’,{’FontSize’,14}, ...

’@line’,{’linewidth’,1}, ...

’@xlabel’,{’FontSize’,14,’units’,’normalized’}};

% elseif ... use as many commands as needed

else; error(’%s unknown’,CAM);

end

This way, the following tasks can be easily performed

% Im calls for figure capturing

gf=figure(1); plot([1 0]);

% Capture an image from figure 1 with formatting w1 and named test.png

my_func(’imw1’,’test.png’);

% Capture an image from figure 1 with formatting w1 with an automatic name

my_func(’imw1’,’.’);

% Format figure 1 according to w1 options

my_func(’imw1’,gf);

% Get formatting options for w1

r1=my_func(’imw1’);

7.17.5 Commands associated to tutorials

In a training function or in any function where a tutorial could be executed, the syntax is the
following
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elseif comstr(Cam,’tuto’)

%% #Tuto (implement standard behaviour of tuto command) -1

% Execute the tutorial with CAM commands or open the tuto tree if empty CAM

eval(sdtweb(’_tuto’,struct(’file’,’current_function_name’,’CAM’,CAM)));

if nargout==0; clear out; end

elseif comstr(Cam,’tutoname’)

%% #TutoTutoname-2

% See sdtweb(’LinkToHTML’) % Open the HTML corresponding to the tutorial

%% Step 1 : Description of step1

% See sdtweb(’LinkToHTML’) % Open HTML detailed doc related to this step

%% Step 1.1 : Description of substep 1.1

% Code to execute correponding to Step 1.1

%% Step 1.2 : Description of substep 1.1

% Code to execute correponding to Step 1.2

% Step 2 : Description of step2

% See sdtweb(’LinkToHTML’) % Open HTML detailed doc related to this step

% Code to execute correponding to Step 2

%% EndTuto

elseif comstr(Cam,’tutoname2’)

%% #TutoTutoname2-2

% See sdtweb(’LinkToHTML’) % Open the HTML corresponding to the tutorial

%% EndTuto

% elseif ... use as many commands as needed

This way, the following commands are usually executed :

% Open the tree containing all the tutorial and clickable buttons

my_func(’Tuto’);

% Execute the whole tutorial (useful for test auto)
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my_func(’TutoTutoname’);

% Execute a tutorial up to a given step (here section 2.3)

my_func(’TutoTutoname -s2.3’);

7.18 Criteria with CritFcn

SDT supports the use of various criteria to be applied on data. The default CritFcn implementation
is present in fegui. The fields of a CritFcn structure are

• .cmap colormap.

• .clevel levels associated with the colors (one more level than the number of colors). If not
present, the default is an equal spacing of colors in the [0,1] interval. This field is typically
used to color tables.

• .cback default color if below the .clevel interval. Defaults to white.

• .llevel levels associated with line plots.

• .Fcn handle to handling function, defaults to fegui(’@CritFcn’).

• .imap alternative to .Fcn to specify color index by hand.

r1=(1:10)’; r1=[r1 sin(r1/max(r1)*pi) cos(r1/max(r1)*pi) ];

% Standard criterion

R1=struct(’clevel’,linspace(0,1,4),’cmap’,eye(3),’Fcn’,fegui(’@CritFcn’));

% Manual setting of color map

R2=struct(’cmap’,eye(3),’imap’,round((r1(:,3)+1)*3/2));

ua=struct(’name’,’CritFcn’,’ColumnName’,{{’#’,’val’,’ind’;’’,’’,’’;
’0’,’0.00’,’.0%’; ... % Column formatting (java)

R1,R1,R2}}, ... % Define a CritFcn for coloring

’setSort’,2); % use filter-sort

ua=menu_generation(’jpropcontext’,ua,’Tab.ExportTable’);

%feval(R1.Fcn,’imap’,R1,r1)

comstr(r1,-17,’tab’,ua)

7.19 Legacy information

This section gives data that is no longer used but is important enough not to be deleted.
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7.19.1 Legacy 2D elements

These elements support isotropic and 2-D anisotropic materials declared with a material entry de-
scribed in m elastic. Element property declarations are p solid subtype 2 entries

[ProId fe_mat(’p_solid’,’SI’,2) f N 0]

Where

f Formulation : 0 plane stress, 1 plane strain, 2 axisymmetric.
N Fourier coefficient for axisymmetric formulations
Integ set to zero to select this family of elements.

The xy plane is used with displacement DOFs .01 and .02 given at each node. Element matrix
calls are implemented using .c files called by of mk subs.c and handled by the element function
itself, while load computations are handled by fe load. For integration rules, see section 7.19.2 .
The following elements are supported

• q4p (plane stress/strain) uses the et*2q1d routines for plane stress and plane strain.

• q4p (axisymmetric) uses the et*aq1d routines for axisymmetry. The radial ur and axial uz
displacement are bilinear functions over the element.

• q5p (plane stress/strain) uses the et*5noe routines for axisymmetry.

There are five nodes for this incompressible quadrilateral element, four nodes at the vertices
and one at the intersection of the two diagonals.

• q8p uses the et*2q2c routines for plane stress and plane strain and et*aq2c for axisymmetry.

• q9a is a plane axisymmetric element with Fourier support. It uses the e*aq2c routines to
generate matrices.

• t3p uses the et*2p1d routines for plane stress and plane strain and et*ap1d routines for
axisymmetry.

The displacement (u,v) are assumed to be linear functions of (x,y) (Linear Triangular Element),
thus the strain are constant (Constant Strain Triangle).

• t6p uses the et*2p2c routines for plane stress and plane strain and et*ap2c routines for
axisymmetry.

7.19.2 Rules for elements in of mk subs
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hexa8, hexa20

The hexa8 and hexa20 elements are the standard 8 node 24 DOF and 20 node 60 DOF brick
elements.

The hexa8 element uses the et*3q1d routines.

hexa8 volumes are integrated at 8 Gauss points

ωi = 1
8 for i = 1, 4

bi for i = 1, 4 as below, with z = α1

bi for i = 4, 8 as below, with z = α2

hexa8 surfaces are integrated using a 4 point rule

ωi = 1
4 for i = 1, 4

b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) and b4 = (α1, α2)

with α1 = 1
2 −

1
2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751.

The hexa20 element uses the et*3q2c routines.

hexa20 volumes are integrated at 27 Gauss points ωl = wiwjwk for i, j, k = 1, 3

with

w1 = w3 = 5
18 and w2 = 8

18 bl = (αi, αj , αk) for i, j, k = 1, 3

with

α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

α1 =
1−
√

3
5

2 , α2 = 0.5 and

hexa20 surfaces are integrated at 9 Gauss points ωk = wiwj for i, j = 1, 3 with

wi as above and bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2 .

penta6, penta15

The penta6 and penta15 elements are the standard 6 node 18 DOF and 15 node 45 DOF pentahedral
elements. A derivation of these elements can be found in [43].

The penta6 element uses the et*3r1d routines.
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penta6 volumes are integrated at 6 Gauss points

Points bk x y z

1 a a c

2 b a c

3 a b c

4 a a d

5 b a d

6 a b d

with a = 1
6 = .16667, b = 4

6 = .66667, c = 1
2 −

1
2
√

3
= .21132, d = 1

2 + 1
2
√

3
= .78868

penta6 surfaces are integrated at 3 Gauss points for a triangular face (see tetra4) and 4 Gauss
points for a quadrangular face (see hexa8).

penta15 volumes are integrated at 21 Gauss points with the 21 points formula

a = 9−2
√

15
21 , b = 9+2

√
15

21 ,

c = 6+
√

15
21 , d = 6−

√
15

21 ,

e = 0.5(1−
√

3
5),

f = 0.5 and g = 0.5(1 +
√

3
5)

α = 155−
√

15
2400 , β = 5

18 ,

γ = 155+
√

15
2400 , δ = 9

80 and ε = 8
18 .

Positions and weights of the 21 Gauss point are
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Points bk x y z weight ωk
1 d d e α.β

2 b d e α.β

3 d b e α.β

4 c a e γ.β

5 c c e γ.β

6 a c e γ.β

7 1
3

1
3 e δ.β

8 d d f α.ε

9 b d f α.ε

10 d b f α.ε

11 c a f γ.ε

12 c c f γ.ε

13 a c f γ.ε

14 1
3

1
3 f δ.ε

15 d d g α.β

16 b d g α.β

17 d b g α.β

18 c a g γ.β

19 c c g γ.β

20 a c g γ.β

21 1
3

1
3 g δ.β

penta15 surfaces are integrated at 7 Gauss points for a triangular face (see tetra10) and 9 Gauss
points for a quadrangular face (see hexa20).

tetra4, tetra10

The tetra4 element is the standard 4 node 12 DOF trilinear isoparametric solid element. tetra10
is the corresponding second order element.

You should be aware that this element can perform very badly (for poor aspect ratio, particular
loading conditions, etc.) and that higher order elements should be used instead.

The tetra4 element uses the et*3p1d routines.

tetra4 volumes are integrated at the 4 vertices ωi = 1
4 for i = 1, 4 and bi = Si the i-th element

vertex.

tetra4 surfaces are integrated at the 3 vertices with ωi = 1
3 for i = 1, 3 and bi = Si the i-th vertex

of the actual face
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The tetra10 element is second order and uses the et*3p2c routines.

tetra10 volumes are integrated at 15 Gauss points

Points bk λ1 λ2 λ3 λ4 weight ωk
1 1

4
1
4

1
4

1
4

8
405

2 b a a a α

3 a b a a α

4 a a b a α

5 a a a b α

6 d c c c β

7 c d c c β

8 c c d c β

9 c c c d β

10 e e f f γ

11 f e e f γ

12 f f e e γ

13 e f f e γ

14 e f e f γ

15 f e f e γ

with a = 7−
√

15
34 = 0.0919711 , b = 13+3

√
15

34 = 0.7240868 , c = 7+
√

15
34 = 0.3197936 ,

d = 13−3
√

15
34 = 0.0406191 , e = 10−2

√
15

40 = 0.0563508 , f = 10+2
√

15
40 = 0.4436492

and α = 2665+14
√

15
226800 , β = 2665−14

√
15

226800 et γ = 5
567

λj for j = 1, 4 are barycentric coefficients for each vertex Sj :

bk =
∑
j=1,4 λjSj for k = 1, 15

tetra10 surfaces are integrated using a 7 point rule

Points bk λ1 λ2 λ3 weight ωk
1 c d c α

2 d c c α

3 c c d α

4 b b a β

5 a b b β

6 b a b β

7 1
3

1
3

1
3 γ
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with γ = 9
80 = 0.11250 , α = 155−

√
15

2400 = 0.06296959, β = 155+
√

15
2400 = 0.066197075 and a = 9−2

√
15

21 =

0.05961587 , b = 6+
√

15
21 = 0.47014206 , c = 6−

√
15

21 = 0.10128651 , d = 9+2
√

15
21 = 0.797427

λj for j = 1, 3 are barycentric coefficients for each surface vertex Sj :

bk =
∑
j=1,3 λjSj for k = 1, 7

q4p (plane stress/strain)

The displacement (u,v) are bilinear functions over the element.

For surfaces, q4p uses numerical integration at the corner nodes with ωi = 1
4 and bi = Si for i = 1, 4.

For edges, q4p uses numerical integration at each corner node with ωi = 1
2 and bi = Si for i = 1, 2.

q4p axisymmetric

For surfaces, q4p uses a 4 point rule with

• ωi = 1
4 for i = 1, 4

• b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) , b4 = (α1, α2)
with α1 = 1

2 −
1

2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751

For edges, q4p uses a 2 point rule with

• ωi = 1
2 for i = 1, 2

• b1 = α1 and b2 = α2 the 2 gauss points of the edge.

q5p (plane stress/strain)

For surfaces, q5p uses a 5 point rule with bi = Si for i = 1, 4 the corner nodes and b5 the node 5.

For edges, q5p uses a 1 point rule with ω = 1
2 and b the midside node.

q8p (plane stress/strain)

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3 with w1 = w3 = 5
18 et w2 = 8

18
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• bk = (αi, αj) for i, j = 1, 3 with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si for i = 1, 2 corner nodes of the edge et b3 the midside.

q8p axisymmetric

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3
with w1 = w3 = 5

18 and w2 = 8
18

• bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω3 = 5
18 , ω2 = 8

18

• b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985

t3p (plane stress/strain)

For surfaces, t3p uses a 3 point rule at the vertices with ωi = 1
3 and bi = Si.

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and bi = Si.

t3p axisymmetric

For surfaces, t3p uses a 1 point rule at the barycenter (b1 = G) with ω1 = 1
2 .

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and b1 = 1

2 −
2

2
√

3
and b2 = 1

2 + 2
2
√

3
.
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t6p (plane stress/strain)

For surfaces, t6p uses a 3 point rule with

• ωi = 1
3 for i = 1, 6

• bi = Si+3,i+4 the three midside nodes.

For edges, t6p uses a 3 point rule

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si, i = 1, 2 the i-th vertex of the actual edge and b3 = Si,i+1 the midside.

t6p axisymmetric

For surfaces, t6p uses a 7 point rule

Points bk λ1 λ2 λ3 weight ωk
1 1

3
1
3

1
3

a
2 α β β b
3 β β α b
4 β α β b
5 γ γ δ c
6 δ γ γ c
7 γ δ γ c

with :

a = 9
80

= 0.11250 , b = 155+
√

15
2400

= 0.066197075 and

c = 155−
√

15
2400

= 0.06296959

α = 9−2
√

15
21 = 0.05961587 , β = 6+

√
15

21
= 0.47014206

γ = 6−
√

15
21

= 0.10128651 , δ = 9+2
√

15
21

= 0.797427

λj for j = 1, 3 are barycentric coefficients for each vertex Sj :

bk =
∑
j=1,3 λjSj for k = 1, 7

For edges, t6p uses a 3 point rule with ω1 = ω3 = 5
18 , ω2 = 8

18

b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985
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8 GUI and reporting tools

This chapter aims at providing the details and procedures used to build a GUI with SDT. The GUI
is based on a formalism where the data and their display is decoupled.

The data considered is a set of parameters preliminary defined through the use of a csv file read by
sdt locale, quick definitions are supported by cingui ParamEdit.

This data is then transformed into a Java object stored as a v handle in the GUI figure. The GUI
figure must be named and tagged appropriately to be accessed at any time. Its Name and Tag are
equal and define the figure as unique.

Access to the data parameters is always performed through a v handle call and can be edited using
sdcedit. Layout of the data can be shaped as desired and displayed under the form of Tables in
the GUI figure, using sdt dialogs and cinguj. The tables are interactive as the user can edit the
data parameter fields through the interface. Dependency handling of other parameters as function
of the edited one is possible.

8.1 Formatting MATLAB graphics and output figures

SDT implements single comgui ImWrite and multiple iicom ImWrite image generation mecha-
nisms. The basic process is to

• generate your figure,

• call comgui objSet for the initial formatting,

• use sdtroot Set to define project information such as the plot output directory.

• use comgui PlotWd to predefine output options (directory, file name generation scheme, refor-
matting for image generation, insertion options for word, ...)
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figure
formatted

figure copy
formatted

sdtroot
- Project
- OsDic

ToFig
objSet

figure
intial

objSet

ImWrite
- print
- crop
- saveas
- crop
-insert

Figure 8.1: Figure generation process

8.1.1 Formatting operations with objSet

cingui(’objSet’,h,Prop) groups all formatting operations needed to obtain exactly the figure you
want (font size, axes positions, line sequencing, ...) starting from a pointer to a MATLAB graphic
h and a style given as cell array of formatting instructions Prop. It is the base SDT mechanism to
generalize the MATLAB set command.

Prop is a cell array of tag-value pairs classical in MATLAB handle properties comgui objSet allows
three types of modification

• recursion into objects or object search. Thus the property ’@axes’ of a figure is a handle to
all axes within this figure or ’@line(2)’ is the second line object.

• expansion is the mechanism where a tag-value pairs is actually replaced by a larger list of tag-
value pairs. The definition of styles using comgui objSet entries leads to the use of expansion
in the form ’@OsDic(SDT Root)’,{’val1’,’val2’}. This mechanism is key to let the user
manage predefined styles.

• Value replacement/verification to enhance basic set commands used by MATLAB. Thus with
’Position’,[NaN NaN 500 300] the lower left corner values shown here as NaN are replaced
by their current value.

8.1.2 Persistent data in Project
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8 GUI and reporting tools

The Project tab is initialized using sdtroot Set commands. The most commonly used fields are the
project and plot directories and file name for export to Word, PowerPoint. Their use is illustrated
in the next section.

sdtroot(’SetProject’,struct(’ProjectWd’,sdtdef(’tempdir’), ...

’root’,’MyTest’));

Figure 8.2: Basic project tab

8.1.3 OsDic dictionnary of names styles

The comgui objSet provides a basic mechanism to provide formatting instructions. As choosing
those takes time and for the sake of uniformity it is useful to introduce style sheets, which SDT does
using a list of named styles, as shown in figure 8.3.
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Figure 8.3: Hierarchical view of project styles sdtroot(’InitOsDic’)

Basic implementations of most styles are provided in d imw (see list with sdtweb(’ taglist’,’d imw’)).
The main categories of styles are

• Im : image formatting

– SmallWide for a wide picture (9:16) (landscape style) adapted to reports.

– SmallSquare for a square picture (4:3) adapted to reports.

– SmallHigh for a vertical rectangular picture (9:16) adapted to reports.

– LargeWide for a wide picture (landscape style) adapted to posters.

– LargeSquare for a square picture (4:3) adapted to posters.

– WideBar for a (4:3) landscape style picture. It has the same width than SmallWide but
is higher, this is mostly convenient for wide bar diagrams.

• Cb colorbar insertion

• Cm colormap definition

• Cr image cropping options

• Fn file naming strategy. Fn + a combination of Root (project root field), T(itle) (figure title),
xlabel, ylabel, zlabel (figure label), ii legend (see ii plp Legend), Name (cf.data.name), Model
(cf.mdl.name)

• Pr figure configurations when opening project. See sdtweb(’d imw’,’Pr’)
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8 GUI and reporting tools

• Fi feplot view initialization using a comgui objSet call.

• Ii iiplot view initialization using a comgui objSet call.

• ...

8.1.4 File name generation with objString

The ability to generate context based file names is obtained using comgui objString. The principle
is to provide a cell array of strings where ’@command’ string are interpreted.

8.1.5 Image generation with ImWrite

8.2 SDT Tabs

This section presents the GUI of SDT, organized as tabs in the sdtroot figure.

• The application tools breakdown is provided in an exploration tree placed at the figure left.
The buttons allow opening the corresponding interface tabs.

• The tab area displays interactive tables that allows parameter editing and procedure execution.
User interaction is associated with tabs implemented in the GUI,

– Project tab to handle the working environement, section section 8.2.1 .

– FEMLink tab to handle model imports, section section 8.2.2 .

– Mode tab to handle modal computations, section section 8.2.3 .

– TestBas tab to superpose two meshes, section section 8.2.4 .

– Ident tab SDT identification tuning, section section 8.2.6 .

– StabD tab for stabilization diagrams, section section 8.2.5 .

– MAC tab to handle MAC analysis, section section 8.2.7 .

– OsDic tab for sdtroot OsDic editing, section section 8.1.3 .
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8.2.1 Project

The Project tab allows handling the working environment.

This is a 2 column table allowing the definition of the following fields,

• ProjectWd A button defining the working directory used for the project. This is where models
and curves will be saved. Clicking on the button will open a dialog for interactive definition.

• PlotWd A button defining the directory where image captures will be saved. If not specified
the default will be ProjectWd/plots. Clicking on the button will open a dialog for interactive
definition.

• PlotWord A button defining an existing Word report to which captured images can be inserted.
Clicking on the button will open a dialog for interactive definition.

• PlotExcel This is not currently used, but could allow the specification of a different file for
table export.

• LastWd The last chosen directory, used as a starting point for the next directory selection
dialogs.

• root A short name that will be used to identify saved files in the project working directory,
every saved file will start with this root.

• name A longer name version that is used for human description of the project name.

• Description An optionnal text that can provide further details on the current project.

8.2.2 FEMLink
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8 GUI and reporting tools

The FEMLink tab allows handling model import from external codes.

This is a three column table allowing interactive definition of the fields described below. The second
column allows activating specific options.

• Parent string name used to identify the model in further post-processing operations.

• Code allows selecting the code from which files will be imported. If code is unknown femlink

will try guessing it from the file extension. This is a popup button providing a specified list of
options. This is set by default to unknown.

• FileName Provides the base file for import. This file will be imported first and constitute
the base model for the output. The second column button allows an interactive file selection
through a dialog. The third column is an editable text cell.

• Unit allows defining a unit system with the model, that can be used for post treatments where
output units are required. Some codes do not use it so that an external defintion is needed.
This is set by default to auto.

• ImportType Provides model building options based on complementary files

– All imports model, results, ...

– Model just imports the model, material properties, boundary conditions, ...

– Result import result.

– UPCOM SE import element matrices in a type 3 superelement handled with upcom.

– BuildListGen allows generating a file list sequentially built, by successive file selection.
These files then appear under the BuildListGen button and can be removed from the list
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by clicking on . This is illustrated in figure 8.4. This option conditions the activation
of BuildStepGen and BuildCb below.

– BuildStepGen : Should be updated with a capture of the window for step selection.
Allows defining model Case resolution for a specific results step. By default femlink

imports all data in the model. To recover specific boundary conditions relative to a
specific computation step (if defined in the input and supported by the femlink function),
one can either provide the step number or ask for last to let femlink find the last step
defined in the model load case. The third column button allows selecting a step in an
interactive way. By default, this option not is activated.

– BuildCb Allows defining further Build commands that may depend on the Original

Code selected. The second column activates the option. The third column button provides
a series of comma separated calls that will be applied to the model generated by femlink

through the FEMLink function defined by the Code.

• PostImport is used to define steps performed after the base import.

– PostCb callback performed after import (for custom applications using FEMLink).

– FeplotFig Allows direct model loading into a feplot figure for visualization. The second
column button activaftges the option. The third column button allows interactive selec-
tion a feplot figure, like for the Project tab. By default, this option is not activated.

– Save allows defining model saving strategy once imported. The second column button
activates the option. The third column button allows defining a saving mode. This is a
popup button proposing either :

∗ auto that will perform an automatic saving of the model based on the Mesh File

name with a import.mat extension

∗ Link to Project that will use the Project tab data to generate a file name. In
this case the saving file name will be Project.root date Mesh File name

import.mat

∗ Custom fname allows defining a user specific name in the second line button. The
Save FName button can then be clicked on to provide a file name that will be used
as verbatim.

By default the save option is activated and set to Link to Project.

• Import/Reset Import executes the import proecdure. The cross resets the tab to its original
state.
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Figure 8.4: The FEMLink tab, filled with input files

8.2.3 Mode

The Mode tab allows handling modal computations.
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This is a three column tree-table allowing various choices to perform a wide range of modal compu-
tations, parametered by the fields below,

• Real modes This section and the associated subtree provides options on the computation of
real modes

– Default Resets parameters of the real mode subtree to default values

– Resolution method The real mode solver (resolution method) choice (also used for re-
duced complex mode computations). Choices are packaged in a popup cell :

∗ Lanczos+It : set by default and recommended

∗ Lanczos : same as the previous without convergence check and correction, be used
once parameters are calibrated
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∗ IRA/Sorensent : quicker but less robust

– Target number of modes To provide a number of modes to compute, set to 25 by default.

∗ Minimum frequency To provide a minimum frequency of interest (not packaged yet).

∗ Maximum frequency To provide a maximum frequency of interest.

– Mass shift To provide a mass shift used for the factorization. This is set to 1e3 by
default.

∗ Target maximum frequency To provide clues on the expected bandwidth (will influ-
ence the mass shift).

– Set EigOpt in model

• Complex modes This section and the associated subtree provides options on the computation
of complex modes

– Resolution method The complex mode solver (resolution method) choice. Choices are
packaged in a popup cell either :

∗ Red1 : complex modes on the real mode subspace (default)

∗ Red2 : complex modes on the real mode subspace enhanced with the imaginary part
of the stiffness

∗ Full : direct without reduction

∗ Subspace 1st order The choice of the matrix types to be used for the subspace
enhancement. The visc option is only available with SDT-visco licenses.

∗ Convergence check Not packaged yet.

· Tolerence
· Max iterations

– keepT

– lr

– Set CEigOpt in model

• Solve This section and the associated subtree provides options on the solver to use and po-
tential post treatment or saving strategies.

– Solver options

∗ ofact The choice of the matrix factorization solver, set by default to mklserv utils

-silent. This is recommended for very large models.

∗ Matrix assembly A text cell providing the matrix types to be assembled for the
computation. This is either the keyword auto to let the solver decide the assembly
strategy, or a series of matrix types (see sdtweb mattyp) to be assembled. By default
this is set to auto, corresponding to 2 1 for real modes and 2 3 1 4 for complex
modes.
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· RSeA
∗ Initial state This is activated by the second column. The third column provides

a callback to initialize the system state. (not packaged yet).

∗ Post treatment Allows performing a callback after mode computation. The second
column activates the option. The third column is a text cell providing a callback to
perform. Not packaged yet.

– Mode set label A curve name used to store the deformation curve in the model stack.
This is a text cell, set by default to modes.

– Save mode allows automatic curve saving once imported. The second column button
activates the option. The third column button allows defining a saving mode. This is a
popup button proposing either :

∗ auto that will perform an automatic saving of the curve based on the base model
name with a def.mat extension.

∗ Link to Project that will use the Project tab data to generate a file name. In this
case the saving file name will be Project.root date model name Mode set

label def.mat

∗ Custom fname allows defining a user specific name in the second line button.

∗ Put a save filename The Save FName button can then be clicked on to provide a
file name that will be used as verbatim.

– Real modes Executes the real mode computation

– Cpx modes Executes the complex mode computation

– Display Displays the model stack entry named after Mode set label.

• cf A button allowing an interactive defintion of the feplot figure that will hold the working
model. Clicking on the button opens a dialog interface proposing the selection of an existing
feplot figure or to open a new one. By default, this is set to the one specified in the Project

tab.

8.2.4 TestBas : position test versus FEM

The TestBas tab is used to superpose two meshes. For examples see section 3.1 .
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This is a tree-table used for mesh superposition. The base mesh is called FEM and the mesh to be
placed is called TEST even when you are superposing different things (TEST/TEST, FEM,FEM,
...). The NodePair section uses a strategy providing corresponding points, while the Tune section
allows manual tuning of the relative position.

• SensDof selects the second mesh (stored in as a SensDof case entry in the first mesh) to be
superposed on the first one.

• NodePairs is used to initialize the FemTest dock in side by side mode. In this mode, the left
tile shows the feplot promodel, the center tile shows the reference mesh and the right tile
the SensDof mesh.

The first step in this mode is to provide two list of paired nodes for the two meshes. To select
the nodes, select a feplot figure and press the space bar: clicking on the mesh will select
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nodes and add them to the list. Doing so in the two feplot figures provides two sets on paired
nodes that can be used superpose with this information only (InitPosOnly) or with the help
of an automatic algorithm after the initial positioning (ICP : Iterative Closest Points).

– Hidden To ease selecting only visible nodes on each mesh, this button removes hidden
elements from the camera point on view. (Useful when selecting the paired node lists)

– nListFEM list of nodes selected in the main mesh feplot in center tile.

– nListTEST list of nodes in SensDOF mesh (right tile).

– InitPosOnly superpose the two meshes by minimization the Euclidian distance between
the previously filled lists of paired nodes. This is helpful in presence of geometries with
symmetries for which the ICP algorithm cannot converge (plate or cylinder for instance).

– ICP, using paired node lists, performs first the InitPosOnly action and then starts the
optimization with the algorithm ICP which seeks to minimize the point-to-plane distance
between each automatically paired nodes (closest nodes in the range of Radius).

– Radius search radius for node pairing (this is the same value as the Radius in MatchDo)

• Tune opens the FemTest dock inTune mode. The left timeshows the feplot promodel while
the right feplot overlays the reference mesh (in blue) and the test mesh in its current position
(in red)

– basEst : starting guess : if no InitPosOnly has been performed, the two meshes are au-
tomatically superposed using the gravity center and the three main directions of the point
clouds formed by each node mesh. This is helpful to be closer to the good superposition
before beginning to tune manually

– xaxis This is an informative display which gives the orientation of the x-axis test coor-
dinate system in the base model. This is updated when rotating the second mesh

– yaxis orientation of test y-axis in FEM coordinates.

– scale scale applied between the two coordinate systems (for FEM in mm and test in
meters use 0.001).

– tx Translation of test in the x-direction. The single arrows correspond to a low displace-
ment step and the double arrow to a higher displacement step

– ty Translation of test in the y-direction

– tz Translation of test in the z-direction

∗ transStep This is the translation step used by the single arrow.

– rx Rotation of the second mesh around the x-axis. This rotation does not increase the
angle which is always zero, but updates the orientation of the xaxis and the yaxis. The
text is used for using input of large changes 90 (degrees) for example.
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– ry Rotation of the second mesh around the y-axis

– rz Rotation of the second mesh around the z-axis

– BasisToFEM Modify the SensDof mesh by applying the transformation. The node coor-
dinates are modified and all Tune fields set to identity.

• MatchDo Match is automatically performed after ICPPosOnly, ICP and BasisToFEM. This but-
ton can be used to redo the match with new options below.

– MatchSel Selection on the FEM before performing the Match. selface is classically used
to force the match on the surface of the model instead of in the volume.

– Radius Search radius for node pairing (this is the same value as the Radius in NodePairs)

• View List of different views to evaluate the quality of the superposition

– MatchD displays the table showing the gap between each node of the second mesh and
the matched surface. It also shows this information as a colormap on the test.

– ViewMatch Displays the test mesh over the FEM with the options listed below

∗ DefLen Length of arrows if displayed

• Restore uses the .bas0 field to reset all the modifications since the last BasisToFem (performed
after clicking on InitPosOnly, ICP and BasisToFEM) and put the second mesh at this previous
location.

• Finalize Performs the SensMatch (i.e. the observation of the first mesh at sensors)

– SaveCb Callback executed with the Finalize action

8.2.5 StabD : stabilization diagram

The StabD tab is used create a stabilization diagram with the algorithm LSCF and provide tools to
extract poles from it.
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This is tab is used for LSCF handling (see section 2.3.2 ).

• Generate click on button to generate stabilization diagram.

– order : Maximum order of the model. The order of the model equals the number of poles
used to fit the measured data. It is often necessary to select an order significantly higher
than the expected number of physical poles in the band because the identification results
in many numerical poles which compensate out-of-band modes and noise. Selecting at
least ten times the number of expected poles often gives good results according to our
experiment.

– norder : Minimum order to start the stabilization diagram (low model orders often show
very few stabilized poles)

– fmin : Minimum frequency defining the beginning of the band of interest

– fmax : Maximum frequency defining the end of the band of interest

– band : Sequential iteration can be performed by band of the specified frequency width.
The interest is that in presence of many modes, it is more efficient to perform several
identifications by band rather than increasing the model order.

• Display : display result

– Ftol : tolerance for frequency convergence

– Dtol : tolerance for damping convergence

– AutomIdMain : fill IdMain set of poles from current data.

• DispMode

• CurPole : info based on click.

– CurLocal
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8.2.6 Ident : pole tuning

The TabIdent tab is

The upper part is a list of alternate poles on the left and retained poles on the right. The arrows
let you move poles and associated shapes from one list to the other.

The lower part as the main sections

• AddPoles see section 2.3

– Lscf LSCF algorithm see section 2.3.2

• IDopt section 2.4

– Fit
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– data

– I/O

• Estimate section 2.5

• Optimize section 2.6

– Eup

• Analyze section 2.8

• Save

– SaveCb allows customization of saving strategy

8.2.7 MAC : Modal Assurance Criterion display

The MAC tab allows handling display of variants of Modal Assurance Criterion.

365



8 GUI and reporting tools

This is a three column tree-table allowing various choices to perform a wide range Modal Assurance
Criterion variants, parametered by the fields below

• Data Options to properly define input data

– da provides indications on the number of sensors and the number of modes of

– inda

– db

– indb

– sens

– UseMass

– Pair

• MacPlot

– Combine

• MacError

– MinMAC

– Df

• SensorSet

– MacCo

∗ MacCoN

– CoMac

• ShowDock3

– cfb

– selb

– cfa

– sela

– ci
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8.3 Non java SDT Tabs (obsolete)

In the obsolete non java rendering mode (iicom(’;projava0;curtabChannel’)) the channel tab
shown below is used to scan through the data.

Figure 8.5: Channel tabs of the iiplot interface.

Major commands you might want to know

• use the to scan trough different transfer functions. Note that you can also use the + or
- keys when a drawing axis is active.

• Go the Channel tab of the property figure and select more than one channel in the list. Note
that you can also select channels from the command line using iicom(’ch 1 5’).

8.4 Handling data in the GUI format

8.4.1 Parameter/button structure

The initialization of GUI button/cells is performed using a but structure with fields .type, .name,
... Available types (string in but.type) are
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• string A free input as a string or a number

• pop An input chosen in a predefined list

• push An assisted input triggered with a click on the button, or an action to execute

• check An on/off input, that can be equivalent to pop with two entries, but in a checkbox shape
rather than a list

Each parameter or action is thus associated to a button of the types presented above. The parameter
definition then depends on the type, as presented.

• For a string type, following fields are accessible and mandatory (if not stated otherwise)

– name The button name, explicited as family.param, that defines the parameter and its
accessibility.

– format The data format, either %s for a real string or %g for numeric (double) values.

– value The parameter current value.

– enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

– ToolTip A string briefly defining the parameter.

– SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (’’). Field .name is necessary and field
.parent may be needed to access the containing table.

– type A fixed string defining the parameter type, here string.

– ContextMenu a JPopupMenu that will be active in Java rendering of the cell. This field
applies to all types.

• For a pop type, following fields are accessible and mandatory (if not stated otherwise)

– name The button name, as family.param, that defines the parameter and its accessibility.

– choices A cell array defining the choices available to the user. All choices are strings.

– choicesTag (Optional) A cell array defining the choices available to the user. All choices
are strings. For localization matters, the language displayed in field choices may vary.
This entry is thus a constant cell generally corresponding to the coding language. It
is then possible to test the choice string parameter in the code with a fixed language
independently from the display.

– value An integer providing the current choice.
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– enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

– ToolTip A string briefly defining the parameter.

– SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (’’). A name must be defined.

– type A fixed string defining the parameter type, here pop.

• For a push type, following fields are accessible and mandatory (if not stated otherwise)

– name The button name, given as family.param, that defines the parameter and its ac-
cessibility.

– value A string containing the parameter value, or the action name to be displayed.

– enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

– ToolTip A string briefly defining the parameter.

– callback A function to be executed when triggering the edition.

– SetFcn not normaly used. Since push cannot be edited, no dependencies can occur.

– type A fixed string defining the parameter type, here push.

• For a check type, following fields are accessible and mandatory (if not stated otherwise)

– name The button name, given as family.param, that defines the parameter and its ac-
cessibility.

– value An integer being 0 or 1 depending on the parameter state.

– enable (Optional) A logical, or either ’on’ or ’off’. That allows deactivation of the
parameter edition.

– ToolTip A string briefly defining the parameter.

– SetFcn A function to be called if dependencies have to be handled after editing the
parameter. This can be left as an empty string (’’).

– type A fixed string defining the parameter type, here check.

8.4.2 DefBut : parameter/button defaults

To ease the development of GUIs, buttons are stored in DefBut structures. Initialization of the
DefBut is usually done in using a file see section 8.4.3 .

DefBut.MyField will usually group all buttons needed for a given part of the interface. Notable
exceptions are

369



8 GUI and reporting tools

• .Tab used to store information associated with floating tabs. In particular .Tab.(field).jProp
stores properties for java initialization.
.InitFcn={’fun’,’command’}. .SetFcn={’fun’,’command’}.

• .j used to store volatile java objects that should not be reinitialized too often.

• .fmt is a cell array containing the OsDic style sheet (text keys in first column and values in
second).

The set of parameters is divided into families and defined by a keyword and a type. Each family
can be easily displayed in separated tabs of the GUI, and constitute relevant sets of parameters
regarding human readability.

For generalization purposes, execution actions follow the same definition as parameters, and are
linked to a family, keyword and type.

The families and keywords are left free as long as they are compatible with the definition of MATLAB
struct fields. The parameter type allows defining which kind of action the user is provided for
edition. This is realized in the display by adapted buttons.

Each parameter can be defined as a structure, nested in a structure containing the parameter families
as fields. The generation of such structure is handled by sdt locale so that the definition consists
in the generation of a csv file in ASCII format.

8.4.3 Reference button file in CSV format

The input csv file layout allows defining a parameter, or button with a header line starting with
h; defining its type and the fields to be provided, and an instance line starting with n; providing
the fields value. Fields that are invariant for the whole class can be defined in the header line.
Comments are possible with lines starting with c;.

The following example illustrates the definition of each type of buttons

c; Sample definition of each class

c; sample string buttons, with dependencies handled by function my_ui

h;type=string;name;format;value;ToolTip;SetFcn=’’

n;Family.SampleStrS;%s;"st1";"a string input button with no dependencies"

n;Family.SampleStrG;%g;1;"a numeric input button with no dependencies"

c; sample pop button

h;type=pop;name;value;choices;choicesTag;ToolTip;SetFcn=’’
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n;Familiy.SamplePop;1;{’choice1’,’choice2’};{’c1’,’c2’};"2 choice menu with default choice1"

c; sample push button

h;type=push;name;callback;value;ToolTip;

n;Family.SamplePush;my_fun(’exec’);"Push this button";"push button triggering my_fun"

c; sample check button

h;type=check;name;value;enable;ToolTip;SetFcn=’’

n;Famimty.SampleCheck;0;"on";"check button, set 0, with conditional enabling and no dependencies"

The csv file should be named after the GUI handling function my ui, a standard language identifier
and extension .csv. Here for example my ui en-us.cvs for english-US or my ui fr-fr.cvs for
french.

Generation of the parameter structure classically named DefBut can then be obtained by

DefBut=sdt_locale(’defCSV’,’my_ui_en-us.csv’);

At this state of definition, DefBut is a standard MATLAB struct corresponding to the documented
fields. To transform it into a java object linked to the GUI figure of handle GuiGF, command cinguj

ObjEditJ must be used

[r1j,r1]=cinguj(’objEditJ’,DefBut.Family,GuiGF);

The first output is r1j, which is an EditT Java object. This object will be used for dependencies
handling and can be edited using sdcedit. The second output r1 contains copies of each parameters
in a struct with fields the parameter names. The parameters are in their Java form that is to say
editable buttons of class CinCell.

8.4.4 Data storage and access

Initializing the GUI figure

After generating the Java objects containing the parameters, one can store them in the GUI figure
for further access. The data are stored in the GUI figure that is initialized by cinguj ObjFigInit.

GuiGF=cinguj(’objFigInit’,...

struct(’tag’,’my_ui’,’noMenu’,1,’name’,’my_ui’));
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The handle should be stored UI.gf field of persistent variable UI in my ui. One can also recover
this pointer at any time by using GuiGF=findall(0,’tag’,’my ui’). It is thus critical to ensure
the unicity of the GUI figure tag.

Efficient data storage in a figure is handled in SDT through the use of v handle uo object. Access
to this pointer is possible at any time using

uo = v_handle(’uo’,GuiGF);

It is recommended to package the access to the java data pointer in a command uo=my_ui(’vh’).

Handling the data java pointer

Automatic storage of the data pointer is performed at display. The pointer is handled as a MATLAB
struct with fields corresponding to the parameter families. The objects stored are then either the
EditT containing the full parameter family or a struct of CinCell, respectively corresponding to the
first and second outputs of the ObjEditJ command.

A very low level way of storing invisible data is to edit the uo object directly by doing

r1=get(GuiGF,’UserData’);

r1.(family)=r1j;

set(GuiGF,’UserData’,[],’UserData’,r1);

where family is the parameter family, r1j the EditT object generated by ObjEditJ and GuiGF the
handle to the GUI figure. It is however recommended to let it be stored automatically at display.

Recovering data from java objects

To recover data in a RunOpt MATLAB struct format from EditT or CinCell objects, command
fe defCleanEntry must be used.

• For an EditT object the output of CleanEntry will be a structure with as many fields as
parameters stored in the EditT assigned with their value converted to the proper format

provided. When an EditT is displayed in a tab, obj.Peer should be the numeric handle to
the matlab figure so that clean get uf can retrieve tab data.

• For a CinCell object, the output of CleanEntry will be the underlying structure of the but-
ton, as documented. Each CinCell object can/should have a EditT parent obtained with
obj.get(’parent’).
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• For pop objects CinCell or struct, the value is taken to be the choicesTag string if it exists
or the choices string otherwise.

fe defCleanEntry no longer returns the full structure for a button, so that the command
r1=cinguj(’ObjToStruct’,ob); should be used.

To get the current data (.data{.val} of pop button, one uses
r1=feval(sdtroot(’@obGet’),ob,’data’);.

It is recommended to build a call my_ui(’GetTab’) that will rethrow the RunOpt structure corre-
sponding to a Tab from the GUI figure.

% get Java pointer and desired tab field

out=my_ui(’vh’); tab=varargin{carg}; carg=carg+1;

% convert to a RunOpt structure

out=fe_def(’cleanentry’,out.(tab));

Direct access to a parameter can also be usefully packaged in my_ui(’GetTab.Param’), with

% get Java pointer and desired tab field

out=my_ui(’vh’); tab=varargin{carg}; carg=carg+1;

% parse tab to see if subfields are desired

tab=textscan(tab,’%s’,’Delimiter’,’.’); tab=tab{1};
% convert to a RunOpt structure

out=fe_def(’cleanentry’,out.(tab{1}));
% output only the desired subfield if it was specified

if length(tab)>1; tab(1)=[];

while ~isempty(tab)&&~isempty(out); out=out.(tab{1}); st(1)=[]; end

end

Displaying data in the GUI figure

To display the parameters in the GUI figure, one has to generate a structure that will be interpreted
as a JTable that will be included to the JTabbedPane object, that is to say the tabbed area of the
GUI figure. This structure contains the fields

• name The name of the object that will be display. It is recommended to use the family name
of the parameter family displayed.

• table A cell array containing the buttons in the CinCell. The JTable will have the same
size as the table provided.
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• ToolTip A string allowing to display some explanations on the tab.

• ParentPanel The handle to the GUI figure.

Generation of the table field can be done automatically with a call to sdt dialogs uatable

ua.table=sdt_dialogs(’uatable-end0’,’info’,name,r1j);

with name the field relative to ua.name and r1j the EditT object (with .Peer defined). This will
yield a tab with three columns, the first one being the parameter names, the second one the editable
buttons as CinCell objects and the third one being the parameter ToolTip.

More complex layouts can be obtained by generating the table manually, exploiting the second
output of the ObjEditJ command to fill in table positions. This allows generating the table by
directly positioning the CinCell objects called by their names.

By adding a field level to ua, and calling cingujTabbedPaneAddTree a tree will be displayed instead
of a table in the GUI figure. Field level has two columns and as many lines as the table. The first
column provides the level of the table line in the tree as an integer. The second column indicates
whether the line has to be expanded is set to 1, or not if set to 0.

Once ua is filled display is performed using cinguj TabbedPaneAdd

[ua,ga]=cinguj(’TabbedPaneAdd’,’my_ui’,ua);

Command TabbedPaneAdd outputs ua that contains the displayed objects and their information.
This can be accessed any time using field tStack of the GUI figure userdata, uf=clean_get_uf(GuiGF),
and ga that is the handle to the figure axis containing the tab.

8.4.5 Tweaking display

Display can be tuned to the user will by editing the displayed objects. All display information is
accessed through a call to clean get uf, using GuiGF the GUI figure handle as input argument.

uf = clean_get_uf(GuiGF);

uf is a user data structure with fields

• ParentFigure The GUI figure handle. This should be equal to GuiGF.

• p The handle to the uipannel displaying the data.

• tStack A cell array of 7 columns and as many lines as tabs generated. Column 1 contains the
tab names and column 7 contains the tab userdata object.
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• tab the index in tStack corresponding to the tab currently displayed.

• java set to 1. Ensures that the userdata handles java objects for cingui.

• JPeer A pointer to the Java object containing the display, either a JTabbedPane if only tabs
are displayed, or a JScrollPane if only a tree is displayed, or a JSplitPane if the display
contains several Panes.

• pcontainer The handle to the hgjavacomponent that contains the display.

• toolbarRefresh (Optional) A function handle that can be called at refresh to perform toolbar
dependencies (e.g. uicontrol enabling as function of the GUI state.

• tag The GUI figure tag.

• Explo If an exploration tree is present, the JScrollPane java object containing the tree.

• EJPeer If an exploration tree is present, JSplitPane java object containing the global display.

The seventh column of uf.tStack contains information relative to each of the tab objects of the
JTabbedPane. It is commonly named ub and contains the following fields

• name The tab name, that should be corresponding to the parameter family.

• table A cell array containing the objects of each cell of the JTable

• ToolTip A string providing a tool tip if the mouse cursor if over the tab tip.

• ParentPannel The handle to the GUI figure.

• type A string providing the table objects type, commonly CinCell.

• JTable The JTable java object.

• JPeer pointer to the JScrollPane typically used for display.

• NeedClose value set to force use of a close button on the tab.

Each tabbed pane can be tweaked regarding the displayed column dimensions.

In the case of a GUI displaying user input objects the table itself does not need to be interactive.
(This is different from a results table that will be analyzed by the user). It is thus recommended to
deactivate the table selection interactivity using

ub.JTable.setRowSelectionAllowed(false);

ub.JTable.setColumnSelectionAllowed(false);

ub.JTable.setCellSelectionEnabled(false);
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Columns width can be set using a line array with as many columns as columns in the table and
providing in pixels the minimal width a column should have to cingujtableColWidth. The value
can be set to -1 if the user wishes to let free the width of a column.

% for 3 columns table, last one left free

ColWidth=[150 300 -1];

cinguj(’tableColWidth’,ub.JTable,ColWidth);

Row height can be set (same for all lines) by calling the setRowHeight method of JTable. The
value is in pixel.

% getting the intial row height

r1 = ub.JTable.getRowHeight

% setting a new row height to 22px

ub.JTable.setRowHeight(22)

8.4.6 Defining an exploration tree

To ease up navigation between tabs, one can use an exploration tree in the GUI figure. Tabs can
then be opened by clicking in the tree that should list all available tabs (or parameter families).

The exploration tree is commonly named PTree, and has to be defined in the .csv file. It should
contain push type buttons with callbacks triggering the opening of the desired tab.

c; sample PTree defintion

h;type=push;name;callback;value;ToolTip;

n;PTree.Family;my_ui(’InitFamily’);"Family";"Open corresponding family tab"

To properly handle an exploration tree, one has to initialize it when the GuiGF figure is opened,
that is to say after the cinguj ObjFigInit call. The initialization should be handled by a call of
the type mu_ui(’InitPTree’).

Low level access to the exploration tree is handled by a subfunction of cinguj named treeF. The
subfunction handle can be accessed using treeF=cinguj(’@treeF’);. It is recommended to store
the variable treeF containing the subfunction handle in a persistent variable of the GUI function
my ui.

% option initialization

RunOpt=struct(’NoInit’,0,’lastname’,’’);

% for all fields of DefBut.PTree, sort the buttons

r1=fieldnames(DefBut.PTree); table=cell(length(r1),2);

for j1=1:length(r1);table(j1,:)={DefBut.PTree.(r1{j1}) [1 1]}; end
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% generate clean table and corresponding levels

level=vertcat(table{:,2}); table=table(:,1);

% generate the tree ua

ua=struct(’table’,{table},’level’,level,’name’,’my_ui’,...
’ParentPanel’,GuiGF,’ToolTip’,’The GUI exploration tree’,’NeedClose’,2);

% display the tree in the GUI figure

[tree,gf]=cinguj(’tabbedpaneAddTree’,’my_ui’,ua);

% tweak the tree to enable selected tab field highlighting

tree.getSelectionModel.setSelectionMode( ...

javax.swing.tree.TreeSelectionModel.SINGLE_TREE_SELECTION)

% refresh

cingui(’resize’,GuiGF);

The exploration tree thus defined highlights its node corresponding to the currently displayed tab.
This tasks is performed automatically by cinguj when clicking on a button of a tree.

To access the tree object and its highlighted field, one can do

[RunOpt.lastname,tree]=treeF(’explolastname’,GuiGF);

To switch the highlighted field to a new name newname and get the tree node object, one can
do

node=treeF(’scrollToNameSelect’,tree,newname);

8.4.7 Finding CinCell buttons in the GUI with getCell

To quickly find CinCell buttons in an interface, subfunction getCell of sdcedit can be used.

getCell=sdcedit(’@getCell’);

[obj,tab,name]=getCell(r1j,’propi’,’vali’,...,stOpt)

• rj1 is a GuiGF, or an UIVH, or a java/EdiT, or figure Tag, or vector of handles or 0 for all
MATLAB figures.

• propi, vali are pairs of properties (fields of the buttons) and their desired values.

• stOpt is an option that allows a constant output in cell format if set to ’cell’.

Actions to check or get specific fields of a cell array of CinCell buttons are also available using
commands

% r1=getCell(’getfield st’,obj); % outputs field st of obj (CinCell) or {obj}
% r1=getCell(’isfield st’,obj); % outputs logical checking presence of field st in obj
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8.5 Interactivity

8.5.1 Handling tabs

To initialize tabs, it is recommended to use a call of type my_ui(’InitTab’), that handles the tab
generation using the standard button definitions.

To get information on the existing tabs, one can access to uf, with clean get uf.

It is possible to switch the display to an existing tab using cinguicurtabTab command, with Tab

the tab name to switch to.

To close a tab, one should use a call to subfunction tabChage of cinguj. Handle to the subfunction
can be accessed with cinguj(’@tabChange’). One must then provide the close command, the
GUI figure tag, and the tab name to close.

• One can use cur instead of a tab name to close the current tab.

• One can use command closeAll instead of close to close all tabs at once.

% close current tab:

feval(cinguj(’@tabChange’),’close’,’my_ui’,’_cur’)

% close tab ’tab’

feval(cinguj(’@tabChange’),’close’,’my_ui’,tab)

% close all tabs

feval(cinguj(’@tabChange’),’closeAll’,’my_ui’)

8.5.2 Handling dependencies

Dependencies define the set of actions performed consequently to the edition of a given parameter.
They should be handled by a call of type my_ui(’set’). Classically dependencies are handled
through the SetFcn definition relative to each parameter. In the .csv definition, most SetFcn fields
should be set to my_ui(’set’).

For the exclusive case of push buttons, dependencies or actions have to be passed to the callback

field.
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The set function call must be able to be called from script in the same manner than from CinCell

callbacks. Calls of the form my_ui(’set’,struct(’Tab.Par’,val,...)); should then edit the
parameters and execute dependencies.

A typical entry to the set command can then be

if carg<=nargin; % from script mode

r1=varargin{carg}; carg=carg+1; r2=fieldnames(r1);

if length(r2)>1 % allow multiple fields input at once

for j1=1:length(r2); % loop to assign each field

my_ui(’Set’,struct(r2{j1},r1.(r2{j1})));
end

return % get out after having assigned each parameter

else % one parameter provided, carry on

obj=r1j.(CAM).(r2{1}); val=r1.(r2{1}); gf=GuiGF;

uo=struct(’FromScript’,1); % build the data

end

else % callback from CinCell

[RO,uo,CAM,Cam]=clean_get_uf(’getuo’,[’SetStruct’ CAM]);

obj=uo.ob; val=fieldnames(RO); gf=GuiGF; val=RO.(val{1});
end

% robustness check regarding object existence

if isempty(obj)

r1=fieldnames(r1); r1=r1{1};
sdtw(’_nb’,’Property %s does not exist in %s, skipped’,r1,CAM); return

else; CAM=sdcedit(obj,’_get’,’name’); Cam=lower(CAM);

end

A robust recuperation of the active CinCell is performed through a clean get ufgetuo call. Re-
cuperation of the parameter name can be performed with a sdcedit call. Note that obj should be
an EditT java object or a CinCell.

To edit or get parameter values it is recommended to use sdcedit that implements robust parameter
assignations.

To get values, if the object is an EditT, one should use 4 argument calls of the type
r1 = sdcedit(obj,’field’,’_get’,’prop’), with field the parameter name, and prop the prop-
erty to get, which is one of the fields defined in the button. A shortcut command to get the property
value can be used used r1=sdcedit(obj,’_get’,’field’).

If the object is a CinCell, one can use direct get commands with r1=obj.get(’prop’);.
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In the case of pop buttons, the current value can be expressed either as the index in the choices
list (or ChoicesTag if defined) or the value in the choices list directly. To ensure the type of data
accessed, one can use st1 = sdcedit(r1j,’field’,’_popvalue’,[]) to get the value in the choice
list, or i1=sdcedit(r1j,’field’,’_popindex’,[]) to get the index in the choice list.

To assign properties, if the object is an EditT, one can use 4 argument calls of the type
r1 = sdcedit(obj,’field’,’’prop’,value), with field the parameter name, and prop the prop-
erty to set to value. A shortcut command to set the property value to val for both EditT and
CinCell objects can be used obj=sdcedit(obj,’field’,val).

If the object is a CinCell, one can use direct set commands with r1=obj.set(’prop’,val);.

8.5.3 Dialogs

Interaction through dialog windows is possible, and standard sdt dialogs calls are accessible. Spe-
cific dialogs using java objects with interactivity is also possible, but the dialog figure should always
be the same and be closed after the dialog to control the number of opened figures.

File input dialog

The most classical dialog is to ask for a file or directory input. If the input file is a parameter in
a push button, the user input is handled using a callback with sdt dialogsEEdit, and the field
SetFcn to handle the dependencies.

One can thus define such interactivity with a csv definition like

h;type=push;name;callback;value;ToolTip;SetFcn=my_ui(’Set’)

n;Familiy.FileInput;sdt_dialogs(’EEdit_File’);"Click to input file";"Specify a file"

Call EEdit of sdt dialogs has several variants,

• EEdit File to ask for an existing file.

• EEdit Dir to ask for a directory.

• EEdit FPut to ask for a file that can possibly be created.

• EEdit prompt to ask for an input defined through a set of parameters defined in a
PropertyUnitTypeCell format.

sdt_dialogs(’EEdit_prompt m_elastic 2’);

sdt_dialogs(’EEdit_prompt -eval"my_fun(’’proptypecell’’);"’,indRequired,val);
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Selection in a tree dialog

When performing design of experiment analyses with saved results, one can use a tree representation
of the parameter grid using fe defRangeTree with a standard SDT parameter structure.

It is possible to implement callbacks in the tree to trigger actions for a specific point, such as loading
the selected data set or displaying the selected results.

Using a standard SDT RangeGrid structure here named par, one can display in a dialog figure
named my uidlg the RangeTree that will call a specific loading function with

gf=cinguj(’ObjFigInit’,struct(’Tag’,’my_uidlg,’name’,my_uidlg’,’noMenu’,1));

ua=fe_def([’rangetree-outgf-minName-root"DOE"-push-getUA"my_uidlg"’...

’-callback"sprintf(’’my_ui(’’’’load’’’’,%%i);’’,RO.valLink(j1));"’],par);

cinguj(’tabbedpaneAddTree’,ua.ParentPanel,ua,’my_uidlg’);

In the fe defRangeTree call,

• -outgf Activated the display mode of RangeTree that will generate the java tree object.

• -minName Asks to generate node names to display only with the sub name corresponding to
the node level.

• -root’’st’’ Allows specifying a tab root name in the my uidlg figure.

• -push Activates the generation of push buttons with callbacks for the tree nodes. By default
the callback displays in the command window the index in the Range.val list corresponding
to the clicked point.

• -getUA’’tag’’ Asks to output the tree object for customized external display. tag allows
specifying to which parent figure the tree will be displayed.

• -callback’’fcn’’ Allows defining a customized callback. The fcn input must in fact be a
string that will be evaluated to generate the callback call itself, so that the user can exploit
the index in the Range.val list corresponding to the clicked node. Since the displayed nodes
are not in the same order than the initial list, fe defRangeTree uses the internal variable
RO.valLink to make the conversion between the displayed node order and the initial val list.
The callbacks are generated in a loop in the node order, indexed by j1. In the example, the
callback to be generated is my_ui(’load’,i1) with input i1 being the index of the clicked
node in the initial val list.

For such behavior to be relevant, one expects the Range variable par to be accessible at any time
by the function my ui. Saving par in the GUI file arborescence or making it a persistent variable of
my ui are to easy solutions to this issue.
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8 GUI and reporting tools

This mechanism can be used to handle a project results file arborescence. In this case the DefBut

variable should contain the Range structure that will have to be incremented on the fly when saving
a file.

Check list dialog

sdt dialogs provides a check list functionality handling based on keywords. The associated button
is valued as the list of keywords separated with commas. Its edition is then based on a list to check.

The following code demonstrates the use of such button, through a complete definition

% Use of buttons associated to a check list

% Define a tab with simple DefBut

r1=[’Post(","#push#"define post list")’]; % DefBut

% interpet DefBut

R1=cingui(’paramedit’,r1);

% Specifc check list definition

R1.Post.callback={’sdt_dialogs’,’EEdit_CheckList’}; % callback

% associate a keyword list

R1.Post.list=[’FcA(#3#"Fc stats unfiltered")’...

’Fc20(#3#"Fc stats filtered 20Hz")’ ...

’UpA(#3#"Uplifts unfiltered")’ ...

’SubPto(#3#pantograph displacements")’];

R1.Post.SetFcn=’’;

% Now display tab with functional button

gf=cinguj(’tabbedpanefig’,’demo_checkList’);

R1=cinguj(’ObjEditJ’,R1,gf);

ua=struct(’name’,’demo_checkList’,’ParentPanel’,gf,’table’,...

{sdt_dialogs(’uatable-end0’,’info’,’Post’,R1)});
cinguj(’tabbedpaneadd’,gf,ua,ua.name,[]);
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Element functions supported by OpenFEM are listed below. The rule is to have element families
(2D and 3D) with families of formulations selected through element properties and implemented for
all standard shapes

3-D volume element shapes

hexa8 8-node 24-DOF brick
hexa20 20-node 60-DOF brick
hexa27 27-node 81-DOF brick
penta6 6-node 18-DOF pentahedron
penta15 15-node 45-DOF pentahedron
tetra4 4-node 12-DOF tetrahedron
tetra10 10-node 30-DOF tetrahedron

2-D volume element shapes

q4p 4-node quadrangle
q5p 5-node quadrangle
q8p 8-node quadrangle
q9a 9-node quadrangle
t3p 3-node 6-DOF triangle
t6p 6-node 12-DOF triangle

Supported problem formulations are listed in section 6.1 , in particular one considers 2D and 3D
elasticity, acoustics, hyperelasticity, fluid/structure coupling, piezo-electric volumes, ...

Other elements, non generic elements, are listed below

3-D plate/shell Elements

dktp 3-node 9-DOF discrete Kirchoff plate
mitc4 4-node 20-DOF shell
quadb quadrilateral 4-node 20/24-DOF plate/shell
quad9 (display only)
quadb quadrilateral 8-node 40/48-DOF plate/shell
tria3 3-node 15/18-DOF thin plate/shell element
tria6 6-node 36DOF thin plate/shell element



Other elements

bar1 standard 2-node 6-DOF bar
beam1 standard 2-node 12-DOF Bernoulli-Euler beam
beam1t pretensionned 2-node 12-DOF Bernoulli-Euler beam
beam3 (display only)
celas scalar springs and penalized rigid links
mass1 concentrated mass/inertia element
mass2 concentrated mass/inertia element with offset
rigid handling of linearized rigid links

Utility elements

fe super element function for general superelement support
integrules FEM integration rule support

fsc fluid/structure coupling capabilities
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bar1

Purpose

Element function for a 6 DOF traction-compression bar element.

Description

The bar1 element corresponds to the standard linear interpolation for axial traction-compression.
The element DOFs are the standard translations at the two end nodes (DOFs .01 to .03).

In a model description matrix, element property rows for bar1 elements follow the standard format
(see section 7.16 ).

[n1 n2 MatID ProID EltID]

Isotropic elastic materials are the only supported (see m elastic).

For supported element properties see p beam. Currently, bar1 only uses the element area A with the
format

[ProID Type 0 0 0 A]

See also

m elastic, p beam, fe mk, feplot



beam1, beam1t

Purpose

Element functions for a 12 DOF beam element. beam1t is a 2 node beam with pretension available
for non-linear cable statics and dynamics.

Description

beam1

In a model description matrix, element property rows for beam1 elements follow the format

[n1 n2 MatID ProID nR 0 0 EltID p1 p2 x1 y1 z1 x2 y2 z2]

where

n1,n2 node numbers of the nodes connected
MatID material property identification number
ProID element section property identification number
nr 0 0 number of node not in the beam direction defining bending plane 1 in this case {v}

is the vector going from n1 to nr. If nr is undefined it is assumed to be located at
position [1.5 1.5 1.5].

vx vy vz alternate method for defining the bending plane 1 by giving the components of a vector
in the plane but not collinear to the beam axis. If vy and vz are zero, vx must be
negative or not an integer. MAP=beam1t(’map’,model) returns a normal vector
MAP giving the vector used for bending plane 1. This can be used to check your
model.

p1,p2 pin flags. These give a list of DOFs to be released (condensed before assembly). For
example, 456 will release all rotation degrees of freedom. Note that the DOFS are
defined in the local element coordinate system.

x1,... optional components in global coordinate system of offset vector at node 1 (default
is no offset)

x2,... optional components of offset vector at node 2



beam1, beam1t

Isotropic elastic materials are the only supported (see m elastic). p beam describes the section
property format and associated formulations.

Failure to define orientations is a typical error with beam models. In the following example, the
definition of bending plane 1 using a vector is illustrated.

cf=feplot(femesh(’test2bay’));

% Map is in very variable direction due to undefined nr

% This is only ok for sections invariant by rotation

beam1t(’map’,cf.mdl);fecom(’view3’);

% Now define generator for bending plane 1

i1=feutil(’findelt eltname beam1’,cf.mdl); % element row index

cf.mdl.Elt(i1,5:7)=ones(size(i1))*[-.1 .9 0]; % vx vy vz

beam1t(’map’,cf.mdl);fecom(’view2’);

beam1 adds secondary inertia effects which may be problematic for extremely short beams and
beam1t may then be more suitable.

beam1t

For the bending part, this element solves

ρA(ẅ − Ω2w) +
∂2

∂x2

(
EIy

∂2w

∂x2

)
− ∂

∂x

(
T
∂w

∂x

)
− f = 0 (9.1)

with boundary conditions in transverse displacement

w = given or F = T
∂w

∂x
− EIy

∂3w

∂x3
(9.2)

and rotation
∂w

∂x
= given or M = EIy

∂2w

∂x2
(9.3)

This element has an internal state stored in a InfoAtNode structure where each column of
Case.GroupInfo{7}.data gives the local basis, element length and tension [bas(:);L;ten]. Initial
tension can be defined using a .MAP field in the element property.

This is a simple example showing how to impose a pre-tension :

model=femesh(’TestBeam1 divide 10’);

model=fe_case(model,’FixDof’,’clamp’,[1;2;.04;.02;.01;.05]);

model.Elt=feutil(’SetGroup 1 name beam1t’,model);

d1=fe_eig(model,[5 10]);

model=feutil(’setpro 112’,model,’MAP’, ...
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struct(’dir’,{{’1.5e6’}},’lab’,{{’ten’}}));
d2=fe_eig(model,[5 10]);

figure(1);plot([d2.data./d1.data-1]);

xlabel(’Mode index’);ylabel(’Frequency shift’);

Strains in a non-linear Bernoulli Euler section are given by

ε11 =

(
∂u

∂x
+

1

2

(
∂w0

∂x

2
))
− z ∂

2w0

∂x2
(9.4)

See also

p beam, m elastic, fe mk, feplot
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celas,cbush

Purpose

element function for scalar springs and penalized rigid links

Description

celas

In an model description matrix a group of celas elements starts with a header row [Inf abs(’celas’)

0 ...] followed by element property rows following the format

[n1 n2 DofID1 DofID2 ProID EltID Kv Mv Cv Bv]

with



celas,cbush

n1,n2 node numbers of the nodes connected. Grounded springs are obtained by setting n1

or n2 to 0.
DofID Identification of selected DOFs.

For rigid links, the first node defines the rigid body motion of the other extremity slave
node. Motion between the slave node and the second node is then penalized. DofID

(positive) defines which DOFs of the slave node are connected by the constraint. Thus
[1 2 123 0 0 0 1e14] will only impose the penalization of node translations 2 by
motion of node 1, while [1 2 123456 0 0 0 1e14] will also penalize the difference
in rotations.

For scalar springs, DofID1 (negative) defines which DOFs of node 1 are connected
to which of node 2. DofID2 can be used to specify different DOFs on the 2 nodes.
For example [1 2 -123 231 0 0 1e14] connects DOFs 1.01 to 2.02, etc. Use of
negative DofID1 will only activate additional DOF if explicitly given.

ProID Optional property identification number (see format below)
Kv Optional stiffness value used as a weighting associated with the constraint. If Kv is

zero (or not given), the default value in the element property declaration is used. If
this is still zero, Kv is set to 1e14.

Bv Optional stiffness hysteretic damping value : stiffness given by Kv + iBv (rather than
Kv(1 + iη) when using p spring).

p spring properties for celas elements take the form [ProID type KvDefault m c eta S]
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By default a celas element will activate all 6 mechanical DOF in the model. If the celas element
is not linked to other elements using these DOF (e.g. 3D elements do not use DOF 4-6), there will
be a risk of null stiffness occurrence at assembly. To alleviate this problem use negative DofID1

that will only activate additional DOF in the specified list. One can also fix the spurious DOF as a
boundary condition.

Below is the example of a 2D beam on elastic supports.

model=femesh(’Testbeam1 divide 10’);

model=fe_case(model,’FixDof’,’2D’,[.01;.02;.04]);

model.Elt(end+1,1:6)=[Inf abs(’celas’)]; % spring supports

model.Elt(end+[1:2],1:7)=[1 0 -13 0 0 0 1e5;2 0 -13 0 0 0 1e5];

def=fe_eig(model,[5 10 0]); feplot(model,def);

When using local displacement bases (non zero DID), the stiffness is defined in the local basis and
transformed to global coordinates.

cbush

The element property row is defined by

[n1 n2 MatId ProId EltId x1 x2 x3 EDID S OCID S1 S2 S3]

[n1 n2 MatId ProId EltId NodeIdRef 0 0 EDID S OCID S1 S2 S3]

The orientation of the spring (basis xe, ye, ze) can be specified by

• EDID>0 specifies a coordinate system for element orientation. This behaviour is pre-emptive.

• For coincident n1, n2, orientation vector given as x1,x2,x3 can be used to specify xe (this
differs from figure and is not compatible with NASTRAN). To specify ye for coincident nodes,
you must use classically defined EDID, otherwise set the EDID to -1.

• For distinct n1,n2, default default orientations are in the global framework. Local directions
require a non-null EDID to be activated. If one wants to use local directions defined in the
element entry, on can use EDID=-1. Then, element xe is along n2 − n1, other directions are
defined as follows

– giving orientation vector v as x1,x2,x3 specifies ye in the plane given by xe and v. Note
x1 should not be an integer if x2 and x3 are zero to distinguish from the NodeIdRef case.

– NodeIdRef,0,0 specifies the use of a node number to create v = nref − n1.

The spring/damper is located at a position interpolated between n1 and n2 using S, such that
xi = Sn1 + (1−S)n2. The midpoint is used by default, that-is-to-say S is taken at 0.5 if left to zero.
To use other locations, specify a non-zero OCID and an offset S1,S2,S3.
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It is possible to set n2 to 0 to define a grounded cbush.

See also

p spring, rigid
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dktp

Purpose

2-D 9-DOF Discrete Kirchhoff triangle

Description

In a model description matrix, element property rows for dktp elements follow the standard
format

[n1 n2 n3 MatID ProID EltID Theta]

giving the node identification numbers ni, material MatID, property ProID. Other optional infor-
mation is EltID the element identifier, Theta the angle between material x axis and element x axis
(currently unused)

The elements support isotropic materials declared with a material entry described in m elastic.
Element property declarations follow the format described in p shell.

The dktp element uses the et*dktp routines.

There are three vertices nodes for this triangular Kirchhoff plate element and the normal deflection
W (x, y) is cubic along each edge.

We start with a 6-node triangular element with a total D.O.F = 21 :

• five degrees of freedom at corner nodes :

W (x, y) ,
∂ W

∂x
,
∂ W

∂y
, θx , θy (deflection W and rotations θ) (9.5)

• two degrees of freedom θx and θy at mid side nodes.
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Then, we impose no transverse shear deformation γxz = 0 and γyz = 0 at selected nodes to reduce
the total DOF = 21− 6 ∗ 2 = 9 :

• three degrees of freedom at each of the vertices of the triangle.

W (x, y) , θx = (
∂ W

∂x
) , θy = (

∂ W

∂y
) (9.6)

The coordinates of the reference element’s vertices are Ŝ1(0., 0.), Ŝ2(1., 0.) and Ŝ3(0., 1.).

Surfaces are integrated using a 3 point rule ωk = 1
3 and bk mid side node.

See also

fe mat, m elastic, p shell, fe mk, feplot
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fsc

Purpose

Fluid structure/coupling with non-linear follower pressure support.

Description

Elasto-acoustic coupling is used to model structures containing a compressible, non-weighing fluid,
with or without a free surface.

The FE formulation for this type of problem can be written as [44]

s2

[
M 0
CT Kp

]{
q
p

}
+

[
K(s) −C

0 F

]{
q
p

}
=

{
F ext

0

}
(9.7)

with q the displacements of the structure, p the pressure variations in the fluid and F ext the external
load applied to the structure, where

∫
ΩS
σij(u)εij(δu)dx⇒ δqTKq∫
ΩS
ρSu.δudx⇒ δqTMq

1
ρF

∫
ΩF
∇p∇δpdx⇒ δpTFp

1
ρF c2

∫
ΩF

pδpdx⇒ δpTKpp∫
Σ pδu.ndx⇒ δqTCp

(9.8)
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To assemble fluid/structure coupling matrix you should declare a set of surface elements (any topol-
ogy) with property p solid(’dbval 1 fsc’). The C matrix (solid forces induced by pressure field)
is assembled with the stiffness (matrix type 1), while the CT matrix (fluid pressure due to normal
velocity of solid) is assembled with the mass (matrix type 2).

Some formulations, consider a surface impedance proportional to the pressure. This matrix can be
computed by defining a group of surface elements with an acoustic material (see m elastic 2) and
a standard surface integration rule (p solid(’dbval 1 d2 -3’)). This results in a mass given by

δpTKpp =
1

ρF c2

∫
ΩF

δppdx (9.9)

Follower force

One uses the identity

ndS =
∂x

∂r
∧ ∂x
∂s

drds, (9.10)

where (r, s) designate local coordinates of the face (assumed such that the normal is outgoing).
Work of the pressure is thus:

δWp = −
∫
r,s

Π (
∂x

∂r
∧ ∂x
∂s

) · δv drds. (9.11)

On thus must add the non-linear stiffness term:

−dδWp =

∫
r,s

Π (
∂du

∂r
∧ ∂x
∂s

+
∂x

∂r
∧ ∂du

∂s
) · δv drds. (9.12)

Using ∂x
∂r = {x1,r x2,r x3,r}T (idem for s), and also

[Axr] =

 0 −x,r3 x,r2
x,r3 0 −x,r1
−x,r2 x,r1 0

 , [Axs] =

 0 −x,s3 x,s2
x,s3 0 −x,s1
−x,s2 x,s1 0

 , (9.13)

this results in

(∂dx∂r ∧
∂x
∂s + ∂x

∂r ∧
∂dx
∂s ) · δv =

{δqik}T {Nk} (Axrij{Nl,s}T −Axsij{Nl,r}T ){dqj}.
(9.14)

Tests : fsc3 testsimple and fsc3 test.

In the RivlinCube test , the pressure on each free face is given by
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Π1 = − 1+λ1
(1+λ2)(1+λ3)Σ11 on face (x1 = l1)

Π2 = − 1+λ2
(1+λ1)(1+λ3)Σ22 on face (x2 = l2)

Π3 = − 1+λ3
(1+λ1)(1+λ2)Σ33 on face (x3 = l3).

(9.15)

Non-conform

SDT supports non conforming element for fluid/structure coupling terms corresponding to the struc-
ture are computed using the classical elements of the SDT, and terms corresponding to the fluid are
computed using the fluid elements (see flui4).

The coupling term C is computed using fluid/structure coupling elements (fsc elements).

Only one integration point on each element (the center of gravity) is used to evaluate C.

When structural and fluid meshes do not match at boundaries, pairing of elements needs to be done.
The pairing procedure can be described for each element. For each fluid element Fi, one takes the
center of gravity Gf,i (see figure), and searches the solid element Si which is in front of the center
of gravity, in the direction of the normal to the fluid element Fi. The projection of Gf,i on the solid
element, Pi, belongs to Si, and one computes the reference coordinate r and s of Pi in Si (if Si is
a quad4, −1 < r < 1 and −1 < s < 1). Thus one knows the weights that have to be associated
to each node of Si. The coupling term will associate the DOFs of Fi to the DOFs of Si, with the
corresponding weights.

See also

flui4, m elastic
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hexa8, penta6, tetra4, and other 3D volumes

Purpose

Topology holders for 3D volume elements.

Description

The hexa8 hexa20 hexa27, penta6 penta15 tetra4 and tetra10 elements are standard topology
reference for 3D volume FEM problems.

In a model description matrix, element property rows for hexa8 and hexa20 elements follow the
standard format with no element property used. The generic format for an element containing i
nodes is [n1 ... ni MatID ProId EltId]. For example, the hexa8 format is [n1 n2 n3 n4 n5

n6 n7 n8 MatID ProId EltId].

These elements only define topologies, the nature of the problem to be solved should be specified
using a property entry, see section 6.1 for supported problems and p solid, p heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex coordinates of the
reference element can be found using an integrules command containing the name of the element
such as r1=integrules(’q4p’);r1.xi.

Backward compatibility note : if no element property entry is defined, or with a p solid entry
with the integration rule set to zero, the element defaults to the historical 3D mechanic elements
described in section 7.19.2 .

See also

fe mat, m elastic, fe mk, feplot

.



integrules

Purpose

Command function for FEM integration rule support.

Description

This function groups integration rule manipulation utilities used by various elements. In terms of
notations, a field u is interpolated within an element by shapes functions Ni and values of the field
at nodes ui

u(x, y, z) =
∑
i

Ni(r, s, t)ui (9.16)

The relation between physical coordinates x, y, z and element coordinates r, s, t is itself described by
a mapping associated with shape functions. When computing an integral, one selects a number of
Gauss points rg, sg, tg and associated weights wg leading to an approximation of the integral as

∫
V
f(x, y, z)dV ≈

∑
g

f(rg, sg, tg)Jwg (9.17)

where J is the determinant of the Jacobian of the transform from reference to physical coordinates.
The field .wjdet is used to denote the local value of the product Jwg. The following calls generate
the reference EltConst data structure, see section 7.15.4 .

Gauss

This command supports the definition of Gauss points and associated weights. It is called with
integrules(’Gauss Topology’,RuleNumber). Supported topologies are 1d (line), q2d (2D quad-
rangle), t2d (2D triangle), t3d (3D tetrahedron), p3d (3D prism), h3d (3D hexahedron).
integrules(’Gauss q2d’) will list available 2D quadrangle rules.

• Integ -3 is always the default rule for the order of the element.

• -2 a rule at nodes.

• -1 the rule at center.

[ -3] [ 0x1 double] ’element dependent default’

[ -2] [ 0x1 double] ’node’

[ -1] [ 1x4 double] ’center’

[102] [ 4x4 double] ’gefdyn 2x2’
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[ 2] [ 4x4 double] ’standard 2x2’

[109] [ 9x4 double] ’Q4WT’

[103] [ 9x4 double] ’gefdyn 3x3’

[104] [16x4 double] ’gefdyn 4x4’

[ 9] [ 9x4 double] ’9 point’

[ 3] [ 9x4 double] ’standard 3x3’

[ 2] [ 4x4 double] ’standard 2x2’

[ 13] [13x4 double] ’2x2 and 3x3’

bar1,beam1,beam3

For integration rule selection, these elements use the 1D rules which list you can find using
integrules(’Gauss1d’).

Geometric orientation convention for segment is • (1) → (2)

One can show the edge using elt name edge (e.g. beaml edge).

t3p,t6p

Vertex coordinates of the reference element can be found using r1=integrules(’tria3’);r1.xi.

Figure 9.1: t3p reference element.

Vertex coordinates of the reference element can be found using r1=integrules(’tria6’);r1.xi.
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Figure 9.2: t6p reference element.

For integration rule selection, these elements use the 2D triangle rules which list you can find using
integrules(’Gausst2d’).

Geometric orientation convention for triangle is to number anti-clockwise in the two-dimensional
case (in the three-dimensional case, there is no orientation).
• edge [1]: (1) → (2) (nodes 4, 5,... if there are supplementary nodes) • edge [2]: (2) → (3) (...) •
edge [3]: (3) → (1) (...)

One can show the edges or faces using elt name edge or elt name face (e.g. t3p edge).

q4p, q5p, q8p

Vertex coordinates of the reference element can be found using r1=integrules(’quad4’);r1.xi.

Figure 9.3: q4p reference element.
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Figure 9.4: q5p reference element.

Vertex coordinates of the reference element can be found using the r1=integrules(’quadb’);r1.xi.

Figure 9.5: q8p reference element.

For integration rule selection, these elements use the 2D quadrangle rules which list you can find
using integrules(’Gaussq2d’).

Geometric orientation convention for quadrilateral is to number anti-clockwise (same remark as for
the triangle)
• edge [1]: (1) → (2) (nodes 5, 6, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (4) • edge [4]: (4)
→ (1)

One can show the edges or faces using elt name edge or elt name face (e.g. q4p edge).

tetra4,tetra10

3D tetrahedron geometries with linear and quadratic shape functions. Vertex coordinates of the
reference element can be found using r1=integrules(’tetra4’);r1.xi (or command ’tetra10’).
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Figure 9.6: tetra4 reference element.

Figure 9.7: tetra10 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find
using integrules(’Gausst3d’).

Geometric orientation convention for tetrahedron is to have trihedral ( ~12, ~13, ~14) direct (~ij designates
the vector from point i to point j).
• edge [1]: (1) → (2) (nodes 5, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (4) • edge [6]: (3) → (4) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise:
• face [1]: (1) (3) (2) (nodes p+1, ...) • face [2]: (1) (4) (3) (...)
• face [3]: (1) (2) (4) • face [4]: (2) (3) (4)

One can show the edges or faces using elt name edge or elt name face (e.g. tetra10 face).
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penta6, penta15

3D prism geometries with linear and quadratic shape functions. Vertex coordinates of the reference
element can be found using r1=integrules(’penta6’);r1.xi (or command ’penta15’).

Figure 9.8: penta6 reference element.

Figure 9.9: penta15 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which list you can find
using integrules(’Gaussp3d’).

Geometric orientation convention for pentahedron is to have trihedral ( ~12, ~13, ~14) direct
• edge [1]: (1) → (2) (nodes 7, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (5) • edge [6]: (3) → (6)
• edge [7]: (4) → (5) • edge [8]: (5) → (6) • edge [9]: (6) → (4) (nodes ..., p)
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All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (3) (2) (nodes p+1, ...) • face [2] : (1) (4) (6) (3) • face [3] : (1) (2) (5) (4)
• face [4] : (4) (5) (6) • face [5] : (2) (3) (5) (6)

One can show the edges or faces using elt name edge or elt name face (e.g. penta15 face).

hexa8, hexa20, hexa21, hexa27

3D brick geometries, using linear hexa8, and quadratic shape functions. Vertex coordinates of the
reference element can be found using r1=integrules(’hexa8’);r1.xi (or command ’hexa20’,
’hexa27’).

Figure 9.10: hexa8 reference topology.

Figure 9.11: hexa20 reference topology.

For integration rule selection, these elements use the 3D hexahedron rules which list you can find
using integrules(’Gaussh3d’).

Geometric orientation convention for hexahedron is to have trihedral ( ~12, ~14, ~15) direct
• edge [1]: (1) → (2) (nodes 9, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (4)
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• edge [4]: (4) → (1) • edge [5]: (1) → (5) • edge [6]: (2) → (6)
• edge [7]: (3) → (7) • edge [8]: (4) → (8) • edge [9]: (5) → (6)
• edge [10]: (6) → (7) • edge [11]: (7) → (8) • edge [12]: (8) → (5) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (4) (3) (2) (nodes p+1, ...) • face [2] : (1) (5) (8) (4)
• face [3] : (1) (2) (6) (5) • face [4] : (5) (6) (7) (8)
• face [5] : (2) (3) (7) (6) • face [6] : (3) (4) (8) (7)

One can show the edges or faces using elt name edge or elt name face (e.g. hexa8 face).

BuildNDN

The commands are extremely low level utilities to fill the .NDN field for a given set of nodes. The
calling format is of mk(’BuildNDN’,type,rule,nodeE) where type is an int32 that specifies the
rule to be used : 2 for 2D, 3 for 3D, 31 for 3D with xyz sorting of NDN columns, 23 for surface in a
3D model, 13 for a 3D line. A negative value can be used to switch to the .m file implementation in
integrules.

The 23 rule generates a transformation with the first axis along N, r, the second axis orthogonal in
the plane tangent to N, r, N, s and the third axis locally normal to the element surface. If a local
material orientation is provided in columns 5 to 7 of nodeE then the material x axis is defined by
projection on the surface. One recalls that columns of nodeE are field based on the InfoAtNode field
and the first three labels should be ’v1x’,’v1y’,’v1z’.

With the 32 rule if a local material orientation is provided in columns 5 to 7 for x and 8 to 10 for y
the spatial derivatives of the shape functions are given in this local frame.

The rule structure is described earlier in this section and node has three columns that give the
positions in the nodes of the current element. The rule.NDN and rule.jdet fields are modified.
They must have the correct size before the call is made or severe crashes can be experienced.

If a rule.bas field is defined (9 × Nw), each column is filled to contain the local basis at the
integration point for 23 and 13 types. If a rule.J field with (4 × Nw), each column is filled to
contain the jacobian at the integration point for 23.

model=femesh(’testhexa8’); nodeE=model.Node(:,5:7);

opt=integrules(’hexa8’,-1);

nodeE(:,5:10)=0; nodeE(:,7)=1; nodeE(:,8)=1; % xe=z and ye=y

integrules(’buildndn’,32,opt,nodeE)

model=femesh(’testquad4’); nodeE=model.Node(:,5:7);

opt=integrules(’q4p’,-1);opt.bas=zeros(9,opt.Nw);opt.J=zeros(4,opt.Nw);

nodeE(:,5:10)=0; nodeE(:,5:6)=1; % xe= along [1,1,0]
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integrules(’buildndn’,23,opt,nodeE)

See also

elem0
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mass1,mass2

Purpose

Concentrated mass elements.

Description

mass1 places a diagonal concentrated mass and inertia at one node.

In a model description matrix, element property rows for mass1 elements follow the format

[NodeID mxx myy mzz ixx iyy izz EltID]

where the concentrated nodal mass associated to the DOFs .01 to .06 of the indicated node is given
by

diag([mxx myy mzz ixx iyy izz])

Note feutil GetDof eliminates DOFs where the inertia is zero. You should thus use a small but
non zero mass to force the use of all six DOFs.

For mass2 elements, the element property rows follow the format

[n1 M I11 I21 I22 I31 I32 I33 EltID CID X1 X2 X3 MatId ProId]

which, for no offset, corresponds to matrices given by



M symmetric
M

M
I11

−I21 I22

−I31 −I32 I33


=



∫
ρdV symmetric

M
M ∫

ρ(x2 + y2)dV
−I21 I22

−I31 −I32 I33


(9.18)

Note that local coordinates CID are not currently supported by mass2 elements.

See also

femesh, feplot



m elastic

Purpose

Material function for elastic solids and fluids.

Syntax

mat= m_elastic(’default’)

mat= m_elastic(’database name’)

mat= m_elastic(’database -therm name’)

pl = m_elastic(’dbval MatId name’);

pl = m_elastic(’dbval -unit TM MatId name’);

pl = m_elastic(’dbval -punit TM MatId name’);

pl = m_elastic(’dbval -therm MatId name’);

Description

This help starts by describing the main commands of m elastic : Database and Dbval. Materials
formats supported by m elastic are then described.

Database, Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials. See section 7.3
for material property interface.

m elastic(’database Steel’) returns a the data structure describing steel.
m elastic(’dbval 100 Steel’) only returns the property row.

% List of materials in data base

m_elastic info

% examples of row building and conversion

pl=m_elastic([100 fe_mat(’m_elastic’,’SI’,1) 210e9 .3 7800], ...

’dbval 101 aluminum’, ...

’dbval 200 lamina .27 3e9 .4 1200 0 790e9 .3 1780 0’);

pl=fe_mat(’convert SITM’,pl);

pl=m_elastic(pl,’dbval -unit TM 102 steel’)

Command option -unit asks the output to be converted in the desired unit system. Command
option -punit tells the function that the provided data is in a desired unit system (and generates
the corresponding type). Command option -therm asks to keep thermal data (linear expansion
coefficients and reference temperature) if existing.
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You can generate orthotropic shell properties using the Dbval 100 lamina VolFrac Ef nu f rho f

G f E m nu m Rho m G m command which gives fiber and matrix characteristics as illustrated above
(the volume fraction is that of fiber).

The default material is steel.

To orient fully anisotropic materials, you can use the following command

% Behavior of a material grain assumed orthotropic

C11=168.4e9; C12=121.4e9; C44=75.4e9; % GPa

C=[C11 C12 C12 0 0 0;C12 C11 C12 0 0 0;C12 C12 C11 0 0 0;

0 0 0 C44 0 0; 0 0 0 0 C44 0; 0 0 0 0 0 C44];

pl=[m_elastic(’formulaPlAniso 1’,C,basis(’bunge’,[5.175 1.3071 4.2012]));

m_elastic(’formulaPlAniso 2’,C,basis(’bunge’,[2.9208 1.7377 1.3921]))];

Subtypes m elastic supports the following material subtypes

1 : standard isotropic

Standard isotropic materials, see section 6.1.1 and section 6.1.2 , are described by a row of the
form

[MatID typ E nu rho G Eta Alpha T0]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,1) command, E (Young’s
modulus), ν (Poisson’s ratio), ρ (density), G (shear modulus, set to G = E/2(1 + ν) if equal to
zero). η loss factor for hysteretic damping modeling. α thermal expansion coefficient. T0 reference
temperature. G = E/2(1 + ν)

By default E and G are interdependent through G = E/2(1 + ν). One can thus define either E and
G to use this property. If E or G are set to zero they are replaced on the fly by their theoretical
expression. Beware that modifying only E or G, either using feutilSetMat or by hand, will not
apply modification to the other coefficient. In case where both coefficients are defined, in thus has
to modify both values accordingly.

2 : acoustic fluid

Acoustic fluid , see section 6.1.3 ,are described by a row of the form

[MatId typ rho C eta R]
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with typ an identifier generated with the fe mat(’m elastic’,’SI’,2) command, ρ (density), C
(velocity) and η (loss factor). The bulk modulus is then given by K = ρC2.

For walls with an impedance (see p solid 3 form 8), the real part of the impedance, which cor-
responds to a viscous damping on the wall is given by Z = ρCR. If an imaginary part is to be
present, one will use Z = ρCR(1 + iη). In an acoustic tube the absorbtion factor is given by
α = 4R

((R+1)2+(Rη)2)
.

3 : 3-D anisotropic solid

3-D Anisotropic solid, see section 6.1.1 , are described by a row of the form

[MatId typ Gij rho eta A1 A2 A3 A4 A5 A6 T0]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,3) command, rho (density),
eta (loss factor) and Gij a row containing

[G11 G12 G22 G13 G23 G33 G14 G24 G34 G44 ...

G15 G25 G35 G45 G55 G16 G26 G36 G46 G56 G66]

Note that shear is ordered gyz, gzx, gxy which may not be the convention of other software.

SDT supports material handling through

• material bases defined for each element xx

• orientation maps used for material handling are described in section 7.13 . It is then expected
that the six components v1x,v1y,v1z,v2x,v2y,v2z are stored sequentially in the interpolation
table.It is then usual to store the MAP in the stack entry info,EltOrient.

4 : 2-D anisotropic solid

2-D Anisotropic solid, see section 6.1.2 , are described by a row of the form

[MatId typ E11 E12 E22 E13 E23 E33 rho eta a1 a2 a3 T0]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,4) command, rho (density),
eta (loss factor) and Eij elastic constants and ai anisotropic thermal expansion coefficients.

5 : shell orthotropic material

shell orthotropic material, see section 6.1.4 corresponding to NASTRAN MAT8, are described by
a row of the form
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[MatId typ E1 E2 nu12 G12 G1z G2z Rho A1 A2 T0 Xt Xc Yt Yc S Eta ...

F12 STRN]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,5) command, rho (density),
... See m elastic Dbvallamina for building.

6 : Orthotropic material

3-D orthotropic material, see section 6.1.1 , are described by a set of engineering constants, in a row
of the form

[MatId typ E1 E2 E3 Nu23 Nu31 Nu12 G23 G31 G12 rho a1 a2 a3 T0 eta]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,6) command, Ei (Young mod-
ulus in each direction), νij (Poisson ratio), Gij (shear modulus), rho (density), ai (anisotropic ther-
mal expansion coefficient), T0 (reference temperature), and eta (loss factor). Care must be taken
when using these conventions, in particular, it must be noticed that

νji =
Ej
Ei
νij (9.19)

See also

Section 4.5.1, section 7.3 , fe mat, p shell
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Purpose

Material function for heat problem elements.

Syntax

mat= m_heat(’default’)

mat= m_heat(’database name’)

pl = m_heat(’dbval MatId name’);

pl = m_heat(’dbval -unit TM MatId name’);

pl = m_heat(’dbval -punit TM MatId name’);

Description

This help starts by describing the main commands of m heat : Database and Dbval. Materials
formats supported by m heat are then described.

Database,Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials. See section 7.3
for material property interface.

m heat(’DataBase Steel’) returns a the data structure describing steel.
m heat(’DBVal 100 Steel’) only returns the property row.

% List of materials in data base

m_heat info

% examples of row building and conversion

pl=m_heat(’DBVal 5 steel’);

pl=m_heat(pl,...

’dbval 101 aluminum’, ...

’dbval 200 steel’);

pl=fe_mat(’convert SITM’,pl);

pl=m_heat(pl,’dbval -unit TM 102 steel’)

Subtypes m heat supports the following material subtype

1 : Heat equation material

[MatId fe_mat(’m_heat’,’SI’,2) k rho C Hf]
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• k conductivity

• rho mass density

• C heat capacity

• Hf heat exchange coefficient

See also

Section 4.5.1, section 7.3 , fe mat, p heat
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Purpose

Material function for hyperelastic solids.

Syntax

mat= m_hyper(’default’)

mat= m_hyper(’database name’)

pl = m_hyper(’dbval MatId name’);

pl = m_hyper(’dbval -unit TM MatId name’);

pl = m_hyper(’dbval -punit TM MatId name’);

Description

Function based on m elastic function adapted for hyperelastic material. Only subtype 1 is currently
used:

1 : Nominal hyperelastic material

Nominal hyperelastic materials are described by a row of the form

[MatID typ rho Wtype C_1 C_2 K]

with typ an identifier generated with the fe mat(’m hyper’,’SI’,1) command, rho (density),
Wtype (value for Energy choice), C1, C2, K (energy coefficients).
Possible values for Wtype are:

0 : W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)2

1 : W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)− (C1 + 2C2 +K) ln(J3)

Other energy functions can be added by editing the hyper.c Enpassiv function.

In RivlinCube test, m hyper is called in this form:

model.pl=m_hyper(’dbval 100 Ref’); % this is where the material is defined

the hyperelastic material called “Ref” is described in the database of m hyper.m file:

out.pl=[MatId fe_mat(’type’,’m_hyper’,’SI’,1) 1e-06 0 .3 .2 .3];

out.name=’Ref’;

out.type=’m_hyper’;

out.unit=’SI’;
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Here is an example to set your material property for a given structure model:

model.pl = [MatID fe_mat(’m_hyper’,’SI’,1) typ rho Wtype C_1 C_2 K];

model.Elt(2:end,length(feval(ElemF,’node’)+1)) = MatID;
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Purpose

Material function for piezoelectric solids

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 6.1.5 for tutorial calls. Accepted commands are

[ Database, Dbval] [-unit TY] [,MatiD]] Name

m piezo contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.

Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric
properties and contains a reference ElasMatId to an elastic material used for the elastic properties
of the material (see m elastic for input formats).

m_piezo(’info’) % List of materials in data base

% database piezo and elastic properties

pl=m_piezo(’dbval 3 -elas 12 Sample_ULB’)

Theoretical details on piezoelectric materials are given in chapter 6.1.5. The m piezo Const and
BuildConstit commands support integration constant building for piezo electric volumes integrated
in the standard volume elements. Element properties are given by p solid entries, while materials
formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option
structure with fields

• .name of the form ProIdval+patchName. For example ProId1+SmartM.MFC-P1.2814.

• MatId value for the initial MatId.

m piezo(’patch’) lists currently implemented geometries. In particular
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• Noliac.Material.Geometry is used for circular patches by Noliac. Fields for the geometry
are

– OD outer diameter (mm).

– TH Thickness (mm). To specify a milimiter fraction replace the . by and . For example
TH0 7 is used for TH=0.7 mm.

– ID inner diameter (mm) (optional for piezo rings).

• SmartM.Material.Geometry is used for circular patches by Noliac. The geometry is coded
assuming a rectangle in mm. Thus 2814 corresponds to an 28 x 14 mm active rectangle.

The piezoelectric constants can be declared using the following sub-types

1 : Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 eps1T eps2T eps3T EDType]

These simplified piezoelectric properties (1.4) can be used for PVDF, but also for PZT if shear mode
actuation/sensing is not considered (d24 = d15 = 0). For EDType==0 on assumes d is given. For
EDType==1, e is given. Note that the values of εT (permitivity at zero stress) should be given (and
not εS).

2 : General 3D piezo

[ProId Type ElasMatId d 1:18 epsT 1:9]

d 1:18 are the 18 constants of the [d] matrix (see section 6.1.5 ), and epsT 1:9 are the 9 constants

of the
[
εT
]

matrix. One reminds that strains are stored in order xx, yy, zz, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e 1:18 epsT 1:9]

e 1:18 are the 18 constants of the [d] matrix, and epsT 1:9 are the 9 constants of the
[
εT
]

matrix

in the constitutive law (see section 6.1.5 ).

See also

p piezo.
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p beam

Purpose

Element property function for beams

Syntax

il = p_beam(’default’)

il = p_beam(’database’,’name’)

il = p_beam(’dbval ProId’,’name’);

il = p_beam(’dbval -unit TM ProId name’);

il = p_beam(’dbval -punit TM ProId name’);

il2= p_beam(’ConvertTo1’,il)

Description

This help starts by describing the main commands : p beam Database and Dbval. Supported p beam

subtypes and their formats are then described.

Database,Dbval, ...

p beam contains a number of defaults obtained with p beam(’database’) or
p beam(’dbval MatId’). You can select a particular entry of the database with using a name
matching the database entries. You can also automatically compute the properties of standard
beams

circle r beam with full circular section of radius r.
rectangle b h beam with full rectangular section of width b and height h. See

beam1 for orientation (the default reference node is 1.5, 1.5, 1.5 so
that orientation MUST be defined for non-symmetric sections).

Type r1 r2 ... other predefined sections of subtype 3 are listed using
p beam(’info’).

For example, you will obtain the section property row with ProId 100 associated with a circular
cross section of 0.05m or a rectangular 0.05× 0.01m cross section using

% ProId 100, rectangle 0.05 m by 0.01 m

pro = p_beam(’database 100 rectangle .05 .01’)

% ProId 101 circle radius .05

il = p_beam(pro.il,’dbval 101 circle .05’)

p_beam(’info’)

% ProId 103 tube external radius .05 internal .04
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il = p_beam(il,’dbval -unit SI 103 tube .05 .04’)

% Transform to subtype 1

il2=p_beam(’ConvertTo1’,il)

il(end+1,1:6)=[104 fe_mat(’p_beam’,’SI’,1) 0 0 0 1e-5];

il = fe_mat(’convert SITM’,il);

% Generate a property in TM, providing data in SI

il = p_beam(il,’dbval -unit TM 105 rectangle .05 .01’)

% Generate a property in TM providing data in TM

il = p_beam(il,’dbval -punit TM 105 rectangle 50 10’)

Show3D,MAP ...

format description and subtypes

Element properties are described by the row of an element property matrix or a data structure
with an .il field containing this row (see section 7.4 ). Element property functions such as p beam

support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section 4.5.1 . For a programmers reference
on formats used to describe element properties see section 7.4 .

1 : standard

[ProID type J I1 I2 A k1 k2 lump NSM]
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ProID element property identification number.
type identifier obtained with fe mat(’p beam’,’SI’,1).
J torsional stiffness parameter (often different from polar moment of inertia

I1+I2).
I1 moment of inertia for bending plane 1 defined by a third node nr or the

vector vx vy vz (defined in the beam1 element). For a case with a beam
along x and plane 1 the xy plane I1 is equal to Iz =

∫
S y

2ds.
I2 moment of inertia for bending plane 2 (containing the beam and orthogonal

to plane 1.
A section area.
k1 (optional) shear factor for motion in plane 1 (when not 0, a Timoshenko

beam element is used). The effective area of shear is given by k1A.
k2 (optional) shear factor for direction 2.
lump (optional) request for lumped mass model. 1 for inclusion of inertia terms.

2 for simple half mass at node.
NSM (optional) non structural mass (density per unit length).

bar1 elements only use the section area. All other parameters are ignored.

beam1 elements use all parameters. Without correction factors (k1 k2 not given or set to 0), the
beam1 element is the standard Bernoulli-Euler 12 DOF element based on linear interpolations for
traction and torsion and cubic interpolations for flexion (see Ref. [37] for example). When non
zero shear factors are given, the bending properties are based on a Timoshenko beam element with
selective reduced integration of the shear stiffness [45]. No correction for rotational inertia of sections
is used.

3 : Cross section database

This subtype can be used to refer to standard cross sections defined in database. It is particularly
used by nasread when importing NASTRAN PBEAML properties.

[ProID type 0 Section Dim(i) ... ]

ProID element property identification number.
type identifier obtained with fe mat(’p beam’,’SI’,3).
Section identifier of the cross section obtained with comstr(’SectionName’,-32’

where SectionName is a string defining the section (see below).
Dim1 ... dimensions of the cross section.

Cross section, if existing, is compatible with NASTRAN PBEAML definition. Equivalent moment
of inertia and tensional stiffness are computed at the centroid of the section. Currently available
sections are listed with p beam(’info’). In particular one has ROD (1 dim), TUBE (2 dims), T (4
dims), T2 (4 dims), I (6 dims), BAR (2 dims), CHAN1 (4 dims), CHAN2 (4 dims).
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For NSM and Lump support ConverTo1 is used during definition to obtain the equivalent subtype 1

entry.

See also

Section 4.5.1, section 7.4 , fe mat

423



p heat

Purpose

Formulation and material support for the heat equation.

Syntax

il = p_heat(’default’)

Description

This help starts by describing the main commands : p heat Database and Dbval. Supported p heat

subtypes and their formats are then described. For theory see section 6.1.13 .

Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section 7.4 ). Element property functions such as p solid

support graphical editing of properties and a database of standard properties.

p heat database

il=p_heat(’database’);

Accepted commands for the database are

• d3 Integ SubType : Integ integration rule for 3D volumes (default -3).

• d2 Integ SubType : Integ integration rule for 2D volumes (default -3).

For fixed values, use p heat(’info’).

Example of database property construction

il=p_heat([100 fe_mat(’p_heat’,’SI’,1) 0 -3 3],...

’dbval 101 d3 -3 2’);

Heat equation element properties

Element properties are described by the row of an element property matrix or a data structure
with an .il field containing this row. Element property functions such as p beam support graphical
editing of properties and a database of standard properties.
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1 : Volume element for heat diffusion (dimension DIM)

[ProId fe_mat(’p_heat’,’SI’,1) CoordM Integ DIM]

ProID element property identification number
type identifier obtained with fe mat(’p beam’,’SI’,1)

Integ is rule number in integrules
DIM is problem dimension 2 or 3 D

2 : Surface element for heat exchange (dimension DIM-1)

[ProId fe_mat(’p_heat’,’SI’,2) CoordM Integ DIM]

ProID element property identification number
type identifier obtained with fe mat(’p beam’,’SI’,2)

Integ is rule number in integrules

DIM is problem dimension 2 or 3 D

SetFace

This command can be used to define a surface exchange and optionally associated load. Surface
exchange elements add a stiffness term to the stiffness matrix related to the exchange coefficient
Hf defined in corresponding material property. One then should add a load corresponding to the
exchange with the source temperature at T0 through a convection coefficient Hf which is Hf.T 0. If
not defined, the exchange is done with source at temperature equal to 0.

model=p heat(’SetFace’,model,SelElt,pl,il);

• SelElt is a findelt command string to find faces that exchange heat (use ’SelFace’ to select
face of a given preselected element).

• pl is the identifier of existing material property (MatId), or a vector defining an m heat prop-
erty.

• il is the identifier of existing element property (ProId), or a vector defining an p heat property.

Command option -load T can be used to defined associated load, for exchange with fluid at tem-
perature T. Note that if you modify Hf in surface exchange material property you have to update
the load.

Following example defines a simple cube that exchanges with thermal source at 55 deg on the bottom
face.
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model=femesh(’TestHexa8’); % Build simple cube model

model.pl=m_heat(’dbval 100 steel’); % define steel heat diffusion parameter

model.il=p_heat(’dbval 111 d3 -3 1’); % volume heat diffusion (1)

model=p_heat(’SetFace-load55’,... % exchange at 55 deg

model,...

’SelFace & InNode{z==0}’,... % on the bottom face

100,... % keep same matid for exchange coef

p_heat(’dbval 1111 d3 -3 2’)); % define 3d, integ-3, for surface exchange (2)

cf=feplot(model); fecom colordatapro

def=fe_simul(’Static’,model); % compute static thermal state

mean(def.def)

2Dvalidation

Consider a bi-dimensional annular thick domain Ω with radii re = 1 and ri = 0.5. The data are
specified on the internal circle Γi and on the external circle Γe. The solid is made of homogeneous
isotropic material, and its conductivity tensor thus reduces to a constant k. The steady state
temperature distribution is then given by

−k∆θ(x, y) = f(x, y) in Ω. (9.20)

The solid is subject to the following boundary conditions

• Γi (r = ri) : Neumann condition

∂θ

∂n
(x, y) = g(x, y) (9.21)

• Γe (r = re) : Dirichlet condition

θ(x, y) = θext(x, y) (9.22)

In above expressions, f is an internal heat source, θext an external temperature at r = re, and g a
function. All the variables depend on the variable x and y.

The OpenFEM model for this example can be found in ofdemos(’AnnularHeat’).
Numerical application : assuming k = 1, f = 0, Hf = 1e−10, θext(x, y) = exp(x) cos(y) and
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g(x, y) = − exp(x)
ri

(cos(y)x− sin(y)x), the solution of the problem is given by θ(x, y) = exp(x) cos(y)

See also

section 6.1.13 , section 4.5.1 , fe mat
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Purpose

Element property function for shells and plates (flat shells)

Syntax

il = p_shell(’default’);

il = p_shell(’database ProId name’);

il = p_shell(’dbval ProId name’);

il = p_shell(’dbval -unit TM ProId name’);

il = p_shell(’dbval -punit TM ProId name’);

il = p_shell(’SetDrill 0’,il);

Description

This help starts by describing the main commands : p shell Database and Dbval. Supported
p shell subtypes and their formats are then described.

Database,Dbval] ...

p shell contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.

You can also automatically compute the properties of standard shells with

kirchhoff e Kirchhoff shell of thickness e.
mindlin e Mindlin shell of thickness e.
laminate MatIdi Ti Thetai Specification of a laminate property by giving the different ply

MatId, thickness and angle. By default the z values are counted
from -thick/2, you can specify another value with a z0.

You can append a string option of the form -f i to select the appropriate shell formulation. For
example, you will obtain the element property row with ProId 100 associated with a .1 thick Kirchhoff
shell (with formulation 5) or the corresponding Mindlin plate use

il = p_shell(’database 100 MindLin .1’)

il = p_shell(’dbval 100 kirchhoff .1 -f5’)

il = p_shell(’dbval 100 laminate z0=-2e-3 110 3e-3 30 110 3e-3 -30’)

il = fe_mat(’convert SITM’,il);

il = p_shell(il,’dbval -unit TM 2 MindLin .1’) % set in TM, provide data in SI

il = p_shell(il,’dbval -punit TM 2 MindLin 100’) % set in TM, provide data in TM
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For laminates, you specify for each ply the MatId, thickness and angle.

Shell format description and subtypes

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section 7.4 ). Element property functions such as p shell

support graphical editing of properties and a database of standard properties.

For a tutorial on material/element property handling see section 4.5.1 . For a reference on formats
used to describe element properties see section 7.4 .

p shell currently only supports two subtypes

1 : standard isotropic

[ProID type f d O h k MID2 RatI12_T3 MID3 NSM Z1 Z2 MID4]

type identifier obtained with fe mat(’p shell’,’SI’,1).
f 0 use default of element. For other formulations the specific help for each element (quad4,

tria3, ...), each formulation specifies integration rule.
d -1 no drilling stiffness. The element DOFs are the standard translations and rotations at all

nodes (DOFs .01 to .06). The drill DOF (rotation .06 for a plate in the xy plane) has
no stiffness and is thus eliminated by fe mk if it corresponds to a global DOF direction.
The default is d=1 (d is set to 1 for a declared value of zero).

d arbitrary drilling stiffness with value proportional to d is added. This stiffness is often
needed in shell problems but may lead to numerical conditioning problems if the stiffness
value is very different from other physical stiffness values. Start with a value of 1. Use
il=p shell(’SetDrill d’,il) to set to d the drilling stiffness of all p shell subtype 1
rows of the property matrix il.

h plate thickness.
k k shear correction factor (default 5/6, default used if k is zero). This correction is not used

for formulations based on triangles since tria3 is a thin plate element.
RatI12 T3Ratio of bending moment of inertia to nominal T3/I12 (default 1).
NSM Non structural mass per unit area.
MID2 material property for bending. Defauts to element MatId if equal to 0.
MID3 material property for transverse shear.
z1,z2 (unused) offset for fiber computations.
MID4 material property for membrane/bending coupling.

Shell strain is defined by the membrane, curvature and transverse shear
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(display with p shell(’ConstShell’)).

εxx
εyy
2εxy
κxx
κyy
2κxy
γxz
γyz


=



N, x 0 0 0 0
0 N, y 0 0 0

N, y N, x 0 0 0
0 0 0 0 N, x
0 0 0 −N, y 0
0 0 0 −N, x N, y
0 0 N, x 0 −N
0 0 N, y N 0





u
v
w
ru
rv


(9.23)

2 : composite

[ProID type Z0 NSM SB FT TREF GE LAM MatId1 T1 Theta1 SOUT1 ...]

ProID Section property identification number.
type Identifier obtained with fe mat(’p shell’,’SI’,2).
Z0 Distance from reference plate to bottom surface.
NSM Non structural mass per unit area.
SB Allowable shear stress of the bonding material.
FT Failure theory.
TREF Reference temperature.
Eta Hysteretic loss factor.
LAM Laminate type.
MatIdi

MatId for ply i, see m elastic 1, m elastic 5, ...
Ti Thickness of ply i.
Thetai Orientation of ply i.
SOUTi Stress output request for ply i.

Note that this subtype is based on the format used by NASTRAN for PCOMP and the formulation used
for each topology is discussed in each element (see quad4, tria3). You can use the DbvalLaminate

commands to generate standard entries.


N
M
Q

 =

 A B 0
B D 0
0 0 F




ε
κ
γ

 (9.24)
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setTheta

When dealing with laminated plates, the classical approach uses a material orientation constant per
element. OpenFEM also supports more advanced strategies with orientation defined at nodes but
this is still poorly documented.

The material orientation is the reference for plies. Any angle defined in a laminate command is an
additional rotation. In the example below, the element orientation is rotated 30 degrees, and the ply
another 30. The fibers are thus oriented 60 degrees in the xy plane. Stresses are however given in the
material orientation thus with a 30 degree rotation. Per ply output is not currently implemented.

The element-wise material angle is stored for each element. In column 7 for tria3, 8 for quad4, ...
The setTheta command is a utility to ease the setting of these angles. By default, the orientation
is done at element center. To use the mean orientation at nodes use command option -strategy 2.

model=ofdemos(’composite’);

model.il = p_shell(’dbval 110 laminate 100 1 30’); % single ply

% Define material angle based on direction at element

MAP=feutil(’getnormalElt MAP -dir1’,model);

bas=basis(’rotate’,[],’rz=30;’,1);

MAP.normal=MAP.normal*reshape(bas(7:15),3,3)’;

model=p_shell(’setTheta’,model,MAP);

% Obtain a MAP of material orientations

MAP=feutil(’getnormalElt MAP -dir1’,model);

feplot(model);fecom(’showmap’,MAP)

% Set elementwise material angles using directions given at nodes.

% Here a global direction

MAP=struct(’normal’,ones(size(model.Node,1),1)*bas(7:9), ...

’ID’,model.Node(:,1),’opt’,2);

model=p_shell(’setTheta’,model,MAP);

% Using an analytic expression to define components of

% material orientation vector at nodes

data=struct(’sel’,’groupall’,’dir’,{{’x-0’,’y+.01’,0}},’DOF’,[.01;.02;.03]);
model=p_shell(’setTheta’,model,data);

MAP=feutil(’getnormalElt MAP -dir1’,model);

feplot(model);fecom(’showmap’,MAP)

model=p shell(’setTheta’,model,0) is used to reset the material orientation to zero.
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Technically, shells use the of mk(’BuildNDN’) rule 23 which generates a basis at each integration
point. The first vector v1x,v1y,v1z is built in the direction of r lines and v2x,v2y,v2z is tangent
to the surface and orthogonal to v1. When a InfoAtNode map provides v1x,v1y,v1z, this vector is
projected (NEED TO VERIFY) onto the surface and v2 taken to be orthogonal.

See also

Section 4.5.1, section 7.4 , fe mat
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Purpose

Element property function for volume elements.

Syntax

il=p_solid(’database ProId Value’)

il=p_solid(’dbval ProId Value’)

il=p_solid(’dbval -unit TM ProId name’);

il=p_solid(’dbval -punit TM ProId name’);

model=p_solid(’default’,model)

Description

This help starts by describing the main commands : p solid Database and Dbval. Supported
p solid subtypes and their formats are then described.

Database,Dbval,Default] ...

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section 7.4 ). Element property functions such as p solid

support graphical editing of properties and a database of standard properties.

Accepted commands for the database are

• d3 Integ : Integ integration rule for quadratic 3D volumes. For information on rules available
see integrules Gauss. Examples are d3 2 2x2x2 integration rule for linear volumes (hexa8
... ); d3 -3 default integration for all 3D elements, ...

• d2 Integ : Integ integration rule for quadratic 2D volumes. For example d2 2 2x2x2 inte-
gration rule for linear volumes (q4p ... ). You can also use d2 1 0 2 for plane stress, and d2

2 0 2 for axisymmetry.

• fsc Integ : integration rule selection for fluid/structure coupling.

For fixed values, use p solid(’info’).

For a tutorial on material/element property handling see section 4.5.1 . For a reference on formats
used to describe element properties see section 7.4 .

Examples of database property construction
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il=p_solid([100 fe_mat(’p_solid’,’SI’,1) 0 3 0 2], ...

’dbval 101 Full 2x2x2’,’dbval 102 d3 -3’);

il=fe_mat(’convert SITM’,il);

il=p_solid(il,’dbval -unit TM 2 Reduced shear’)

% Try a smart guess on default

model=femesh(’TestHexa8’);model.il=[];

model=p_solid(’default’,model)

1 : 3D volume element

[ProID fe_mat(’p_solid’,’SI’,1) Coordm In Stress Isop ]

ProID Property identification number.
Coordm Identification number of the material coordinates system. Warning not imple-

mented for all material formulations.
In Integration rule selection (see integrules Gauss). 0 selects the legacy 3D me-

chanics element (of mk pre.c), -3 the default rule.
Stress Location selection for stress output (NOT USED).
Isop Integration scheme (will be used to select shear protection mechanisms).

The underlying physics for this subtype are selected through the material property. Examples are
3D mechanics with m elastic, piezo electric volumes (see m piezo), heat equation (p heat).

2 : 2D volume element

[ProId fe_mat(’p_solid’,’SI’,2) Form N In]

ProID Property identification number.
Type Identifier obtained with fe mat(’p solid,’SI’,2).
Form Formulation (0 plane strain, 1 plane stress, 2 axisymmetric), see details in

m elastic.
N Fourier harmonic for axisymmetric elements that support it.
In Integration rule selection (see integrules Gauss). 0 selects legacy 2D element,

-3 the default rule.

The underlying physics for this subtype are selected through the material property. Examples are
2D mechanics with m elastic.

3 : ND-1 coupling element

[ProId fe_mat(’p_solid’,’SI’,3) Integ Form Ndof1 ...]
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ProID Property identification number.
Type Identifier obtained with fe mat(’p solid,’SI’,3).
Integ Integration rule selection (see integrules Gauss). 0 or -3 selects the default

for the element.
Form 1 volume force, 2 volume force proportional to density, 3 pressure, 4:

fluid/structure coupling, see fsc, 5 2D volume force, 6 2D pressure. 8 Wall
impedance (acoustics), then uses the R parameter in fluid.

See also

Section 4.5.1, section 7.4 , fe mat
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Purpose

Element property function for spring and rigid elements

Syntax

il=p_spring(’default’)

il=p_spring(’database MatId Value’)

il=p_spring(’dbval MatId Value’)

il=p_spring(’dbval -unit TM ProId name’);

il=p_spring(’dbval -punit TM ProId name’);

Description

This help starts by describing the main commands : p spring Database and Dbval. Supported
p spring subtypes and their formats are then described.

Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data structure with
an .il field containing this row (see section 7.4 ).

Examples of database property construction

il=p_spring(’database 100 1e12 1e4 0’)

il=p_spring(’dbval 100 1e12’);

il=fe_mat(’convert SITM’,il);

il=p_spring(il,’dbval 2 -unit TM 1e12’) % Generate in TM, provide data in SI

il=p_spring(il,’dbval 2 -punit TM 1e9’) % Generate in TM, provide data in TM

p spring currently supports 2 subtypes

1 : standard

[ProID type k m c Eta S]

ProID property identification number.
type identifier obtained with fe mat(’p spring’,’SI’,1).
k stiffness value.
m mass value.
c viscous damping value.
eta loss factor.
S Stress coefficient.
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2 : bush

Note that type 2 is only functional with cbush elements.

[ProId Type k1:k6 c1:c6 Eta SA ST EA ET m v]

ProID property identification number.
type identifier obtained with fe mat(’p spring’,’SI’,2).
ki stiffness for each direction.
ci viscous damping for each direction.
SA stress recovery coef for translations.
ST stress recovery coef for rotations.
EA strain recovery coef for translations.
ET strain recovery coef for rotations.
m mass.
v volume.

See also

Section 4.5.1, section 7.4 , fe mat, celas, cbush
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Purpose

Element property function for superelements.

Syntax

il=p_super(’default’)

il=p_super(’database MatId Value’)

il=p_super(’dbval MatId Value’)

il=p_super(’dbval -unit TM ProId name’);

il=p_super(’dbval -punit TM ProId name’);

Description

If ProID is not given, fe super will see if SE.Opt(3,:) is defined and use coefficients stored in this
row instead. If this is still not given, all coefficients are set to 1. Element property rows (in
a standard property declaration matrix il) for superelements take the forms described below with
ProID the property identification number and coefficients allowing the creation of a weighted sum
of the superelement matrices SEName.K{i}. Thus, if K{1} and K{3} are two stiffness matrices and
no other stiffness matrix is given, the superelement stiffness is given by coef1*K{1}+coef3*K{3}.

Database,Dbval] ...

There is no database call for p super entries.

1 : simple weighting coefficients

[ProId Type coef1 coef2 coef3 ... ]

ProID Property identification number.
Type Identifier obtained with fe mat(’p super’,’SI’,1).
coef1 Multiplicative coefficient of the first matrix of the superelement (K{1}). Su-

perelement matrices used for the assembly of the global model matrices will be
{coef1*K{1}, coef2*K{2}, coef3*K{3}, ...}. Type of the matrices (stiff-
ness, mass ...) is not changed. Note that you can define parameters for superele-
ment using fe case(model,’par’), see fe case.

2 : matrix type redefinition and weighting coefficients

[ProId Type Form type1 coef1 type2 coef2 ...]
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ProID Property identification number.
Type Identifier obtained with fe mat(’p super’,’SI’,2).
type1 Type redefinition of the first matrix of the superelement (K{1}) according to

SDT standard type (1 for stiffness, 2 for mass, 3 for viscous damping... see
fe mknl MatType).

coef1 Multiplicative coefficient of the first matrix of the superelement (K{1}). Su-
perelement matrices used for the assembly of the global model matrices will be
{coef1*K{1}, coef2*K{2}, coef3*K{3}, ...}. Type of the matrices (stiff-
ness, mass ...) is changed according to type1, type2, ... . Note that you can
define parameters for superelement using fe case(model,’par’), see fe case.

See also

fesuper, section 6.3
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Purpose

Property function for piezoelectric shells and utilities associated with piezoelectric models.

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 6.1.5 for tutorial calls. Accepted commands are

ElectrodeMPC

[model,InputDOF(end+1,1)]=p piezo(’ElectrodeMPC Name’,model,’z==5e-5’); defines the isopo-
tential constraint as a case entry Name associated with FindNode command z==5e-5. An illustration
is given in section 6.1.5 .

Accepted command options are

• -Ground defines a fixed voltage constraint FixDof,V=0 on Name.

• -Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.

• MatIdi is used to define a resultant sensor to measure the charge associated with the electrode.
Note that the electrode surface must not be inside the volume with MatIdi. If that is the case,
you must arbitrarily decompose your mesh in two parts with different MatId. You can also
generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the
MatIdi based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSensQ 1682 Q-Base’,model); adds a charge sensor (resultant) called
Q-Base on node 1682. (See (1.4) for theory).

For shells, the node number is used to identify the p piezo shell property and thus the associated
elements. It is reminded that p piezo entries must be duplicated when multiple patches are used.
For volumes, the p piezo ElectrodeMPC should be first defined, so that it can be used to obtain
the electrode surface information.

Note that the command calls fe case(’SensMatch’) so that changes done to material properties
after this call will not be reflected in the observation matrix of this sensor.
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To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify
a data structure with observation .cta at multiple .DOF as illustrated below.

For a voltage sensor, you can simply use a DOF sensor
model=fe case(model,’SensDof’,’V-Base’,1682.21).

model=d_piezo(’meshULBPlate cantilever’); % creates the model

% If you don’t remember the electrode node numbers

p_piezo(’ElectrodeDOF’,model)

% Combined charge

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’QS2+3’);

model=p_piezo(’ElectrodeSensQ’,model,r1);

sens=fe_case(model,’sens’);

% Combined voltage

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’VS2+3’);

model=fe_case(model,’SensDof’,r1.name,r1);

sens=fe_case(model,’sens’);sens.lab

ElectrodeDOF

p piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode. With no name
for selection p piezo(’ElectrodeDof’,model) the command returns the list of electrode DOFs
based on MPC defined using the ElectrodeMPC command or p piezo shell entries. Use ElectrodeDof.*
to get all DOFs.

ElectrodeView ...

p piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a clear text summary
of electrode information. To only get the summary, pass a model model rather than a pointer cf to
a feplot figure.

p piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the visualization of
charge density. You should be aware that only resultant charges at nodes are known. For proper
visualization a transformation from charge resultant to charge density is performed, this is known
to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to gener-
ate appropriate case entries : V In for enforced voltage actuators, V Out for voltage measurements,
Q Out for charge sensors.
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ElectrodeInit

ElectrodeInit analyses the model to find electric master DOFs in piezo-electric shell properties or
in MPC associated with volume models.

Tab

Tab commands are used to generate tabulated information about model contents. The calling format
is p piezo(’TabDD’,model). With no input argument, the current feplot figure is used. Currently
generated tabs are

• TabDD constitutive laws

• TabPro material and element parameters shown as java tables.

View

p piezo(’ViewDD’,model) displays information about piezoelectric constitutive laws in the current
model.

p piezo(’ViewElec ...’,model) is used to visualize the electrical field. An example is given
in section 6.1.5 . Command options are DefLenval to specify the arrow length, EltSelval for the
selection of elements to be viewed, Reset to force reinit of selection.

ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a
layered composite, see p shell 2, and an electrode definition with element property rows of the
form

[ProId Type MecaProId ElNodeId1 LayerId1 UNU1 ElNodeId2...]

• Type typically fe mat(’p piezo’,’SI’,1)

• MecaProId : ProId for mechanical properties of element p shell 2 composite entry. The
MatIdi for piezo layers must be associated with piezo electric material properties.

• ElNodId1 : NodeId for electrode 1. This needs to be a node declared in the model but its
position is not used since only the value of the electric potential (DOF 21) is used. You may
use a node of the shell but this is not necessary.
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• LayerId : layer number as declared in the composite entry.

• UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section 6.1.5 . The following gives a
sample declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110

% MatId 1 : steel, MatId 12 : PZT elastic prop

model.pl=m_elastic(’dbval 1 Steel’);

% Sample ULB piezo material, sdtweb m_piezo(’sample_ULB’)

model.pl=m_piezo(model.pl,’dbval 3 -elas 12 Sample_ULB’);

% ProId 111 : 3 layer composite (mechanical properties)

model.il=p_shell(model.il,[’dbval 111 laminate ’ ...

’3 1e-3 0 ’ ... % MatID 3 (PZT), 1 mm piezo, 0

’1 2e-3 0 ’ ... % MatID 1 (Steel), 2 mm

’3 1e-3 0’]); % MatID 3 (PZT), 1 mm piezo, 0

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683

model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’,model) % Details about the constitutive law

p_piezo(’ElectrodeInfo’,model) % Details about the layers
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quad4, quadb, mitc4

Purpose

4 and 8 node quadrilateral plate/shell elements.

Description

In a model description matrix, element property rows for quad4, quadb and mitc4 elements
follow the standard format

[n1 ... ni MatID ProID EltID Theta Zoff T1 ... Ti]

giving the node identification numbers ni (1 to 4 or 8), material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between material x axis and
element x axis, Zoff the off-set along the element z axis from the surface of the nodes to the reference
plane (use feutil Orient command to check z-axis orientation), Ti the thickness at nodes (used
instead of il entry, currently the mean of the Ti is used).

If n3 and n4 are equal, the tria3 element is automatically used in place of the quad4.

Isotropic materials are currently the only supported (this may change soon). Their declaration fol-
lows the format described in m elastic. Element property declarations follow the format described
p shell.

quad4

Supported formulations (f value stored in il(3) p shell entries for isotropic materials and element
default for composites) are

• 0 element/property dependent default. This is always used for composites (p shell subtype
2).
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• 5 Q4CS is a second implementation MITC4 elements that supports classical laminated plate
theory (composites) as well as the definition of piezo-electric extension actuators. This is the
default for SDT. Non flat shell geometries are supported with interpolation of normal fields.

• 1 4 tria3 thin plate elements with condensation of central node. Old and not very efficient
formulation implemented in quad4.

• 2 Q4WT for membrane and Q4gamma for bending (implemented in quad4). This is only
applicable if the four nodes are in a single plane. When not, formulation 1 is called.

• 4 MITC4 calls the MITC4 element below. This implementation has not been tested extensively,
so that the element may not be used in all configurations. It uses 5 DOFs per node with the
two rotations being around orthogonal in-plane directions. This is not consistent for mixed
element types assembly. Non smooth surfaces are not handled properly because this is not
implemented in the feutil GetNormal command which is called for each group of mitc4

elements.

The definition of local coordinate systems for composite fiber orientation still needs better documen-
tation. Currently, q4cs the only element that supports composites, uses the local coordinate system
resulting from the BuildNDN 23 rule. A temporary solution for uniform orientation is provided with
model=feutilb(’shellmap -orient dx dy dz’,model).

quadb

Supported formulations (p shellil(3) for isotropic materials and element default for composites)
are

• 1 8 tria3 thin plate elements with condensation of central node.

• 2 isoparametric thick plate with reduced integration. For non-flat elements, formulation 1 is
used.
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See also

m elastic, p shell, fe mk, feplot
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q4p, q8p, t3p, t6p and other 2D volumes

Purpose

2-D volume elements.

Description

The q4p q5p, q8p, q9a, t3p, t6p elements are topology references for 2D volumes and 3D surfaces.

In a model description matrix, element property rows for this elements follow the standard format

[n1 ... ni MatID ProID EltID Theta]

giving the node identification numbers n1,...ni, material MatID, property ProID. Other optional
information is EltID the element identifier, Theta the angle between material x axis and element x
axis (material orientation maps are generally preferable).

These elements only define topologies, the nature of the problem to be solved should be specified
using a property entry, see section 6.1 for supported problems and p solid, p heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex coordinates of the
reference element can be found using an integrules command containing the name of the element
such as r1=integrules(’q4p’);r1.xi.

Backward compatibility note : if no element property entry is defined, or with a p solid entry
with the integration rule set to zero, the element defaults to the historical 3D mechanic elements
described in section 7.19.2 .

These volume elements are used for various problem families.

See also

fe mat, fe mk, feplot



rigid

Purpose

Linearized rigid link constraints.

Description

Rigid links are often used to model stiff connections in finite element models. One generates a set
of linear constraints that relate the 6 DOFs of master M and slave S nodes by
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Resolution of linear constraints is performed using fe case or model assembly (see section 4.8.8 )
calls. The theory is discussed in section 7.14 . Note that the master node of a rigid link has 6 DOF,
even if the model may only need less (3 DOF for volumes).

If coordinate systems are defined in field model.bas (see basis), PID (position coordinate system)
and DID (displacement coordinate system) declarations in columns 2 and 3 of model.Node are prop-
erly handled.

Although rigid are linear constraints rather than true elements, such connections can be declared
using an element group of rigid connection with a header row of the form [Inf abs(’rigid’)]

followed by as many element rows as connections of the form

[ n1 n2 DofSel MatId ProId EltId]

where node n2 will be rigidly connected to node n1 which will remain free. DofSel lets you specify
which of the 3 translations and 3 rotations are connected (thus 123 connects only translations while
123456 connects both translations and rotations). The rigid elements thus defined can then be
handled as standard elements.

With this strategy you can use penalized rigid links (celas element) instead of truly rigid connec-
tions. This requires the selection of a stiffness constant but can be easier to manipulate. To change
a group of rigid elements into celas elements and set a stiffness constant Kv, one can do

model=feutil(’SetGroup rigid name celas’,model);

model.Elt(feutil(’findelt group i’,model),7) = Kv; % celas in group i



rigid

The other rigid definition strategy is to store them as a case entry. rigid entries are rows of the
Case.Stack cell array giving {’rigid’, Name, Elt}.

The syntax is

model=fe_case(model,’rigid’,Name,Elt);

where Name is a string identifying the entry. Elt is a model description matrix containing rigid ele-
ments. Command option Append allows concatenating a new list of rigid constraints to a preexisting
list in Case.Stack.

The call model=fe_case(model,’rigidAppend’,’Name’,Elt1); would thus concatenate the pre-
viously defined list Name with the new rigid element matrix Elt1.

Using the fe case call to implement rigid allows an alternative rigid constraint input that can be
more comprehensive in some applications. You may use a list of the form [MasterNode slaveDOF

slaveNode 1 slaveNode 2 ... slaveNode i] instead of the element matrix. Command option
Append is also valid.

The following sample calls are thus equivalent, and consists in implementing a rigid link between
nodes 1 and 2, and 1 and 3 (with 1 as master) for all six DOF in a sample model:

model=fe_case(model,’rigid’,’Rigid edge’,...

[Inf abs(’rigid’);

1 2 123456 0 0 0;

1 3 123456 0 0 0]);

% or

model=fe_case(model,’rigid’,’Rigid edge’,[1 123456 2 3]);

In some cases, interactions with feplot visualization may transform the Elt matrix into a structure
with fields Elt that contains the original data, and Sel that is internally used by feplot to display
the rigid constraint on the mesh.

The following example generates the mesh of a square plate with a rigid edge, the rigid constraint
is here declared as rigid elements

% generate a sample plate model

model=femesh(’testquad4 divide 10 10’);

% generate beam1 elements based on the edge

% of the underlying 2D model at x=0

elt=feutil(’selelt seledge & innode{x==0}’,model);
% remove element header from selection,
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% we only use the node connectivity

elt=elt(2:end,:);

% assign the rigid element property

elt(2:end,3)=123456; % all 6 DOF are slave

% remove old data from the previous element selection

elt(2:end,4:end)=0;

% add rigid elements to the model

model=feutil(’addelt’,model,’rigid’,elt);

% % alternative possible: define as a case entry

% model=fe_case(model,’rigid’,’Rigid edge’,[Inf abs(’rigid’); elt]);

% Compute and display modes

def=fe_eig(model,[6 20 1e3]);

feplot(model,def);fecom(’;view3;ch8;scd.1’);

The rigid function itself is only used for low level access by generating the subspace T that verifies
rigid constraints

[T,cdof] = rigid(node,elt,mdof)

[T,cdof] = rigid(Up)

See also

Section 7.14, celas
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Purpose

Element functions for a 3 node/18 DOF and 6 nodes/36 DOF shell elements.

Description

In a model description matrix, element property rows for tria3 elements follow the standard
format

[n1 n2 n3 MatID ProID EltID Theta Zoff T1 T2 T3]

giving the node identification numbers ni, material MatID, property ProID. Other optional infor-
mation is EltID the element identifier, Theta the angle between material x axis and element x axis
(currently unused), Zoff the off-set along the element z axis from the surface of the nodes to the
reference plane, Ti the thickness at nodes (used instead of il entry, currently the mean of the Ti is
used).

The element only supports isotropic materials with the format described in m elastic.

The supported property declaration format is described in p shell. Note that tria3 only supports
thin plate formulations.

tria3 : p shellformulation is not used, the single implemented formulation uses a T3 triangle for
membrane properties and a DKT for bending (see [46] for example).

tria6 :p shellformulation is not used since the currently the only implementation is a call to q4cs

(formulation 5).

See also

quad4, quadb, fe mat, p shell, m elastic, fe mk, feplot
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This section contains detailed descriptions of the functions in Structural Dynamics Toolbox. It
begins with a list of functions grouped by subject area and continues with the reference entries in
alphabetical order. From Matlab short text information is available through the help command
while the HTML version of this manual can be accessed through doc.

For easier use, most functions have several optional arguments. In a reference entry under syntax,
the function is first listed with all the necessary input arguments and then with all possible input
arguments. Most functions can be used with any number of arguments between these extremes, the
rule being that missing, trailing arguments are given default values, as defined in the manual.

As always in Matlab, all output arguments of functions do not have to be specified, and are then
not returned to the user.

As indicated in their synopsis some functions allow different types of output arguments. The different
output formats are then distinguished by the number of output arguments, so that all outputs must
be asked by the user.

Typesetting conventions and mathematical notations used in this manual are described in section 1.3
.

Element functions are detailed in chapter 9.

A list of demonstrations is given in section 1.1 .
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User Interface (UI) and Graphical User Interface (GUI) Tools

fecom UI command function for deformations created with feplot

femesh UI command function for mesh building and modification
feplot GUI for 3-D deformation plots
fesuper UI commands for superelement manipulations
idcom UI commands for standard identification procedures
idopt manipulation of identification options
iicom UI commands for measurement data visualization
ii mac GUI for MAC and other vector correlation criteria
iiplot GUI for the visualization of frequency response data

Experimental Model Identification

idcom UI commands linked to identification
idopt manipulation of options for identification related functions
id rc broadband pole/residue model identification
id rcopt alternate optimization algorithm for id rc

id rm minimal and reciprocal MIMO model creation
id nor optimal normal mode model identification
id poly weighted least square orthogonal polynomial identification
id dspi direct system parameter identification algorithm
ii poest narrow-band single pole model identification
ii pof transformations between pole representation formats
psi2nor optimal complex/normal mode model transformation
res2nor simplified complex to normal mode residue transformation

UI and GUI Utilities

comgui general purpose functions for the graphical user interfaces
commode general purpose parser for UI command functions
comstr general purpose string handling routine
iimouse mouse related callbacks (zooming, info, ...)
feutil mesh handling utilities
ii plp overplot vertical lines to indicate pole frequencies
setlines line style and color sequencing utility

Frequency Response Analysis Tools

db amplitude in dB (decibels)
ii cost FRF comparison with quadratic and logLS cost
ii mmif Multivariate Mode Indicator Function
phaseb phase (in degrees) with an effort to unwrap along columns
rms Root Mean Square response
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Test/analysis correlation tools

fe exp experimental shape expansion
fe sens sensor configuration declaration and sensor placement tools
ii comac obsolete (supported by ii mac)
ii mac GUI for MAC and other vector correlation criteria

Finite Element Analysis Tools

fe2ss methods to build ss models from full order FEM
fe c DOF selection and I/O matrix creation
fe case Cases (loads, boundary conditions, etc.) handling
fe ceig computation and normalization of complex modes
fe coor transformation matrices for Component Mode Synthesis
fe eig partial and full eigenvalue computations
fe load assembly of distributed load vectors
fe mat material property handling utilities
fe mk assembly of full and reduced FE models
fe norm orthonormalization and collinearity check
fe reduc utilities for finite element model reduction
fe stress element energies and stress computations
fe super generic element function for superelement support
rigid projection matrix for linearized rigid body constraints

Model Format Conversion

nor2res normal mode model to complex mode residue model
nor2ss assemble state-space model linked to normal mode model
nor2xf compute FRF associated to a normal mode model
qbode fast computation of FRF of a state-space model
res2ss pole/residue to state space model
res2tf pole/residue to/from polynomial model
res2xf compute FRF associated to pole/residue model
ss2res state-space to pole/residue model

Finite Element Update Tools

upcom user interface for finite element update problems
up freq semi-direct update by comparison modal frequencies
up ifreq iterative update by comparison of modal frequencies
up ixf iterative update based on FRF comparison
up min minimization algorithm for FE update algorithms
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Interfaces with Other Software

ans2sdt reading of ANSYS binary files (FEMLink)
nasread read from MSC/NASTRAN .dat, .f06, .o2, .o4 files (some with FEM-

Link)
naswrite write data to MSC/NASTRAN bulk data deck (some with FEMLink)
nas2up extended reading of NASTRAN files
ufread read Universal File Format (some with FEMLink)
ufwrite write Universal File Format (some with FEMLink)

Other Utilities

basis coordinate transformation utilities
ffindstr find string in a file
order sorts eigenvalues and eigenvectors accordingly
remi integer rem function (remi(6,6)=6 and not 0)
setlines line type and color sequencing
sdth SDT handle objects

ofact creation and operators on ofact matrix objects

sdtcheck installation handling and troubleshooting utilities
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Purpose Interface between ABAQUS and SDT (part of FEMLink) Warning this function requires
MATLAB 7.1 or later.

Syntax

abaqus(’read FileName’);

abaqus(’job’);

read[*.fil, *.inp, *.mtx, *.dat]

By itself the read command imports the model from a .inp ASCII input or .fil binary output file.
Support for .dat read is very partial, but provides a framework for users to parse desired tokens.

Models created by an *Assembly command using several instances and/or additional nodes or ele-
ments are treated with superelements. Each part instance (called by *Instance. . . *end instance)
becomes then a specific superelement in the SDT model. A packaged call allows to get a full model
back

model=abaqus(’read Job-1.inp’);

model=abaqus(’ResolveModel’,model);

% both calls at once:

model=abaqus(’read-resolve Job-1.inp’);

The ResolveModel command has a limited robustness in the general case due to the difficulty to
handle heterogeneous Stack data while renumbering parts of a model. Most cases should be properly
handled. One can use command read-resolve to perform both operations at once.

When reading deformations, sdtdef(’OutOfCoreBufferSize’) is used to determine whether the
vectors are left in the file or not. When left, def.def is a v handle object that lets you access
deformations with standard indexing commands. Use def.def=def.def(:,:) to load all. If a
modal basis is read, it is stored in the model stack, as curve,Mode. If static steps are present all
associated deformation are concatenated in order of occurrence in the model stack as curve,step(1).

Command option -wd allows to save the model generated in a directory different from the one in
which the abaqus files are saved.

You can request the output of element matrices which will then be read into an upcom model. To
do so, you need to define an element set. To read matrices, you have to provide some information
before running the job in order to select which matrices you want to write and read. In the .inp

input file you may enter the following line
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*ELSET, ELSET=ALL ELT FOR SDT

THIN SHELL1 , THIN SHELL1_1

(second line contains all the ABAQUS defined sets) just before the *STEP line and

*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, STIFFNESS=YES

*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, MASS=YES

just after the *STEP line.

Note that this information are automatically generated using the following command
abaqus(’elementmatrices model.inp’); .

Running the Abaqus job generates outputs specified by the user, with *OUTPUT commands in the
Abaqus job input file. Current default use generates an odb file, using commands of the type *NODE

OUTPUT. The odb format however requires the use of Abaqus libraries to be read.

Imports are thus handled in SDT using the .fil output binary file. This file is readable without
Abaqus, and its reading has been optimized in FEMLink. This type of output is generated using
commands of the type *NODE FILE. A sample command to obtain nodal deformation a the end of a
step is then

** general command to .fil and ask for nodal deformation field

*OUTPUT, FIELD

*NODE FILE

U

All nodal variable keywords should be expressed on separated lines. This must be repeated in all
steps of interest in an ABAQUS computation file input .inp.

Most common and general nodal variables keywords of interest are the following (this is not applicable
to all ABAQUS procedures)

• U, V, A respectively for nodal displacement, velocity and acceleration output

• RF,CF, VF, TF respectively for nodal reaction forces, constrained forces, viscous forces, and total
forces output

• GU, GV, GA respectively for generalized displacement, velocity ad acceleration (when reduction
is involved)

Since not all information (materials, set names, ...) can be found in the .fil, you may want to
combine two reads into an upcom model
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abaqus(’read file.inp’, ’buildup file.fil’);.

Abaqus features a matrix sparse output starting from version 6.7-1. Their generation is performed
in a dedicated step as follows

*STEP

*MATRIX GENERATE, STIFFNESS, MASS

*END STEP

The output is one ASCII file .mtx by matrix requested, which can be read by abaqus.

Reading a .dat file should be avoided in general as the ASCII storage format and variation between
ABAQUS versions makes it unpractical. There are however cases where such reading is the easiest
way; A framework adapted to such parsing is provided with support to read complex mode shapes
(that cannot be stoed in the .fil file).

One can call data=abaqus(’Read’,fdat,li); with fdat a .dat file and li an optionnal Nx2 cell
array providing a list of tokens to detect and and associated callback. The supported tokens are used
if li is omitted, it is separately accessible with li=abaqus(’DatList’); if users wish to combine
supported features with customized ones.

If a token is detected in the file, a callback will be fired as out1=feval(cbk1,fid,evt,cbk2:end);
with cbk the callback cell array provided in the second column of li, fid the valid opened file object
set a the starting position of the currently detected token, evt a structure with fields .p0 the starting
position of the scanned text buffer (not the current position to be recovered by pcur=ftell(fid);,
.p1 the file length, .bufs a buffer size to be exploited. The callback command must rethrow a
structure whose field will be incremently added to the global output structure.

Build[model,case,contact]

Thise set of high level commands aims at transforming a raw imported model into a functional model
in SDT. It exploits in particular the lower level abaqus Resolve commands.

• BuildCase step istep

model=abaqus(’BuildCase step1’,model); This command prepares the model case loading
corresponding to a given step index istep. Raw model reading imports indiferently all bound-
ary conditions and loading into the Case Stack. The loading sequence is stored in the stack
entry info,BSHist and is exploited by BuildCase to generate the loading relative to a given
step. One can ask for the last step by using token steplast instead of step istep. Command
options

– all restores all case entries in the Case Stack.
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– -noResolve asks not to perform the abaqus Resolve call if this was previously per-
formed.

• BuildModel step istep

model=abaqus(’BuildModel step1’,model); This command generates the model global state
at a given step specified by step index istep. In addition to the BuildCase functionalities, this
function looks for a static response result corresponding to the given set to define a curve,q0

entry, thus declaring a static state in the SDT model. One can ask for the last step by using
token steplast instead of step istep. Command options

– -noResolve asks not to perform the abaqus Resolve call if this was previously per-
formed.

– -contactCAM link to a call to the BuildContact command with forwarding of additionnal
command options given in CAM. This feature is only accessible with a valid SDT-
Contact module license.

– -getStatic to only resolve the static state. The output is then the static state. It
is possible to specifiy in intial set of static deformations in an additional argument.
q0=abaqus(’buildModel-steplast-getStatic’,model,...

stack get(mo1,’curve’,’step(1)’,’get’)).

• BuildContact step istep

model=abaqus(’BuildContact step1’,model); This command packages the generation of
SDT contact elements and laws based on the ABAQUS definition. This feature is only
accessible with a valid SDT-Contact module license. The import generates con-
tact elements based on master surfaces with penalized contact laws. Hard contact laws are
thus automatically penalized with a calibrated stiffness density. Support for the *CONTACT

PAIR, *MOTION, *CLEARANCE, *CHANGEFRICTION commands is provided and integrates *SURFACE
BEHAVIOR and *FRICTION law inputs.

The step definition is mostly usefull for *MOTION and *CHANGE FRICTION commands.One can
ask for the last step by using token steplast instead of step istep. Command options

– -module has to be used for users with no access to the SDT-NL tools outside SDT-Contact.

– Command option -useRes asks to initialize contact states based on static force resultants
on surface rather than by observing gaps on the static deformation field. This can be
usefull to alleviate contact state import discrepancies due to different contact implemen-
tations between ABAQUS and SDT.

– -optim is used to remove curves from the model that are not usefull for further anlysis
after the BuildContact step is performed.

– -tgStickNoMotion can be used to define tangential sticking property for contact with
friction and no motion.
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– -moRot is used to specify the local definition of contacts : tangent and normal directions

∗ -moRot’’cyl’’ defines a cylindrical contact (for example the sliding contact of a
drum brake)

Resolve

This set of commands transforms a raw model import by abaqus read into en exploitable SDT
model. This is for example useful when the ABAQUS model has been generated with *PART and
*INSTANCE. In such case, the representation of an ABAQUS model becomes very far from an SDT
model. The raw reading obtained by read will thus interpret parts as superelements, and leave the
instance data, and some internal information not translated. Some other advanced definitions need
special care and are thus handled in this section.

Some adaptations, performed by ResolveModel are thus needed. In particular, renumbering can
occur, however all sets definitions are maintained.

• ResolveModel

This command will create the elements conforming to the instance information. Commands
ResolveSet, ResolveMass, AssembleUserElements, ResolveCase and ResolveShellC will also
be called, to generate a fully exploitable SDT model.

• ResolveSet

This command transforms each ABAQUS implicitly defined sets into explicit SDT sets. This
is very useful if some sets have been defined in ABAQUS using internal part numerotations.
This command is also usefull to distinguich sets of different types but with initially the same
name. This behavior is not available in SDT and special care is taken not to mixup set names
and types. Called by ResolveModel.

• ResolveCase

This command aims at resolving all implicitly defined case entries in the model, including
*MODEL CHANGE, and some connector calls. This also handles the multiple slave resolution in
the manner of ABAQUS, and should thus be performed before assembling models if multiple
slave error occur.

• ResolveMass

This command handles the model stack entry info,UnResolvedMasses that may have been
created during the read call, and assigns mass values missing in mass elements. This is
necessary when masses have been defined in an ABAQUS part, such that the attribution of
the mass amplitude by *MASS is not directly retrievable. Called by ResolveModel.
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• ResolveShellC

Continuum shell elements (SC8R and SC6R) have no direct counterparts in SDT. A base res-
olution just ignores the shell declaration and declare these elements as solids with reduced
integration (this may not work for stacked layers of continuum shells). The following com-
mand options are available

– -shellSE will generate a superelement embedding shells in SDT format from the neutral
fiber of the continuum shells, within the 3D topology. In that way a behavior equivalent
to ABAQUS is expected.

– -order2 in combination with -shellSE uses second ordr shells instead of first order ones.

write

abaqus(’write Name.inp’,model); writes and ABAQUS input file.

abaqus(’BwMTX’,model); writes all matrices stored in model.K in the abaqus sparse output format.
Each matrix file is named after the model.file entry and model.Klab. For a model stored in
model.mat containing a matrix ’k’, the file output will be named model k.mat.

BwMat ; BwMp ; BwSet ; Bwbas ; BwStepEig are implemented.

JobOpt

JobOpt = abaqus(’JobOpt’,Opt); This command returns a filled JobOpt structure to be run by
sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and
OutList must be filled. Further options concern the fields Input when the input file is different
from the job name, RunOptions to append the usual option to the Abaqus command, RemoveFile
to remove files from the remote directory when needed.

conv

This command lists conversion tables for elements, topologies, face topologies. You can redefine
(enhance) these tables by setting preferences of the form
sd pref(’set’,’FEMLink’,’abaqus.list’,value), but please also request enhancements so that
the quality of our translators is improved.

splitcelas
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model=abaqus(’SplitCelas’,model) splits all SDT celas elements to one dimension celas ele-
ments that can be handled by Abaqus. This command can change the EltId so it must be used
when meshing the model.

uniquematpro

Merges duplicated pl/il instances.

AssembleUserElements

Returns a matrix and its corresponding DOF, from the assembly of all USER ELEMENT instances
in an ABAQUS model. This command is exploited in abaqus Resolve calls.

[K,dof] = abaqus(’AssembleUserElements’,model);

Command option -inModel directly sets a SDT functional superelement named usere in the model.
In this case, element matrices are removed from the stack. They can be kept with command option
-keep.

Command option -disjsplit splits the assembled SE into disjoint SE regarding DOF connectivit,
resulting SE are named uei with i a 6 digit fixed index.

model=abaqus(’AssembleUserElements-inModel’,model);

odb2sdt

Utility functions to transfer Abaqus .odb file data into a format similar to MATLAB 6 binary .mat

file and readable by sdthdf. The changes in the format are introduced to support datasets larger
than 2GB.

Abaqus outputs are commonly written in .odb files, using a non documented format. The only way
to access its data is to use Abaqus CAE or Abaqus Python. These utility functions are to be used
with Abaqus Python to extract data from the output database for further use outside Abaqus. The
modules used are

• odbAccess. Abaqus access libraries.

• abaqusConstants. Common output values dictionary, such as ’U’, ’UR’

• Numeric. Module for array handling utilities.

• struct. Module to pack data into binary strings.
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For the moment, only nodal data transfer is completely implemented. More information can be
found on Python at http://www.python.org. Note that def is a reserved word in Python for the
function definition command; remember not to use it in another way!

The following script is a quick example of what can be done with these functions. It can be launched
directly if written in a .py file readODB.py for example, by abaqus python readODB.py

from odb2sdt import * # import read functions

jobName=’my_abaqus_job’

odb=openOdb(jobName + ’.odb’)

allNodal2mat(odb)

This second script will only write the DOF set in a .mat binary file

from odb2sdt import * # import read functions

jobName=’my_abaqus_job’

odb=openOdb(jobName + ’.odb’) #open the database

stepName=odb.steps.keys()[0] #get the name of the first step

fieldItem=[’U’] #I want the ’U’ displacement field

# get the fieldOutputs instances list from the first frame:

fieldOutputs=odb.steps.__getitem__(stepName).getFrame(0).fieldOuputs

f=matFile(jobName + ’_dof.mat’) # Initialize the file

dof2mat(f,fieldOutputs,fieldItem,stepName) # write the DOF array to it

f.close()

Once a file allNodal.mat file has been generated, it is possible to load the deformation structure
fields using

def=abaqus(’read file_allNodal.mat’)

def output is here a cell array containing all def structures found in the allNodal.mat file. Only
simple cases of .odb outputs are supported. The rest of the data is not automatically read, it can
nevertheless be attained using

r1=sdthdf(’open’,file_allNodal.mat);

where r1 is a cell array containing all the fields contained in the allNodal.mat file.
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odb2sdt.py reference

The following lists the main subfunctions in odb2sdt.py

matFile(fname) Creation of a the file fname, with the standard .mat

header.f=matFile(fname)

dof2mat(f, fields

,fieldItems, stepName)

Writes the DOF array in SDT format to file f. fields is the
list of fieldOutput instances from the step named stepName.
fieldItems is the sorted list containing the displacement field-
Outputs present in the fieldOuputs list. It must contain in that
order, and at least one entry of the list [’U’ , ’UR’ , ’UT’].
It is a direct call with no output.

defSet2mat(f, step,

fieldList)

Writes a fieldOutput set for all frames of a step, contiguously
into file f. step is a step instance, fieldList is the list of field-
Outputs to be output from the frame object. All kind of nodal
vector output can be treated although this was designed to treat
displacement fields linked to the dof2mat function. It is a di-
rect call with no output. In case of a modal deformation set, the
EIGIMAG, EIGFREQ, EIGREAL and DAMPRATIO historyOutput data
are also output.

nodalScalarValues2mat (f,

field, stepName, frameName)

Outputs an array of scalar nodal values to file f, for a particular
fieldOutput instance field. stepName is the name of the step
considered, frameName the name of the frame. However, since
the fieldOutput is given the last two arguments are strings only
needed to compose the array name in f.It is a direct call with no
output.

allNodal2mat(odb) This function combines the lower level nodal output function to
create and fill directly a .mat file containing DOFs, deformations
sets, and nodal scalar values form an odb instance, created with
openOdb. It is a direct call with no output.

The following are lower level calls, and alternative calls, with output in the workspace.
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sortFieldList( fieldList) Returns a field keys list in which the existing displacement field
keys have been sorted at the list beginning, in the order ’U’,

’UR’ , ’UT’. fieldList=sortFieldList(fieldList).

rmFromList(list1, list2) Returns list1 in which the items in list2 have been removed.

arrayHead2mat(f, nValSize,

isCpx, dim1,dim2, arrayName)

Low level command. Initialization of an array entry into the file
f. The corresponding header is written such that the array values
can be written right after. nValSize is the space needed to store
the values form the array in Bytes. isCpx takes the value 0 if the
data to store are real, or 16 if the values to store are complex.
dim1 and dim2 are the dimensions of the array in direction 1 and
2. arrayName is the name given to the array. It is a direct call
with no output.

getNodes(frame) Returns a nodeId array in the workspace, taken in a frame in-
stance.nodeId=getNodes(frame)

getLabels(frame, fieldKeys) Returns the list of componentLabels contained in all the
fieldKeys list, in a frame instance. It also generates a list in
which the field keys are repeated to match the componentLabels
list. labels,labelField=getLabels(frame,fieldKeys)

setDOF(nodeId, field,

fieldKeys)

Returns a DOF array interpreted from a fieldOuputs

list, a nodeId array and fieldKeys giving the
fieldOutput displacement keys relevant in field.
DOF=setDOF(nodeId,fieldOutputs,[’U’])

readData(value) A way to output a data member of a value instance
regardless of the precision used during the computation.
data=readData(value)

readNodalValues(field,

outList)

Returns optionally the nodeId array, the corresponding data
array and the componentLabels lists found, from a fieldOut-
put instance. OutList is a list of length 3 being [1,1,1] for
a complete output, [0,1,0] to output only the data array, and
[1,1,0] to output the combo nodeId array and data array.
nodeId,data=readNodalValues(fieldOutput, [1,1,0])
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Examples

See also FEMLink
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Purpose

Interface between ANSYS and SDT (part of FEMLink)

Syntax

ans2sdt(’read FileName’) % .rst, .cdb, .matrix, .mode files

ans2sdt(’write FileName’) % .cdb file

ans2sdt(’BuildUp FileName’) % .rst and .emat files

... = ans2sdt(’def FileName.rst’)% .rst or .mode files

Description

Build[Up,ContactMPC]

• Command BuildUp reads the binary files FileName.rst for model definition and FileName.emat

for element matrices. The result is stored in Up (a type 3 superelement handled by upcom).
FileName.mat is used to store the superelement.

General syntax is ans2sdt(’BuildUp FileName’); valid calls are

Up=ans2sdt(’buildup file’);

[m,k]=upcom(Up,’assemble not’);

For recent versions of ANSYS, you will have to manually add the ematwrite,yes command
to the input file to make sure that all element matrices are written. This command is not
accessible from the ANSYS menu.

There is a partial attempt to fill in element properties in Up.il. You can also use
data=stack get(model,’info’,’RealConstants’,’getdata’) to obtain the cell array con-
taining the ANSYS real constants for various elements. The index in this cell array corresponds
to element ProId values.

• Command BuildContactMPC interprets ANSYS contact elements (CONTA171-175), and slave
elements TARGE170 to generate MPCs in the form of fe caseg ConnectionSurface. This is
thus close to bonded contact formulations.

model=ans2sdt(’Read file.cdb’); % read base file

% transform contact info into bonded coupling

model=ans2sdt(’BuildContactMPC’,model);
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def

def=ans2sdt(’read’,’file.mode’) reads deformations in .mode files.

To read responses .rst files you should use

model=ans2sdt(’readdef’,’test.rst’); % read all data

def=stack_get(model,’curve’,’NSL’);

% Partial read of only specific entries

model=ans2sdt(’rstdef’,’sdtforced.rst’, ...

struct(’DefUse’,{{’NSL’}})); % give the block names to be read

Since multiple blocks can be read, the results is saved in the model stack and can be retrieved
by name using stack get(model,’curve’,’NSL’); or similar calls. The standard names used by
ANSYS are NSL (displacement), VSL (velocity response), RF (reaction forces), ESL (element solution,
see ans2sdt ESLread). If you are interested in reading other results, please send a test case.

conv

This command lists conversion tables for elements, topologies, face topologies. You can redefine
(enhance) these tables by setting preferences of the form
sd pref(’set’,’FEMLink’, ’ansys.elist’,value), but please also request enhancements so that
the quality of our translators is improved.

read

This command reads files based on their standard ANSYS extension.

• .matrix files are read assuming ASCII Harwell Boeing format obtained with
HBMAT, Fname,Ext,--,ASCII,STIFF. RHS vectors or binary matrices are not read yet. You
can read the mapping file at the same time using ans2sdt(’matrix’,’k.txt’,’k.mapping’);

or DOF=ans2sdt(’mapping’,’k.mapping’).

• .mode files contain deformations which are read into the usual SDT format.

• .rst files contains model information topology, some material/element properties and bound-
ary conditions (but these are more consistently read in the .cdb), ...

– When an .emat file is present, the read call attempts to run the BuildUp command.

– Responses are read using a call of the form ans2sdt(’readdef’,’file.rst’), see ans2sdt
def
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• .cdb input files also written by ANSYS using the CDWRITE ALL,FileName,cdb command.
Please also request enhancements on the support of this format so that the quality of our
translators is improved.

ANSYS does not store boundary conditions in the .rst files so that these can only be imported
from .cdb file. If you only have fixed boundary conditions, you can easily generate those with

model=ans2sdt(’buildup test’); % read model

def=ans2sdt(’def test.rst’); % read deformations

model = fe_case(model,’fixdof’,’Fixed_Dofs’, ...

fe_c(model.DOF,def.DOF,’dof’,2));

cf=feplot; cf.model=model; cf.def=def; % display

Def

def=ans2sdt(’def FileName.rst’) or def=ans2sdt(’def FileName.mode’) reads deformations
in .rst or .mode files

ESLread

To read element output data if any, that were detected during the reading of an output file (.rst).

model=ans2sdt(’ESLread’’,model); will generate a stack entry named ESL:token in the model
that will contain the element data.

token is an element output data identifier as documented by ANSYS, and mentioned in the model
stack entry info,ptrESL.

Command option groupi allows generating the output for a given group number i

JobOpt

JobOpt = ans2sdt(’JobOpt’,Opt); This command returns a filled JobOpt structure to be run by
sdtjob. Opt is a structure containing at least the field Job as the job name or file. InList and
OutList must be filled. Further options concern the fields Input when the input file is different
from the job name, RunOptions to append the usual option to the Ansys command, RemoveFile to
remove files from the remote directory when needed.

Write
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ans2sdt(’write FileName.cdb’,model) is the current prototype for the ANSYS writing capability.
In ANSYS .cdb files are written with the CDWRITE ALL, FileName, cdb command. This does not
currently write a complete .CDB file so that some manual editing is needed for an ANSYS run after
the write.

See also

FEMLink
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Purpose

Coordinate system handling utilities

Syntax

p = basis(x,y)

[bas,x] = basis(node)

[ ... ] = basis(’Command’, ... )

Description

nodebas [nodeGlob,bas]=basis(’nodebas’,model)

NodeBas performs a local to global node transformation with recursive transformation of coor-
dinate system definitions stored in bas. Column 2 in nodeLocal is assumed give displacement
coordinate system identifiers PID matching those in the first column of bas. [nodeGlobal,bas]=

basis(nodeLocal,bas) is an older acceptable format. -force is a command option used to resolve
all dependencies in bas even when no local coordinates are used in node.

Coordinate systems are stored in a matrix where each row represents a coordinate system using any
of the three formats

% different type of coordinate defintition

CorID Type RefID A1 A2 A3 B1 B2 B3 C1 C2 C3 0 0 0 s

CorID Type 0 NIdA NIdB NIdC 0 0 0 0 0 0 0 0 0 s

CorID Type 0 Ax Ay Az Ux Uy Uz Vx Vy Vz Wx Wy Wz s

Supported coordinate types are 1 rectangular, 2 cylindrical, 3 spherical. For these types, the nodal
coordinates in the initial nodeLocal matrix are x y z, r teta z, r teta phi respectively.

Figure 10.1: Coordinates convention.
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The first format defines the coordinate system by giving the coordinates of three nodes A, B, C as
shown in the figure above. These coordinates are given in coordinate system RefID which can be 0
(global coordinate system) or another CordId in the list (recursive definition).

The second format specifies the same nodes using identifiers NIdA, NIdB, NIdC of nodes defined in
node.

The last format gives, in the global reference system, the position Ax Ay Az of the origin of the
coordinate system and the directions of the x, y and z axes. When storing these vectors as columns
one thus builds the xG = [cGL]xL transform.

The s scale factor can be used to define position of nodes using two different unit systems. This is
used for test/analysis correlation. The scale factor has no effect on the definition of displacement
coordinate systems.

trans[ ,t][ ,l][,e] cGL= basis(’trans [ ,t][ ,l][,e]’,bas,node,DOF)

The transformation basis for displacement coordinate systems is returned with this call. Column 3
in node is assumed give displacement coordinate system identifiers DID matching those in the first
column of bas.

By default, node is assumed to be given in global coordinates. The l command option is used to
tell basis that the nodes are given in local coordinates.

Without the DOF input argument, the function returns a transformation defined at the 3 translations
and 3 rotations at each node. The t command option restricts the result to translations. With the
DOF argument, the output is defined at DOFs in DOF.

The e command option (for elimination) returns a square transformation matrix. Warning: use of
the transE command and the resulting transformation matrix can only be orthogonal for translation
DOF if all three translation DOF are present.

gnode:nodeGlobal = basis(’gnode’,bas,nodeLocal)

Given a single coordinate system definition bas, associated nodes nodeLocal (with coordinates x y

z, r teta z, r teta phi for Cartesian, cylindrical and spherical coordinate systems respectively)
are transformed to the global Cartesian coordinate system. This is a low level command used for
the global transformation [node,bas] = basis(node,bas).

bas can be specified as a string compatible with a basis(’rotate’ call. In such case, the actual
basis is generated on the fly by basis(’rotate’) before applying the node transformation.
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[p,nodeL] = basis(node)

Element basis computation With two output arguments and an input node matrix, basis computes
an appropriate local basis bas and node positions in local coordinates x. This is used by some
element functions (quad4) to determine the element basis.

rotate

bas=basis(’rotate’,bas,’command’,basId); is used to perform rotations on coordinate systems
of bas given by their basId. command is a string to be executed defining rotation in degrees (rx=45;
defines a 45 degrees rotation along x axis). One can define more generally rotation in relation to
another axis defining angle r=angle and axis n=[nx,ny,nz]. It is possible to define translations (an
origin displacement) by specifying in command translation values under names tx, ty and tz, using
the same formalism than for rotations.

For example, one can define a basis using

% Sample basis defintion commands

bas=basis(’rotate’,[],’rz=30;’,1); % 30 degrees / z axis

bas=basis(’rotate’,[],’r=30;n=[0 1 1]’,1); % 30 degrees / [0 1 1] axis

bas=basis(’rotate’,[],’tx=12;’,1); % translation of 12 along x

bas=basis(’rotate’,[],’ty=24;r=15;n=[1 1 1];’,1); % trans. of 24 along y and rot.

p = basis(x,y)

Basis from nodes (typically used in element functions to determine local coordinate systems). x and
y are two vectors of dimension 3 (for finite element purposes) which can be given either as rows or
columns (they are automatically transformed to columns). The orthonormal matrix p is computed
as follows

p =

[
~x

‖~x‖
,
~y1

‖~y1‖
,
~x× ~y1

‖~x‖‖~y1‖

]
(10.1)

where ~y1 is the component of ~y that is orthogonal to ~x

~y1 = ~y − ~x ~x
T~y

‖~x‖2
(10.2)
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If x and y are collinear y is selected along the smallest component of x. A warning message is passed
unless a third argument exists (call of the form basis(x,y,1)).

p = basis([2 0 0],[1 1 1]) gives the orthonormal basis matrix p

% Generation of an orthonormal matrix

p = basis([2 0 0],[1 1 1])

p =

1.0000 0 0

0 0.7071 -0.7071

0 0.7071 0.7071

See also

beam1, section 7.1 ,section 7.2
Note : the name of this function is in conflict with basis of the Financial Toolbox.
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Purpose

General utilities for graphical user interfaces and figure formatting. Figure formatting documentation
can be found in section 8.1.

Syntax

comgui(’Command’, ...)

cingui(’Command’, ...)

comgui is an open source function that the user is expected to call directly while cingui is closed
source and called internally by SDT.

ImCrop

Image cropping utilities. This function allows cropping uniform borders and uniform rows or columns
in an image.

Syntax is a=comgui(’ImCrop’,a)’

Image a can be either

• an image defined by an m-by-n-by 3 matrix, or a line cell array of such images

• a structure from getFrame with fields cdata containing m-by-n-by 3 matrices

• a file name or a line cell array of file names. By default if a file name is given the file is replaced
by saving the cropped image.

• a composite cell array line with file names and images. By default if a file name is given the
file is replaced by saving the cropped image.

The following command options are available

• Borders To only crop image from the first border.

• AllBorders To only crop image from all borders.

• BorderNum To only crop image from the first N borders, given as parameter.

• UpToBorder To crop until a border is found in the limit of 20 pix from the edges of the original
image. (Useful for java capture of figures)
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• All To remove all rows/columns with equal colors throughout the image.

• Equal To apply the same cropping to all images in the cell array input, by intersecting cropping
rows and columns.

• -noSave Not to erase images provided in file names.

• Rot90 can be used to rotate the image by ± 90 degrees before cropping

You can include cropping options within an ImWrite call by defining a .CropOpt field in the option
structure.

ImWrite, ...

ImwriteFileName.ext does a clean print of the current figure. The preferred strategy is to predefine
options, so that comgui(’ImWrite’) alone is sufficient to generate a figure. This can be done by

• predefining properties in a comgui PlotWd call (including the file name as illustrated under
comgui ImFtitle.

• or using the obsolete strategies of setting ua.ImWrite in the iiplot PlotInfo so that the
proper data is used when a curve is displayed in iiplot or setting ImWrite in comgui

def.Legend so that the proper configuration is used when a def is displayed in feplot.

comgui(’ImWrite’,gf,RO) with a figure handle given in gf and options stored in the RO structure,
is the most general. gf can be omitted and will be taken to be gcf.

RO can be omitted if options are given as strings in the command. Thus ImWrite-NoCrop is the
same as using RO.NoCrop=1.

For details for multi-image capture strategies (for example a set of modeshapes), see iicom ImWrite.

Acceptable options are detailed below.

• .FileName The default extension is .png. With no file name a dialog opens to select one.
RO.FileName can be a cell array for a ImFtitle call.

• .NoCrop=1 avoids the default behavior where white spaces are eliminated around bitmap im-
ages.

• .FTitle=1 uses the title/legend information to generate a file name starting with the provided
filename.
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A typical example would be comgui(’imwrite-FTitle plots/root’) which will generate a
root detail.png file in local directory plots.

For a given plot, comgui(’imFTitle’) can be used to check the target name.

Using a cell .FileName calls comgui ImFtitle to let you build the file name from elements
within the figure.

• .LaTeX=1 displays LATEX commands to be used to include the figure in a file.

• .objSet provides an comgui objSet style. You can also combine predefined styles using a cell
of the form {’@OsDic(SDT Root)’,{’fmt1’,’fmt2’}}. The ’@ToFig’ can be used to clone
the figure before printing to avoid modifying its appearance.

• .clipboard copies to clipboard.

• .Java To use screenshot strategies of the system current monitor display using java. This
implies in particular that the content to capture is visible on screen when the command is
used.

– .Java=1 uses java to do a screen capture of the figure content (undocked figure).

– .Java=2 captures the figure with the figure border (undocked figure). Use 2.2 to perform
a clean crop arround the figure (if windows in your OS are surrounded by an unicolor
rectangle)

– .Java=3 captures the dock containing the current figure.

– .Java=4 captures the content of the current tab in a tabbed pane without column headers.

– .Java=5 captures the pane containing the current tab (add the tab layout).

– .Java=6 captures the content of the current tab in a tabbed pane with column headers.

– .Java=7 captures the content of the tile containing the figure (figure + figure headers).

– .Java=8 captures the ExploTree of the UI.

• .JavaT To capture figures contents using java object methods (works for tables only)

• .open=1 opens the image in a browser.

• .Crop=’all’ modifies the cropping option, see comgui ImCrop. Use ’no’ to avoid cropping.

• .MultiExt={’.png’,’.fig’} will allow saving of multiple versions of the same image.

• .wobjSet is used to insert the image into the current Microsoft Word file directly.
d imw(’get’,’WrW49C’) gives a sample format.
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It is also possible to directly capture a graphical java object which contains getVisibleRect and
getLocationOnScreen properties. Simply provide the java object as instead of a figure handle.

sdtweb sdt % Open sdt.html in the help browser

pause(2); % Wait for the display

desktop = com.mathworks.mde.desk.MLDesktop.getInstance;

r1=desktop.getGroupContainer(’Help’) % Get the java container of the help browser

% Save the HelpBrowser capture in the tempdir with name testjavacapture.png

comgui(’imwrite testjavacapture’,r1);

ImFtitle, ...

ImFtitle generates a file name for the figure based on current displayed content. Text is searched in
objects with tags legend, ii legend, in the axes title. By default all the text is concatenated and
that can generate excessively long names so finer control is achieved by providing the FileName as a
cell array in the comgui PlotWd call. The underlying mechanism to generate the string is described
in comgui objString.

figure(1);clf; t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

legend(’a’,’b’,’c’);title(’MyTit’);

% Define target plot directory in the figure

cingui(’objset’,1,{’@PlotWd’,sdtdef(’tempdir’)})

% Check name generation, from string

comgui(’imftitle’,1,{’@PlotWd’,’@title’,’.png’})
% Do a direct call with name building

comgui(’imwrite’,struct(’FileName’,{{’@PlotWd’,’@title’,’.png’}}))

% Predefine the figure save name in the userdata.Imwrite of current axis

comgui(’PlotWd’,1,’FileName’, ...

{’@Plotwd’,’@title’, ... % Search for plotwd, use title name

’@legend(1:2)’,’.png’}); % use first legend entry

comgui(’imInfo’) % See parameters

% check image name, display clickable link for image generation

comgui(’imftitle’)

sdtweb(’_link’,’comgui(’’Imwrite’’)’,’Generate’);

d_imw(’Fn’) % Standard names styles for tile name generation
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dock

SDT uses some docking utilities that are not supported by MATLAB. The actual implementation
is thus likely to undergo changes.

gf=11;figure(gf);clf; t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

figure(12);plot(rand(3));figure(13);mesh(peaks);

% set the dock name and position

comgui(’objset’,[11 12 13],{’@dock’,{’name’,’MAC’, ...

’arrangement’,[1 1 2;1 1 3], ... % Automated tile merging

’position’,[0 0 600 400],...

’tileWidth’,[.4 .6], ... % Fraction of columns

’tileHeight’,[.3 .7]}}); % Fraction of rows

pos=feval(iimouse(’@getGroupPosition’),’MAC’); % group screen position

figure(14); % Add a new figure in specified tile

cingui(’objset’,14,{’@Dock’,{’Name’,’MAC’,’Tile’,11}});

feval(iimouse(’@deleteGroup’),’MAC’) % Delete group (and figures)

Capture of a dock group figure is possible with comgui imwrite-Java3

guifeplot,iiplot

cf=comgui(’guifeplot -reset -project "SDT Root"’,2);

comgui(’iminfo’,cf) % View what was set

Is used to force a clean open of an feplot figure. The option -reset is used to force emptying of
the figure. The option -project is used to combine a call to comgui PlotWd to define the project.

Formatting styles sdtroot OsDic are also stored in the project.

objSet (handle formatting)

cingui(’objSet’,h,Prop) is the base SDT mechanism to generalize the MATLAB set command.
It allows recursion into objects and on the fly replacement. Prop is a cell array of tag-value pairs
classical in MATLAB handle properties with possible modifications. Three base mechanisms are
object search, expansion and verification.

Object search ’@tag’,value applies property/values pairs stored in value to an object to deter-
mined on the fly. For example ’@xlabel’ applies to the xlabel of the current axis.
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• @xlabel accepts a value that is a cell array that will be propagated for all x labels. A typical
example would be {’@xlabel’,{’FontSize’,12}}. Other accepted components are @ylabel,
@zlabel, @title, @axes, @text,

• @axes, @figure will search for parent or child axes objects

• @tag is assumed to search for object with the given tag, so that its properties can be set.
For example {’@ii legend’,{’FontSize’,12}} will set the fontsize of an object with tag
ii legend.

• @tag(val) allows the selection of a specific object by index when multiple objects with the
same tag are found.

• @ImFtitle is used to store the cell array for image name generation see comgui ImFtitle.
This must be set after displaying title and legend entries, since the information is stored in
these objects.

• @legend generates the usual MATLAB legend

• @ii legend allows a tick generation callback, see ii plp Legend

• @TickFcn allows a tick generation callback, see ii plp TickFcn

• @ColorBar allows handles properties of colorbar. This is illustrated under fecom ColorBar,
but can be used for any figure.

• @dock handles docking operations, see comgui dock.

• @ToFig replicate the figure before applying operations. Property {’cf’,val} can be used to
force replication into figure val (use NaN for a new figure). Property {’PostFcn’,val} can
be used to allow execution of a callback after the figure replication. Property {’leg’,1} uses
the iiplot ii legend object, while 2 transforms to a MATLAB legend.

• @PlotInfo calls iicom PlotInfo to initialize how data is displayed in an feplot/iiplot

figure.

Expansion modifies the current property/value list by replacing a given entry.

• ’@OsDic(SDT Root)’,{’val1’,’val2’} seeks objset values in the sdtroot OsDic.

• ’’,’@tag’ is first expanded by inserting a series of tag-value pairs resulting from the replace-
ment of @tag.

The two uses are illustrated below
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% Define OsDic entries in project

sdtroot(’SetOsDic’,{’feplotA’,{’Position’,[NaN NaN 500 300]};
’font12’,{’@axes’,{’fontsize’,12},’@title’,{’fontsize’,12}}
’grid’,{’@axes’,{’xgrid’,’on’,’ygrid’,’on’,’zgrid’,’on’}}
});
sdtroot(’setOsDic’, ... % Define a line sequence

{’LiMarker’,setlines(jet(5),{’-’,’--’,’-.’},’+ox*sdv^><ph’)})
% Example of apply call

figure(1);plot(sin(linspace(0,4*pi)’*[1:3]))

cingui(’objset’,1,{’@OsDic(SDT Root)’,{’feplotA’,’grid’,’LiMarker’}})
% Get OsDic data for given entry

sdtroot(’cbosdicget’,[],’ImLW75’) % in project

cingui(’fobjset’,’RepRef’,{’@OsDic’,{’feplotA’,’grid’}})
cingui(’fobjset’,’RepRef’,{’’,’@Rep{SmallWide}’})

Value replacement/verification performs checks/callbacks to determine the actual value to be
used in the MATLAB set.

• position accepts NaN for reuse of current values. Thus [NaN NaN 300 100] only sets width
and height.

• @def The value is a default stored in sdt table generation(’Command’). One can search
values by name within a cell array. This is in particular used for preset report formats
@Rep{SmallWide} in comgui ImWrite.

• xlim, ... clim accept callbacks for the setting of limits.
’set(ga,”clim”,[-1 1]*max(abs(get(ga,”clim”))))’ is a typical example setting symmetric color
limits.

• ’@setlines(’’marker’’)’ or ’@out=setlines(’’marker’’);’ are two variants where the
value is obtained as the result of a callback. Note that the variant with @out must end with a
semicolumn. This is illustrated in the example below.

figure(1);t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

cingui(’objset’,1, ... % Handle to the object to modify

{’’,’@Rep{SmallWide}’, ... % Predefined figure type

’@line’,’@setlines(’’marker’’)’}) % Line sequencing

cingui(’fobjset’,’RepRef’,{’’,’@Rep{SmallWide}’})
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objString (string generation for title and file)

cingui(’objString’,h,SCell) is a mechanism to generate strings based on a set of properties.
Elements of SCell are replaced when starting by an @, with implemented methods being

• @PlotWd is the base mechanism to find the plotting directory, see comgui PlotWd.

@PlotWd/relpath is accepted in name generation to allow simple generation of relative paths.

• @tag(1:2) allows selection of a subset of objects when multiple exist. Typical are @legend(1)

to select the first string of a MATLAB legend, or @ii legend(1) for an SDT ii plp Legend

entry. @headsub for the text used by feplot to display titles.

• @colorbar seeks the string associated with a colorbar

• @cf.mdl.name or any variant based on @cf can be used to retrieve data in an SDT handle

pointer.

This is used by comgui ImFtitle to generate figure names, but can also be used elsewhere (fe range,
...). For example in title generation.

figure(1);clf;

t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));title(’MyTit’)

legend(’a’,’b’,’c’);

SCell= {’@Plotwd/plots’, ... % Search for plotwd/plot

’@title’, ... % use title name

’.png’}; % extension

cingui(’objstring’,1,SCell) % Handle of base object

ParamEdit

cingui(’ParamEdit’) calls are used to clarify filling of options data structures as detailed in sec-
tion 7.17.3 .

def.Legend

The def.Legend field is used to control dynamic generation of text associated with a given display.
It is stored using the classical form of property/value pairs stored in a cell array, whose access can
be manual or more robustly done with sdsetprop.

Accepted properties any text property (see doc text) and the specific, case sensitive, properties
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• set gives the initialization command in a string. This command if of the form ’legend

-corner .01 .01 -reset’ with

– cornerx y gives the position of the legend corner with respect to the current axis.

– -reset option deletes any legend existing in the current axis.

• string gives a cell array of string whose rows correspond to lines of the legend. $title

is replaced by the string that would classically be displayed as label by feplot. Individ-
ual formatting of rows can be given as a cell array in the second column. For example
{’\eta 1’,{’interpreter’,’tex’}}.

[model,def]=hexa8(’testeig’);cf=feplot(model);

cf.data.root=’\it MyCube’;

def.Legend={’set’,’legend -corner .1 .9 -reset’, ... % Init

’string’,{’$title’;’@cf.data.root’}, ... % The legend strings

’FontSize’,12} % Other test properties

cf.def=def;

PlotWd

A key aspect of image generation is to define meta-data associated with a figure. These include,
directory where the image will be saved, file name, possible inclusion in Word, PowerPoint, ... The
Project tab defines the plot directory and possibly a file for inclusion. Other properties are set
using the PlotWd command cingui(’plotwd’,gf,’@OsDic(SDT Root)’) as illustrated below.

When initializing in a feplot figure, use cf=comgui(’guifeplot -project "SDT Root"’,2) to
set the project information. Note that the older strategy using cf.def.PlotWd, cf.mdl.PlotWd are
still used first if they exist. Similarly use cf=comgui(’guiiiplot -project "SDT Root"’,2) to
set the project information of iiplot figures.

When refining formatting beyond specifying directory, insertion file, accepted property/value pairs
(a structure can also be used but this is not the norm)

• ’@OsDic(SDT Root)’,list is used to extract property/values from the dictionnary. The (SDT
Root) is the name of the figure from which dictionnary and project information is to be
obtained from. The Project values is set.

• Project tag of project interface. Default would be SDT Root

• FileName cell array describing file name generation, see example in comgui ImFtitle. Note
that the Fn.. OsDic entries allow generation of names from text present in the figure (labels,
titles, ...).

487



comgui,cingui

• objSet cell array of objset commands to be performed before generating an image. This
typically begins by a @ToFig to avoid modifying the original figure.

• wobjSet cell array of commands for insertion of the resulting image into MicroSoft Word,
Powerpoint,Excel, LaTex, ... A sample entry is given by d imw(’wrw49c’).

• ’MultiExt’,{’.png’,’.fig’} cell array of extensions to save mutiple versions of given figure.

t=linspace(0,pi); % basic plot

gf=1;figure(gf);clf;plot(t,sin(t));

title(’TestFigure’);legend(’a’);

% Define the project directory

sdtroot(’SetProject’,struct(’PlotWd’,sdtdef(’tempdir’)))

% Prepare for image generation.

list={ ... % List of OsDic entries, implemented in d_imw

’ImToFigN’, ... % Duplicate to new figure before ImWrite

’FnTitle’, ... % Generate file name based on Title

’WrW49C’ % Insert in word with 49% wide centered

};
% Associate figure gf with project SDT Root

cingui(’plotwd’,gf,’@OsDic(SDT Root)’,list)

comgui(’iminfo’,gf) % View what was set

comgui(’imwrite’,gf) % Actually insert image

A variety of predefined formats is available (and can be customized) with OsDic.

FitLabel

comgui(’fitlabel’) attempts to replace axes of the current figure so that xlabel, ylabel, ... are
not cropped.
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Purpose

General purpose command parser for user interface command functions.

Syntax

Commode (’CommandFcn’,’ChainOfCommands’)

Description

Commands and options are central to SDT. These strings are passed to functions to allow multi-
ple variations in behavior. Accepted commands are listed in the help (text) and sdtweb (html)
documentations (see iicom, fecom, feutil, etc.).

• commands are case insensitive, thus FindNode and findnode are equivalent. The uppercase is
used to help reading.

• options can be separated by blanks : ’ch1’ or ’ch 1’ are the same.

• option values (that must be provided) are indicated italic in the HTML help and in brackets
() in the text help.

For example ch i indicates that the command ch expects an integer. ch 14 is valid, but ch

or ch i are not.

• in the help alterative options are indicated by [c1,c2] (separated by commas).

For example ch[,c] [i,+,-,+i,-i] means as a first alternative that ch and chc are possible.
Then alternatives are i a number, + for next, - for previous, +i for shift by i. ch 14, chc
12:14, chc+, ch-2 are all valid commands.

• Commands are text strings so that you can use fecom ch[1,4], fecom ’ch 14’ or fecom(’ch
1 4’) but not fecom ch 1 4 where ch, 1 and 4 are interpreted by Matlab as 3 separate
strings.

• ; placed at the end of a command requests a silent operation as in MATLAB.

• When building complex commands you may need to compute the value used for an option.
Some commands actually let you specify an additional numeric argument
(feplot(’textnode’,[1 2 3]) and feplot(’textnode 1 2 3’) are the same) but in other
cases you will have to build the string yourself using calls of the form feplot([’textnode’

sprintf(’ %i’,[1 2 3])])
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The UI command functions only accept one command at a time, so that commode was introduced to
allow

• command chaining: several commands separated by semi-columns ;. The parsing is then done by
commode.

• scripting: execute all commands in a file.

• command mode: replace the Matlab prompt >> by a CommandFcn> which directly sends com-
mands to the command function(s).

Most command functions send a command starting by a ’;’ to commode for parsing. Thus commode
(’iicom’,’cax1; abs’) is the same as iicom (’;cax1;abs’)

The following commands are directly interpreted by commode (and not sent to the command func-
tions)

q,quit exits the command mode provided by commode but not Matlab .
script FName reads the file FName line by line and executes the lines as command strings.

The following syntax rules are common to commode and Matlab

%comment all characters after a % and before the next line are ignored.
[] brackets can be used to build matrices.
; separate commands (unless within brackets to build a matrix).

See also

comstr, iicom, fecom, femesh
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Purpose

String handling functions for the Structural Dynamics Toolbox.

Syntax

See details below

Description

The user interfaces of the Structural Dynamics Toolbox have a number of string handling needs
which have been grouped in the comstr function. The appropriate formats and usual place of use
are indicated below.

Cam,string istrue=comstr(Cam,’string’)

String comparison. 1 is returned if the first characters of Cam contain the complete ’string’. 0 is
returned otherwise. This call is used extensively for command parsing. Note that istrue is output
in format double and not logical. See also strncmp.

Cam,string,format [opt,CAM,Cam]=comstr(CAM,’string’,’format’)

Next string match and parameter extraction. comstr finds the first character where lower(CAM)

differs from string. Reads the remaining string using the sscanf specified format. Returns opt

the result of sscanf and CAM the remaining characters that could not be read with the given format.

[opt,CAM,Cam]=comstr(CAM,’string’,’%c’) is used to eliminate the matching part of string.

CAM,ind [CAM,Cam] = comstr(CAM,ind)

Command segmentation with removal of front and tail blanks. The first ind characters of the string
command in capitals CAM are eliminated. The front and tail blanks are eliminated. Cam is a lowercase
version of CAM. This call to comstr is used in all UI command functions for command segmentation.

-1 opt = comstr(CAM,[-1 default])

Option parameter evaluation. The string CAM is evaluated for numerical values which are output in
the row vector opt. If a set of default values default is given any unspecified value in opt will be
set to the default.
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-3 date = comstr(CAM,[-3])

Return the standard date string. Used by ufwrite, naswrite, etc. See also date, datenum.

-4 CAM = comstr(CAM,[-4 nc ])

Fills the string CAM with blanks up to nc characters.

-5 comstr(Matrix,[-5 fid],’format’)

Formatted output of Matrix, the format is repeated as many times as Matrix has columns and a
formatted output to fid (default is 1 standard output). For example you might use
comstr(ii mac(md1,md2)*100,[-5 1],’%6.0f’).

-7 st1=comstr(st1,-7,’string’)

used for dynamic messaging on the command line. On UNIX platforms (the backspace does not
work properly on Windows), the string st1 is erased before ’string’ is displayed.

-17 Tab , comstr(tt,-17,’type’)

This is used to generate tabular output of the cell array tt to various supported types : tab (opens
a java tab containing the table), excel (Microsoft Excel only available on windows), html, csv

(comma separated values, readable by excel), tex (latex formatting), text printout to the command
window.

% A sample table

tab=num2cell(reshape(1:10,[],2));tab(1,:)={’c1’,’c2’};
tname=nas2up(’tempname o.html’);

% RO option structure to format a table for HTML or java output

RO=struct(’fmt’,{{’%3i’,’%.1f’}}, ... % Formatting for each column

’HasHead’,1); % a header is provided as strings

RO.fopen={tname,’a+’}; % Opening information

RO.OpenOnExit=0;

RO.Legend=sprintf(’<p>%s</p>’,’My HTML legend’);

% comstr(tab,-17,[],RO.fmt)

comstr(tab,-17,’html’,RO);

sdtweb(’_link’,sprintf(’web(’’%s’’)’,tname))

% Show the table in JAVA tab
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comstr(tab,-17,’tab’,RO);

% Generate tex output of java tabs

comstr(struct(’FigTag’,’SDT Root’),-17,’tex’);

comstr(gcf,-17,’tex’);

Accepted fields for the options structure are

• .fmt cell array of column formatting instructions. These can be strings %.1f,%i,%.2g which are
passed to sprintf. They can also be java strings java.lang.String(’0.00%’) which are then
parsed using java.text.DecimalFormat.

• .ColumnName cell array with first row giving column names. .ColumnName(:,3) can also be used
to store the column format. .ColumnName(:,4) can also be used to store cell coloring data,
see section 7.18 .

• .HasHead if non zero, skips lines of strings

Fields specific for HTML generation are

• .name is used to define a title for the table.

• .fopen used for HTML generation. For example {tname,’a+’}; is for append. .OpenOnExit

asks to open the file in the web browser.

Fields specific for JAVA tabs are

• .setSort activates row sorting in java tables. 1 : basic sort, 2: selectable sort. 3 : tree table.

• .name is used to define a tab name.

• .FigTag tag or handle for figure where the tab should be displayed.

• .ColWidth vector of column width in pixels.

• .groupable used with .setSort=3 to specify columns that will be used to generate the tree.

• jProp accepts tag,value pairs. ’ResizeMode’,’Off’ to fix colums for example.
’MousePressed’,data gives a cell array used to store events that should be handled by the table
(see menu generation(’jpropcontext’,ua,’Tab.ExportTable’)).

• .ColumnName second row can give alignment ’right’. Third row can give column formatting
(alternatively, the .RowFmt can be used). Row 4 can be used to define a color based on a CritFcn.

-38 [i0,st2]=comstr(st1,-38)

Checks whether provided string st1 is valid to be a structure field. Output i0 is a boolean, true
if valid, false otherwise. Output st2 is equal to input st1 if the string is valid. If not, st2 is an
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alternative valid suggestion based on st1.

See also

commode
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Purpose

Handle object for implicit representation of curves.

Syntax

h=curvemodel(’Source’,r1,’yRef’,fun,’getXFcn’,{fun,fun,fun}, ...

’DimPos’,[1 3 2]);

Description

Multi-dim curve are multi-dimensional arrays (.Y field) with information about the various dimen-
sions (.X,.Xlab fields). curvemodel store similar data sets but provide methods to generate the
.X,.Xlab,.Y fields content dynamically from an information source.

curvemodel objects are derived from MATLAB handle objects. If you copy an object’s handle,
MATLAB copies only the handle and both the original and copy refer to the same object data.

The principle of curve models is that the computation only occurs when the user seeks the required
data.

Important fields are

• .Source contains the data to be used as source. The source can be a pointer. For example
cf.v handle.Stack{’def1’} can be used to point to a set of deformations stored in a feplot,
or iiplot stack.

• .DimPos is used to allow permutations of the array dimensions (implicit equivalent of
permute(c.Y,c.DimPos).

• .xRef is a cell array of length the number of dimensions in .Y allowing the extraction from
the source.

Documented methods are

• .GetData : creates a copy of the full implicit data.

This functionality mostly undocumented. Support functions are process r that handles delayed
signal processing requests, ii signal that supports curvemodel commands associated with signal
processing. The following is an example for users willing to dig into the code.
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C1=d_signal(’RespsweepSpec’) % Create a spectrogram model

C2=C1.GetData; % create a copy where the spectrogram is computed

C2.PlotInfo=ii_plp(’plotinfo 2D’);

iicom(’curveinit’,’Spectro’,C2);
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Purpose

Compute the decibel magnitude.
Compute the unwrapped phase in degrees.phase

Syntax

m = db(xf)

p = phaseb(xf)

Description

db computes the decibel magnitude of each element of the matrix xf. An equivalent would be

m = 20*log10(abs(xf))

phaseb is an extension to the case of multiple FRF stacked as columns of a matrix xf of the phase

routine available in the System Identification Toolbox. It computes the phase in degrees with an
effort to keep the phase continuous for each column.

Example

Here is an example that generates the two FRF of a SIMO system and plots their magnitude and
phase.

a=[0 1;-1 -.01];b=[0;1];c=[1 0;0 1];d=[0;0];

w=linspace(0,2,100)’; xf=qbode(a,b,c,d,w);

clf;

subplot(211);plot(w,dbsdt(xf)); title(’dB magnitude’)

subplot(212);plot(w,phaseb(xf));title(’Unwrapped phase in degrees’)

See also

The xf format, iiplot
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Purpose

Interface between EXCITE and SDT (part of FEMLink).

Syntax

ex2sdt(’read’,FileName);

ex2sdt(’post’);

read[*.cff, *.gid]

ex2sdt(’Read’,’fname.cff’) % Read .cff file and display in feplot

This command can be used to read some Excite specific output files :

• .cff file can be used to export model geometry. Model is read and displayed in feplot.

• .gid file can be used to export time curve at a current DOF. A full directory can be read :
ex2sdt(’Read’,’Directory.gid’). Curves are displayed in iiplot.

ConvertAsMat

ex2sdt(’ConvertAsMat’) This command aims to convert all Excite results of a given directory as
SDT mat files (typically RO mdl and def variables) that can be explorated and post treated through
the ex2sdt UIScan command.

sdtroot(’SetProject’,struct(’ProjectWd’,’projectpath’,’root’,’resultroot’))

ex2sdt(’Post’)

First a root project must be opened, defining at least :

• ProjectWd : the main project directory that contains the results of the time simulation.

• root : the root of the filenames where model and results are stored.

The result folder must contains

• the model file, and if needed the associated reduction basis file. The model file should be (in
preference order):
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– a root.OUT2 nastran output2 file from the DMAP condensation step.

– a root.NAS nastran bulk file.

– a root.cff excite file (to be implemented).

• if needed, the file that contains the restitution matrix in the case of meshed part reduced using
the AVL DMAP. This file is read and lead to a model.TR reduction basis, that can be used to
expand the displacement form the reduced model to the full displacement field (and so animate
the time deformation in feplot).

– a matlab file, root X2OA.mat, that is obtained by the ex2sdt TextOp4 command, that
converts the original export text OUT4 file to a Matlab binary file that is more convenient
to use (it can be read as an HDF handle to save memory).

– directly the original root X2OA.OUT4 export, which is a text file. This case is only suitable
for files that are lower than 300 MB.

• as many subfolders as simulation results. For the moment each simulation typically corresponds
to a specific rotation speed (so each subfolder name should end by the rotation velocity in RPM,
for example study.2000 for the 2000 RPM speed case) : this will be generalized to obtain
simulation information and build a simulation parameter data structure RO, in order to perform
dirscan in the generic SDT process (see sdtweb fe range) (XXX need to find way to recover
those parameters from Excite ouputs...). The result files should be, by order of preferences:

– a root SOL109.INP4 nastran input4 text file that contains displacements, velocities and
acceleration at each (reduced) DOF. This is the more compact and usable output. Cor-
responding time and angle are then read in the util batch list.out log file.

– a number of root-NodeID-DOFID-REL.GID files, each one containing the displacement,
velocity and acceleration in a given of the 6 directions at a node of the model. Some
developpements are needed to use this strategy (INP4 should be prefered), that is beside
very time-consumming.

The input parameters can be get from 2 different files:

– summary.xml : that can be read with RO=feval(ex2sdt(’@parseXML’),’summary.xml’).
Developpement must be done.

– simulation report.out : a text log file that can be read with
RO=feval(ex2sdt(’@readReportOut’),’simulation report.out’).

UIScan
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ex2sdt(’UIScan’) This command can be used to scan a given directory (defined in the Project tab)
and then perform some post-treatment (compute campbell diagrams and animate displacements or
velocities as color map,...) and explorate data through UI.

TextOp4

This command is experimental.
ex2sdt(’TextOp4’,’filename X2OA.OUT4’)

It aims to convert an ascii X20A.OUT4 file, to a binary HDF .mat file. This operation is bufferized
so that the 2 GB memory limitation of old 32 bits Matlab can be bypassed.

See also

FEMLink
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Purpose

Build state-space or normal mode form from FE model.

Syntax

[sys,TR] = fe2ss(’command [options]’,MODEL)

[sys,TR] = fe2ss(’command [options]’,MODEL,C)

[nor,TR] = fe2ss(’command -nor’, ...)

TR = fe2ss(’command -basis’, ...)

Description

fe2ss is meant to allow users to build state-space (see section 5.4 ) and normal mode models from
full order model matrices. Accepted commands are detailed below. Accepted command options

• -nor outputs the normal mode model data structure (see section 5.2 ).

• -basis outputs the reduction basis is the structure TR

• -se outputs a reduced superelement

• -loss2c performs estimates viscous damping based on hysteretic models

• -cpx 1 computes complex modes and uses a call to res2ss to compute the state space model.
-cpx 2 uses first order correction in the fe ceig call before using res2ss to build the state-
space model. This is currently only available for a Free command.

• -dterm includes static correction as a D term rather than additional modes. The associated
full order shapes are stored in TR.bset.

• -ind specifies indices of modes to be kept. Others are included as a D term.

The procedure is always decomposed in the following steps

• call fe reduc build a reduction basis given in TR.def (see section 6.2 ). This usually includes a
call to fe eig with options EigOpt provided in the fe2ss command

• call fe norm to orthonormalize the basis with respect to mass and stiffness (obtain a model in the
normal mode form (5.4), see section 5.2 ) and eliminate collinear vectors if any

• call nor2ss or project model matrices depending on the number of outputs
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The TR output argument, contains the modeshapes followed by residual vectors, is given so that the
user can display modeshapes in feplot with cf.def=TR or call nor2ss repeatedly without computing
the basis again. The later is in particular useful for changes in the sensor configuration which have
no effect on the retained basis. -nor and -basis can be used to generate the corresponding outputs.

High level input arguments are a MODEL (see section 4.5 ) with a case defined in the model which
must contain load and sensor entries (see fe case).

Damping can be specified multiple ways.

• modal damping of viscous form can be given in the model (using a DefaultZeta case entry as
shown below) or as an additional argument C which can be a system damping matrix, a scalar
uniform damping ratio or a vector of damping ratios.

• defining modal damping using an inline function. For example to set 1% below 3000 Hz and 5%
above use

model=stack_set(model,’info’,’DefaultZeta’, ...

@(f)double(f/2/pi<3000)*.01+double(f/2/pi>=3000)*.05);

• using material loss factors and adding the -loss2c option described above.

in the model (using a DefaultZeta case entry for example), or given as an additional argument
C which can be a system damping matrix, a scalar uniform damping ratio or a vector of damping
ratios.

The following example compares various damping models.

mdl=demosdt(’demo ubeam mix’);cf=feplot;

mdl=fe_case(mdl,’SensDof’,’Out’,[343.01 343.02 347.03]’, ...

’FixDof’,’base’,’z==0’)

freq=linspace(10,1e3,2500)’;mdl=stack_set(mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);

[sys,T] = fe2ss(’free 6 10’,mdl);

qbode(sys,freq*2*pi,’iiplot "Modal"’);

% Rayleigh damping with 1 % viscous at 200 Hz, see sdtweb(’damp’)

mdl=stack_rm(mdl,’info’,’DefaultZeta’);

mdl=stack_set(mdl,’info’,’Rayleigh’,[0 .01*2/(200*2*pi)]);

[sys2,T] = fe2ss(’free 6 10’,mdl);

qbode(sys2,freq*2*pi,’iiplot "Rayleigh"’);

% Estimate viscous from hysteretic damping

[sys3,T] = fe2ss(’free 6 10 -loss2c’,mdl);
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qbode(sys3,freq*2*pi,’iiplot "Loss"’);

iicom(’iix’,{’Modal’,’Rayleigh’,’Loss’});

% display full response

RB=struct(’f’,cf.Stack{’Freq’},’u’,eye(5,1))
cf.def=fe2ss(’sysdef’,sys,T,RB);

% use iimouse(’cursorOnFeplot’) to see deformations at various freq.

SysDef

The command is used to generate a restitution of a forced response on all DOF in TR. The calling
format is fe2ss(’sysdef’,sys,TR,RB) with fields of the option structure being

• .f frequency in Hz. or .w frequency in rad/s.

• .u input possibly a vector that should be consistent with sys.b.

Free [ , Float] [ , -dterm] EigOpt

See fe reduc Free for calling details, this generates the classical basis with free modes and static
correction to the loads defined in the model case (see fe case). With the -dterm option, the static
correction is given as a D term rather than additional modes.

CraigBampton nm

It is really a companion function to fe reduc CraigBampton command. The retained basis combines
fixed interface attachment modes and constraint modes associated to DOFs in bdof.

This basis is less accurate than the standard modal truncation for simple predictions of response to
loads, but is often preferred for coupled (closed loop) predictions. In the example below, note the
high accuracy up to 200 Hz.

mdl=demosdt(’demo ubeam’);cf=feplot;

mdl=fe_case(mdl,’SensDof’,’Out’,[343.01 343.02 347.03]’, ...

’FixDof’,’Base’,’z==0’)

freq=linspace(10,400,2500)’;mdl=stack_set(mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);
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[sys,T] = fe2ss(’CraigBampton 5 10’, ...

fe_case(mdl,’DofSet’,’IN’,314.01));

qbode(sys,freq*2*pi,’iiplot "Craig"’);

% Same with free modes

[sys2,T2] = fe2ss(’Free 5 10’, ...

fe_case(mdl,’Remove’,’IN’,’DofLoad’,’IN’,314.01));

qbode(sys2,freq*2*pi,’iiplot "Free" -po’);

iicom(’iixOnly’,{’Craig’,’Free’});iicom(’;sub 1 1;ylog’)

Low level input format

The obsolete low level input arguments are those of fe reduc with the additional damping and
output shape matrix information.

[sys,TR] = fe2ss(’command’,m,k,mdof,b,rdof,C,c)

m, k symmetric real mass and stiffness matrix
mdof associated DOF definition vector describing DOFs in m and k

b input shape matrix describing unit loads of interest. Must be coherent with mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have different length)
rdof contains definitions for a set of DOFs forming an isostatic constraint (see details below).

When rdof is not given, it is determined through an LU decomposition done before the
usual factorization of the stiffness. This operation takes time but may be useful with
certain elements for which geometric and numeric rigid body modes don’t coincide.

C damping model. Can specify a full order damping matrix using the same DOFs as the
system mass M and stiffness K or a scalar damping ratio to be used in a proportional
damping model.

c output shape matrix describing unit outputs of interest (see section 5.1 ). Must be coherent
with mdof.

Standard bases used for this purpose are available through the following commands.

See also

demo fe, fe reduc, fe mk, nor2ss, nor2xf
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Purpose

UI command function for the visualization of 3-D deformation plots

Syntax

fecom

fecom CommandString

fecom(cf,’CommandString’)

fecom(’CommandString’,AdditionalArgument)

Description

fecom provides a number of commands that can be used to manipulate 3-D deformation plots are
handled by the feplot/fecom interface. A tutorial is given section 4.4 . Other examples can be
found in gartfe, gartte and other demos. Details on the interface architecture are given under
feplot.

This help lists all commands supported by the interface (calling fecom or feplot is insensitive to
the user).

• cf1=feplot returns a pointer to the current feplot figure (see section 4.4.3 ). The handle is used
to provide simplified calling formats for data initialization and text information on the current
configuration. You can create more than one feplot figure with cf=feplot(FigHandle). If many
feplot figures are open, one can define the target giving an feplot figure handle cf as a first
argument.

• without input arguments, fecom calls commode which provides a command mode for entering
different possibly chained fecom commands.

• the first input argument should be a string containing a single fecom command, or a chain of
semi-column separated commands starting with a semi-column (fecom(’;com1;com2’)). Such
commands are parsed by commode.

• some commands, such as TextNode, allow the use of additional arguments

AddNode,Line

These commands start to implement direct model modification in the feplot figure. Sample calls are
illustrated in section 2.7.1 .
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Anim[,One][,Time,Freq][,col][nCycle i, Start i, Step]

Deformed structure animation. The animation is not movie based so that you can actively rotate,
change mode, ... without delay. The AnimStep command is only used when you really want to create
movies.

The animation is started/interrupted using the animation button which calls the AnimStart

command. You can set animation properties in the General tab of the feplot properties figure.

To control animation speed and replay you can use fecom(’AnimTime nStep tStep tStart’)

which specifies the number of times that you want the animation to run (0 to run continuously),
the minimum time spent at each time step (default zero), and the wait time between successive
runs of the same animation (default 0, only works with time mode animation). You can also use
fecom(’AnimTime StepInc’) to define the step increment of the animation. You may need to fix
the color limits manually using cf.ua.clim=[0 1e3].

demosdt(’demobartime’); fecom AnimeTime5;

Accepted Anim options are

• Freq the default animation (use of AnimFreq to return to the default) adds a certain phase
shift (2*pi/nCycle) to the amplification factor of the deformations currently displayed and
updates the plot. The default nCycle value is obtained using feplot AnimnCycle25.

• Time starts the animation in a mode that increments deformations while preserving the am-
plification. This is appropriate for animation of time responses.

• One animates the current axis only rather than the default (all).

• Col sets color animation to dual sided (alternates between a max value and its opposite) rather
than the default of no animation. You can animate colors without deformations if you define
colors for the current selection without defining a deformation.

• Slider On,Off,Tog opens an slider to select deformation.

.

Animation speed is very dependent on the figure renderer. See the fecom Renderer command.

AnimMovie step

SDT supports creation of movies using VideoWriter, imwrite, avifile.
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Command option -crop calls comgui ImCrop to crop borders, ... You can use the .Movie field in
iicom ImWrite to generate multiple files.

Typical uses are illustrated below

cf=demosdt(’DemoGartfePlot’); fecom(’ColordataEvalZ-edgeAlpha.1’);% Load an example

fecom(’MovieProfiles’) % List profiles (supported file types)

tname=nas2up(’tempname.gif’);

R1=fecom(’AnimMovie’,tname) % Base give a name

R2=fecom(’AnimMovie-CropEqual’,tname) % ask to crop all white

% More advanced specify properties and shapes

R2=struct(’FileName’,{{sdtdef(’tempdir’),’Gart’,’@ii_legend’,’.gif’}}, ...

’prop’,{{’Quality’,100,’FrameRate’,10}}, ... % VideoWriter properties

’CropFcn’,{{’comgui’,’imCropEqual’}}, ... % Do cropping

’PostFcn’,’camorbit(5,0)’); % Callback after each step

% R2=fecom(’AnimMovie 10’,R2); % Here save 10 animation steps

R2=fecom(’ImWrite’,struct(’ch’,7:8,’Movie’,R2)); % Generate two movies

% Use a Matlab Movie

R3=struct(’Profile’,{{’’,’Matlab’,’movie’}});
R3=fecom(’AnimMovie 10’,R3); % Get a Matlab Movie in R3.M

caxi, ca+

Change current axes. cax i makes the axis i (an integer number) current. ca+ makes the next axis
current.

For example, fecom(’;sub2 1;cax1;show line;ca+;show sensor’) displays a line plot in the first
axis and a sensor plot in the second.

See also the Axes tab in the feplot properties figure and the iicom sub command. In particular
SubStep is used to increment the deformation numbers in each subplot.

ch[,c] [i,+,-,+i,-i],

Displayed deformation control. feplot is generally used to initialize a number of deformations (as
many as columns in mode). ch i selects the deformation(s) i to be displayed (for example ch 1 2

overlays deformations 1 and 2). By default the first deformation is displayed (for line and sensor plots
with less than 5 deformations, all deformations are overlaid). You can also increment/decrement
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using the ch+ and ch- commands or the + and - keys when the current axis is a plot axis. ch+i

increments by i from the current deformation.

You can also select deformations shown in the Deformations tab in the feplot properties figure.

When using more than one axis (different views or deformations), the ch commands are applied to
all feplot axes while the chc commands only apply to the current axis.

The SubStep command is useful to obtain different deformations in a series of axes. Thus to display
the first 4 modes of a structure you can use: fecom(’;sub 1 1;ch1;sub 2 2 step’) where the
sub 1 1 is used to make sure that everything is reinitialized. You can then see the next four using
fecom(’ch+4’).

For line and sensor plots and multiple channels, each deformation corresponds to an object and is
given a color following the ColorOrder of the current axis is used. feplot line and sensor plots
compatible with the use of setlines for line type sequences.

ColorData [,seli] [Type] [,-alphai]

Color definitions Color information is defined for element selections (see the fecom Sel commands)
and should be defined with the selection using a call of the form,
cf.sel(i)={’SelectionString’,’ColorData’, ...}. fecom(’colordata seli ...’,...) is
the corresponding low level call. See also fecom ColorBar and fecom ColorLegend commands.

Accepted options for the command are

• -alpha val can be used to set face transparency. This is only valid using OpenGL rendering
and is not compatible with the display of masses (due to a MATLAB rendering bug).

• -edgealpha val is used for edge transparency

• -ColorBarTitle "val" is used to open a colorbar with the appropriate title (see ColorBar

and ColorScale commands). A .ColorBar field can be used for calls with a data structure
input.

Accepted ColorData commands are listed below
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Eval fecom(’ColorData EvalZ’) does dynamic evaluation of the color field based on cur-
rent displacements. Accepted eval options are x,y, z, a for single axis translations or
translation amplitudes. RadZ,TanZ for radial and tangential displacement (assumed
cylindrical coordinates with z axis).

Ener the preferred method is now to compute energies and display using ColorDataElt

as detailed in fe stress feplot. The old command fecom(’ColorData EnerK’) is
considered obsolete.

Group, Mat,

Pro, i

fecom(’ColorDataGroup’) defines a color for each element group, Mat for each
MatId, and Pro for each ProId. ColorDataI gives a color for each separate triplet.
A color map can be given as a second argument.

ColorData Group -edge affects colors to nodes rather than surfaces and displays a
colored wire-frame.

fecom(’ColorMatId’,[100 0 0 1]) lets you control colors associated with materials
by setting RGB color value associated to MatId=100 in the info,MatColor case entry.
Similar behavior is obtained for ColorProId and ColorGroupId

The color animation mode is set to ScaleColorOne.
Stress the ColordataStressi command defines the selection color by calling fe stress

with command Stressi. The color animation mode is set to ScaleColorOne. This
requires material and element properties to be defined with InitModel.

x, y, z,

all,DOF

fecom(’ColorDataZ’) defines a color that is proportional to motion in the z direction,
... ColorData19 will select DOF 19 (pressure). The color animation mode is set to
ScaleColorDef. fecom(’ColorDataALL’) defines a color that is proportional to
motion norm.

Uniform in this mode the deformation/object index is used to define a uniform color following
the axis ColorOrder.

Elt
fecom(’ColorDataElt’,data) specifies element colors. Nominal format is a curve
(see fe stress Ener and fe stress feplot) or a struct with .data .EltId. Older
formats are a struct with fields .data .IndInElt or two arguments data,IndInElt.

Node low level call to set a color defined at nodes fecom(’ColorData’,cmode) where cmode
is a size(node,1) by size(mode,2) matrix defining nodal colors for each deforma-
tion (these are assumed to be consistent with the current deformation set). Values
are scaled, see the ScaleColor command. fecom(’ColorDataNode’,mode,mdof)

defines nodal colors that are proportional to the norm of the nodal displacement.
You can obtain nodal colors linked to the displacement in a particular direction us-
ing i1=fe c(mdof,.03,’ind’);fecom(’ColorDataNode’, md0(i1,:), mdof(i1))

even though for displacements in the xyz directions fecom(’ColorDataZ’) is shorter.
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Note: When displaying results colors are sometimes scaled using the amplification factor used for
deformations. Thus, to obtain color values that match your input exactly, you must use the fecom

ScaleColorOne mode. In some animations you may need to fix the color limits manually using
cf.ua.clim=[0 1e3].

Color [,seli] [Edge ..., Face ..., Legend]

Default EdgeColor and FaceColor properties of the different patches can be set to none, interp,
flat, white, ... using fecom(’ColorEdgeNone’), ...

fecom(’ColorEdge’,ColorSpec) where ColorSpec is any valid Matlab color specification, is also
acceptable.

EdgeColor and FaceColor apply to the current selection. The optional Seli argument can be used
to change the current selection before applying the command.

You can also modify the properties of a particular object using calls of the form
set(cf.o(i),’edgecolor’,ColorSpec) (see fecom go commands and illustrations in gartte).

fecom(’ColorLegend’) uses the Matlab legend command to create a legend for group, mate-
rial or property colors. Of course, the associated selection must have such colors defined with a
Colordata[M,P,G] command.

ColorBar, ColorMap

fecom(’colorbar’) calls the Matlab colorbar to display a color scale to the left of the figure.
feplot updates this scale when you change the deformation shown. Editing of display is done with
additional arguments fecom(’colorbar’,’CustomField’,NewVal,...), where CustomField is a
standard colorbar field, and NewVal the custom value to set. See comgui objSet for details on
this generic SDT procedure.

fecom ColorBarOff is used to reinitialize a subplot without a color bar.

fecom(’colorMap’) calls ii plp(’ColormapBand’) to generate specialized color maps. See ii plp

ColorMap for details.

In the following example, one plots the actual z displacement using a custom colorbar.

cf=demosdt(’DemoGartfePlot’);

fecom(’colordataEvalZ -edgealpha .1’)

% Disp in CM (*100), 2sided ([-cmax cmax]), instant (updated scale)

fecom(’ColorScale Unit 100 2Sided Instant’);

fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’z [mm]’));

% sdtweb d_imw(’cbTr’) % To see code of typical colorbar styles
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fecom(’colormapjet(9)’);

A .ColorBar field can be used for ColorData calls with a data structure input.

ColorAlpha

fecom ColorAlpha starts a specific coloring mode where the transparency is indexed on the colormap
level. This can be used to highlight high strain areas in volume models. -EdgeAlpha val may be
used to make the edges transparent.

Uniform transparency of faces and edges is obtained using the FaceEdgeAlpha entry in the object
context menu or with a command of the form below.

d_ubeam; cf=feplot;

% Use Value based alpha and Set the edges to be 10% transparent

fecom(’ColorAlpha -edgealpha .1’);

ColorScale

Once colors defined with fecom ColorData, multiple scaling modes are supported. fecom(’ColorScale’)
displays current mode. For calling examples, see fecom ColorBar. The modes are accessible through
the feplot:Anim menu.

• Tight corresponds to a value of [cmin cmax]. cf.ua.clim can be used to force values.

• 1Sided corresponds to a value of [0 cmax]. This is typically used for energy display.

• 2Sided corresponds to a value of [-cmax cmax]. This is typically used for translations, stresses,
...

• Fixed the color limits set in cf.ua.clim are used.

• Off the values are set at during manual refreshes (calls to fecom(’ch’) but not during ani-
mation. This mode is useful to limit computation costs but the color may get updated at the
end of an animation.

• Instant the values of cmin,cmax are obtained using the current deformation.

• Transient the values are obtained using a range of deformations. For time domain animation,
estimation is done dynamically, so that you may have to run your animation cycle once to find
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the true limit.

• One does not scale color deformations (default starting with SDT 6.4)

• Unit coef defines a fixed color scaling coefficient. This is typically used to provide more
convenient units (1e-6 to have stress colors in MPa rather than Pa for example).

• Def uses the amplification coefficient set for the associated deformation.

Cursor

If a time deformation is defined in the feplot figure, one can see time curve at a specific node
using fecom CursorNodeIiplot command. A node cursor then appears on the feplot displayed
model, and clicking on a node shows corresponding curve in the iiplot figure. Reciprocally one can
show a cursor on the iiplot curve to show corresponding time deformation in feplot using iicom

CursorOnFeplot command. Note that this functionality should only be used for small models.

Following example let you test this functionality.

model=femesh(’testhexa8’); cf=feplot(model); model=cf.mdl; % simple cube

data=struct(’def’,[1 1 1 1]’,’DOF’,[5 6 7 8]’+.03,...

’curve’,fe_curve(’test sin 10e-2 5000 1 5000e-4’));

model=fe_case(model,’DofLoad’,’topload’,data); % sin load

model=fe_case(model,’FixDof’,’basefix’,’z==0’); % fix base

model=fe_time(’timeopt newmark .25 .5 0 1e-4 5000’,model); % time computation

cf.def=fe_time(model); % show time animation

fecom CursorNodeIiplot % display cursor on feplot

ci=iiplot;iicom(ci,’ch’,{’NodeId’,5}) % Test the callback

iicom CursorOnFeplot % display cursor on iiplot

% Cursor following animation

fecom(sprintf(’AnimCursor%i Start100’,ci.opt(1)))

ga i

fecom(’ga i’) or cf.ga(i) gets pointers to the associated axes. See details under the same
iicom command. A typical application would be to set multiple axes to the same view using
iimouse(’view3’,cf.ga(:)).
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go i

Get handles to fecom objects. This provides and easy mechanism to modify Matlab properties of
selected objects in the plot (see also the set command).

For example, set(fecom(’go2’),’linewidth’,2) will use thick lines for feplot object 2 (in the
current feplot axis).

You will probably find easier to use calls of the form cf=feplot (to get a handle to the current
feplot figure) followed by set (cf.o(2),’linewidth’,2). If the feplot object is associated to
more than one Matlab object (as for text, mixed plate/beam, ...) you can access separate pointers
using cf.o(2,1). The gartte demo gives examples of how to use these commands.

LabFcn

Titles for each deformation should be generated dynamically with the def.LabFcn callback.
def=fe def(’lab’,def) attempts to provide a meaningful default callback for the data present in
the def structure.

The callback string is interpreted with a call to eval and should return a string defining the label
for each channel. Local variables for the callback are ch (number of the channel currently displayed
in feplot) and def (current deformation).

For example def.LabFcn=’sprintf(’’t=%.2f ms’’,def.data(ch)*1000)’ can be used to display
times of a transient response in ms.

fecom(’TitOpt111’) turns automatic titles on (see iicom). fecom(’TitOpt0’) turns them off.

Legend, Head, ImWrite

Placing a simple title over the deformation can be to coarse. Defining a comgui def.Legend field
provides a more elaborate mechanism to dynamic generation of multi-line legends and file name (to
be used in iicom ImWrite).

The iicom head commands can be used to place additional titles in the figure. cf.head returns
a pointer to the header axis. Mode titles are actually placed in the header axis in order to bypass
inappropriate placement by Matlab when you rotate/animate deformations.

Info

Displays information about the declared structure and the objects of the current plot in the command
window. This info is also returned when displaying the SDT handle pointing to the feplot figure.
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Thus cf=feplot returns

cf =

FEPLOT in figure 2

Selections: cf.sel(1)=’groupall’;

cf.sel(2)=’WithNode {x>.5}’;
Deformations: [ {816x20} ]

Sensor Sets: [ 0 (current 1)]

Axis 3 objects:

cf.o(1)=’sel 2 def 1 ch 9 ty1’; % mesh

cf.o(2) % title

which tells what data arrays are currently defined and lists feplot objects in the current axis.
fecom(’pro’) opens the feplot properties figure which provides an interactive GUI for feplot

manipulations.

InitDef[ , Back]

Initialization of deformations. You can (re)declare deformations at any point using cf.def(i)=def.
Where cf a SDT handle to the figure of interest and i the deformation set you which to modify (if
only one is defined, cf.def is sufficient). Acceptable forms to specify the deformation are

• def is a structure with fields .def, .DOF, .data. Note that .Legend and .LabFcn can be used
to control associated titles, see comgui def.Legend.

• {mode,mdof,data} a set of vectors, a vector of DOFs. For animation of test results, mdof can
be given using the 5 column format used to define arbitrary sensor directions in fe sens. The
optional data is a vector giving the meaning of each column in mode. fecom head is used to
generate the label.

• ci.Stack{’IdMain’}, see section 2.4 for identification procedures and section 5.6 for the
pole residue format

• [] resets deformations

• {def,’sensors’} defines sensor motion in a case where sensors are defined in the case (that
can be accessed through cf.CStack{’sensors’}). It is then expected that def.DOF matches
the length of the sensor tdof field).

• {def,TR} supports automatic expansion/restitution, see illustrated in the fe sens WireExp

command. The same result can be obtained by defining a def.TR field.

feplot(cf,’InitDef’,data) is an alternate calling format that defines the current deformation.
InitDef updates all axes. InitDefBack returns without updating plots.
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load, InitModel

Initialization of structure characteristics. The preferred calling format is
cf.model=model where the fields of model are described in section 7.6 . This makes sure that all
model information is stored in the feplot figure. cf.mdl then provides a handle that lets you modify
model properties in scripts without calling InitModel again.

Lower level calls are cf.model={node,elt,bas}
(or feplot(’InitModel’ ,node,elt,bas) (see basis for bas format information). InitModelBack
does not update the plot (you may want to use this when changing model before redefining new
deformations).

The command is also called when using femesh plotelt, or upcom plotelt (which is equivalent to
cf.model=Up). Note that cf.model=UFS(1) for a data stack resulting from ufread and cf.model=Up

for type 3 superelement.

Load from file fecom(’Load’,’FileName’) will load the model from a binary FileName.mat file.
By default the variable model is searched in the file. fecom(’FileImportInfo’) lists supported
import formats.

The following variables are looked for in the .mat file

• model a model structure.

• def a def structure that will be loaded by default in cf.def

• cf seli, with i a number, a sel selection structure that will be loaded and stored in cf.sel(i).

The following command options apply to command load for specific applications

• -back is used to load, but not display the model (this is used for very large model reading).

• -Hdf loads a model from a HDF5 .mat file but retains most data at v handle pointers to the
file.

• -sLin loads a model and generates a display using cf.sel=’-linface’. This is needed for
larger models.

• -noDef skips loading deformation curves when present.

• -skipFSE skips HDF loading of external data stored in model.fileSE
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InitSens

Initialization of sensors. You can declare sensors independently of the degrees of freedom used to
define deformations (this is in particular useful to show measurement sensors while using modeshape
expansion for deformations). Sensor and arrow object show the sensor sets declared using initsens.

Translation sensors in global coordinates can be declared using a DOF definition vector
cf.sens(i)={mdof} or feplot(’initsens’,mdof). In the first calling format, the current sensor
set is first set to i.

Sensors in other directions are declared by replacing mdof by a 5 column matrix following the format

SensorId NodeId nx ny nz

with SensorId an arbitrary identifier (often 101.99 for sensor of unknown type at node 101), NodeId
the node number of the sensor position, [nx ny nz] a unit vector giving the sensor direction in
global coordinates (see section 3.1 ).

fe sens provides additional tools to manipulate sensors in arbitrary directions. Examples are given
in the gartte demo.

Plot

feplot(’plot’), the same as feplot without argument, refreshes axes of the current figure. If
refreshing the current axis results in an error (which may occasionally happen if you modify the plot
externally), use clf;iicom(’sub’) which will check the consistency of objects declared in each axis.
Note that this will delete Text objects as well as objects created using the SetObject command.

Pro

feplot(’pro’) initializes or refreshes the feplot property GUI. You can also use the Edit:Feplot

Properties ... menu. A description of this GUI is made in section 4.4 .

feplot(’ProViewOn’) turns entry viewing on.

Renderer[Opengl,zBuffer,Painters][,default]

This command can be used to switch the renderer used by feplot. Animation speed is very depen-
dent on the figure renderer. When creating the figure fecom tries to guess the proper renderer to
use (painters, zbuffer, opengl), but you may want to change it (using the Feplot:Render menu
or set(gcf,’renderer’, ’painters’), ...). painters is still good for wire frame views, zbuffer
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has very few bugs but is very slow on some platforms, opengl is generally fastest but still has some
significant rendering bugs on UNIX platforms.

To avoid crashes when opening feplot in OpenGL mode use cingui(’Renderer zbuffer default’)

in your Matlab startup file.

Save, FileExport

Save the model to a .mat file or export it to supported formats.
fecom(’FileExportInfo’) lists supported export formats.

fecom(’Save -savesel file.mat’ also saves the selection(s) which allows faster reload of large
models. fecom(’Save -savedef file.mat’ also saves the deformations(s).

Scale [ ,Defs, Dofi, equal, match, max, one]

Automatic deformation scaling. Scaling of deformations is the use of an amplification factor very
often needed to actually see anything. A deformation scaling coefficient is associated with each
deformed object. The Scale commands let you modify all objects of the current axis as a group.

You can specify either a length associated with the maximum amplitude or the scaling coefficient.

The base coefficient scc for this amplification is set using fecom(’ScaleCoef scc’), while
fecom(’ScaleDef scd’) sets the target length. fecom(’scd 0.01’) is an accepted shortcut. If
scd is zero an automatic amplitude is used. You can also modify the scaling deformation using the
l or L keys (see iimouse).

fecom supports various scaling modes summarized in the table below. You can set this modes with
fecom(’scalemax’) ... commands.
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Scaling
mode

Scaling of 1st deformation Scaling of other deformations

max Amplitude of Max DOF set to scd. Amplitude of Max DOF set to scd.
equal Amplitude of Max DOF set to scd. Amplitude of other deformations equal to

the first one, and amplitude of other ob-
jects equal to the first one.

match Amplitude of Max DOF set to scd. Amplitude of other deformations set to op-
timize superposition. When using two de-
formation sets, rather than two modes in
the same set, their DOFs must be compat-
ible.

coef Deformation amplitude multiplied by scd. Same as first deformation.
one Sets scd to 1 and uses coef mode (so fur-

ther changes to scd lead to amplification
that is not equal to 1).

Same as first deformation.

Warning : using ScaleMax or AnimFreq can lead to negative or complex amplification factors which
only makes sense for frequency domain shapes.
fecom(’scalecoef’) will come back to positive amplification of each object in the current feplot
axis.

ScaleDofi is used to force the scaling DOF to be i. As usual, accepted values for i are of the form
NodeId.DofId (1.03 for example). If i is zero or not a valid DOF number an automatic selection
is performed. ScaleDof can only be used with a single deformation set.

You can change the scale mode using the FEplot:Scale menu or in the Axes tab of the feplot

properties figure.

Sel [ElementSelectors, GroupAll, Reset]

Selection of displayed elements. What elements are to be displayed in a given object is based on the
definition of a selection (see section 7.12 ).

The default command is ’GroupAll’ which selects all elements of all element groups (see section 7.2
for details on model description matrices). cf.sel(1)=’Group1 3:5’ will select groups 1, 3, 4 and 5.
cf.sel(1)=’Group1 & ProId 2 & WithNode {x>0}’ would be a more complex selection example.

To define other properties associated with the selection (fecom ColorData in particular), use a call
of the form cf.sel(i)={’SelectionString’,’OtherProp’,OtherPropData}.

To return to the default selection use fecom(’SelReset’).

fecom(’Sel ... -linface’) can be used to generate first order faces for second order elements,
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which allows faster animation.

Callbacks to customized selections is also available. One can then provide a selection starting with
@, the output will be evaluatued on-the-fly. The function must rethrow in order i1, el0 and i2 as

• i1 the indices of the selected elements in cf.mdl.

• el0 the elements selected in cf.mdl. This can be the result of a transformation, e.g. face
elements from a selface based selection.

• i1

the indices of the selected elements in cf.mdl, including the element header rows. The function is
called as [i1,el0,i2]=eval(CAM(2:end));

SetObjectcf.o(1)= ... fecomSetObjset i [,ty j] ...

Set properties of object i. Plots generated by feplot are composed of a number of objects with
basic properties

• ty 1 (surface view), 2 (wire frame view), 3 (stick view of sensors), 4 (undeformed structure),
5 (node text labels), 6 (DOF text labels), 7 (arrow view of sensors).

• def k index of the deformation set, stored in cf.def(i), seefecom InitDef.

• ch k channel (column of deformation)

• sel k index of display selection. See fecom Sel.

• scc k scaling coefficient for the deformation.

The following example illustrates how the SetObject can be used to create new objects or edit
properties of existing ones.

cf=feplot(femesh(’testquad4 divide 2 2’));

cf.sel(2)=’withnode {x==0}’;
% Display objects in current axis

cf

% Copy and edit one of the object lines to modify properties

cf.o(1)=’sel 1 def 1 ch 0 ty1’; % make type 1 (surface)

% Set other MATLAB patch properties

cf.o(1)={’sel 2 def 1 ch 0 ty1’,’marker’,’o’}
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% Multiple object set, object index is row in cell array

fecom(cf,’setobject’,{’ty1 sel 2 ty’,’ty2 sel 1’})
% remove second object by empty string

cf.o(2)=’’

Show [patch,line,sensor,arrow, ...]

Basic plots are easily created using the show commands which are available in the FEplot:Show ...

menu).
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patch surface view with hidden face removal and possible color coding (initialized by
fecom(’ShowPatch’)). cf.o(1) object type is 1. For color coding, see colordata

commands.
line wire frame plot of the deformed structure (initialized by fecom(’ShowLine’)).

cf.o(2) object type is 2.
sens Sensor plots with sticks at sensor locations in the direction and with the amplitude

of the response (initialized by fecom(’ShowSen’)). cf.o(2) object type is 3.
arrow Sensor plots with arrows at sensor locations in the direction and with the amplitude

of the response (initialized by fecom(’ShowArrow’)). cf.o(2) object type is 7.
DefArrow Deformation plots with lines connecting the deformed and undeformed node positions.

(initialized by fecom(’ShowDef’)). cf.o(2) object type is 8.
Fi... The sdtroot OsDic utilities are now used to allow customization of plot initialization.

d imw(’Fi’) lists predefined init sequencees.
Bas shows triaxes centered a the position of each local basis. The length of the triax

arrow is specified by option -deflenlen. Option DID places the origin of each triax
at a node using this displacement frame.

FEM only shows FEM element groups for models mixing test and FEM information
test only shows test element groups for models mixing test and FEM information
links shows a standard plot with the test and FEM meshes as well as links used for topo-

logical correlation (see fe sens).
map fecom(’ShowMap’,MAP) displays the vector map specified in MAP (see feutil

GetNormalMap). Nota : to see the real orientation, use the fecom(’scaleone’);

instruction. fecom(’ShowUndef’,MAP) also displays the underlying struc-
ture. MAP can also be a stack entry containing orientation informa-
tion (see pro.MAP) or an element selection, as in the example below
demosdt(’demogartfeplot’);fecom(’ShowMap’,’EltName quad4’)

NodeMark fecom(’shownodemark’,1:10,’color’,’r’,’marker’,’o’) displays the node po-
sitions of given NodeId (here 1 to 10) as a line. Here a series of red points
with a o marker. You can also display positions with fecom(’shownodemark’,[x

y z],’marker’,’x’). Command option -noclear allows to overlay several
shownodemark plots, e.g. to show distinct sets of nodes with different colors at once.
This can also be obtained by providing a cell array of node numbers.

Traj fecom(’ShowTraj’,(1:10)’) displays the trajectories of the node of NodeIds 1 to
10 for current deformation. Command option -axis is used to display axis node
trajectories.

2def is used for cases where you want to compare two deformations sets. The first two
objects only differ but the deformation set they point to (1 and 2 respectively).
A typical call would be cf.def(1)={md1,mdof,f1}; cf.def(2)={md2,mdof,f2};
fecom(’show2def’).

DockXYZ generates a dock with 3 subplots showing colors in the x, y and z directions.
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Once the basic plot created, you can add other objects or modify the current list using the Text and
SetObject commands.

Sub [i j ], SubIso, SubStep

Drawing figure subdivision (see iicom for more details). This lets you draw more than one view
of the same structure in different axes. In particular the SubIso command gives you four different
views of the same structure/deformation.

SubStep or Sub i j Step increments the deformation shown in each subplot. This command
is useful to show various modeshapes in the same figure. Depending on the initial state of the
figure, you may have to first set all axes to the same channel. Use fecom(’ch1;sub 2 2 step’) for
example.

Text [off, Node [,Select], Dof d]

Node/DOF text display. TextOff removes all text objects from the current feplot axis. TextNode
displays the numbers of the nodes in FEnode. You can display only certain node numbers by a node
selection command Select. Or giving node numbers in fecom(’textnode’,i). Text properties can
be given as extract arguments, for example fecom(’textnode’,i,’FontSize’,12,’Color’,’r’).
One can customize specific text display attached to nodal positions by directly providing a structure
with fields .vert0, a 3 column matrix of nodal positions (that can be independent from the mesh)
and .Node a 1 column cell array with as many lines as .vert0 containing strings to be displayed.

TextDOF displays the sensor node and direction for the current sensor.

TextDOF Name displays sensor labels of a cf.CStack{’Name’} SenDof entry. Additional arguments
can be used to modify the text properties. fecom(’textdof’) displays text linked to currently
declared sensors, see feplot InitSens command (note that this command is being replaced by the
use of SensDof entries).

TextMatId places a label in the middle of each material area. TextProId does the same for properties.

TitOpt [ ,c] i

Automated title/label generation options. TitOpt i sets title options for all axes to the value i.
i is a three digit number with units corresponding to title, decades to xlabel and hundreds to
ylabel. By adding a c after the command (TitOptC 111 for example), the choice is only applied
to the current axis.

The actual meaning of options depends on the plot function (see iiplot). For feplot, titles are
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shown for a non zero title option and not shown otherwise. Title strings for feplot axes are defined
using the fecom head command.

Triax [ , On, Off]

Orientation triax. Orientation of the plotting axis is shown using a small triax. Triax initializes
the triax axis or updates its orientation. TriaxOff deletes the triax axis (in some plots you do not
want it to show). Each triax is associated to a given axis and follows its orientation. The triax is
initially positioned at the lower left corner of the axis but you drag it with your mouse.

Finally can use fecom(’triaxc’) to generate a triax in a single active subplot.

Undef [ , Dot, Line, None]

Undeformed structure appearance. The undeformed structure is shown as a line which is made
visible/invisible using UnDef (UnDefNone forces an invisible mesh). When visible, the line can show
the node locations (use UnDefDot) or link nodes with dotted lines (use UnDefLine).

View [...]

Orientation control. See iimouse view. iimouse(’viewclone’,[cf.opt(1) cg.opt(1)]) can be
used to link animation and orientation of two feplot figures. This is in particular used in ii mac.

See also

feplot, fe exp, feutil
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Purpose

Finite element mesh handling utilities.

Syntax

femesh CommandString

femesh(’CommandString’)

[out,out1] = femesh(’CommandString’,in1,in2)

Description

You should use feutil function that provides equivalent commands to femesh but using model data
structure.

femesh provides a number of tools for mesh creation and manipulation. femesh uses global variables
to define the proper object of which to apply a command. femesh uses the following standard global
variables which are declared as global in your workspace when you call femesh

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

By default, femesh automatically uses base workspace definitions of the standard global variables
(even if they are not declared as global). When using the standard global variables within functions,
you should always declare them as global at the beginning of your function. If you don’t declare
them as global modifications that you perform will not be taken into account, unless you call femesh
from your function which will declare the variables as global there too. The only thing that you
should avoid is to use clear (instead of clear global) within a function and then reinitialize the
variable to something non-zero. In such cases the global variable is used and a warning is passed.

Available femesh commands are

;

Command chaining. Commands with no input (other than the command) or output argument, can
be chained using a call of the form femesh(’;Com1;Com2’). commode is then used for command
parsing.
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Add FEeli FEelj, AddSel

Combine two FE model description matrices. The characters i and j can specify any of the main
t, selected 0 and alternate 1 finite element model description matrices. The elements in the model
matrix FEelj are appended to those of FEeli.

AddSel is equivalent to AddFEeltFEel0 which adds the selection FEel0 to the main model FEelt.

This is an example of the creation of FEelt using 2 selections (FEel0 and FEel1)

femesh(’Reset’);

femesh(’Testquad4’); % one quad4 created

femesh(’Divide’,[0 .1 .2 1],[0 .3 1]); % divisions

FEel0=FEel0(1:end-1,:); % suppress 1 element in FEel0

femesh(’AddSel’); % add FEel0 into FEelt

FEel1=[Inf abs(’tria3’);9 10 12 1 1 0];% create FEel1

femesh(’Add FEelt FEel1’); % add FEel1 into FEelt

femesh PlotElt % plot FEelt

AddNode [,New] [, From i] [,epsl val]

Combine, append (without/with new) FEn0 to FEnode. Additional uses of AddNode are provided
using the format

[AllNode,ind]=femesh(’AddNode’,OldNode,NewNode);

which combines NewNode to OldNode. AddNode finds nodes in NewNode that coincide with nodes in
OldNode and appends other nodes to form AllNode. ind gives the indices of the NewNode nodes in
the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates. The minimal
distance below which two nodes are considered identical is given by sdtdef epsl (default 1e-6).

[AllNode,ind]=femesh(’AddNode From 10000’,OldNode,NewNode); gives node numbers starting
at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb. See feutil AddNode for more details.

AddTest [,-EGID i][,NodeShift,Merge,Combine]

Combine test and analysis models. When combining test and analysis models you typically want
to overlay a detailed finite element mesh with a coarse wire-frame representation of the test con-
figuration. These models coming from different origins you will want combine the two models in
FEelt.
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By default the node sets are considered to be disjoint. New nodes are added starting from
max(FEnode(:,1))+1 or from NodeShift+1 if the argument is specified. Thus femesh(’addtest

’’,TNode,TElt) adds test nodes TNode to FEnode while adding NodeShift to their initial identifica-
tion number. The same NodeShift is added to node numbers in TElt which is appended to FEelt.
TElt can be a wire frame matrix read with ufread.

With merge it is assumed that some nodes are common but their numbering is not coherent.
femesh(’addtest merge’,NewNode,NewElt) can also be used to merge to FEM models. Non coin-
cident nodes (as defined by the AddNode command) are added to FEnode and NewElt is renumbered
according to the new FEnode. Merge-Edge is used to force mid-side nodes to be common if the end
nodes are.

With combine it is assumed that some nodes are common and their numbering is coherent. Nodes
with new NodeId values are added to FEnode while common NodeId values are assumed to be located
at the same positions.

You can specify an EGID value for the elements that are added using AddTest -EGID -1. In par-
ticular negative EGID values are display groups so that they will be ignored in model assembly
operations.

The combined models can then be used to create the test/analysis correlation using fe sens. An
application is given in the gartte demo, where a procedure to match initially different test and FE
coordinate frames is outlined.

Divide div1 div2 div3

Mesh refinement by division of elements. Divide applies to all groups in FEel0.

See equivalent feutil Divide command.

% Example 1 : beam1

femesh(’Reset’);

femesh(’;Testbeam1;Divide 3;PlotEl0’); % divide by 3

fecom TextNode

% Example 2 : you may create a command string

number=3;

st=sprintf(’;Testbeam1;Divide %f;PlotEl0’,number);

femesh(’Reset’);

femesh(st);

fecom TextNode

% Example 3 : you may use uneven division
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femesh(’Reset’);femesh(’testquad4’); % one quad4 created

femesh(’DivideElt’,[0 .1 .2 1],[0 .3 1]);

femesh PlotEl0

DivideInGroups

Finds groups of FEel0 elements that are not connected (no common node) and places each of these
groups in a single element group.

femesh(’Reset’);femesh(’testquad4’); % one quad4 created

femesh(’RepeatSel 2 0 0 1’); % 2 quad4 in the same group

femesh(’DivideInGroups’); % 2 quad4 in 2 groups

DivideGroup i ElementSelectors

Divides a single group i of FEelt in two element groups. The first new element group is defined
based on the element selectors (see section 7.12 ).

Extrude nRep tx ty tz

Extrusion. Nodes, lines or surfaces that are currently selected (put in FEel0) are extruded nRep

times with global translations tx ty tz.

You can create irregular extrusion giving a second argument (positions of the sections for an axis
such that tx ty tz is the unit vector).

See feutil Extrude for more details.

% Example 1 : beam

femesh(’Reset’);

femesh(’Testbeam1’); % one beam1 created

femesh(’;Extrude 2 1 0 0;PlotEl0’); % 2 extrusions in x direction

% Example 2 : you may create the command string

number=2;step=[1 0 0];

st=sprintf(’;Testbeam1;Extrude %f %f %f %f’,[number step]);

femesh(’Reset’);

femesh(st); femesh PlotEl0
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% Example 3 : you may use uneven extrusions in z direction

femesh(’Reset’); femesh(’Testquad4’)

femesh(’Extrude 0 0 0 1’, [0 .1 .2 .5 1]); %

% 0 0 0 1 : 1 extrusion in z direction

% [0 .1 .2 .5 1] : where extrusions are made

femesh PlotEl0

FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling format is

[ind,elt] = femesh(’FindElt withnode 1:10’)

where ind gives the row numbers of the elements (but not the header rows except for unique
superelements which are only associated to a header row) and elt (optional) the associated element
description matrix. FindEl0 applies to elements in FEel0.

When operators are accepted, equality and inequality operators can be used. Thus group~=[3 7]

or pro < 5 are acceptable commands. See also SelElt, RemoveElt and DivideGroup, the gartfe

demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of selectors listed in section 7.11 .

Different selectors can be chained using the logical operations & (finds nodes that verify both con-
ditions), | (finds nodes that verify one or both conditions). Condition combinations are always
evaluated from left to right (parentheses are not accepted).

Output arguments are the numbers NodeID of the selected nodes and the selected nodes node as a
second optional output argument.

As an example you can show node numbers on the right half of the z==0 plane using the commands

fecom(’TextNode’,femesh(’FindNode z==0 & x>0’))

Following example puts markers on selected nodes

model=demosdt(’demo ubeam’); femesh(model); % load U-Beam model

fecom(’ShowNodeMark’,femesh(’FindNode z>1.25’),’color’,’r’)

fecom(’ShowNodeMark’,femesh(’FindNode x>0.2*z|x<-0.2*z’),...

’color’,’g’,’marker’,’o’)

Note that you can give numeric arguments to the command as additional femesh arguments. Thus
the command above could also have been written
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fecom(’TextNode’,femesh(’FindNode z== & x>=’,0,0)))

See also the gartfe demo.

Info [ ,FEeli, Nodei]

Information on global variables. Info by itself gives information on all variables. The additional
arguments FEelt ... can be used to specify any of the main t, selected 0 and alternate 1 finite element
model description matrices. InfoNodei gives information about all elements that are connected to
node i. To get information in FEelt and in FEnode, you may write

femesh(’InfoElt’) or femesh(’InfoNode’)

Join [,el0] [group i, EName]

Join the groups i or all the groups of type EName. JoinAll joins all the groups that have the same
element name. By default this operation is applied to FEelt but you can apply it to FEel0 by adding
the el0 option to the command. Note that with the selection by group number, you can only join
groups of the same type (with the same element name).

femesh(’Reset’); femesh(’;Test2bay;PlotElt’);

% Join using group ID

femesh(’InfoElt’); % 2 groups at this step

femesh JoinGroup1:2 % 1 group now

% Join using element name

femesh(’Reset’); femesh(’Test2bay;PlotElt’);

femesh Joinbeam1 % 1 group now

Model [,0]

model=femesh(’Model’) returns the FEM structure (see section 7.6 ) with fields model.Node=FEnode
and model.Elt=FEelt as well as other fields that may be stored in the FE variable that is persistent
in femesh. model=femesh(’Model0’) uses model.Elt=FEel0.

ObjectBeamLine i, ObjectMass i

Create a group of beam1 elements. The node numbers i define a series of nodes that form a continuous
beam (for discontinuities use 0), that is placed in FEel0 as a single group of beam1 elements.

For example femesh(’ObjectBeamLine 1:3 0 4 5’) creates a group of three beam1 elements be-
tween nodes 1 2, 2 3, and 4 5.
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An alternate call is femesh(’ObjectBeamLine’,ind) where ind is a vector containing the node
numbers. You can also specify a element name other than beam1 and properties to be placed in
columns 3 and more using femesh(’ObjectBeamLine -EltName’,ind,prop).

femesh(’ObjectMass 1:3’) creates a group of concentrated mass1 elements at the declared nodes.

femesh(’Reset’)

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...

3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176];

prop=[100 100 1.1 0 0]; % MatId ProId nx ny nz

femesh(’ObjectBeamLine’,1:4,prop);femesh(’AddSel’);

%or femesh(’;ObjectBeamLine 1 2 0 2 3 0 3 4;AddSel’);

% or femesh(’ObjectBeamLine’,1:4);

femesh(’ObjectMass’,3,[1.1 1.1 1.1])

femesh AddSel

femesh PlotElt; fecom TextNode

ObjectHoleInPlate

Create a quad4 mesh of a hole in a plate. The format is ’ObjectHoleInPlate N0 N1 N2 r1 r2

ND1 ND2 NQ’. See feutil ObjectHoleInPlate for more details.

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

femesh(’ObjectHoleInPlate 1 2 3 .5 .5 3 4 4’);

femesh(’Divide 3 4’); % 3 divisions around, 4 divisions along radii

femesh PlotEl0

% You could also use the call

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

% n1 n2 n3 r1 r2 nd1 nd2 nq

r1=[ 1 2 3 .5 .5 3 4 4];

st=sprintf(’ObjectHoleInPlate %f %f %f %f %f %f %f %f’,r1);

femesh(st); femesh(’PlotEl0’)

ObjectHoleInBlock

Create a hexa8 mesh of a hole in a rectangular block. The format is ’ObjectHoleInBlock x0 y0 z0

nx1 ny1 nz1 nx3 ny3 nz3 dim1 dim2 dim3 r nd1 nd2 nd3 ndr’. See feutil ObjectHoleInBlock

for more details.

femesh(’Reset’)

femesh(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 1 2 3 3 .7 8 8 3 2’)

femesh(’PlotEl0’)
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Object[Quad,Beam,Hexa] MatId ProId

Create or add a model containing quad4 elements. The user must define a rectangular domain
delimited by four nodes and the division in each direction. The result is a regular mesh.

For example femesh(’ObjectQuad 10 11’,nodes,4,2) returns model with 4 and 2 divisions in each
direction with a MatId 10 and a ProId 11.

femesh(’reset’);

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

femesh(’Objectquad 1 1’,node,4,3); % creates model

femesh(’AddSel’);femesh(’PlotElt’)

node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];

femesh(’Objectquad 2 3’,node,3,2); % matid=2, proid=3

femesh(’AddSel’);femesh(’PlotElt’);femesh Info

Divisions may be specified using a vector between [0,1] :

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

femesh(’Objectquad 1 1’,node,[0 .2 .6 1],linspace(0,1,10));

femesh(’PlotEl0’);

Other supported object topologies are beams and hexahedrons. For example

femesh(’Reset’)

node = [0 0 0; 2 0 0;1 3 0; 1 3 1];

femesh(’Objectbeam 3 10’,node(1:2,:),4); % creates model

femesh(’AddSel’);

femesh(’Objecthexa 4 11’,node,3,2,5); % creates model

femesh(’AddSel’);

femesh PlotElt; femesh Info

Object [Arc, Annulus, Circle,Cylinder,Disk]

Build selected object in FEel0. See feutil Object for a list of available objects. For example:

femesh(’Reset’)

femesh(’;ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel’);

femesh(’;ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel’);

femesh(’;ObjectCircle 1 1 1 2 0 0 1 30;AddSel’);

femesh(’;ObjectCircle 1 1 3 2 0 0 1 30;AddSel’);

femesh(’;ObjectCylinder 0 0 0 0 0 4 2 10 20;AddSel’);
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femesh(’;ObjectDisk 0 0 0 3 0 0 1 10 3;AddSel’);

femesh(’;ObjectAnnulus 0 0 0 2 3 0 0 1 10 3;AddSel’);

femesh(’PlotElt’)

Optim [Model, NodeNum, EltCheck]

OptimModel removes nodes unused in FEelt from FEnode.

OptimNodeNum does a permutation of nodes in FEnode such that the expected matrix bandwidth is
smaller. This is only useful to export models, since here DOF renumbering is performed by fe mk.

OptimEltCheck attempts to fix geometry pathologies (warped elements) in quad4, hexa8 and penta6

elements.

Orient, Orient i [ , n nx ny nz]

Orient elements. For volumes and 2-D elements which have a defined orientation, femesh(’Orient’)
calls element functions with standard material properties to determine negative volume orientation
and permute nodes if needed. This is in particular needed when generating models via Extrude

or Divide operations which do not necessarily result in appropriate orientation (see integrules).
When elements are too distorted, you may have a locally negative volume. A warning about warped
volumes is then passed. You should then correct your mesh. Note that for 2D meshes you need to
use 2D topology holders q4p, t3p, ....

Orient normal of shell elements. For plate/shell elements (elements with parents of type quad4,
quadb or tria3) in groups i of FEelt, this command computes the local normal and checks whether
it is directed towards the node located at nx ny nz. If not, the element nodes are permuted so that
a proper orientation is achieved. A -neg option can be added at the end of the command to force
orientation away rather than towards the nearest node.

femesh(’Orient i’,node) can also be used to specify a list of orientation nodes. For each element,
the closest node in node is then used for the orientation. node can be a standard 7 column node
matrix or just have 3 columns with global positions.

For example

% Init example

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3;’)

FEelt=FEel0; femesh(’DivideGroup1 withnode1’);

% Orient elements in group 2 away from [0 0 -1]

femesh(’Orient 2 n 0 0 -1 -neg’);
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Plot [Elt, El0]

Plot selected model. PlotElt calls feplot to initialize a plot of the model contained in FEelt.
PlotEl0 does the same for FEel0. This command is really just the declaration of a new model using
feplot(’InitModel’,femesh(’Model’)).

Once the plot initialized you can modify it using feplot and fecom.

Lin2quad, Quad2Lin, Quad2Tria, etc.

Basic element type transformations.

Element type transformation are applied to elements in FEel0. See feutil Lin2Quad fore more
details and a list of transformations.

% create 4 quad4

femesh(’;Testquad4;Divide 2 3’);

femesh(’Quad2Tria’); % conversion

femesh PlotEl0

% create a quad, transform to triangles, divide each triangle in 4

femesh(’;Testquad4;Quad2Tria;Divide2;PlotEl0;Info’);

% lin2quad example:

femesh(’Reset’); femesh(’Testhexa8’);

femesh(’Lin2Quad epsl .01’);

femesh(’Info’)

RefineBeam l

Mesh refinement. This function searches FEel0 for beam elements and divides elements so that no
element is longer than l.

Remove[Elt,El0] ElementSelectors

Element removal. This function searches FEelt or FEel0 for elements which verify certain properties
selected by ElementSelectors and removes these elements from the model description matrix. A
sample call would be

% create 4 quad4

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3’);

femesh(’RemoveEl0 WithNode 1’)

femesh PlotEl0
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RepeatSel nITE tx ty tz

Element group translation/duplication. RepeatSel repeats the selected elements (FEel0) nITE times
with global axis translations tx ty tz between each repetition of the group. If needed, new nodes
are added to FEnode. An example is treated in the d truss demo.

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3’);

femesh(’;RepeatSel 3 2 0 0’); % 3 repetitions, translation x=2

femesh PlotEl0

% alternate call:

% number, direction

% femesh(sprintf(’;repeatsel %f %f %f %f’, 3, [2 0 0]))

Rev nDiv OrigID Ang nx ny nz

Revolution of selected elements in FEel0. See feutil Rev for more details. For example:

FEnode = [1 0 0 0 .2 0 0; 2 0 0 0 .5 1 0; ...

3 0 0 0 .5 1.5 0; 4 0 0 0 .3 2 0];

femesh(’ObjectBeamLine’,1:4);

femesh(’Divide 3’)

femesh(’Rev 40 o 0 0 0 360 0 1 0’);

femesh PlotEl0

fecom(’;Triax;View 3;ShowPatch’)

% An alternate calling format would be

% divi origin angle direct

%r1 = [40 0 0 0 360 0 1 0];

%femesh(sprintf(’Rev %f o %f %f %f %f %f %f %f’,r1))

RotateSel OrigID Ang nx ny nz

Rotation. The selected elements FEel0 are rotated by the angle Ang (degrees) around an axis passing
trough the node of number OrigID (or the origin of the global coordinate system) and of direction
[nx ny nz] (the default is the z axis [0 0 1]). The origin can also be specified by the xyz values
preceded by an o

femesh(’RotateSel o 2.0 2.0 2.0 90 1 0 0’)

This is an example of the rotation of FEel0

femesh(’Reset’);
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femesh(’;Testquad4;Divide 2 3’);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’;RotateSel %f %f %f %f %f’,[1 30 0 0 1]);

femesh(st); femesh PlotEl0

fecom(’;Triax;TextNode’); axis on

Sel [Elt,El0] ElementSelectors

Element selection. SelElt places in the selected model FEel0 elements of FEelt that verify certain
conditions. You can also select elements within FEel0 with the SelEl0 command. Available element
selection commands are described under the FindElt command and section 7.12 .

femesh(’SelElt ElementSelectors’).

SelGroup i, SelNode i

Element group selection. The element group i of FEelt is placed in FEel0 (selected model).
SelGroupi is equivalent to SelEltGroupi.

Node selection. The node(s) i of FEnode are placed in FEn0 (selected nodes).

SetGroup [i,name] [Mat j, Pro k, EGID e, Name s]

Set properties of a group. For group(s) of FEelt selector by number i, name name, or all you can
modify the material property identifier j, the element property identifier k of all elements and/or
the element group identifier e or name s. For example

femesh(’SetGroup1:3 pro 4’)

femesh(’SetGroup rigid name celas’)

If you know the column of a set of element rows that you want to modify, calls of the form
FEelt(femesh(’FindEltSelectors’),Column)= Value can also be used.

model=femesh(’Testubeamplot’);

FEelt(femesh(’FindEltwithnode {x==-.5}’),9)=2;
femesh PlotElt;

cf.sel={’groupall’,’colordatamat’};

You can also use femesh(’set groupa 1:3 pro 4’) to modify properties in FEel0.
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SymSel OrigID nx ny nz

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with respect to a plane
going through the node of number OrigID (node 0 is taken to be the origin of the global coordinate
system) and normal to the vector [nx ny nz]. If needed, new nodes are added to FEnode. Related
commands are TransSel, RotateSel and RepeatSel.

Test

Some unique element model examples. See list with femesh(’TestList’). For example a simple
cube model can be created using

model=femesh(’TestHexa8’); % hexa8 test element

TransSel tx ty tz

Translation of the selected element groups. TransSel replaces elements of FEel0 by their translation
of a vector [tx ty tz] (in global coordinates). If needed, new nodes are added to FEnode. Related
commands are SymSel, RotateSel and RepeatSel.

femesh(’Reset’);

femesh(’;Testquad4;Divide 2 3;AddSel’);

femesh(’;TransSel 3 1 0;AddSel’); % Translation of [3 1 0]

femesh PlotElt

fecom(’;Triax;TextNode’)

UnJoin Gp1 Gp2

Duplicate nodes which are common to two groups. To allow the creation of interfaces with partial
coupling of nodal degrees of freedom, UnJoin determines which nodes are common to the element
groups Gp1 and Gp2 of FEelt, duplicates them and changes the node numbers in Gp2 to correspond
to the duplicate set of nodes. In the following call with output arguments, the columns of the matrix
InterNode give the numbers of the interface nodes in each group InterNode = femesh(’UnJoin 1

2’).

femesh(’Reset’); femesh(’Test2bay’);

femesh(’FindNode group1 & group2’) % nodes 3 4 are common

femesh(’UnJoin 1 2’);

femesh(’FindNode group1 & group2’) % no longer any common node
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A more general call allows to separate nodes that are common to two sets of elements
femesh(’UnJoin’,’Selection1’,’Selection2’). Elements in Selection1 are left unchanged
while nodes in Selection2 that are also in Selection1 are duplicated.

See also

fe mk, fecom, feplot, section 4.5 , demos gartfe, d ubeam, beambar ...
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Purpose

Finite element mesh handling utilities.

Syntax

[out,out1] = feutil(’CommandString’,model,...)

Description

feutil provides a number of tools for mesh creation and manipulation.

Some commands return the model structure whereas some others return only the element matrix.
To mesh a complex structure one can mesh each subpart in a different model structure (model, mo1,
...) and combine each part using AddTest command. To handle complex model combination (not
only meshes but whole models with materials, bases, ...), one can use the CombineModel command.

Available feutil commands are

Advanced

Advanced command with non trivial input/output formats or detailed options are listed under
feutila.

AddElt

model.Elt=feutil(’AddElt’,model.Elt,’EltName’,data)

This command can be used to add new elements to a model. EltName gives the element name used
to fill the header. data describes elements to add (one row per element). Following example adds
celas elements to the basis of a simple cube model.

% Adding elements to a model

femesh(’Reset’); model=femesh(’Testhexa8’); % simple cube model

data=[1 0 123 0 0 1 1e3; 2 0 123 0 0 1 1e3;

3 0 123 0 0 1 1e3; 4 0 123 0 0 1 1e3]; % n1 n2 dof1 dof2 EltId ProId k

model.Elt=feutil(’AddElt’,model.Elt,’celas’,data);

cf=feplot(model);

AddNode[,New] [, From i] [,epsl val]
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[AllNode,ind]=feutil(’AddNode’,OldNode,NewNode);

Combine (without command option New) or append (with command option New) NewNode to OldNode.
Without command option New, AddNode combines NewNode to OldNode: it finds nodes in NewNode

that coincide with nodes in OldNode and appends other nodes to form AllNode. With command
option New, AddNode simply appends NewNode to OldNode.

AllNode is the new node matrix with added nodes. ind (optional) gives the indices of the NewNode

nodes in the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates. The minimal
distance below which two nodes are considered identical is given by sdtdef epsl (default 1e-6).

[AllNode,ind]=feutil(’AddNode From 10000’,OldNode,NewNode); gives node numbers starting
at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb.

By default, nodes that repeated in NewNode are coalesced onto the same node (a single new node is
added). If there is not need for that coalescence, you can get faster results with AddNode-nocoal.

ind=feutilb(’AddNode -near epsl value’,n1,n2); returns a sparse matrix with non zero val-
ues in a given colum indicating of n1 nodes that are within epsl of each n2 node (rows/columns
correspond to n1/n2 node numbers).

id=feutilb(’AddNode -nearest epsl value’,n1,xyz); returns vector giving the nearest n1 NodeId

to each xyz node the search area being limited to epsl. When specified with a 7 column n2, the
result is sparse(n2(:,1),1,n1 index). For fine meshes the algorithm can use a lot of memory. If
n2 is not too large it is then preferable to use an AddNode command with a tolerance sufficient for
a match [n3,ind]=feutil(’AddNode epsl value’,n1,n2);id=n3(ind,1).

AddSet[NodeId, EltId, FaceId, EdgeId]

Command AddSet packages the generation of sets in an SDT model. Depending on the type of set
several command options can apply.

• model=feutil(’AddSetNodeId’,model,’name’,’FindNodeString’) adds the selection
FindNodeString as a set of nodes name to model. FindNodeString can be replaced by a
column vector of NodeId.

• Syntax is the same for AddSetEltId with a FindEltString selection. FindEltString can be
replaced by a column vector of EltId. Command option FromInd allows providing element
indices instead of IDs.
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• For faces with AddSetFaceId, the element selection argument FindEltString must result in
the generation of a face selection. One can use the SelFace token in the FindEltString to
this purpose. As an alternative, one can directly provide an element matrix resulting from
a SelFace selection, or a 2 column list of respectively EltId and Face identifiers. For face
identifier conversion to other code conventions, one can use command option @fun to obtain a
set with a ConvFcn set to fun, see set for more details.

• For generation of EdgeId sets, the element selection argument FindEltString must result in
the generation of an edge selection. One can use the SelEdge token in the FindEltString to
this purpose. As an alternative, one can directly provide an element matrix resulting from a
SelEdge selection, or a 2 column list of respectively EltId and Edge identifiers. Support for
edge identifier conversion and setname selection is not provided yet.

The option -id value can be added to the command to specify a set ID.

By default the generated set erases any previously existing set with the same name, regardless of
the type. Command option New alters this behavior by incrementing the set name. One can use the
command second output to recover the new name.

Command option -Append allows generation of a meta-set. The meta-set is an agglomeration of
several sets of possibly various types, see set for more information.

• The base syntax requires providing the meta-set name and the set name.
model=feutil(’AddSetEltId -Append’,model,’name’,’FindEltString’,’subname’) will
thus add the elements found as a sub set named subname of meta-set name. subname can be a
1x2 cell array {subname,subgroup} providing the set name and the set subgroup it belongs
to. By default subgroup is set to the set type.

• Generation of a meta-set gathering all base sets in the model is possible by omitting subname

and the FindEltString.

By default command AddSet returns the model as a first output and possibly the set data structure
in a second output. Command option -get alters this behavior returning the data set structure
without adding it to the model. For FaceId or EdgeId sets, command option -get can output the
elements selected by the FindEltString.

Following example defines a set of each type on the ubeam model:

% Defining node elements or face sets in a model

model=demosdt(’demo ubeam’);

% Add a set of NodeId, and recover set data structure
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[model,data]=feutil(’AddSetNodeId’,model,’nodeset’,’z==1’);

% Add a set of EltId

model=feutil(’AddSetEltId -id18’,model,’eltset’,’WithNode{z==0}’);
% Generate a set of EltId without model addition

data=feutil(’AddSetEltId -id18 -get’,model,’eltset’,’WithNode{z==0}’);
% Generate a set of FaceId

model=feutil(’AddSetFaceId’,model,’faceset’,’SelFace & InNode{z==0}’);
% Generate a set of FaceId without model addition

[data1,elt]=feutil(’AddSetFaceId -get’,model,’faceset’,’SelFace & WithNode{z==0}’);

% Sample visalization commands

cf=feplot; % get feplot handle

[elt,ind]=feutil(’FindElt setname eltset’,model); % FindElt based on set name

cf.sel=’setname faceset’; % element selection based on a FaceId set

% Lower level set handling

% Generate a FaceSet from an EltSet

r1=cf.Stack{’eltset’};r1.type=’FaceId’;r1.data(:,2)=1;
cf.Stack{’set’,’faceset’}=r1;
% Generate a DOF set from a node set

r1=cf.Stack{’nodeset’};r1.type=’DOF’;r1.data=r1.data+0.02;
cf.Stack{’set’,’dofset’}=r1;
% Visualize set data in promodel stack

fecom(cf,’curtab Stack’,’eltset’);

AddTest[,-EGID i][,NodeShift,Merge,Combine]

model=feutil(’AddTest’,mo1,mo2); Combine models. When combining test and analysis models
you typically want to overlay a detailed finite element mesh with a coarse wire-frame representation
of the test configuration. These models coming from different origins you will want combine the two
models in model.

Note that the earlier objective of combining test and FEM models is now more appropriately dealt
with using SensDof entries, see section 4.6 for sensor definitions and section 3.1 for test/analysis
correlation. If you aim at combining several finite element models into an assembly, with proper han-
dling of materials, element IDs, bases,. . . , you should rather use the more appropriate CombineModel
command.

• By default the node sets are considered to be disjoint. New nodes are added starting from
max(mo1.Node(:,1))+1 or from NodeShift+1 if the argument is specified.
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Thus feutil(’AddTest NodeShift’,mo1,mo2) adds mo2 nodes to mo1.Node while adding
NodeShift to their initial identification number. The same NodeShift is added to node num-
bers in mo2.Elt which is appended to mo1.Elt. mo2 can be a wire frame matrix read with
ufread for example.

• With command option Merge it is assumed that some nodes are common but their numbering
is not coherent. Non coincident nodes (as defined by the AddNode command) are added to
mo1.Node and mo2.Elt is renumbered according to resulting model.Node. Command option
Merge-Edge is used to force mid-side nodes to be common if the end nodes are. Note that
command Merge will also merge all coincident nodes of mo2.

• With command option Combine it is assumed that some nodes are common and their numbering
is coherent. Nodes of mo2.Node with new NodeId values are added to mo1.Node while common
NodeId values are assumed to be located at the same positions.

• You can specify an EGID value for the elements that are added using AddTest -EGID -1 for
example. In particular negative EGID values are display groups so that they will be ignored in
model assembly operations. Command option keeptest allows to retain existing test frames
when adding a new one. If the same EGID is declared, test frames are then combined in the
same group.

• Command option -NoOri returns model without the Info,OrigNumbering entry in the model
stack.

Divide div1 div2 div3

model=feutil(’Divide div1 div2 div3’,model);

Mesh refinement by division of elements. Divide applies to all groups in model.Elt. To apply the
division to a selection within the model use ObjectDivide.

Division directions div1 div2 div3 are here understood in the local element basis, thus depending
on the declared node orders in the connectivity matrix that refer to the reference cell. Uneven
divisions as function of the direction will thus require some care regarding the element declaration
if the original mesh has been heterogeneously generated.

Currently supported divisions are

• segments : elements with beam1 parents are divided in div1 segments of equal length.

• quadrilaterals: elements with quad4 or quadb parents are divided in a regular mesh of div1 by
div2 quadrilaterals.

• hexahedrons: elements with hexa8 or hexa20 parents are divided in a regular grid of div1 by
div2 by div3 hexahedrons.
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• tria3 can be divided with an equal division of each segment specified by div1.

• mass1 and celas elements are kept unchanged.

The Divide command applies element transformation schemes on the element parent topological
structure. By default, the original element names are maintained. In case of trouble, element names
can be controlled by declaring the proper parent name or use the SetGroupName command before
and after divide.

The division preserves properties other than the node numbers, in addition final node number-
ing/ordering will depend on the MATLAB version. It is thus strongly recommended not to base
meshing scripts on raw NodeId.

You can obtain unequal divisions by declaring additional arguments whose lines give the relative
positions of dividers. Note that this functionality has not been implemented for quadb and tria3

elements.

For example, an unequal 2 by 3 division of a quad4 element would be obtained using
model=feutil(’divide’,[0 .1 1],[0 .5 .75 1],model) (see also the gartfe demo).

% Refining a mesh by dividing the elements

% Example 1 : beam1

femesh(’Reset’); model=femesh(’Testbeam1’); % build simple beam model

model=feutil(’Divide 3’,model); % divide by 3

cf=feplot(model); fecom(’TextNode’); % plot model and display NodeId

% Example 2 : you may create a command string

femesh(’Reset’); model=femesh(’Testbeam1’); % build simple beam model

number=3;

st=sprintf(’Divide %f’,number);

model=feutil(st,model);

cf=feplot(model); fecom(’TextNode’)

% Example 3 : you may use uneven division

femesh(’Reset’); model=femesh(’Testquad4’); % one quad4 created

model=feutil(’Divide’,model,[0 .1 .2 1],[0 .3 1]);

feplot(model);

An inconsistency in division for quad elements was fixed with version 1.105, you can obtain the
consistent behavior (first division along element x) by adding the option -new anywhere in the
divide command.

DivideInGroups
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elt=feutil(’DivideInGroups’,model);

Finds groups that are not connected (no common node) and places each of these groups in a single
element group.

DivideGroup i ElementSelectors

elt=feutil(’DivideGroup i ElementSelector’,model);

Divides a single group i in two element groups. The first new element group is defined based on the
element selectors (see section 7.12 ).

For example elt=feutil(’divide group 1 withnode{x>10}’,model);

EltId

[EltId]=feutil(’EltId’,elt) returns the element identifier for each element in elt. It currently
does not fill EltId for elements which do not support it.
[EltId,elt]=feutil(’EltIdFix’,elt) returns an elt where the element identifiers have been
made unique.
Command option -elt can be used to set new EltId.
Command option -model can be used to set new EltId and renumber model Stack data, a model
structure must be input, and the output is then the model.

% Handling elements IDs, renumbering elements

model=femesh(’TestHexa8’)

[EltId,model.Elt]=feutil(’EltIdFix’,model.Elt); % Fix and get EltId

[model.Elt,EltIdPos]=feutil(’eltid-elt’,model,EltId*18); % Set new EltId

model.Elt(EltIdPos>0,EltIdPos(EltIdPos>0)) % New EltId

% Renumber EltId with stack data

model=feutil(’AddSetEltId’,model,’all’,’groupall’);

model=feutil(’EltId-Model’,model,EltId+1);

Extrude nRep tx ty tz

Extrusion. Nodes, lines or surfaces of model are extruded nRep times with global translations tx

ty tz. Elements with a mass1 parent are extruded into beams, element with a beam1 parent are
extruded into quad4 elements, quad4 are extruded into hexa8, and quadb are extruded into hexa20.
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You can create irregular extrusion. For example,
model=feutil(’Extrude 0 0 0 1’,model,[0 logspace(-1,1,5)]) will create an exponentially
spaced mesh in the z direction. The second argument gives the positions of the sections for an axis
such that tx ty tz is the unit vector.

% Extruding mesh parts to build a model

% Example 1 : beam

femesh(’Reset’); model=femesh(’Testbeam1’); % one beam1 created

model=feutil(’Extrude 2 1 0 0’,model); % 2 extrusions in x direction

cf=feplot(model);

% Example 2 : you may create the command string

number=2;step=[1 0 0];

st=sprintf(’Extrude %f %f %f %f’,[number step]);

femesh(’Reset’); model=femesh(’Testbeam1’); % one beam1 created

model=feutil(st,model);

cf=feplot(model);

% Example 3 : you may uneven extrusions in z direction

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Extrude 0 0 0 1’,model,[0 .1 .2 .5 1]);

% 0 0 0 1 : 1 extrusion in z direction

% [0 .1 .2 .5 1] : where extrusions are made

feplot(model)

GetDof ElementSelectors

Command to obtain DOF from a model, or from a list of NodeId and DOF.

Use mdof=feutil(’GetDof’,dof,NodeId); to generate a DOF vector from a list of DOF indices
dof, a column vector (e.g. dof=[.01;.02;.03]), and a list of NodeId, a column vector. The result
will be sorted by DOF, equivalent to mdof = [NodeId+dof(1);NodeId+dof(2);...].

Call mdof=feutil(’GetDof’,NodeId,dof); will output a DOF vector sorted by NodeId, equivalent
to mdof = [NodeId(1)+dof;NodeId(2)+dof;...].

The nominal call to get DOFs used by a model is mdof=feutil(’GetDOF’,model). These calls are
performed during assembly phases (fe mk, fe load, ...). This supports elements with variable DOF
numbers defined through the element rows or the element property rows. To find DOFs of a part of
the model, you should add a ElementSelector string to the GetDof command string.
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Note that node numbers set to zero are ignored by feutil to allow elements with variable number
of nodes.

FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling format is

[ind,elt] = feutil(’FindElt ElementSelector’,model);

where ind gives the row numbers of the elements in model.Elt (but not the header rows except for
unique superelements which are only associated to a header row) and elt (optional) the associated
element description matrix.

When operators are accepted, equality and inequality operators can be used. Thus group~=[3 7]

or pro < 5 are acceptable commands. See also SelElt, RemoveElt and DivideGroup, the gartfe

demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of node selectors listed in section 7.11 .

Different selectors can be chained using the logical operations & (finds nodes that verify both con-
ditions), | (finds nodes that verify one or both conditions). Condition combinations are always
evaluated from left to right (parentheses are not accepted).

The calling format is
[NodeId,Node] = feutil(’FindNode NodeSelector’,model);

Output arguments are the NodeId of the selected nodes and the selected nodes Node as a second
optional output argument.

As an example you can show node numbers on the right half of the z==0 plane using the commands

fecom(’TextNode’,feutil(’FindNode z==0 & x>0’,model))

Following example puts markers on selected nodes

% Finding nodes and marking/displaying them in feplot

demosdt(’demo ubeam’); cf=feplot; % load U-Beam model

fecom(’ShowNodeMark’,feutil(’FindNode z>1.25’,cf.mdl),’color’,’r’)

fecom(’ShowNodeMark-noclear’,feutil(’FindNode x>0.2*z|x<-0.2*z’,cf.mdl),...

’color’,’g’,’marker’,’o’)

Note that you can give numeric arguments to the command as additional feutil arguments. Thus
the command above could also have been written feutil(’FindNode z== & x>=’,0,0))
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See also the gartfe demo.

GetEdge[Line,Patch]

These feutil commands are used to create a model containing the 1D edges or 2D faces of a model.
A typical call is

% Generate a contour (nD-1) model from a nD model

femesh(’reset’); model=femesh(’Testubeam’);

elt=feutil(’GetEdgeLine’,model); feutil(’infoelt’,elt)

GetEdgeLine supports the following variants MatId retains inter material edges, ProId retains inter
property edges, Group retains inter group edges, all does not eliminate internal edges, InNode only
retains edges whose node numbers are in a list given as an additional feutil argument.

These commands are used for SelEdge and SelFace element selection commands. Selface preserves
the EltId and adds the FaceId after it to allow face set recovery.

GetElemF

Header row parsing. In an element description matrix, element groups are separated by header rows
(see section 7.2 ) which for the current group jGroup is given by elt(EGroup(jGroup),:) (one can
obtain EGroup - the positions of the headers in the element matrix - using
[EGroup,nGroup]=getegroup(model.Elt)). The GetElemF command, whose proper calling format
is

[ElemF,opt,ElemP] = feutil(’GetElemF’,elt(EGroup(jGroup),:),[jGroup])

returns the element/superelement name ElemF, element options opt and the parent element name
ElemP. It is expected that opt(1) is the EGID (element group identifier) when defined.

Get[Line,Patch]

Line=feutil(’GetLine’,node,elt) returns a matrix of lines where each row has the form
[length(ind)+1 ind] plus trailing zeros, and ind gives node indices (if the argument node is
not empty) or node numbers (if node is empty). elt can be an element description matrix or a
connectivity line matrix (see feplot). Each row of the Line matrix corresponds to an element
group or a line of a connectivity line matrix. For element description matrices, redundant lines are
eliminated.

Patch=feutil(’GetPatch’,Node,Elt) returns a patch matrix where each row (except the first
which serves as a header) has the form [n1 n2 n3 n4 EltN GroupN]. The ni give node indices (if
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the argument Node is not empty) or node numbers (if Node is empty). Elt must be an element
description matrix. Internal patches (it is assumed that a patch declared more than once is internal)
are eliminated.

The all option skips the internal edge/face elimination step. These commands are used in wire-
frame and surface rendering.

GetNode Selectors

Node=feutil(’GetNode Selectors’,model) returns a matrix containing nodes rather than NodeIds
obtained with the FindNode command. The indices of the nodes in model.Node can be returned as
a 2nd optional output argument. This command is equivalent to the feutil call

[NodeId,Node]=feutil(’FindNode Selectors’,model).

GetNormal[Elt,Node][,Map],GetCG

[normal,cg]=feutil(’GetNormal[elt,node]’,model) returns normals to elements/nodes in model.
CG=feutil(’GetCG’,model) returns the CG locations. Command option -dir i can be used to
specify a local orientation direction other than the normal (this is typically used for composites).
MAP=feutil(’getNormal Map’,model) returns a data structure with the following fields

ID column of identifier (as many as rows in the .normal field). For .opt=2 contains
the NodeId. For .opt=1 contains the EltId.

normal N × 3 where each row specifies a vector at ID or vertex.
opt 1 for MAP at element center, 2 for map at nodes.
color N × 1 optional real value used for color selection associated with the axes color

limits.
DefLen optional scalar giving arrow length in plot units.

The MAP data structure may be viewed using

fecom(’ShowMap’,MAP);fecom(’ScaleOne’);

Info[ ,Elt, Nodei]

feutil(’Info’,model); Information on model. Info by itself gives general information about
model. InfoNodei gives information about all elements that are connected to node of NodeId i.
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Join[group i, EltName]

Join the groups i or all the groups of type EltName. JoinAll joins all the groups that have the
same element name. Note that with the selection by group number, you can only join groups of the
same type (with the same element name). JoinAll joins all groups with identical element names.

You may join groups using there ID

% Joining groups of similar element types

femesh(’Reset’); model=femesh(’Test2bay’);

% Join using group ID

feutil(’Info’,model); % 2 groups at this step

model=feutil(’JoinGroup1:2’,model) % 1 group now

feutil(’Info’,model);

% Join using element types

% Note you can give model (above) or element matrix (below)

femesh(’Reset’); model=femesh(’Test2bay’);

model.Elt=feutil(’Joinbeam1’,model.Elt); % 1 group now

Matid, ProId, MPID

MatId=feutil(’MatId’,model) returns the element material identifier for each element in model.Elt.
One can also modify MatId of the model giving a third argument. model=feutil(’MatId’,model,r1)
r1 can be a global shift on all non zero MatId or a matrix whose first column gives old MatId and
second new MatId. MatId renumbering is applyed to elements, model.pl and model.Stack ’mat’

entries. The ProId command works similarly.

MPId returns a matrix with three columns MatId, ProId and group numbers.
model.Elt=feutil(’mpid’,model,mpid) can be used to set properties of elements in model.Elt

matrix.

Node[ trans, rot, mir, DefShift]

The command feutil(’node [trans,rot,mir]’,model,RO) allows to move model nodes (or part
of a model with a provided selection) with standard transformations :

• translation : trans x y z

• rotation : rot x1 x2 x3 n1 n2 n3 theta with xi the coordinate of the node and ni the
direction of the axe and theta the angle in degree
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• plane symmetry :

– plane x y or z : mir x, mir y or mir z

– point + normal : mir "o x1 x2 x3 n1 n2 n3" with xi the coordinate of the node and
ni the direction of the normal to the plane

– plane equation : mir "eq a b c d" defining the plane aX + bY + cZ + d = 0

– best plane defined by list of node coordinates :
feutil(’node mir’,model,struct(’node’,[x1 y1 z1;x2 y2 z2;...]))

– best plane defined by list of nodeids : mir "nodeid id1 id2 id3"

• rigid body matrix : feutil(’node’,model,struct(’rb’,[4x4 RB matrix]))

For each call, it is possible to either provide inputs as text string or as structure given on third
argument with the field name corresponding to the wanted transformation.

An element selection can be provided in the text command (sel"EltSel") or as a text in a .sel field
of the RO stucture to apply the transformation on only a part of the model. See FindElt.

Here is an exhaustive list of examples

model=femesh(’test tetra4’); % Load model wontaining a tetrahedron

model.Node=feutil(’addnode’,model.Node,[0-1 0 0]); % Add a node

model.Elt=feutil(’addelt’,model.Elt,’mass1’,5); % Set this node as a mass1 element

feplot(model); % Display

% Displacement transformations

% translation in the direction [1 0 0] sepcified in the text command

model=feutil(’node trans 1 0 0’,model); feplot(model);

% rotation of 180deg arround the axis defined by node [1 0 0] and vector [0 0 1]

RO=struct(’rot’,[1 0 0 0 0 1 180]); % rotation is the last number

% Only nodes in "group1" are moved

model=feutil(’node -sel"group1"’,model,RO); feplot(model);

% Rigid body transformation (matrix in field rb) on nodes in group1

RO=struct(’rb’,[1 0 0 -1;0 1 0 0;0 0 1 0;0 0 0 1],’sel’,’group1’);

model=feutil(’node’,model,RO); feplot(model);

% mirror transformation

% Plane y=0

model=feutil(’node mir y’,model); feplot(model);

% Same plane definined with node [0 0 0] and normal [0 1 0]

model=feutil(’node mir "o 0 0 0 0 1 0"’,model); feplot(model);

% Same plane definined with nodeid 1 2 4

model=feutil(’node mir "nodeid 1 2 4"’,model); feplot(model);
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% Same plane definined with equation 0*x+1*y+0*z+0=0, given as last

% argument in a structure

RO=struct(’eq’,[0 1 0 0]);

model=feutil(’node mir’,model,RO); feplot(model);

% Mirror with respect to the "best" plane passing through the node list

RO=struct(’node’,[0 -0.1 0;1 0 0;0 0 1;1 0.3 1],’sel’,’group1’);

model=feutil(’node mir’,model,RO); feplot(model);

fecom(’shownodemark’,[0 -0.1 0;1 0 0;0 0 1;1 0.3 1]); % Show nodes defining the plane

ObjectBeamLine i, ObjectMass i

elt=feutil(’ObjectBeamLine i’); Create a group of beam1 elements. The node numbers i define
a series of nodes that form a continuous beam (for discontinuities use 0), that is placed in elt as a
single group of beam1 elements.

For example elt=feutil(’ObjectBeamLine 1:3 0 4 5’) creates a group of three beam1 elements
between nodes 1 2, 2 3, and 4 5.

An alternate call is elt=feutil(’ObjectBeamLine’,ind) where ind is a vector containing the node
numbers. You can also specify a element name other than beam1 and properties to be placed in
columns 3 and more using elt=feutil(’ObjectBeamLine -EltName’,ind,prop).

elt=feutil(’ObjectMass 1:3’) creates a group of concentrated mass1 elements at the declared
nodes.

% Build a mesh by addition of defined beam lines and masses

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...

3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176], ’Elt’,[]);

prop=[100 100 1.1 0 0]; % MatId ProId nx ny nz

model.Elt=feutil(’ObjectBeamLine 1 2 0 2 3 0 3 4’,prop);

% or model.Elt=feutil(’ObjectBeamLine’,1:4);

model.Elt=feutil(’ObjectMass’,model,3,[1.1 1.1 1.1]);

%model.Elt(end+1:end+size(elt,1),1:size(elt,2))=elt;

feplot(model);fecom textnode

ObjectHoleInPlate

model=feutil(’ObjectHoleInPlate ...’,model);
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Create a quad4 mesh of a hole in a plate. The format
is ’ObjectHoleInPlate N0 N1 N2 r1 r2 ND1 ND2

NQ’ giving the center node, two nodes to define the
edge direction and distance, two radiuses in the
direction of the two edge nodes (for elliptical holes),
the number of divisions along a half quadrant of edge
1 and edge 2, the number of quadrants to fill (the
figure shows 2.5 quadrants filled).

% Build a model of a plate with a hole

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],’Elt’,[]);

model=feutil(’ObjectHoleInPlate 1 2 3 .5 .5 3 4 4’,model);

model=feutil(’Divide 3 4’,model); % 3 divisions around, 4 divisions along radii

feplot(model)

% You could also use the call

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],’Elt’,[]);

% n1 n2 n3 r1 r2 nd1 nd2 nq

r1=[ 1 2 3 .5 .5 3 4 4];

st=sprintf(’ObjectHoleInPlate %f %f %f %f %f %f %f %f’,r1);

model=feutil(st,model);

ObjectHoleInBlock

model=feutil(’ObjectHoleInBlock ...’); Create a hexa8 mesh of a hole in a rectangular block.
The format is ’ObjectHoleInBlock x0 y0 z0 nx1 ny1 nz1 nx3 ny3 nz3 dim1 dim2 dim3 r nd1

nd2 nd3 ndr’ giving the center of the block (x0 y0 z0), the directions along the first and third
dimensions of the block (nx1 ny1 nz1 nx3 ny3 nz3, third dimension is along the hole), the 3 di-
mensions (dim1 dim2 dim3), the radius of the cylinder hole (r), the number of divisions of each
dimension of the cube (nd1 nd2 nd3, the 2 first should be even) and the number of divisions along
the radius (ndr).

% Build a model of a cube with a cylindrical hole

model=feutil(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 1 2 3 3 .7 8 8 3 2’)
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Object[Quad,Beam,Hexa] MatId ProId

model=feutil(’ObjectQuad MatId ProId’,model,nodes,div1,div2) Create or add a model con-
taining quad4 elements. The user must define a rectangular domain delimited by four nodes and
the division in each direction (div1 and div2). The result is a regular mesh.

For example model=feutil(’ObjectQuad 10 11’,nodes,4,2) returns model with 4 and 2 divisions
in each direction with a MatId 10 and a ProId 11.

An alternate call is model=feutil(’ObjectQuad 1 1’,model,nodes,4,2): the quadrangular mesh
is added to the model.

% Build a mesh based on the refinement of a single quad element

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,4,3); % creates model

node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];

model=feutil(’Objectquad 2 3’,model,node,3,2); % matid=2, proid=3

feplot(model);

Divisions may be specified using a vector between [0,1] :

% Build a mesh based on the custom refinement of a single quad element

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,[0 .2 .6 1],linspace(0,1,10));

feplot(model);

Other supported object topologies are beams and hexahedrons. For example

% Build a mesh based on the custom refinement of a single element

node = [0 0 0; 2 0 0;1 3 0; 1 3 1];

model=feutil(’Objectbeam 3 10’,node(1:2,:),4); % creates model

model=feutil(’Objecthexa 4 11’,model,node,3,2,5); % creates model

feutil(’infoelt’,model)

Object [Arc, Annulus, Circle, Cylinder, Disk]

These object constructors follow the format

model=feutil(’ObjectAnnulus x y z r1 r2 nx ny nz Nseg NsegR’,model) with x y z the co-
ordinates of the center, nx ny nz the coordinates of the normal to the plane containing the annulus,
Nseg the number of angular subdivisions, and NsegR the number of segments along the radius. The
resulting model is in quad4 elements.
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model=feutil(’ObjectArc x y z x1 y1 z1 x2 y2 z2 Nseg obt’,model) with x y z the coor-
dinates of the center, xi yi zi the coordinates of the first and second points defining the arc
boundaries, Nseg the number of angular subdivisions, and obt for obtuse, set to 1 to get the short-
est arc between the two points or -1 to get the complementary arc. The resulting model is in beam1

elements.

model=feutil(’ObjectCircle xc yc zc r nx ny nz Nseg’,model) with xc yc zc the coordi-
nates of the center, r the radius, nx ny nz the coordinates of the normal to the plane containing
the circle, and Nseg the number of angular subdivisions. The resulting model is in beam1 elements.

model=feutil(’ObjectCylinder x1 y1 z1 x2 y2 z2 r divT divZ’,model) with xi yi zi the
coordinates of the centers of the cylinder base and top circles, r the cylinder radius, divT the number
of angular subdivisions, and divZ the number of subdivisions in the cylinder height. The resulting
model is in quad4 elements.

model=feutil(’ObjectDisk x y z r nx ny nz Nseg NsegR’,model) with x y z, the coordinates
of the center, r the disk radius, nx ny nz the coordinates of the normal to the plane containing the
disk, Nseg the number of angular subdivisions, and NsegR the number of segments along the radius.
The resulting model is in quad4 elements. Command option -nodeg avoids degenerate elements
by transforming them into tria3 elements.

For example:

% Build a mesh based on simple circular topologies

model=feutil(’object arc 0 0 0 1 0 0 0 1 0 30 1’);

model=feutil(’object arc 0 0 0 1 0 0 0 1 0 30 1’,model);

model=feutil(’object circle 1 1 1 2 0 0 1 30’,model);

model=feutil(’object circle 1 1 3 2 0 0 1 30’,model);

model=feutil(’object cylinder 0 0 0 0 0 4 2 10 20’,model);

model=feutil(’object disk 0 0 0 3 0 0 1 10 3’,model);

model=feutil(’object disk -nodeg 1 0 0 3 0 0 1 10 3’,model);

model=feutil(’object annulus 0 0 0 2 3 0 0 1 10 3’,model);

feplot(model)

ObjectDivide

Applies a Divide command to a selection within the model. This is a packaged call to RefineCell,
one thus has access to the following command options:

• -MPC to generate MPC constraints to enforce displacement continuity at non conforming inter-
faces

• KnownNew to add new nodes without check
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• -noSData asks no to add model stack entry info,newcEGI that provides the indices of new
elements in model.

% Perform local mesh refinement

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,4,3); % creates model

model=feutil(’ObjectDivide 3 2’,model,’WithNode 1’);

feplot(model);

% Perform a non uniform local mesh refinement with MPC

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,4,3); % creates model

model=feutil(’ObjectDivide 3 2 -MPC’,model,...

’WithNode 1’,[0 .2 1],[0 .25 .8 1]);

% display model and MPC constraint

feplot(model);

fecom(’;promodelinit;proviewon;’)

fecom(’curtabCases’,’MPCedge’);

Optim[Model, NodeNum, EltCheck]

model.Node=feutil(’Optim...’,model);

model.Node=feutil(’OptimModel’,model) removes nodes unused in model.Elt from model.Node.
This command is very partial, a thorough model optimization is obtained using feutilb SubModel

with groupall selection. model=feutilb(’SubModel’,model,’groupall’);. To recover used
nodes the most complete command is feutilb GetUsedNodes.

model.Node=feutil(’OptimNodeNum’,model) does a permutation of nodes in model.Node such
that the expected matrix bandwidth is smaller. This is only useful to export models, since here
DOF renumbering is performed by fe mk.
model=feutil(’OptimEltCheck’,model) attempts to fix geometry pathologies (warped elements)
in quad4, hexa8 and penta6 elements.

model=feutil(’OptimDegen’,model) detects degenerate elements and replaces them by the proper
lower node number case hexa -> penta.

Orient, Orient i [ , n nx ny nz]

Orient elements. For volumes and 2-D elements which have a defined orientation
model.Elt=feutil(’Orient’,model) calls element functions with standard material properties to
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determine negative volume orientation and permute nodes if needed. This is in particular needed
when generating models via Extrude or Divide operations which do not necessarily result in ap-
propriate orientation (see integrules). When elements are too distorted, you may have a locally
negative volume. A warning about warped volumes is then passed. You should then correct your
mesh.

Note that for 2D meshes you need to use 2D element names (q4p, t3p, ...) rather than quad4,

tria3, .... Typically model.Elt=feutil(’setgroup1 name q4p’,model).

Orient normal of shell elements. For plate/shell elements (elements with parents of type quad4,
quadb or tria3) in groups i of model.Elt, model.Elt=feutil(’Orient i n nx ny nz’,model)

command computes the local normal and checks whether it is directed towards the node located at
nx ny nz. If not, the element nodes are permuted to that a proper orientation is achieved. A -neg

option can be added at the end of the command to force orientation away rather than towards the
nearest node.

model.Elt=feutil(’Orient i’,model,node) can also be used to specify a list of orientation nodes.
For each element, the closest node in node is then used for the orientation. node can be a standard
7 column node matrix or just have 3 columns with global positions.

For example

% Specify element orientation

% Load example

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model.Elt=feutil(’Dividegroup1 WithNode1’,model);

% Orient elements in group 2 away from [0 0 -1]

model.Elt=feutil(’Orient 2 n 0 0 -1 -neg’,model);

MAP=feutil(’GetNormal MAP’,model);MAP.normal

Quad2Lin, Lin2Quad, Quad2Tria, etc.

Basic element type transformations.

model=feutil(’Lin2Quad epsl .01’,model) is the generic command to generate second order
meshes.
Lin2QuadCyl places the mid-nodes on cylindrical arcs.
Lin2QuadKnownNew can be used to get much faster results if it is known that none of the new mid-
edge nodes is coincident with an existing node. Quad2Lin performs the inverse operation.
For this specific command many nodes become unecessary, command option -optim performs a
cleanup by removing these nodes from the model, and its Stack and Case entries. Quad2Tria
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searches elements for quad4 element groups and replaces them with equivalent tria3 element groups.
Hexa2Tetra replaces each hexa8 element by four tetra4 elements (this is really not a smart thing
to do).
Hexa2Penta replaces each hexa8 element by six tetra4 elements (warning : this transformation
may lead to incompatibilities on the triangular faces).
Penta2Tetra replaces each penta6 element by 11 tetra4 elements.

Command option KnownNew can be used for Hexa2Tetra, Hexa2Penta, and Penta2Tetra. Since
these commands add nodes to the structure, quicker results can be obtained if it is known that none
of the new nodes are coincident with existing ones. In a more general manner, this command option
is useful if the initial model features coincident but free surfaces (e.g. two solids non connected
by topology, when using coupling matrices). The default behavior will add only one node for both
surfaces thus coupling them, while the KnownNew alternative will add one for each.

% Transforming elements in a mesh, element type and order

% create 2x3 quad4

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model=feutil(’Quad2Tria’,model); % conversion

feplot(model)

% create a quad, transform to triangles, divide each triangle in 4

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Quad2Tria’,model);

model=feutil(’Divide2’,model);

cf=feplot(model); cf.model

% create a hexa8 and transform to hexa20

femesh(’Reset’); model=femesh(’Testhexa8’);

model=feutil(’Lin2Quad epsl .01’,model);

feutil(’InfoElt’,model)

RefineCell, Beam l, ToQuad

• The RefineCell command is a generic element-wise mesh refinement command. Each element
can be replaced by another mesh fitted in the initial topology. This is in particular used by
RefineToQuad.

For each element type, it is possible to define an interior mesh defined in the element reference
configuration. RefineCell then applies node and element additions in an optimized way to
produce a final mesh in which all elements have been transformed.

A typical syntax is model=feutil(’RefineCell’,model,R1’, with model a standard SDT
model and R1 a running option structure providing in particular the cell refinement topologies.
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In practice, cell refinement is defined for each element type in the reference configuration,
giving additional nodes by edge, then face, then volume in increasing index. New nodes are
computed using an operator performing weighted sums of initial cell coordinates. If no weights
are given, arithmetic average is used.

Option structure R1 contains fields named as element types. These fields provide structures
with fields

– edge a cell array in the format {[newId [oldId Av]], [weights]} providing the nodes
to be added on the edges of the initial element. It is a 1 by 2 cell array. The first part is a
matrix with as many lines as new nodes to be added, the first column newId providing the
new NodeId of the reference configuration and the following ones oldId Av the nodes of
the initial cell used to generate the new coordinates. The second part is a weight matrix,
with as many lines as new nodes and as many columns as oldId Av providing the weights
for each node. The weights matrix can be left empty in which case equal weights will be
used for each nodes. It can also be set a a scalar, and in this case the scalar coefficient
will be used for each weight. newId have to be given in increasing order. This can be left
blank if no node has to be added in edges.

– face a cell array in the same format than for field edge, providing the nodes to be added
on the edges of the initial element. newId have to be given in increasing order and greater
than the edge new IDs. This can be left blank if no node has to be added in faces.

– volume a cell array in the same format than for field edge, providing the nodes to be
added in the volume of the initial element. newId have to be given in increasing order
and greater than the edge new IDs and greater than the face new IDs. This can be left
blank if no node has to be added in the volume.

– Elt a cell array providing the elements defined in the reference configuration topology.
This is a cell array in format {ElemP, Elt}, ElemP providing the new element types and
Elt an element matrix with no header providing the connectivies associated to ElemP.

– faces For non symmetric transformations, it is possible to define a reference node ordering
of the reference configuration that allows identifying a reference face of the reference
configuration.

– shift For non symmetric transformations, shift will identify the reference face in the
faces field to allow transformation for selected faces of elements.

A sample call to refine quad4 elements using RefineCell is then

% refine cell sample call for iso quad refinement

model=femesh(’testquad4’); % base quad element

% definition of the quad transformation

R1=struct(’quad4’,...
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struct(’edge’,{{[5 1 2;6 2 3;7 3 4;8 4 1],.5}},...
’face’,{{[9 1 2 3 4],.25}},...
’Elt’,{{’quad4’,[1 5 9 8;5 2 6 9;9 6 3 7;9 7 4 8]}}));

mo1=feutil(’refinecell’,model,R1)

[eltid,mo1.Elt]=feutil(’EltIdFix;’,mo1);

% Visualization

cf=feplot(mo1); fecom(’textnode’)

It is possible to restrain refinement to an element selection. This is realized by adding field
set to R1 containing a list of EltId on which the refinement will be performed.

By default, the output model only contains the refined elements. Command option -Replace

outputs the complete model on which selected elements have been refined. In this latter case,
apparition of non conforming interfaces is possible. Command option -MPC allows generating
MPC constraints (on DOF 1,2,3) at non-conforming interfaces to enforce displacement conti-
nuity. Generated MPC are named MPCedge and MPCface respectively concerning nodes added
on edges and faces.

% local refine cell call with MPC generation

R1.set=[1]; % define an EltId set to refine

% call for MPC for new interface edges

mo1=feutil(’refinecell-replace-mpc’,mo1,R1);

% display refined model and MPC

cf=feplot(mo1);

fecom(cf,’;promodelinit;proviewon;curtabCase;’,’MPCedge’);

Non symmetric cell refinement requires the ability to detect the element orientation regarding
the reference cell orientation. The strategy implemented is based on element face (for volume)
or edge (for shells) identification, through the definition in the input structure of a field faces

providing the face indices of the reference model and a shift index providing a reference face.
This strategy works well if the reference face is refined in a unique way. If several faces share
the same refinement a yet to setup identification strategy has to be defined.

In this case, each element to be refined must be assigned a face (or edge) selection for orien-
tation purpose. The field set in input structure R1 is then mandatory with two columns, the
first one providing the selected element IDs and the second one the face (or edge) identifier
corresponding to the reference configuration reference face. See feutil AddSetFaceId, and
FindElt commands to generate such element selection.

The following example provides a non-symmetric cell refinement of a side of a structure allowing
an increase of node one side while keeping a continuous mesh.

% unsymmetric refine cell call
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model=femesh(’testquad4’); % base model

model=feutil(’refineToQuad’,model); % refine into 4 quad4

% fix eltid for clean element selection

[eltid,model.Elt]=feutil(’EltIdFix;’,model);

% define a non symmetric cell refinement

% here refinement is based on edge 1 2 using reference faces

R1=struct(’quad4’,...

struct(’edge’,{{[5 1 2;6 1 2],...

[2/3 1/3;1/3 2/3]}},...
’face’,{{[7 1:4;8 1:4],...

[1/6 1/3 1/3 1/6;1/3 1/6 1/6 1/3]}},...
’Elt’,{{’quad4’,[1 5 8 4;5 6 7 8;6 2 3 7;8 7 3 4]}},...
’faces’,quad4(’edge’),’shift’,1));

% define a selection of edges to refine

elt=feutil(’selelt seledge & innode{x==0}’,model);
% here easy recovery on elements for edge selection

% based on shell element

R1.set=elt(2:end,5:6);

% call refinement

mo1=feutil(’refinecell-replace’,model,R1)

cf=feplot(mo1); fecom(’textnode’)

• The RefineBeam command searches model.Elt for beam elements and divides elements so that
no element is longer than l. For beam1 elements, transfer of pin flags properties are forwarded
by keeping non null flags on the new beam elements for which a pre-existing node was flagged.

% Specific mesh refinement for beam

femesh(’Reset’); model=femesh(’Testbeam1’); % create a beam

model=feutil(’RefineBeam 0.1’,model);

One can give a model subselection (FindElt command string) as 2nd argument, to refine only
a part of the model beams.

• The RefineBeamUnival command uniformly refines all beam1elements into val elements.
This command packages a feutil ObjectDivide call with command options KnownNew and
-noSData.

– Command option -pin allows proper pin flag forwarding for beam1 elements. transfer of
pin flags properties are forwarded by keeping non null flags on the new beam elements for
which a pre-existing node was flagged. This constitutes the main interest of the command.
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– Command option -MergeNew asks to merge new nodes instead of simply adding them.

• The RefineToQuad command transforms first order triangles, quadrangles, penta, tetra, and
hexa to quad and hexa only while dividing each element each in two. The result is a conform
mesh, be aware however that nodes can be added to your model boundaries. Using such
command on model sub-parts will thus generate non conforming interfaces between the refined
and non-refined parts.

By default, new nodes are added with an AddNode command so matched new nodes are merged.
Command option KnownNew allows a direct addition of new nodes without checking.

% Refining mesh and transforming to quadrangle elements

model=femesh(’testtetra4’);model=feutil(’RefineToQuad’,model);

feplot(model);

RemoveElt ElementSelectors

[model.Elt,RemovedElt]=feutil(’RemoveElt ElementSelectors’,model);

Element removal. This function searches model.Elt for elements which verify certain properties
selected by ElementSelectors and removes these elements from the model description matrix. 2nd
output argument RemovedElt is optional and contains removed elements. A sample call would be

% Removing elements in a model

% create 3x2 quad4

femesh(’Reset’); model=femesh(’Testquad4’);model=feutil(’Divide 2 3’,model);

[model.Elt,RemovedElt]=feutil(’RemoveElt WithNode 1’,model);

feplot(model)

Remove [Pro, Mat] MatId, ProId

Mat, Pro removal This function takes in argument the ID of a material or integration property and
removes the corresponding entries in the model pl/il fields and in the stack mat/pro entries.

• Command option -all removes all pl/il entries found in the model and its stack.

• Command option -unused removes all pl/il entries not used by any element.

This call supports the info, Rayleigh stack entry (see sdtweb damp), so that the data entries
referring to removed IDs will also be removed. By default, the non-linear properties are treated like
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normal properties. Care must thus be taken if a non-linear property that is not linked to specific
elements is used. Command option -unused will alter this behavior and keep non-linear properties.

Sample calls are provided in the following to illustrate the use.

% Removing material and integration properties in a model

model=femesh(’testhexa8’);

model=stack_set(model,’pro’,’integ’,p_solid(’default’));

model=stack_set(model,’mat’,’steel’,m_elastic(’default steel’));

model=feutil(’remove pro 110’,model);

model=feutil(’remove pro’,model,111);

model=feutil(’remove mat 100’,model);

model=feutil(’remove mat 100 pro 1’,model);

model=feutil(’remove pro -all’,model); % Command option -all

model=feutil(’remove mat pro -all’,model);

model=femesh(’testhexa8’); % Command option -unused

model=feutil(’remove mat pro -unused’,model);

Renumber

model=feutil(’Renumber’,model’NewNodeNumbers) can be used to change the node numbers in
the model. Currently nodes, elements, DOFs and deformations , nodeset, par, cyclic and other Case
entries are renumbered.

NewNodeNumbers is the total new NodeIds vector. NewNodeNumbers can also be a scalar and then
defines a global NodeId shifting. If NewNodeNumbers has two columns, first giving old NodeIds and
second new NodeIds, a selective node renumbering is performed.

If NewNodeNumbers is not provided values 1:size(model.Node,1) are used. This command can
be used to meet the OpenFEM requirement that node numbers be less than 2^31/100. Another
application is to joint disjoint models with coincident nodes using

Command option -NoOri asks not to add the info,OrigNumbering data in the model stack.
info,OrigNumbering is only useful when the user needs to convert something specific linked to
the new node numerotation that is outside model.

% Finding duplicate nodes and merging them

[r1,i2]=feutil(’AddNode’,model.Node,model.Node);

model=feutil(’Renumber’,model,r1(i2,1));

Renumbering can also be applied to deformation curves, using the same syntax. Be aware however
that to keep coherence between a deformation curve and a renumbered model, one should input
NewNodeNumbers as the renumbered model stack entry info,OrigNumbering.
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% Renumering the nodes of a model, and its data

% simple model

model=femesh(’testhexa8b’);

% simple curve

def=fe_eig(model,[5 5 1e3]);

% first renumber model

model=feutil(’renumber’,model,1e4);

% then renumber def with renumbering info

r1=stack_get(model,’info’,’OrigNumbering’,’get’);

def=feutil(’renumber’,def,r1);

RepeatSel nITE tx ty tz

Element group translation/duplication. RepeatSel repeats the elements of input model nITE times
with global axis translations tx ty tz between each repetition of the group. If needed, new nodes
are added to model.Node. An example is treated in the d truss demo.

% Build a mesh by replicating and moving sub-parts

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model=feutil(’RepeatSel 3 2 0 0’,model); % 3 repetitions, tx=2

feplot(model)

% an alternate call would be

% number, direction

% model=feutil(sprintf(’Repeatsel %f %f %f %f’, 3, [2 0 0]))

Rev nDiv OrigID Ang nx ny nz

Revolution. The elements of model are taken to be the first meridian. Other meridians are created
by rotating around an axis passing trough the node of number OrigID (or the origin of the global
coordinate system) and of direction [nx ny nz] (the default is the z axis [0 0 1]). nDiv+1 (for
closed circle cases ang=360, the first and last are the same) meridians are distributed on a sector of
angular width Ang (in degrees). Meridians are linked by elements in a fashion similar to extrusion.
Elements with a mass1 parent are extruded into beams, element with a beam1 parent are extruded
into quad4 elements, quad4 are extruded into hexa8, and quadb are extruded into hexa20.

The origin can also be specified by the x y z values preceded by an o using a command like
model=feutil(’Rev 10 o 1.0 0.0 0.0 360 1 0 0’).
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You can obtain an uneven distribution of angles using a second argument. For example
model=feutil(’Rev 0 101 40 0 0 1’,model,[0 .25 .5 1]) will rotate around an axis passing
by node 101 in direction z and place meridians at angles 0 10 20 and 40 degrees.

% Build a mesh by revolving a sub-part

model=struct(’Node’,[1 0 0 0 .2 0 0; 2 0 0 0 .5 1 0; ...

3 0 0 0 .5 1.5 0; 4 0 0 0 .3 2 0],’Elt’,[]);

model.Elt=feutil(’ObjectBeamLine’,1:4);

model=feutil(’Divide 3’,model);

model=feutil(’Rev 40 o 0 0 0 360 0 1 0’,model);

feplot(model)

fecom(’;triax;view 3;showpatch’)

% An alternate calling format would be

% divi origin angle direct

% r1 = [40 0 0 0 360 0 1 0];

% model=feutil(sprintf(’Rev %f o %f %f %f %f %f %f %f’,r1))

RotateNode OrigID Ang nx ny nz

Rotation. The nodes of model are rotated by the angle Ang (degrees) around an axis passing trough
the node of number OrigID (or the origin of the global coordinate system) and of direction [nx ny

nz] (the default is the z axis [0 0 1]). The origin can also be specified by the x y z values preceded
by an o model=feutil(’RotateNode o 2.0 2.0 2.0 90 1 0 0’,model) One can define as a
second argument a list of NodeId or a FindNode string command to apply rotation on a selected set
of nodes. model=feutil(’RotateNode o 2.0 2.0 2.0 90 1 0 0’,model,’x==1’)

For example:

% Rotating somes nodes in a model

femesh(’reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’RotateNode %f %f %f %f %f’,[1 30 0 0 1]);

model=feutil(st,model);

feplot(model); fecom(’;triax;textnode’); axis on

Similar operations can be realized using command basisgnode.

SelElt ElementSelectors

elt=feutil(’SelElt ElementSelectors’,model)
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Element selection. SelElt extract selected element from model that verify certain conditions. Avail-
able element selection commands are described under the FindElt command and section 7.12 .

SetGroup[i,name] [Mat j, Pro k, EGID e, Name s]

Set properties of a group. For group(s) selected by number i, name name, or all you can modify the
material property identifier j, the element property identifier k of all elements and/or the element
group identifier e or name s. For example

% Assigning element properties by groups

model.Elt=feutil(’SetGroup1:3 Pro 4’,model);

model.Elt=feutil(’SetGroup rigid Name celas’,model)

If you know the column of a set of element rows that you want to modify, calls of the form
model.Elt(feutil(’FindEltSelectors’,model),Column)= Value can also be used. See MPID for
higher level custom element properties assignments.

% Low level assignment of element properties

femesh(’Reset’); model=femesh(’Testubeamplot’);

model.Elt(feutil(’FindElt WithNode{x==-.5}’,model),9)=2;
cf=feplot(model);

cf.sel={’groupall’,’colordatamat’};

SetPro, SetMat, GetPro, GetMat

Set an integration property data (ProId) or material property (MatId). You can modify an il or
pl property of ID i by giving its name and its value using an integrated call of the type

% Specifying material/integration rule parameters in a model

model=femesh(’testhexa8’);model.il

model=feutil(’SetPro 111 IN=2’,model,’MAP’,struct(’dir’,1,’DOF’,.01));

feutilb(’_writeil’,model)

mat=feutil(’GetPl 100 -struct1’,model) % Get Mat 100 as struct

The names related to the integration properties a documented in the p functions, p solid, p shell,
p beam, ... To get a type use calls of the form p pbeam(’PropertyUnitTypeCell’,1).

The command can also be used to define additional property information : pro.MAP for field at
nodes (section ?? ), gstate for field at integration points and NLdata for non linear behavior data
(nl spring).

The GetPro and GetMat commands are the pending commands. For example:
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model=femesh(’testhexa8’);model.il

rho=feutil(’GetMat 100 rho’,model) % get volumic mass

integ=feutil(’GetPro 111 IN’,model) % get the integ rule

GetIl, GetPl

The commands GetIl and GetPl respectively output the il and pl matrices of the model for the
IDs used by elements. This command provides the values used during assembling procedures and
aggregates the values stores in the model.il, model.pl fields and pro, mat entries in the model
stack.

StringDOF

feutil(’stringdof’,sdof) returns a cell array with cells containing string descriptions of the
DOFs in sdof.

SymSel OrigID nx ny nz

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with respect to a plane
going through the node of number OrigID (node 0 is taken to be the origin of the global coordinate
system) and normal to the vector [nx ny nz]. If needed, new nodes are added to FEnode. Related
commands are TransSel, RotateSel and RepeatSel.

Trace2Elt

elt=feutil(’Trace2Elt’,ldraw);

Convert the ldraw trace line matrix (see ufread 82 for format details) to element matrix with beam1

elements. For example:

% Build a beam model from a trace line matrix

TEST.Node=[1001 0 0 0 0 0 0 ; 1003 0 0 0 0.2 0 0 ;

1007 0 0 0 0.6 0 0 ; 1009 0 0 0 0.8 0 0 ;

1015 0 0 0 0 0.2 0 ; 1016 0 0 0 0.2 0.2 0;

1018 0 0 0 0.6 0.2 0; 1019 0 0 0 0.8 0.2 0];

L=[1001 1003 1007 1009];

ldraw(1,[1 82+[1:length(L)]])=[length(L) L];

L=[1015 1016 1018 1019];

ldraw(2,[1 82+[1:length(L)]])=[length(L) L];

L=[1015 1001 0 1016 1003 0 1018 1007 0 1019 1009 0];
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ldraw(3,[1 82+[1:length(L)]])=[length(L) L];

TEST.Elt=feutil(’Trace2Elt’,ldraw);

cf=feplot(TEST)

TransSel tx ty tz

Translation of the selected element groups. TransSel replaces elements by their translation of a
vector [tx ty tz] (in global coordinates). If needed, new nodes are added. Related commands are
SymSel, RotateSel and RepeatSel.

% Translate and transform a mesh part

femesh(’Reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

model=feutil(’TransSel 3 1 0’,model); % Translation of [3 1 0]

feplot(model); fecom(’;triax;textnode’)

Please, note that this command is usefull to translate only part of a model. If the full model must
be translated, use basiscommand gnode. An example is given below.

% Translate all nodes of a model

femesh(’Reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

model.Node=basis(’gnode’,’tx=3;ty=1;tz=0;’,model.Node);

feplot(model); fecom(’;triax;textnode’)

UnJoin Gp1 Gp2

Duplicate nodes which are common to two element ensembles. To allow the creation of interfaces
with partial coupling of nodal degrees of freedom, UnJoin determines which nodes are common to
the specified element ensembles.

The command duplicates the common nodes between the specified element ensembles, and changes
the node numbers of the second element ensemble to correspond to the duplicate set of nodes.
The optional second output argument provides a two column matrix that gives the correspondence
between the initial nodes and the duplicate ones. This matrix is coherent with the OrigNumbering

matrix format.

The following syntaxes are accepted

• [model,interNodes]=feutil(’unjoin Gp1 Gp2’,model)’ Implicit group separation, Gp1 (resp.
Gp2) is the group identifier (as integer) of the first (resp. second) element groups to unjoin.

• [model,interNodes]=feutil(’unjoin’,model,EltSel1,EltSel2); Separation of two ele-
ment selections. EltSel1 (resp. EltSel2) are either FindElt strings or EltId vectors provid-
ing the element selections corresponding to each ensemble.
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• [model,interNodes=feutil(’unjoin’,model,RA); general input with RA as a structure. RA
has fields

– .type, either group, eltid or eltind that provides the type of data for the selections,
set to eltid if omitted.

– .sel1, definition of the first element ensemble, the GroupId for type group, either a
FindElt string or a vector of EltId or EltInd depending on field .type.

– .sel2, definition of the second element ensemble, same format as field .sel1.

– .NodeSel, provides a FindNode selection command to restrict the second element ensem-
ble. Optional, set to groupall by default

% Generate a disjointed interface between to parts in a model

femesh(’Reset’); model=femesh(’Test2bay’);

feutil(’FindNode group1 & group2’,model) % nodes 3 4 are common

% Implicit call for group

mo1=feutil(’UnJoin 1 2’,model);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

% Variant by specifying selections

mo1=feutil(’UnJoin’,model,’group 1’,’group 2’);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

% Variant with structure input, type "group"

RA=struct(’type’,’group’,’sel1’,1,’sel2’,2);

mo1=feutil(’UnJoin’,model,RA);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

% Variant with structure input, type "eltid" and string selections

RA=struct(’type’,’eltid’,’sel1’,’group1’,’sel2’,’group 2’);

mo1=feutil(’UnJoin’,model,RA);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

% Advanced variants with structure and with selections as vectors

% Clean model EltId

[eltid,model.Elt]=feutil(’eltidfix;’,model);

i1=feutil(’findelt group1’,model);

i2=feutil(’findelt group2’,model);
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% type "eltid"

RA=struct(’type’,’eltid’,’sel1’,eltid(i1),’sel2’,eltid(i2));

mo1=feutil(’UnJoin’,model,RA);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

% type "eltind"

RA=struct(’type’,’eltind’,’sel1’,i1,’sel2’,i2);

mo1=feutil(’UnJoin’,model,RA);

feutil(’FindNode group1 & group2’,mo1) % no common nodes in unjoined model

See also

feutila, fe mk, fecom, feplot, section 4.5 , demos gartfe, d ubeam, beambar ...
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Purpose

Advanced feutil commands.

RotateSel OrigID Ang nx ny nz

Rotation. The elements of model are rotated by the angle Ang (degrees) around an axis passing
trough the node of number OrigID (or the origin of the global coordinate system) and of direction
[nx ny nz] (the default is the z axis [0 0 1]). The origin can also be specified by the x y z values
preceded by an o

model=feutil(’RotateSel o 2.0 2.0 2.0 90 1 0 0’,model)

Note that old nodes are kept during this process. If one simply want to rotate model nodes, see
RotateNode.

For example:

% Rotate and transform part of a mesh

femesh(’reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’RotateSel %f %f %f %f %f’,[1 30 0 0 1]);

model=feutil(st,model);

feplot(model); fecom(’;triax;textnode’); axis on
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Purpose

Gateway function for advanced FEM utilities in SDT.

Description

This function is only used for internal SDT operation and actual implementation will vary over time.
The following commands are documented to allow user calls and SDT source code understanding.

AddNode

This command provides optimized operation when compared to the feutil equivalent and finer
control.

CaseC2SE

Constraint penalization. This command packages the penalization of all constraints in the model.
Types FixDOF, RBE3, MPC, rigid are supported.

model=feutilb(’CaseC2SE’’model,list); returns the model with penalized constraints. The
constraints are then transformed into coupling superelements in the model. model is an SDT model.
list is an optional restriction cell array of constraint names to be transformed. If omitted all found
constraints are penalized.

• -kpval allows defining a custom penalization coefficent. By default the value stored in
sdtdef(’kcelas’) is used.

• -kpAuto asks to use an automated estimation of kp based on the local compression stiffness
in the area concerned by each constraint separately.

• -keepName allows keeping the constraints names for superelements. The names are transformed
to comply with the superelement naming rules, see section 6.3 for more information. The base
case uses names as typN with typ the type of constraint in lower case and N the occurence
number in the penalization sequence.

• -CMT tells the command to operate on a pre-assembled reduced model SE,MVR.

CombineModel

mo1=feutilb(’combinemodel’,mo1,mo2);

[mo1,r1]=feutilb(’combinemodel’,mo1,mo2);
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Integrated combining of two separate models. This call aims at creating an assembly from two
separate mechanical components. This command properly handles potential NodeId, EltId, ProId,
or MatId overlaying by setting disjoint ID sets before assembly. Stack or Case entries with overlaying
names are resolved, adding (1) to common names in the second model. Sets with identical names
between both models are concatenated into a single set. The original node numbering matrix for
mo2 is output as a second argument (r1 in the second example call). The original element numbering
matrix for mo2 can also be output as a third argument.

mo1 is taken as the reference to which mo2 will be added, the Node/Elt appending is performed by
feutilAddTest.

• Command option -cleanMP cleans up duplicated mat/pro entries in the combined model.

• Command option -noSetCat, forces the sets duplication with incremented names (adding (1)),
instead of concatenation when sets with identical names are found.

• Command option CompatNodeElt asks not to shift NodeId and EltId in the second model. It
then assumes the ID ranges are fully compatible in both models.

• Command option CompatMatPro asks not to shift MatId and ProId in the second model. It
then assumes these IDs to be fully compatible between both models.

• Command option CompatBas asks no to shift the BasId in the second model. It then assumes
these IDs to be fully compatible between both models.

GeoLineTopo, ...

r2=feutilb(’geolinetopo’,model,struct(’starts’,nodes));

r2=feutilb(’geolinetopo’,model,struct(’starts’,RO.nodes(j1,1), ...

’cos’,0,’dir’,r1.p(:,2)’,’circle’,r1));

GeoLineTopo searches a topological line by following mesh edges.

Accepted fields are

• .starts node numbers. One row per line.

• .cos optional tolerance on direction change used to stop the line.

• .dir optional initial search direction, in not provided the direction defined by the line linking
the two first nodes is used

• .forcedir optional, to force a constant head direction search. This can be used for disturbed
lines where local direction variations may induce an unwanted dramatic change or natural
direction for the line topology. Quasi-straight lines can thus be obtained in non rules meshes.
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• .noSplitTh optional in combination with .forcedir, locally relieves the forcedir constraint if
separation of points at a specific step cannot be clearly distinguished along forcedir. In case of
non planar topologies, the forcedir head direction may become orthogonal to the local direction
seen on the line. In such case, if several points have to be separated for the next line step,
one gets the one closer to the forcedir provided. If the forcedir is orthogonal to the currently
natural directions, the separation criterion be ill-posed. nlSplitTh provides a tolerance for
the dispersion of the next local directions under which the natural local direction is used for
the choice instead of the forcedir.

• .circle optional, to use a detection strategy adapted to circle, with richer information. This
field is a structure with fields

– .Origin the coordinates of the circle origin

– .radius the circle radius

– .p the local basis associated to the circle principal directions

– .cos set to zero

– .dir the normalized direction of the normal to the plane containing the circle.

This field is mostly defined internally and used by the GeoFindCircle command.

GeoFindCircle packages the GeoLineTopo command to detect nodes on a quasi-circular mesh,

GeoFindCircle, ...

GeoFindCircle searches a topological circular line by following mesh edges. One can either provide
three points one the circle, or one point with origin and axis.

r2=feutilb(’geofindcircle’,model,struct(’nodes’,[n1 ...]);

r2=feutilb(’geofindcircle’,model,...

struct(’nodes’,n1,’Origin’,[x y z],’axis’,[nx ny nz]);

where n1 is a NodeId, x,y,z are the coordinates of the circle origin, nx, ny, nz is the normal to
the plane containing the circle.

The output r2 contains fields

• .Origin the coordinates of the circle origin.

• .normal the normalized direction of the normal to the plane containing the circle.

• .radius the circle radius
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• .p the local basis associated to the circle principal directions

• .line the list of NodeId that belong to the circle

The following example illustrates how one can exploit this feature to define a connection screw based
on a hole in plates.

% use the demostration model for screw defintions with two plates

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’);

% use 3D line pick to find three nodes on the hole

% fe_fmesh(’3dlineinit’) % acitvate option, and click on 3 nodes on the hole

nodes=[47 43 40]; % nodes picked on the hole

% detect hole

r1=feutilb(’geofindcircle’,model,struct(’nodes’,nodes)); r1=r1{1};
n1=feutil(’getnodegroupall’,model); n2=n1;

% define planes: need to detect plane altitudes

% 1- transform coordinates in the local hole basis for planes generation

n1(:,5:7)=(n1(:,5:7)-ones(size(n1,1),1)*r1.Origin)*r1.p;

[z1,i1]=unique(n1(:,7));

% 2- use global altitudes for the elements detection

z2=n2(i1,7); % use type 1

r2=[num2cell([z1 1+0*z1]) ...

cellfun(@(x) sprintf(’z==%.15g’,x),num2cell(z2),’uni’,0)];

% 3- screw model, see sdtweb fe_case

r2=struct(’Origin’,r1.Origin,’axis’,r1.normal’,’radius’,r1.radius, ...

’planes’,{r2},...
’MatProId’,[101 101],’rigid’,[Inf abs(’rigid’)],...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r2);

% compute modes to test

def=fe_eig(model,[5 10 1e3]);

cf=feplot(model); cf.def=def;

GeomRB,[Mass,ByParts,Beam1]

def=feutilb(’geomrb’,node,RefXYZ,adof,m) returns a geometric rigid body modes. If a mass
matrix consistent with adof is provided the total mass, position of the center of gravity and inertia
matrix at CG is computed. You can use def=feutilb(’geomrb cg’,Up) to force computation of
rigid body mass properties.
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def=feutilb(’geomrbMass’,model) returns the rigid body modes and mass, center of gravity and
inertia matrix information. -bygroup, -bymat, -bypro can be used to detail results by subgroups.
With no output argument, the results are shown in a table that can be copied to other software.

def=feutilb(’GeomRbByParts’,model) returns the rigid body modes of the model taking into
account unconnected regions. Each unconnected mesh region is considered as a different part for
which a set of 6 rigid body modes will be generated. def containts then a sequence of six rigid body
modes by unconnected mesh region, placed in the global model DOF.

il=feutilb(’GeomRBBeam1’,mdl,RefXYZ) returns standard p beam properties for a given model
section where RefXYZ is the coordinates of the reference point from the gravity center.

feutilb(’GeomRB’,mdl,[0 0 0],sens) or feutilb(’GeomRB’,mdl,[0 0 0],Load) provide a rigid
body check of the work generated by loads or loads collocated to sensors on rigid body motion. This
provides a direction of application and moments around the origin. These are then used to estimate
a point that would lead to the same moments. This point should be on a line of direction of force
and containing the actual application point (xtrue = xest + αdx, ...)

GetUsedNodes

Node=feutilb(’GetUsedNodes’,model); returns the model nodes that are effectively used in the
model. This command accounts for nodes present in SE elements and nodes used in Case constraints
that may be not used by elements in model.Elt.

% Used nodes recovery in a model

% Use a base model with a rigid ring using a node not used by other elements

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 0 111 1 3.1;

5.0 0 112 1 4;], ...

’rigid’,[Inf abs(’rigid’)],...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

cf=feplot(model); % show model

fecom(’promodelviewon’);fecom(’curtab Cases’,’screw1’);

% Used nodes recovery strategy

n1=feutil(’getnodegroupall’,cf.mdl); % selects nodes used in model.Elt only

%n2=feutil(’optimmodel’,cf.mdl); % obsolete call that is based on GetNodeGroupall

n3=feutilb(’GetUsedNodes’,cf.mdl);

setdiff(n3(:,1),n1(:,1)) % node exclusively used by rigid case
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Match

Non conform mesh matching utilities. The objective is to return matching elements and local
coordinates for a list of nodes.

Matching elements mean

• for volumes, that the physical node is within the element. If volumes may be negative, check
orientation using feutil orient.

• for surfaces, that the orthogonal projection of the node is within the element

• for lines that the orthogonal projection on the line is between the line extremities.

A typical node matching call would be

% Example of a base match call

model=femesh(’test hexa8’);

match=struct(’Node’,[.1 .1 .1;.5 .5 .5;1 1 1]);

match=feutilb(’match -info radius .9 tol 1e-8’,model,match)

% Example of a matchSurf call

model=demosdt(’demoTwoPlate’);

% get nodes of half bottom plate

n1=feutil(’getnode z==0 & y>.5’,model);

% prepare the match structure

match=struct(’Node’,n1(:,5:7));

% perform surface match on the top plate selection

match=feutilb(’matchsurf’,model,match,’innode{z==.1}’);
% display model and nodes

cf=feplot(model);

fecom(cf,’shownodemark’,match.Node,’marker’,’o’); % display initial nodes

% then overlay matched points

fecom(cf,’shownodemark-noclear’,match.StickNode,’marker’,’s’,’color’,’b’)

% Use InterpNormal token to get clean normal at matched point

match=struct(’Node’,n1(:,5:7),’InterpNormal’,1);

match=feutilb(’matchsurf’,model,match,’innode{z==.1}’);
fecom(cf,’showmap’,struct(’vertex’,match.StickNode,...

’normal’,match.InterpNormal))
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Accepted command options are

• MatchSurf has the same objective but uses a completely different strategy to match nodes on
a surface. This is typically well suited for contact applications (node to surface matching).

– Note that only the input model skin is treated. This is done by default through a selface

command to avoid the need for user treatment for base applications, see FindElt. It is
possible to provide in a third argument a FindElt string providing a customized face
selection of the model.

– It is possible to get normals interpolated by shape functions at matched points using the
InterpNormal token in the input match structure.

• radiusrad. The search is limited to points that are not too far a way from matchable element
centers. Defining a search radius manually can help prevent matching for elements that are
too far away or on the contrary allow matching within elements that are very large so that
interior points may be far from the center.

• tolval modifies the 1e-8 tolerance used to stop the non-linear search for the match point in
second order elements

The output structure contains the fields

.Node original positions

.rstj position in element coordinates and jacobian information.

.StickNode orthogonal projection on element surface if the original node is not within the element,
otherwise original position.

.Info one row per matched node/element giving NodeId if exact match (0 otherwise), num-
ber of nodes per element, element type (1 (1D), 2 (2D), 3 (3D), or 5 (SE), an element
code and a distance indicator.

.match obtained when calling the command with -info, typically for row by row post-
processing of the match. A cell array with one row per matched node/element giving
eltname, slave element row, rstj, sticknode

.slave an element matrix providing for each node of field .Node the matched element.

.slaveind the element index (cEGI) in the .Elt matrix of input model providing for each node
of field .Node the matched element index.

.master a sub-index vector providing only the matched nodes in other fields.

MeasThick,Show

Measure of thickness through a volume. Thickness is here defined as the distance from a node on
a surface to another surface along the node face normal direction. The base call requires a surface
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selection on a wolume mesh from which thickness is measured. The measure in internally performed
as a feutilb Match call on the other surfaces connected to the surface selected (then assumed fully
connected).

The definition of thickness is not unique in the general case, so that peculiar effects can be obtained,
especially at corner locations. The defintion chosen here correctly suits thin 3D volumes for which
the closest surface nodes to a given surface point is in the opposite surface.

The following commands are supported

• -sel’’EltSel’’ can be used to specify a FindElt command defining the surface from which
the measure is performed.

• -set’’name’’ can be used to directly provide a FaceId set instead of a seletion through -sel.

• -osel’’EltSel’’ can be used to restrict match by providing the surfaces facing be the base
selection, using a FindElt command.

• -smooth can be used to smooth the response by interpolating unmatched points or out of
tolerance points.

• -sTol provides a tolerance over which thickness is considered too large and declared the point
unmatched.

• -show directly calls command MeasThickShow to display the thickness map in feplot.

Command MeasThickShow performs a display of the thickness map on the mesh in feplot.

% Thickness measurment and display

model=demosdt(’demoUBeam NoPlot’); % demo model

model=feutil(’divide 4 4 4’,model); % some refinement

[eltid,model.Elt]=feutil(’eltidfix;’,model); % clean EltId

cf=feplot(model);

RO=struct(’sel’,’selface & innode{y==0.5}’,...
’osel’,’selface & innode{notin{innode{z==0|z==2.5|y==.5}}}’)

d1=feutilb(’MeasThick-Show’,cf.mdl,RO);

MpcFromMatch

This command is used to build multiple point constraints from a match.
model=feutilb(’MpcFromMatch’,model,match).

The default output is the model with added MPC. The following command options are available

578



feutilb

• -entry to output the MPC structure instead of the model.

• -keepAll not to remove any observation line from the node list.

• -UseDOFdofi to provide alternative DOF, this is usefull for non-mechanical DOF.

• -UseRot to keep rotation DOF constraints.

• Rot to generate an MPC on rotation DOF only.

• -NoOff not to account for StickNode offsets.

The solution retained for surfaces is to first project the arbitrarily located connection point P on
the element surface onto a point Q on the neutral fiber used where element nodes are located. Then
Q1 or P1 shape functions and their derivatives are used to define a linear relation between the 6
degree of freedom of point Q and the 3 or 4 nodes of the facing surface. Motion at P is then deduced
using a linearized rigid PQ link. One chooses to ignore rotations at the nodes since their use is very
dependent on the shell element formulation.

Figure 10.2: Non conform mesh handling

The local element coordinates are defined by xej , j = 1 : 3 along the r coordinate line

xej = αx
∂Ni

∂r
xij with αx = 1/
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∥∥∥∥ (10.3)
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with uik the translation at element nodes and j = 1 : 3, i = 1 : Nnode, k = 1 : 3. Displacement at Q
is interpolated simply from shape functions, displacement at P is obtained by considering that the
segment QP is rigid.

For volumes, displacement is interpolated using shape functions while rotations are obtained by
averaging displacement gradients in orthogonal directions
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thetax = (−Ny,z +Nz, y) /2 {u}
thetay = (Nx,z −Nz, x) /2 {u}
thetaw = (−Nx,y +Ny, x) /2 {u}

(10.5)

You can check that the constraints generated do not constrain rigid body motion using
fe caseg(’rbcheck’,model) which builds the transformation associated to linear constraints and
returns a list of DOFs where geometric rigid body modes do not coincide with the transformation.

PlaceInDof

This command places DOF based matrices into different sets of DOFs. This can thus be used for
def curves, observation, constraint, models or matrices. For subsets of DOFs a direct elimination
is performed; if the new DOF set contains exclusive DOF, zeros are added, as no expansion is
performed here.

This is typically used to eliminate DOFs, add zeros for unused DOFs or simply reorder DOFs. See
also fe def SubDof.

High level calls for data structures are supported using syntax
data= feutilb(’PlaceInDof’,DOF,data); where DOF is the new set of DOF and data is a structure
whose fields depends on the type of matrix

• .def and .DOF are necessary for a deformation field, in coherence with the def curve structure.

• .cta and .DOF for an observation matrix coherent with sensor defintions.

• .c and .DOF for a constraint matrix, coherence with mpc definitions. This bears the same base
treatment as for the observation matrix but also handles field .slave is defined.

• .K and .DOF for an assembled model. For reduced models the restitution data entry infoSeRestit

in .Stack field is also handled, see fesuper SEDef for more information.

The other fields are left unchanged.

Lower level calls for matrices are supported using syntax
mat=feutilb(’PlaceInDof’,DOF,oldDOF,mat);. This call then returns the data matrix placed in
the new DOF field, assuming that matrix mat is based on oldDOF. Depending on the size of mat,
feutilb assumes the type of matrix it handles,

• A square matrix of size oldDOF is supposed to be a model matrix (stiffness, ...).
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• A rectangular matrix with the line dimension equal to the number of oldDOF (i.e.
size(mat,1)==length(oldDOF)) is supposed to be a deformation field.

• A rectangular matrix with the column dimension equal to the number of oldDOF i.e.
size(mat,2)==length(oldDOF)) is supposed to be an observation matrix.

SeparateByMat,Pro

Command SeparateBy ensures that only one MatId or ProId exist in each element group. If a group
contains several MatId or ProId the group will be split in the element list, so that the new groups
are inserted directly after the currently split group.

By default the criterion is based on MatId, use command SeparateByPro to base it on the ProId.

% Separate elements groups by Mat/ProId

% demonstration model

model=demosdt(’demoubeam noplot’);

% observe element groups

feutil(’info’,model)

% apply different MatId to different selections

i1=feutil(’findelt withnode{z>1&z<=2}’,model);
i2=feutil(’findelt withnode{z>2}’,model);
mpid=feutil(’mpid’,model.Elt);

mpid(i1,1)=2; mpid(i2,1)=3;

model.Elt=feutil(’mpid’,model.Elt,mpid);

% now one group with several MatId

feutil(’info’,model)

% apply group separation

model.Elt=feutilb(’SeparateByMat’,model.Elt);

% now three groups with unique MatId

feutil(’info’,model)

SubModel

This command aims at extracting a functional model from a selection of an element subset. From a
FindElt selection, this command

• Removes unused nodes

• Cleans up the set stack entries. Sets are updated (and removed is they become empty)
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• Cleans up the mat/pro entries, unused properties are removed

• Cleans up the case entries, constraints are adapted or removed if external to the submodel
(RBE3 or rigid with removed slave or master elements are cleared), loads are adapted or
removed if external.

• Updates info,Rayleigh and info,Omega stack entries.

If the FindElt command is omitted or set to groupall, the cleanup is performed on the whole
model.

The following command options can be used not to clear some specific fields

• -keepStack not to clean the stack.

• -keepCase not to clean the case stack.

• -keepMatPro not to clean pl/il entries.

• -keepIntSE to keep superelements whose nodes are fully contained in the selection provided.
This option can be usefull to keep coupling superelements when the selection is related to
component combinations.

% Call to extract a submodel from a model

model=demosdt(’demoubeam’);

mo1=feutilb(’submodel’,model,’innode{x<.5}’);
feplot(mo1)

SurfaceAsQuad[,Group]

This command handles post-treatment of surfaces selections.

The syntax is mo1=feutilb(’SurfaceAsQuad’,model,eltsel)’, where

• model is a standard SDT model, that will be transformed

• eltsel (optional) is a FindElt string that allows a subselection of the initial mesh. The
selection should return a face selection, so that the command & selface will be added to the
FindElt string if the token selface is missing. If omitted this is set to selface.

• SurfaceAsQuad command transforms a mesh into a surface quad4 elements. A mesh surface
selection is first performed, triangle surfaces are then transformed intro degenerated quad4

elements, and second order surfaces are linearized. The output model is then a quad4 surface
mesh.

582



feutilb

• SurfaceAsQuadGroup angle command splits surfaces based on sharp edges detection. A mesh
surface selection is first performed.

The detection is based on angles between element edges on a surface selection, the threshold is
given by angle in degrees, if omitted, the default value of 36.87 degrees is taken (corresponding
to a cosine value of 0.8). The output model is then a surface mesh divided into groups of
surfaces separated by sharp edges. The following command options can be used

– -set asks not to transform the model, but to generate a meta-set defining the surfaces
separated by sharp edges.

– -set-old asks not to transform the model, but to generate a FaceId set with a connec-
tivity matrix.

– -isFaceSel asks not to alter the eltsel command even if the token selface is missing.
This is useful if one works with a volume based surface selection, not to loose the face
identifiers.

The following sample calls illustrate the syntax and the command outputs:

% SurfaceAsQuad, transform mesh into quad4 surface

model=femesh(’testtetra4’); % sample volume mesh

mo1=feutilb(’SurfaceAsQuad’,model); % transform into surface quad4 mesh

feutil(’info’,mo1)

% SurfaceAsQuadGroup, post treat surface selection based on sharp edges

model=femesh(’testtetra4’); % sample volume mesh

% Generate the surface mesh with group division by sharp edges

mo1=feutilb(’surfaceasquadgroup 90’,model);

cf=feplot(mo1); fecom(cf,’;colordatagroup;viewn++-;’);

% Generate a meta-set named face of FaceId divided by sharp edges

model=feutilb(’surfaceasquadgroup90 -set"face"’,model);

data=stack_get(model,’set’,’face’,’get’);

data.SetNames % names of splitted face selections

SurfaceSplitDef

This command builds a deformation curve with associated colormap that localizes areas in a model,
based on a curve result.

d1=feutilb(’SurfaceSplitDef’,model,def,RO) returns a deformation curve based on def with
zeros for non-localized areas and connectivity levels to a starting area. model is an SDT model
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providing the mesh topology, def is a curve based on which areas will be localized and RO is a
running option structure with fields

• .elt a boolean telling whether one works with nodes (false) or elements (true).

• .tol that provides a criterion that defined the areas located from initial positions, this is set
be default to 0.1.

• .starts that provides a starting point for the area localization. Depending on field .elt this
is either a list of nodes or elts, or a string with a command field. Command maxN is supported
and used as a starting list the N first maximum values in the curve.

• .sel provides a FindElt string that restricts the initial selection for the clustering.

This command uses the feutilb @levNodeCon object.

% SurfaceSplitDef example

% demonstration model

demosdt(’demoubeam’)

cf=feplot; def=cf.def;

[~,cf.mdl.Elt]=feutil(’eltidfix;’,cf.mdl);

% Node based field, node clustering

d1=feutilb(’surfacesplitdef’,cf.mdl,def,struct(’tol’,.5,’starts’,’max2’));

cf.def=d1; fecom colordataa

ii_plp(’colormap’,struct(’map’,jet(2), ...

’cval’,[0 .01 1],’Band’,0,’refine’,10,’bSplit’,2))

% Element based field

Ek=fe_stress(’ener -MatDes 1 -curve’,cf.mdl,def);

% Element clustering

d2=feutilb(’surfacesplitdef-elt’,cf.mdl,Ek,struct(’tol’,.2,’starts’,’max2’));

cf.def=def; fecom(’colordataelt’,d2); colormap(cf.ga,jet);

SurfVisible

This command provides visible elements from a particular feplot view.

[eltind,elt,eltindWithHeaders]=feutilb(’SurfaceVisible’,cf); will output the indices eltind
or with headers in cf.mdl.Elt that are currently visible in the display. The second output elt are
the face elements consitituting the visible model skin.
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This function is compatible but not conforming to feutil FindElt command. When outputting
elements of different nature than for the model, the base FindElt commands will provide empty
indices. This function still outputs the visible elements indices of the base model to allow further
manipulations.

The following command options are available, either in the input string or in an additionnal running
options structure.

• not to output invisible elements instead.

• initsel to provide an initial selection to peform with feplot prior to detection.

• cv to provide custom camera postions, as a matrix list of CameraTarget, CameraPosition,

CameraUpVector;... values. One line per configuration, the output will provide the union of
visible elements per view.

• -rval to provide a pciture resolution for the dectection algorithm.

% Recovering visible elements from a feplot display

model=demosdt(’demoubeam-noplot’); % demo model

% tweak its position

model.Node=basis(’gnode’,’rx=45;ry=45;rz=45;’,model.Node);

% display in feplot

cf=feplot(model);

% choose a view

fecom(cf’,’view2’);

% Recover visible elements

[ind,elt,i1]=feutilb(’SurfVisible’,cf);

% restrain view to visible elements

cf.sel=’@feutilb(’’SurfVisible’’,cf)’;

SurfWjNode

This command provides nodal weights for node based surface integration. The weights are computed
as the sum of each element weight contribution using node integration rules.

r1=feutilb(’SurfWjNode’,model,sel);. model is a standard SDT model, sel is a selection that
must provide face elements. If omitted sel is set to selface, one can provide an empty sel is the
model is already using shells or the resultof face selection itself. The output r1 is a structure with
fields .ID and .wjdet respectively providing the NodeId and associated surface weights on the given
surface.
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TKT[,dTKT,TKTSolve]

Optimized matrix projection utilities. This family of commands provides optimized operations
obtained through compiled functionalities, and supports out of core, compatible with the sdthdf

formats.

• TKT, K = feutilb(’tkt’,T,K) is the functional equivalent to T’*k*T. K may be a cell array
of matrices, in which case one operates on each cell of the array.

• dTKT, r1 = feutilb(’dtkt’,T,K) is the functional equivalent to diag(T’*k*T) K may be a
cell array of matrices, in which case one operates on each cell of the array, the output is then
a matrix with the diagonal of each projected matrix on each column.

• TKTSolve, K = feutilb(’tkt’,T,K,b) is the functional equivalent to T*((T’*k*T) \(T’*b))
that performs a direct resolution with constraints, resolution is called with ofact.

For real bases T, support for RAM footprint optimization is provided through the use of blockwise
operations, this can be controlled by the preference BlasBufSize providing a block size in GB. This
can be set to Inf to alleviate the behavior. It can be set using sdtdef sdtdef(’BlasBufSize’,2).

For very large bases T stored in v handle format through sdthdf command TKTMinRead allows
performing blockwise operations on every matrix K at once to limit disc I/O access when loading T.
The block sizes are driven by preference OutOfCoreBufferSize providing a memory limit in MB.

Write

feutilb(’WriteFileName.m’,model) writes a clean output of a model to a script. Without a file
name, the script is shown in the command window.

feutilb(’ writeil’,model) writes properties. feutilb(’ writepl’,model) writes materials.

Note that this command automatically overwrites existing script files

@levNodeCon

Internal node connectivity object that can be created through its constructor levNodeCon accessed
trhough conn=feval(feutilb(’@levNodeCon’),[],model);.Note that this call is case sensitive.

The packaged functionalities allow browsing nodes or elts based on element edge levelled connectivity.
By default, the node connectivity is initialized only, but one can activate element connectivity with
token econ in the construction. conn=feval(feutilb(’@levNodeCon’),[],model,’econ’);].

586



feutilb

Alternative commands allow node/elt expansion based on threholds associated to external data (e.g.
an energy curve)

The following methods are available

• expN2Lev. Expands a node list to the node list that is connected up to a given connectivity
level. n2=feval(conn.expN2Lev,conn,[n1; ...]lev); returns a two column matrix whose
column respectively provide the NodeId list and the connectivity level from the initial list.
conn is the connectivity object, [n1;...] is a column vector of starting NodeId, lev is the
maximum connectivity level allowed.

• expE2Lev. Expands an element list to the elemnt list that is connected up to a given connec-
tivity level. elid2=feval(conn.expN2Lev,conn,[elid1; ...]lev); returns a two column
matrix whose column respectively provide the EltId list and the connectivity level from the
initial list. conn is the connectivity object, [eltid1;...] is a column vector of starting EltId,
lev is the maximum connectivity level allowed.

• expN2Thr. Generates a node list from a starting list that is incrementally increased by connec-
tivity level so that the final list verifies a given criterion. The criterion is based on a threshold
to a quantity to increases with the number of nodes, for example an absolute displacement
field or an energy field. n3=feval(conn.expN2Thr,conn,n1,curve,tol);. n1 is the initial list
of nodes, curve is a data set with fields

– .data is the data field with as many lines as nodes or elements in the model and as many
columns as needed.

– .ID or .EltId is in coherence with the number of lines of field .data and provides either
the corresponding NodeId for the .ID field or EltId for the .EltId field.

– CritFcn is a criterion function that provides a scalar representative of the value associated
to the current node or element list. This is set by default to crit=feutilb(’@scalarCrit’),
the function is called as val=crit(opt,ind) with ind the indices to be taken on field
.data. This function should rethrow a positive value increasing with the number of nodes.
The list incrementation is stopped once val>tol.

• expE2Thr Generates an element list from a starting list that is incrementally increased by
connectivity level so that the final list verifies a given criterion. See method expN2Thr for the
curve input and criterion function formats.

• getNodes Returns the nodes listed in the conn object.

% levNodeConn object example node or elt list by connectivity

demosdt(’demoubeam’)
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cf=feplot; def=cf.def;

% object initialization

conn=feval(feutilb(’@levNodeCon’),[],cf.mdl,’econ’); % init

start=1; % eltid 1

eltid=feval(conn.expE2Lev,conn,start,5); % levEltCon

data=struct(’EltId’,eltid(:,1),’data’,eltid(:,2));

fecom(’colordataelt’,data);

% sample call with ndoes

n2=feval(conn.expN2Lev,conn,[125],2);

@unConSel

Internal method whose function handle can be obtained for external use by
unConSel=feutilb(’@unConSel’);.Note that this call is case sensitive.

sel=feval(feutilb(’@unConSel’),model); returns a cell array of EltId vectors respectively con-
stituting an unconnected mesh region of the model. The length of the selection is then the number
of disconnected mesh regions in the model. This command does not take constraints into account.
One has the possibility to work on a model on which constraints have been penalized using command
feutilb CaseC2SE.
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Purpose

Gateway function for 3-D visualization of structures. See also the companion function fecom.

Syntax

feplot

feplot(FigHandle)

feplot(model)

feplot(model,def)

Description

fecom gives a complete list of commands. The rest of this section gives more details on the feplot

architecture. For a tutorial see section 4.4 . Basic ways to call feplot are

• feplot refreshes all feplot axes of the current figure. Use cf=feplot;cla(cf.ga);feplot
to reinitialze the current plot.

• cf=feplot returns a SDT handle to the current feplot figure. You can create more than
one feplot figure with cf=feplot(FigHandle).

• cf=cf=comgui(’guifeplot -reset -project "SDT Root"’,2) opens an SDT handle

to the specified figure 2. Option -reset closes an existing figure if it is not already a feplot

figure. Option -project uses OsDic style Prfeplot to configure project working directory,
image formatting, ...

• cf=feplot(model) or cf.model=model calls fecom InitModel to initialize the FE model
displayed in the current figure. See fecom load loads the model from a file.

• cf.def=def and cf.def(i)=def calls fecom InitDef to initialize a deformation set.

• cf=feplot(model,def) initializes the FE model and a deformation set at the same time.

• cf.sel={’EltSel’,’ColorInfo’, ... } calls fecom Sel to initialize the selection used to
display the model.

• cf.Stack and cf.CStack calls are detailed in section 4.4.3 .

The old formats feplot(node,elt,mode,mdof,2) and cf.model={Node,Elt} are still supported
but you are encouraged to switch to the new and more general procedure outlined above.



feplot

Views of deformed structures are obtained by combining information from various data arrays that
can be initialized/modified at any time. The object hierarchy is outlined below with the first row
being data arrays that store information and the second row objects that are really displayed in
Matlab axes.

FeplotFig

axes mdl sel sens def

mesh arrow text

axes describe axes to be displayed within the feplot figure. Division of the figure into subplots
(Matlab axes) is obtained using the fecom Sub commands. Within each plot, basic displays (wire
mesh, surface, sensor, arrow corresponding to mesh, arrow, or text objects) can be obtained using
the fecom Show commands while more elaborate plots are obtained using fecom SetObject com-
mands. Other axes properties (rotations, animation, deformation selection, scaling, title generation,
etc.) can then be modified using fecom commands.

mdl Model data structure (see section 7.6 ) cf.mdl is a handle to the model contained in the
feplot figure. The model must be defined before any plot is possible. It is initialized
using the fecom InitModel command or using the method cf.model.

Stack Model Stack entries are stored in cf.mdl.Stack, but can be more easily reached using
cf.Stack{i} or cf.Stack{EntryName} or modified using
cf.Stack{EntryType,EntryName}=EntryData.

CStack Case Stack entries are stored in the stack case (itself stored in cf.mdl.Stack). They can
be more easily reached using cf.CStack{i} or cf.CStack{EntryName} or modified using
cf.CStack{EntryType,EntryName}=EntryData.

sel Element selections describe which elements are displayed. The standard selection
displays all elements of all groups. fecom Sel commands or cf.sel(i) let you
define selections that only display some elements. See also the fecom SetObject

commands. Color information is defined for each selection (see fecom Color com-
mands). cf.sel(i)= ’ElementSel’ initializes a selection to use element se-
lected by ElementSel. Note that you may want to declare color data simulta-
neously using cf.sel(i)= {’ElementSel’,’Colordata Command’,Args}. cf.o(i)=

{’ObjectSpec’,’PatchProperty’,PatchValue} modifies the properties of object i

in the current feplot axis.
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sens (obsolete) sensor selections describe sets of sensors. Sensor selections are used to display
the response at measurement locations through stick or arrows. Initialized using the
InitSens command or cf.sens(i) calls (see fecom).cf.sens(i)={sdof} initializes a
sensor set (see fecom InitSens).

def deformation sets describe deformations at a number of DOFs. Initialized using the
InitDef command or cf.def(i) calls (see fecom). cf.def(i)={def,dof} is also ac-
cepted. cf.def(i)={def,dof,freq} where freq is a list of frequencies of poles automat-
ically generates title labels for each deformation (see fecom InitDef).

Objects

mesh

mesh objects represent a deformed or undeformed finite element mesh. They are used both for
wire-frame and surface representations. mesh objects are characterized by indices giving the element
selection, deformation set, channel (deformation number), and color type. They can be modified
using calls or the form

cf = feplot; % get sdth object handle

cf.o(2) = ’sel 1 def 1 ch 3’

or equivalently with fecom SetObject commands. fecom Show commands reset the object list of
the current axis.

Each mesh object is associated to up to three Matlab patch objects associated respectively with
real surfaces, segments and isolated nodes. You can access individual pointers to the patch objects
using cf.o(i,j) (see fecom go commands).

arrow

Arrow objects are used to represent sensors, actuators, boundary conditions, ... They are character-
ized by indices giving their sensor set, deformation set, channel (deformation number), and arrow
type. They can be modified using calls or the form (see fecom SetObject commands)

cf = feplot; % get sdth object handle

cf.o(2) = ’sen 1 def 1 ch 3’

The SDT currently supports stick sensors (object type 3) and arrows at the sensor tip (type 7).
Other arrow types will eventually be supported.
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text

fecom text objects are vectorized lists of labels corresponding to nodes, elements, DOFs, ... They
can be initialized using fecom Text commands and deleted with textoff. You can use cf.o(i)

(see fecom go commands) to get handles to the associated Matlab text objects and thus set font
name size, ... set(cf.o(1), ’fontsize’, 7) for example.

Data arrays

feplot stores information in various data arrays cf.mdl for the model, cf.def(i) for the definition
of deformations, cf.sel(i) for element selections for display and cf.sens(i) for sensor selections.

mdl

The model currently displayed is stored in cf.mdl, see fecom InitModel.

data

The cf.data field is used to store volatile interface data. In particular .ViewClone can store axes
handles that should keep synchronized orientations.

def

The deformations currently displayed are stored in cf.def, see fecom InitDef for accepted input
formats.

sel

element selections describe a selection of elements to be displayed. The standard selection displays
all elements of all groups. fecom Sel commands let you define selections that only display some
elements.
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.selelt string used for element selection

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.cna array (as many as currently declared deformations) of sparse observation matrices
giving the linear relation between deformation DOFs and translation DOFs at the
selection nodes. The observation matrix gives all x translations followed by all y
translations and all z translations.

.fs face definitions for true surfaces (elements that are not represented by lines or points).
.ifs gives the element indices (possibly repeated if multiple faces)

.f2 face definitions for lines (if any). .if2 gives the element indices (possibly repeated if
multiple faces).

.f1 face definitions for points (if any).

.fvcs FaceVertexCData for true surfaces (see fecom ColorData commands). Can also be
a string, which is then evaluated to obtain the color, or a function handle used in
ColorAnimFcn.

.fvc2 FaceVertexCData for lines

.fvc1 FaceVertexCData for points

sens

sensor selections describe sets of sensors. Sensor selections are used to display the response at
measurement locations through stick or arrows. The InitSens command is being replaced by the
definition of SensDof stack entries.

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.ntag numerical tag identifying each sensor

.dir direction associated with each sensor

.cta array (as many as currently declared deformations) of sparse observation matrices
giving the linear relation between deformation DOFs and measurements.

.opt [Created]

.arrow defines how the arrow is related to the measurement

See also

fecom, femesh, feutil, tutorial in section 4.4
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Purpose

User interface for superelement support.

Syntax

fesuper(’CommandString’)

[out,out1] = fesuper(’CommandString’, ...)

model = fesuper(model,’CommandString’, ... )

Description

Superelements (see section 6.3 for more details) should be declared as SE entries in model.Stack,
see fesuper s for name restrictions. When using this format, you should specify model as the first
argument fesuper so that any modification to the superelement is returned in the modified stack.

F ...

Get full model from superelement model.

SE=demosdt(’demo ubeam’); SE=SE.GetData; % Load full model.

model=fesuper(’SESelAsSe’,[],SE); % Build SE model.

Node=fesuper(’FNode’,model); % Get full model nodes.

Elt=fesuper(’FElt’,model); % Get full model elements.

mfull=fesuper(’FSEModel’,model); % Get full model.

• FSEModel generates a full model (with .Node and .Elt fields only) based on all SE. Warning
the output erases the input model, so that care must be taken when model is a v handle. The
following command options are available:

– -Stack to keep the initial stack increased with all SE stacks, to keep material properties
and sets.

– -StackAll to keep all base stack increased with all SE stacks.

– -SESets to add in the stack element sets corresponding to each SE, under the name
SE sename.

– -join to join all element by types in the full model.

• FElt outputs the full elements of the model.

• FNode outputs the model full nodes. Command FNodeOptim outputs the nodes actually used
in each SE.
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Get,Set ...

Get,set properties from a superelement. Standard superelement fields are detailed in section 6.3.2.
get and set commands are obsolete, you should really use direct access to the feplot stack. For
example

cf=demosdt(’demo cmsSE feplot’);

SE1=cf.Stack{’se1’};
SE1=stack_set(SE1,’info’,’EigOpt’,[5 10.1 1e3]);

SE1=fe_reduc(’CraigBampton -SE -UseDof’,SE1);

cf.Stack{’se1’}=SE1; fecom(’curtabStack’,’SE:se1’)

A new command to perform reduction is under development.
mdl=fesuper(mdl,’setTR’,name,’fe reduc command’) calls fe reduc to assemble and reduce the
superelement. The command option -drill can be added to the fe reduc command to con-
sider drilling stiffness in shells. For example mdl=fesuper(mdl, ’SetTR’, ’SE1’, ’CraigBampton

-UseDof -drill’);

The modes to be kept in the superelement can be set using mdl=fesuper(mdl, ’setStack’, name,

’info’, ’EigOpt’, EigOptOptions);

Damp

model=fesuper(’Damp’,model,’SEname’,damp); Defines a modal damping on the superelement
SEname. damp can be a scalar zeta0 and defines a global damping ratio on all computed modes.
damp can also be a vector [zeta0 f0 zeta1] defining a first damping ratio zeta0 for frequencies
lower than f0 Hz and another damping ratio zeta1 for higher frequencies. Note that all modes are
computed.

SEDef

Superelement restitution. These commands are used to handle model partial or full restitution for
visualization and recovery handling.

SEDefInit is used to prepare the model for restitution matters. It adds in model.Stack an entry
info,SeRestit containing the necessary data for restitution i.e. to perform {q} = [T ]{qR}. This
aims to limit generic work needed for multiple restitution. Syntax is
model=fesuper(’SEDefInit’,model).

SEDef is used to implement restitution on full model DOFs. Syntax is dfull=fesuper (’SeDef’,

cf, def)
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SEBuildSel

SEBuildSel is used to perform partial restitution on a model. This command sets feplot to display
a restitution mesh and computes the corresponding deformation vectors. The restitution selection is
defined as a cell array with rows of the form SeName,EltSel for selection of each superelement. An
EltSel entry set to ’groupall’ thus displays the full superelement. EltSel can also be an element
matrix (usefull to display deformations on a test frame) or even a vector of NodeIds.
To discard a superelement from display, use an empty string for EltSel. By default a superelement
not mentioned in the selection is displayed.

After the generation of superelement selections, it is possible to set a global selection on the full
mesh by adding an entry with an empty superelement name (see illustration below).

Accepted command options are

• -nojoin avoids grouping elements of the same topology in a single group.

• -LinFace can be used to generate selections that only use first order faces (tria3 instead of
tria6, ...)

• -NoOptim is used to skip the restitution optimization phase.

• -cGL (used in SDT/Rotor) is used in cases with local bases associated with each superelement.
In this case, data.cGL is a cell array used to define a local rotation associated with each
superelement. Typically, this is equal to data.cGL{jEt}=reshape(mdl.bas(j1,7:15),3,3);.

• -RotDof (used in SDT/Rotor) large angle DOF

The following example is based on a gimbal model reduced in three superelements: base, gimbal
and tele. A partial restitution is proposed.

model=demosdt(’demogimbal-reduce’)

cf=feplot(model)

def=fe_eig(model,[5 10 1e3 0 1e-5]);

Sel={’gimbal’ ’groupall’;

’tele’ ’InNode{z>=0}’;
’base’ ’’ }; % base not displayed

fesuper(’SEBuildSel’,cf,Sel);

cf.def=def;

596



fesuper

% Second selection example

Sel={’gimbal’ ’groupall’;

’tele’ ’’;

’base’ ’groupall’

’’, ’InNode{z>=0}’}; % global selection

fesuper(’SEBuildSel’,cf,Sel);

If you have previously initialized a full restitution with fesuper(’SeDefInit’,cf), data to opti-
mize partial restitution will be initialized. To obtain a partial restitution of a set of vectors, use
data=cf.sel.cna1;dfull=fesuper(’sedef’,data,dred).

SE ...

SEDof is an internal command used to implement proper responses to feutil GetDof commands.
It is assumed that the superelement .DOF field is defined prior to setting the information in the
model.Stack.

SEMPC is an internal command that need to be documented.

SECon may also need some documentation.

SEAdd ...

SEAddSEName commands are used to append superelements to a model. With no command op-
tion fesuper(’SEAdd SEname’,model,SE,[matId proId]’ appends a new superelement to the
model.Elt field (creates a group SE if necessary) and saves the provided SE as a stack entry. [matId
proId] can be given as a last argument to define properties associated to added superelement. As
a new superelement is generated by default, SEname can be incremented if a superelement already
exists with the same name.

The following command options are available

• -owrite allows overwriting a superelement whose name is already assigned.

• -name’’SEname’’ can be used instead of letting the superelement name itself in the command,
for added robustness.

• -initcoef can be used in the case where the superelement is already assembled (reduced part,
coupling superelement, ...). This allows the definition of a p superentry of type 2, defining
tunable matrix types and coefficients for parametric studies.
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• -newID to assign a new independent EltId to each added superelement. This option makes
sure that the assigned EltId is not already used in the full model EltId.

Note that SEname is checked to comply with the superelement naming convention of SDT, (see sec-
tion 6.3 , fesuper s ). If SEname is altered, a warning will tell how and why. The warning can be
deactivated by adding ; at the end of the command string.

SE is usually a standard SDT model, with fields .Node, .Elt, .Stack... But this command accepts
models defined only from element matrices (needs .K, .Opt and .DOF fields). It can be useful to
cleanly import element matrices from other codes for example (see section 4.3.3 ), or to represent
penalized constraints, see fe mpc.

When defining a superelement, two node and element numbering coexist, one a the superlement
level, and one at the global level. To recover a full model at the global level, see fesuper FSeModel.
To control the global model numbering ranges, ones defines NodeId0 and EltId0. NodeId0 is the
lower bound of the range of the superelement implicit nodes (use 1 for no shift). NodeIdEnd is
given by NodeIdEnd-NodeId0=max(SE.Node(:,1)). EltId0 is the lower bound of the range of the
superelement elements. The EltId range width is equal to the maximum EltId of the superelement.

• It is possible to define EltId0 to -1 to let fesuper assign an EltId range over the maximum
currently used EltId, accouting for the global model.

• It is possible to define multiple instances of an SE at once (periodic models), see -trans for
translation replication and -disk for circular replication. In such case, it is also possible to
control the node shift applied between SE by defining a three value series NodeShift NodeId0

EltId0. If only two values are given, NodeShift is defaulted to zero and the two values are
interpreted as NodeId0 and EltId0.

SEAdd -unique NodeId0 EltId0 SEname is used to add a single superelement and to give its ranges
of implicit nodes and elements.

SEAdd -trans nrep tx ty tz <NodeShift> NodeId0 EltId0 SEname is used to repeat the model
nrep times with a translation step (tx ty tz). NodeId0 is the lower bound of the range of the first
superelement implicit nodes. The range width is equal to the maximum NodeId of the superelement.
The ranges of implicit nodes for repeated superelements are translated so that there is no overlap.
To obtain overlap, you must specify NodeShift NodeId0 EltId0, then there is a NodeId range
overlap of NodeShift nodes. This is used to obtain superelement intersections that are not void and
NodeShift is the number of intersection nodes between 2 superelements. EltId0 is the lower bound
of the EltId range of elements of the first superelement. There is no EltId range overlap. Option
-basval can be used as a starting value for the BasId of superelements.
For example

model=femesh(’testhexa8’);
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model=feutil(’renumber’,model,model.Node(:,1)*10);

mo1=fesuper(’SEAdd -trans 5 0 0 1 10000 10000 cube’,[],model)

feplot(mo1)

SEAdd -disk <NodeShift> NodeId0 EltId0 SEName is used to repeat a sector model in cyclic sym-
metry. It is assumed that the symmetry case entry exists in the model (see fe cyclic Build).

In all these cases, matrix of nodes of the superelement is sorted by NodeId before it is added to the
stack of the model (so that SE.Node(end,1)==max(SE.Node(:,1)).

SEAssemble ...

Command fesuper(’SEAssemble’,model) is used to assemble matrices of superelements that are
used in model. A basis reduction from superelement Case.T (Interface DofSet is ignored) is per-
formed.

SEDispatch ...

Command fesuper(’SEDispatch’,model) is used to dispatch constraints (mpc, rbe3, rigid ele-
ments, ...) of the global model in the related superelements, and create DofSet on the interface
DOFs.

Rigid elements in model.Elt are distributed to the superelements (may be duplicated) that contain
the slave node. The master node of the rigid element must be present in the superelement node
matrix, even if it is unused by its elements (SESelAsSE called with selections automatically adds
those nodes to the superelements).

Other constraints (mpc, rbe3, FixDof) are copied to superelement if all constraint DOFs are within
the superelement. Constraints that span multiple superelements are not dispatched. All constraints
remain declared in the main model. Parameters (par entries in Case) are also dispatched if the
selection in the superelement is not empty.

Finally a DofSet (identity def matrix) is defined on superelement DOFs that are active in the global
model and shared by another superelement. Those DofSet are stored in the ’Interface’ entry of
each superelement stack.

SEDofShow

Command fesuper(’SeDofShow’,cf’tag); localizes nodes supporting DOF of superelements with
mathing name based on tag and adds the SE names in an feplot display using cf. tag can be
omitted in which case all SE are treated. tag can be replaced by a input structure with acceptable
fields
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• .tag provides the tag defined earlier.

• .evF provides a function handle to compute custom SE name anchor coordinates from
SE.Node(:,5:7). Default uses @mean.

• .sel provides a custom feplot selection command to update display. Default is set to
reset-linface, use an empty field not to alter the current feplot selection.

SEInitCoef ...

Command fesuper(’SEInitCoef’,model) can be used to initialize p super properties in model for
used superelements. The full syntax allows choosing the type and a subselection of SE,
[model,pro]=fesuper(’SEInitCoeftyp’,model’sel);. typ can take values 1 or 2 to define the
chosen p super type (the default is type 2). sel can either be a FindElt string providing SE elements
only or a index vector or SE elements in model.Elt. The outputs are model with additional pro
Stack entries, and pro the list of treated ProId.

SEIntNode ...

Command fesuper(’SEIntNode’,model) can be used to define explicitly superelement interface
nodes, taking into account local basis.

SESelAsSE ...

Selection as superelement. Command fesuper(’SESelAsSE’, model, Sel) is used to split a model
in some superelement models, or to build a model from sub models taken as superelements.
Sel can be a FindElt string selector, or a model data structure.
If Sel is a FindElt string selector, the elements corresponding to the selection are removed from
model, and then added as a superelement model. The implicit NodeId of the superelement are the
same as the former NodeId in model. Warning: the selection by element group is not available due
to internal renumbering operations performed in this task.
If Sel is a model, it is simply added to model as a superelement.
Sel can also be a cell array of mixed types (FindElt string selector or model data structure): it is
the same as calling sequentially a SESelAsSE command for each element of the cell array (so avoid
using group based selection for example, because after the first selection model.Elt may change).
You can give a name to each superelement in the second column of Sel
{Selection or model,SEname; ...}. If name is not given (only one column in Sel), default seID
is used.
By default, superelements Mat/ProId are generated and incremented from 1001. It is possible to
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specify the MatId and/or ProId of the superelements created by adding a third column to Sel, with
either a scalar value to apply to MatId and ProId or a line vector under the format [MatId ProId].
E.g. Sel={Selection,SEname,[1001 1001];...}. When the third column is left empty for certain
lines, the default behavior is applied for these lines only.
Master nodes of the global model rigid elements are added to the superelements that contain corre-
sponding slave nodes. By default, model properties are forwarded to the superelement fields, that is
to say il, pl, stack entry types pro, mat, bas, set, and possible stack entries info,Rayleigh and
info,Omega.
Superelement addtion is realized with command fesuper SEAdd, additional command options pro-
vided in command SeSelAsSe will be forwarded to SEAdd. E.g. one can use directly token -newID

to generate clean EltId for added superelements.

The following example divides the d cms model into 2 sub superelement models.

• The command option -dispatch can be used to dispatch constraints (rigid elements, mpc,
rbe3 ...) of the global model in the related superelements and create DofSet on the interface
DOFs. It is the same as calling the fesuper SEDispatch command after SESelAsSE without
command option.

• Command option -noPropFwd can be used not to forward some model data to the superelement
stack (older version compatibility). If used, stack entries of type, pro, mat, bas, set, and
possible stack entries info,Rayleigh, info,Omega will not be forwarded to the superelement
model.

SERemove

model=fesuper(’SERemove’,model,’name’) searches superelement name in the model and removes
it from Stack and element matrix.

SERenumber

SE=fesuper(’renumber’,model,’name’) searches superelement name in the model stack and renum-
bers based on the entry in the SE element group. If name refers to multiple superelements, you should
provide the row number in model.Elt.

s

Superelement name coding operations. To allow storage in an element row, names must be 8
characters or less, combining letters a...z and numbers 0...9. They are taken to be case insensitive.
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For proper use, superelement names should not contain the chain back, and should not start with
0.

num=fesuper(’s name’) returns the number coding the superelement name. name=fesuper(’s ’,num)

decodes the number. elt=fesuper(’s name’,model) extracts elements associated with a given su-
perelement.

See also

fe super, upcom, section 4.3.3 , section 6.3
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Purpose

File lock handling object.

Syntax

ob=fjlock(fname); % initialize object

ob.lock(flag); % lock/unlock with flag

state=ob.locked; % lock status

Description

To avoid simultaneous file access or to help with keeping track of currently processed files, one can
use fjlock to test file accessibility or to lock file accessibility to other processes.

fjlock behavior follows the following semantics

The lock is handled within the object, ensuring exclusivity even if several fjlock objects referring
to the same file exist in different processes. The lock holder is thus a unique object independently
from MATLAB sessions or processes. This leads to three distinct lock statuses:

• 0 file unlocked: no external lock found, and not locked in object. The file is accessible but
should be locked to safely proceed.

• 1 file externally locked: no access possible, impossible to change the lock status until the lock
holder has released it, the process testing accessibility should not proceed.

• 2 file lock within the object: the file is locked but this object is the lock holder, the process
using this object may proceed safely.

When a lock holder fjlock is destroyed, the lock is released.

fjlock inherits the handle class, so that any copy refers to the same object (thus same lock status,
holder, or destroyed). It is also recommended to use delete instead of clear to destroy the object.
The clear command may postpone destruction and thus lock release in recent MATLAB versions.

File locking is never absolutely perfect, as OSes do not use transactional file systems. Besides,
POSIX semantics are nowadays weakly enforced to optimize latency, especially over network access,
and efficient strategies will depend on the OS. Several lock strategies are thus implemented with
their own pros and cons.

• Java LockFile (flag=1) This implementation locks the file itself instead of generating a
companion lock file. This is a very robust and attractive method but its effect is restrained
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within a specific JRE instance (one machine). The lock validity will thus be limited to all
MATLAB instances on a specific computer. Once locked the file may become inaccessible
to read to any process (even the one hodling the lock). This behavior has been observed on
Windows10. A non recoverable segFault may also fail to release the file, that would then remain
locked at the JRE level without release access. The JRE would then need to be restarted to
recover accessibility.

• external lock file with Java IO (flag=2,useNIO=0) This implementation generates a
lock file companion whose existence will define the lock status. To be really safe the lock file
generation has to be atomic, here through the File.createNewFile() method. Specific care
is taken to avoid issues related to weak atomicity to the limits of the file system. The lock
is then valid with no network limit and cross-platform access. As the file itself is not locked
no access issue will exist. This also means that nothing will prevent another rude process to
access the file, or delete it, or delete the lock file. The success of this method is thus linked to
the robustness of access test. File access recovery in case of object loss is here easily done by
deleting the lock file companion.

• external lock file with Java NIO (flag=2,useNIO=1) This implementation is a variant
to the IO implementation. The main characteristics are the same, but atomicity if realized
using the NIO class. The Files.copy method is used instead of the Files.move method.
In recent file system the latter method may be atomic but fails to throw exceptions if the
target already exist thus failing the lock scheme. The Files.copy associated to an empty
file works better, but no atomicity is guaranteed so that a risk of error or lock file corruption
may exist, although very small. This method (new from Java7) is eventually limited to recent
MATLAB versions. For Unix environments starting from MATLAB 8.2 (R2013b), for Windows
environments from MATLAB 9.1 (R2016b).

To be robust to the possibility of several lock strategies used at once, strategy 2 overrides strategy
1 in the lock holder only, and the lock status is independent from the strategy employed. It is then
impossible to lock a file if any lock is detected. One can switch in the lock holder from strategy 1 to
2 but not the other way around until the lock is released. Although very improbable, the lock hold
could be lost during the switch. It is anyways recommended not to mix strategies within a given
distributed procedure.

The default behavior assumes that to be locked, a file must exist. If a file gets deleted, any referred
hold lock will be released. It is however sometimes interesting to place a lock on a non-existing file
to protect its creation. This specific behavior only works with the external lock files strategies. The
operation must then be explicitly called using flag=3. In such case the external lock file strategy is
forced and a lock can be hold on a non-existing file.
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fjlock

fjlock constructor. Calling fjlock will create a new fjlock object. One can provide a file name
string fname, and a lock flag integrer on-the-fly.

ob1=fjlock; % create empty object

ob1=fjlock(fname); % refer to file fname, access tested

ob1=fjlock(fname,flag); % refer to file fname and try to lock with flag

.delete[,.close]

fjlock destruction (and callback). Releases the lock if the object is a lock holder prior to destruction.
If no process refers to the object or when exiting MATLAB this method will be called too.

.file

Provide a reference file name. It is possible to change the file reference in an existing object, in such
case, the hold locks will be released.

ob1.file=fname2; % change fname

.lock(flag)

Try to assign a lock flag to the referred file, and outputs the lock status. If the flag is set to false
and hold lock is released, otherwise flag defines the lock strategy (and not the lock status per se).
status=obj.lock(flag).

If the file is locked externally (status set to 1), nothing will be performed, one can however try to
lock in a wait loop until the lock hold (status 2) is obtained.

Depending on the initial lock status, flag setting will have the following effect

• file exists, initial status unlocked (status 0)

– flag=0 nothing is done, file remains unlocked.

– flag=1 lock with FileLock strategy, lock is hold with strategy 1.

– flag=2 lock with external lock file, lock is hold with strategy 2.

– flag=3 same as flag=2.

• file exists, initial status is externally locked (status 1)
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– flag=0 nothing is done, file remains externally locked.

– flag=1 nothing is done, file remains externally locked.

– flag=2 nothing is done, file remains externally locked.

– flag=3 nothing is done, file remains externally locked.

• file exists, initial status is lock hold with FileLock strategy (status 2) (stra1)

– flag=0 lock is released, file becomes unlocked.

– flag=1 nothing is done, lock is hold.

– flag=2 switch to external file lock strategy, java FileLock is released, lock is hold.

– flag=3 same as flag=2.

• file exists, initial status is lock hold with external lock file strategy (status 2) (stra2)

– flag=0 lock is released, file becomes unlocked.

– flag=1 nothing is done (no strategy change), lock is hold.

– flag=2 nothing is done, lock is hold.

– flag=3 same as flag=2.

• file does not exist, initial status unlocked (status 0)

– flag=0 nothing is done, file remains unlocked.

– flag=1 nothing is done, file remains unlocked.

– flag=2 nothing is done, file remains unlocked.

– flag=3 lock with external lock file, lock is hold with strategy 2.

• file does not exist, initial status is lock hold with external lock file strategy (status 2) (stra2)

– flag=0 lock is released, file becomes unlocked.

– flag=1 nothing is done (no strategy change), lock is hold.

– flag=2 nothing is done, lock is hold.

– flag=3 nothing is done, lock is hold.

.locked

Dynamically provides the object lock status associated to the referred file. Every call to .locked

thus tests again file accessibility. The output is then the lock status.
status=obj.locked;
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.setFile

Change the referred file in the object. If the object is a lock holder, the lock is released. No lock is
performed on the newly referred file.
obj.file=fname;

.setUseNIO(flag)

Change the external file lock implementation strategy. If flag is false, the IO strategy will be used,
the NIO otherwise. It is recommended to stick with the IO strategy.

.tmpFile

Generate a temporary file using java IO or NIO method. This method is used internally but can
also be called externally to generate an empty temporary file with the methods available in Java.
This is a variant to nas2up(’tempname’), the difference being that .tmpFile directly creates an
empty file.

f1=char(tmpFile(fjlock,sdtdef(’tempdir’),’.mat’)); % in tempdir with suffix .mat

f1=char(tmpFile(fjlock,sdtdef(’tempdir’))); % in tempdir no suffix

f1=char(tmpFile(fjlock)); % in pwd, no suffix

Examples

% fjlock calls example

% Generate a file for illustration

f1=char(tmpFile(fjlock,sdtdef(’tempdir’),’.mat’));

% Initialize object

ob=fjlock(f1) % dislays .file and .locked

status=ob.locked % 0: unlocked

% lock the file

status=ob.lock(1) % status is 2

exist([f1 ’.fjlock’],’file’) % no external file

status=ob.lock(2) % status remains2

exist([f1 ’.fjlock’],’file’) % external file exists

% unlock the file

ob.lock(0) % status is 0

exist([f1 ’.fjlock’],’file’) % external file has been removed

% Now try with two objects
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ob1=fjlock(f1) % new lock object

status2=ob1.lock(2) % status2 is 2 ob1 is lock holder

status=ob.locked % status passed to 1 file locked but not by ob

status=ob.lock(0) % status sill to 1 does nothing as ob is not holder

delete(ob1) % lock release when destructed

status=ob.locked % status passed to 0 as no lock exists anymore

f1=nas2up(’tempname.mat’);

ob=fjlock(f1,2);

status=ob.locked % 0: file does not exist

ob1=fjlock(f1,3);

status1=ob1.locked % 2: lock hold on non existing file

status=ob.locked % 1: external lock found

ob1.lock(0) % 0: lock released
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Purpose

DOF selection and input/output shape matrix construction.

Syntax

c = fe_c(mdof,adof)

c = fe_c(mdof,adof,cr,ty)

b = fe_c(mdof,adof,cr)’

[adof,ind,c] = fe_c(mdof,adof,cr,ty)

ind = fe_c(mdof,adof,’ind’,ty)

adof = fe_c(mdof,adof,’dof’,ty)

labels = fe_c(mdof,adof,’dofs’,ty)

Description

This function is quite central to the flexibility of DOF numbering in the Toolbox. FE model matrices
are associated to DOF definition vectors which allow arbitrary DOF numbering (see section 7.5 ).
fe c provides simplified ways to extract the indices of particular DOFs (see also section 7.10 ) and
to construct input/output matrices. The input arguments for fe c are

mdof DOF definition vector for the matrices of interest (be careful not to mix DOF defini-
tion vectors of different models)

adof active DOF definition vector.
cr output matrix associated to the active DOFs. The default for this argument is the

identity matrix. cr can be replaced by a string ’ind’ or ’dof’ specifying the unique
output argument desired then.

ty active/fixed option tells fe c whether the DOFs in adof should be kept (ty=1 which
is the default) or on the contrary deleted (ty=2).

The input adof can be a standard DOF definition vector but can also contain wild cards as follows

NodeID.0 means all the DOFs associated to node NodeID

0.DofID means DofID for all nodes having such a DOF
-EltID.0 means all the DOFs associated to element EltID

The convention that DOFs .07 to .12 are the opposite of DOFs .01 to .06 is supported by fe c,
but this should really only be used for combining experimental and analytical results where some
sensors have been positioned in the negative directions.
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The output argument adof is the actual list of DOFs selected with the input argument. fe c seeks
to preserve the order of DOFs specified in the input adof. In particular for models with nodal DOFs
only and

• adof contains no wild cards: no reordering is performed.

• adof contains node numbers: the expanded adof shows all DOFs of the different nodes in the
order given by the wild cards.

The first use of fe c is the extraction of particular DOFs from a DOF definition vector (see b,c

page 292). One may for example want to restrict a model to 2-D motion in the xy plane (impose a
fixed boundary condition). This is achieved as follows

% finding DOF indices by extension in a DOF vector

[adof,ind] = fe_c(mdof,[0.01;0.02;0.06]);

mr = m(ind,ind); kr = k(ind,ind);

Note adof=mdof(ind). The vector adof is the DOF definition vector linked to the new matrices kr
and mr.

Another usual example is to fix the DOFs associated to particular nodes (to achieve a clamped
boundary condition). One can for example fix nodes 1 and 2 as follows

% finding DOF indices by NodeId in a DOF vector

ind = fe_c(mdof,[1 2],’ind’,2);

mr = m(ind,ind); kr = k(ind,ind);

Displacements that do not correspond to DOFs can be fixed using fe coor.

The second use of fe c is the creation of input/output shape matrices (see b,c page 200).
These matrices contain the position, direction, and scaling information that describe the linear
relation between particular applied forces (displacements) and model coordinates. fe c allows their
construction without knowledge of the particular order of DOFs used in any model (this information
is contained in the DOF definition vector mdof). For example the output shape matrix linked to the
relative x translation of nodes 2 and 3 is simply constructed using

% Generation of observation matrices

c=fe_c(mdof,[2.01;3.01],[1 -1])

For reciprocal systems, input shape matrices are just the transpose of the collocated output shape
matrices so that the same function can be used to build point load patterns.
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Example

Others examples may be found in adof section.

See also

fe mk, feplot, fe coor, fe load, adof, nor2ss

611



fe case

Purpose

UI function to handle FEM computation cases

Syntax

Case = fe_case(Case,’EntryType’,’Entry Name’,Data)

fe_case(model,’command’ ...)

Description

FEM computation cases contains information other than nodes and elements used to describe a
FEM computation. Currently supported entries in the case stack are

cyclic (SDT) used to support cyclic symmetry conditions
DofLoad loads defined on DOFs (handled by fe load)
DofSet (SDT) imposed displacements on DOFs
FixDof used to eliminated DOFs specified by the stack data
FSurf surface load defined on element faces (handled by fe load). This will be phased out

since surface load elements associated with volume loads entries are more general.
FVol volume loads defined on elements (handled by fe load)
info used to stored non standard entries
KeepDof (obsolete) used to eliminated DOFs not specified by the stack data. These entries

are less general than FixDof and should be avoided.
map field of normals at nodes
mpc multiple point constraints
rbe3 a flavor of MPC that enforce motion of a node a weighted average
par are used to define physical parameters (see upcom Par commands)
rigid linear constraints associated with rigid links
SensDof (SDT) Sensor definitions

fe case is called by the user to initialize (when Case is not provided as first argument) or modify
cases (Case is provided).

Accepted commands are

Get, T, Set, Remove, Reset ...

• [Case,CaseName]=fe case(model,’GetCase’) returns the current case.
GetCasei returns case number i (order in the model stack). GetCaseName returns a case with
name Name and creates it if it does not exist. Note that the Case name cannot start with Case.
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• data=fe case(model,’GetData EntryName’) returns data associated with the case entry
EntryName.

• model=fe case(model,’SetData EntryName’,data) sets data associated with the case entry
EntryName.

• [Case,NNode,ModelDOF]=fe case(model,’GetT’); returns a congruent transformation ma-
trix which verifies constraints. Details are given in section 7.14 .
CaseDof=fe case(model,’GetTDOF’) returns the case DOF (for model DOF use
feutil(’getdof’,model)). If fields Case.T and Case.DOF are already defined, they will be
reused. Use command option new to force a reset of these fields.

• model=fe case(model,’Remove’,’EntryName’) removes the entry with name EntryName.

• Reset empties all information in the case stored in a model structure
model = fe case(model,’reset’)

• fe case SetCurve has a load reference a curve in model Stack. For example
model=fe case(model,’SetCurve’,’Point load 1’,’input’); associates Point load 1 to
curve input. See section 7.9 for more details on curves format and fe case SetCurve for
details on the input syntax.

• stack get applies the command to the case rather than the model. For example
des = fe case(model,’stack get’,’par’)

• stack set applies the command to the case rather than the model. For example
model = fe case(model,’stack set’,’info’,’Value’,1)

• stack rm applies the command to the case rather than the model. For example
model = fe case(model,’stack rm’,’par’)

Commands for advanced constraint generation

AutoSPC

Analyses the rank of the stiffness matrix at each node and generates a fixdof case entry for DOFs
found to be singular:

model = fe_case(model,’autospc’)
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Assemble

Calls used to assemble the matrices of a model. See fe mknl Assemble and section 4.8.8 for opti-
mized assembly strategies.

Build Sec epsl d

model = fe cyclic(’build (N) epsl (d)’,model,LeftNodeSelect) is used to append a cyclic
constraint entry in the current case.

ConnectionEqualDOF

fe caseg(’Connection EqualDOF’,model,’name’,DOF1,DOF2) generates a set of MPC connecting
each DOF of the vector DOF1 (slaves) to corresponding DOF in DOF2 (masters). DOF1 and DOF2 can
be a list of NodeId, in that case all corresponding DOF are connected, or only DOF given as a -dof

DOFs command option.

Following example defines 2 disjointed cubes and connects them with a set of MPC between DOFs
along x and y of the given nodes,

% Build a Multiple Point Constraint (MPC) with DOF equalization

% Generate a cube model

cf=feplot; cf.model=femesh(’testhexa8’);

% duplicate the cube and translate

cf.mdl=feutil(’repeatsel 2 0.0 0.0 1.5’,cf.mdl);

% build the connection

cf.mdl=fe_caseg(’Connection EqualDOF -id7 -dof 1 2’,cf.mdl, ...

’link1’,[5:8]’,[9:12]’);

% display the result in feplot

cf.sel=’reset’; % reset feplot display

% open feplot pro and view the built connection

fecom(cf,’promodelviewon’);fecom(cf,’curtab Cases’,’link1’);

The option -id i can be added to the command to specify a MPC ID i for export to other software.
Silent mode is obtained by adding ; at the end of the command.

By default a DOF input mismatch will generate an error. Command option -safe allows DOF
mismatch in the input by applying the constraint only to DOF existing in both lists. If no such
DOF exists the constraint is not created.
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ConnectionPivot

This command generates a set of MPC defining a pivot connection between two sets of nodes. It is
meant for use with volume or shell models with no common nodes. For beams the pin flags (columns
9:10 of the element row) are typically more appropriate, see beam1for more details.

The command specifies the DOFs constraint at the pivot (in the example DOF 6 is free), the local
z direction and the location of the pivot node. One then gives the model, the connection name, and
node selections for the two sets of nodes.

% Build a pivot connection between plates

model=demosdt(’demoTwoPlate’);

model=fe_caseg(’Connection Pivot 12345 0 0 1 .5 .5 -3 -id 1111’, ...

model,’pivot’,’group1’,’group2’);

def=fe_eig(model);feplot(model,def)

The option -id i can be added to the command to specify a MPC ID i for export to other software.
Silent mode is obtained by adding ; at the end of the command.

ConnectionSurface

This command implements node to surface connections trough constraints or penalty.
fe caseg(’ConnectionSurface DOFs’,model,’name’,NodeSel1,Eltsel2) generates a set of MPC
connecting of DOFs of a set of nodes selected by NodeSel1 (this is a node selection string) to a surface
selected by EltSel2 (this is an element selection string). ConnectionSurface performs a match
between two selections using feutilb Match and exploits the result with feutilb MpcFromMatch.

The following example links x and z translations of two plates

% Build a surface connection between two plates

model=demosdt(’demoTwoPlate’);

model=fe_caseg(’Connection surface 13 -MaxDist0.1’,model,’surface’, ...

’z==0’, ... % Selection of nodes to connect

’withnode {z==.1 & y<0.5 & x<0.5}’); % Selection of elements for matching

def=fe_eig(model);feplot(model,def)

Accepted command options are

• Auto will run an automated refinement of then provided element selections element selection
to locate areas of possible interactions.

• -aTol provides a custom tolerance in Auto mode to detect interesecting volume extensions
where the match will be performed. By default one will consider 10 times the mesh character-
istic length.

615



fe case

• -id i can be added to the command to specify a MPC ID i for export to other software.

• -Radius val can be used to increase the search radius for the feutilb Match operation.

• -MaxDist val eliminates matched node with distance to the matched point within the element
higher than val. This is typically useful for matches on surfaces where the node can often be
external. Using a -MaxDist is required for -Dof.

• -kp val is used to give the stiffness (force/length) for a penalty based implementation of the
constraint. The stiffness matrix of the penalized bilateral connection is stored in a superelement
with the constraint name.

• -dens uses a slave surface. In conjunction with -kp the coefficient provided is used as a surface
stiffness density. With this option, the first selection must rethrow a face selection.

• -Dof val can be used to build surface connections of non structural DOFs (thermal fields, ...).

• -MatchS uses a surface based matching strategy that may be significantly faster.

• -disjCut will attempt at splitting the generated connection by disjointed connected areas of
the surface (second selection), the result is either a series of mpc or a model with multiple SE
depending on the mode.

• Silent mode is obtained by adding ; at the end of the command.

It is also possible to define the ConnectionSurface implicitly, to let the constraint resolution be
performed after full model assembly. The ConnectionSurface is then defined as an MPC, which
data structure features fields .type equal to ConnectionSurface with possible command options,
and field .sel giving in a cell array a sequence {NodeSel1, EltSel2}, as defined in the explicit
definition. The following example presents the implicit ConnectionSurface definition equivalent to
the above explicit one.

% Build a surface connection between two plates

% using implicit selections

model=demosdt(’demoTwoPlate’);

model=fe_case(model,’mpc’,’surface’,...

struct(’type’,’Connection surface 13 -MaxDist0.1’,...

’sel’,{{’z==0’,’withnode {z==.1 & y<0.5 & x<0.5}’}}));
def=fe_eig(model);feplot(model,def)

% Build a penalized surface connection

% with a given sitffness density between two plates

model=demosdt(’demoTwoPlate’);
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model=fe_caseg(’Connection surface 123 -MaxDist 0.1 -kp1e8 -dens’,model,...

’surface’,...

’withnode{z==0}&selface’,...
’withnode {z==.1 & y<0.5 & x<0.5}’)
def=fe_eig(model);cf=feplot(model,def);

fecom(cf,’promodelinit’);

fecom(cf,’curtabStack’,’surface’);

fecom(cf,’proviewon’);

Warning volume matching requires that nodes are within the element. To allow exterior nodes,
you should add a & selface at the end of the element selection string for matching.

ConnectionScrew

fe caseg(’Connection Screw’,model,’name’,data)

This command generates a set of RBE3 defining a screw connection. Nodes to be connected are
defined in planes from their distance to the axis of the screw. The connected nodes define a master
set enforcing the motion of a node taken on the axis of the screw with a set of RBE3 (plane type 1)
or rigid links (plane type 0) ring for each plane.

In the case where rigid links are defined, the command appends a group of rigid elements to the
model case.

Real screws can be represented by beams connecting all the axis slave nodes, this option is activated
by adding the field MatProId in the data structure.

data defining the screw is a data structure with following fields:
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Origin a vector [x0 y0 z0] defining the origin of the screw.
axis a vector [nx ny nz] defining the direction of the screw axis.
radius defines the radius of the screw.
planes a matrix with as many lines as link rings. Each row is of the form [z0 type

ProId zTol rTol] where z0 is the distance to the origin along the axis of the
screw, type is the type of the link (0 for rigid and 1 for rbe3), ProId is the ProId
of the elements containing nodes to connect, and zTol and rTol are tolerance of
the positions of these nodes respectively for distance along the axis and distance
to the axis.

MatProId Optional. If present beams are added to connect slave nodes at the center of
each link ring. It is a vector [MatId ProId] defining the MatId and the ProId

of the beams.
MasterCelas Optional. It defines the celas element which is added if this field is present.

It is of the form [0 0 -DofID1 DofID2 ProID EltID Kv Mv Cv Bv]. The first
node of the celas is the slave node of the rbe3 ring and the second is added at the
same location. This can be useful to reduce a superelement keeping the center
of the rings in the interface.

NewNode Optional. If it is omitted or equal to 1 then a new slave node is added to the
model at the centers of the link rings. If it equals to 0, existent model node can
be kept.

Nnode Optional. Gives the number of points to retain in each plane.

Data field planes provide the selection parameters that are used to detect nodes in a plane. The
selection combined three FindNode commands in the order detailed below

• nodes are searched in a cylinder using the axis and origin provided, using the radius rTol

• remaining nodes are limited as being over a plane with normal the axis provided, and over
position z0 - zTol.

• remaining nodes are limited as begin under a plane with normal the axis provided and under
position z0 + zTol.

The found nodes, in a cylinder between two planes of same normal, are then connected to the center
node, strictly defined at height z0 on the axis provided. The heights provided as z0 and zTol must
be understood along the axis provided and not as function of the main frame coordinates.

One can also define more generally planes as a cell array whose each row defines a plane and is
of the form {z0 type st} where z0 and type are defined above and st is a FindNode string. st

can contain $FieldName tokens that will be replaced by corresponding data.FieldName value (for
example ’cyl<= $radius o $Origin $axis & inElt{ProId $ProId}’ will select nodes in cylin-
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der of radius data.radius, origin data.Origin and axis data.axis, and in elements of ProId
data.ProId).

Silent mode is obtained by adding ; at the end of the command.

Following example creates a test model, and adds 2 rbe3 rings in 2 planes.

% Sample connection builds commands for screws using rigid or RBE3

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 1 111 1 3.1;

5.0 1 112 1 4;], ...

’MasterCelas’,[0 0 -123456 123456 10 0 1e14], ...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

cf=feplot(model); % show model

fecom(’promodelviewon’);fecom(’curtab Cases’,’screw1’);

% alternative definintion using a beam

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 1 111 1 3.1;

5.0 1 112 1 4;], ...

’MasterCelas’,[0 0 -123456 123456 10 0 1e14], ...

’MatProId’,[110 1001],...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

cf=feplot(model); % show model

fecom(’promodelviewon’);fecom(’curtab Cases’,’screw1’);

% alternative definition with a load, two beam elements are created

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

model=fe_caseg(’ConnectionScrew -load1e5;’,model,’screw1’,r1);

def=fe_eig(model,[5 15 1e3]);

% alternative definition with a load, two beam elements are created

% and a pin flag is added to release the beam compression

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

model=fe_caseg(’ConnectionScrew -load1e5 -pin1;’,model,’screw1’,r1);

def1=fe_eig(model,[5 15 1e3]);
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% a new rigid body mode has been added due to the pin flag addition

[def.data(7) def1.data(7)]

Command option -loadval allows defining a loading force of amplitude val to the screw in the
case where a beam is added to model the screw (through the MatId optional field). To this mean
the last beam element (in the order defined by the planes entry) is split in two at a tenth of its
length and a compression force is added to the larger element that is exclusively inside the beam.
In complement, command option -pinpdof allows defining pin flags with identifiers pdof to the
compressed beam1element.

Entries

The following paragraphs list available entries not handled by fe load or upcom.

cyclic (SDT)

cyclic entries are used to define sector edges for cyclic symmetry computations. They are generated
using the fe cyclic Build command.

FixDof

FixDof entries correspond to rows of the Case.Stack cell array giving {’FixDof’, Name, Data}.
Name is a string identifying the entry. data is a column DOF definition vector (see section 7.10 ) or
a string defining a node selection command. You can also use
data=struct(’data’,DataStringOrDof,’ID’,ID) to specify a identifier.

You can now add DOF and ID specifications to the findnode command. For example ’x==0 -dof

1 2 -ID 101’ fixes DOFs x and y on the x==0 plane and generates an data.ID field equal to 101
(for use in other software).

The following command gives syntax examples. An example is given at the end of the fe case

documentation.

% Declare a clamping constraint with fixdof

model = fe_case(model,’FixDof’,’clamped dofs’,’z==0’, ...

’FixDof’,’SimpleSupport’,’x==1 & y==1 -DOF 3’, ...

’FixDof’,’DofList’,[1.01;2.01;2.02], ...

’FixDof’,’AllDofAtNode’,[5;6], ...

’FixDof’,’DofAtAllNode’,[.05]);
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map

map entries are used to define maps for normals at nodes. These entries are typically used by shell
elements or by meshing tools. Data is a structure with fields

• .normal a N by 3 matrix giving the normal at each node or element

• .ID a N by 1 vector giving identifiers. For normals at integration points, element coordinates
can be given as two or three additional columns.

• .opt an option vector. opt(1) gives the type of map (1 for normals at element centers, 2 for
normals at nodes, 3 normals at integration points specified as additional columns of Data.ID).

• .vertex an optional N by 3 matrix giving the location of each vector specified in .normal.
This can be used for plotting.

MPC

MPC (multiple point constraint) entries are rows of the Case.Stack cell array giving {’MPC’, Name,

Data}. Name is a string identifying the entry. Data is a structure with fields Data.ID positive integer
for identification. Data.c is a sparse matrix whose columns correspond to DOFs in Data.DOF. c is
the constraint matrix such that [c] {q} = {0} for q defined on DOF.

Data.slave is an optional vector of slave DOFs in Data.DOF. If the vector does not exist, it is filled
by feutil FixMpcMaster.

Note that the current implementation has no provision for using local coordinates in the definition
of MPC (they are assumed to be defined using global coordinates).

par (SDT)

par entries are used to define variable coefficients in element selections. It is nominally used through
upcom Par commands but other routines may also use it [31].

RBE3 (SDT)

rbe3 constraints enforce the motion of a slave node as a weighted average of master nodes. Two
definition strategies are supported in SDT, either direct or implicit. There are known robustness
problems with the current implementation of this constraint.
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The direct definition explicitely declares each node with coupled DOFs and weighting in a data

field. Several rbe3 constrains can be declared in data.data. Each row of data.data codes a set of
constraints following the format

Rbe3ID NodeIdSlave DofSlave Weight1 DofMaster1 NodeId1 Weight2 ...

DofMaster and DofSlave code which DOFs are used (123 for translations, 123456 for both trans-
lations and rotations). You can obtain the expression of the RBE3 as a MPC constraint using
data=fe mpc(’rbe3c’,model,’CaseEntryName’).

When reading NASTRAN models an alternate definition

Rbe3ID NodeIdSlave DofSlave Weight DofMaster NodeId1 NodeId2 ... may exist. If the au-
tomated attempt to detect this format fails you can fix the entry using model=fe mpc(’FixRbe3

Alt’,model).

The implicit definition handles Node Selectors described in section 7.11 to define the rbe3. The
input is then a structure:

% Define a RBE3 constraint

data=struct(’SlaveSel’,’NodeSel’,...

’MasterSel’,’NodeSel’,...

’DOF’, DofSlave,...

’MasterDOF’, DofMaster);

SlaveSel is the slave node selection (typically a single node), MasterSel is the master node selection,
DOF is the declaration of the slave node coupling, MasterDOF is the declaration of the master nodes
coupling (same for all master nodes).

Grounding or coupling the slave node movement is possible through the use of a celas, as shown in
the example below featuring an implicit rbe3 definition. In a practical approach, the slave node is
duplicated and a celas element is generated between the two, which allows the definition of global
movement stiffnesses. Constraining the rotation of a drilled block around its bore axis is considered
using a global rotation stiffness.

% Integrated generation of an RBE3 constraint in a model

% Definition of a drilled block around y

model=feutil(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 0 2 2 2 .5 4 4 4’);

model=fe_mat(’DefaultIl’,model); % default material properties

model=fe_mat(’defaultPl’,model); % default element integration properties

% Generation of the bore surface node set

[i1,r1]=feutil(’Findnode cyl ==0.5 o 0 0 0 0 1 0’,model);

model=feutil(’AddsetNodeId’,model,’bolt’,r1(:,1));

% Generation of the slave node driving the global bore movement
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model.Node(end+[1:2],1:7)=[242 0 0 0 0 0 0;244 0 0 0 0 0 0];

% Addition of the celas element between the slave node and its duplicate

model.Elt(end+[1:2],1:7)=[inf abs(’celas’) 0;242 244 123456 0 0 0 1e11];

model=feutil(’AddSetNodeId’,model,’ref_rot’,244);

% Definition of the RBE3 constraint

data=struct(’SlaveSel’,’setname ref_rot’,...

’MasterSel’,’setname bolt’,...

’DOF’,123456,... % Slave node constrained on 6 DOF

’MasterDOF’,123); % Master only use translation

model=fe_case(model,’rbe3’,’block_mov’,data);

% Grounding the global y rotation (leaving the celas stiffness work)

model=fe_case(model,’fixdof’,’ClampBlockRot’,242.05);

% 5 rigid body modes model obtained

def=fe_eig(model,[5 20 1e3]);

cf=feplot(model,def);fecom(’curtabCases’,’rbe3’);fecom(’ProViewOn’);

rigid

See details under rigid which also illustrates the RigidAppend command.

Sens ... (SDT)

SensDof entries are detailed in section 4.6 . They are stored as rows of the Case.Stack cell array
giving {’SensDof’, Name, data}. SensStrain entries have been replaced with strain sensors in
SensDof.

R1=fe case(’sensobserve’,model,’SensEntryName’,def); iiplot(R1) can be used to extract
observations at sensors associated with a given response. The SensEntryName can be omitted if a
single sensor set exist.
Sens=fe case(model,’sens’,’SensName’);R1=fe case(’sensobserve’,Sens,def); is also accept-
able

un=0

model=fe case(model,’un=0’,’Normal motion’,map); where map gives normals at nodes gener-
ates an mpc case entry that enforces the condition {u}T {n} = 0 at each node of the map.
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SetCurve

To associate a time variation to a compatible case entry, one adds a field curve to the case entry
structure. This field is a cell array that is of the same length as the number of solicitation contained
in the case entry.

Each curve definition in the cell array can be defined as either

• a string referring to the name of a curve stacked in the model (recommended)

• a curve structure

• a string that will be interpreted on the fly by fe curvewhen the load is assembled, see
fe curve(’TestList’) to get the corresponding strings

The assignation is performed using

model = fe case(model,’SetCurve’,EntryName,CurveName,Curve,ind);

with

• EntryName the case entry to which the curve will be assigned

• CurveName a string or a cell array of string with the name of the curves to assign

• Curve (optional) a curve or a cell array of curves that will be assigned (if not in model stack),
they will be set in the model stack and only their names will be mentioned in the case entry

• ind (optional) the index of the curves to assign in the curve field, if several solicitation are
present in the case entry considered. If ind is omitted the whole field curve of the case entry
will be replaced by CurveName.

In practice, a variant call is supported for retro-compatibility but is not recommended for use,

model = fe case(model,’SetCurve’,EntryName,Curve,ind);

allows a direct assignation of non stacked curves to the case entry with the same behavior than for
the classical way.

Multiple curve assignation at once to a specific EntryName is supported with the following rules

• CurveName, Curve (optional) and ind (mandatory) have the same sizes. In this case, all given
curves will be assigned to the case entry with their provided index
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• A singleCurveName and Curve is provided with a vector of indices. In this case, all indexed
curves will be assigned to the new provided one

To remove a curve assignation to a case entry. Command

model = fe case(model,’SetCurve’,EntryName,’remove’);

will remove the field curve from case entry EntryName.

The flexibility of the command imposes some restriction to the curve names. Name remove and
TestVal with Val begin a keyword used by fe curve Test cannot be used.

The following example illustrate the use of SetCurve to assign curves to case entries

% Sample calls to assign curves to load cases

% generate a sample cube model

model=femesh(’testhexa8’);

% clamp the cube bottom

model=fe_case(model,’FixDof’,’clamped dofs’,’z==0’);

% load a DOF of the cube base

model=fe_case(model,’DofLoad’,’in’,struct(’def’,1,’DOF’,5.02));

% generate a curve loading transient pattern

R1=fe_curve(’testramp t1.005 yf1’);

% assign the curve to the load case

model=fe_case(model,’SetCurve’,’in’,’tramp’,R1);

% add a new load case with two sollicitations

model=fe_case(model,’DofLoad’,’in2’,...

struct(’def’,[1 0;0 1],’DOF’,[6.02;6.03]));

% assign a new transient variation to both directions

model=fe_case(model,’SetCurve’,’in2’,’tramp1’,...

fe_curve(’testramp t0.5 yf1’),1:2);

% modify the first direction only to tramp instead of tramp1

model=fe_case(model,’SetCurve’,’in2’,’tramp’,1);

% remove the curve assigned to input in

model=fe_case(model,’SetCurve’,’in’,’remove’)

Examples

Here is an example combining various fe case commands
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% Sample fe_case commands for boundary conditions, connections, and loads

femesh(’reset’);

model = femesh(’test ubeam plot’);

% specifying clamped dofs (FixDof)

model = fe_case(model,’FixDof’,’clamped dofs’,’z==0’);

% creating a volume load

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volumic load’,data);

% assemble active DOFs and matrices

model=fe_mknl(model);

% assemble RHS (volumic load)

Load = fe_load(model,’Case1’);

% compute static response

kd=ofact(model.K{2});def.def= kd\Load.def; ofact(’clear’,kd)

Case=fe_case(model,’gett’); def.DOF=Case.DOF;

% plot displacements

feplot(’initdef’,def);

fecom(’;undef;triax;showpatch;promodelinit’);

See also fe mk, fe case
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Purpose

Gateway functions for advanced FEM utilities in SDT, regarding assembly, integrated case definition
and post-treatments.

Description

This function is only used for internal SDT operation and actual implementation will vary over time.
The following commands are documented to allow user calls and SDT source code understanding.

Assemble

Optimized strategies for assembly are provided in SDT through the fe caseg Assemble command.
More details are given in section 4.8.8 .

StressCut

The StressCut command is the gateway for dynamic stress observation commands. Typical steps
of this command are

• View mesh generation, see section 4.7.1 .

• Generate a selection sel=fe caseg(’stresscut -selout’,VIEW,model);

• Display the selection in feplot using fe caseg(’stresscut’,sel,cf)

• Observe the result using curve=fe caseg(’StressObserve’,cf.sel(2),def)

For the selection generation, accepted options are

• VIEW can be a mesh so that feutilb Match is used to find elements associated with view-
ing positions. A structure struct(’type’,’Gauss’) to return selection at Gauss points. A
structure struct(’type’,’BeamGauss’) to return selection at beam Gauss points.

• a model or feplot handle cf can be provided as third argument.

• -SelOut requires selection output.

• -Radiusval provides a search radius for the feutilb Match call.
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The sel data structure is a standard selection (see feplot sel) with additional field .StressObs

a structure with the following fields

• .cta observation matrix for stress components. The expected sort is to have all components
at first node, all at second node, ...

• .DOF expected DOF needed for the observation.

• .X,.Xlab labels for the observation, see Multi-dim curve for details.

• .CritFcn callback to be evaluated, see fe stress CritFcn.

• .Node,.Elt nodes and elements for the view mesh.

• .trans structure for the observation of interpolated displacement (needed when view mesh
nodes are not nodes of the original mesh).

Par[Mat,Pro,SE,Init,Set,2Case]

Advanced parameter declaration in models. Lower level declaration can be found in fe case par.
Model parametrization framework can be found in XXX.

The following commands are available to declare SDT parameters

• ParMat Support to declare as parameter and possibly split a material property. Warning:
Some formulations and parameter classes cannot directly be split from the constitutive law,
in such case the resulting assembled matrices may not be computable. Advances material
splitting features are available in the Viscoelastic toolbox [31]. Syntax is
model=fe caseg(’ParMat’,model,’p1 .... -matid i’,par); with model a SDT model,
p1 is a constitutive law parameter as declared in the corresponding m function, and par is a
parameter entry. The working material is defined by the token -matid. The output model can
have a split material featuring varying parameters, and will have a Case par entry declaring
the parameter and a entry in Stack,Range0 providing its variation.

• ParPro Support to declare as parameter and possibly split an integration property, this is
designed for discrete structural elements such as celas, cbush, mass1elements. Syntax is
model=fe caseg(’ParPro’,model,’p1 .... -proid i’,par); with model a SDT model,
p1 is a constitutive law parameter as declared in the corresponding p function, and par is a
parameter entry. The working property is defined by the token -proid. The output model

can have duplicated elements featuring varying parameters, and will have a Case par entry
declaring the parameter and a entry in Stack,Range0 providing its variation.
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• ParSE Support to declare as parameter a superelement, or a subset of superelement matrices.
One can identify the SE of interest either by its SeName or its ProId. If necessary one can
identify matrices of interest either by Klab or matdes, or property name in the p superentry.

model=fe_caseg(’ParSE’,model,’ -SeName"se1"’,par);

model=fe_caseg(’ParSE’,model,’coef1 -proid1001’,par);

model=fe_caseg(’ParSE’,model,’ matdes3 -proid1001’,par);

The output model can have duplicated elements featuring varying parameters, and will have a
Case par entry declaring the parameter and a entry in Stack,Range0 providing its variation.

The following commands are available to declare and handle broader parameter definitions, to be
used in dedicated routines

• ParInit Instantiate .param entries in supported model features.
model=fe caseg(’ParInit’,model,par); par is here a parameter or a cell array of parame-
ters to be implemented. Implementation or the feature to be affected is provided through the
.info field of the parameter. It is a string following the format type>entry TokenId.

– type is optionnal (> is then omitted) and provides a way of defining field .type of the pa-
rameter usual types are double, pop, but other custom types can be defined for dedicated
applications.

– entry defines the parameter effect, the value depends on the type of feature to be pa-
rametered, defined by the TokenId

– TokenId defines the feature on which the parameter is applied. The following features
are supported

∗ Materials, either defined by -matname or -matidi. Acceptable entries as then any
declared constitutive law in the corresponding m function.

∗ Structural properties, either defined by -proname or -proidi. Acceptable entries as
then any declared constitutive law in the corresponding p function. Properties in
NLdata are supported, in such case the entry must start with nldata.val to affect
field .val of field .NLdata.

∗ Loads, defined by their type and name typename (e.g. -dofLoad’’ExForce’’).
entry is then the impacted field name.

∗ Boundary conditions, defined by their type and name typename (e.g. -rigid’’conn’’).
entry is then the impacted field name.

• ParSet Applies a current parameter set (or design point) to a model for which fe caseg

ParInit has been applied. Given an SDT model and a Range structure with field .jPar, the
procedure loops over supported features having a .param field, and applies the current values.
model=fe caseg(’ParSet’,model,Range);.

• Par2Case XXX Loads and ParPro at the moment
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StressObserve

The StressCut command typically returns all stress components (x, y, and z), for a relevant plot,
it is useful to define a further post-treatment, using the sel.StressObs.CritFcn callback. This
callback is called once the stress observation have been performed. The current result is stored
in variable r1, and follows the dimensions declared in field .X of the observation. For example to
extract stresses in the x direction, the callback is

sel.StressObs.CritFcn=’r1=r1(1,:,:);’;

The StressObserve command outputs the stress observation in an curve structure. You can provide
a callback -crit "my callback". The command option -trans allows observation of translations
for selections that have this observation. If empty, all components are kept.

data=fe_caseg(’StressObserve -crit""’,cf.sel(2),def);

iiplot(data); % plot results

ZoomClip

The command accessible through the axes context menu Clip, can now also be called from the
command line fe caseg(’ZoomClip’,cf.ga,[xyz left;xyz right]).
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Purpose

Computation and normalization of complex modes associated to a second order viscously damped
model.

Syntax

[psi,lambda] = fe_ceig( ... )

lambda = fe_ceig(m,c,k)

def = fe_ceig( ... )

... = fe_ceig(m,c,k)

... = fe_ceig({m,c,k,mdof},ceigopt)

... = fe_ceig({m,c,k,T,mdof},ceigopt)

... = fe_ceig(model,ceigopt)

... = fe_ceig( ... ,flag)

Description

Complex modes are solution of the second order eigenvalue problem (see section 5.5 for details)

[M ]N×N {ψj}N×1 λ
2
j + [C] {ψj}λj + [K] {ψj} = 0 (10.6)

where modeshapes psi=ψ and poles Λ =
[
\λj\

]
are also solution of the first order eigenvalue problem

(used in fe ceig)

[
C M
M 0

]
2N×2N

[
ψ
ψΛ

]
2N×2N

[Λ]2N×2N +

[
K 0
0 −M

] [
ψ
ψΛ

]
= [0]2N×2N (10.7)

and verify the two orthogonality conditions

ψTCψ + ΛψTMψ + ψTMψΛ = I and ψTKψ − ΛψTMψΛ = −Λ (10.8)

If matrices are non-symmetric, the left eigenvectors differ from the right eigenvectors. One can then
set input flag to ’lr’ to obtain the left eigenmodes in the output def structure. See section 7.8
to get more information about the def structure.



fe ceig

[psi,lambda] = fe ceig(m,c,k) is the old low level call to compute all complex modes. For
partial solution you should use def = fe ceig(model,ceigopt) where model can be replaced by
a cell array with {m,c,k,mdof} or {m,c,k,T,mdof} (see the example below). Using the projection
matrix T generated with fe case(’gett’) is the proper method to handle boundary conditions.

Options give [CeigMethod EigOpt] where EigOpt are standard fe eig options and CeigMethod

can be

• 0 (full matrices)

• 1 real modes then complex ones on the same basis (equivalent to NASTRAN SOL 110)

• 2 real modes and first order correction for viscous and hysteretic damping part.

• 3 is a refined solvers available with the VISCO extension.

Here is a simple example of fe ceig calls.

model=demosdt(’demoubeam’); cf=feplot;

[Case,model.DOF]=fe_mknl(’init’,model);

m=fe_mknl(’assemble not’,model,Case,2);

k=fe_mknl(’assemble not’,model,Case,1);

kc=k*(1+i*.002); % with hysteretic damping

def1=fe_ceig({m,[],kc,model.DOF},[1 6 10 1e3]); % free modes

def2=fe_ceig({m,[],kc,Case.T,model.DOF},[1 6 10 1e3]); % fixed modes

cf.def=def1; % show def1 in feplot figure

See also

fe eig, fe mk, nor2ss, nor2xf, section 5.3
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Purpose

Coordinate transformation matrices for Component Mode Synthesis problems.

Syntax

[t] = fe_coor(cp)

[t,nc] = fe_coor(cp,opt)

Description

The different uses of fe coor are selected by the use of options given in the argument opt which
contains [type method] (with the default values [1 3]).

type=1 (default) the output t is a basis for the kernel of the constraints cp

range([T ]N×(N−NC)) = ker([c]NS×N ) (10.9)

NC ≤ NS is the number of independent constraints.

type=2 the output argument t gives a basis of vectors linked to unit outputs followed by a basis
for the kernel

T =
[
[TU ]N×NS [TK ]N×(N−NS)

]
with [c]NS×N [T ] =

[[
\I\
]

[0]NS×(N−NS)

]
(10.10)

If NC < NS such a matrix cannot be constructed and an error occurs.

method the kernel can be computed using: 1 a singular value decomposition svd (default) or 3

a lu decomposition. The lu has lowest computational cost. The svd is most robust to
numerical conditioning problems.

Usage

fe coor is used to solve problems of the general form

[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)} with [cint] {q(s)} = 0 (10.11)

which are often found in CMS problems (see section 6.2.6 and [40]).

To eliminate the constraint, one determines a basis T for the kernel of [cint] and projects the model
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[
T TMTs2 + T TCTs+ T TKT

]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR(s)}
(10.12)

See also

Section 7.14, fe c, the d cms demo
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Purpose

Generic handling of curves and signal processing utilities

Syntax

out=fe_curve(’command’,MODEL,’Name’,...);

Commands

fe curve is used to handle curves and do some basic signal processing. The format for curves is
described in section 7.9 . The iiplot interface may be used to plot curves and a basic call would
be iiplot(Curve) to plot curve data structure Curve.

Accepted commands are

bandpass Unit f min f max

out=fe curve(’BandPass Unit f min f max’,signals);

realizes a true bandpass filtering (i.e. using fft() and ifft()) of time signals contained in curves
signals. f min and f max are given in units Unit, whether Hertz(Hz) or Radian(Rd). With no
Unit, f min and f max are assumed to be in Hertz.

% apply a true bandpasss filter to a signal

out=fe_curve(’TestFrame’);% 3 DOF oscillator response to noisy input

fe_curve(’Plot’,out{2}); % "unfiltered" response

filt_disp=fe_curve(’BandPass Hz 70 90’,out{2}); % filtering

fe_curve(’Plot’,filt_disp); title(’filtered displacement’);

datatype [,cell]

out=fe curve(’DataType’,DesiredType);

returns a data structure describing the data type, useful to fill .xunit and .yunit fields for curves
definition. DesiredType could be a string or a number corresponding to the desired type. With
no DesiredType, the current list of available types is displayed. One can specify the unit with
out=fe curve(’DataType’,DesiredType,’unit’);.

DataTypeCell returns a cell array rather than data structure to follow the specification for curve
data structures. Command option -label"lab" allows directly providing a custom label named lab

in the data type.
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getcurve

curve=fe curve(’getcurve’,model,’curve name’);

extracts curve curve name from model.Stack or the possible curves attached to a load case. If the
user does not specify any name, all the curves are returned in a cell array.

h1h2 input channels

FRF=fe curve(’H1H2 input channels’,frames,’window’);

computes H1 and H2 FRF estimators along with the coherence from time signals contained in cell
array frames using window window. The time vector is given in frames{1}.X while input channels

tells which columns of in frames{1}.Y are inputs. If more than one input channel is specified, true
MIMO FRF estimation is done, and Hν is used instead of H2. When multiple frames are given, a
mean estimation of FRF is computed.

Note: To ensure the proper assembly of H1 and Hν in MIMO FRF estimation case, a weighing based
on maximum time signals amplitude is used. To use your own, use
FRF=fe curve(’H1H2 input channels’,frames,window,weighing);

where weighing is a vector containing weighing factors for each channel. To avoid weighing, use
FRF=fe curve(’H1H2 input channels’,frames,window,0); . For an example see
sdtweb(’start time2frf’,’h1h2’)

noise

OBSOLETE : use fe curve TestNoise instead

noise=fe curve(’Noise’,Nw pt,fs,f max);

computes a Nw pt points long time signal corresponding to a “white noise”, with sample frequency
fs and a unitary power spectrum density until f max. fs/2 is taken as f max when not specified.
The general shape of noise power spectrum density, extending from 0 to fs/2, can be specified
instead of f max.

% computes a 2 seconds long white noise, 1024 Hz of sampling freq.

% with "rounded" shape PSD

fs=1024; sample_length=2;

Shape=exp(fe_curve(’window 1024 hanning’))-1;

noise_h=fe_curve(’noise’,fs*sample_length,fs,Shape);

noise_f=fe_curve(’fft’,noise_h);

figure(1);

subplot(211);fe_curve(’plot -gca’,noise_h);axis tight;

subplot(212);fe_curve(’plot -gca’,noise_f);axis tight;
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plot

fe curve(’plot’,curve); plots the curve curve.
fe curve(’plot’,fig handle,curve); plots curve in the figure with handle fig handle.
fe curve(’plot’,model,’curve name’); plots the curve of model.Stack named curve name.
fe curve(’plot’,fig handle,model,curve name); plots curve named curve name stacked in .Stack

field of model model.

% Plot a fe_curve signal

% computes a 2 seconds long white noise, 1024 Hz of sampling freq.

fs=1024; sample_length=2;

noise=fe_curve(’noise’,fs*sample_length,fs);

noise.xunit=fe_curve(’DataType’,’Time’);

noise.yunit=fe_curve(’DataType’,’Excit. force’);

noise.name=’Input force’;

fe_curve(’Plot’,noise);

resspectrum [True, Pseudo] [Abs., Rel.] [Disp., Vel., Acc.]

out=fe curve(’ResSpectrum’,signal,freq,damp);

computes the response spectrum associated to the time signal given in signal. Time derivatives
can be obtained with option -v or -a. Time integration with option +v or +a. Pseudo derivatives
with option PseudoA or PseudoV. freq and damp are frequencies (in Hz) and damping ratios vectors
of interest for the response spectra. For example

wd=fileparts(which(’d_ubeam’));

% read the acceleration time signal

bagnol_ns=fe_curve([’read’ fullfile(wd,’bagnol_ns.cyt’)]);

% read reference spectrum

bagnol_ns_rspec_pa= fe_curve([’read’ fullfile(wd,’bagnol_ns_rspec_pa.cyt’)]);

% compute response spectrum with reference spectrum frequencies

% vector and 5% damping

RespSpec=fe_curve(’ResSpectrum PseudoA’,...

bagnol_ns,bagnol_ns_rspec_pa.X/2/pi,.05);

fe_curve(’plot’,RespSpec); hold on;

plot(RespSpec.X,bagnol_ns_rspec_pa.Y,’r’);

legend(’fe\_curve’,’cyberquake’);
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returny

If curve has a .Interp field, this interpolation is taken in account. If .Interp field is not present
or empty, it uses a degree 2 interpolation by default.

To force a specific interpolation (over passing .interp field, one may insert the -linear, -log or
-stair option string in the command.

To extract a curve curve name and return the values Y corresponding to the input X, the syntax is

y = fe curve(’returny’,model,curve name,X);

Given a curve data structure, to return the values Y corresponding to the input X, the syntax is

y = fe curve(’returny’,curve,X);

set

This command sets a curve in the model. 3 types of input are allowed:

• A data structure, model=fe curve(model,’set’,curve name,data structure)

• A string to interprete, model=fe curve(model,’set’,curve name,string)

• A name referring to an existing curve (for load case only), model=fe curve( model, ’set

LoadCurve’,load case,chanel,curve name). This last behavior is obsolete and should
be replaced in your code by a more general call to fe case SetCurve.

When you want to associate a curve to a load for time integration it is preferable to use a formal
definition of the time dependence (if not curve can be interpolated or extrapolated).

The following example illustrates the different calls.

% Sample curve assignment to modal loads in a model

model=fe_time(’demo bar’); q0=[];

% curve defined by a by-hand data structure:

c1=struct(’ID’,1,’X’,linspace(0,1e-3,100), ...

’Y’,linspace(0,1e-3,100),’data’,[],...

’xunit’,[],’yunit’,[],’unit’,[],’name’,’curve 1’);

model=fe_curve(model,’set’,’curve 1’,c1);

% curve defined by a string to evaluate (generally test fcn):
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model=fe_curve(model,’set’,’step 1’,’TestStep t1=1e-3’);

% curve defined by a reference curve:

c2=fe_curve(’test -ID 100 ricker dt=1e-3 A=1’);

model=fe_curve(model,’set’,’ricker 1’,c2);

c3=fe_curve(’test eval sin(2*pi*1000*t)’); % 1000 Hz sinus

model=fe_curve(model,’set’,’sin 1’,c3);

% define Load with curve definition

LoadCase=struct(’DOF’,[1.01;2.01],’def’,1e6*eye(2),...

’curve’,{{fe_curve(’test ricker dt=2e-3 A=1’),...

’ricker 1’}});
model = fe_case(model,’DOFLoad’,’Point load 1’,LoadCase);

% modify a curve in the load case

model=fe_case(model,’SetCurve’,’Point load 1’,’TestStep t1=1e-3’,2);

% the obsolete but supported call was

model=fe_curve(model,’set LoadCurve’,’Point load 1’,2,’TestStep t1=1e-3’);

% one would prefer providing a name to the curve,

% that will be stacked in the model

model=fe_case(model,’SetCurve’,’Point load 1’,...

’my\_load’,’TestStep t1=1e-3’,2);

Test ...

The test command handles a large array of analytic and tabular curves. In OpenFEM all parameters
of each curve must be given in the proper order. In SDT you can specify only the ones that are not
the default using their name.

When the abscissa vector (time, frequency, ...) is given as shown in the example, a tabular result is
returned.

Without output argument the curve is simply plotted.

% Standard generation of parametered curves

fe_curve(’test’) % lists curently implemented curves

t=linspace(0,3,1024); % Define abscissa vector

% OpenFEM format with all parameters (should be avoid):

C1=fe_curve(’test ramp 0.6 2.5 2.3’,t);
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C2=fe_curve(’TestRicker 2 2’,t);

% SDT format non default parameters given with their name

% definition is implicit and will be applied to time vector

% during the time integration:

C3=fe_curve(’Test CosHan f0=5 n0=3 A=3’);

C4=fe_curve(’testEval 3*cos(2*pi*5*t)’);

% Now display result on time vector t:

C3=fe_curve(C3,t);C4=fe_curve(C4,t)

figure(1);plot(t,[C1.Y C2.Y C4.Y C3.Y]);

legend(C1.name,C2.name,C4.name,C3.name)

A partial list of accepted test curves follows

• Testsin, Testcos, TestTan, TestExp, accept parameters T period and A amplitude. -stoptime
Tf will truncate the signal.

• TestRamp t0=t0 t1=t1 Yf=Yf has a ramp starting at zero until t0 and going up to Yf at t1.
The number of intermediate value can be controlled with the abscissa vector.
To define a gradual load, for non linear static for example, a specific call with a Nstep parameter
can be performed : TestRamp NStep=NStep Yf=Yf. For example, to define a 20 gradual steps
to 1e-6 :R1=fe curve(’TestRamp NStep=20 Yf=1e-6’);

• TestRicker dt=dt A=A t0=t0 generates a Ricker function typically used to represent impacts
of duration dt and amplitude A, starting from time t0.

• TestSweep fmin=fmin fmax=fmax t0=t0 t1=t1 generates a sweep cosine from t0 to t1, with
linear frequency sweeping from f0 to f1.

Y = cos(2 ∗ pi ∗
(
fmin+ (fmax− fmin) ∗ t−t0

t1−t0) ∗ (t− t0)
)

for t0 < t < t1, Y = 0 elsewhere.

• TestStep t1=t1 generates a step which value is one from time 0 to time t1.

• TestNoise -window"window" computes a time signal corresponding to a white noise, with
the power spectrum density specified as the window parameter. For example TestNoise "Box

A=1 min=0 max=200" defines a unitary power spectrum density from 0 Hz to 200 Hz.

• TestBox A=A min=min max=max generates a sample box signal from min to max abscissa, with
an amplitude A.

• TestEval str generates the signal obtained by evaluating the string str function of t. For ex-
ample R1=fe curve(’Test eval sin(2*pi*1000*t)’,linspace(0,0.005,501)); iiplot(R1)
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One can use fe curve(’TestList’) to obtain a cell array of the test keywords recognized.

testframe

out=fe curve(’TestFrame’); computes the time response of a 3 DOF oscillator to a white noise
and fills the cell array out with noise signal in cell 1 and time response in cell 2. See sdtweb

fe curve(’TestFrame’) to open the function at this example.

timefreq

out=fe curve(’TimeFreq’,Input,xf);

computes response of a system with given transfer functions FRF to time input Input. Sampling
frequency and length of time signal Input must be coherent with frequency step and length of given
transfer FRF.

% Plot time frequency diagrams of signals

fs=1024; sample_length=2; % 2 sec. long white noise

noise=fe_curve(’noise’,fs*sample_length,fs);% 1024 Hz of sampling freq.

[t,f,N]=fe_curve(’getXTime’,noise);

% FRF with resonant freq. 50 100 200 Hz, unit amplitude, 2% damping

xf=nor2xf(2*pi*[50 100 200].’,.02,[1 ; 1 ; 1],[1 1 1],2*pi*f);

Resp=fe_curve(’TimeFreq’,noise,xf); % Response to noisy input

fe_curve(’Plot’,Resp); title(’Time response’);

Window ...

Use fe curve window to list implemented windows. The general calling format is
win=fe curve(’Window Nb pts Type Arg’); which computes a Nb pts points window. The default
is a symmetric window (last point at zero), the command option -per clips the last point of a N + 1
long symmetric window.

For the exponential window the arguments are three doubles. win = fe curve(’Window 1024

Exponential 10 20 10’); returns an exponential window with 10 zero points, a 20 point flat
top, and a decaying exponential over the 1004 remaining points with a last point at exp(-10).

win = fe curve(’Window 1024 Hanning’); returns a 1024 point long hanning window.

See also
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fe load, fe case
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Purpose

Support for cyclic symmetry computations.

Syntax

model=fe_cyclic(’build NSEC’,model,LeftNodeSelect)

def=fe_cyclic(’eig NDIAM’,model,EigOpt)

Description

fe cyclic groups all commands needed to compute responses assuming cyclic symmetry. For more
details on the associated theory you can refer to [47].

Assemble [,-struct]

This command supports the computations linked to the assembly of gyroscopic coupling, gyroscopic
stiffness and tangent stiffness in geometrically non-linear elasticity. The input arguments are the
model and the rotation vector (in rad/s)

model=demosdt(’demo sector all’);

[K,model,Case]=fe_case(’assemble -matdes 2 1 NoT -cell’,model);

SE=fe_cyclic(’assemble -struct’,model,[0 0 1000]); %

def=fe_eig({K{1:2},Case.T,model.DOF},[6 20 0]);% Non rotating modes

def2=fe_eig({K{1},SE.K{4},Case.T,model.DOF},[6 20 0]); % Rotating mode shapes

[def.data def2.data]

Note that the rotation speed can also be specified using a stack entry model=stack set(model,

’info’, ’Omega’,[0 0 1000]).

Build ...

model=fe cyclic(’build nsec epsl len’,model,’LeftNodeSelect’) adds a cyclic symmetry
entry in the model case. It automatically rotates the nodes selected with LeftNodeSelect by 2π/nsec
and finds the corresponding nodes on the other sector face. The default for LeftNodeSelect is
’GroupAll’ which selects all nodes.

The alternate command
model=fe cyclic(’build nsec epsl len -intersect’,model,’LeftNodeSelect’) is much faster
but does not implement strict node tolerancing and may thus need an adjustement of epsl to higher
values.
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Command options are

• nsec is the optional number of sectors. An automatic determination of the number of an-
gular sectors is implemented from the angle between the left and right interface nodes with
the minimum radius. This guess may fail in some situtations so that the argument may be
necessary.

• nsec=-1 is used for periodic structures and you should then provide the translation step. For
periodic solutions,
model=fe cyclic(’build -1 tx ty tz epsl len -intersect’,model,’LeftNodeSelect’)

specifies 3 components for the spatial periodicity.

• Fix will adjust node positions to make the left and right nodes sets match exactly.

• epsllen gives the tolerance for edge node matching.

• -equal can be used to build a simple periodicity condition for use outside of fe cyclic. This
option is not relevant for cyclic symmetry.

• -ByMat is used to allow matching by MatId which allows for proper matching of coincident
nodes.

model=demosdt(’demo sector 5’);

cf.model=fe_cyclic(’build epsl 1e-6’,model);

LoadCentrifugal

The command is used to build centrifugal loads based on an info,Omega stack entry in the form

data=struct(’data’,[0 0 1000],’unit’,’RPM’);

model=stack_set(model,’info’,’Omega’,data);

model=fe_cyclic(’LoadCentrifugal’,model);

Eig

def=fe cyclic(’eig ndiam’,model,EigOpt) computes ndiam diameter modes using the cyclic
symmetry assumption. For ndiam¿0 these modes are complex to account for the inter-sector phase
shifts. EigOpt are standard options passed to fe eig.

This example computes the two diameter modes of a three bladed disk also used in the d cms2 demo.
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model=demosdt(’demo sector’);

model=fe_cyclic(’build 3’,model,’groupall’);

fe_case(model,’info’)

def=fe_cyclic(’eig 2’,model,[6 20 0 11]);

fe_cyclic(’display 3’,model,def)

The basic functionality of this command is significantly extended in fe cyclicb ShaftEig that is
part of the SDT/Rotor toolbox.

Omega[,Group,GroupSet]

Handling of dynamic rotating bodies. Warning At the moment only one rotation vector can be
defined. It can either be applied to the whole model or to specified groups. At low level, information
is located in the info,Omega entry of an SDT model. This entry is a structure with fields

• .data provides the angular rotation vector whose norm is the angular velocity, defining the
rotation axis.

• .unit provies the unit system associated to the amplitude, eitherrad/s or RPM.

• .group (optional) defines the model groups affected by the rotation, if omitted or left empty
the whole model is affected.

• .orig (optional) defines the origin rotation (a point of the axis).

Command Omega provides the current data associated to a model.
[omega,rot,data]=fe cyclic(’Omega’,model);

model is a standard SDT model. The outputs are omega the rotation vector, rot the rotation matrix,
and data a reconstructed info,Omega stack entry based on the current state.

Commands OmegaGroup provides tools for definition of models with specific rotor areas.

• OmegaGroupSet provides an integrated definition forcing groups to be reset to conform with
any FindElt selection. The specific group assignment is required due to low level assembly
implementations.
model=fe cyclic(’OmegaGroupSet’,model,list);

Input model is a standard SDT model, list is a three column cell-array with as many lines as
declarations following the format {FindEltStr, Amplitude, Axis, Orig;...} respectively
providing an element selection string, the angular velocity amplitude (scalar), the rotation axis
(only the direction is used here), nx,ny,nz, and an origin point of the rotation axis ox,oy,oz.
data can be directly placed as a stack entry named info,OmegaData in the model. The last
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column can be omitted, in which case the origin considered is the global frame one. At the
moment all rotation axes and amplitudes must be the same for all lines. The output model is
then a model with separated groups for (one for each element type) affected to the rotation
and with a new stack entry info,Omega. Command option First will force the new groups
to be the first ones in the model.

• OmegaGroup is a lower level command without group modification.
model=fe cyclic(’OmegaGroup’,model,sel,data);

Input model is a standard SDT model, sel is an element selection string, data is the omega
structure with fields .data as defined at this command header.

See also

fe cyclicb
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Purpose

Utilities for FEM related data structures.

Syntax

... = fe_def(def,’command’, ... )

... = fe_def(’command’, ... )

Description

fe defmainly provides utilities for SDT def structure handling. It is also used internally to perform
parameter recovery.

Commands

CleanEntry

Returns the value of a parameter contained in an SDT button.

The entry can either be

• a structure of buttons in MATLAB format, for old GUI application, now called DefBut.

• a button in Java/SDT CinCell format for current GUI applications.

• a set of Java/SDT buttons EditT format for current GUI applications.

This call does not work for simple SDT buttons in MATLAB format (structures) due to the difficulty
to distinguish between DefBut structures and button structures. To exploit this capability, one can
place the button in a cell array, or a structure.

For treated button entries, the output is the current value of the button,

• if the button is a pop, a list restricted choice, that is characterized by its type field set to
pop and the presence of a field choices and optionally choicesTag, the returned value is the
currently selected choicesTag entry if existing, else the currently selected choices. In this
case the button field value only is the index in the choices, choicesTag cell arrays. The
output is mandatorily a string, in conformity with the content of choices and choicesTag

that can only be horizontal cell array of strings.
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• in other cases, the field value is returned. It is cast to the provided format given in the format
field, either double with format %g or string with format %s.

For EditT entries, the output is a structure with as many fields as there are buttons in the EditT
labelled with the names of the buttons. Each field contains each button value following the rules
provided above.

For table entries (cell array with strings, CInCell...), the option -CellField %s gives back specific
button fields like name or tooltip instead of current value. (see section 8.4.1 for the list of fields by
button type)

% Define a SDT button that can be used in GUI

but=struct(’type’,’string’,’format’,’%s’,’value’,’val1’);

% no action on trivial button in MATLAB format

but=fe_def(’cleanentry’,but);

% use a cell array in this case

val=fe_def(’cleanentry’,{but}); val=val{1};

% Place the button in a DefBut

but1=struct(’but1’,but)

val=fe_def(’cleanentry’,but1);

% Transform button into Java format (CinCell)

but1=feval(cinguj(’@toCinCell’),but);

% recover value with CleanEntry

val=fe_def(’cleanentry’,but1);

% Place Java button in an EditT object (a set of buttons)

r1j=cinguj(’ObjEditJ’,struct(’but1’,but1));

% recover the value of every button of the EditT at once in a struct

RO=fe_def(’cleanentry’,r1j);

DefEigOpt

w=fe def(’DefEigOpt’,mo1) returns a EigOpt set of options for fe eigfor model mo1. If first
searches for a field info,EigOpt in the model stack, or returns a default value, set to [5 20 1e3].

DefFreq

w=fe def(’DefFreq’,DISK) returns frequencies defined in the info,Freq entries using Hz units.
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Exp

Performs modal expansion for def structures expressed on reduced DOF, if a reduction basis is
provided.

• def=fe def(’Exp’,TR,def) will restitute def on the non-reduced DOF of TR, a reduction
basis expressed as a SDT def structure.

• def=fe def(’Exp’,def), will assume that def contains the reduction basis in field def.TR to
perform the expansion.

SubDef, SubDof, SubCh

def=fe def(’SubDef’,def,ind); keeps deformations associated with ind, which a vector of indices
or a logical vector (for example ind=def.data(:,1)<500 can be used to select frequencies below
500). Other fields of the def structure are truncated consistently.

def=fe def(’SubDof’,def,DOF) is extracts a subset of DOFs based on defined DOF or with
def=fe def(’subdofind’,def,ind) indices (again either values or logicals). You can also spec-
ify DOFs to be removed with def=fe def(’SubDofRem’,def,DofRemoved).

This command is partially redundant with feutilb PlaceInDof called with
def2 = feutilb(’PlaceInDof’,DOF,def). The main difference is the ability to add zeros (use DOF

larger than def.DOF) and support sens structures.

fe def(’SubDofInd-Cell’,def,ind dof,ind def) returns a clean cell array listing selected DOFs
and responses. This is typically used to generate clean tables.

fe def(’SubChCurve’,def,{’lab’,index}) is similar to SubDof but allows but supports more
advanced selection for multi-dimensional curves. This command is not fully documented.

C1=demosdt(’Curve curved5’); % Sample 5D curve

C2=fe_def(’subChCurve’,C1,{’Time’,1:10;’RPM’,1:2});
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Purpose

Computation of normal modes associated to a second order undamped model.

Syntax

def = fe_eig(model,EigOpt)

def = fe_eig({m,k,mdof},EigOpt)
def = fe_eig({m,k,T,mdof},EigOpt)
[phi, wj] = fe_eig(m,k)

[phi, wj, kd] = fe_eig(m,k,EigOpt,imode)

Description

The normal modeshapes phi=φ and frequencies wj=sqrt(diag(Ω2)) are solution of the undamped
eigenvalue problem (see section 5.2 )

− [M ] {φj}ω2
j + [K] {φj} = {0} (10.13)

and verify the two orthogonality conditions

[φ]T [M ]N×N [φ]N×N = [I]N×N and [φ]T [K] [φ] =
[
\Ω2

j \

]
(10.14)

The outputs are the data structure def (which is more appropriate for use with high level functions
feplot, nor2ss, ... since it keeps track of the signification of its content, frequencies in def.data

are then in Hz) or the modeshapes (columns of phi) and frequencies wj in rad/s. Note how you
provide {m,k,mdof} in a cell array to obtain a def structure without having a model.

The optional output kd corresponds to the factored stiffness matrix. It should be used with methods
that do not renumber DOFs.

fe eig implements various algorithms to solve this problem for modes and frequencies. Many options
are available and it is important that you read the notes below to understand how to properly use
them. The option vector EigOpt can be supplied explicitely or set using model=stack set(model,

’info’,’EigOpt’,EigOpt). Its format is

[method nm Shift Print Thres] (default values are [2 0 0 0 1e-5])
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• method

– 2 full matrix solution. Cannot be used for large models, used by default when the number
of searched modes exceed 25% of the matrix size.

– 5 default Lanczos solver is an iterative solver with problem size scalability and higher
robustness with convergence checks. To turn off convergence check add 2000 to the option
(2105, 2005, ...), otherwise a maximum of 5 convergence iterations is performed. You can
tune this value by setting the 9th value of the opt vector to the desired number. opt=[5
100 1e3 1 0 0 0 0 1];.

– 6 IRA/Sorensen solver. Faster than 5 but less robust, issues are known for multiple
modes, very close frequencies, or when computing a large number of modes.

– 50 Callback to let the user specify an external solver method using
setpref(’SDT’,’ExternalEig’).

– The other methods are left for reference but should not be used,

∗ 105, 106, 104 same as 5, 6, 4 methods but no initial DOF renumbering. This is
useless with the default ofact(’methodspfmex’) which renumbers at factorization
time.

∗ 0 SVD based full matrix solution

∗ 1 subspace iteration which allows to compute the lowest modes of a large problem
where sparse mass and stiffness matrices are used.

∗ 3 Same as 5 but using ofact(’methodlu’).

∗ 4 Same as 5 but using ofact(’methodchol’).

• nm number of modes to be returned. A non-integer or negative nm is used as the desired
fmax in Hz for iterative solvers (this is limited to 12 modes with method 5). The easiest way
to handle fmax at the moment is to call fe def SubDef after fe eigṪhe sample syntax is then
def=fe eig(model,[5 50 1e3]); def=fe def(’subdef’,def,find(def.data(:,1)<=fmax));.
One thus has to estimate the relevant number of modes necessary beforehand.

• shift value of mass shift (should be non-zero for systems with rigid body modes, see notes
below). The subspace iteration method supports iterations without mass shift for structures
with rigid body modes. This method is used by setting the shift value to Inf.

• print level of printout (0 none, 11 maximum)
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• thres threshold for convergence of modes (default 1e-5 for the subspace iteration and Lanczos
methods)

Finally, a set of vectors imode can be used as an initial guess for the subspace iteration method
(method 1).

Notes

• The default full matrix algorithm (method=2) cleans results of the Matlab eig function. Com-
puted modes are mass normalized and complex parts, which are known to be spurious for symmet-
ric eigenvalue problems considered here, are eliminated. The alternate algorithm for full matrices
(method=0) uses a singular value decomposition to make sure that all frequencies are real. The
results are thus wrong, if the matrices are not symmetric and positive definite (semi-positive
definite for the stiffness matrix).

• The Lanczos algorithm (methods 3,4,5) is much faster than the subspace iteration algorithm
(method 1). A double Orthogonalization scheme and double restart usually detects multiple
modes.

• Method 6 calls eigs (ARPACK) properly and cleans up results. This solver sometimes fails to
reach convergence, use method 5 then.

• The subspace iteration and Lanczos algorithms are rather free interpretation of the standard
algorithms (see Ref. [37] for example).

• For systems with rigid body modes, you must specify a mass-shift. A good value is about one
tenth of the first flexible frequency squared, but the Lanczos algorithm tends to be sensitive to
this value (you may occasionally need to play around a little). If you do not find the expected
number of rigid body modes, this is can be reason. For large frequency bands, consider using a
shift at 75% of the largest estimated frequency, using −(0.75 ∗ 2 ∗ pi ∗ f max)2.

• DOFs with zero values on the stiffness diagonal are eliminated by default. You can bypass this
behavior by giving a shift with unit imaginary value (eigopt(3)=1e3+1i for example).

• For performance, optimization matters, please refer to section section 4.8.7 .

Example

Here is an example containing a high level call

model =demosdt(’demo gartfe’);

cf=feplot;cf.model=model;

cf.def=fe_eig(model,[5 20 1e3 11]);
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fecom chc10

and the same example with low level commands

model =demosdt(’demo gartfe’);

[m,k,mdof] = fe_mknl(model);

cf=feplot;cf.model=model;

cf.def=fe_eig({m,k,mdof},[6 20 1e3]);fecom chc10

See also

fe ceig, fe mk, nor2ss, nor2xf
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Purpose

Expansion of experimental modeshapes.

Syntax

dExp = fe_exp(’method’,ID,Sens,FEM);

dExp = fe_exp(’method’,ID,SE);

Description

A unified perspective on interpolation and the more advanced finite element based expansion methods
are discussed in the tutorial 3.3. An example is treated in detail in the gartco demonstration. This
section gives a list of available methods with a short discussion of associated trade-offs.

Subspace, Modal, Serep

Subspace expansion solves a problem of the form

{qexp} = [T ] {qr} with {qr} = argmin ‖ytest − [cT ] {qr}‖2 (10.15)

Modal or SEREP expansion is a subspace based expansion using the subspace spanned by low
frequency target modes (stored in TR in the def format). With a sensor configuration defined (sens
defined using fe sens), a typical call would be

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

TR=fe_def(’subdef’,FEM,1:20); % Subspace containing 20 modes

dex1 = fe_exp(’Subspace’,ID,Sens,TR);

cf=feplot(model);

cf.def(1)=fe_def(’subdef’,FEM,7:20); % Rigid not in FEM

cf.def(2)=dex1; fecom(’show2def’);

This method is very easy to implement. Target modes can be imported from an external code. A
major limitation is the fact that results tend to be sensitive to target mode selection.

Another traditional approach to build subspaces is to generate the solutions by mathematical
interpolation. fe sens WireExp provides such a strategy. For a basic example of needed data
structures, one considers the following case of a structure with 3 nodes. Node 2 is placed at a
quarter of the distance between nodes 1 and 3 whose motion is observed. A linear interpolation for
translations in the x direction is built using
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TR=struct(’DOF’,[1.01;2.01;3.01], ... % DOFs where subspace is defined

’def’,[1 0;3/4 1/4;0 1]); % Each .def column associated with a vector

% sdtweb sens#sensstruct % manual definition of a sens structure

sens=struct(’cta’,[1 0 0;0 0 1],’DOF’,[1.01;2.01;3.01])

% Sample test shapes

ID=struct(’def’,eye(2),’DOF’,[1.01;3.01]);

dexp = fe_exp(’Subspace’,ID,sens,TR) % Expansion

For expansion of this form, T (stored in TR.def) must contain at most as many vectors as there are
sensors. In other cases, a solution is still returned but its physical significance is dubious.

Subspace-Orth can be used to impose that an orthogonal linear combination of the modes is used
for the expansion. This is motivated for cases where both test and analysis modeshapes are mass
normalized and will provide mass orthonormal expanded modeshapes [48]. In practice it is rare that
test results are accurately mass normalized and the approach is only implemented for completeness.

Static

Static expansion is a subspace method where the subspace is associated with the static response to
enforced motion or load at sensors. While you can use fe reduc Static to build the subspace (or
import a reduced subspace from an external code), a direct implementation for general definition of
sensors is provided in fe exp.

The main limitation with static expansion is the existence of a frequency limit (first frequency found
when all sensors are fixed). These modes can be returned as a second argument to the Static

command as illustrated below. If the first frequency is close to your test bandwidth, you should
consider using dynamic expansion or possibly add sensors, see [49].

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

[TR,dfix]=fe_exp(’static’,model,Sens); % Build static subpace

dex1 = fe_exp(’Subspace’,ID,Sens,TR);

cf=feplot(model,dex1); % Expanded mode

cf=feplot(model,dfix); % Fixed interface mode

In the present case, the fixed sensor mode at 44 Hz indicates that above that frequency, additional
sensors should be added in the y direction for proper static expansion.

When many sensors and model reduction are used as in the example below, Lagrange resolution
should be preferred to elimination, using options ’Solve’,’lagrange’ and possibly adjusting the
conditionning scalar ’pcond’,1e-4.
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SE reduced superelements for expansion

All the expansion methods can be applied on reduced models.

% Further illustrations in gartco demo

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

RA=struct(’wd’,sdtdef(’TempDir’), ...

’Reset’,0, ... % 1 to use reset

’oProp’,{{}}, ...

’EigOpt’,[5 20 1e3], ... % Eigenvalue options

’SensName’,’test’, ... % Sensor set for expansion

’OutName’,’Gart_exp’); % Root of file name

% Generate or reload reduced model with modes & static

SE=fe_exp(’mode+sens’,model,RA);

RA=struct(’Solve’,’lagrange’,’pcond’,1e-4); % Solve using lagrange multipliers

[dex1,dfix] = fe_exp(’Static’,ID,SE,RA); % Static

dex3 = fe_exp(’dynamic’,ID,SE,RA); % Dynamic on reduced model

cf=feplot(model);

RO=struct(’type’,’mdrewe’,’gamma’,1e6, ...

’cf’,cf,’view’,{{’fe_exp’,’viewEnerKDens’,cf,’out1’}}); % feplot for display

[dex4,err] = fe_exp(’mdre’,ID,SE,RO); % MDRE-WE

Dynamic

Dynamic expansion is supported at the frequency of each deformation to be expanded using either
full or reduced computations.

% Further illustrations in gartco demo

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

dex1 = fe_exp(’Dynamic’,ID,Sens,model); % Dynamic full model

The preferred strategy is to build a reduced model SE containing normal and attachment modes.
When many sensors are used Lagrange resolution should be preferred to elimination as shown in the
example above.

MDRE, MDRE-WE

Minimum dynamic residual expansion (MDRE) is currently only implemented for normal mode-
shape expansion. Furthermore, computational times are generally only acceptable for the reduced
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basis form of the algorithm as illustrated above. Note that the result may incorrect due to poor
conditionning with a large number of sensors.

MDRE-WE (Minimum dynamic residual expansion with measurement error) is adjusted by the
relative weighting γj between model and test error in (3.9)

minqj,ex ‖R(qj,ex)‖2K + γjεj (10.16)

Fields of the option structure are

• .type=’mdrewe’

• .gamma weighting coefficient.

• .cf feplot figure for display.

• .view callback executed for energy display.

The first output argument is the expanded modeshape, the second the displacement residual which
shown high energy concentration in locations where the model is wrong or the test very far from the
model (which can occur when the test is wrong/noisy).

See also

fe sens, fe reduc, section 3.3 , gartco demo.
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Purpose

GMSH interface. You can download GMSH at http://www.geuz.org/gmsh/ and tell where to find
GMSH using

Syntax

setpref(’OpenFEM’,’gmsh’,’/path_to_binary/gmsh.exe’) % Config

model=fe_gmsh(command,model,...)

model=fe_gmsh(’write -run’,’FileName.stl’)

Description

The main operation is the automatic meshing of surfaces.

Example

This example illustrates the automatic meshing of a plate

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

femesh(’objectholeinplate 1 2 3 .5 .5 3 4 4’);

model=femesh(’model0’);

model.Elt=feutil(’selelt seledge ’,model);

model.Node=feutil(’getnode groupall’,model);

model=fe_gmsh(’addline’,model,’groupall’);

model.Node(:,4)=0; % reset default length

mo1=fe_gmsh(’write del.geo -lc .3 -run -2 -v 0’,model);

feplot(mo1)

This other example makes a circular hole in a plate

% Hole in plate :

model=feutil(’Objectquad 1 1’,[0 0 0; 1 0 0;1 1 0;0 1 0],1,1); %

model=fe_gmsh(’addline -loop1’,model,[1 2; 2 4]);

model=fe_gmsh(’addline -loop1’,model,[4 3; 3 1]);

model=fe_gmsh(’AddFullCircle -loop2’,model,[.5 .5 0; .4 .5 0; 0 0 1]);

model.Stack{end}.PlaneSurface=[1 2];

mo1=fe_gmsh(’write del.geo -lc .02 -run -2 -v 0’,model)

feplot(mo1)

http://www.geuz.org/gmsh/
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To allow automated running of GMSH from MATLAB, this function uses a info,GMSH stack entry
with the following fields

.Line one line per row referencing NodeId. Can be defined using addline commands.

.Circle define properties of circles.

.LineLoop rows define a closed line as combination of elementary lines. Values are row
indices in the .Line field. One can also define LineLoop from circle arcs (or
mixed arcs and lines) using a cell array whose each row describes a lineloop
as {’LineType’,LineInd,...} where LineType can be Circle or Line and
LineInd row indices in corresponding .Line or .Circle field.

.TransfiniteLinesDefines lines which seeding is controlled.

.PlaneSurface rows define surfaces as a combination of line loops, values are row indices in
the .LineLoop field. Negative values are used to reverse the line orientation.
1st column describes the exterior contour, and followings the interiors to be
removed. As .PlaneSurface is a matrix, extra columns can be filled by zeros.

.EmbeddedLines define line indices which do not define mesh contours but add additional con-
strains to the final mesh (see Line In Surface in the gmsh documentation.

.SurfaceLoop rows define a closed surface as combination of elementary surfaces. Values are
row indices in the .PlaneSurface field.

The local mesh size is defined at nodes by GMSH. This is stored in column 4 of the model.Node.
Command option -lcval in the command resets the value val for all nodes that do not have a prior
value.

Add...

Typical calls are of the form [mdl,RO]=fe gmsh(’Add Cmd’,mdl,data). The optional second output
argument can be used to obtain additional information like the LoopInfo. Accepted command
options are

• -loop i is used to add the given geometries and append the associated indices into the
LineLoop(i).

• FullCircle defines a circle defined using data with rows giving center coordinates, an edge
node coordinates and the normal in the last row. 4 arcs of circle are added. In the LineLoop

field the entry has the form {’Circle’,[ind1 ind2 ind3 ind4]} where indi are the row
indices of the 4 arcs of circle created in .Circle field.

• CircleArc defines a circle arc using data
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– 3x3 matrix, with 1rst row giving center coordinates, second and third rows are respectively
the first and second edges defined by node coordinates.

– 3x1 vector, giving the 3 NodeId (center, 1st and 2nd edge) as a column instead of x y z.

– with a -tangent1 option, 3x3 matrix whose 1st row defines a tangent vector of the circle
arc at the 1st edge node (resp. at the second edge node with the option -tangent2). 2nd
row defines the 1st edge node coordinates and third row the 2nd edge node coordinate.

• Disk ...

• Line accepts multiple formats. data can be a 2 column matrix which each row defines a couple
of points from their NodeId.

data can also be a 2 by 3 matrix defining the coordinates of the 2 extremities.

data can also be a string defining a line selection.

– It is possible to specify a seeding on the line for further meshing operation using additional
arguments seed and the number of nodes to seed on the line.
E.g.: mdl=fe gmsh(’AddLine’,mdl,data,’seed’,5); will ask gmsh to place 5 nodes on
each line declared in data.

– It is possible to define line constrains in mesh interiors using embedded lines (depending
on the gmsh version). mdl=fe gmsh(’AddLine’,mdl,data,’embed’,1); will thus declare
the edges found in data not as line loops defining surfaces, but as interior mesh constrains.
This feature is only supported for lines specified as selections.

• AddLine3 can be used to declare splines instead of lines in the geometry. For this command to
work, beam3 elements must be used, so that a middle node exists to be declared as the spline
control point. For this command, data can only be an element string selection.

config

The fe gmsh function uses the OpenFEM preference to launch the GMSH mesher.

setpref(’OpenFEM’,’gmsh’,’$HOME_GMSH/gmsh.exe’)

Ver

Command Ver returns the version of gmsh, the version is transformed into a double to simplify
hierarchy handling (e.g. version 2.5.1 is transformed into 251). This command also provides a good
test to check your gmsh setup as the output will be empty if gmsh could not be found.
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Read

fe gmsh(’read FileName.msh’) reads a mesh from the GMSH output format.

Write

fe gmsh(’write FileName.geo’,model); writes a model (.Node, .Elt) and geometry data in
model.Stack’info’,’GMSH’ into a .geo file which root name is specified as FileName (if you use
del.geo the file is deleted on exit).

• Command option -lc allows specifying a characteristic length. You can also define a nodewise
characteristic length by setting non zero values in model.Node(:,4).

• Command option -multiple can be used for automated meshing of several closed contours.
The default behavior will define a single Plane Surface combining all contours, while -multiple
variant will declare each contour as a single Plane Surface.

• Command option -keepContour can be used to force gmsh not to add nodes in declared line
objects (Transfinite Line feature).

• Command option -spline can be used (when lines have been declared using command AddLine3

from beam3 elements) to write spline objects instead of line objects in the .geo file

• .stl writing format is also supported, by using extension .stl instead of .geo in the command
line.

• Command option -run allows to run gmsh on the written file for meshing. All characters in the
command after -run will be passed to the gmsh batch call performed. fe gmsh then outputs
the model processed by gmsh, which is usually written in .msh file format.

All text after the -run is propagated to GMSH, see sample options below.
It also possible to add a different output file name NewFile.msh, using model=fe gmsh(’write

NewFile.msh -run’,’FileName.stl’).

• Conversion of files through fe gmsh into .msh, or SDT/OpenFEM format is possible, for all
input files readable by gmsh. Use command option -run and specify in second argument the
file name.
For example: model=fe gmsh(’write -run’,’FileName.stl’) convert .stl to .mesh then
open into SDT/OpenFem. Some warning can occur if no FileName.mesh is given, but without
effect on the result.
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Known options for the run are

• -1 or -2 or -3) specifies the meshing dimension.

• -order 2 uses quadratic elements.

• -v 0 makes a silent run.

• -clmax float sets maximum mesh size, -clmin float for minimum.

From a geometry file the simplest meshing call is illustrated below

filename=demosdt(’download-back http://www.sdtools.com/contrib/component8.step’)

RO=struct( ... % Predefine materials

’pl’,m_elastic(’dbval -unit TM 1 steel’), ...

’sel’,’selelt eltname tetra10’, ... % Elements to retain at end

’Run’,’-3 -order 2 -clmax 3 -clmin 2 -v 0’); %RunCommand

model=fe_gmsh(’write’,filename,RO);

It is also possible to write GMSH post-processing command lines, written at the end of the file (see
the GMSH documentation) by providing a cell array (one cell by command line) in the field .Post

of the RO structure.

See also

missread
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Purpose

Interface for the assembly of distributed and multiple load patterns

Syntax

Load = fe_load(model)

Load = fe_load(model,Case)

Load = fe_load(model,’NoT’)

Load = fe_load(model,Case,’NoT’)

Description

fe load is used to assemble loads (left hand side vectors to FEM problems). Loads are associated
with case structures with at least a Case.Stack field giving all the case entries. Addition of entries
to the cases, it typically done using fe case.

To compute the load, the model (a structure with fields .Node, .Elt, .pl, .il) must generally be
provided with the syntax Load=fe load(model). In general simultaneous assembly of matrices and
loads detailed in section 4.8.8 is preferable.

The option NoT argument is used to require loads defined on the full list of DOFs rather than after
constraint eliminations computed using Case.T’*Load.def.

The rest of this manual section describes supported load types and the associated type specific data.

curve

The frequency or time dependence of a load can be specified as a data.curve field in the load case
entry. This field is a cell array specifying the dependence for each column of the applied loads.

Each entry can be a curve data structure, or a string referring to an existing curve (stored in the
model.Stack), to describe frequency or time dependence of loads.

Units for the load are defined through the .lab field (in {F} = [B] {u} one assumes u to be unitless
thus F and B have the same unit systems).

DofLoad, DofSet

Loads at DOFs DofLoad and prescribed displacements DofSet entries are described by the following
data structure
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data.DOF column vector containing a DOF selection
data.def matrix of load/set for each DOF (each column is a load/set case and the rows are

indexed by Case.DOF ). With two DOFs, def=[1;1] is a single input at two DOFs,
while def=eye(2) corresponds to two inputs.

data.name optional name of the case
data.lab optional cell array giving label, unit label , and unit info (see fe curve DataType)

for each load (column of data.def)
data.curve see fe load curve

Typical initialization is illustrated below

% Applying a load case in a model

model = femesh(’testubeam plot’);

% Simplified format to declare unit inputs

model=fe_case(model,’DofLoad’,’ShortTwoInputs’,[362.01;258.02]);

% General format with amplitudes at multiple DOF

% At node 365, 1 N in x and 1.1 N in z

data=struct(’DOF’,[365.01;365.03],’def’,[1;1.1]);

data.lab=fe_curve(’datatype’,13);

model=fe_case(model,’DofLoad’,’PointLoad’,data);

Load = fe_load(model);

feplot(model,Load); fecom(’;scaleone;undefline;ch1 2’) % display

When sensors are defined in SDT, loads collocated with sensors can be defined using sensor

DofLoadSensDof.

FVol

FVol entries use data is a structure with fields

data.sel an element selection (or amodel description matrix but this is not acceptable for
non-linear applications).

data.dir a 3 by 1 cell array specifying the value in each global direction x, y, z. Alternatives
for this specification are detailed below . The field can also be specified using .def

and .DOF fields.
data.lab cell array giving label, unit label , and unit info (see fe curve DataType) for each

load (column of data.def)
data.curve see fe load curve

Each cell of Case.dir can give a constant value, a position dependent value defined by a string
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FcnName that is evaluated using
fv(:,jDir)=eval(FcnName) or fv(:,jDir)=feval(FcnName,node) if the first fails. Note that node
corresponds to nodes of the model in the global coordinate system and you can use the coordinates
x,y,z for your evaluation. The transformation to a vector defined at model.DOF is done using
vect=elem0(’VectFromDir’,model,r1,model.DOF), you can look the source code for more details.

For example

% Applying a volumic load in a model

model = femesh(’testubeam’);

data=struct(’sel’,’groupall’,’dir’,[0 32 0]);

data2=struct(’sel’,’groupall’,’dir’,{{0,0,’(z-1).^3.*x’}});
model=fe_case(model,’FVol’,’Constant’,data, ...

’FVol’,’Variable’,data2);

Load = fe_load(model);

feplot(model,Load);fecom(’;colordataz;ch2’); % display

Volume loads are implemented for all elements, you can always get an example using the elements
self tests, for example [model,Load]=beam1(’testload’).

Gravity loads are not explicitly implemented (care must be taken considering masses in this case and
not volume). You should use the product of the mass matrix with the rigid body mode corresponding
to a uniform acceleration.
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FSurf

FSurf entries use data a structure with fields

data.sel a vector of NodeId in which the faces are contained (all the nodes in a loaded
face/edge must be contained in the list). data.sel can also contain any valid
node selection (using string or cell array format).
the optional data.eltsel field can be used for an optional element se-
lection to be performed before selection of faces with feutil(’selelt

innode’,model,data.sel). The surface is obtained using

% Surface selection mechanism performed for a FSurf input

if isfield(data,’eltsel’);

mo1.Elt=feutil(’selelt’,mo1,data.eltsel);

end

elt=feutil(’seleltinnode’,mo1, ...

feutil(’findnode’,mo1,r1.sel));

data.set Alternative specification of the loaded face by specifying a face set name to be
found in model.Stack

data.def a vector with as many rows as data.DOF specifying a value for each DOF.
data.DOF DOF definition vector specifying what DOFs are loaded. Note that pressure is

DOF .19 and generates a load opposite to the outgoing surface normal. Uniform
pressure can be defined using wild cards as show in the example below.

data.lab cell array giving label, unit label ,and unit info (see fe curve DataType) for
each load (column of data.def)

data.curve see fe load curve

data.type string giving ’surface’ (default) or ’edge’ (used in the case of 2D models
where external surfaces are edges)

Surface loads are defined by surface selection and a field defined at nodes. The surface can be defined
by a set of nodes (data.sel and possibly data.eltsel fields. One then retains faces or edges that
are fully contained in the specified set of nodes. For example

% Applying a surfacing load case in a model using selectors

model = femesh(’testubeam plot’);

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);
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Or an alternative call with the cell array format for data.sel

% Applying a surfacing load case in a model using node lists

data=struct(’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
NodeList=feutil(’findnode x==-.5’,model);

data.sel={’’,’NodeId’,’==’,NodeList};
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);

Alternatively, one can specify the surface by referring to a set entry in model.Stack, as shown in
the following example

% Applying a surfacing load case in a model using sets

model = femesh(’testubeam plot’);

% Define a face set

[eltid,model.Elt]=feutil(’eltidfix’,model);

i1=feutil(’findelt withnode {x==-.5 & y<0}’,model);i1=eltid(i1);
i1(:,2)=2; % fourth face is loaded

data=struct(’ID’,1,’data’,i1);

model=stack_set(model,’set’,’Face 1’,data);

% define a load on face 1

data=struct(’set’,’Face 1’,’def’,1,’DOF’,.19);

model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load)

The current trend of development is to consider surface loads as surface elements and transform the
case entry to a volume load on a surface.

See also

fe c, fe case, fe mk
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Purpose

Material / element property handling utilities.

Syntax

out = fe_mat(’convert si ba’,pl);

typ=fe_mat(’m_function’,UnitCode,SubType)

[m_function’,UnitCode,SubType]=fe_mat(’type’,typ)

out = fe_mat(’unit’)

out = fe_mat(’unitlabel’,UnitSystemCode)

[o1,o2,o3]=fe_mat(ElemP,ID,pl,il)

Description

Material definitions can be handled graphically using the Material tab in the model editor (see
section 4.5.1 ). For general information about material properties, you should refer to section 7.3 .
For information about element properties, you should refer to section 7.4 .

The main user accessible commands in fe mat are listed below

Convert,Unit

The convert command supports conversions from unit1 to unit2 with the general syntax
pl converted = fe mat(’convert unit1 unit2’,pl);.

For example convert from SI to BA and back

% Sample unit convertion calls

mat = m_elastic(’default’); % Default is in SI

% convert mat.pl from SI unit to BA unit

pl=fe_mat(’convert SIBA’,mat.pl)

% for section properties IL, you need to specify -il

fe_mat(’convert -il MM’,p_beam(’dbval 1 circle .01’))

% For every system but US you don’t need to specify the from

pl=fe_mat(’convert BA’,mat.pl)

% check that conversion is OK

pl2=fe_mat(’convert BASI’,pl);

fprintf(’Conversion roundoff error : %g\n’,norm(mat.pl-pl2(1:6))/norm(pl))

fe_mat(’convertSIMM’) % Lists defined units and coefficients

coef=fe_mat(’convertSIMM’,2.012) % conversion coefficient for force/m^2
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Supported units are either those listed with fe mat(’convertSIMM’) which shows the index of each
unit in the first column or ratios of any of these units. Thus, 2.012 means the unit 2 (force) divided
by unit 12 (surface), which in this case is equivalent to unit 1 pressure.

out=fe mat(’unitsystem’) returns a struct containing the information characterizing standard-
ized unit systems supported in the universal file format.

ID Length and Force ID
1 SI Meter, Newton 7 IN Inch, Pound force
2 BG Foot, Pound f 8 GM Millimeter, kilogram force
3 MG Meter, kilogram f 9 TM Millimeter, Newton
4 BA Foot, poundal 9 US User defined
5 MM Millimeter, milli-newton
6 CM Centimeter, centi-newton
Unit codes 1-8 are defined in the universal file format specification and thus coded in the ma-
terial/element property type (column 2). Other unit systems are considered user types and are
associated with unit code 9. With a unit code 9, fe mat convert commands must give both the
initial and final unit systems.

out=fe mat(’unitlabel’,UnitSystemCode) returns a standardized list of unit labels corresponding
in the unit system selected by the UnitSystemCode shown in the table above.

When defining your own properties material properties, automated unit conversion is implemented
automatically through tables defined in the p fun PropertyUnitType command.

GetPl GetIl

pl = fe mat(’getpl’,model) is used to robustly return the material property matrix pl (see sec-
tion 7.3 ) independently of the material input format.

Similarly il = fe mat(’getil’,model) returns the element property matrix il.

Get[Mat,Pro]

r1 = fe mat(’GetMat Param’,model) This command can be used to extract given parameter Param
value in the model properties. For example one can retrieve density of matid 111 as following
rho=fe mat(’GetMat 111 rho’,model);

Set[Mat,Pro]
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r1 = fe mat(’SetMat MatId Param=value’,model)

r1 = fe mat(’SetPro ProId Param=value’,model)

This command can be used to set given parameter Param at the value value in the model properties.
For example one can set density of matid 111 at 5000 as following
rho=fe mat(’SetMat 111 rho=5000’,model);

Type

The type of a material or element declaration defines the function used to handle it.

typ=fe mat(’m function’,UnitCode,SubType) returns a real number which codes the material
function, unit and sub-type. Material functions are .m or .mex files whose name starts with m and
provide a number of standardized services as described in the m elastic reference.

The UnitCode is a number between 1 and 9 giving the unit selected. The SubType is a also a
number between 1 and 9 allowing selection of material subtypes within the same material function
(for example, m elastic supports subtypes : 1 isotropic solid, 2 fluid, 3 anisotropic solid).

Note : the code type typ should be stored in column 2 of material property rows (see section 7.3 ).

[m function,UnitCode,SubType]=fe mat(’typem’,typ)

Similarly, element properties are handled by p functions which also use fe mat to code the type
(see p beam, p shell and p solid).

ElemP

Calls of the form [o1,o2,o3]=fe mat(ElemP,ID,pl,il) are used by element functions to request
constitutive matrices. This call is really for developers only and you should look at the source code
of each element.

See also

m elastic, p shell, element functions in chapter 9

670



fe mknl, fe mk

Purpose

Assembly of finite element model matrices.

Syntax

[m,k,mdof] = fe_mknl(model);

[Case,model.DOF]=fe_mknl(’init’,model);

mat=fe_mknl(’assemble’,model,Case,def,MatType);

Description

The exact procedure used for assembly often needs to be optimized in detail to avoid
repetition of unnecessary steps. SDT typically calls an internal procedure implemented
in fe caseg Assemble and detailed in section 4.8.8 . This documentation is meant for low level
calls.

fe mknl (and the obsolete fe mk) take models and return assembled matrices and/or right hand side
vectors.

Input arguments are

• model a model data structure describing nodes, elements, material properties, element prop-
erties, and possibly a case.

• case data structure describing loads, boundary conditions, etc. This may be stored in the
model and be retrieved automatically using fe case(model,’GetCase’).

• def a data structure describing the current state of the model for model/residual assembly
using fe mknl. def is expected to use model DOFs. If Case DOFs are used, they are reex-
panded to model DOFs using def=struct(’def’,Case.T*def.def,’DOF’,model.DOF). This
is currently used for geometrically non-linear matrices.

• MatType or Opt describing the desired output, appropriate handling of linear constraints, etc.

Output formats are

• model with the additional field model.K containing the matrices. The corresponding types are
stored in model.Opt(2,:). The model.DOF field is properly filled.

• [m,k,mdof] returning both mass and stiffness when Opt(1)==0
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• [Mat,mdof] returning a matrix with type specified in Opt(1), see MatType below.

mdof is the DOF definition vector describing the DOFs of output matrices.

When fixed boundary conditions or linear constraints are considered, mdof is equal to the set of
master or independent degrees of freedom Case.DOF which can also be obtained with
fe case(model,’gettdof’). Additional unused DOFs can then be eliminated unless Opt(2) is set
to 1 to prevent that elimination. To prevent constraint elimination in fe mknl use Assemble NoT.

In some cases, you may want to assemble the matrices but not go through the constraint elimination
phase. This is done by setting Opt(2) to 2. mdof is then equal to model.DOF.

This is illustrated in the example below

% Low level assembly call with or without constraint resolution

model =femesh(’testubeam’);

model.DOF=[];% an non empty model.DOF would eliminate all other DOFs

model =fe_case(model,’fixdof’,’Base’,’z==0’);

model = fe_mk(model,’Options’,[0 2]);

[k,mdof] = fe_mk(model,’options’,[0 0]);

fprintf(’With constraints %i DOFs\n’,size(k,1));

fprintf(’Without %i DOFs’,size(model.K{1},1));
Case=fe_case(model,’gett’);

isequal(Case.DOF,mdof) % mdof is the same as Case.DOF

For other information on constraint handling see section 7.14 .

Assembly is decomposed in two phases. The initialization prepares everything that will stay constant
during a non-linear run. The assembly call performs other operations.

Init

The fe mknl Init phase initializes the Case.T (basis of vectors verifying linear constraints see sec-
tion 7.14 , resolution calls fe case GetT, Case.GroupInfo fields (detailed below) and Case.MatGraph

(preallocated sparse matrix associated with the model topology for optimized (re)assembly).
Case.GroupInfo is a cell array with rows giving information about each element group in the model
(see section 7.15.3 for details).

Command options are the following

• NoCon Case = fe mknl(’initNoCon’, model) can be used to initialize the case structure
without building the matrix connectivity (sparse matrix with preallocation of all possible non
zero values).
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• Keep can be used to prevent changing the model.DOF DOF list. This is typically used for
submodel assembly.

• -NodePos saves the NodePos node position index matrix for a given group in its EltConst

entry.

• -gstate is used force initialization of group stress entries.

• new will force a reset of Case.T.

The initialization phase is decomposed into the following steps

1. Generation of a complete list of DOFs using the feutil(’getdof’,model) call.

2. get the material and element property tables in a robust manner (since some data can be
replicated between the pl,il fields and the mat,pro stack entries. Generate node positions in
a global reference frame.

3. For each element group, build the GroupInfo data (DOF positions).

4. For each element group, determine the unique pairs of [MatId ProId] values in the current
group of elements and build a separate integ and constit for each pair. One then has the
constitutive parameters for each type of element in the current group. pointers rows 6 and 7
give for each element the location of relevant information in the integ and constit tables.

This is typically done using an [integ,constit,ElMap]=ElemF(’integinfo’) command,
which in most cases is really being passed directly to a p fun(’BuildConstit’) command.

ElMap can be a structure with fields beginning by RunOpt , Case and eval which allows
execution of specific callbacks at this stage.

5. For each element group, perform other initializations as defined by evaluating the callback
string obtained using elem(’GroupInit’). For example, initialize integration rule data struc-
tures EltConst, define local bases or normal maps in InfoAtNode, allocate memory for internal
state variables in gstate, ...

6. If requested (call without NoCon), preallocate a sparse matrix to store the assembled model.
This topology assumes non zero values at all components of element matrices so that it is
identical for all possible matrices and constant during non-linear iterations.
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Assemble [ , NoT]

The second phase, assembly, is optimized for speed and multiple runs (in non-linear sequences it
is repeated as long as the element connectivity information does not change). In fe mk the second
phase is optimized for robustness. The following example illustrates the interest of multiple phase
assembly

% Low level assembly calls

model =femesh(’test hexa8 divide 100 10 10’);

% traditional FE_MK assembly

tic;[m1,k1,mdof] = fe_mk(model);toc

% Multi-step approach for NL operation

tic;[Case,model.DOF]=fe_mknl(’init’,model);toc

tic;

m=fe_mknl(’assemble’,model,Case,2);

k=fe_mknl(’assemble’,model,Case,1);

toc

MatType: matrix identifiers

Matrix types are numeric indications of what needs to be computed during assembly. Currently
defined types for OpenFEM are

• 0 mass and stiffness assembly. 1 stiffness, 2 mass, 3 viscous damping, 4 hysteretic damping

• 5 tangent stiffness in geometric non-linear mechanics (assumes a static state given in the call.
In SDT calls (see section 4.8.8 ), the case entry ’curve’,’StaticState’ is used to store the
static state.

• 3 viscous damping. Uses info,Rayleigh case entries if defined, see example in section 5.3.2 .

• 4 hysteretic damping. Weighs the stiffness matrices associated with each material with the
associated loss factors. These are identified by the key word Eta in PropertyUnitType com-
mands.

• 7 gyroscopic coupling in the body fixed frame, 70 gyroscopic coupling in the global frame. 8

centrifugal softening.

• 9 is reserved for non-symmetric stiffness coupling (fluid structure, contact/friction, ...);
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• 20 to assemble a lumped mass instead of a consistent mass although using common integration
rules at Gauss points.

• 100 volume load, 101 pressure load, 102 inertia load, 103 initial stress load. Note that some
load types are only supported with the mat og element family;

• 200 stress at node, 201 stress at element center, 202 stress at gauss point

• 251 energy associated with matrix type 1 (stiffness), 252 energy associated with matrix type
2 (mass), ...

• 300 compute initial stress field associated with an initial deformation. This value is set in
Case.GroupInfo{jGroup,5} directly (be careful with the fact that such direct modification
INPUTS is not a MATLAB standard feature). 301 compute the stresses induced by a thermal
field. For pre-stressed beams, 300 modifies InfoAtNode=Case.GroupInfo{jGroup,7}.

• -1, -1.1 submodel selected by parameter, see section 4.8.8 .

• -2, -2.1 specific assembly of superelements with label split, see section 4.8.8 .

NodePos

NodePos=fe mknl(’NodePos’,NNode,elt,cEGI,ElemF) is used to build the node position index
matrix for a given group. ElemF can be omitted. NNode can be replaced by node.

nd

nd=fe mknl(’nd’,DOF); is used to build and optimized object to get indices of DOF in a DOF list.

OrientMap

This command is used to build the InfoAtNode entry. The ’Info’,’EltOrient’ field is a possible
stack entry containing appropriate information before step 5 of the init command. The preferred
mechanism is to define an material map associated to an element property as illustrated in sec-
tion 7.13 .

of mk

of mk is the mex file supporting assembly operations. You can set the number of threads used with
of mk(’setomppro’,8).
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obsolete

Syntax

model = fe_mk(model,’Options’,Opt)

[m,k,mdof] = fe_mk( ... ,[0 OtherOptions])

[mat,mdof] = fe_mk( ... ,[MatType OtherOptions])

fe mk options are given by calls of the form fe mk(model,’Options’,Opt) or the obsolete
fe mk(node,elt,pl,il,[],adof,opt).

opt(1) MatType see above
opt(2) if active DOFs are specified using model.DOF (or the obsolete call with adof), DOFs

in model.DOF but not used by the model (either linked to no element or with a zero
on the matrix or both the mass and stiffness diagonals) are eliminated unless opt(2)
is set to 1 (but case constraints are then still considered) or 2 (all constraints are
ignored).

opt(3) Assembly method (0 default, 1 symmetric mass and stiffness (OBSOLETE), 2 disk
(to be preferred for large problems)). The disk assembly method creates temporary
files using the sdtdef tempname command. This minimizes memory usage so that it
should be preferred for very large models.

opt(4) 0 (default) nothing done for less than 1000 DOF method 1 otherwise. 1 DOF number-
ing optimized using current ofact SymRenumber method. Since new solvers renumber
at factorization time this option is no longer interesting.

[m,k,mdof]=fe mk(node,elt,pl,il) returns mass and stiffness matrices when given nodes, ele-
ments, material properties, element properties rather than the corresponding model data structure.

[mat,mdof]=fe mk(node,elt,pl,il,[],adof,opt) lets you specify DOFs to be retained with adof

(same as defining a case entry with {’KeepDof’, ’Retained’, adof}).

These formats are kept for backward compatibility but they do not allow support of local coordinate
systems, handling of boundary conditions through cases, ...

Notes

fe mk no longer supports complex matrix assembly in order to allow a number of speed optimization
steps. You are thus expected to assemble the real and imaginary parts successively.

See also

Element functions in chapter 9, fe c, feplot, fe eig, upcom, fe mat, femesh, etc.
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Purpose

Mass-normalization and stiffness orthonormalization of a set of vectors.

Syntax

To = fe_norm(T,m)

[rmode,wr] = fe_norm(T,m,k,NoCommentFlag)

[rmode,wr] = fe_norm(T,m,k,tol)

Description

With just the mass m (k not given or empty), fe norm orthonormalizes the T matrix with respect
to the mass m using a preconditioned Cholesky decomposition. The result To spans the same vector
space than T but verifies the orthonormal condition

[To]T [M ]N×N [To]N×NM = [I]NM×NM (10.17)

If some vectors of the basis T are collinear, these are eliminated. This elimination is a helpful feature
of fe norm.

When both the mass and stiffness matrices are specified a reanalysis of the reduced problem is
performed (eigenvalue structure of model projected on the basis T). The resulting reduced modes
rmode not only verify the mass orthogonality condition, but also the stiffness orthogonality condition

(where
[
\Ω2

j \

]
=diag(wr.^2))

[φ]T [K] [φ] =
[
\Ω2

j \

]
NM×NM

(10.18)

The verification of the two orthogonality conditions is not a sufficient condition for the vectors rmode
to be the modes of the model. Only if NM = N is this guaranteed. In other cases, rmode are just
the best approximations of modes in the range of T .

When the fourth argument NoCommentFlag is a string, no warning is given if some modes are
eliminated.

When a tolerance is given, frequencies below the tolerance are truncated. The default tolerance
(value given when tol=0) is product of eps by the number of modes by the smallest of 1e3 and the
mean of the first seven frequencies (in order to incorporate at least one flexible frequency in cases
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with rigid body modes). This truncation helps prevent poor numerical conditioning from reduced
models with a dynamic range superior to numerical precision.

See also

fe reduc, fe eig
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Purpose

Mesh quality measurement tools

Description

This function provides mesh quality measurement, visualization and report tools. Badly shaped
elements are known to cause computation error and imprecision, and basic geometric tests can help
to acknowledge such property. Every element cannot be tested the same way therefore the lab

command presents the tests available for each kind. The geometric measurements performed are
described in the following section.

An integrated call is provided for feplot,

fe_quality(cf.mdl);

This call performs all test available and opens a GUI allowing the user to customize the views.

Available tests

Degenerate

Degenerated elements have overlaying nodes which is generally unwanted. The set is automatically
generated when such elements are detected.

Jacobian

This test computes the minimum Jacobian for each element and detects negative values. It is
directly related to the element volume so that a wrapped element would show such pattern. The set
is generated only if elements with negative Jacobian are detected.

AspectRatio

This test can be applied to any kind of element. It computes the ratio of the longest edge length to
the shortest one. Thus a good element will have an aspect ratio close to one while a badly shaped
element will have a greater aspect ratio. The Default tolerance for visualization is set to 2.
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MaxIntAng

This test can be applied to triangle and quadrangle elements (tria3, tria6, quad4, quad8,

quadb). It measures the greatest angle in an element which is an indication of element distortion.
The default tolerance is set to 110 degrees.

GammaK

This test is applied to triangle elements (tria3, tria6). It computes the ratio between the radius
of the inscribed circle and the circumcircle. This indicator is named γK and is bounded between
0 and 1. Well shaped elements will have a γK coefficient close to one. Degenerated triangles show
γK = 0. The default tolerance is set to 0.5.

MidNodeEgde

This test is applied to quadratic triangles (tria6). It measures the distance of the middle nodes to
the edge nodes. The ratio between the distance from the middle node to the first edge node (l1)
and the distance from the middle node to the second edge node (l2) is computed for each element

as MNE = maxi=1...3(max(l1i/l2i,l2i/l1i)
min(l1i/l2i,l2i/l1i)

) The default tolerance is set to 1.5.

MaxAngleMid2Edge

This test is applied to quadratic triangles (tria6). It measures the distortion of the edges by
computing the maximum angle between the straight edge (between both edge extreme nodes) and
the actual edges through the middle node. The maximum over the whole triangle is output, the
default tolerance is set to 30 degrees.

Taper

This test is applied to 2D quadrangle elements (quadb). It compares the areas of the 4 triangles
formed by the diagonals and each edge to the area of the full quadrangle. The exact computation
is max(2Ai

AK ). Thus a well shaped element will show a taper ratio close to 0.5, while a badly shaped
element can have taper ratios over 1. The default tolerance is set to 0.8.

Skew

This test is applied to quadrangle elements (quad4, quad8, quadb). It evaluates the element dis-
tortion by measuring the angle formed by the diagonals (the maximum angle is taken). A square will
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then show a skew angle of 90 degrees, while a distorted element will show angles over 150 degrees.
The default tolerance is set to 110 degrees.

Wrap

This test is applied to quadrangle elements (quad4, quad8, quadb). It measures the coplanarity
of the 4 vertices by comparing the height of the 4th point to the plan generated by the first three
points (H), relatively to the element dimension. The exact formulation is W = H

l(D1)+l(D2) . Perfectly

planar elements will have a null wrap coefficient. The default tolerance is set to 10−2

RadiusEdge

This test is applied to tetrahedron elements (tetra4, tetra10). It measures the ratio between the
radius of the circumsphere to the minimum edge length of a tetrahedron. Well shaped elements
will show a small value while badly shaped elements will show far greater values. The radius edge

coefficient is lower bounded by the radius edge ratio of the regular tetrahedron: RE ≥
√

6
4 . The

default maximum value is set to 2, which usually is sufficient to have a quality mesh. Sliver elements
may not be detected by this measure.

Sliver

This test is applied to tetrahedron elements (tetra4, tetra10). A sliver element is a nearly flat
tetrahedron, such pathology can lead to bad conditioning due to the very small volumes that can be
engendered by these particular elements. This is well detected by computing the ratio between the
maximum edge length to the minimum altitude (from a vertice to the opposed face). Sliver elements
will have large values and possibly infinite if degenerated. The degenerated elements are set to a
value of 105 for visualization, the default tolerance is set to 10.

FaceAspect

This can be applied to hexahedron and pentahedron elements (hexa8, hexa20, penta6, penta15).
It measures the aspect ratio of each face of the elements. The default tolerance is set to 2.

Unstraight

This can be applied to any element with middle nodes. It measures the Euclidean distance between
the edge middle (if the edge were straight) and the actual position of the middle edge node. Tolerance
is set at 0.1.
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RadiusCircum

This measure can only be accessed separately, with an explicity specification in the meas command.
It measures the circum radiuses of triangle elements. This is applicable to tria3 and tria6 elements.

Commands

lab[...]

Outputs or prints the tests available and their default tolerance. If no output is asked this is printed
to the prompt. fe quality(’lab’) outputs the list of element tested with the command for detailed
information. fe quality(’lab EltName’ prints the tests available for the element EltName and the
default tolerances associated.

meas[...]

Computes the mesh quality measurements. For a feplotmodel, the results are stored in the stack
under the entry ’info’,’MeshQual’. The results are given by element groups unless a specific ele-
ment selection is given as a third argument. Accepted calls are MQ = fe quality(’meas’,model);

Computes all available tests per element group.

MQ = fe quality(’meas -view MName’,model); Computes the MName test and visualize it.

MQ = fe quality(’meas’,model,’EltSel’) Computes all measurement tests for the specified EltSel

element selection.

MQ is the mesh quality output. It is a structure of fields eltid, data and lab. All fields are cell
arrays of the same size related to the measures described in the lab entry as MName ElemF EGID for
which corresponding EltId and measurement values (data) are given. Direct visualization of the
results can be obtained with the -view option.

view[...]

Performs a visualization of the quality measurements of a feplotmodel. The stack entry
’info’,’MeshQual’ must exist (created by meas). Two feplotselections are generated. First the
elements are face colored in transparency with a colored ranking. Second, the elements outside the
measurement tolerance are plotted in white patches of full opacity. Both plots generate an EltSet,
the elements plotted are stored in ’set’,’MeshQual eltsel’, the elements outside tolerance are
stored in ’set’, ’MeshQual MName tol val’ with MName the test considered and val the tolerance
value.
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The tolerance can be defined using the command option -tol val. A positive (resp. negative)
tolerance val defines pathologic elements over (resp. under) the threshold.

Command option -noGlobalMesh customizes the selection so that the global mesh in transparency
is not displayed.

It is possible to plot a sub selection of the elements measured by specifying an EltSel as third
argument. The curve colordataelt plot can also be output.

fe quality(’view’); Default visualization, AspectRatio is plotted as it is available for every
element.

fe quality(’view MName -tol val’,cf); feplotpointer, MName and tolerance val test are spec-
ified.

fe quality(’view’,cf,EltSel); An additional element selection EltSel to restrict the mesh qual-
ity measurement plot.

MeshDim

fe quality(’MeshDim’,model) returns a line vector [weight average min max] giving an indica-
tion on the mesh dimensions. The mesh edge lengths of all elements are computed, and the average,
min and max data are output.

Command option -print allows printing this data in a human readable format to the output display.

Another use of command MeshDim is to recover element indices with a threshold on their length. Use
command option -getOverval with a three output argument call. [r1,r2,r3]=fe quality(’MeshDim

-getOver val’,model); will output in r3 element indices in model.Elt that verify

• minimum edge length over val if val>0

• miminum edge length under or equal to abs(val) if val<=0

print

Prints out the mesh quality report sorted in ’info’, ’MeshQual’ of a model or a feplotfigure. By
default the results are printed to the prompt, a specific file can be given in the print command. E.g.

fe quality(’print myMeshQualityReport’,model);
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CleanNJStraight

This command attempts to improve a model numerical conditioning by straightening the edges of
quadratic elements with negative Jacobians. This command can be iteratively performed as the
local movements of specific middle edge nodes can result in distubances in the connected elements.

model=fe quality(’CleanNJStraight’,model); will output the model with altered nodal posi-
tions corresponding to the edge straightening of quadratic elements with negative Jacobian.

Command option -nitN will ask to run a maximum of N passes unless all Jacobians become positive.

clear[...]

This command clears the element quality visualization and can also clean up the stack of any element
sets created during the view procedures. All entries created by fe quality in the model Stack are
of the ’info’ or ’set’ type with a name starting by MeshQual.

fe quality(’clear’) clears the feplotselection and visualization.

fe quality(’clearall’) clears the visualization and removes every stack entry concerning mesh
quality.

fe quality(’clear MName’) removes from the stack a specified MName measurement visualization.
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Purpose

fe range commands are used to manipulate experiment (series of design points) specifications.

Description

Experiments (series of design points) are used extensively in SDT. The figure below describes a 3 D
design space with selected points. fe range is used to generate experiment descriptions fe range

Build, run the solutions fe range Loop and manipulate the associated results fe range DirScan.

Figure 10.3: Sample experiments. a) Hypercube face center. b) Classical 2NP factorial plan.

A range structure is the description of a set design points through a data structure with fields

• .val numeric array containing one design point per row and one design parameter per column.

• .lab cell array of strings giving a parameter label for each column. These labels should be
acceptable fieldnames (no spaces, braces, ...)

• .param optional structure with fields associated with parameter labels used for formatting and
analysis. Accepted values are detailed below. It is not necessary to define a .param field for
each design parameter.

param.MainFcn={FcnHandle,’command’} can be used specify the user handling function in
fe range Loop.

• .edge optional connectivity matrix used to define lines connecting different design points of
the experiment

• .FileName optional cell array of strings used to build file names associated with each experi-
ment with command fe range fname.

.param fields must match string values in .lab. Each field is a struct with possible fields
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• .type a string. Typically double or pop.

• .choices, for .type=’pop’, contains a cell array of strings. The parameter value then gives
the index within .choices.

• .data possible cell array containing data associated with the .choices field.

• .LabFcn a command to be evaluated with st1=eval(r2.LabFcn) to generate the proper label.
For example ’sprintf(’’%.1f ms’’,val/1000)’ is used to generate a label in a different
unit. For choices, the default is r2.choices{val};.

• .Xlab long name to be used to fill Xlab when generating curve data structures.

• .level is an integer specifying the computational step at which a given parameter can be
modified. This is used to generate tree type experiments.

• .uProp is a cell array giving a coefficient to go from value to engineering unit and a string for
the unit. Or a structure with fields .coef multiplicative coefficient to go from storage value in
val to display value. .coef can be a callback string based on the assumption that the value
is in a val variable. .Xlab to be used for display after unit conversion, .unit string for unit
of storage value. .fmt java formatting for display in tables.

• .SetFcn={fun,command} provides the callback used in fe range Loop to execute parameter
setting.

• .RepList={tokenString,subsasgn} optionally provides the mechanism to aggregate param-
eter modifications in a Loop step.

Commands

Build[R,stra]

Build commands handle generation of the Range structure.

Range=fe range(’Build’’,par);

Range is defined by a grid of all the parameter values defined in par.

par is expected to be either

• a structure where each field will be a parameter (for example struct(’a’,(1:3)’,’b’,(1:2)’).
For configurations, the field can contain a cell array with the configuration name and associated
data (for example struct(’MesCfg’,{’a’,data1;’b’,data2}). To allow easier connection
with graphical interfaces, the value can be replaced by a structure
struct(’a’,struct(’Eval’,’1:3’)). Note that .param is a reserved field.
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• a cell array defining parameters. Each cell can be

– a range data structure. This is for example used for visco parameter definitions (see
fevisco Range for more details).

– (to be phased out) a string ’lab "label" min min max max cur cur scale "scale"

NPoints NPoints’. "label" is the parameter name. Then the minimum, maximum and
nominal values are defined. Scale can be ”lin” for linear scale or ”log” for logarithmic
scale. NPoints defines the number of point for the parameter vector.

– (to be phased out) a numeric vector in the old upcom format [type cur min max scale]

with type defining the matrix type (unused here), scale==2 indicates a logarithmic vari-
ation.

By default a grid type is generated. As an illustration, following example defines a grid 6x7 of 2
parameters named length and thickness

Range=fe_range(’BuildGrid’,struct(’length’,1:3, ...

’thickness’,[1 2],’Name’,{{’a’,’data_for_a’;’b’,’data_for_b’}}))
Range=fe_range(’BuildGrid’,Range);

fe_range(’Tree’,Range);

% String format (to be phased out)

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’BuildGrid’,par);

fe_range(’Tree’,Range);

A Range type must be defined by token stra. The following strategies are supported

• Grid Generates a grid type, with all possible parameter combinations.

• Vect generates a vector for a single parameter or a matrix with all parameters varying (the
initial definition of each vector must have the same length).

• Simple Generates a sequential parameter combination. One parameter varies at a time, the
others being kept at their nominal value.

• Rstra Generates reduced ranges spannix the parameters simplex. If ommitted this token is
set to MinMax the available strategies are

– MinMax base point with all max, then successive set of one parameter to min. Dedicated
variants include
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∗ MinMaxP to add the nominal configuration at the list end

∗ MinMaxm to add the full minimal configuration at the list end

– MinNom uses the first design point with the nominal values of each parameters, then
variations with one parameter set to the minimum value while the other remain at their
nominal value.

– NomMax uses the first design point with the maximum values of each parameters, then
variations with one parameter set to the nominal value while the other remain at their
maximum value.

– NomMin uses the first design point with the minimum values of each parameters, then
variations with one parameter set to the nominal value while the other remain at their
minimum value.

– MaxMin uses the first design point with the minimum values of each parameters, then
variations with one parameter set to the maximum value while the other remain at their
minimum value.

– MaxNom uses the first design point with the nominal values of each parameters, then
variations with one parameter set to the maximum value while the other remain at their
nominal value.

– Nom only uses the nominal value of each parameters.

– Grid generates a grid type, considering minimum and maximum values of each parameter
(corners of a hypercube).

Command option -flip allows generating a reverted list from down to bottom (flipud).

• @cbk Allows customized defintion, using cbk as a function handle. Range is sequentially built
with a expansion applied for each parameter. The typical call at the j1-th parameter is

Range.val=cbk(Range.val,par{j1}.val,i1,RO);

with Range.val the current Range before handling the j1-th parameter, par{j1}.val are the
values considered for the j1-th parameter, i1 is the column index associated to the j1-th
parameter in Range.val. RO is the current running option structure.

Accepted options are

• replace ¿0 keep first value. 3 Reuse parameters in range.

• level handles levels if present.

• FileName augments the Range.FileName field if present.
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• diag in Grid type, takes the diagonal of the hypercube.

Range=fe range(’BuildVect’,par);

Simply concatenate all parameter ranges (they must have the same length) into a functional Range.
par has the same format than for the fe range BuildGrid input. In addition, all par entries
provided should have the same number of points.

Vect command is used to generate single par structures to feed Range.param entries.

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 7’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’BuildVect’,par);

DirScan

Scans a directory mat files and provides displayable information about property variations. It is
assumed that files are saved with a variable RO (for Run Options) in struct format, each option
considered as a field. Command DirScan will build a synthesis between constant and variable
options, by providing in output a structure RB with fields

• wd the scanned directory.

• dirlist the file names scanned. (By default *.mat).

• RVar a structure that can be displayed by comstr -17 in Java tabs. In its basic version it
contains fields table that list the differing options between each scanned file, one per line, and
a field ColumName that provides the relative varying option fields. This list is handled by the
flatParamFcn as explained below.

• RConstant a cell array with two columns providing the constant options for all scanned files.
The first column contains the option fields and the second their value.

By default DirScan saves a file named RangeScan.mat in the scanned directory. This file contains
the output to avoid scanning if possible. By default scanning is skipped if the file RangeScan.mat

exists, refers to the same search in the dirlist field and if this file is more recent than all files to
be scanned.

Options sorting is performed by the flatParamFcn. Typical options are hierarchically sorted in
nested structure format that gather parameters of the same type, or belonging to a configuration set.
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To ensure a clean view of varying parameters, the hierarchical structure has to be flattened, that is
to recursively flush back all nested structure fields to the root structure. The default flatParamFcn
only performs this simple operation, one should not use identical parameter names in different
locations.

For advanced applications it is recommended to add intelligence to the flatParamFcn to help sorting
relevant parameters, possibly remove some irrelevant ones and to convert complex options into human
readable format. The typical call to flatParamFcn is

r1=feval(flatParamFcn,fname,RO);

The output r1 is in the same format than output RConstant field, that is a two column cell array
with fieldnames in first column defining found parameters and a second column containing current
values for the currently scanned file.

Input fname is a structure with field fname providing the file name containing a parameter structure
names RO. Input RO is a structure with fields wd providing the name of the scanned directory and
Content, a cell array that will keep track of all parameter fieldnames encountered during scanning.

A sample call would be

% Example of flatParamFcn behavior

% build a dummy result file with a parameter structure

tname=nas2up(’tempname_RES.mat’);

% sample 2 level parameter structure

RO=struct(’MeshCfg’,...

struct(’lc’,4,’name’,’toto’),...

’SimuCfg’,...

struct(’dt’,1e-2’,’Tend’,10));

% save RO in result file

save(tname,’RO’);

% Options to call flatParam

R1=struct(’flatParamFcn’,fe_range(’@flatParam’),’wd’,pwd,’Content’,{{}});
% call to flatParam

[r1,RO]=feval(R1.flatParamFcn,struct(’fname’,tname),R1);

delete(tname); % clean up example

Command DirScan takes a structure in input with fields

• wd the directory to scan.

• list the file names to scan. This allows restriction to filenames matching specific expressions.
The default is *.mat.
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• flatParamFcn. A function handle to sort the running options, by defaultset to
fe range(’@flatParam’).

• NoSave not to save the result in RangeScan.mat if set to one.

The following command options are accepted

• -reset to force a new scanning.

• -reload to force a reload of RangeScan.mat.

fname [,LabCell,Labdef]

Generate the list of files using the components of the Range.FileName cell array. In that cell, each
string starting with ’’ is replaced. fnamedir forces names compatible with directories.

Range=fe_range(’BuildGrid’,struct(’length’,1:3, ...

’thickness’,[1 2],’Name’,{{’a’,’data_for_a’;’b’,’data_for_b’}}))
Range=fe_range(’BuildGrid’,Range);

% Name built out of differnt labels

Range.param.thickness.LabFcn=’sprintf(’’h=%.1f’’,val)’;

Range.param.thickness.ShortFmt=1;

Range.FileName={’Root’,’@length’,’@thickness’,’@Name’};
fe_range(’fname’,Range)

GeneLoop

Provides a genetic algorithm implementation inspired from the NSGA-II [50].

Command GeneLoop peforms the complete loop, taking into argument a set of parameters in a cell
array, and a parameter structure with fields

• .PopSize the population size,

• .MatSize the mating group size,

• .NbTour the number of candidates to retain for a tournament round,

• .RatioMut the threshold ratio under which a gene mutation occurs when there is no crossover,
between 0 (impossible) and 1 (always)
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• .Optim the extremum to consider for the fitness function, min or max

• .RunExp the callback to the fitness function

The logic is to exploit a discretized pool gene based on a Range structure with available parameters.
From a randomly chosen initial population using randi of size .PopSize, individuals are selected for
mating, based on their fitness in a tournament phase. The tournament consists in running .MatSize

tours in which the fittest individual is taken between .NbTour randomly picked candidates. The
.MatSize selected individuals are then mated with a crossover and mutation strategy to produce a
children gene pool of size PopSize. Crossover and mutation are sequential events. First, a crossover
generates one child from two randomly picked parents in the mating pool (based on randperm) each
gene is randomly picked from one or the other parent. Each gene can then mutate with a probability
event driven by .RatioMut (based on rand threshold). In case of a mutation event, the gene will be
forced to mutate by taking another available value in the gene pool. The children gene pool is forced
to be gene combinations that have not been tested before. The parent and chidren populations are
then combined, and only the .PopSize fittest individuals are kept for the next generation, ensuring
elitism.

The output is a Range structure with field .val containing the current population, .Res the fitness
values of the current population, .val0 the archive of all tested individuals, .Res0 the archive of
fitness values of all tested individuals.

% define a set of parameters with discretized varying values

par={’lab "p1" min 10 max 20 cur 10 scale "lin" NPoints 100’,...

’lab "p2" min 1 max 100 cur 1 scale "lin" NPoints 100’,...

’lab "p3" min 2 max 5 cur 100 scale "log" NPoints 100’};

% define a callback function updating Range.Res

% with fitness function based on Range.val

RunExp=@(x,~)setfield(x,’Res’,abs(sqrt(x.val(:,1)+x.val(:,2).^3)-x.val(:,3)));

% Define genetic algorithm options

RO=struct(’MaxGen’,100,’PopSize’,25,’MatSize’,10,’NbTour’,4,...

’RatioMut’,0.4,’RunExp’,RunExp,’Optim’,’min’);

% Run genetic algorithm

Range=fe_range(’GeneLoop’,par,RO);
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labFcn

Loop

Loop the generic handler of parametric studies.

• The outer loop performs a loop on rows of Range.val (design points)

• For each design point, a loop on levels is performed. At a given level, an action is performed
if .param.lab.SetFcn={’FcnName’,’Command’} is defined. When aggregating parameters of
a given level (typically with a LabCfg parameter), it is expected that only the configuration
parameter has a SetFcn and fe range ValEvtMerge is called.

• Range.param.MainFcn={’FcnName’,’Command’} is used to implement standard methods.

Standard calls are:

fe_range(’Loop’,Range,RO)

fe_range(’Loop’,Range,UI,RO)

RO is

• .restart do a restart.

• .StepStart defines the minimum step level to be computed. If omitted starts at 1.

• .nSteps defines the maximum step level to be computed. If omitted, all steps are computed.

• .Verbose define the verbosity level. 0 by default.

• .WaitAt can be used to generate wait files at a given step number. It is then possible to
open MATLAB slaves that will consume waiting files present in a given directory by calling
sdtjob(’StudySlaveStart reset’,pwd). This provides a simple mechanism for parallel ex-
ectution of a series of steps. It is however then expected that the step saves its results to a file
that will not interact with other jobs.

Res

R1=fe range(’Res’,R1,Range);

This command reshapes the last dimension of the result curve R1 according to the Range. For a grid
DOE last dimension is split in as many dimensions as parameters. For a vector DOE, last dimension
is only redefined by a cell array of labels defining each design point.
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The following command options are available

• -varOnly to expand only varying parameters in Range. In such case, constant parameters are
gathered in the last dimension of label RConst.

• -varname to only extract parameter name from Range. For this to be possible, this parameter
must be gridded against the remaining ones.

• -noRConst not to keep dimension RConst when using -varOnly

• -noParLab not to forward parameter LabFcn that possibly exist in Range to the .Xlab curve
entry.

Sel

This command allows selection of design points in a series of experiments described by a Range struc-
ture. The main output is the indices in Range.val rows corresponding to the sequential application
of selection rules.

The selection rules a provided in a cell array of three columns and as many lines as rules to apply
under the format
{param name,’rule’,’crit’;...}.
The following types of rules are supported, defined by a string,

• ismember applies selection by only taking the values specified using MATLAB ismember com-
mand. crit is then either a list of values (then corresponding to values appearing in the DOE
table), or a cell array of values (then corresponding to the values in the DOE table where
string values are used for pop style parameters. Regular expressions are supported for the pop

entries, in which case the string must start by # followed by the regular expression to apply.

• <,>,<=,>=,== applies sampling by using the logical operator specified on the parameter values.
crit is then a numerical value corresponding to the values appearing in the DOE table for all
parameters.

• sort applies a sorting algorithm for a given parameter. crit is then either

– a string specifying an argument to the sort command of MATLAB, either ascend or
descend. Support for pop types is provided based on alphabetical sorting.

– a function handle to a sorting function that will be called with the val or choices field
of the parameter and that will rethrow the sorted values and the corresponding index to
the unsorted values.

694



fe range

– a cell array callback with first field a function handle that will be called, the second
entry will be replaced by the val or choices field of the parameter, and any further
entries provided.

• sortrows will perform a post-treatment of the sampled Range to the selection applied and
output a java compatible table.

Excepted for sortrows, other rules are sequentially applied to the current sampled Range. Sorting
is thus only fully effective if last performed.

The optional .SortCol field can be used to specify a reformatting of the indices as a multi-
dimensional grid.

Stats

fe range(’Stats’,UI,sel,RA);

This command can be used to call a stack of post-treatments for a subpart of all computation results
that have been priorly scanned through the DirScan command, and then displayed in the RVar tab.
Results of the Stats command is a Stats tab in the UI.

UI is the interface data (where the Stats tab will be displayed), that can be obtained through the
MainFcn(’ParamUI’) command. If it is left empty (UI=[]), sdtroot interface is implicitely defined.

sel is a selection cell array to select a sub set of results in all scanned results. See Sel for more
details. If sel is empty (sel={}), all results are post-treated.

RA defines the post-treatments to be computed from selected results. It is a data structure with
following fields:

• .SortCols defines a subset and the order of input parameters to consider for stats output or
display. Parameters must be RVar parameters.

• .PostPar is a data structure with a .list field that defines the stack of post-treatments to
be computed. PostPar.list is a cell array with as many rows as post-treatments to compute.
Each row is of the form ’PostName’ PostData. PostData is a cell array of the form {cbk
data}.

– cbk is callback cell array of the form {FcnHandle Arg1 Arg2 ...}. The callback is called
with [Full,Stat]=feval(cbk{1},obj0,evt0,cbk{2:end});. obj0 contains the results
read in the current mat result file and evt0 is a structure with evt0.j1 containing the
indice in the results stack. There are 2 output arguments Full that should contain a
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full signal (for example the observation of time deformation at sensors, ...) and Stats

that should be a SDT curve table (1 or 2 dimensions) of scalar results (for example time
statistics for time signals...).

– data is a cell array with as many rows as scalar results (1 by column in the Stats tab
that will be displayed) to extract from the post-treatment result curve Stats. Each row
is of the form i1 i2 CritFcn. i1 (resp. i2) can be either the row (resp column) indice
of the scalar result in the Stats.Y table or the label of the row (resp column) in the
Stat.X{1} abscissa (resp Stat.X{2}). CritFcn is the handle of a criterion function that
can be used to colorate cell in the result tab (for example a threshold function) and also
to display boundary lines in iiplot displays (needs critfcn doc and example).

Simple

Generates a set of experiments with sequential variation of each parameter, the other ones being
fixed to their nominal value. par has the same format than for the fe range BuildGrid input.
They may feature a field nom providing a nominal value to each parameter, if this field is omitted
the nominal value is considered to be the starting value of the parameter. In the case where par has
been defined as a string input, field nom is taken to be the cur input value.

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’Simple’,par);

UI Tree

Basic display of an experiment design as a tree. See also the sdtroot version.

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’Simple’,par);

fe_range(’Tree’,Range);

sdtroot(’setRange’,Range); % Initialize range in PA.Range

PA=sdtroot(’PARAMVh’);PA.Range

sdtroot(’InitRange’); % Initialize display

Val

Val commands are used to ease range manipulations.
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ValCell

r2=fe range(’ValCell’,Range);

This command can be used to convert a Range.Val as a cell array with as many rows as Range.val
and each row of the form param1, val1, param2 val2, .... One can give ind as a 2nd argument,
with the indices of rows to convert.
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Purpose

Utilities for finite element model reduction.

Syntax

SE = fe_reduc(’command options’,model)

TR = fe_reduc(’command options’,model)

Description

fe reduc provides standard ways of creating and handling bases (rectangular matrix T) of real
vectors used for model reduction (see details in section 6.2 ). Input arguments are a command
detailed later and a model (see section 7.6 ). Obsolete low level calls are detailed at the end of this
section. Generic options for the command are

• -matdes can be used to specify a list of desired matrices. Default values are -matdes 2 1 for
mass and stiffness, see details in section 4.8.8 .

• -SE is used to obtain the output (reduced model) as a superelement SE. Details about the
fields of superelement data-structures are given section section 6.3.2 .

• model.Dbfile can be used to specify a -v7.3 .mat file to be used as database for out of core
operations.

• -hdf is used to request the use of out of core operations.

When using a model with pre-assembled matrices in the .K field, boundary conditions must not be
eliminated to avoid reassembly in fe reduc which is indicated by the message Assembling model.

[SE,CE] = fe_case(model,’assemble -matdes 2 1 -SE -NoT’);

SE=stack_set(SE,’case’,’Case 1’,CE);

Accepted fe reduc commands are

Static, CraigBampton

Static computes static or Guyan condensation. CraigBampton appends fixed interface modes to
the static condensation.
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Given a set of interface DOFs, indexed as I, and other DOFs C, the static responses to unit
displacements are given by

[T ] =

[
TI
TC

]
=

[
I

−K−1
CCKCI

]
(10.19)

which is the static basis (also called constraint modes in the Component Mode Synthesis literature).
For Craig-Bampton (6.107), one appends fixed interface modes (with qI = 0). Note that you may
get an error if the interface DOFs do not constrain rigid body motion so that KCC is singular.

The interface DOFs should be specified using a DofSet case entry. The interface DOFs are defined
as those used in the DofSet. The complementary DOF are determined by exclusion of the interface
DOF from the remaining active DOFs.

model=demosdt(’volbeam’);

% Define interface to be xyz DOF at nodes 2,3

model=fe_case(model,’DofSet’,’IN’, ...

feutil(’getdof’,[2;3],[.01;.02;.03]));

% statically reduced model

ST=fe_reduc(’Static’,model);

% For Craig Bampton specify eigenvalue options

model=stack_set(model,’info’,’EigOpt’,[5 10 0]);

CB=fe_reduc(’CraigBampton’,model);

Available command options are

• NM is the number of desired modes, which should be specified in an info,EigOpt stack entry
which allow selection of the eigenvalue solver (default is 5, Lanczos). Note that using NM=0

corresponds to static or Guyan condensation.

• -SE is used to obtain the output as a superelement SE. Without this argument, outputs are
the rather obsolete list [T,sdof,f,mr,kr] where f is the frequency of fixed interface modes.

• -shift allows the use of a non-zero shift in the eigenvalue solution for the fixed interface
modes. The interior matrix Kcc is only factored once, so using a shifted matrix may result in
poor estimates of rigid body modes.

• -useDOF recombines the fixed interface modes to associate shape with a specific interior DOF.
This can ease the manipulation of the resulting model as a superelement.

• -drill. Shell elements may not always use drilling stiffness (5 DOF rather than 6), which tends
to cause problems when using 6 DOF interfaces. The option calls model.il=p shell(’SetDrill

0’,model.il) to force the default 6 DOF formulations.
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• -Load appends static correction for defined loads to the model.

mdl=fesuper(mdl,’setTR’,name,’fe reduc command’) calls fe reduc to assemble and reduce the
superelement. For example
mdl=fesuper(mdl,’SetTR’,’SE1’,’CraigBampton -UseDof -drill’);

Switching to out of core solver using .mat files is based on the value of sdtdef(’OutOfCoreBufferSize’)
given in Mb. For a sufficiently large RAM, you may want to use larger values
sdtdef(’OutOfCoreBufferSize’,1024*8) for 8 GB.

Free ...

The standard basis for modal truncation with static correction discussed in section 6.2.3 (also known
as McNeal reduction). Static correction is computed for the loads defined in the model case (see
fe case). Accepted command options are

• EigOpt should be specified in an info,EigOpt stack entry. For backward compatibility these
fe eig options can be given in the command and are used to compute the modeshapes. In
the presence of rigid body modes you must provide a mass shift.

• Float=1 is used to obtain the standard attachment modes (6.103) in the presence of rigid body
modes. Without this option, fe reduc uses shifted attachment modes (6.104), when a non
zero shift is given in EigOpt. This default is typically much faster since the shifted matrix
need not be refactored, but may cause problem for relatively large negative shifts.

Float=2 uses an inertia balancing with respect to computed modes.

• -SE is used to obtain the output as a superelement SE.

• -bset returns information about loads to be applied in a system where enforced motion
(fe load DofSet) entries are defined.

• -FirstCB implements first order correction for damping terms associated with viscous or hys-
teretic damping.

dynamic w

[T,rbdof,rb]=fe reduc(’dynamic freq’, ...) computes the dynamic response at frequency w

to loads b. This is really the same as doing (-w^2*m+k)\b but can be significantly faster and is more
robust.
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flex [,nr]

[T,rbdof,rb]=fe reduc(’flex’, ...) computes the static response of flexible modes to load b

(which can be given as bdof)

[
K−1
Flex

]
[b] =

N∑
j=NR+1

{φj} {φj}T

ω2
j

(10.20)

where NR is the number of rigid body modes. These responses are also called static flexible responses
or attachment modes (when forces are applied at interface DOFs in CMS problems).

The flexible response is computed in three steps:

• Determine the flexible load associated to b that does not excite the rigid body modes bFlex =

([I]− [MφR]
[
φTRMφR

]−1
[φR]T ) [b]

• Compute the static response of an isostatically constrained model to this load

[qIso] =

[
0 0

0 K−1
Iso

]
[bFlex] (10.21)

• Orthogonalize the result with respect to rigid body modes

qFlex = ([I]− [φR]
[
φTRMφR

]−1 [
φTRM

]
) [qIso]

where it clearly appears that the knowledge of rigid body modes and of an isostatic constraint is
required, while the knowledge of all flexible modes is not (see [37] for more details).

By definition, the set of degrees of freedom R (with other DOFs noted Iso) forms an isostatic
constraint if the vectors found by

[φR] =

[
φRR
φIsoR

]
=

[
I

−K−1
IsoKIsoR

]
(10.22)

span the full range of rigid body modes (kernel of the stiffness matrix). In other words, displacements
imposed on the DOFs of an isostatic constraint lead to a unique response with no strain energy (the
imposed displacement can be accommodated with a unique rigid body motion).

If no isostatic constraint DOFs rdof are given as an input argument, a lu decomposition of k is used
to find them. rdof and rigid body modes rb are always returned as additional output arguments.

The command flexnr can be used for faster computations in cases with no rigid body modes. The
static flexible response is then equal to the static response and fe reduc provides an optimized
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equivalent to the Matlab command k\b.

rb

[rb,rbdof]=fe reduc(’rb’,m,k,mdof,rbdof) determines rigid body modes (rigid body modes
span the null space of the stiffness matrix). The DOFs rbdof should form an isostatic constraint
(see the flex command above). If rbdof is not given as an input, an LU decomposition of k is used
to determine a proper choice.

If a mass is given (otherwise use an empty [ ] mass argument), computed rigid body modes are
mass orthonormalized (φTRMφR = I). Rigid body modes with no mass are then assumed to be
computational modes and are removed.

obsoletem,k,mdof (obsolete format)

Low level calling formats where matrices are provided are still supported but should be phased out
since they do not allow memory optimization needed for larger models.

m mass matrix (can be empty for commands that do not use mass)
k stiffness matrix and
mdof associated DOF definition vector describing DOFs in m and k. When using a model with

constraints, you can use mdof=fe case(model,’gettdof’).
b input shape matrix describing unit loads of interest. Must be coherent with mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have different length)
rdof contains definitions for a set of DOFs forming an iso-static constraint (see details below).

When rdof is not given, it is determined through an LU decomposition done before the
usual factorization of the stiffness. This operation takes time but may be useful with
certain elements for which geometric and numeric rigid body modes don’t coincide.

For CraigBampton, the calling format was
fe reduc(’CraigBampton NM Shift Options’,m,k,mdof,idof);.

See also

fe2ss, fe eig, section 6.2
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Purpose

Utilities for sensor/shaker placement and sensor/DOF correlation.

Syntax

Command dependent syntax. See sections on placement and correlation below.

Placement

In cases where an analytical model of the structure is available before a modal test, you can use it
for test preparation, see section 3.1.3 and the associated d cor(’TutoSensPlace’) demo. fe sens

provides sensor/shaker placement methods.

InAcceptable

Command InAcceptable defines a set of acceptable sensors measuring normal displacement on a
surface. This is typically used for hammer testing where duality/reciprocity is used to place sensors
that are then used as impact locations (while shaker placement to define locations of reference
accelerometers). Normal displacement is also typical for shaker placement.

Syntax is model=fe sens(’InAcceptable’,model); with model a standard SDT model. The out-
put model is the same model with a SensDof case entry named Acceptable containing the surface
normal displacement observation, and a FaceId set named AcceptableMap containing the faces
selected for the observation.

The main advantage of this command is the possibily to restrict the acceptable positions by using a
third argument structure to possibly alter selection,

• .sel to provide a FindElt model selection on which the search is performed. By default a
selface selection is performed.

• .EdgeTol to remove sharp edges. Shaker positioning is indeed impossible or difficult on nodes
placed on sharp edges. Field .EdgeTol if present is a numeric value taken as an angle threshold
in degrees. Facets showing angles on edges with others facets over the given threshold are
eliminated.

• .radius to restrict the search to element groups (in the SDT terms, see elt) with a significant
spatial span. If present, field .radius is a numeric threshold taken as the miminum sphere
radius in which groups should not fit.

Example:
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% Find acceptable position for shaker placement

demosdt(’demoubeam’); cf=feplot; def=cf.def;

RO=struct(’sel’,’selface’, ...

’EdgeTol’,20);

model=cf.mdl.GetData; % Temporary model

model=fe_sens(’InAcceptable’,cf.mdl,RO);

% display model with new stack entries

feplot(’initmodel’,model)

% display added set

cf.sel=’setname AcceptableMAP’;

% display added SensDof entry

fecom(cf,’curtabCases’,’Acceptable’);fecom(cf,’proviewon’);

InGetDn

model=fe sens(’InGetDn’,model,def); appends normal displacement associated with DOF .19.

model is a FEM model, def is a curve defined on the model. By default, this command expects to
find the SensDof entry Acceptable generated by fe sens InAcceptable. One can however provide
a custom observation using a third agument SensDofName as string defining a SensDof entry in
model.

By default the output is model with added stack entries

• curve,InDef providing the def structure with added observations on DOF .19.

• info,SensDofName providing the observation structure used. Note that SensDofName is here
the name provided in third argument with default set to Acceptable.

The following command options are available

• -def outputs the def structure with added observations on DOF .19 instead of model.

• -d19 only generates the def output on DOF .19.

The follwing example is based on the pre-treatment performed by fe sens InAcceptable.

% Add additional nodal observations to an existing curve

% Normal displacement appended for shaker placementp procedures

model=fe_sens(’InGetDn’,model,def);

d1=stack_get(model,’curve’,’InDef’,’get’)
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indep

sdof=fe sens(’indep’,DEF) uses the effective independence algorithm [14] to sort the selected
sensors in terms of their ability to distinguish the shapes of the considered modes. The output sdof
is the DOF definition vector cdof sorted according to this algorithm (the first elements give the best
locations).

See example in the d cor(’TutoSensPlace’) demo. The mseq algorithm is much faster and typically
gives better results.

mseq

sdof = fe sens(’mseq Nsens target’,DEF,sdof0) places Nsens sensors, with an optional initial
set sdof0. The maximum response sequence algorithm [49] used here can only place meaningfully
NM (number of modes in DEF) sensors, for additional sensors, the algorithm tries to minimize the
off-diagonal auto-MAC terms in modes in DEF.def whose indices are selected by target.

[FEM,def]=demosdt(’demo gartfe’);

def=fe_def(’subdef’,def,6:15); % Keep ten modes

d1=fe_def(’subdof’,def,[.01;.02;.03]) % Keep translations

% Select subpart as target location

d1=fe_def(’subdof’,d1,feutil(’findnode group 4:6’,FEM));

sdof= fe_sens(’mseq 10’,def);

FEM=fe_case(FEM,’sensdof’,’Test’,sdof);

feplot(FEM);fecom(’curtabCase -viewOn’,’Test’);

% see also garsens demo

ma[,mmif]

[sdof,load] = fe sens(’ma val’,po,cphi,IndB,IndPo,Ind0)

Shaker placement based on most important components for force appropriation of a mode. The
input arguments are poles po, modal output shape matrix cphi, indices IndB of sensor positions
where a collocated force could be applied, IndPo tells which mode is to be appropriated with the
selected force pattern. Ind0 can optionally be used to specify shakers that must be included.

sdof(:,1) sorts the indices IndB of positions where a force can be applied by order of importance.
sdof(:,2) gives the associated MMIF. load gives the positions and forces needed to have a MMIF
below the value val (default 0.01). The value is used as a threshold to stop the algorithm early.

ma uses a sequential building algorithm (add one position a time) while mmif uses a decimation
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strategy (remove one position at a time).

Correlation

fe sens provides a user interface that helps obtaining test/analysis correlation for industrial models.
To get started you can refer to the following sections

• defining a wire-frame with translation sensors in section 2.7.1 and section 2.7.2

• adding sensors to a FEM as a SensDof entry is illustrated in the topology correlation tuto-
rial section 3.1 .

Commands supported by fe sens are

basis

These commands are used to handle cases where the test geometry is defined in a different frame
than the FEM. An example is detailed in section 3.1.2 .

BasisEstimate guesses a local coordinate system for test nodes that matches the FEM model
reasonably and displays the result in a fashion that lets you edit the estimated basis. Arguments
are the model, and the name of the SensDof entry containing a test frame.

model = fe_sens(’basisEstimate’,model,’Test’);

A list of node pairs in the FEM and test frames can be provided as an additional argument to
improve results. The list is a two columns matrix containing FEM (resp. test) NodeId in the first
(resp. second) column. If four nodes are provided, the estimation is an exact triplet positioning, the
first node being the origin and the 3 other being directions (must be non collinear). For shorter or
longer node lists, the positioning is based on global distance minimization between paired nodes.

BasisEstimate2 uses another strategy to guess a reasonnable superposition of the test wireframe
over the FEM, based on finding main directions (SVD of the node sets) and their corresponding
orientations. It should be used rather than BasisEstimate when it is not expected that global
coordinates (X,Y,Z directions) of both the test and the FEM coincide.

Basis is used to set the local test basis in a script (see example in section 3.1.2 ). Once the script
is set, command option -noShow allows not printing the setting script to the screen.

BasisToFEM is used to transform the SensDof entry to FEM coordinates. This transformation is
done after basis adjustment and makes verification easier by clarifying the fact that the sens.tdof

uses the 5 column format with measurement directions given in the FEM format. The only reference
to test is the identifier in sens.tdof(:,1) which is kept unchanged and thus where a 1.01 will refer
to test direction x which may be another direction in the FEM.
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SensMatch, sens, ...

For the basic definition of translation sensors is associated with cell arrays giving
{’SensId’,’x’,’y’,’z’,’DirSpec’}, as detailed in section 4.6.2 .

The building of observation matrices for SensDof entries is now described under sensor SensMatch

(building topology correlation to locate test nodes in the FEM model) and sensor Sens (building
of the observation matrix after matching). Please read section 4.6.4 for more details.

The obsolete near,rigid,arigid commands are supported through SensMatch calls.

tdof, ...

tdof = fe sens(’tdof’,sens.tdof) returns the 5 column form of tdof if sens.tdof is defined as
a DOF definition vector. For more details see sens.tdof, section 2.7 for test geometry definition,
and section 4.6 for general sensor definitions in FEM models.

sens=fe sens(’tdoftable’,tcell,sens); is used to generate a group of sensors from a table a
illustrated in section 4.6.2 . The sens may be omitted of all the information is given in the table.
The command option InFEM is used to generate sensors that use FEM degree of freedom.

fe sens(’tdoftable’,model,’SensDofEntry’); is used to generate the table description of the
given group of sensors (with no output argument, the table is displayed).

links

fecom(’ShowLinks Sensors’) generates a plot with the mode wire-mesh associated with the SensDof
entry Sensors.

For older models where the wire frame is included in the model with a negative EGID,
fecom(’ShowLinks’) still generates a standard plot showing the FEM as a gray mesh, the test wire-
frame as a red mesh, test/FEM node links as green lines with end circles, and rotation interpolation
links as blue lines with cross markers.

WireExp

def = fe sens(’wireexp’,sens) uses the wire-frame topology define in sens to create an inter-
polation for un-measured directions. For a tutorial on this issue see section 3.3.2 .

The following example applies this method for the GARTEUR example. You can note that the
in-plane bending mode (mode 8) is clearly interpolated with this approach (the drums of the green
deformation have global motion rather than just one point moving horizontally).
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[TEST,test_mode]=demosdt(’demo gartte wire’);

TR=fe_sens(’wireexp’,TEST);

cf=feplot;cf.model=TEST;fe_sens(’WireExpShow’,cf,TR)

pause %Use +/- to scan trough deformations as a verification

cf.def(1)=test_mode;

cf.def(2)={test_mode,TR};
fecom(’;show2def;ScaleEqual;ch8;view2’);

legend(cf.o(1:2),’Nominal’,’Wire-exp’)

The command builds default properties associated with the wire frame (beams properties for seg-
ments, shells properties for surfaces, elastic properties for volumes). In some cases you may get
better properties by defining properties yourself (see section 7.4 and section 7.3 ).

Test mesh handling

fe sens provides commands dedicated to test mesh manipulations prior to correlation.

MeshProject

TEST=fe sens(’MeshProject’,TEST,’x’,[x1 x2 x3],...); Projects the test mesh from a basis
declaration. This allows keeping a test mesh in a specific basis for reuse in different FEM. Usual
options are x, y, origin, scale. The command then defines a basis comptatible with the input
arguments and projects nodes and tdof in the mesh output.

TEST=fe_sens(’MeshProject’,TEST,...

{’x’, [-0.0724899 0.0460858 -0.996304], ... % x_test in FEM coordinates

’y’, [-0.0846775 0.995041 0.0521884], ... % y_test in FEM coordinates

’origin’,[182.78955815663335 25.33640608720782 -1.0],... % test origin in FEM coor

’scale’, [1]};

MeshSub

T1=fe sens(’MeshSub’,TEST,NodeSel); Generates a test mesh T1 from a node selection from the
global test mesh TEST. Remaining edges of cut surface elements will be kept as beams.

Section 4.6, femesh, fe exp, fe c,ii mac, ii comac
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Purpose

High level access to standard solvers.

Syntax

[Result,model] = fe_simul(’Command’,MODEL,OPT)

Description

fe simul is the generic function to compute various types of response. It allows an easy access to
specialized functions to compute static, modal (see fe eig) and transient (see fe time) response.
A tutorial may be found in section 4.8 .

Once you have defined a FEM model (section 4.5 ), material and elements properties (section 4.5.1
), loads and boundary conditions (see fe case), calling fe simul assembles the model (if necessary)
and computes the response using the dedicated algorithm.

Note that you may access to the fe simul commands graphically with the simulate tab of the feplot
GUI. See tutorial (section 4.8 ) on how to compute a response.

Input arguments are :

• MODEL a standard FEM model data structure with loads, boundary conditions, ... defined in
the case. See section 4.5 (tutorial), fe case for boundary conditions, fe load for loads, ...

• OPT is an option vector or data structure used for some solutions. These may also be stored
as model.Stack entries.

Accepted commands are

• Static: computes the static response to loads defined in the Case. no options are available
for this command

model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volume load’,data);

[cf.def,model]=fe_simul(’static’,model);

• Mode : computes normal modes, fe eig options can be given in the command string or as an
additional argument. For modal computations, opt=[method nm Shift Print Thres] (it is
the same vector option as for fe eig). This an example to compute the first 10 modes of a 3D
beam :
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model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;

model=stack_set(model,’info’,’EigOpt’,[6 10 0 11]);

[cf.def,model]=fe_simul(’mode’,model);

• DFRF: computes the direct response to a set of input/output at the frequencies defines in Stack.

femesh(’reset’); model = femesh(’testubeamt’);

model=fe_case(model,’FixDof’,’Clamped end’,’z==0’);

r1=struct(’DOF’,365.03,’def’,1.1); % 1.1 N at node 365 direction z

model=fe_case(model,’DofLoad’,’PointLoad’,r1);

model= stack_set(model,’info’,’Freq’,1:10);

def=fe_simul(’DFRF’,model);

One can define a frequency dependence of the load using a curve (see section 7.9 for more
detail). For example:

model=fe_curve(model,’set’,’input’,’Testeval (2*pi*t).^2’);

model=fe_case(model,’setcurve’,’PointLoad’,’input’);

• Time : computes the time response. You must specify which algorithm is used (Newmark,
Discontinuous Galerkin dg, Newton, Theta, or NLNewmark). For transient computations, opt=
[beta alpha t0 deltaT Nstep] (it is the same vector option as for fe time). Calling time
response with fe simul does not allow initial condition. This is an example of a 1D bar
submitted to a step input :

model=demosdt(’demo bar’);

[def,model]=fe_simul(’time newmark’,model,[.25 .5 0 1e-4 50]);

def.DOF=def.DOF+.02;

cf=feplot;cf.model=model;cf.def=def;

fecom(’;view1;animtime;ch20’);

See also

fe eig, fe time, fe mk
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Purpose

Computation of stresses and energies for given deformations.

Syntax

Result = fe_stress(’Command’,MODEL,DEF)

... = fe_stress(’Command’,node,elt,pl,il, ...)

... = fe_stress( ... ,mode,mdof)

Description

You can display stresses and energies directly using fecom ColorDataEner commands and use
fe stress to analyze results numerically. MODEL can be specified by four input arguments node,
elt, pl and il (those used by fe mk, see also section 7.1 and following), a data structure with fields
.Node, .Elt, .pl, .il, or a database wrapper with those fields.

The deformations DEF can be specified using two arguments: mode and associated DOF definition
vector mdof or a structure array with fields .def and .DOF.

Ener [m,k]ElementSelection

Element energy computation. For a given shape, the levels of strain and kinetic energy in different
elements give an indication of how much influence the modification of the element properties may
have on the global system response. This knowledge is a useful analysis tool to determine regions
that may need to be updated in a FE model. Accepted command options are

• -MatDesval is used to specify the matrix type (see MatType). -MatDes 5 now correctly com-
putes energies in pre-stressed configurations.

• -curve should be used to obtain energies in the newer curve format. Ek.X{1} gives as columns
EltId,vol,MatId,ProId,GroupId so that passage between energy and energy density can be
done dynamically.

• ElementSelection (see the element selection commands) used to compute energies in part
of the model only. The default is to compute energies in all elements. A typical call to get
the strain energy in a material of ID 1 would then be R1=fe stress(’Ener -MatDes1 -curve

matid1’,model,def);

Obsolete options are
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• m, k specify computation of kinetic or strain energies. For backward compatibility, fe stress

returns [StrainE,KinE] as two arguments if no element selection is given.

• dens changes from the default where the element energy and not energy density is computed.
This may be more appropriate when displaying energy levels for structures with uneven meshes.

• Element energies are computed for deformations in DEF and the result is returned in the data
structure RESULT with fields .data and .EltId which specifies which elements were selected.
A .vol field gives the volume or mass of each element to allow switching between energy and
energy density.

The strain and kinetic energies of an element are defined by

Eestrain =
1

2
φTKelementφ and Eekinetic =

1

2
φTMelementφ

For complex frequency responses, one integrates the response over one cycle, which corresponds to
summing the energies of the real and imaginary parts and using a factor 1/4 rather than 1/2.

feplot

feplot allows the visualization of these energies using a color coding. You should compute energies
once, then select how it is displayed. Energy computation clearly require material and element
properties to be defined in InitModel.

The earlier high level commands fecom ColorDataK or ColorDataM don’t store the result and thus
tend to lead to the need to recompute energies multiple times. The preferred strategy is illustrated
below.

% Computing, storing and displaying energy data

demosdt(’LoadGartFe’); % load model,def

cf=feplot(model,def);cf.sel=’eltname quad4’;fecom ch7

% Compute energy and store in Stack

Ek=fe_stress(’ener -MatDes 1 -curve’,model,def)

cf.Stack{’info’,’Ek’}=Ek;
% Color is energy density by element

feplot(’ColorDataElt -dens -ColorBarTitle "Ener Dens"’,Ek);

% Color by group of elements

cf.sel={’eltname quad4’, ... % Just the plates

’ColorDataElt -ColorBarTitle "ener" -bygroup -edgealpha .1’, ...

Ek}; % Data with no need to recompute

fecom(cf,’ColorScale One Off Tight’) % Default color scaling for energies
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Accepted ColorDataElt options are

• -dens divides by element volume. Note that this can be problematic for mixed element types
(in the example above, the volume of celas springs is defined as its length, which is inappro-
priate here).

• -frac divides the result by the total energy (equal to the square of the modal frequency for
normal modes).

• -byGroup sums energies within the same element group. Similarly -byProId and -byMatId

group by property identifier. When results are grouped, the fecom(’InfoMass’) command
gives a summary of results.

The color animation mode is set to ScaleColorOne.

Stress

out=fe stress(’stress CritFcn Options’,MODEL,DEF,EltSel) returns the stresses evaluated at
elements of Model selected by EltSel.

The CritFcn part of the command string is used to select a criterion. Currently supported criteria
are

sI, sII,

sIII

principal stresses from max to min. sI is the default.

mises Returns the von Mises stress (note that the plane strain case is not currently handled
consistently).

-comp i Returns the stress components of index i. This component index is giving in the
engineering rather than tensor notation (before applying the TensorTopology trans-
formation).

Supported command Options (to select a restitution method, ...) are

• AtNode average stress at each node (default). Note this is not currently weighted by element
volume and thus quite approximate. Result is a structure with fields .DOF and .data.

• AtCenter stress at center or mean stress at element stress restitution points. Result is a struc-
ture with fields .EltId and .data.
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• AtInteg stress at integration points (*b family of elements).

• Gstate returns a case with Case.GroupInfo{jGroup,5} containing the group gstate. This
will be typically used to initialize stress states for non-linear computations. For multiple de-
formations, gstate the first nElt columns correspond to the first deformation.

• -curve returns the output using the curve format.

The fecom ColorDataStress directly calls fe stress and displays the result. For example, run
the basic element test q4p testsurstress, then display various stresses using

% Using stress display commands

q4p(’testsurstress’)

fecom(’ColorDataStress atcenter’)

fecom(’ColorDataStress mises’)

fecom(’ColorDataStress sII atcenter’)

To obtain strain computations, use the strain material as shown below.

% Accessing stress computation data (older calls)

[model,def]=hexa8(’testload stress’);

model.pl=m_elastic(’dbval 100 strain’,’dbval 112 strain’);

model.il=p_solid(’dbval 111 d3 -3’);

data=fe_stress(’stress atcenter’,model,def)

CritFcn

For stress processing, one must often distinguish the raw stress components associated with the
element formulation and the desired output. CritFcn are callback functions that take a local variable
r1 of dimensions (stress components × nodes × deformations) and to replace this variable with the
desired stress quantity(ies). For example

% Sample declaration of a user defined stress criterium computation

function out=first_comp(r1)

out=squeeze(r1(1,:,:,:));

would be a function taking the first component of a computed stress. sdtweb fe stress(’’Principal’’)

provides stress evaluations classical for mechanics.

For example, a list of predefined CritFcn callback :
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• Von Mises : CritFcn=’r1=of mk(’’StressCrit’’,r1,’’VonMises’’);lab=’’Mises’’;’;

• YY component : CritFcn=’r1=r1(2,:,:,:);lab=’’Syy’’;’

Redefining the CritFcn callback is in particular used in the StressCut functionality, see section 4.7
.

See also

fe mk, feplot, fecom
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Purpose

Computation of time and non linear responses.

Syntax

def=fe_time(model)

def=fe_time(TimeOpt,model)

[def,model,opt]=fe_time(TimeOpt,model)

model=fe_time(’TimeOpt...’,model)

TimeOpt=fe_time(’TimeOpt...’)

Description

fe time groups static non-linear and transient solvers to compute the response of a FE model given
initial conditions, boundary conditions, load case and time parameters. Note that you may access to
the fe time commands graphically with the simulate tab of the feplot GUI. See tutorial (section 4.8
) on how to compute a response.

Solvers and options

Three types of time integration algorithm are possible: the Newmark schemes, the Theta-method,
and the time Discontinuous Galerkin method. Implicit and explicit methods are implemented for
the Newmark scheme, depending on the Newmark coefficients β and γ, and non linear problems are
supported.

The parameters of a simulation are stored in a time option data structure TimeOpt given as input
argument or in a model.Stack entry info,TimeOpt. Initial conditions are stored as a curve,q0

entry.

The solvers selected by the string TimeOpt.Method are

• newmark linear Newmark

• NLNewmark non linear Newmark (with Newton iterations)

• staticNewton static Newton

• Theta Theta-Method (linear)

• Euler method for first order time integration.
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• dg Discontinuous Galerkin

• back perform assembly and return model,Case,opt.

Here is a simple example to illustrate the common use of this function.

model=fe_time(’demo bar’); % build the model

% Define time options and use structure directly

opt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’);

def=fe_time(opt,model); % compute the response

% Store as model.Stack entry {’info’,’TimeOpt’,opt}
model=stack_set(model,’info’,’TimeOpt’,opt);

def=fe_time(model); % compute the response

TimeOpt

The TimeOpt data structure has fields to control the solver

• Method selection of the solver

• Opt numeric parameters of solver if any. For example for Newmark [beta gamma t0 deltaT

Nstep]

• MaxIter maximum number of iterations.

• nf optional value of the first residual norm. The default value is norm(fc) where fc = [b] {u(t)}
the instant load at first time step. This is used to control convergence on load.

• IterInit,IterEnd callbacks executed in non linear solver iterations. This is evaluated when
entering and exiting the Newton solver. Can be used to save specific data, implement modified
solvers, ...

• Jacobian string to be evaluated to generate a factored jacobian matrix in matrix or ofact

object ki. Defaults are detailed for each solver, see also NLJacobianUpdate if you have the
non-linear vibration tools.

• JacobianUpdate controls the update of Jacobian in Newton and quasi-Newton loops. Use 1
for updates and 0 for a fixed Jacobian (default).

• Residual Callback evaluated for residual. The default residual is method dependent.
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• InitAcceleration optional field to be evaluated to initialize the acceleration field.

• IterFcn string or function handle iteration (inner loop) function. When performing the time
simulation initialization, the string will be replaced by the function handle (e.g. @iterNewton).
Iteration algorithms available in fe time are iterNewton (default for basic Newton and New-
mark) and iterNewton Sec which implements the Newton increment control algorithm.

• RelTol threshold for convergence tests. The default is the OpenFEM preference

getpref(’OpenFEM’,’THRESHOLD’,1e-6);

• TimeVector optional value of computed time steps, if exists TimeVector is used instead of
deltaT,Nstep.

• AssembleCall optional callback for assembly, see nl spring(’AssembleCall’). When model

and Case are provided as fully assembled, one can define the AssembleCall field as empty to
tell fe timenot to perform any assembly. Description of assemble calls can be found in sec-
tion 4.8.8 .

to control the output

• OutInd DOF output indices (see 2D example). This selection is based on the state DOFs
which can be found using fe case(model,’GettDof’).

• OutputFcn string to be evaluated for post-processing or time vector containing the output time
steps. Examples are given below.

• FinalCleanupFcn string to be evaluated for final post-processing of the simulation

• c u, c v, c a optional observation matrices for displacement, velocity and acceleration out-
puts. See section 4.6.4 for more details on observation matrix generation.

• lab u, lab v, lab a optional cell array containing labels describing each output (lines of
observation matrices)

• NeedUVA [NeedU NeedV NeedA], if NeedU is equal to 1, output displacement, etc. The default
is [1 0 0] corresponding to displacement output only.

• OutputInit optional string to be evaluated to initialize the output (before the time loop). The
objective of this call is to preallocate matrices in the out structure so that data can be saved
efficiently during the time integration. In particular for many time steps out.def may be very
large and you want the integration to fail allocating memory before actually starting.
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• SaveTimes optional time vector, saves time steps on disk

• Follow implements a timer allowing during simulation display of results. A basic follow mech-
anism is implemented (opt.Follow=1; to activate, see NLNewmark example below)). One
can also define a simple waitbar with remaining time estimation, with:
opt.Follow=’cingui(’’TimerStartWaitBar-title"Progress bar example..."’’)’; More
elaborate monitoring are available within the SDT optional function nl spring (see nl spring

Follow).

Input and output options

This section details the applicable input and the output options.

Initial conditions may be provided in a model.Stack entry of type info named q0 or in an input
argument q0. q0 is a data structure containing def and DOF fields as in a FEM result data structure
(section 4.8 ). If any, the second column gives the initial velocity. If q0 is empty, zero initial
conditions are taken. In this example, a first simulation is used to determine the initial conditions
of the final simulation.

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

% first computation to determine initital conditions

def=fe_time(TimeOpt,model);

% no input force

model=fe_case(model,’remove’,’Point load 1’);

% Setting initial conditions

q0=struct(’def’,[def.def(:,end) def.v(:,end)],’DOF’,def.DOF);

model=stack_set(model,’curve’,’q0’,q0);

def=fe_time(TimeOpt,model);

An alternative call is possible using input arguments

def=fe_time(TimeOpt,model,Case,q0)

In this case, it is the input argument q0 which is used instead of an eventual stack entry.

You may define the time dependence of a load using curves as illustrated in section 7.9 .

You may specify the time steps by giving the ’TimeVector’
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TimeOpt=struct(’Method’,’Newmark’,’Opt’,[.25 .5 ],...

’TimeVector’,linspace(0,100e-4,101));

This is useful if you want to use non constant time steps. There is no current implementation for
self adaptive time steps.

To illustrate the output options, we use the example of a 2D propagation. Note that this example
also features a time dependent DofLoad excitation (see fe case) defined by a curve, (see fe curve),
here named Point load 1.

model=fe_time(’demo 2d’);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 50’);

You may specify specific output by selecting DOF indices as below

i1=fe_case(model,’GettDof’); i2=feutil(’findnode y==0’,model)+.02;

TimeOpt.OutInd=fe_c(i1,i2,’ind’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % Don’t animate this (only bottom line)

You may select specific output time step using TimeOpt.OutputFcn as a vector

TimeOpt.OutputFcn=[11e-4 12e-4];

TimeOpt=feutil(’rmfield’,TimeOpt’,’OutInd’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % only two time steps saved

or as a string to evaluate. In this case it is useful to know the names of a few local variables in the
fe time function.

• out the structure preallocated for output.

• j1 index of the current step with initial conditions stored in the first column of out.def so
store the current time step in out.def(:,j1+1).

• u displacement field, v velocity field, a acceleration field.

In this example the default output function (for TimeOpt.NeedUVA=[1 1 1]) is used but specified
for illustration

TimeOpt.OutputFcn=[’out.def(:,j1+1)=u;’ ...

’out.v(:,j1+1)=v;out.a(:,j1+1)=a;’];

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % full deformation saved

720



fe time

This example illustrates how to display the result (see feplot) and make a movie

cf=feplot(model,def);

fecom(’ColorDataEvalA’);

fecom(cf,’SetProp sel(1).fsProp’,’FaceAlpha’,1,’EdgeAlpha’,0.1);

cf.ua.clim=[0 2e-6];fecom(’;view2;AnimTime;ch20;scd1e-2;’);

st=fullfile(getpref(’SDT’,’tempdir’),’test.gif’);

fecom([’animMovie ’ st]);fprintf(’\nGenerated movie %s\n’,st);

Note that you must choose the Anim:Time option in the feplot GUI.

You may want to select outputs using observations matrix

model=fe_time(’demo bar’); Case=fe_case(’gett’,model);

i1=feutil(’findnode x>30’,model);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’);

TimeOpt.c_u=fe_c(Case.DOF,i1+.01); % observation matrix

TimeOpt.lab_u=fe_c(Case.DOF,i1+.01,’dofs’); % labels

def=fe_time(TimeOpt,model);

If you want to specialize the output time and function you can specify the SaveTimes as a time
vector indicating at which time the SaveFcn string will be evaluated. A typical TimeOpt would
contain

TimeOpt.SaveTimes=[0:Ts:TotalTime];

TimeOpt.SaveFcn=’My_function(’’Output’’,u,v,a,opt,out,j1,t);’;

Cleanup

The field FinalCleanupFcn of the TimeOpt can be used to specify what is done just after the time
integration.
fe simul provides a generic clean up function which can be called using
opt.FinalCleanupFcn=’fe simul(’’fe timeCleanup’’,model)’;

If the output has been directly saved or from iiplot it is possible to load the results with the same
display options than for the fe timeCleanup using fe simul(’fe timeLoad’,fname)’;

Some command options can be used:

• -cf i stores the result of time integration in the stack of iiplot or feplot figure number i.
i=-1 can be specified to use current iiplot figure and i=-2 for current feplot figure. Dis-
placements are stored in curve,disp entry of the stack. Velocities and accelerations (if any)
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are respectively stored in the curve,vel and curve,acc stack entries. If command option
-reset is present, existent stack entries (disp, vel, acc, etc. ...) are lost whereas if not stack
entries name are incremented (disp(1), disp(2), etc. ...).

• ’-ExitFcn"AnotherCleanUpFcn"’ can be used to call an other clean up function just after
fe simul(’fe timeCleanUp’) is performed.

• -fullDOF performs a restitution of the output on the unconstrained DOF of the model used
by fe time.

-restitFeplot adds a .TR field to the output to allow deformation on the fly restitution in
feplot. These two options cannot be specified simultaneously.

• Command option -rethrow allows outputting the cross reference output data from iiplotor
feplotif the option -cf-1 or -cf-2 is used.

newmark

For the Newmark scheme, TimeOpt has the form

TimeOpt=struct(’Method’,’Newmark’,’Opt’,Opt)

where TimeOpt.Opt is defined by

[beta gamma t0 deltaT Nstep]

beta and gamma are the standard Newmark parameters [37] ([0 0.5] for explicit and default at [.25
.5] for implicit), t0 the initial time, deltaT the fixed time step, Nstep the number of steps.

The default residual is r = (ft(j1,:)*fc’-v’*c-u’*k)’; (notice the sign change when compared
to NLNewmark).

This is a simple 1D example plotting the propagation of the velocity field using a Newmark implicit
algorithm. Rayleigh damping is declared using the info,Rayleigh case entry.

model=fe_time(’demo bar’);

data=struct(’DOF’,2.01,’def’,1e6,...

’curve’,fe_curve(’test ricker dt=1e-3 A=1’));

model = fe_case(model,’DOFLoad’,’Point load 1’,data);

TimeOpt=struct(’Method’,’Newmark’,’Opt’,[.25 .5 3e-4 1e-4 100],...

’NeedUVA’,[1 1 0]);

def=fe_time(TimeOpt,model);
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% plotting velocity (propagation of the signal)

def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;

feplot(model,def_v);

if sp_util(’issdt’); fecom(’;view2;animtime;ch30;scd3’);

else; fecom(’;view2;scaledef3’); end

dg

The time discontinuous Galerkin is a very accurate time solver [51] [52] but it is much more time
consuming than the Newmark schemes. No damping and no non linearities are supported for Dis-
continuous Galerkin method.

The options are [unused unused t0 deltaT Nstep Nf], deltaT is the fixed time step, Nstep the
number of steps and Nf the optional number of time step of the input force.

This is the same 1D example but using the Discontinuous Galerkin method:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt DG Inf Inf 0. 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

def=fe_time(TimeOpt,model);

def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;

feplot(model,def_v);

if sp_util(’issdt’); fecom(’;view2;animtime;ch30;scd3’); ...

else; fecom(’;view2;scaledef3’); end

NLNewmark

For the non linear Newmark scheme, TimeOpt has the same form as for the linear scheme (method
Newmark). Additional fields can be specified in the TimeOpt data structure
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Jacobian string to be evaluated to generate a factored jacobian matrix in matrix or
ofact object ki. The default jacobian matrix is
’ki=ofact(model.K{3}+2/dt*model.K{2}’ +4/(dt*dt)*model.K{1});’

Residual Defines the residual used for the Newton iterations of each type step. It is
typically a call to an external function. The default residual is
’r = model.K{1}*a+model.K{2}*v+model.K{3}*u-fc;’ where fc is the
current external load, obtained using (ft(j1,:)*fc’)’ at each time step.

IterInit evaluated when entering the correction iterations. This can be used to
initialize tolerances, change mode in a co-simulation scheme, etc.

IterEnd evaluated when exiting the correction iterations. This can be used to save
specific data, ...

IterFcn Correction iteration algorithm function, available are iterNewton (default
when omitted) or iterNewton Sec. Details of the implementation are given
in the staticNewton below.

MaxIterSec for iterNewton Sec applications (see staticNewton).
ResSec for iterNewton Sec applications (see staticNewton).

Following example is a simple beam, clamped at one end, connected by a linear spring at other
end and also by a non linear cubic spring. The NL cubic spring is modeled by a load added in the
residual expression.

% Get simple test case for NL simulation in sdtweb demosdt(’BeamEndSpring’)

model=demosdt(’BeamEndSpring’); % simple example building

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

disp(opt.Residual)

opt.Follow=1; % activate simple monitoring of the

% number of Newton iterations at each time step

def=fe_time(opt,model);

staticNewton

For non linear static problems, the Newton solver iterNewton is used. TimeOpt has a similar form
as with the NLNewmark method but no parameter Opt is used.

An increment control algorithm iterNewton Sec can be used when convergence is difficult or slow
(as it happens for systems showing high stiffness variations). The Newton increment ∆q is then the
first step of a line search algorithm to optimize the corrective displacement increment ρ∆q, ρ ∈ R
in the iteration. This optimum is found using the secant iteration method. Only a few optimization
iterations are needed since this does not control the mechanical equilibrium but only the relevance
of the Newton increment. Each secant iteration requires two residual computations, which can be
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costly, but more efficient when a large number of standard iterations (matrix inversion) is required
to obtain convergence.

Fields can be specified in the TimeOpt data structure

Jacobian defaults to ’ki=ofact(model.K{3});’
Residual defaults to ’r = model.K{3}*u-fc;’
IterInit and IterEnd are supported see fe time TimeOpt

IterEnd

MaxIterSec Maximum secant iterations for the iterNewton Sec iteration algorithm.
The default is 3 when omitted.

ResSec Residual evaluation for the secant iterations of the iterNewton Sec

iteration algorithm. When omitted, fe timetries to interpret the
Residual field. The function must fill in the secant resid-
ual evaluation r1 which two columns will contain the residual
for solution rho(1)*dq and rho(2)*dq. The default ResSec field
will be then ’r1(:,1) = model.K{3}*(u-rho(1)*dq)-fc; r1(:,2) =

model.K{3}*(u-rho(2)*dq)-fc;’.

Below is a demonstration non-linear large transform statics.

% Sample mesh, see script with sdtweb demosdt(’LargeTransform’)

model=demosdt(’largeTransform’); %

% Now perform the Newton loop

model=stack_set(model,’info’,’TimeOpt’, ...

struct(’Opt’,[],’Method’,’StaticNewton’,...

’Jacobian’,’ki=basic_jacobian(model,ki,0.,0.,opt.Opt);’,...

’NoT’,1, ... % Don’t eliminate constraints in model.K

’AssembleCall’,’assemble -fetimeNoT -cfield1’, ...

’IterInit’,’opt=fe_simul(’’IterInitNLStatic’’,model,Case,opt);’));

model=fe_case(model,’setcurve’,’PointLoad’, ...

fe_curve(’testramp NStep=20 Yf=1e-6’)); % 20 steps gradual load

def=fe_time(model);

cf=feplot(model,def); fecom(’;ch20;scc1;colordataEvalZ’); % View shape

ci=iiplot(def);iicom(’ch’,{’DOF’,288.03}) % View response

numerical damping for Newmark, HHT-alpha schemes

You may want to use numerical damping in a time integration scheme, the first possibility is to tune

the Newmark parameters using a coefficient α such that β = (1+α)2

4 and γ = 1
2 + α. This is known
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to implement too much damping at low frequencies and is very depending on the time step [37].

A better way to implement numerical damping is to use the HHT-α method which applies the
Newmark time integration scheme to a modified residual balancing the forces with the previous time
step.

For the HHT-α scheme, TimeOpt has the form

TimeOpt=struct(’Method’,’nlnewmark’,’Opt’,Opt,...

’HHTalpha’,alpha)

where TimeOpt.Opt is defined by

[beta gamma t0 deltaT Nstep]

beta and gamma are the standard Newmark parameters [37] with numerical damping, t0 the initial
time, deltaT the fixed time step, Nstep the number of steps.

The automatic TimeOpt generation call takes the form [alpha unused t0 deltaT Nstep] and will
compute the corresponding β, γ parameters.

This is a simple 1D example plotting the propagation of the velocity field using the HHT-α implicit
algorithm:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt hht .05 Inf 3e-4 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

def=fe_time(TimeOpt,model);

The call

TimeOpt=fe_time(’TimeOpt hht .05 Inf 3e-4 1e-4 100’);

is strictly equivalent to

TimeOpt=struct(’Method’,’nlnewmark’,...

’Opt’,[.275625 .55 3e-4 1e-4 100],...

’HHTalpha’,.05);

Theta

The θ-method is a velocity based solver, whose formulation is given for example in [53, 54]. It
considers the acceleration as a distribution, thus relaxing discontinuity problems in non-smooth
dynamics. Only a linear implementation is provided in fe time. The user is nevertheless free to
implement a non-linear iteration, through his own IterFcn.

This method takes only one integration parameter for its scheme, θ set by default at 0.5. Any values
between 0.5 and 1 can be used, but numerical damping occurs for θ > 0.5.
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The TimeOpt.Opt takes the form [theta unused t0 deltaT Nstep].

This is a simple 1D example plotting the propagation of the velocity field using the θ-Method:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt theta .5 0 3e-4 100’);

def=fe_time(TimeOpt,model);

Euler

This method can be used to integrate first order problem of the form Mq̇ + Kq = F . One can use
it to solve transient heat diffusion equation (see p heat).

Integration scheme is of the form qn+1 = qn + (1− θ)hq̇n + θhq̇n+1

θ can be define in opt.Opt(1). Explicit Euler (θ = 0) is not implemented at this time. Best accuracy
is obtained with θ = 1

2 (Crank-Nicolson).

See also

fe mk, fe load, fe case
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Purpose

The of time function is a low level function dealing with CPU and/or memory consuming steps of
a time integration.

The case sensitive commands are

lininterp linear interpolation.
storelaststep pre-allocated saving of a time step in a structure with fields initially built

with struct(’uva’,[u,v,a],’FNL’,model.FNL)

interp Time scheme interpolations (low level call).
-1 In place memory assignment.

lininterp

The lininterp command which syntax is

out = of time (’lininterp’,table,val,last) ,

computes val containing the interpolated values given an input table which first column contains
the abscissa and the following the values of each function. Due to performance requirements, the
abscissa must be in ascending order. The variable last contains [i1 xi si], the starting index
(beginning at 0), the first abscissa and coordinate. The following example shows the example of 2
curves to interpolate:

out=of_time(’lininterp’,[0 0 1;1 1 2;2 2 4],linspace(0,2,10)’,zeros(1,3))

Warning : this command modifies the variable last within a given function this may
modify other identical constants in the same m-file. To avoid any problems, this variable
should be generated using zeros (the Matlab function) to assure its memory allocation independence.

The storelaststep command makes a deep copy of the displacement, velocity and acceleration fields
(stored in each column of the variable uva.uva in the preallocated variables u, v and a following the
syntax:

of time(’storelaststep’,uva,u,v,a);

interp

This command performs transient numerical scheme response interpolations. It is used by fe time

when the user gives a TimeVector in the command. In such case the output instants do not corre-
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spond to the solver computation instants, the approached output instants must thus be interpolated
from the solver instants using the numerical scheme quadrature rules.

This command uses current solver instant t1 and the last instant step t0 of the solver uva. The uva

matrix is stored in Case and contains in each column, displacement, velocity and acceleration at t0.
The interpolation strategy that is different for each numerical scheme depends on the arguments
given to of time.

Warning : this command modifies out.def at very low level, out.def thus cannot be
initialized by simple numerical values, but by a non trivial command (use zeros(1)

instead of 0 for example) to ensure the unicity of this data in memory.

For a Newmark or HHT-alpha scheme, the low level call command is

of_time (’interp’, out, beta,gamma,uva,a, t0,t1,model.FNL);

where beta and gamma are the coefficients of the Newmark scheme, first two values of opt.Opt.

Thus the displacement (u1) and velocity (v1) at time t1 will be computed from the displacement
(u0), velocity (v0), acceleration (a0) stored in uva, the new acceleration a (a1), and the time step
(h = t1− t0) as

{
v1 = v0 + h(1− γ)a0 + hγa1

u1 = u0 + hv0 + h2(1
2 − β)a0 + h2βa1

(10.23)

NL force (model.FNL) is linearly interpolated.

For the Theta-Method scheme, the low level command is

of_time (’interp’, out, opt.Opt(1),[],uva,v, t0,t1,model.FNL);

Thus the displacement (u1) at time t1 will be computed from the displacement (u0), velocity (v0),
stored in uva, the new velocity v (v1), and the time step (h = t1− t0) as

u1 = u0 + h(1− θ)v0 + hθv1 (10.24)

For the staticnewton method, it is possible to use the same storage strategy (since it is optimized
for performance), using

of_time (’interp’, out, [],[], [],u, t0,t1,model.FNL);

In this case no interpolation is performed.

729



of time

Please note that this low-level call uses the internal variables of fe time at the state where is is
evaluated. It is then useful to know that inside fe time:

• current instant computed is time tc=t(j1+1) using time step dt, values are t0=tc-dt and
t1=tc.

• uva is generally stored in Case.uva.

• the current acceleration, velocity or displacement values when interpolation is performed are
always a, v, and u.

• The out data structure must be preallocated and is modified by low level C calls. Expected
fields are

def displacement output, must be preallocated with size
length(OutInd) x length(data)

v velocity output, must be preallocated with size
length(OutInd) x length(data)

a acceleration output (when computed) must be preallocated with size
length(OutInd) x length(data)

data column vector of output times
OutInd int32 vector of output indices, must be given
cur [Step dt], must be given
FNL possibly preallocated data structure to store non-linear loads.

FNL.def must be length(model.FNL) by size(out.data,1) (or
possibly size(out.FNL.data,1), in this case fieldnames must be
def,DOF,data,cur)

• non linear loads in model.FNL are never interpolated.

-1

This command performs in place memory assignment of data. It is used to avoid memory duplication
between several layers of code when computation data is stored at high level. One can thus propagate
data values at low level in variables shared by several layers of code without handling output and
updates at each level.

The basic syntax to fill-in preallocated variable r1 with the content of r2 is i0 = of time(-1,r1,r2);.
The output i0 is the current position in r1 after filling with r2.

It is possible to use a fill-in offset i1 to start filling r1 with r2 from index position i1 : i0 =

of time([-1 i1],r1,r2);.
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To avoid errors, one must ensure that the assigned variable is larger than the variable to transmit.
The following example illustrates the use of this command.

% In place memory assignment in vectors with of_time -1

r1=zeros(10,1); % sample shared variable

r2=rand(3,1); % sample data

% fill in start of r1 with r2 data

of_time(-1,r1,r2);

% fill in start of r1 with r2 data and

% get current position in r1

i0=of_time(-1,r1,r2);

% i0 is current pos

% fill in r1 with r2+1

% with a position offset

i0=of_time([-1 i0],r1,r2+1);

See also

fe time
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Purpose

UI command functions for standard operations in identification.

Syntax

idcom(’CommandString’);

Description

The idcom command should only be used for script purpose. Most commands corre-
spond to the underlying button callbacks of the Ident table (see section 8.2.6 ). Chap-
ter 2 presents the interactive way to perform a modal identification with SDT using of
the dedicated dock Id.

idcom provides a simple access to standard operations in identification. The way they should be
sequenced is detailed in section 2.5 which also illustrates the use of the associated GUI.

idcom is always associated with an iiplot figure. Information on how to modify standard plots is
given under iicom. The datasets used by idcom are described in section 2.5 . Methods to access
the data from the command line are described in section 2.1.2 . Identification options stored in the
figure are detailed under the idopt function.

idcom(ci) turns the environment on, idcom(ci,’Off’) removes options but not datasets.

The information given below details each command (see the commode help for hints on how to build
commands and understand the variants discussed in this help). Without arguments idcom opens or
refreshes the current idcom figure.

Commands

e [ ,i w]

Single pole narrow-band model identification. e calls ii poest to determine a single pole narrow
band identification for the data set ci.Stack{’test’}.

A bandwidth of two percent of w is used by default (when i is not given). For i<1, the i specifies
the half bandwidth as a fraction of the central frequency w. For i an integer greater than 5, the
bandwidth is specified as a number of retained frequency points.

The selected frequency band is centered around the frequency w. If w is not given, ii poest will
wait for you to pick the frequency with your mouse.
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If the local fit does not seem very good, you should try different bandwidths (values of i).

The results are stored in ci.Stack{’IdAlt’} with a pole .po and residue .res field. FRFs are resyn-
thesized into ci.Stack{’IdFrf’} (which is overlaid to ci.Stack{’Test’} in iiplot). If, based on
the plot(s), the estimate seems good it should be added to the current pole set ci.Stack{’IdMain’}
using ea.

ea

Add alternate poles to the main set. If appropriate modes are present in ci.Stack{’IdAlt’} (after
using the e or f commands for example), they should be added to the main pole set ci.Stack{’IdMain’}
using the ea command. These poles can then be used to identify a multiple pole broadband model
with idcom est and idcom eup commands.

If all poles in ci.Stack{’IdAlt’} are already in ci.Stack{’IdMain’}, the two are only combined
when using the eaf command (this special format is used to prevent accidental duplication of the
nodes).

er [num i, f w]

Remove poles from ci.Stack{’IdMain’}. The poles to be removed can be indicated by number
using ’er num i’ or by frequency using ’er f w’ (the pole with imaginary part closest to w is
removed). The removed pole is placed in ci.Stack{’IdAlt’} so that an ea command will undo the
removal.

est[ ,local,localpole]

Broadband multiple pole identification without pole update. est uses id rc to identify a model based
on the complete frequency range. This estimate uses the current pole set ci.Stack{’IdMain’} but
does not update it. The results are a residue matrix ci.Stack{’IdMain’}.res, and corresponding
FRF ci.Stack{’IdFrf’} (which is overlaid to ci.Stack{’Test’} in iiplot). In most cases the
estimate can be improved by optimizing the poles using the eup or eopt commands.

estLocal only estimates residues of poles in the range selected by ci.IDopt. You perform a series
of local estimates over selected bands by providing these bands or using narrow band around each
pole with estLocalPole.

gartid

idcom(’w0’);idcom est

def_global=ci.Stack{’IdMain’}; % broadband estimate
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idcom(’estlocal’,{[6 7],[15 17],[31 38],[48 65]});
def_local=ci.Stack{’IdMain’}; % estimate by multiple local bands

eup dstep fstep [local, num i , iter j ]

Update of poles. eup uses id rc to update the poles of a multiple pole model based data within
ci.IDopt.SelectedRange. This update is done through a non-linear optimization of the pole loca-
tions detailed in section 2.6.5 . The results are updated modes ci.Stack{’IdMain’} (the initial ones
are stored in ci.Stack{’IdAlt’}), and corresponding FRF ci.Stack{’IdFrf’} (which is overlaid
in iiplot).

In most cases, eup provides significant improvements over the initial pole estimates provided by
the e command. In fact the only cases where you should not use eup is when you have a clearly
incomplete set of poles or have reasons to suspect that the model form used by id rc will not provide
an accurate broadband model of your response.

Default values for damping and frequency steps are 0.05 and 0.002. You may specify other values.
For example the command ’eup 0.05 0.0’ will only update damping values.

It is often faster to start by optimizing over small frequency bands while keeping all the poles. Since
some poles are not within the selected frequency range they should not be optimized. The option
local placed after values of dstep and fstep (if any) leads to an update of poles whose imaginary
part are within the retained frequency band.

When using local update, you may get warning messages about conditioning. These just tell you
that residues of modes outside the band are poorly estimated, so that the message can be ignored.
While algorithms that by-pass the numerical conditioning warning exist, they are slower and don’t
change results so that the warning was left.

In some cases you may want to update specific poles. The option num i where i gives the indices
in IdMain of the poles you want to update. For example ’eup 0.0 0.02 num 12’ will update the
frequency of pole 12 with a step of 2%.

• The poles in ci.Stack{’IdMain’}.po are all the information needed to obtain the full model
estimate. You should save this information in a text file (use idcom(’TableIdMain’) to generate
a clean output) to be able to restart/refine your identification.

• You can get a feel for the need to further update your poles by showing the error and quality
plots (see iiplot and section 2.2.2 ).
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eopt [local, num i, seq]

Update of poles. eopt is similar to eup but uses id rcopt to optimize poles. eopt is often more
efficient when updating one or two poles (in particular with the eopt local command after selecting
a narrow frequency band). eopt is guaranteed to improve the quadratic cost (3.3) so that using it
rarely hurts.

eoptSeq seeks to optimize all poles of the band. This is commonly efficient when starting from
stabilization results.

find

Find a pole. This command detects minima of the MMIF that are away from poles of the current
model ci.Stack{’IdMain’}.po and calls ii poest to obtain a narrow band single pole estimate in
the surrounding area. This command can be used as an alternative to indicating pole frequencies
with the mouse (e command). More complex automated model initialization will be introduced in
the future.

f i

Graphical input of frequencies. f i prompts the user for mouse input of i frequencies (the ab-
scissa associated with each click is taken to be a frequency). The result is stored in the pole matrix
ci.Stack{’IdAlt’}.po assuming that the indicated frequencies correspond to poles with 1% damp-
ing. This command can be used to create initial pole estimates but the command e should be used
in general.

dspi nm

Direct system parameter identification. dspi uses id dspi to create a nm pole state space model of
Test. nm must be less than the number of sensors. The results are transformed to the residue form
which gives poles and residues in IdMain, and corresponding FRF IdFrf (which is overlaid to Test

in iiplot.

mass i

Computes the generalized mass at address i. If the identified model contains complex residues
(ci.IDopt.Fit=’Pos’ or ’Complex’), res2nor is used to find a real residue approximation. For
real residues, the mass normalization of the mode is given by the fact that for collocated residues
reciprocity implies
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cColφj = φTj bCol =
√
RjCol = (mjCol)

−1/2 (10.25)

The mass at a given sensor i is then related to the modal output clφj of the mass normalized mode
by mlj = (clφj)

−2. This command can only be used when collocated transfer functions are specified
and the system is assumed to be reciprocal (see idopt).

poly nn nd

Orthogonal polynomial identification. poly uses id poly to create a polynomial model of Test with
numerators of degree nn and denominators of degree nd. The corresponding FRFs are stored in
IdFrf (which is overlaid to Test in iiplot).

Table,Tex] IIpo

Formatted printout of pole variables IIpo or IIpo1. With the Tex command the printout is suitable
for inclusion in LATEX.

This command is also accessible from the idcom figure context menu.

See also

idcom, iicom, iiplot, id rc, section 2.2
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Purpose

handling of options used by the identification related routines.

Description

idopt is the function handling identification options. Identification options associated with idcom

figures are used when generating new identifications. They should be modified using the ci.IDopt

pointer or the IDopt tab in the figure. In the text output below

>> ci=idcom; ci.IDopt

(ID options in figure(2)) =

ResidualTerms : [ 0 | 1 (1) | 2 (s^-2) | {3 (1 s^-2)} | 10 (1 s)]

DataType : [ {disp./force} | vel./force | acc./force ]

AbscissaUnits : [ {Hz} | rd/s | s ]

PoleUnits : [ {Hz} | rd/s ]

SelectedRange : [ 1-3124 (4.0039-64.9998) ]

FittingModel : [ Posit. cpx | {Complex modes} | Normal Modes]

NSNA : [ 0 sensor(s) 0 actuator(s) ]

Reciprocity : [ {Not used} | 1 FRF | MIMO ]

Collocated : [ none declared ]

currently selected value are shown between braces { } and alternatives are shown.

After performing an identification, the options used at the time are copied to the result. Thus the
ci.Stack{’IdMain’}.idopt is a copy of the figure options when the identification was performed.
Some manipulations possible with the res2nor,res2ss,id nor, ... functions may require modi-
fications of these options (which are different from the idcom figure options.

The SDT handle object used to store options is very permissive in the way to change values from the
command line (for GUI operation use the IDopt tab). ci.IDopt.OptName=OptValue sets the option.
OptName need only specify enough characters to allow a unique option match. Thus ci.IDopt.res

and ci.IDopt.ResidualTerms are equivalent. Here are a few examples

demosdt(’demoGartIdEst’);ci=idcom;

ci.IDopt.Residual=0; % modify estimation default

ci.IDopt.Selected=[100 2000];

ci.IDopt.Po=’Hz’;

ci.IDopt % changed

ci.Stack{’IdMain’}.idopt % not changed until new identification

The following is a list of possible options with indications as to where they are stored. Thus
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ci.IDopt.res=2 is simply a user friendly form for the old call ci.IDopt(6)=2 which you can still
use.

Res Residual terms selection (stored in ci.IDopt(1)) and corresponding to (5.26)
0 none
1 Static correction (high frequency mode correction)
2 Roll-off (s−2, low frequency mode correction).
3 Static correction and roll-off (default)
10 1 and s, this correction is only supported by id rc and should be used for identification

in narrow bandwidth (see ii poest for example)
-i An alternate format uses negative numbers with decades indicating powers (starting

at s−2). Thus Ass=-1101 means an asymptotic correction with terms in s−2, 1, s
Data type (stored in ci.IDopt(2))

0 displacement/force (default)
1 velocity/force
2 acceleration/force

Abscissa units for vector w can be Hz, rad/s or seconds
Pole units can be Hz or rad/s

units are actually stored in ci.IDopt(3) with units giving abscissa units (01 w in
Hertz, 02 w in rad/s, 03 w time seconds) and tens pole units (10 po in Hertz, 20 po

in rad/s). Thus ci.IDopt(3)=12 gives w in rad/sec and po in Hz.
Selected frequency range indices of first and last frequencies to be used for identification or

display (stored in ci.IDopt(4:5))
Fitting model (see res page 212, stored in ci.IDopt(6))

0 positive-imaginary poles only, complex mode residue
1 complex mode residue, pairs of complex-conjugate poles (default)
2 normal mode residue

ns,na number of sensors/actuators (outputs/inputs) stored in ci.IDopt(7:8))

Recip method selection for the treatment of reciprocity (stored in ci.IDopt(12))
1 means that only iC1 (ci.IDopt(13)) is declared as being collocated. id rm assumes

that only this transfer is reciprocal even if the system has more collocated FRFs
na (number of actuators) is used to create fully reciprocal (and minimal of course) MIMO

models using id rm. na must match non-zero values declared in iCi.
-nc (with nc the number of collocated FRFs) is used to declare collocated FRFs while

not enforcing reciprocity when using id rm.
iC1 ... indices of collocated transfer functions in the data matrix (see the xf format page

214)

To make a copy of the data, and no longer point to the figure, use ci.IDopt.GetData.
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iop2 = idopt returns a SDT handle to a set options that may differ from those of used by idcom.

See also

xfopt, idcom, iiplot
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Purpose

Direct structural system parameter identification.

Syntax

[a,b,c,d] = id_dspi(y,u,w,idopt,np)

Description

The direct structural system parameter identification algorithm [55] considered here, uses the dis-
placement frequency responses y(s) at the different sensors corresponding to the frequency domain
input forces u(s) (both given in the xf format). For example in a SIMO system with a white noise
input, the input is a column of ones u=ones(size(w)) and the output is equal to the transfer
functions y=xf. The results of this identification algorithm are given as a state-space model of the
form

{
ṗ
p̈

}
=

[
0 I
−KT −CT

]{
p
ṗ

}
+

[
0
bT

]
{u} and {y} =

[
cT 0

]{ p
ṗ

}
(10.26)

where the pseudo-stiffness KT and damping CT matrices are of dimensions np by np (number of
normal modes). The algorithm, only works for cases where np is smaller than the number of sensors
(ci.IDopt.ns).

ci=iicom(’curveload sdt_id’);

R1=ci.Stack{’Test’};
[a,b,c,d] = id_dspi(R1.xf,ones(size(R1.w)),R1.w,R1.idopt,4);

For SIMO tests, normal mode shapes can then be obtained using
[mode,freq] = eig(-a(np+[1:np],1:np)) where it must be noted that the modes are not mass
normalized as assumed in the rest of the Toolbox and thus cannot be used directly for predictions
(with nor2xf for example). Proper solutions to this and other difficulties linked to the use of this
algorithm (which is provided here mostly for reference) are not addressed, as the main methodology
of this Toolbox (id rc, id rm, and id nor) was found to be more accurate.

For MIMO tests, id dspi calls id rm to build a MIMO model.

The identification is performed using data within ci.IDopt.SelectedRange. y is supposed to be a
displacement. If ci.IDopt.DataType gives y as a velocity or acceleration, the response is integrated
to displacement as a first step.

See also
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idopt, id rc, id rm, psi2nor, res2nor
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Purpose

Identification of normal mode model, with optimization of the complex mode output shape matrix.

NOR = id_nor(ci.Stack{’IdMain’})
NOR = id_nor( ... )

[om,ga,phib,cphi] = id_nor( ... )

[new_res,new_po] = id_nor( ... )

[ ... ] = id_nor(IdResult,ind,opt,res_now)

Description

id nor is meant to provide an optimal transformation (see details in [12] or section 2.8.3 ) between
the residue (result of id rc) and non-proportionally damped normal mode forms

{y(s)} =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

{u} and

[
Is2 + Γs+ Ω2

]
{p} =

[
φT b

]
{u}

{y} = [cφ] {p}
(10.27)

The output arguments are either

• the standard normal mode model freq,ga,phib,cphi (see nor) when returning 4 outputs.

• the associated normal model data structure NOR when returning one output.

• or the residues of the associated model new res and poles po (see res page 212) when returning
2 outputs. With this output format, the residual terms of the initial model are retained.

The algorithm combines id rm (which extracts complex mode output shape matrices cψ from the
residues res and scales them assuming the system reciprocal) and psi2nor (which provides an
optimal second order approximation to the set of poles po and output shape matrices cψ).

Since the results of psi2nor can quite sensitive to small errors in the scaling of the complex mode
outputs cψ, an optimization of all or part (using the optional argument ind to indicate the residues
of which poles are to be updated) collocated residues can be performed. The relative norm between
the identified residues res and those of the normal mode model is used as a criterion for this
optimization.

Three optimization algorithms can be selected using opt (1: id min of the Structural Dynamics
Toolbox, 2: fmins of Matlab, 3: fminu of the Optimization Toolbox). You can also restart the
optimization using the residues old res while still comparing the result with the nominal res using
the call



id nor

[new_res,po] = id_nor(res,po,idopt,ind,opt,old_res)
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Notes

id nor is only defined if IDopt.Reciprocity is 1 FRF or MIMO (12) and for cases with more sensors
than modes (check IDopt.NSNA). id nor may not work for identifications that are not accurate
enough to allow a proper determination of normal mode properties.

In cases where id nor is not applicable, normal mode residues can be identified directly using id rc

with IDoptFit=’Normal’ or an approximate transformation based on the assumption of proportional
damping can be obtained with res2nor.

id nor does not handle cases with more poles than sensors. In such cases res2nor can be used for
simple approximations, or id nor can be used for groups of modes that are close in frequency.

Residual terms can be essential in rebuilding FRFs (see figure above taken from demo id) but are
not included in the normal mode model (freq, ga, phib, cphi). To include these terms you can use
either the residues new res found by id nor

xf = res2xf(new_res,po,w,idopt)

or combine calls to nor2xf and res2xf

xf = nor2xf(om,ga,phib,cphi,w) + ...

res2xf(res,po,w,idopt,size(po,1)+1:size(res,1))

Example

ci=demosdt(’demo gartidest’)

if ci.Stack{’Test’}.dof(4,2)~=1012.03;% Needed to have positive driving point FRFs

ci.Stack{’Test’}.xf=-ci.Stack{’Test’}.xf;
ci.Stack{’Test’}.dof(:,2)=1012.03; idcom(’est’);

end

nor = id_nor(ci.Stack{’IdMain’});
ci.Stack{’curve’,’IIxh’}=nor2xf(nor,ci.Stack{’Test’}.w,’hz struct acc’);

iicom(’iixhon’)
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See also

id rc, res2nor, id rm, psi2nor, demo id
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Purpose

Parametric identification using xf-orthogonal polynomials.

Syntax

[num,den] = id_poly(xf,w,nn,nd)

[num,den] = id_poly(xf,w,nn,nd,idopt)

Description

A fit of the provided frequency response function xf at the frequency points w is done using a
rational fraction of the form H(s) = num(s)/den(s) where num is a polynomial of order nn and den

a polynomial of order nd. The numerically well conditioned algorithm proposed in Ref. [8] is used
for this fit.

If more than one frequency response function is provided in xf, the numerator and denominator
polynomials are stacked as rows of num and den. The frequency responses corresponding to the
identified model can be easily evaluated using the command qbode(num,den,w).

The identification is performed using data within IDopt.SelectedRange. The idcom poly com-
mand gives easy access to this function.

See also

id rc, invfreqs of the Signal Processing Toolbox.
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Purpose

Broadband pole/residue model identification with the possibility to update an initial set of poles.

[res,po,xe] = id_rc (xf,po,w,idopt)

[res,new_po,xe] = id_rc (xf,po,w,idopt,dst,fst)

[res,new_po,xe] = id_rcopt(xf,po,w,idopt,step,indpo)

Description

This function is typically accessed using the idcom GUI figure as illustrated in section 2.2 .

For a given set of poles, idrc(xf,po,w,idopt) identifies the residues of a broadband model, with
poles po, that matches the FRFs xf at the frequency points w. This is implemented as the idcom

est command and corresponds to the theory in section 2.6.5 .

As detailed in section 2.6 , the poles can (and should) be tuned [9] using either id rc (ad-hoc
dichotomy algorithm, accessible through the idcom eup command) or id rcopt (gradient or con-
jugate gradient minimization, accessible through the idcom eopt command). id rc performs the
optimization when initial step sizes are given (see details below).

After the identification of a model in the residue form with id rc, other model forms can be obtained
using id rm (minimal/reciprocal residue model), res2ss (state-space), res2xf (FRF) and res2tf

(polynomial), id nor (normal mode model).

The different input and output arguments of id rc and id rcopt are

xf

Measured data stored in the xf format where each row corresponds to a frequency point and each
column to a channel (actuator/sensor pair).

Although it may work for other types of data, id rc was developed to identify model properties
based on transfer functions from force actuators to displacement sensors. IDopt(2) lets you specify
that the data corresponds to velocity or acceleration (over force always). An integration (division
by s = jω) is then performed to obtain displacement data and a derivation is performed to output
estimated FRFs coherent with the input data (the residue model always corresponds to force to
displacement transfer functions).

The phase of your data should loose 180o phase after an isolated lightly damped but stable pole. If
phase is gained after the pole, you probably have the complex conjugate of the expected data.

If the experimental set-up includes time-delays, these are not considered to be part of the mechanical
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system. They should be removed from the data set xf and added to the final model as sensor
dynamics or actuator dynamics . You can also try to fit a model with a real poles for Pade
approximations of the delays but the relation between residues and mechanical modeshapes will no
longer be direct.

w

Measurement frequencies are stored as a column vector which indicates the frequencies of the different
rows of xf. IDopt(3) is used to specify the frequency unit. By default it is set to 11 (FRF and pole
frequencies in Hz) which differs from the SDT default of rad/s used in functions with no frequency
unit option. It is assumed that frequencies are sorted (you can use the Matlab function sort to
order your frequencies).

po, new po

Initial and updated pole sets. id rc estimates residues based on a set of poles po which can be
updated (leading to new po, see ii pof for the format). Different approaches can be used to find an
initial pole set:

• create narrow-band single pole models (ii poest available as the idcom e command).

• pick the pole frequencies on plots of the FRF or MMIF and use arbitrary but realistic values (e.g.
1%) for damping ratios (ii fin available as the idcom f command).

• use pole sets generated by any other identification algorithm (id poly and id dspi for example).

Poles can be stored using different formats (see ii pof) and can include both conjugate pairs of
complex poles and real poles. (id rc uses the frequency/damping ratio format).

The id rc algorithms are meant for iterations between narrow-band estimates, used to find initial
estimates of poles, and broadband model tuning using id rc or id rcopt. To save the poles to a
text file, use idcom Table. If these are your best poles, id rc will directly provide the optimal
residue model. If you are still iterating you may replace these poles by the updated ones or add a
pole that you might have omitted initially.

IDopt

Identification options (see idopt for details). Options used by id rc are Residual, DataType,
AbscissaUnits, PoleUnits, SelectedRange and FittingModel.
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The definition of channels in terms of actuator/sensor pairs is only considered by id rm which should
be used as a post-treatment of models identified with id rc.

dstep, fstep (for id rc)

Damping and frequency steps. To update pole locations, the user must specify initial step sizes on
the frequency and damping ratio (as fractions of the initial values). id rc then uses the gradient
of the quadratic FRF cost to determine in which direction to step and divides the step size by two
every time the sign changes. This approach allows the simultaneous update of all poles and has
proved over the years to be extremely efficient.

For lightly damped structures, typical step values (used by the idcom command eup) are 10% on
all damping ratios (dstep = 0.1) and 0.2% on all frequencies (fstep = 0.002). If you only want
to update a few poles fstep and dstep can be given as vectors of length the number of poles in po

and different step values for each pole.

idcom(’eup 0.05 0.002 local’) can be used to specify dstep and fstep. The optional local at
the end of the command specifies that zero steps should be used for poles whose resonance is outside
the selected frequency band.

step, indpo (for id rcopt)

Methods and selected poles. step specifies the method used for step length, direction determination
method, line search method, reference cost and pole variations. You should use the default values
(empty step matrix). indpo gives the indices of poles to be updated (po(indpo,:) for poles in
format 2 are the poles to be updated, by default all poles are updated).

The idcom eopt command can be used to access id rcopt. eoptlocal calls id rcopt with indpo

set to only update poles whose resonance is within the selected frequency band.

res

Residues are stored in the res format (see section 5.6 ). If the options IDopt are properly specified
this model corresponds to force to displacement transfer functions (even if the data is acceleration
or velocity over force). Experts may want to mislead id rc on the type of data used but this may
limit the achievable accuracy.
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xe

Estimated FRFs correspond to the identified model with appropriate derivation if data is acceleration
or velocity over force.

See also

idcom, id rm, res2xf, res2ss
Tutorial section section 2.2
gartid and demo id demonstrations
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Purpose

Create minimal models of MIMO systems and apply reciprocity constraints to obtain scaled modal
inputs and outputs.

OUT = id_rm(IN,multi)

[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt)

[phib,cphi,new_res,new_po] = id_rm(Rres,po,ci.IDopt)

[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt,multi)

OUT = id_rm(’Command’,Curve) % See accepted commands at end of doc

Description

id rm is more easily called using the idcom GUI figure Postprocessing tab, see section 2.8 .

IN is a data structure (see Shapes at DOFs). Required fields are IN.res residues, IN.po poles,
and IN.idopt identification options. Options used by id rm are .FittingModel (Posit, Complex or
Normal modes), .NSNA (number of sensors/actuators), .Reciprocity (not used, 1 FRF or true

MIMO), .Collocated (indices of colloc. FRF when using reciprocity).

multi is an optional vector giving the multiplicity for each pole in IN.po.

OUT is a structure with fields (this format is likely to change in the future)

.po poles with appropriate multiplicity

.def output shape matrix (CPSI)

.DOF Sensor DOFs at which .DEF is defined

.psib input shape matrix (PSIB)

.CDOF indices of collocated FRFs

.header header (5 text lines with a maximum of 72 characters)

The low level calls giving res, po and ci.IDopt as arguments are obsolete and only maintained for
backward compatibility reasons.

As shown in more detail in section 2.8 , the residue matrix Rj of a single mode is the product
of the modal output by the modal input. For a model in the residue form (residue res, poles po

and options IDopt identified using id rc for example), id rm determines the modal input psib and
output cpsi matrices such that

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

≈
2N∑
j=1

[Rj ]

s− λj
(10.28)
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The residues can be either complex mode residues or normal mode residues. In that case the normal
mode input phib and output cphi matrices are real.

The new res matrix is the minimal approximation of res corresponding to the computed input and
output matrices. id rm uses the number of sensors IDopt(7) and actuators IDopt(8).

For MIMO systems (with the both the number of sensors IDopt(7) and actuators IDopt(8) larger
than 1), a single mode has only a single modal output and input which implies that the residue
matrix should be of rank 1 (see section 2.8.1 ). Residue matrices identified with id rc do not verify
this rank constraint. A minimal realization is found by singular value decomposition of the identified
residue matrices. The deviation from the initial model (introduced by the use of a minimal model
with isolated poles) is measured by the ratio of the singular value of the first deleted dyad to the
singular value of the dyad kept. For example the following output of id rm

Po # freq mul Ratio of singular values to maximum

1 7.10e+02 2 : 0.3000 k 0.0029

indicates that the ratio of the second singular value to the first is significant (0.3) and is kept, while
the second dyad can be neglected (0.0029).

For a good identification, the ratios should be small (typically below 0.1). Large ratios usually
indicate poor identification and you should update the poles using id rc in a broad or narrow band
update. Occasionally the poles may be sufficiently close to be considered as multiple and you should
keep as many dyads as the modal multiplicity using the input argument multi which gives the
multiplicity for each pole (thus the output shown above corresponds to a multiplicity of 2).

id rm also enforces reciprocity conditions in two cases

• IDopt(12)=1. One transfer function is declared as being collocated. Reciprocity is only applied
on the input and output coefficients linked to the corresponding input/output pair.

• IDopt(12)=na. As many collocated transfer functions as actuators are declared. The model found
by id rm is fully reciprocal (and minimal of course).

• in other cases IDopt(12) should be either 0 (no collocated transfer) or equal to -nc (nc collocated
transfers but reciprocal scaling is not desired).

It is reminded that for a reciprocal system, input and output shape matrices linked to collocated
inputs/outputs are the transpose of each other (b = cT ). Reciprocal scaling is a requirement for the
determination of non-proportionally damped normal mode models using id nor.

In MIMO cases with reciprocal scaling, the quality indication given by id rm is

Po# freq mul sym. rel.e.
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1 7.10e+02 2 : 0.0038 0.0057

which shows that the identified residue was almost symmetric (relative norm of the anti-symmetric
part is 0.0038), and that the final relative error on the residue corresponding to the minimal and
reciprocal MIMO model is also quite small (0.0057).

Warnings

• id rm is used by the functions: id nor, res2nor, res2ss

• Collocated force to displacement transfer functions have phase between 0 and -180 degrees, if this
is not true you cannot expect the reciprocal scaling of id rm to be appropriate and should not
use id nor.

• id rm only handles complete MIMO systems with NS sensors and NA actuators.

PermuteIO

The C1=id rm(’permuteIO’,C1); command renumbers transfer functions to use the reference order
of sensors at each actuator in the case of hammer tests where there are more input locations than
outputs.

FixSign

The C1=id rm(’FixSign’,C1); applies sign changes on sensors and inputs to generate positive sign
transfers or modeshapes.

Mass

id rm(’Mass’,Id); is the low level implementation of generalized mass extraction.

See also

idcom, id rc, id nor, the demo id demonstration
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Purpose

UI command function for FRF data visualization.

Syntax

iicom CommandString

iicom(ci,’CommandString’) % specify target figure with pointer

out = iicom(’CommandString’)

Description

iicom is a standard UI command function which performs operations linked to the data visualization
within the iiplot interface. A tutorial can be found in section 2.1 .

Commands are text strings telling iicom what to do. If many iiplot figures are open, one can
define the target giving an iiplot figure handle ci as a first argument.

iicom uses data stored in a stack (see section 2.1.2 ). iicom does not modify data. A list of
commands available through iicom is given below. These commands provide significant extensions
to capabilities given by the menus and buttons of the iiplot command figure.

Commands

command;

The commode help details generic command building mechanisms. Commands with no input (other
than the command) or output argument, can be chained using a call of the form iicom(’;Com1;Com2’).
commode is then used for command parsing.

cax i, ca+

Change current axes. cax i makes the axis i (an integer number) current. ca+ makes the next
axis current. For example, iicom(’;cax1;show rea;ca+;show ima’) displays the real part of the
current FRFs in the first axis and their imaginary part in the second. (See also the iicom Sub

command). The button indicates the number of the current axis. Pressing the button executes the
ca+ command.
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ch+, ch-, ch[+,-]i : next/previous

Next/Previous . These commands/buttons are used to scan through plots of the same kind.
For iiplot axes, this is applied to the current data sets. For feplot axes, the current deformation
is changed. You can also increment/decrement channels using the + and - keys when the current
axis is a plot axis or increment by more than 1 using iicom(’ch+i’).

ch i, chc i, chall, ... select channel

Display channels/poles/deformations i. Channels refer to columns of datasets, poles or deformations.
ch / chc respectively define the indices of the channels to be displayed in all /the current drawing
axes. The vector of indices is defined by evaluating the string i. For example iicom ch[1:3],
displays channels 1 to 3 in all axes.

For curve Multi-dim curve with dimension labels in the .Xlab field,ChAllMyLabel selects all
channels associated with dimension MyLabel. This can be used to show responses at multiple
operating conditions (typically stored as third or fourth dimension of curve.Y).

For multi-channel curves one can define the dimension name referring to the Xlab field in a cell array
iicom(ci,’ch’,’Xlabname’,i). For this to work properly note that all Xlabname entries must be
different (e.g. several Unknown entries must thus be avoided).

% Build a multi-dim curve, see sdtweb(’demosdt.m#DemoGartteCurve’)

r1=demosdt(’demoGartteCurve’)

ci=iicom(’curveInit’,’Example’,r1);

iicom(’ChAllzeta’) % All channels that correspond to ’zeta’ r1.Xlab{4}
% Cell selection with Xlab string and indices (each row picks a dimension)

iicom(’ch’,{’Output DOFs’,4;’Input DOFs’,[1,2]}) % Accessible with ’pick’ button

iicom(’curtabChannel’)

Cursor, ods

The cursor is usually started with the axes context menu (right click on a given axis).

iicom CursorOnFeplotshows a cursor on the iiplot curve that let you show corresponding time
deformation in feplot.

fecom CursorNodeIiplot gives more details.

iicom(’ods’) provides an operational deflection shape cursor.
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Curve [Init,Load,Save,Reset, ...]

These commands are used to manipulate datasets.
Most of them are of the form iicom(’Curve...’,CurveNames). Then CurveNames can be a string
with a curve name, a cell array of string with curve names or a regular expression (beginning by
#) to select some curve names. If CurveNames is omitted, a curve a dialog box is opened to select
targeted curves. Otherwise these commands can be accessed through the GUI, in the Stack tab of
the iiplot properties figure.

• CurveInit is used to initialize a display with a new dataset. iicom(’CurveInit’,’Name’,C1)
is used to initialize a display with a new dataset. iicom(’CurveInit’,’Name’,C1) adds a
’curve’,’Name’ entry and displays this set in a new tab. To add dans display multiple curves
use

iicom(’CurveInit’,{’curve’,’N1’,C1; ’curve’,’N2’,C2})

The field PlotInfo can be used to control how this initial display is performed.

• CurveLoad lets you load datasets.
iicom(’CurveLoad FileName’) loads curves stored in Filename.
iicom(’CurveLoad’) opens a dialog box to choose the file containing curves to load. If the
file contains multiple curves, one can select the curves to be loaded in a cell array given as a
second argument. For example,

ci=iicom(’CurveLoad’,’gartid.mat’)

loads the gartid data in an iiplot figure. Command option -append (iicom(ci,’CurveLoad
-append MyFile’)) lets you append loaded curves to existing curves in the stack (by de-
fault existing curves are replaced). Command option -hdf (iicom(ci,’CurveLoad -hdf

MyFile’)) lets you load curves under the sdthdfformat. Only pointers to the data stacked in
iiplotare thus loaded. Visualizations and data transformation can be performed afterwards.
Command option -back does not generate any visualization in iiplot. This can be useful in
combination to -hdf, as the user can then fully control the data loaded in RAM.

• CurveSave lets you save iiplot stack data.
iicom(’CurveSave FileName’,CurveNames) saves the curves CurveNames in the .mat file
given by FileName. If FileName is omitted a GUI is opened. To save more than 2 GB of data,
or to save in the new MATLAB file formats (-v7.3), use the SDT V6Flag:
setpref(’SDT’,’V6Flag’,’-v7.3’).

fname=fullfile(sdtdef(’tempdir’),’IicomSaveTestmat’)

iicom([’CurveSave’ fname],{’IIxi’;’IdMain’})
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• CurveNewId CurveName opens new iiplot figure for identification of the curve CurveName of
the ci stack with idcom.
iicom(’CurveLoadId’,FileName) loads from FileName into for identification.

• CurveRemove removes the curves from the stack of the iiplot figure.
iicom(’CurveRemove’,CurveNames);

• CurveReset defines an empty curve stack to renew your work.

• CurveJoin combines datasets that have comparable dimensions. In particular first dimension
(time, frequencies ...) must be the same. For example it is useful to combine dataset from
parameter studies (same dimension). iicom(’CurveJoin’,CurveNames);
Curves targeted by CurveNames (or selected curves in iiplot) are joined and replace the first
curve in the iiplot stack.

• CurveCat concatenates dataset that have the same dimensions. For example it is useful to
combine dataset from successive time simulation. Syntax is the same as for iicom CurveJoin

command. One can use following command options:

– -follow to remove last value of first abscissa before concatenate.

– -shift to shift abscissa of second dataset of the last value of first dataset abscissa.

Dock Id, MAC, TestBas

Starting with SDT 7, classical SDT uses are guided through multiple figures combined in docks.

• DockId is used for identification of modeshapes.

ga i

Get handle to a particular axis. This is used to easily modify handle graphics properties of iiplot
axes accessed by their number. For example, you could use set(iicom(’ga1:2’),’xgrid’,’on’)

to modify the grid property of iiplot axes 1 and 2.

If you use more than one feplot or iiplot figure, you will prefer the calling format cf=iiplot;

set(cf.ga(1:2),’xgrid’,’on’).
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head [Main,Text,Clear]

Note : the preferred approach is now to define fixed displays using comgui objSet commands stored
in the curve PlotInfo ua.axProp entry. For example

C1=fe_curve(’testSin T 0.2’,linspace(0,10,100e3));

C1.Xlab={’Time’,’Resp’};
r1={’@title’,{’String’,’Main Title’,’FontSize’,16}};
C1=sdsetprop(C1,’PlotInfo.ua.axProp’,r1{:});
iicom(’curveinit’,’SineWithFixedTitle’,C1);

For backward compatibility, header axes are still supported (the change is to objSet allows better tab
switching). Header axes are common to all plot functions and span the full figure area (normalized
position [0 0 1 1]). You can get a pointer to this axis with cf.head and add any relevant object
there.

ci=iicom(’curveload’,’gartid’); % Load a test case

h=text(0,0,’Main Title’, ...

’parent’,ci.head,’unit’,’normalized’,’position’,[.05 .95], ...

’fontsize’,20,’fontname’,’Times’, ...

’tag’,’iimain’);

iimouse(’textmenu’,h); % Allow Editing

iicom(’HeadClear’) deletes all objects from the header axis of the current figure.

IIxData set selection iicomIIx:name [On,Off,Only], cIIx ...

Curve set selection for display in the current axis.

IIx:TestOnly displays the ci.Stack{’Test’} data set only in all axes (on and off turn the display
on or off respectively). By adding a c in front of the command (cIIx:Test for example), the choice
is only applied to the current axis. You can also toggle which of the data sets are shown using the
Variables menu (applies to all axes) or axis context menu applies to (current axis).

The alternate calling format iicom(’iix’,{’Test’,’IdFrf’}) can be used to specify multiple sets
to display. iicom(’iixOnly’,{’Test’,’IdFrf’}) will display those two sets only.

IIxf, IIxe, IIxh, IIxi [0n,Off] are still supported for backward compatibility.

Polar

Polar plots are used for cases where the abscissa is not the standard value. Accepted values (use a
command of the form Polar val) are
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• -1 abscissa is the channel before the one displayed. In a curve with channels [X Y] display Y,
channel 2, and use X,channel 1, as abscissa.

• xi uses ith column of def.data when displaying FEM time signals. This is typically used
when this second column is an other form of abscissa (angle for rotating machines, ...)

• i with i¿0 uses the specified channel as abscissa.

• Off or 0 turns off polar plots.

PoleLine [ ,c] [ ,3], IIpo, ...

Pole line display. are dotted vertical lines placed at relevant abscissa values. These lines can come
from

• standard curves with an curve.ID field, see ii plp Call from iiplot.

• frequencies of poles in ci.Stack{’IdMain’} in black and ci.Stack{’IdAlt’} in red.

By itself, PoleLine toggles the state of pole line display. The c option applies the command to the
current axis only. PoleLine3 places the lines on the pole norm rather than imaginary part used by
default (this corresponds to the ii plp formats 2 and 3).

The state of the current axis (if it is an iiplot axis) can also be changed using the IIplot:PoleLine
menu (PoleLineTog command).

Low level commands IIpo and IIpo1 are low level commands force/disable display of pole lines in
the main identified model
ci.Stack{’IdMain’}.po or the alternate set ci.Stack{’IdAlt’}.po. With cIIpo the choice is
only applied to the current axis. These options are usually accessed through menus.

ImWrite, ...

comgui ImWrite is the generic command used to generate a clean printout of figures. It supports
many basic capabilities, filename generation, cropping, ... When using iiplot and feplot, it may
often be interesting to generate multiple images by scanning through a selected range of channels.
A command of the form iicom(cf,’ImWrite’,RO) is then used with RO a structure containing
generic image capture fields (see comgui ImWrite) and fields specific to multi-image capture

• .ShowFcn the callback that is executed for each image to be generated. The default is
fecom(cf,sprintf(’ch %i’,ch)); for feplot. The loop index is j1.
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• .ch a vector of channel indices that will give an index for each image. With the string all, all
the channels are used.

• .ImWrite is the command used to call comgui with the default ’imwrite -ftitle’.

• .FileName if present replaces any other file name generation mechanism. Your ShowFcn call-
back can thus implement your own file name generation mechanism.

• .Movie can be a structure for movie generation using fecom AnimMovie.

• .HtmWidth can specify an HTML view size which differs from the image size. The input is either
a string in the format width=val height=val1, or a line with 4 columns in the format [Width
Height MaxWidth MaxHeight], it is possible to let free a value by provided Inf instead of
a numerical value. At least Height or Width must be defined. Depending on the input, the
behavior is

– if a scalar is given or if the Height is set to Inf,the width is fixed and the height is set to
keep the image ratio. If a MaxHeight is provided and the resulting height overcomes it,
the width is adapted to maximize the possible size.

– if Width is set to Inf, the height must be defined and the width is set to keep the image
ratio. If a MaxWidth is provided and the resulting width overcomes it, the height is
adapted to maximize the possible size.

– is both Width and Height are provided, the values are fixed and non further control is
performed.

• .RestoreFig=1 can be used to restore the figure and display after image generation.

• .RelPath optional integer giving the level of relative path to be retained (1 keeps just the file
name, 2 the directory containing the images, ...). This is useful to create HTML report files
that can be moved.

To automate figure generation, it is typically desirable to store image capture information in the set
of deformations or the curve. A curve.ImWrite field in iiplot can be used to predefine the option
structure, for user defined dynamic change of settings, defining a ua.PostFcn callback (see iiplot

PlotInfo) is typically the appropriate approach. For feplot, def.ImWrite is used for multi-image
capture but more evolved file name generation is found using comgui def.Legend.

% Example of 4 views in feplot

cf=demosdt(’DemoGartFEplot’)

cingui(’PlotWd’,cf,’@OsDic(SDT Root)’,’FniiLeg’);

cf.def=sdsetprop(cf.def,’Legend’, ...

’string’,{’Garteur FE’;’$Title’}) % Define a two line title
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RO=comgui(’imfeplot4view’); % Predefined strategy to generate 4 views

comgui(’PlotWd’,cf,’FileName’, ...

{’@PlotWd’,’Root’,’@ii_legend(1:2)’,’@cf.ga.View’,’.png’});
fecom(cf,’ImWrite’);comgui(’iminfo’,cf)

% Example of two channels in iiplot, with finish on same view

ci=iicom(’curveload’,’gartid’);iicom(’ch20’)

cingui(’PlotWd’,ci,’@OsDic(SDT Root)’,’FniiLeg’);

RO=struct(’ch’,1:2, ...

’FileName’,{{’@PlotWd’,’Test’,’@cf.ua.ch’,’.png’}}, ...

’RestoreFig’,1, ... % reset at the end

’ImWrite’,’ImWrite’); % Avoid the -ftitle

iicom(ci,’ImWrite’,RO)

comgui(’ImFeplot’) returns a list of standard calls to options for image generation.

Pro

iicom(’ProFig’) shows or hides the properties figure.
iicom(ci,’ProRefreshIfVisible’) refreshes the property figure when it is visible.
iicom(ci,’ProInit’) reinits the property figure.

Show plot type

Specify the current axis type. The iiplot plot functions support a number of plot types which can
be selected using the Show menu/command. From command line, you can specify the target axis
with a-cax i option.

The main plot types are

• 2D (f(x)) plots are associated with the following buttons Abs (absolute value), Pha

phase, Phu unwrapped phase, Rea real part, Ima imaginary part, R&I real and

imaginary, Nyq Nyquist.

• 3D (f(x, y)) plots are image, mesh, contour and surface. Show3D gives time-frequency rep-
resentation of the log of the abs of the signal displayed as and image. The ua.yFcn callback
operates on the variable called r3 and can be used for transformations (absolute value, phase,
...). Note that you may then want to define a colorbar see iiplot PlotInfo.
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R1=d_signal(’Resp2d’); % load 2d map

R1.PlotInfo= ii_plp(’plotinfoTimeFreq -yfcn="r3=r3" type "contour"’);

ci=iicom(’curveinit’,’2DMap’,R1);

% or

R1.PlotInfo={}; ci=iicom(’curveinit’,’2DMap’,R1);

ci=iicom(’curveinit’,’2DMap’,R1);

iicom(’show3D -yfcn="r3=log10(abs(r3))" type "contour"’)

• idcom specialized plots see iiplot TypeIDcom : mmi MMIF of Test, fmi forces of MMIF of
Test, ami alternate mode indicator of Test, SUM of Test, CMIF of Test, sumi sum imaginary
part of Test, pol poles in IdMain, fre freq. vs. damping in IdMain, rre real residue in
IdMain , cre complex residue of IdMain, lny local Nyquist of Test (superposition around
current pole), err Nyquist Error for current pole, Quality for all poles

• feplot plots.

SubSave, SubSet

SubSavei saves the current configuration of the interface in a stack entry TabInfo. This configuration
can then be recalled with SubSeti. The TabInfo entry is also augmented when new curves are shown
so that you can come back to earlier displays. SubSetIi selects an index in the TabInfo stack.

SubToFig

SubToFig copies the iiplot figure visualization to a standard matlab figure, thus allowing an easier
handling to produce customized snapshots (see also iicom ImWrite). Reformatting is then typically
performed with comgui objSet.

Command option -cfi forces the visualization output to figure i.

Command option legi allows iiplot legend handling in the visualization. leg0 removes the legend,
leg1 keeps it as in iiplot, leg2 transforms the iiplot legend in a standard matlab legend. The
legend is removed by default.

Sub plot init

This command is the entry point to generate multiple drawing axes within the same figure.

iicom Sub by itself checks all current axes and fixes anything that is not correctly defined.
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Accepted command options are

• MagPha gives a standard subdivision showing a large amplitude plot and a small wrapped phase
plot below.

• Iso gives a standard 2 by 2 subdivision showing four standard 2-D projections of a 3-D structure
(this is really used by feplot).

• i j k divides the figure in the same manner as the Matlab subplot command. If k is set to
zero all the i times j axes of the subplot division are created. Thus the default call to the Sub

command is Sub 2 1 which creates two axes in the current figure. If k is non zero only one of
these axes is created as when calling subplot(i,j,k).

As the subplot function, the Sub command deletes any axis overlapping with the new axis.
You can prevent this with command option nd.

Standard subdivisions are accessible by the IIplot:Sub commands menu.

Note that set(cf.ga(i),’position’,Rect) will modify the position of iiplot axis i. This
axis will remain in the new position for subsequent refreshing with iiplot.

• step increments the deformation shown in each subplot. This is generally used to show various
modeshapes in the same figure.

• Reset forces a reinit of all properties. For example SubMapha Reset.

TitOpt [ ,c]i, title and label options

Automated title/label generation options. TitOpti sets title options for all axes to the value i. i is
a 5 digit number with

• units corresponding to title. For modes [None,ModeNumber,Name].

• decades to xlabel 0 none, 1 label and units, 2 label.

• hundreds to ylabel 0 none, 1 label and units, 2 label.

• thousands to zlabel 0 none, 1 label and units, 2 label.

• 1e4 to legend/title switching.

The actual meaning of options depends on the plot function (see iiplot for details). By adding a
c after the command (titoptc 111 for example), the choice is only applied to the current axis.
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When checking the axes data (using iicom Sub command), one rebuilds the list of labels for each
dataset using iicom(’chlab’). This cell array of labels, stored in ci.ua.chlab, gives title strings
for each channel (in rows) of datasets (in columns) with names given in ci.ua.sList. The label
should start with a space and end with a comma. The dataset name is added if multiple datasets
are shown. Not to display the curve name in the legend you can define and set ci.ua.LegName =

0, going back to default behavior is obtained by ci.ua.LegName = 1.

Modifying the ci.IDopt.unit value changes the unit assumed for identification but not the dataset
units.

Titles and labels are not regenerated when using ch commands. If something is not up to date, use
iicom Sub which rechecks everything.

Scale : xlin, xlog ...

Default values for xscale and yscale. xlin, xlog, ylin, ylog, set values. xy+1, xy+2 are used
to toggle the xscale and yscale respectively (you can also use the IIplot:xlin and IIplot:ylin
menus). Other commands are xy1 for x-lin/y-lin, xy2 for x-log/y-lin, xy3 for x-lin/y-log, xy4 for
x-log/y-log.

You can all use the all option to change all axes: iicom(’xlog all’).

ytight[on,off,] can be used to obtain tight scales on the y axis. The x axis is typically always
tight. Automated ztight is not yet supported.

Limits : wmin, xlim, xmin, xmax, wmo, w0, ...

Min/max abscissa selection is handled using the fixed zoom (graphically use button). Accepted
commands are

• xlim min max (or the legacy wmin f1 f2). For 2D plots, use xlim xmin xmax ymin ymax to
allow selection of a 2D area.

• xmin min (or the legacy wmin f1)

• xmax max (or the legacy wmax f1)

• wmo allows a mouse selection of the minimum and maximum value (same as button).

• w0 resets values (same as double click after hitting the button)

The limit value(s) can also be forwarded as last argument : iicom(’xlim’,[min max]).
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When performing identification with idcom the fixed zoom corresponds to the working frequency
range and corresponds to indices in ci.IDopt(4:5) (see IDopt, turn off with idcom(’Off’)). The
index of the frequency closest to the specified min/max is used. When viewing general responses,
the information for the abscissa limits is stored in the axis and is thus lost if that axis is cleared.

See also

iiplot, section 2.1 , idcom
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Purpose

Mouse related callbacks for GUI figures.

Syntax
iimouse

iimouse(’ModeName’)

iimouse(’ModeName’,Handle)

Description

iimouse is the general function used by feplot and iiplot to handle graphical inputs. While it
is designed for SDT generated figures, iimouse can be used with any figure (make the figure active
and type iimouse).

The main mouse mode is linked supports zooming and axis/object selection (see zoom). Context
menus are associated to many objects and allow typical modifications of each object. When an axis
is selected (when you pressed a button while your mouse was over it), iimouse reacts to a number
of keys (see key). An active cursor mode (see Cursor) has replaced the information part of previous
versions of iimouse. 3-D orientation is handled by view commands.

On,Off

iimouse with no argument (which is the same as iimouse(’on’)) turn zoom, key and context menu
on.

In detail, the figure is made Interruptible, WindowButtonDownFcn is set to iimouse(’zoom’)

and KeyPressFcn to iimouse(’key’)).

Plot functions (iiplot, feplot) start iimouse automatically.

iimouse off turns all iimouse callbacks off.

clip [Start,Undo]

This command is used to eliminate faces not contained within the area that the user selects with a
dragging box. ClipUndo clears the current axis and calls feplot to reinitialize the plot.

zoom

This is basic mode of iimouse, it supports
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• click and drag zoom into an area for both 2-D and 3-D plots (even when using perspective).

• zoom out to initial limits is obtained with a double click or the i key (on some systems the double
click can be hard to control).

• active axis selection. iimouse makes the axis on which you clicked or the closest to where you
clicked active (it becomes the current axis for feplot and iiplot figures).

• colorbar and triax axes automatically enter the move mode when made active

• legend axes are left alone but kept on top of other axes.

Context menus are described in section 2.1.1 and section 4.4.1 .

Cursor

When you start the cursor mode (using the context menu opened with the right mouse button or
by typing the c key), you obtain a red pointer that follows your mouse while displaying information
about the object that you are pointing at. You can stop the cursor mode by clicking in the figure
with your right mouse button or the c key. The object information area can be hidden by clicking
on it with the right mouse button.

For feplot figures, additional information about the elements linked to the current point can be
obtained in the Matlab command window by clicking in the figure with the left button. By default,
the cursor follows nodes of the first object in the feplot drawing axis. If you click on another object,
the cursor starts pointing at it. In the wire-frame representation, particularly when using OpenGL
rendering, it may be difficult to change object, the n key thus forces the cursor to point to the next
object.

For iiplot axes, the cursor is a vertical line with circles on each data set and the information shows
the associated data sets and values currently pointed at.

For ii mac axes the current value of the MAC is shown.

key

Keyboard short-cuts. Some commands are directly available by pressing specific keys when a plot
axis is active (to make it active just click on it with your mouse). The short cuts are activated by
setting the KeyPressFcn to iimouse(’key’) (this is done by iimouse on). Short cuts are:
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a,A all axis shrink/expand u,U 10o horizontal rotation
c start iimouse cursor v,V 10o vertical rotation
i return to initial axis limits w,W 10o line of sight 10o rotation
l,L smaller/larger fecom scaledef x,X x/horizontal translation
n cursor on next fecom object y,Y y/vertical translation

z,Z
z/line of sight translation

-, previous (iicom ch-) +,= next (iicom ch+)
1,2,3,4 see view commands ? list keyboard shortcuts

The list of the associated call is accessible using the call
sdt table generation(’KeyPressTable.feplot’) or
sdt table generation(’KeyPressTable.iiplot’).

For feplot axes the translations are based on camera movements and correspond to the horizontal,
vertical and line of sight for the current view. Translating along the line of sight has no effect without
perspective and is similar to zooming with it. For other axes, the xyz keys translate along the data
xyz directions.

move

The object that you decided to move (axes and text objects) follows your mouse until you click
on a final desired position. This mode is used for triax (created by feplot) and colorbar axes,
as well as text objects when you start move using the context menu (right button click to open this
menu).

The moveaxis used for legend as a slightly different behavior. It typically moves the axis while you
keep the button pressed.

You can call move yourself with iimouse(’move’,Handle) where Handle must be a valid axes or
text object handle.

text

This series of commands supports the creation of a context menu for text objects which allows
modification of font properties (it calls uisetfont), editing of the text string (it calls edtext),
mouse change of the position (it calls iimouse), and deletion of the text object.

You can make your own text objects active by using iimouse(’textmenu’,Handle) where Handle

must contain valid text object handle(s).
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view,cv

iimouse supports interactive changes in the 3-D perspective of axes. Object views are controlled
using azimuth and elevation (which control the orientation vector linking the CameraTarget and the
CameraPosition) and self rotation (which control the CameraUpVector). You can directly modify
the view of the current axis using the Matlab view and cameramenu functions but additional
capabilities and automated orientation of triax axes are supported by iimouse.

1 first standard view. Default n+y. Changed using the View default

context menu.
2 standard xy view (n+z). Similar to Matlab view(2) with resetting

of CameraUpVector. Changed using the View default context menu.
3 standard view. Default to Matlab view(3).
4 standard view. Default n+x.
n[+,-][x,y,z] 2-D views defined by the direction of the camera from target.
n[+,-][+,-][+,-] 3-D views defined by the signs projection of line of sight vector along

the xyz axes.
dn ... dn commands allow setting of default 1234 views. Thus viewdn-x will

set the 4 view to a normal along negative x

az el sr specify azimuth, elevation and rotation around line of sight
g rz ry rz specify rotations around global xyz axes
[x,y,z][+,-] ang rotation increments around global xyz axes
[h,v,s][+,-] ang current horizontal, vertical and line of sight axes

All angles should be specified in degrees.

iimouse key supports rotations by +/- 10 degrees around the current horizontal, vertical and line
of sight axes when any of the u, U, v, V, w, W keys are pressed (same as fecom(’viewh-10’) ...). 1,
2, 3, 4 return to basic 2-D and 3-D views.

iimouse(’cv’) returns current view information you can then set other axes with
iimouse(’view’,AxesHandles,cv).

See also

iicom, fecom, iiplot
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Purpose

Refresh all the drawing axes of the iiplot interface.

Syntax
iiplot

Description

iiplot is used to scan through multiple sets of 1D (function of time or frequency) and 2D responses
(functions of two variables) as discussed in Type. Section 2.1 gives an introduction to the use of
iiplot and the companion function iicom.

• The data is stored in a Stack using one of the accepted curve formats.
iicom CurveInit is the base command to add curves in the stack. You can also create a new
iiplot axis using a curve data structure Curve (generated by fe curve for example), simply
calling iiplot(Curve).

• Each iiplot axis (see iicom Sub, ) can display some or all data sets in their stack. The
selection of what is displayed is obtained using the iicom IIx commands or the Variables

menu.

• iiplot with no arguments refreshes all the drawing axes.

• Plot Type supported by iiplot are described below. The plot type can be selected using the
PlotType menu of the toolbar or through iicom Show commands.

• Selected channels (columns of the data sets) are shown for all plots. The iicom commands +,
-, ch and the associated keys and toolbar buttons can be used to change selected channels.

• Pole lines for the indication of pole frequencies, or other lines to be shown (harmonics, thresh-
olds, ...), are available for many plots. In general the information for these lines is stored as a
Curve.ID field. The IIplot:PoleLine menu can be used to change how these lines appear.
For identification (see idcom) ci.Stack{’IdMain’} pole lines are shown in white/black.
ci.Stack{’IdAlt’} pole lines in red.

ci : handle

ci=iiplot returns a SDT handle to the current iiplot figure (2nd optional output argument is
XF, a pointer to the curve stack, see section 2.1.2 ). You can create more than one iiplot figure
with ci=iiplot(FigHandle).
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PlotInfo

Curves to be displayed can contain a C1.PlotInfo cell array of stringTag,data. An alternate form
using matrix where the first column gives tag and the second the data is accepted if that matrix has
at least two rows.

• LineProp specifies properties to be used as properties for lines. For example
C1=sdsetprop(C1,’PlotInfo’,’LineProp’,{’LineWidth’,2}). This is checked at each dis-
play.

• sub, show, scale commands to be executed when initializing a display tab with iicom Sub.

• ua.PostFcn commands executed at the end of a refresh. This gives the user a chance to
introduce modifications to the result of iiplot.

• ua.TickFcn commands executed whenever a mouse zoom is done, see TickFcn.

• ua.axProp is a cell array containing properties to be applied with an comgui objSet command.

• ColorBar is a cell array containing properties to be used to generate a colorbar. See fecom

ColorBar for more details. For example

C1=d_signal(’Resp2D’);

C1=sdsetprop(C1,’PlotInfo’,’ColorBar’,{’YAxisLocation’,’left’});
iicom(’curveinit’,’2D’,C1);

• LDimPos specifies the dimension used to generate the label on the response axis (y for f(x), z
for f(x, y)).

The ii plp(’PlotInfo’,C1) command provides default values for classical configurations.

Type

• 2D (f(x)) plots are associated with the following buttons and iicom Show commands

Abs (absolute value), Pha phase, Phu unwrapped phase, Rea real part, Ima

imaginary part, R&I real and imaginary, Nyq Nyquist.

• 3D (f(x, y)) plots are image, mesh, contour and surface. For this plots ua.XDimPos should
give the positions of dimensions associated with the x and y variations. Proper .PlotInfo can
be generated with ii plp(’PlotInfo2D -type "contour"’,C1).
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DimPos and channel

When displaying multi-dimensional curves as 2D plots f(x), the abscissa x is taken to be the first
dimension declared in the C1.DimPos field (with a default at 1).

When displaying as 3D (f(x, y)) plots, the x, y are taken to be the first two dimensions declared
in the C1.DimPos field (with a default at 1,2). You can then flip the positions in the plot axis by
setting ci.ua.XDimPos=[2 1].

Channels are indices for remaining dimensions.

The y (z for 3D) axis label is built using the C1.DimPos(2) dimension unless the curve contains a
LDimPos entry.

TypeIDcom

Specialized plots for idcom are

• Local Nyquist plots (initialized by show lny) show a comparison of Test (measured FRFs)
and IdFrf (identified model) in a reduced frequency band[

ωj(1− ζj) ωj(1 + ζj)
]

(10.29)

near the currently selected pole (the current pole is selected by clicking on a pole line in
another plot axis). Local Nyquist plots allow a local evaluation of the quality of the fit. The
error and quality plots give a summary of the same information for all the frequency response
functions and all poles.

• Multivariate Mode Indicator Function (initialized by show mmi), forces associated to the MMIF
(initialized by show fmi), Alternate Mode Indicator Function (show ami), and Channel
Sum (show sum) are four ways to combine all the FRFs or a set to get an indication of where
its poles are located.

These indicators are discussed in the ii mmif Reference section. They are automatically
computed by iiplot based on data in the ’Test’ set.

• Pole locations in the complex plane (initialized by show pol).

• Poles shown as damping vs. frequency are initialized by show fre.

• Position of residues in the complex plane are initialized by show cre. This plot can be used
to visualize the phase scatter of identified residues.

• Value of real residue for each measured channel are initialized by show rre.
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• Error Local Nyquist error (initialized by show err). For the current pole, error plots se-
lect frequency points in the range [ωj(1− ζj) ωj(1 + ζj)]. For each channel (FRF column),
the normalized error (RMS response of ci.Stack{’Test’}.xf - ci.Stack{’IdMain’}.xf di-
vided by RMS response of ci.Stack{’Test’}) is shown as a dashed line with + markers and
a normalized response level (RMS response of ci.Stack{’Test’}) as a dashed line with x

markers.

Normalized errors should be below 0.1 unless the response is small. You can display the error
using the nominal sensor sort with ci.Stack{’IdError’}.sort=0 and with increasing error
using sort=1.

• Quality Mode quality plot (initialized by show qua), gives a mean of the local Nyquist plot.
The dashed lines with + and x markers give a standard and amplitude weighted mean of the
normalized error. The dotted line gives an indication of the mean response level (to see if a
mode is well excited in the FRFs). Normalized errors should be below 0.1 unless the response
is small.

See also

iicom, iiplot, setlines, xfopt
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Purpose

Compute the quadratic and log-least-squares cost functions comparing two sets of frequency response
functions.

Syntax

[cst] = ii_cost(xf,xe)

Description

For two sets of FRFs H and Ĥ, the quadratic cost function is given by

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2 (10.30)

and the log-least-square cost function by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)

Hij(sk)

∣∣∣∣∣ |2 (10.31)

For sets xf and xe stored using the xf format (see page 214), ii cost computes both those costs
which are used in identification and model update algorithms (see section 3.2.3 ).

See also

id rc, up ixf
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Purpose

User interface function for MAC and other vector correlation criteria.

Syntax
ii_mac(cpa,cpb)

VC = ii_mac(cpa,cpb,’PropertyName’,PropertyValue, ...)

[VC,ReS] = ii_mac(’PropertyName’,PropertyValue, ... ,’Command’)

ii_mac(Fig,’PropertyName’,PropertyValue, ... ,’Command’)

Result = ii_mac(Fig ,’Command’)

VC.PropertyName = PropertyValue

Description

The ii mac function gives access to vector correlation tools provided by the SDT starting with the
Modal Assurance Criterion (MAC) but including many others.

The high level implentation of tools provided by ii macis interfaced in the dock CoShape. A summary
of typical applications is given in section 3.2 and examples in the d cor demo.

You can also use low level calls to just display a figure or a table, as illustrated by the expamples
below.

Vector correlations are SDT objects which contain deformations, see va, typically given at test
sensors. For criteria using model mass or stiffness matrices see m. Other details about possible fields
of VC objects are given after the listing of supported commands below.

GUI

If you use ii mac without requesting graphical output, the vector correlation object is deleted upon
exit from ii mac. In other cases, the object is saved in the figure so that you can reuse it.

[model,sens,ID,FEM]=demosdt(’demopairmac’); % Sample data

cf=comgui(’guifeplot-reset’,2); % force feplot in figure(2);

cf.model=model; % Display FEM (contains topology correl in Test)

VC=ii_mac(ID,FEM,’sens’,sens,’mac plot -cf1’);

You can add data to other fields or call new commands from the command line by starting the ii mac

call with a pointer to the figure where the vector correlation is stored (ii mac(fig,’Command’), ...).
An alternate calling form is to set a field of the vector correlation object.

The following commands
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[cf,def_fem,res_test]=demosdt(’demo gartte cor plot’);

Sens=fe_case(cf.mdl,’sens’);

figure(1); subplot(221); VC=ii_mac(1);% Make figure(1) current so that ii_mac uses it

ii_mac(VC,res_test,def_fem,’labela’,’Test’,’labelb’,’FEM’, ...

’sens’,Sens,’Mac Pair Plot’);

subplot(212);ii_mac(VC,’comac’); % set new axis and display other criterion

subplot(222); ii_mac(VC,’MacMPairPlot’);

illustrate a fairly complex case where one shows the MAC in subplot(221), all three COMAC
indicators in subplot(212), then provide mass and a mass-shifted stiffness to allow computation of
the mass condensed on sensors and finally show the reduced mass weighted MAC in subplot(222).

The II MAC menu lets you choose from commands that can be computed based on the data that you
have already provided. The context menu associated with plots generated by ii mac lets you start
the cursor, display tabular output, ...

You can link deformations shown in a feplot figure to a MAC plot using

[model,sens,ID,FEM]=demosdt(’demopairmac’);

cf=feplot(model);

cf.def(1)=ID; % display test as first def set

cf.def(2)=FEM; % display FEM as second def set

% overlay & show interactive MAC in fig 1:

figure(1);clf;fecom(’show2def-mac1’)

Main commands

Options ... [Plot,Table,Tex,Thtml]

By default, the commands plot the result in a figure. Options valid for all commands are

• plot generates figure in the current axis. You can use figure and subplot to set the current
axis.

• Table generates a text output

• Tex generates a format suitable for direct inclusion in LaTeX

• Thtml creates and open an html file in the Matlab browser.
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Data fields

Data fields are defined using name, value pairs.

• ’cpa’,dataAsCols sets shapes . But calls with data structures are preferable, see va.

• ’sens’,sens sets sensor observation matrix, see sens.

• ’labela’,’name’ sets the name of data set A. Typical values are Test, FEM, ...

• ’inda’,ind selects vectors given by ind when computing a criterion. For example, rigid body
modes are often not included in correlation. Thus ’indb’,7:20 would skip the first 6 modes.

• ’SubDofInd’,ind allows the selection a subset of sensors when computing correlation criteria.

MAC [,M] [ ,PairA,PairB,AutoA, ...] ...

The Modal Assurance Criterion (MAC) [4] is the most widely used criterion for vector correlation
(mainly because of its simplicity).

The MAC is the correlation coefficient of vector pairs in two vector sets cpa and cpb defined at the
same DOFs (see ii mac va for more details). In general cpa corresponds to measured modeshapes
at a number of sensors {cφidj} while cpb corresponds to the observation of analytical modeshapes
[c] {φk}. The MAC is given by

MACjk =
| {cφidj}H {cφk} |2

| {cφidj}H {cφidj} || {cφk}H {cφk} |
(10.32)

For two vectors that are proportional the MAC equals 1 (perfect correlation). Values above 0.9 are
generally considered as well correlated. Values below 0.6 should be considered with much caution
(they may or may not indicate correlation).

The commands and figure below shows the standard 2-D (obtained using the context menu or
view(2)) and 3-D (obtained using the context menu or view(-130,20)) representations of the
MAC supported by ii mac. The color and dimensions of the patches associated to each vector pair
are proportional to the MAC value.
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[model,sens,ID,FEM]=demosdt(’demopairmac’);

if ishandle(1);close(1);end;figure(1);

VC=ii_mac(1,ID,FEM,’sens’,sens,’mac paira table’)

ii_mac(VC,’mac paira plot’);

The basic MAC shows vector pairs for all vectors in the two sets. Specific command options are

• MacM should be used when a mass is provided, see MacM

• MacPairA command seeks for each vector in cpa (cpb with PairB) the vector in cpb (cpa) that
is best correlated. MacPairB pairs against cpb vectors.

• MacAutoA Since the objective of the MAC is to estimate the correlation between various vectors,
it is poor practice to have vectors known to be different be strongly correlated.

Strong correlation of physically different vectors is an indication of poor test design or poor
choice of weighting. MacAutoA (B) compute the correlation of cpa (cpb) with itself. Off diagonal
terms should be small (smaller than 0.1 is generally accepted as good practice).

• -combineval allows orthogonal linear combinations of vectors whose frequencies are closer
than val relatively. This is meant for cases with very closely spaced modes where subspaces
rather than individual vectors should be compared.

• Error computes the MAC (or MAC-M), does pairing and plots a summary combining the
MAC value found for paired modes and the associated error on frequencies ((fb-fa)./fa).
Typical calls can be found in gartco example.

By default this command displays a plot similar to the one shown below where the diagonal
of the paired MAC and the corresponding relative error on frequencies are shown. For text
output see general command options.
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This is an example of how to use of the MACError command. In this example, the only
significant errors are associated with mode crossing so that the .Combine gives a nearly perfect
coerrelation.

[model,sens,ID,FEM]=demosdt(’demopairmac’);

if ishandle(1);close(1);end;figure(1);

VC=ii_mac(1,ID,FEM,’sens’,sens)

ii_mac(1,’SetMAC’,struct(’Pair’,’A’,’MacPlot’,’do’))

ii_mac(1,’macerror table’,struct(’MinMAC’,.6,’Df’,.2,’Combine’,.1));

ii_mac(1,’SetMAC’,struct(’MacError’,’do’))

A few things you should know ...

• The MAC measures the shape correlation without any reference to scaling of each vector
(because of the denominator in (10.32)). This makes the MAC easy to use but also limits
its applicability (since the modeshape scaling governs the influence of a given mode on the
overall system response, a proper scaling is necessary when comparing the relative influence of
different modes). In other terms, the MAC is not a norm (two vectors can be very correlated
and yet different), so care must be taken in interpreting results.

• As the MAC is insensitive to mode scaling, it can be used with identified normal mode residues.
You do not have to determine modal masses (see id rm) to compute a MAC.

• The main weakness of the MAC is linked to scaling of individual components in the correlation.
A change in sensor calibration can significantly modify the MAC. If the natures of various
sensors are different (velocity, acceleration, deformation, different calibration...) this can induce
significant problems in interpretation.

• The reference weighting in mechanics is energy. For vectors defined at all DOFs, the MAC
is a poor criterion and you should really use its mass weighted counter part. For incomplete
measurements, kinetic energy can be approximated using a static condensation of the mass on
the chosen sensors which can be computed using the MacM command.
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• In certain systems where the density of sensors is low on certain parts, cross-correlation levels
with the mass weighted MAC can be much lower than for the non weighted MAC. In such
cases, you should really prefer the mass weighted MAC for correlation.

MACCo [ ,M] [,ns]

The MACCo criterion is a what if analysis. It takes modes in cpa, cpb and computes the paired MAC
or MAC-M with one sensor removed. The sensor removal leading to the best mean MAC for the
paired modes is a direct indication of where the poorest correlation is found. The algorithm removes
this first sensor then iteratively proceeds to remove ns other sensors (the default is 3). The MACCo

command used with command option text prints an output of the form

Test 1 2 3 4 5 6 7 8

FEM 7 8 11 10 11 12 13 14

Sensor Mean

All 87 100 99 60 86 53 100 98 100

1112z 88 100 99 59 90 62 100 98 100

1301z 89 100 99 62 90 64 100 98 100

1303z 90 100 98 66 90 66 100 98 100

where the indices for the vectors used in the pairing are shown first, then followed by the initial mean
MAC and MAC associated to each pair. The following lines show the evolution of these quantities
when sensors are removed. Here sensor 1112z has a strong negative impact on the MAC of test
mode 5.

The sensor labels are replaced by sensor numbers if the sensor configuration sens is not declared.

By default the MACCO command outputs a structure in which field .data contains in its first column
the sensor or index removed and the resulting MAC evolution of paired modes in the following
columns. The field .xlabel contains the sensor labels or indices.

Command option plot will plot in the ii mac figure the MAC evolutions as function of the sensors
removed. Command option text will output the result as text.

This is an example of how to use of the MACCO command

% To see the result

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;VC=ii_mac(1);

ii_mac(VC,ID,FEM,’sens’,sens, ...

’inda’,1:8, ... % Select test modes to pair

’macplot’)

% See sensors for each mode
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r1=ii_mac(VC,’inda’,1:8,’MacCo’,struct(’Table’,1,’ByMode’,1,’N’,5));

% See sensors improving mean modes

r2=ii_mac(VC,’inda’,1:8,’MacCo’,struct(’Table’,1,’N’,5));

% Numeric values stored in r1 and r2.

MacM ...

When cpa and cpb are defined at finite element DOFs, it is much more appropriate to use a mass
weighted form of the MAC defined as

MAC-Mjk =
| {φjA}T [M ] {φkB} |2

| {φjA}T [M ] {φjA} || {φkB}T [M ] {φkB} |
(10.33)

called with ii mac( ... ’m’,m,’MacM Plot’). If vectors are defined as sensors, the problem is to
define what the mass should be. The standard approach is to use the static condensation of the full
order model mass on the sensor set. When importing an external reduced mass matrix, just define
the mass as shown above, when using SDT, see the ii mac mc section below.

If cpa is defined at sensors and cpb at DOFs, ii mac uses the sensor configuration sens to observe
the motion of cpb at sensors. If cpa is defined at DOFs and cpb at sensors, ii mac calls fe exp to
expand cpb on all DOFs.

The MAC-M can be seen as a scale insensitive version of the Pseudo-Orthogonality check (also called
Cross Generalized Mass criterion) described below.

COMAC [ ,M][,A,B][,N][,S][,E] [,sort]

The COMAC command supports three correlation criteria (N nominal, S scaled and E enhanced) whose
objective is to detect sensors that lead to poor correlation. You can compute all or some of these
criteria using the n, s, or e options (with no option the command computes all three). Sensors are
given in the nominal order or sorted by decreasing COMAC value (sort command option).

These criteria assume the availability of paired sets of sensors. The COMAC commands thus start
by pairing modes (it calls MacPair or MacMPair) to pair vectors in cpb to vectors in cpa. The B

command option can be used to force pairing against vectors in set B (rather than A which is the
default value).

The nominal Coordinate Modal Assurance Criterion (COMAC) measures the correlation of two
sets of similarly scaled modeshapes at the same sensors. The definition used for the SDT is
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COMACl = 1−

{∑NM
j |clφjAclφjB|

}2

∑NM
j |clφjA|2

∑NM
j |clφjB|2

(10.34)

which is 1 minus the definition found in [56] in order to have good correlation correspond to low
COMAC values.

The assumption that modes a similarly scaled is sometimes difficult to ensure, so that the scaled
COMAC is computed with shapes in set B scaled using the Modal Scale Factor (MSF)

{
ĉφjB

}
= {cφjB}MSFj = {cφjB}

{cφjB}T {cφjA}
{cφjB}T {cφjB}

(10.35)

which sets the scaling of vectors in set B to minimize the quadratic norm of the difference between

{cφjA} and
{
ĉφjB

}
.

The enhanced COMAC (eCOMAC), introduced in [57], is given by

eCOMACl =

∑NM
j

∥∥∥{ ˜clφjA}− {ĉφjB}∥∥∥
2NM

(10.36)

where the comparison is done using modeshapes that are vector normalized to 1

{ ˜clφjA} = {cφjA} / ‖cφjA‖ (10.37)

This is an example of how to use of the COMAC command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;VC=ii_mac(1);

ii_mac(VC,ID,FEM,’sens’,sens,’comac plot’)

ii_mac(VC,’comac table’);

POC [,Pair[A,B]] ...

The orthogonality conditions (6.96) lead to a number of standard vector correlation criteria. The
pseudo-orthogonality check (POC) (also called Cross Generalized Mass (CGM)) and the less
commonly used cross generalized stiffness (CGK) are computed using
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µjk = {φjA}T [M ] {φkB} κjk = {φjA}T [K] {φkB} (10.38)

where for mass normalized test and analysis modes one expects to have µjk ≈ δjk and κjk ≈ ω2
j δjk.

For matched modes, POC values differing significantly from 1 indicate either poor scaling or poor
correlation. To distinguish between the two effects, you can use a MAC-M which corresponds to the
square of a POC where each vector would be normalized first (see the MacM command).

Between unmatched modes, POC values should be close to zero. In some industries, off-diagonal
cross POC values below 0.1 are required for the test verification of a model.

The PairA, PairB, Plot, Table options are available for POC just as for the MAC.

Rel [,scaled][,m]

For scaled matched modeshapes, the relative error

ej =
‖ {cφjA} − {cφjB} ‖
‖ {cφjA} ‖+ ‖ {cφjB} ‖

(10.39)

is one of the most accurate criteria. In particular, it is only zero if the modeshapes are exactly
identical and values below 0.1 denote very good agreement.

The rel command calls MacPair to obtain shape pairs and plots the result of (10.39).

For uncalled matched modeshapes, you may want to seek for each vector in set B a scaling coefficient
that will minimize the relative error norm. This coefficient is known as the modal scale factor
and defined by

MSFj =
{cφjA}T {cφjB}
{cφjB}T {cφjB}

(10.40)

The RelScale command calls MacPair to obtain shape pairs, multiplies shapes in set B by the modal
scale factor and plots the result of (10.39).

With the M option, the MacPairM is used to obtain shape pairs, kinetic energy norms are used in
equations (10.39)-(10.40).

This is an example of how to use the Rel command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

ii_mac(ID,FEM,’sens’,sens,’rel’);
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VC

The following sections describe standard fields of VC vector correlation objects and how they can be
set.

VC.va vector set A detailed below
VC.vb vector set B detailed below.
VC.sens sensor description array describing the relation between the DOFs of cpb and the

sensors on which cpa is defined.
VC.m full order mass matrix
VC.mc reduced mass matrix defined at sensors (see definition below)
VC.qi sensor confidence weighting
VC.k full order stiffness matrix
VC.kd factored stiffness or mass shifted stiffness matrix
VC.T reduced basis used for dynamic expansion

va,vb,sens

ii mac uses two data sets referenced in VC.va and VC.vb and extracts shapes at sensors using the
get da db command shown below. All standard input formats for shape definition are accepted

• FEM result with .def and .DOF fields, see section 7.8 .

• Shapes at DOFs or pole residue with .res and .po fields (see section 5.6 )

• Response data with .w and .xf fields

• simple matrix with rows giving DOFs and columns shapes. These will be stored in the va.def

field, called cpa which stands for [c] {φa} since these vectors typically represent the observation
of modeshapes at test sensors, see section 5.1 . A typical call would thus take the form

FigHandle=figure(1);

ii_mac(FigHandle,’cpa’,shapes_as_col,’labela’,’Test’, ...

’cpb’,shape2, ... % Define vb

’mac’); % define command

sens, when defined (see section 4.6 for the generation of sensor configurations), does not use the
results defined in VC.va but their observation given by VC.sens.cta*VC.va.def (same for VC.vb).

The illustration below uses a typical identification result ID, a FEM result FEM and observes on
sensors.
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[model,sens,ID,FEM]=demosdt(’demopairmac -open’)

figure(1);[r1,VC]=ii_mac(ID,FEM,’sens’,sens, ...

’indb’,7:20,’mac plot’);

[da,db]=ii_mac(VC,’get_da_db’)

The da.def and db.def fields are always assumed to be observed at the same sensors (correspond
to the cpa, cpb fields if these are defined).

To support expansion, cpa is defined at DOFs and cpb at sensors, ii mac calls fe exp to expand
cpb on all DOFs.

m,k,kd

For criteria that use vectors defined at DOFs, you may need to declare the mass and stiffness
matrices. For large models, the factorization of the stiffness matrix is particularly time consuming.
If you have already factored the matrix (when calling fe eig for example), you should retain the
result and declare it in the kd field.

The default value for this field is kd=ofact(k,’de’) which is not appropriate for structures with rigid
body modes. You should then use a mass-shift (kd = ofact( k + alpha*m,’de’), see section 6.2.4
).

mc

The SDT supports an original method for reducing the mass on the sensor set. Since general test
setups can be represented by an observation equation (4.1), the principle of reciprocity tells that
[c]T corresponds to a set of loads at the location and in the direction of the considered sensors. To
obtain a static reduction of the model on the sensors, one projects the mass (computes T TMT ) on
the subspace

[T ] =
[
T̃
] [
cT̃
]−1

with [K]
[
T̃
]

= [c]T (10.41)

In cases where the model is fixed [K] is non-singular and this definition is strictly equivalent to
static/Guyan condensation of the mass [16]. When the structure is free, [K] should be replaced by
a mass shifted [K] as discussed under the kd field above.
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T

Reduced basis expansion methods were introduced in [16]. Static expansion can be obtained by
using T defined by (10.41).

To work with dynamic or minimum residual expansion methods, T should combine static shapes,
low frequency modes of the model, the associated modeshape sensitivities when performing model
updating.

Modeshape expansion is used by ii mac when cpa is full order and cpb is reduced. This capability
is not currently finalized and will require user setting of options. Look at the HTML or PDF help
for the latest information.

See also

ii comac, fe exp, the gartco demonstration, section 3.2
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Purpose

Mode indicator functions and signal processing.

Syntax

OUT = ii_mmif(’command’,IN,’waitbar’)

ci=iiplot; ii_mmif(’command’,ci,’CurveName’)

Description

This function supports all standard transformations of response datasets in particular mode indica-
tor functions and signal processing.

With data stored in a iiplot figure, from the GUI, open the Stack tab of the property figure

(accessible through iicom(’CurtabStack’) or by clicking on ) then select Compute ... in the
context menu to transform a given dataset. This has the advantage of allowing interactive changes
to signal processing results, see section 2.1.7 .

From the command line, use ii mmif(’command’,ci,Curve) (where ci is a handle referring to
iiplot figure). Curve can be a string defining a curve name or a regular expression (beginning by
#) defining a set of curves. One can also give some curve names as strings in a cell array. Without
output argument, computed mmif is stored in the stack with name mmif(CurveName). Accepted
command options are

• -reset to compute a mmif which has already been computed before (otherwise old result is
reused). The existence is based on the name in the iiplot stack.

• -display displays the result in the associated iiplot figure.

ci=iicom(’curveload’,’gartid’); % load curve gartid example

ii_mmif(’mmif’,ci,’Test’); % compute mmif of set named Test

iicom(’iixonly’,{’mmif(Test)’});% display result

When used with idcom, the Show ... context menu supports the automated computation of a
number of transformations of ci.Stack{’Test’}. These mode indicator functions combine data
from several input/output pairs of a MIMO transfer function in a single response that gives the user
a visual indication of pole locations. You can then use the idcom e command to get a pole estimate.

With data structures not in iiplot use mmif=ii mmif(command,Curve). Use command option
-struct to obtain output as curve data structure.
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ci=iicom(’curveload’,’gartid’); % load curve gartid example

R1=ci.Stack{’Test’}; % get Test dataset in variable R1

R2=ii_mmif(’mmif-struct’,R1); % compute mmif

MMIF

The Multivariate Mode Indicator Function (MMIF) (can also be called using iicom Show mmi) was
introduced in [58]. Its introduction is motivated by the fact that, for a single mode mechanical
model, the phase at resonance is close to -90o. For a set of transfer functions such that {y(s)} =
[H(s)] {u(s)}, one thus considers the ratio of real part of the response to total response

q(s, {u}) =
{u}T

[
Re(H)TRe(H)

]
{u}

{u}T Re([HHH]) {u}
=
{u}T [B] {u}
{u}T [A] {u}

(10.42)

For structures that are mostly elastic (with low damping), resonances are sharp and have properties
similar to those of isolated modes. The MMIF (q) thus drops to zero.

Note that the real part is considered for force to displacement or acceleration, while for force to
velocity the numerator is replaced by the norm of the imaginary part in order to maintain the
property that resonances are associated to minima of the MMIF. A MMIF showing maxima indicates
improper setting of idopt.DataType.

For system with more than one input (u is a vector rather than a scalar), one uses the extreme of q
for all possible real valued u which are given by the solutions of the eigenvalue problem [A] {u} q +
[B] {u} = 0.

The figure below shows a particular set for MMIF. The system has 3 inputs, so that there are 3
indicator functions. The resonances are clearly indicated by minima that are close to zero.

The second indicator function is particularly interesting to verify pole multiplicity. It presents a
minimum when the system presents two closely spaced modes that are excited differently by the
two inputs (this is the case near 1850 Hz in the figure). In this particular case, the two poles are
sufficiently close to allow identification with a single pole with a modeshape multiplicity of 2 (see
id rm) or two close modes. More details about this example are given in [9].
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This particular structure is not simply elastic (the FRFs combine elastic properties and sensor/actuator
dynamics linked to piezoelectric patches used for the measurement). This is clearly visible by the
fact that the first MIF does not go up to 1 between resonances (which does not happen for elastic
structures).

At minima, the forces associated to the MMIF (eigenvector of [A] {u} q+ [B] {u} = 0) tend to excite
a single mode and are thus good candidates for force appropriation of this mode [59]. These forces
are the second optional output argument ua.

CMIF

The Complex Mode Indicator Function (CMIF) (can also be called using iicom Show cmmi, see
[60] for a thorough discussion of CMIF uses), uses the fact that resonances of lightly damped sys-
tems mostly depend on a single pole. By computing, at each frequency point, the singular value
decomposition of the response

[H(s)]NS×NA = [U ]NS×NS [Σ]NS×NA

[
V H

]
NA×NA

(10.43)

one can pick the resonances of Σ and use U1,V1 as estimates of modal observability / controllability
(modeshape / participation factor). The optional u, v outputs store the left/right singular vectors
associated to each frequency point.

AMIF

ii mmif provides an alternate mode indicator function defined by
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q(s) = 1− |Im(H(s))||H(s)|T

|H(s)||H(s)|T
(10.44)

which has been historically used in force appropriation studies [59]. Its properties are similar to
those of the MMIF except for the fact that it is not formulated for multiple inputs.

This criterion is supported by iiplot (use iicom Show amif).

SUM, SUMI, SUMA

Those functions are based upon the sum of data from amplitude of sensors for a given input. One
can specify dimensions affected by the sum using command option -dim i (i is one ore more integers).

SUM,

S(s, k) =
∑
j

‖Hj,k(s)‖2 (10.45)

is the sum of the square of all sensor amplitude for each input.

SUMI,

S(s, k) =
∑
j

Im(Hj,k(s))
2 (10.46)

is the sum of the square of the imaginary part of all sensors for each input.

SUMA,

S(s, k) =
∑
j

‖Hj,k(s)‖ (10.47)

is the sum of the amplitude of all sensors for each input.

Those functions are sometimes used as mode indicator functions and are thus supported by ii mmif

(you can also call them using iicom Show sumi for example).

NODEMIF

Undocumented.
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Signal processing

Following commands are related to signal processing. Section section 2.1.7 illustrates the use of
those functions through iiplot.

Integrate, DoubleInt, Vel, Acc

• Integrate integrates the frequency dependent signal

Ij,k(s) =
Hj,k(0)

s2
+
Hj,k(s)

s
. (10.48)

• DoubleInt integrates twice the frequency dependent signal

I2j,k(s) =
Hj,k(0)

s3
+
Hj,k(s)

s2
. (10.49)

• Vel computes the velocity (first derivative) of the signal. For a frequency dependent signal

Vj,k(s) = s ·Hj,k(s). (10.50)

For a time dependent signal, finite differences are used

Vj,k(tn) =
Hj,k(tn+1)−Hj,k(tn)

tn+1 − tn
. (10.51)

Vj,k(tend) is linearly interpolated in order to obtain a signal of the same length.

• Acc computes the acceleration (second derivative) of the signal. For a frequency dependent
signal

Aj,k(s) = s2 ·Hj,k(s). (10.52)

For a time dependent signal, finite differences are used
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Aj,k(tn) =
hn · (Hj,k(tn+1)−Hj,k(tn))− hn+1 · (Hj,k(tn)−Hj,k(tn−1))

hn+ 1
2
· hn · hn+1

, (10.53)

with hn+1 = tn+1 − tn and hn+ 1
2

= hn+hn+1

2 .

Aj,k(tend) and Aj,k(t1) are linearly interpolated in order to obtain a signal of the same length.

FFT, FFTShock, IFFT, IFFTShock

Computes the Discrete Fourier Transform of a time signal. FFT normalizes according to the sampling
period whereas FFTShock normalizes according to the length of the signal (so that it is useful for
shock signal analysis).

IFFT and IFFTShock are respectively the inverse transform.

Accepted command options are

• -nostat to remove static component (f=0) from fft response.

• -newmark to shift frequencies of computed time integration with a mean acceleration Newmark
scheme (γ = 0.5, β = 0.25) in order to correct the periodicity error ∆T

T = ω2h2

12 . This correction
is especially true for low frequencies. Command option -newmark-betaval allows specifying
another value of β, using the general shift value ∆T

T = 1
2(β − 1

12)ω2h2.

• tmin value, tmax value, fmin value, fmax value to use parts of the time trace or spectrum.

• zp value is used to apply a factor value on the length of the signal and zero-pad it.

• -window name is used to apply a window on the time signal. Use fe curve(’window’) to get
a list of implemented windows. For windows with parameters, use double quotes. For example
R1 FFT=ii mmif(’FFTShock -struct -window "Exponential 10 20 100"’,R1).

• -display force display in iiplot after computing

[model,def]=fe_time(’demobar10-run’);

R1=ii_mmif(’FFT-struct -window "hanning" wmax 400’,def);

% To allow interaction

ci=iiplot;ci.Stack{’curve’,’def’}=def;
ii_mmif(’FFT-struct -window "hanning" fmax 400 -display’,ci,’def’);

iicom(’CurtabStack’) % Show the property figure
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BandPass

ii mmif(’BandPass fmin fmin fmax fmax’) Performs a true band pass filtering (i.e. using fft,
truncating frequencies and go back to time domain with ifft) between fmin and fmax frequencies.

OctGen, Octave

filt=ii mmif(’OctGen nth’,f) computes filters to perform a 1
nth -octave analysis.

As many filters as frequencies at the 1
nth -octave of 1000 Hz in the range of f (vector of frequencies)

are computed. Each band pass filter is associated to a frequency f0 and a bandwidth Bw depending
on f0. Filters are computed so that their sum is almost equal to 1. Filter computed are, for each f0

:

H(f, f0) =
1

1 + ( 1
Bw(f0) .

f2−f20
f )6

(10.54)

With command option plot, filters are plotted.

ii mmif(’Octave nth’,ci) performs the 1
nth octave analysis of active curve displayed in iiplot

figure.

The 1
nth octave analysis consists in applying each filter on the dataset. Energy in each filtered signal

is computed with 10log(S) (where S is the trapezium sum of the filtered signal, or of the square of
the filtered signal if it contains complex or negative values) and associated to the center frequency
of corresponding filter.

See also

iiplot, iicom, idopt, fe sens
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Purpose

Pole line plots and other plot enhancement utilities.

Syntax

ii_plp(po)

ii_plp(po,color,Opt)

Description

plp

Generation of zoomable vertical lines with clickable information.

ii plp(po) will plot vertical dotted lines indicating the pole frequencies of complex poles in po and
dashed lines at the frequencies of real poles. The poles po can be specified in any of the 3 accepted
formats (see ii pof).

When you click on these lines, a text object indicating the properties of the current pole is created.
You can delete this object by clicking on it. When the lines are part of iiplot axes, clicking on a
pole line changes the current pole and updates any axis that is associated to a pole number (local
Nyquist, residue and error plots, see iiplot).

.ID PoleLine Call from iiplot

When displaying a curve in iiplot, one can generate automatic calls to ii plp. Curve.ID field
can be used to generate automatically vertical lines in iiplot. It is a cell array with as many cell as
line sets. Each cell is a data structure defining the line set. Following fields can be defined:

• .po can be a column vector defining abscissa of vertical lines. It can also be a string, possibly
depending on the displayed curve XF1 and the channel through variable ch to be evaluated to
define the ro.po vector, for example ’r1.po=XF1.Y2(:,ch);’.

• .LineProp is optional. One can specify some MATLAB line properties in this field as a cell
array {’prop1’, value1, ’prop2’, value2, ...}, for example
{’LineStyle’,’:’,’color’,’r’}.
When using line sequencing, it is preferable to set the property using the line object tag now.
Thus
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R1=sdsetprop(R1,’PlotInfo.ua.axProp’, ...

’@now’,{’LineStyle’,’--’,’color’,’k’,’marker’,’none’});

• .marker supports alternative strategies for line generation. horizontal assumes .po to given
horizontal values. xy allows .po to contain a curve. If defined .po.MainDim=’y’ the curves
are assumed to be x = f(y) rather than the traditional y = f(x).

• .name is used to generate a text info displayed when the user clicks on the line.

• .unit(obsolete) is used for Hz vs. rad/s unit conversion. With tens set to 1 (11 or 12) is used
for poles in Hz, while those with tens set to 2 correspond to Rad/s. This value is typically
obtained from IDopt(3).

• .format an integer that specifies whether the imaginary part Im(λ) (Format=2 which is the
default) or the amplitude |λ| (using Format=3 corresponding to format 3 of ii pof) should be
used as the “frequency” value for complex poles.

Legend

Dynamic multi-line legend generation used by iiplot and feplot.

ii plp(’legend’,ga,prop) with properties a cell array detailed with in comgui def.Legend (typ-
ical legend generation associated with FEM solutions).

• ’set’,’legend -cornerx y’ gives the position of the legend corner with respect to the cur-
rent axis. -reset option deletes any legend existing in the current axis.

• ’string’,StringCell cell array of strings with one per line of legend. Line specific text
properties can be given in second column of StringCell.

• ’PropertyName’,PropertyValue additional properties to be set on the created text.

ii plp(’legend -corner .01 .01 -reset ’,ga,ua,StringCell,legProp) is an older format found
in some calls, with ga handle to the axis where the axes is to be placed, see gca. ua if not empty
provides additional properties .legProp, .Corner.

PlotSubMark

Generate subsampled markers.
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spy

ii plp(’spy’,k); Generates a spy plot with color coding associated with the non-zero element
values of matrix k.

• unsymm is used to force non symmetric plots.

• threshold is used force small terms to zero.

• msizeval allows specifying the plot MarkerSize to val

• -nopbar avoids customizing the figure PlotBoxAspectRatio to respect the matrix one.

To perform block-wise spy plots of a single matrix, it is possible to provide matrix k as a structure
with fields

• K the matrix to spy

• ind a cell array of disjoint sets of indices standing for a sequenced block-wise reodering of
matrix K.

• indC (optional) to provide a different ordering for columns than for lines (following ind),
activated for the unsymm case. It can be useful to display rectangular matrices.

TickFcn

SDT implements a general mechanism for enhancing the basic dynamic tick label generation of
MATLAB. This allows placement of strings are proper locations on an axis. ii plp(’TickFcn’)

list predefined ticks.

This functionality is not fully documented and you are encouraged to look-up the source code. SDT
generated plots expect the following fields in the axis userdata ua.TickInfo for data and ua.TickFcn

for the callback. A sample usage would be

C1=struct(’X’,{{num2cell(2:4)’ 2}},’Xlab’,{{’x’,’y’}}, ...

’Y’,(1:3)’)

figure(1);plot(1:3,C1.Y);ii_plp(’tickXCell’,C1,gca);

C1=ii_plp(’tickXCell’,C1); %Defines the PlotInfo

iiplot(C1);
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ColorMap[,RO]

FEM oriented color maps.

Predefined maps can be directly called and will apply to the current figure. feplot assignment
can be performed by nesting the ColorMap call in a call to fecom. fecom(’colormapjet(5)’) thus
generates a map with 5 colors and grey level bands on the current feplot figure. This is called using

Sample colormaps are featured in the example below,

% Example of colormaps provided by ii_plp

figure(1);h=mesh(peaks(300));

set(h,’edgecolor’,’none’,’facecolor’,’interp’);

ii_plp(’ColormapBandjet(5)’)

ii_plp(’ColormapFireIce 20’)

ii_plp(’ColormapSamcef’)

An exhaustive list can be obtained using ii plp(’ColorMap’) with no argument. This will open
the tag list for colormap thus showing the currently available maps.

• ii plp(’ColorMapWCenter Thres.1’,jet(20)) uses the map given as second argument with
a symmetric clim and a white band for values below the specified Thres.

In a more general context, one can define in any MATLAB figure a custom colormap with custom
and unevenly spread thresholds by providing a structure in second argument with fields

• map the chosen map in rgb format.

• cval a vector of values at which colors switches. The color limits CLim properties of the figure
current axis will be set to the extrema of cval. It is thus recommended to use clean min max
values. Color distribution is performed sequentially, so that only one color per cval step is
used. It is thus recommended to use a map with N-1 colors, N being the vector size.

• refine, optional. This is used to provide the colormap refinement needed to place color
switches accurately. The default is set to 100.

• bSplit, optional. This is used to add black split lines between colors, with a specified thickness.

• Band, optional. This is used to add a darkening nuance to each color step.

• cf, optional. To provide a feplot or figure handle, by default the current figure is taken.
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% Custom colormap setting using ii_plp

demosdt(’demoubeam’)

cf=feplot;

fecom(cf,’colordataa’)

fecom(cf,’colorscale Unit 1e3’);

fecom(cf,’colorbaron’)

ii_plp(’colormap’,struct(’map’,[1 1 1;jet(7)], ...

’cval’,[0:4:10 11:2:21],’Band’,0,’refine’,10,’bSplit’,2))

Cb

Callbacks for comgui objSet properties of colorbar. Accepted options are

• No north (main location), eot east outside top.

• String label of colorbar

• map color map command.

• cf figure number

figure(1);clf;mesh(peaks);

ii_plp(’cbNo’,struct(’String’,’Z’, ...

’map’,’ii_plp(’’ColormapBandjet(5)’’)’, ...

’cf’,1));

See also

ii pof, idopt, iiplot, iicom
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Purpose

Identification of a narrow-band single pole model.

Syntax

idcom(’e’)

[res,po]= ii_poest(ci.Stack{’Test’},opt)

Description

ii poest (idcom e command and associated button in the idcom GUI figure, see section 2.8 )
provides local curve fitting capabilities to find initial estimates of poles by simply giving an indication
of their frequency.

The central frequency for the local fit is given as opt(2) or, if opt(2)==0, by clicking on a plot
whose abscissas are frequencies (typically FRF of MMIF plots generated by iiplot).

The width of the selected frequency band can be given in number of points (opt(1) larger than 1)
or as a fraction of the central frequency (points selected are in the interval opt(2)*(1+[-opt(1)
opt(1)]) for opt(1)<1). The default value is opt(1)=0.01.

A single pole fit of the FRFs in xf is determined using a polynomial fit followed by an optimization
using a special version of the id rc algorithm. The accuracy of the results can be judged graphically
(when using the idcom e command, Test and IdFrf are automatically overlaid as shown in the plot
above) and based on the message passed

>> ci=idcom;iicom(ci,’CurveLoad’,’gartid’);

>> idcom(’e .01 16.5’);

>> disp(ci.Stack{’IdAlt’}.po)
1.6427e+001 1.3108e-002

LinLS: 5.337e-001, LogLS 5.480e-001, nw 18

mean(relE) 0.00, scatter 0.47 : acceptable
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Found pole at 1.6427e+001 1.3108e-002

% manual call would be [res,po]=ii_poest(ci.Stack{’Test’},[.01 16.5]);

which indicates the linear and quadratic costs (see ii cost) in the narrow frequency band used to
find the pole, the number of points in the band, the mean relative error (norm of difference between
test and model over norm of response, see iiplot error) which should be below 0.1, and the level
of scatter (norm of real part over norm of residues, which should be small if the structure is close to
having proportional damping).

If you have a good fit and the pole differs from poles already in your current model, you can add
the estimated pole (add IdAlt to IdMain) using the idcom ea command.

The choice of the bandwidth can have a significant influence on the quality of the identification. As
a rule the bandwidth of your narrow-band identification should be larger than the pole damping
ratio (opt(1)=0.01 for a damping of 1% is usually efficient). If, given the frequency resolution and
the damping of the considered pole, the default does not correspond to a frequency band close to
2ζjωj , you should change the selected bandwidth (for example impose the use of a larger band with
opt(1)=.02 which you can obtain simply using idcom (’e.02’)).

This routine should be used to obtain an initial estimate of the pole set, but the quality of its results
should not lead you to skip the pole tuning phase (idcom eup or eopt commands) which is essential
particularly if you have closely spaced modes.

See also

idcom, id rc, iiplot
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Purpose

Transformations between the three accepted pole formats.

Syntax

[pob] = ii_pof(poa,DesiredFormatNumber)

[pob] = ii_pof(poa,DesiredFormatNumber,SortFlag)

Description

The Structural Dynamics Toolbox deals with real models so that poles are either real or come in
conjugate pairs

{λ, λ̄} = {a± ib} = {−ζω ± ω
√

1− ζ2} (10.55)

Poles can be stored in three accepted formats which are automatically recognized by ii pof(see
warnings below for exceptions).

Format 1: a column vector of complex poles. ii pof puts the pairs of complex conjugate poles
λ, λ̄ first and real poles at the end
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po =



λ1

λ̄1
...
λRe

...


for example

po=[-0.0200 + 1.9999i
-0.0200 - 1.9999i
-1.0000]

(10.56)

Because non-real poles come in conjugate pairs with conjugate eigenvectors, it is generally easier to
only view the positive-imaginary and real poles, as done in the two other formats.

Format 2: real and imaginary part

po =

[
a b
...

...

]
for example

po=[-0.0200 1.9999

-1.0000 0.0000]
(10.57)

Format 3: frequency ω and damping ratio ζ

po =

[
ω1 ζ1
...

...

]
for example

po=[ 2.0000 0.0100
-1.0000 1.0000]

(10.58)

To sort the poles while changing format use an arbitrary third argument SortFlag.

Warnings

The input format is recognized automatically. An error is however found for poles in input format
2 (real and imaginary) with all imaginary below 1 and all real parts positive (unstable poles). In
this rare case you should change your frequency unit so that some of the imaginary parts are above
1.

Real poles are always put at the end. If you create your own residue matrices, make sure that there
is no mismatch between the pole and residue order (the format for storing residues is described in
section 5.6 ).

See also

idcom, id rc, ii plp
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Purpose

Level set utilities.

Syntax

model=lsutil(’cut’,model,li,RO)

def=lsutil(’gen’,model,li)

lsutil(’ViewLs’,model,li)

Description

lsutil provides a number of tools for level-set creation and manipulation.

Some commands return the model structure while others return the value of the level-set. Plot
outputs are also available.

Available lsutil commands are

edge

gen

Level-set computation.

rect(lx,ly,xc,yc,alpha);

circ(rc,xc,yc);

box(lx,ly,lz,xc,yc,zc,nx,ny,nz);

sphere(rc,xc,yc,zc));

cyl(xc,yc,zc,nx,ny,nz,rc,z0,z1);

cut

Accepted options are

• .doCut start by dividing elements

• .tolE fractional distance to edge end considered used to enforce node motion.

• .Fixed nodes that should not be moved.
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Here a first example with placement of circular piezo elements

RO=struct(’dim’,[400 300 8],’tolE’,.3);

[mdl,li]=ofdemos(’LS2d’,RO);lsutil(’ViewLs’,mdl,li);

li{1} % Specification of a circular level set

RO.doSplit=1; mo3=lsutil(’cut’,mdl,li,RO);

lsutil(’ViewLs’,mo3,li); % display the level set

fecom(’ShowFiPro’) % Show element properties

Now a volume example

RO=struct(’dim’,[10 10 40],’tolE’,.1,’doSplit’,1);

[model,li]=ofdemos(’LS3d’,RO);li{1} % Spherical cut

mo3=lsutil(’cut -dosplit’,model,li,RO);

cf=feplot(mo3);feplot(’ShowFiMat’)

% Now do a cylinder cut

li={struct(’shape’,’cyl’,’xc’,.5,’yc’,.5,’zc’,1,’nx’,0,’ny’,0,’nz’,-1, ...

’rc’,.2,’z0’,-.4,’z1’,.4,’mpid’,[200 300])};
mo3=lsutil(’cut’,model,li,RO);feplot(mo3);

cf.sel={’innode {x>=.5}’,’colordatamat -edgealpha.1’}
fecom(’ShowFiPro’) % Show element properties

See also

feplot

804



nasread

Purpose

Read results from outputs of the MSC/NASTRAN finite element code. This function is part of
FEMLink.

Syntax

out = nasread(’FileName’,’Command’)

Description

nasread reads bulk data deck (NASTRAN input), direct reading of model and result information
in OUTPUT2 and OUTPUT4 files generated using NASTRAN PARAM,POST,-i cards. This is the
most efficient and accurate method to import NASTRAN results for post-processing (visualization
with feplot, normal model handling with nor2ss, ...) or parameterized model handling with upcom.
Results in the .f06 text file (no longer supported).

Available commands are

Bulk file

model=nasread(’FileName’,’bulk’) reads NASTRAN bulk files for nodes (grid points), element
description matrix, material and element properties, and coordinate transformations, MPC, SPC,
DMIG, SETS, ...

Use ’BulkNo’ for a file with no BEGIN BULK card. Unsupported cards are displayed to let you know
what was not read. You can omit the ’bulk’ command when the file name has the .dat or .bdf

extension.

Each row of the bas.bas output argument contains the description of a coordinate system.

The following table gives a partial conversion list. For an up to date table use nas2up(’convlist’)
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NASTRAN SDT
CELAS1, CELAS2, RBAR

celas

RBE2
rigid

RBE3
rbe3 in Case

CONROD
bar1

CBAR, CBEAM, CROD
beam1

CBUSH
cbush

CSHEAR
quad4

CONM1, CONM2
mass2

CHEXA
hexa8, hexa20

CPENTA
penta6, penta15

CTETRA
tetra4, tetra10

CTRIA3, CTRIAR
tria3

CTRIA6
tria6

CQUAD4, CQUADR
quad4

CQUAD8
quadb

Details on properties are given under naswrite WritePLIL. NASTRAN Scalar points are treated
as standard SDT nodes with the scalar DOF being set to DOF .01 (this has been tested for nodes,
DMIG and MPC).

OUTPUT2 binary

model=nasread(’FileName’,’output2’) reads output2 binary output format for tables, matrices
and labels. You can omit the output2 command if the file names end with 2. The output model

is a model data structure described in section 7.6 . If deformations are present in the binary file,
the are saved OUG(i) entries in the stack (see section 7.8 ). With no output argument, the result is
shown in feplot.

Warning: do not use the FORM = FORMATTED in the eventual ASSIGN OUTPUT2 statement.
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The optional out argument is a cell array with fields the following fields

.name
Header data block name (table, matrix) or label (label)

.dname
Data block name (table, matrix) or NASTRAN header (label)

.data
cell array with logical records (tables), matrix (matrix), empty (label)

.trl
Trailer (7 integers) followed by record 3 data if any (for table and matrix), date (for
label)

Translation is provided for the following tables

GEOM1 nodes with support for local coordinates and output of nodes in global coordinates
GEOM2 elements with translation to SDT model description matrix (see bulk command).
GEOM4 translates constraints (MPC, OMIT, SPC) and rigid links (RBAR, RBE1, RBE2, RBE3, RROD,

...) to SDT model description matrix
GPDT with use of GPL and CSTM to obtain nodes in global coordinates
KDICT reading of element mass (MDICT, MELM) and stiffness (KDICT, KELM) matrix dictionar-

ies and transformation of a type 3 superelement handled by upcom. This is typi-
cally obtained from NASTRAN with PARAM,POST,-4. To choose the file name use
Up.file=’FileName’;Up=nasread(Up,’Output2.op2’);

MPT material property tables
OUG transformation of shapes (modes, time response, static response, ...) as curve entries

in the stack (possibly multiple if various outputs are requested).
Note : by default deformations are in the SDT global coordinate system (basic in
NASTRAN terminology). You may switch to output in the local (global in NAS-
TRAN terminology) using PARAM,OUGCORD,GLOBAL.
To avoid Out of Memory errors when reading deformations, you can set use a smaller
buffer sdtdef(’OutOfCoreBufferSize’,10) (in MB). When too large, def.def is
left in the file and read as a v handle object that lets you access deformations with
standard indexing commands. Use def.def=def.def(:,:) to load all.
To get the deformation in the stack use calls of the form
def=stack get(model,’curve’,’OUG(1)’,’get’)

OEE tables of element energy
OES tables of element stresses or strains.

This translation allows direct reading/translation of output generated with NASTRAN PARAM,POST

commands simply using out=nasread(’FileName.op2’). For model and modeshapes, use
PARAM,POST,-1. For model and element matrices use PARAM,POST,-4 or PARAM,POST,-5 (see
BuildUp command below).
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BuildUp,BuildOrLoad

A standard use of FEMLink is to import a model including element matrices to be used later with
upcom. You must first run NASTRAN SOL103 with PARAM,POST,-4 to generate the appropriate
.op2 file (note that you must include the geometry in the file, that is not use PARAM,OGEOM,NO).
Assuming that you have saved the bulk file and the .op2 result in the same directory with the same
name (different extension), then

Up=nasread(’FileName.blk’,’buildup’)

reads the bulk and .op2 file to generate a superelement saved in FileName.mat.

It is necessary to read the bulk because linear constraints are not saved in the .op2 file during the
NASTRAN run. If you have no such constraints, you can read the .op2 only with Up=upcom(’load

FileName);Up=nasread(Up,’FileName.op2’).

The BuildOrLoad command is used to generate the upcom file on the first run and simply load it if
it already exists.

nasread(’FileName.blk’,’BuildOrLoad’) % result in global variable Up

OUTPUT4 binary

out=nasread(’FileName’,’output4’) reads output4 binary output format for matrices (stiffness,
mass, restitution matrices ...). The result out is a cell array containing matrix names and values
stored as Matlab sparse matrices.

All double precision matrix types are now supported. If you encounter any problem, ask for a patch
which will be provided promptly.

Output4 text files are also supported with less performance and no support for non sequential access
to data with the SDT v handle object.

Supported options

• -full : assumes that the matrix to be read should be stored as full (default sparse).

• -transpose : transpose data while reading.

• -hdf : save data in a hdf file. Reading is performed using buffer
(sdtdef(’OutOfCoreBufferSize’,100) for a 100MB buffer). It is useful to overcome the
2GB limit on 32 bit Matlab: see sdthdf for details about how to build v handle on hdf file.
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.f06 output (obsolete)

ASCII reading in .f06 files is slow and often generates round-off errors. You should thus consider
reading binary OUTPUT2 and OUTPUT4 files, which is now the only supported format. You may
try reading matrices with nasread(’FileName’,’matprt’), tables with nasread(’F’,’tabpt’)

and real modes with

[vector,mdof]=nasread(’filename’,’vectortype’)

Supported vectors are displacement (displacement), applied load vector (oload) and grid point
stress (gpstress).

See also

naswrite, FEMLink
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Purpose

Formatted ASCII output to MSC/NASTRAN bulk data deck. This function is part of FEMLink.

Syntax

naswrite(’FileName’,node,elt,pl,il)

naswrite(’FileName’,’command’, ...)

naswrite(’-newFileName’,’command’, ...)

naswrite(fid,’command’, ...)

Description

naswrite appends its output to the file FileName or creates it, if it does not exist. Use option
-newFileName to force deletion of an existing file. You can also provide a handle fid to a file that
you opened with fopen. fid=1 can be used to have a screen output.

EditBulk

Supports bulk file editing. Calls take the form
nas2up(’EditBulk’,InFile,edits,Outfile), where InFile and OutFile are file names and edits

is a cell array with four columns giving command, BeginTag, EndTag, and data. Accepted commands
are

Before inserts data before the BeginTag.
Insert inserts data after the EndTag.
Remove removes a given card. Warning this does not yet handle multiple line cards.
Set used to set parameter and assign values. For example

edits={’Set’,’PARAM’,’POST’,’-2’};
rootname=’my_job’;

f0={’OUTPUT4’,sprintf(’%s_mkekvr.op4’,rootname),’NEW’,40,’DELETE’,
’OUTPUT4’,sprintf(’%s_TR.op4’,rootname),’NEW’,41,’DELETE’};

edits(end+1,1:4)={’set’,’ASSIGN’,’’,f0}

When writing automated solutions, the edits should be stored in a stack entry info,EditBulk.

model
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naswrite(’FileName’,model) the nominal call, it writes everything possible : nodes, elements,
material properties, case information (boundary conditions, loads, etc.). For example
naswrite(1,femesh(’testquad4’)).

The following information present in model stack is supported

• curves as TABLED1 cards if some curves are declared in the model.Stack see fe curve for the
format).

• Fixed DOFs as SPC1 cards if the model case contains FixDof and/or KeepDof entries.
FixDof,AutoSPC is ignored if it exists.

• Multiple point constraints as MPC cards if the model case contains MPC entries.

• coordinate systems as CORDi cards if model.bas is defined (see basis for the format).

The obsolete call naswrite(’FileName’,node,elt,pl,il) is still supported.

node,elt

You can also write nodes and elements using the low level calls but this will not allow fixes in
material/element property numbers or writing of case information.

femesh(’reset’);

femesh(’testquad4’)

fid=1 % fid=fopen(’FileName’);

naswrite(fid,’node’,FEnode)

naswrite(fid,’node’,FEnode)

%fclose(fid)

Note that node(:,4) which is a group identifier in SDT, is written as the SEID in NASTRAN.
This may cause problems when writing models from translated from other FEM codes. Just use
model.Node(:,4)=0 in such cases.

dmig

DMIG writing is supported through calls of the form naswrite(fid,’dmigwrite NAME’,mat,mdof).
For example

naswrite(1,’dmigwrite KAAT’,rand(3),[1:3]’+.01)

A nastran,dmig entry in model.Stack, where the data is a cell array where each row gives name,
DOF and matrix, will also be written. You can then add these matrices to your model by adding
cards of the form K2GG=KAAT to you NASTRAN case.
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job

NASTRAN job handling on a remote server from the Matlab command line is partially supported.
You are expected to have ssh and scp installed on your computer. On windows, it is assumed that
you have access to these commands using CYGWIN. You first need to define your preferences

setpref(’FEMLink’,’CopyFcn’,’scp’);

setpref(’FEMLink’,’RunNastran’,’nastran’);

setpref(’FEMLink’,’RemoteShell’,’ssh’);

setpref(’FEMLink’,’RemoteDir’,’/tmp2/nastran’);

setpref(’FEMLink’,’RemoteUserHost’,’user@myhost.com’)

setpref(’FEMLink’,’DmapDir’,fullfile(fileparts(which(’nasread’)),’dmap’))

You can define a job handler customized to your needs and still use the nas2up calls for portability
by defining setpref(’FEMLink’,’NASTRANJobHandler’, ’FunctionName’).

You can then run a job using nas2up(’joball’,’BulkFileName.dat’). Additional arguments can
be passed to the RunNastran command by simply adding them to the joball command. For example
nas2up(’joball’,’BulkFileName.dat’,struct(’RunOptions’,’memory=1GB’)).

It is possible provide specific options to your job handler by storing them as a info,NasJobOptentry
in your model.Stack. nas2up(’JobOptReset’) resets the default. The calling format in various
functions that use the job handling facility is then

model=stack_set(’info’,’NasJobOpt’,nas2up(’jobopt’));

nas2up(’joball’,’step12.dat’,model);

RunOpt.RunOptions stores text options to be added to the nastran command. RunOpt.BackWd can
be used to specify an additional relative directory for the JobCpFrom command. RunOpt.RemoteRelDir
can be used to specify the associated input for the JobCpTo command.

nas2up(’JobCpTo’, ’LocalFileName’, ’RemoteRelDir’) puts (copies) files to the remote direc-
tory or to fullfile(RemoteDir,RemoteRelativeDir) if specified.

nas2up(’JobCpFrom’, ’RemoteFileName’) fetches files. The full remote file name is given by
fullfile(RemoteDir,RemoteFileName). Any relative directory is ignored for the local directory.

Here is a simple script that generates a model, runs NASTRAN and reads the result

wd=sdtdef(’tempdir’);

model=demosdt(’demoubeam-2mat’); cf=feplot;

model=fe_case(model,’dofload’,’Input’, ...

struct(’DOF’,[349.01;360.01;241.01;365.03],’def’,[1;-1;1;1],’ID’,100));

model=nas2up(’JobOpt’,model);
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model=stack_set(model,’info’,’Freq’,[20:2:150]);

% write bulk but do not include eigenvalue options

naswrite([’-new’ fullfile(wd,’ubeam.bdf’)],stack_rm(model,’info’,’EigOpt’))

% generate a job by editing the reference mode.dat file

fname=’ubeam.dat’;

edits={’Set’,’PARAM’,’POST’,’-2’;
’replace’,’include ’’model.bdf’’’,’’,’include ’’ubeam.bdf’’’;

’replace’,’EIGRL’,’’,nas2up(’writecard’,-1,[1 0 0 30],’ijji’,’EIGRL’)};
nas2up(’editbulk’,’mode.dat’,edits,fullfile(wd,fname));

cd(wd);type(fname)

nas2up(’joball’,fname,model)

cg=feplot(4);mo1=nasread(’ubeam.op2’);

Wop4

Matrix writing to OUTPUT4 format. You provide a cell array with one matrix per row, names in first
column and matrix in second column. The optional byte swapping argument can be used to write
matrices for use on a computer with another binary format.

kv=speye(20);

ByteSwap=0; % No Byte Swapping needed

nas2up(’wop4’,’File.op4’,{’kv’,kv},ByteSwap);

For ByteSwap you can also specify ieee-le for little endian (Intel PC) or ieee-be depending on
the architecture NASTRAN will be running on. You can omit specifying ByteSwap at every run by
setting

setpref(’FEMLink’,’OutputBinaryType’,’ieee-le’)

WriteFreqLoad

edits=naswrite(’Target.bdf’,’WriteFreqLoad’,model) (or the equivalent nas2up call when the
file is already open as show below) writes loads defined in model (and generated with
Load=fe load(model)) as a series of cards. FREQ1 for load frequencies, TABLED1 for the associated
curve, RLOAD1 to define the loaded DOFs and DAREA for the spatial information about the load. The
return edits argument is the entry that can be used to insert the associated subcase information in
a nominal bulk.

The identifiers for the loads are supposed to be defined as Case.Stack{j1,end}.ID fields.
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% Generate a model with sets of point loads

model=demosdt(’Demo ubeam dofload noplot’)

% Define the desired frequencies for output

model=stack_set(model,’info’,’Freq’, ...

struct(’ID’,101,’data’,linspace(0,10,12)));

fid=1 % fid=fopen(’FileName’);

edits=nas2up(’writefreqload’,fid,model);

fprintf(’%s\n’,edits{end}{:}); % Main bulk to be modified with EditBulk

%fclose(fid)

Write[Curve,Set,SetC,Uset]

Write commands are used to WriteCurve lets you easily generate NASTRAN curve tables.

WriteSet lets you easily generate NASTRAN node and elements sets associated with node and
element selection commands.

WriteSetC formats the sets for use in the case control section rather than the bulk.

WriteUset generates DOFs sets.

model=demosdt(’demogartfe’);

fid=1; % display on screen (otherwise use FOPEN to open file)

nas2up(’WriteSet’,fid,3000,model,’findnode x>.8’);

selections={’zone_1’,’group 1’;’zone_2’,’group 2:3’};
nas2up(’WriteSet’,fid,2000,model,selections);

st=nas2up(’WriteSet’,-1,2000,model,selections);

curves={’curve’,’Sine’,fe_curve(’testEval -id1 sin(t)’,linspace(0,pi,10)) ; ...

’curve’,’Exp.’,fe_curve(’testEval -id100 exp(-2*t)’,linspace(0,1,30))};
nas2up(’WriteCurve’,fid,curves)

DOF=feutil(’getdof’,model);

nas2up(’WriteUset U4’,fid,DOF(1:20))

WritePLIL

The WritePLIL is used to resolve identifier issues in MatId and ProId (elements in SDT have both
a MatId and an ProID while in NASTRAN they only have a ProId with the element property
information pointing to material entries). While this command is typically used indirectly while
writing a full model, you may want to access it directly. For example
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model=demosdt(’demogartfe’);

nas2up(’Writeplil’,1,model);

• p solid properties are implemented somewhat differently in NASTRAN and SDT, thus for a
il row giving [ProID type Coordm In Stress Isop Fctn]

In NASTRAN In is either a string or an integer. If it is an integer, this property is the same
in il. If it is a string equal to resp. TWO or THREE, this property is equal to resp. 2 or 3 in il.

In NASTRAN Stress is either a string or an integer. If it is an integer, this property is the
same in il. If it is a string equal GAUSS, this property is equal to 1 in il.

In NASTRAN, Isop is either a string or an integer. If it is an integer, this property is the
same in il. If it is a string equal FULL, this property is equal to 1 in il.

If Fctn is equal to FLUID in the NASTRAN Bulk file, it is equal to 1 in il and elements are
read as flui* elements.

• MAT9 and m elastic 3 differ by the order of shear stresses yz, zx,Gxy in SDT and xy, yz, zx
in NASTRAN. The order of constitutive values is thus different, which is properly corrected
in SDT 6.5.

See also

nasread, ufread, ufwrite
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nor2res, nor2ss, nor2xf

Purpose

Transformations from normal mode models to other model formats.

Syntax

[res,po,psib,cpsi] = nor2res( ... ) % sdtweb(’res’) for format

RES = nor2res( ... )

[a,b,c,d] = nor2ss ( ... ) % sdtweb(’ss’) for format

SYS = nor2ss ( ... )

xf = nor2xf ( ... ) % sdtweb(’xf’) for format

... = nor2.. (DEF,MODEL, ... ) % high level input

... = nor2.. (DEF,ga,MODEL, ... )

... = nor2.. (ga,om,pb,cp, ... ) % low level input

... = nor2ss ( ... , ind,fc,OutputCmd) % frequency,truncation...

... = nor2xf ( ... , w,ind,fc,OutputCmd)

Description

These functions provide detailed access, for simple high level calls see fe2ss. Normal mode models
are second order models detailed in the Theory section below. nor2res, nor2ss, and nor2xf provide
a number of transformations from the normal mode form to residue, state-space, and transfer function
formats.

The normal mode model is specified using either high level structure arguments DEF,MODEL (where
the model is assumed to contain load and sensor case entries) or low level numeric arguments
om,ga,pb,cp. Additional arguments w,ind,fc,OutputCmd can or must be specified depending on
the desired output. These arguments are listed below.

DEF,MODEL

The normal mode shapes are given in a DEF structure with fields .def, .DOF, .data (see section 7.8
).

These mode shapes are assumed mass normalized and the first column of the .data field is assumed
to give modal frequencies in Hz. They can be computed with fe eig or imported from an external
FEM code (see FEMLink). See also fe2ss.

Damping can be declared in different ways
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• modal damping ratio can be given in DEF.data(:,2). When this column exists other damping
input is ignored. This is illustrated as variable damping below.

• damp a vector of modal damping ratio can be given as the second argument
nor2ss(DEF,damp,MODEL), or as an info,DefaultZeta entry as shown in the example below.

• a modal damping matrix ga can be given as the second argument. Note that this modal
damping matrix is assumed to use frequency units consistent with the specified frequencies.
Thus a physical viscous damping matrix will need to be divided by 2*pi (see demo fe).

• hysteretic modal damping is not systematically supported since it leads to complex valued
state-space models. You can compute FRFs with an hysteretic modal damping model using

def.data=sqrt(real(def.data.^2)).*sqrt(1+i*damp*2);

IIxh=nor2xf(def,[],model,w,’hz’);

as illustrated in section 5.3.2 .

Inputs and outputs are described by a model containing a Case (see section 4.5 ). Giving the model
is needed when inputs correspond to distributed loads (FVol or FSurf case entries detailed under
fe load). SensDof are the only output entries currently supported (see fe case).

Note that DofSet entries are handled as acceleration inputs. The basis described by DEF must
allow a correct representation of these inputs. This can be achieved by using a basis containing
static corrections for unit displacements or loads on the interface (see fe2ss CraigBampton or Free
commands). A proper basis can also be generated using acceleration inputs at single nodes where
a large seismic mass is added to the model. This solution is easier to implement when dealing with
external FEM codes.

Examples

Here is a sample call that compares responses for two damping levels

[model,def]=demosdt(’demogartfe’);

InDof=[4.03;55.03;2.03]; OutDof=[4 55 30]’+.03;

freq=linspace(5,70,500)’;

model=fe_case(model, ...

’DofLoad’,’Force’,InDof, ...

’SensDof’,’Sensors’,OutDof);

model=stack_set(model,’info’,’Freq’,freq, ...

’info’,’DefaultZeta’,.01); % Ignored when def.data(:,2) exists

nor2xf(def,model,’acc iiplot "Test" -po -reset’);
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% Another variation

% define variable damping in def.data(:,2)

def.data(def.data(:,1)<30,2)=.005; % 0.5% damping below 30 Hz

def.data(def.data(:,1)>30,2)=.02; % 2% damping above 30 Hz

% Truncate to first 10 modes (static correction is lost)

d1=fe_def(’subdef’,def,1:12);

% Define inputs and ouputs using DOFs (less general than fe_case)

nor2xf(d1,InDof,OutDof,freq,’acc iiplot "Variable damping"’);

iicom(’ch2’);ci=iiplot;ci.Stack

When using distributed loads (pressure, etc.), the model elements are needed to define the load so
that the model rather than a Case must be given as in the following example

model = demosdt(’demo ubeam’);

def=fe_eig(model,[106 20 10000 11 1e-5]);

%Pressure load

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data)

%Sensors

model=fe_case(model,’sensdof’,’Sensors’,[50:54]’+.03);

fe_case(model,’info’)

model=stack_set(model,’info’,’Freq’,linspace(10,240,460));

nor2xf(def,0.01,model,’iiplot "Test" -po -reset’);

Example of transmissibility prediction using the large mass method where one defines a rigid base
and a large mass such that one has 6 rigid body modes and fixed interface modes

model = demosdt(’demo ubeam’);

% define rigid base

i1=feutil(’findnode z==0’,model);

model = fe_case(model,’reset’, ...

’rigid append’,’Base’,[i1(1);123456;i1(2:end)]);

% Add large mass on the base

model.Elt(end+[1:2],1:7)=[Inf abs(’mass1’) 0;

i1(1) [1 1 1 1 1 1]*1e6];
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def=fe_eig(model,[5 20 1e3]); % This can be computed elsewhere

% Transmissibility for unit acceleration along x

model=fe_case(model,’DofSet’,’IN’, ...

struct(’def’,[1;0;0;0;0;0],’DOF’,i1(1)+[1:6]’/100), ...

’SensDof’,’OUT’,[1.01;314.01]);

f=linspace(50,500,1024)’;

nor2xf(def,.01,model,f,’acc iiplot "Trans-Large" -reset’);

% Clean approach without the large mass

mo2=stack_set(model,’info’,’EigOpt’,[5 14 1e3]);

mo2=fe_case(mo2,’DofSet’,’IN’,i1(1));

SE=fe_reduc(’CraigBampton -se’,model); % craig-bampton reduction

% Free modes of Craig-Bampton basis

TR=fe_eig({SE.K{:} SE.DOF});TR.DOF=SE.TR.DOF;TR.def=SE.TR.def*TR.def;

nor2xf(TR,.01,model,f,’acc iiplot "Trans-Craig"’);

iicom(’ch2’);

om,ga,pb,cp

Standard low level arguments om (modal stiffness matrix), ga (modal viscous damping matrix),
pb (modal controllability) and cp (modal observability) used to describe normal mode models are
detailed in section section 5.2 . A typical call using this format would be

[model,def]=demosdt(’demogartfe’);

b = fe_c(def.DOF,[4.03;55.03])’; c = fe_c(def.DOF,[1 30 40]’+.03);

IIw=linspace(5,70,500)’;

nor2xf(def.data,0.01,def.def’*b,c*def.def,IIw*2*pi, ...

’Hz iiplot "Simul" -po -reset’);

w,ind,fc,OutputCmd

Other arguments are

• w frequencies (in rad/s unless Hz is specified in OutputCmd) where the FRF should be computed
(for nor2xf). Can also be given as a model.Stack{’info’,’Freq’} entry.

• ind (optional) gives the indices of modes to be retained (truncated modes are then added to
the static correction).
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• fc (optional) roll-off frequency : that is frequency assigned to the static correction poles.
Since static correction is meant for low frequency behavior, its dynamics must be above the
bandwidth of interest but where exactly can be tuned. This applies only to load input cases
and a static correction must exist.

• OutputCmd (optional) is a string that can contain. ’Hz’ to specify that w and wj are given
in Hz. Non diagonal om or ga are always given in rad/s. ’dis’, ’vel’, or ’acc’ are used to
obtain displacement (default), velocity or acceleration output. ’struct’ is used to obtain a
curve structure.
’iiplot "StackName" -po -reset’ can be used to display results in iiplot(see section 2.1.2
). The optional -po is used to save poles in ci.Stack’IdMain’ so that they can be displayed.
-reset reinitializes the curve stack.
-zoh Ts or -foh Ts can be used to obtained a discrete state-space model based on zero or
first order hold approximations with the specified time step.

res

nor2res returns a complex mode model in the residue form

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

=
2N∑
j=1

[Rj ]

s− λj
(10.59)

This routine is particularly useful to recreate results in the identified residue form res for comparison
with direct identification results from id rc.

Pole residue models are always assumed to correspond to force to displacement transfer functions.
Acceleration input or velocity, acceleration output specifications are thus ignored.

ss

nor2ss returns state-space models (see the theory section below).

When no roll-off frequency is specified, nor2ss introduces a correction, for displacement only, in
the state-space models through the use of a non-zero d term. If a roll-off frequency fc is given, the
static correction is introduced in the state-space model through the use of additional high frequency
modes. Unlike the non-zero D term which it replaces, this correction also allows to correct for
velocity contributions of truncated modes.

You can also specify fc as a series of poles (as many as inputs) given in the frequency/damping
format (see ii pof).
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You force use of SDT structure and rather than Control Toolbox LTI object using
setpref(’SDT’,’UseControlToolbox’,0). You can convert between formats using
ss lti=nor2ss(’ss2struct’,ss sdt) or ss sdt=nor2ss(’ss2struct’,ss lti).

xf

nor2xf computes FRF (from u to y) associated to the normal mode model. When used with modal
frequencies freq and a subset of the modes (specified by a non empty ind), nor2xf introduces static
corrections for the truncated modes.

lab in,lab out

SDT uses fields lab in and lab out, while the control toolbox objects use InputName and OutputName.
The commands lab in are used to robust handling based on the object type.

lab_in =nor2ss(’lab_in’, sys) % Get in

lab_out=nor2ss(’lab_out’,sys) % Get out

sys=nor2ss(’lab_in’ ,sys,lab_in) % Set in

sys=nor2ss(’lab_out’,sys,lab_out) % Set out

Theory

The basic normal mode form associated with load inputs [b] {u} is (see section 5.2 )

[
[I] s2 + [Γ] s+

[
Ω2
]]
NP×NP {(s)} =

[
φT b

]
NP×NA

{u(s)}NA×1

{y(s)} = [cφ]NS×NP {p(s)}NP×1

(10.60)

where the coordinates p are such that the mass is the identity matrix and the stiffness is the diagonal
matrix of frequencies squared.

The associated state-space model has the form

{
ṗ (t)
p̈ (t)

}
=

[
[0] [I]

−
[
\Ω2

\
]
− [Γ]

]{
p (t)
ṗ (t)

}
+

[
0
φT b

]
{u(t)}

{y} = [cφ 0]

{
p (t)
ṗ (t)

}
+ [0] {u(t)}

(10.61)
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When used with modal frequencies wj and a subset of the modes (specified by ind), nor2ss intro-
duces static corrections for the truncated modes. When requesting velocity or acceleration output,
static correction can only be included by using additional modes.

In cases with displacement output only, the static corrections are ranked by decreasing contribution
(using a SVD of the d term). You can thus look at the input shape matrix b to see whether all
corrections are needed.

nor2ss (and nor2xf by calling nor2ss) supports the creation of state-space models of transmissibil-
ities (transfer functions from acceleration input to displacement, velocity or acceleration. For such
models, one builds a transformation such that the inputs ua associated with imposed accelerations
correspond to states

{
ua
qc

}
= [TI TC ] {p} (10.62)

and solves the fixed interface eigenvalue problem

[
T TCΩTC − ω2

jCT
T
C ITC

]
{φjC} = {0} (10.63)

leading to basis
[
TI T̂C

]
= [TI TC [φjC ]] which is used to build the state space model


u̇
q̇C
ü
q̈C

 =

 [0] [I][
0

−T̂ TCΩ
[
TI T̂C

] ] [
0

−T̂ TC Γ
[
TI T̂C

] ]



u
qC
u̇
q̇C

+


0 0
0 0
0 I

T̂ TC b T̂ TC TI


{
uF
üa

}

{y} =
[
cTI cT̂C 0 0

]
ua
qC
u̇a
q̇C

+ [0]

{
uF
üa

}
(10.64)

Simple adjustments lead to velocity and acceleration outputs.

When using acceleration input, care must be taken that the initial shapes of the normal mode model
form an appropriate basis. This can be achieved by using a basis containing static corrections for
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unit displacements or loads on the interface (see fe2ss CraigBampton or Free commands) or a
seismic mass technique.

See also

res2nor, id nor, fe c, psi2nor

demo fe
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of2vtk

Purpose

Export model and deformations to VTK format for visualization purposes.

Syntax

opfem2VTK(FileName,model)

opfem2VTK(FileName,model,val1,...,valn)

Description

Simple function to write the mesh corresponding to the structure model and associated data currently
in the “Legacy VTK file format” for visualization.

To visualize the mesh using VTK files you may use ParaView which is freely available
at http://www.paraview.org or any other visualization software supporting VTK file formats.

try;tname=nas2up(’tempname.vtk’);catch;tname=[tempname ’.vtk’];end

model=femesh(’testquad4’);

NodeData1.Name=’NodeData1’;NodeData1.Data=[1 ; 2 ; 3 ; 4];

NodeData2.Name=’NodeData2’;NodeData2.Data=[0 0 1;0 0 2;0 0 3;0 0 4];

of2vtk(’fic1’,model,NodeData1,NodeData2);

EltData1.Name =’EltData1’ ;EltData1.Data =[ 1 ];

EltData2.Name =’EltData2’ ;EltData2.Data =[ 1 2 3];

of2vtk(’fic2’,model,EltData1,EltData2);

def.def = [0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 ]’*[1 2];

def.DOF=reshape(repmat((1:4),6,1)+repmat((1:6)’/100,1,4),[],1)

def.lab={’NodeData3’,’NodeData4’};
of2vtk(’fic3’,model,def);

EltData3.EltId=[1];EltData3.data=[1];EltData3.lab={’EltData3’};
EltData4.EltId=[2];EltData4.data=[2];EltData4.lab={’EltData4’};
of2vtk(’fic4’,model,EltData3,EltData4);

The default extention .vtk is added if no extention is given.

Input arguments are the following:

http://www.paraview.org/HTML/Download.html
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FileName

file name for the VTK output, no extension must be given in FileName, “FileName.vtk” is auto-
matically created.

model

a structure defining the model. It must contain at least fields .Node and .Elt.
FileName and model fields are mandatory.

vali

To create a VTK file defining the mesh and some data at nodes/elements (scalars, vectors) you
want to visualize, you must specify as many inputs vali as needed. vali is a structure defining the
data: vali = struct(′Name′, V alueName, ′Data′, V alues). Values can be either a table of scalars
(Nnode × 1 or Nelt × 1) or vectors (Nnode × 3 or Nelt × 3) at nodes/elements. Note that a
deformed model can be visualized by providing nodal displacements as data (e.g. in ParaView using
the “warp” function).
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ofact

Purpose

Factored matrix object.

Syntax

ofact

ofact(’method MethodName’);

kd=ofact(k); q = kd\b; ofact(’clear’,kd);

kd=ofact(k,’MethodName’)

Description

The factored matrix object ofact is designed to let users write code that is independent of the
library used to solve static problems of the form [K] {q} = {F}. For FEM applications, choosing
the appropriate library for that purpose is crucial. Depending on the case you may want to use
full, skyline, or sparse solvers. Then within each library you may want to specify options (direct,
iterative, in-core, out-of-core, parallel, ... ).

Using the ofact object in your code, lets you specify method at run time rather than when writing
the code. Typical steps are

ofact(’method spfmex’); % choose method

kd = ofact(k); % create object and factor

static = kd\b % solve

ofact(’clear’,kd) % clear factor when done

For single solves static=ofact(k,b) performs the three steps (factor, solve clear) in a single pass.

The first step of method selection provides an open architecture that lets users introduce new solvers
with no need to rewrite functions that use ofact objects. Currently available methods are listed
simply by typing

>> ofact

Available factorization methods for OFACT object

-> spfmex : SDT sparse LDLt solver

sp_util : SDT skyline solver

lu : MATLAB sparse LU solver

mtaucs : TAUCS sparse solver

pardiso : PARDISO sparse solver

chol : MATLAB sparse Cholesky solver

*psldlt : SGI sparse solver (NOT AVAILABLE ON THIS MACHINE)
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and the method used can be selected with ofact(’method MethodName’). SDTools maintains
pointers to pre-compiled solvers at http://www.sdtools.com/faq/FE_ofact.html.

The factorization kd = ofact(k); and resolution steps static = kd\b can be separated to allow
multiple solves with a single factor. Multiple solves are essential for eigenvalue and quasi-newton
solvers. static = ofact(k)\b is of course also correct.

The clearing step is needed when the factors are not stored as Matlab variables. They can be
stored in another memory pile, in an out-of-core file, or on another computer/processor. Since for
large problems, factors require a lot of memory. Clearing them is an important step.

Historically the object was called skyline. For backward compatibility reasons, a skyline function
is provided.

umfpack

To use UMFPACK as a ofact solver you need to install it on your machine. This code is available
at www.cise.ufl.edu/research/sparse/umfpack.

pardiso

Based on the Intel MKL (Math Kernel Library), you should use version 8 and after.

By default the pardiso call used in the ofact object is set for symmetric matrices. For non-symmetric
matrices, you have to complement the ofact standard command for factorization with the character
string ’nonsym’. Moreover, when you pass a matrix from Matlab to PARDISO, you must trans-
pose it in order to respect the PARDISO sparse matrix format.
Assuming that k is a real non-symmetric matrix and b a real vector, the solution q of the system
k.q = b is computed by the following sequence of commands:

ofact pardiso % select PARDISO solver

kd = ofact(’fact nonsym’,k’); % factorization

q=kd\b; % solve

ofact(’clear’,kd); % clear ofact object

The factorization is composed of two steps: symbolic and numerical factorization. For the first step
the solver needs only the sparse matrix structure (i.e. non-zeros location), whereas the actual data
stored in the matrix are required in the second step only. Consequently, for a problem with a unique
factorization, you can group the steps. This is done with the standard command ofact(’fact’,...).
In case of multiple factorizations with a set of matrices having the same sparse structure, only
the second step should be executed for each factorization, the first one is called just for the first
factorization. This is possible using the commands ’symbfact’ and ’numfact’ instead of ’fact’ as
follows:
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kd = ofact(’symbfact’,k); % just one call at the beginning

...

kd = ofact(’numfact’,k,kd); % at each factorization

q=kd\b; %

...

ofact(’clear’,kd); % just one call at the end

You can extend this to non-symmetric systems as described above.

spfmex

spfmex is a sparse multi-frontal solver based on spooles a compiled version is provided with SDT
distributions.

sp util

The skyline matrix storage is a traditional form to store the sparse symmetric matrices corresponding
to FE models. For a full symmetric matrix kfull

kfull=[1 2

10 5 8 14

6 0 1

9 7

sym. 11 19

20]

The non-zero elements of each column that are above the diagonal are stored sequentially in the
data field k.data from the diagonal up (this is known as the reverse Jenning’s representation) and
the indices of the elements of k corresponding to diagonal elements of the full matrix are stored in
an index field k.ind. Here

k.data = [1; 10; 2; 6; 5; 9; 0; 8; 11; 7; 1; 14; 20; 19; 0]

k.ind = [1; 2; 4; 6; 9; 13; 15];

For easier manipulations and as shown above, it is assumed that the index field k.ind has one more
element than the number of columns of kfull whose value is the index of a zero which is added at
the end of the data field k.data.

If you have imported the ind and data fields from an external code, ks = ofact (data, ind) will
create the ofact object. You can then go back to the Matlab sparse format using sparse(ks) (but
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this needs to be done before the matrix is factored when solving a static problem).

Generic commands

verbose

Persistent solver verbosity handling. By default, solvers tend to provide several information for
debugging purposes. For production such level of verbosity can be undesirable as it will tend to
fill-up logs and slow down the process due to multiple display outputs. One can then toggle the
silent option of ofact with this command.

ofact(’silent’,’on’);, or ofact(’silent’) will make the solver silent. ofact(’silent’,’off’);
will switch back the solver to verbose.

It is possible to activate the verbosity level during the solver selection, using token -silent to get
a silent behavior or -v to get a verbose behavior. Note that a space must exist between the
solver name and other tokens.

ofact(’spfmex -silent’) % selected the spfmex_utils solver with silent option

ofact(’spfmex -v’) % selects the spfmex_utils solver with verbose option

sel

Advanced solver selection with parameter customization. Solvers use default parameters to work,
but it is sometimes usefull to tweak these values for specific configurations. This command further
allows generic solver selection from GUI inputs.

By default, one can call ofact(’ sel’,’solver’), possibly with the -silent token. Direct param-
eter tweaking is currently supported for spfmex only, where the MaxDomainSize (default to 32), and
MaxZeros (default to 0.01) can be provided. For larger models, it is suggested to use a MaxZeros

value set to 0.1.

ofact(’_sel’,’spfmex 32 .1’) % tweaks the MaxZeros spfmex solver value to 0.1

Your solver

To add your own solver, simply add a file called MySolver utils.m in the @ofact directory. This
function must accept the commands detailed below.

Your object can use the fields .ty used to monitor what is stored in the object (0 unfactored ofact,
1 factored ofact, 2 LU, 3 Cholesky, 5 other), .ind, .data used to store the matrix or factor in
true ofact format, .dinv inverse of diagonal (currently unused), .l L factor in lu decomposition or
transpose of Cholesky factor, .u U factor in lu decomposition or Cholesky factor, .method other
free format information used by the object method.
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method

Is used to define defaults for what the solver does.

fact

This is the callback that is evaluated when ofact initializes a new matrix.

solve

This is the callback that is evaluated when ofact overloads the matrix left division (\)

clear

clear is used to provide a clean up method when factor information is not stored within the ofact

object itself. For example, in persistent memory, in another process or on another computer on the
network.

silent

silent handled the verbosity level of your solver.

See also fe eig, fe reduc
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perm2sdt

Purpose

Read results from outputs of the PERMAS (V7.0) finite element code.

Syntax

out = perm2sdt(’Read Model_FileName’)

out = perm2sdt(’Read Result_FileName’)

out = perm2sdt(’merge’,model)

out = perm2sdt(’binary.mtl Matrix_FileName’)

out = perm2sdt(’ascii.mtl Matrix_FileName’)

Description

The perm2sdtfunction reads PERMAS model, result and matrices files. Binary and ASCII files are
supported.

filesModel files

To read a FE model, use the following syntax: model = perm2sdt(’Read FileName’)

To deal with sub-components, you may use the merge command.

The current element equivalence table is

SDT PERMAS
mass2 MASS3, MASS6, X1GEN6
bar1 FLA2
beam1 PLOTL2, BECOC, BECOS, BECOP, BETOP, BETAC, FDPIPE2,

X2GEN6
celas SPRING3, SPRING6, SPRING1, X2STIFF3
t3p TRIM3
tria3 TRIA3, TRIA3K, TRIA3S, FSINTA3
quad4 QUAD4, FSINTA4, QUAD4S, PLOTA4, SHELL4
flui4 FLTET4
tetra4 TET4
tetra10 TET10
penta6 PENTA6, FLPENT6
hexa8 HEXE8, FLHEX8
pyra5 PYRA5, FLPYR5
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Merging model

The merge command integrates subcomponents into the main model.

Result files

The syntax is

perm2sdt(’read result file’)

Matrix files

perm2sdtreads binary and ASCII .mtl file format. The syntax is

perm2sdt(’binary.mtl File.mtl’) for binary files and perm2sdt(’ascii.mtl File.mtl’) for
ASCII files.

See also

FEMLink
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Purpose

Reading of POLYTEC .svd files.

Syntax

wire = polytec(’ReadMesh’,fname);

list = polytec(’ReadList’,fname)

XF = polytec(’ReadSignal’,fname,RO)

[cmap,fname] = polytec(’ReadImg’,fname);

polytec(’ToMat’,fname,RO);

Description

The polytecfunction reads files generated by polytec measurement systems. Actual files successfully
read are :

• *.set : Setting file from which the wireframe can be loaded if defined (useful for pretest analysis
before measurement)

• *.pvd : File containing a unique channel from which measurements can be extracted

• *.svd : File containing several channels from which the wireframe geometry and the data can
be extracted depending what measurements have been performed (Time/Frequency domain,
Transfers...)

Prior to use this function, the Polytec File Access provided by Polytec must be installed
: Download the Polytec Update software (freely available in their website) and install it with all the
dependencies.

This function has been tested only with a few versions of Polytec File Access (4.7, 5.0 and 5.6) , but
we experienced no problem at each update so that it is likely to work with all versions in between.

It is possible for some application to merge several measurements files with the Polytec applications.
This is handled by this function : simply provide the file defining the merge (and eventually the
individual files if links are made and not data copy).

ReadMesh

The ReadMesh command allows to extract the test wireframe in the SDT format. It contains the
node locations and the sensor orientions (depending on the type of laser used : monopoint, with
mirror, 3D laser)
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fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

wire=polytec(’ReadMesh’,fname); % Set the wireframe in the variable wire

polytec(’ReadMesh’,fname); % Without output, directly open the model in feplot

ReadList

Three parameters are needed to access the data :

• pointdomain : Time, FFT, 1/3 octave...

• channel : Vib, Ref1, Vib & Ref1 (transfers)...

• signal : Displacement, Velocity, Acceleration, H1 Displacement / Force...

The ReadList command allows to see all the combinations of these parameters that are allowed for
a given file. With an output, the call sends back a cell array containg all the cominations. Without,
it opens a tree in a tab in the SDTRoot window, from which it is posibble to do a right click on the
wanted data and select Read Selected : data are read and display in an iiplot window.

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

% Provide a cell array with all readable measured data

list=polytec(’ReadList’,fname);

display(list);

polytec(’ReadList’,fname); % Open a tree in SDTRoot to interactively select data

ReadSignal

The ReadSignal command allows to read the measurement data specified by the three parameters
(point domain, channel and signal) given in a structure as a third argument.

It is also possible to provide the wanted parameters by extracting the corresponding line of the cell
array provided by the command ReadList (as a parameter list).

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

RO=struct(’pointdomain’,’FFT’,’channel’,’Vib & Ref1’,...

’signal’,’H1 Displacement / Voltage’);

XF=polytec(’ReadSignal’,fname,RO);

% alternative call using one row of the cell array "list"

list=polytec(’ReadList’,fname);

XF=polytec(’ReadSignal’,fname,struct(’list’,{list(20,:)}));
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ReadImg

The ReadImg command allows to read the image used to construct the test geometry. The image is
displayed in a figure, the RGB colormap is provided as first output and it creates a .png file whose
name is given as second output.

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

[cmap,fname] = polytec(’ReadImg’,fname);

ToMat

The ToMat command allows to extract wanted data and save them as a .mat file in the SDT format.
This is useful especially if the scripts that read the Polytec files must be run on a Linux OS or on
computers where Polytec File Access is not installed.

Once the ToMat file has been executed, the .mat file is used insted of the Polytec one to load data
(the ReadMesh and ReadSignal commands remain the same).

fname=sdtcheck(’patchget’,struct(’fname’,’PolytecMeas.svd’));

RO=struct(’pointdomain’,’FFT’,’channel’,’Vib & Ref1’,...

’signal’,’H1 Displacement / Voltage’);

% Create a .mat file next to the Polytec one with the mesh, the data and the image.

polytec(’ToMat’,fname,RO);

r1=load(strrep(fname,’.svd’,’.mat’));

r1.TEST

r1.XF

r1.img
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psi2nor

Purpose

Estimation of normal modes from a set of scaled complex modes.

Syntax

[wj,ga,cps,pbs] = psi2nor(po,cp)

[wj,ga,cps,pbs] = psi2nor(po,cp,ncol,NoCommentFlag)

Description

psi2nor should generally be used through id nor. For cases with as many and more sensors than
modes, psi2nor gives, as proposed in Ref. [12], a proper approximation of the complex mode
outputs cp= [c] [ψ] (obtained using id rm), and uses the then exact transformation from complex
to normal modes to define the normal mode properties (modal frequencies wj, non-proportional
damping matrix ga, input pbs= [φ]T [b] and output cps= [c] [φ] matrices).

The argument ncol allows the user to specify the numbers of a restricted set of outputs taken to
have a collocated input (pbs=cps(ncol,:)’).

If used with less than four arguments (not using the NoCommentFlag input argument), psi2nor will
display two indications of the amount of approximation introduced by using the proper complex
modes. For the complex mode matrix ψT (of dimensions NT by 2NT because of complex conjugate
modes), the properness condition is given by ψTψ

T
T = 0. In general, identified modes do not verify

this condition and the norm ‖ψTψTT ‖ is displayed

The norm of psi*psi’ is 3.416e-03 instead of 0

and for well identified modes this norm should be small (10−3 for example). The algorithm in
psi2nor computes a modification ∆ψ so that ψPT = ψT + ∆ψ verifies the properness condition
ψPTψ

T
PT = 0 . The mean and maximal values of abs(dpsi./psi) are displayed as an indication of

how large a modification was introduced

The changes implied by the use of proper cplx modes are

0.502 maximum and 0.122 on average

The modified modes do not necessarily correspond to a positive-definite mass matrix. If such is not
the case, the modal damping matrix cannot be determined and this results in an error. Quite often,
a non-positive-definite mass matrix corresponds to a scaling error in the complex modeshapes and
one should verify that the identification process (identification of the complex mode residues with
id rc and determination of scaled complex mode outputs with id rm) has been accurately done.

Warnings



psi2nor

The complex modal input is assumed to be properly scaled with reciprocity constraints (see id rm).
After the transformation the normal mode input/output matrices verify the same reciprocity con-
straints. This guarantees in particular that they correspond to mass-normalized analytical normal
modes.

For lightly damped structures, the average phase of this complex modal output should be close to
the −45o line (a warning is given if this is not true). In particular a sign change between collocated
inputs and outputs leads to complex modal outputs on the +45o line.

Collocated force to displacement transfer functions have phase between 0 and −180o, if this is not
verified in the data, one cannot expect the scaling of id rm to be appropriate and should not use
psi2nor.

See also

id rm, id nor, id rc, res2nor, nor2xf, nor2ss, the demo id demonstration
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Purpose

Frequency response functions (in the xf format) for linear systems.

Syntax

xf = qbode(a,b,c,d,w)

xf = qbode(ss,w)

xf = qbode(num,den,w)

XF = qbode( ... ,’struct’)

qbode( ... ,’iiplot ...’)

Description

For state-space models described by matrices a, b, c, d, or the LTI state-space object sys (see
Control System Toolbox), qbode uses an eigenvalue decomposition of a to compute, in a minimum
amount of time, all the FRF xf at the frequency points w

xf = [C] (s
[
\I\
]
− [A])−1 [B] + [D] (10.65)

The result is stored in the xf format (see details page 214). ’iiplot "Test" -po -reset’ can
be used to display results in iiplot(see section 2.1.2 ). The option -po is used to save poles in
ci.Stack{’IdMain’} so that they can be displayed. -reset reinitializes the curve stack.

qbode will not work if your model is not diagonalizable. A specific algorithm was developed
to deal with systems with rigid-body modes (double pole at zero associated to non-diagonalizable
matrices). This algorithm will not, however, indicate the presence of incoherent b and c matrices.
In other cases, you should then use the direct routines res2xf, nor2xf, etc. or the bode function of
the Control System Toolbox.

For the polynomial models num, den (see details page 214), qbode computes the FRF at the frequency
points w

xf =
num(jω)

den(jω)
(10.66)

Warnings

• All the SISO FRF of the system are computed simultaneously and the complex values of the FRF
returned. This approach is good for speed but not always well numerically conditioned when
using state space models not generated by the SDT.
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• As for all functions that do not have access to options (IDopt for identification and Up.copt for
FE model update) frequencies are assumed to be given in the mathematical default (rad/s). If
your frequencies w are given in Hz, use qbode(sys,w*2*pi).

• Numerical conditioning problems may appear for systems with several poles at zero.

See also

demo fe, res2xf, nor2xf, and bode of the Control System Toolbox
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Purpose

Approximate transformation from complex residues to normal mode residue or proportionally damped
normal mode forms.

Syntax

[Rres,po,Ridopt] = res2nor(Cres,po,Cidopt)

[wj,ga,cp,pb] = res2nor(Cres,po,Cidopt)

Description

The contributions of a pair of conjugate complex modes (complex conjugate poles λ and residues R)
can be combined as follows

[R]

s− λ
+

[
R̄
]

s− λ̄
= 2

(sRe(R)) + (ζωRe(R)− ω
√

1− ζ2Im(R))

s2 + 2ζωs+ ω2
(10.67)

Under the assumption of proportional damping, the term sRe(R) should be zero. res2nor, assuming
that this is approximately true, sets to zero the contribution in s and outputs the normal mode
residues Rres and the options Ridopt with Ridopt.Fit = ’Normal’.

When the four arguments of a normal mode model (see nor page 202) are used as output arguments,
the function id rm is used to extract the input pbs and output cps shape matrices from the normal
mode residues while the frequencies wj and damping matrix ga are deduced from the poles.

Warning

This function assumes that a proportionally damped model will allow an accurate representation
of the response. For more accurate results use the function id nor or identify using real residues
(id rc with idopt.Fit=’Normal’).

See also

id rm, id rc, id nor, res2ss, res2xf
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Purpose

Transformations between the residue res and state-space ss forms.

Syntax

SYS = res2ss(RES)

SYS = res2ss(RES,’AllIO’)

[a,b,c,d] = res2ss(res,po,idopt)

RES = ss2res(SYS)

[res,po,idopt] = ss2res(a,b,c,d)

Description

The functions res2ss and ss2res provide transformations between the complex / normal mode
residue forms res (see section 5.6 ) and the state space forms (see section 5.4 ). You can use either
high level calls with data structures or low level calls providing each argument

ci=demosdt(’demo gartid est’)

SYS = res2ss(ci.Stack{’IdMain’});
RES = ss2res(SYS);

ID=ci.Stack{’IdMain’};
[a,b,c,d] = res2ss(ID.res,ID.po,ID.idopt);

Important properties and limitations of these transformations are

ss

• The residue model should be minimal (a problem for MIMO systems). The function id rm is used
within res2ss to obtain a minimal model (see section 2.8.1 ). To obtain models with multiple
poles use id rm to generate new res and new po matrices.

• you can bypass the id rm call by providing complex mode modal controllability ψTj b in a .psib

field and modal observability cψj in a .def field. This is in particular used by fe2ss with the
-cpx command option.

• idopt.Reciprocity=’1 FRF’ or MIMO id rm then also constrains the system to be reciprocal, this
may lead to differences between the residue and state-space models.

• The constructed state-space model corresponds to a displacement output.

• Low frequency corrections are incorporated in the state-space model by adding a number (mini-
mum of ns and na) of poles at 0.
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Asymptotic corrections (see idopt.ResidualTerms) other than the constant and s−2 are not
included.

• See below for the expression of the transformation.

• The ’AllIo’ input can be used to return all input/output pairs when assuming reciprocity.

res

• Contributions of rigid-body modes are put as a correction (so that the pole at zero does not
appear). A real pole at 0 is not added to account for contributions in 1/s.

• To the exception of contributions of rigid body modes, the state-space model must be diagonal-
izable (a property verified by state-space representations of structural systems).

Theory

For control design or simulation based on identification results, the minimal model resulting from
id rm is usually sufficient (there is no need to refer to the normal modes). The state-space form is
then the reference model form.

As shown in section 2.8.1 , the residue matrix can be decomposed into a dyad formed of a column
vector (the modal output), and a row vector (the modal input). From these two matrices, one
derives the [B] and [C] matrices of a real parameter state-space description of the system with a
bloc diagonal [A] matrix

{
ẋ1

ẋ2

}
=

 [0]
[
\I\
]

−
[
\ω2

j \

]
−
[
\2ζjωj\

] { x1

x2

}
+

{
B1

B2

}
{u(t)}

{y(t)} = [C1 C2]

{
x1

x2

} (10.68)

where the blocks of matrices B1, B2, C1, C2 are given by

{
C1j

C2j

}
= [Re (cψj) Im (cψj)]

1

ωj
√

1−ζ2j

[
ωj
√

1− ζ2
j 0

ζjωj 1

]
{
Bj1
Bj2

}
= 2

[
1 0

−ζjωj −ωj
√

1− ζ2
j

] Re
(
ψTj b

)
Im
(
ψTj b

)  (10.69)

Form the state space model thus obtained, FRFs in the xf format can be readily obtained using

842



res2ss, ss2res

qbode. If the state space model is not needed, it is faster to use res2xf to generate these FRFs.

See also

demo fe, res2xf, res2nor, qbode, id rm, id rc
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Purpose

Create the polynomial representation associated to a residue model.
Compute the FRF corresponding to a residue model.

Syntax

[num,den] = res2tf(res,po,idopt)

xf = res2xf(res,po,w,idopt)

xf = res2xf(res,po,w,idopt,RetInd)

Description

For a set of residues res and poles po (see res page 212), res2tf generates the corresponding
polynomial transfer function representation (see tf page 214)).

For a set of residues res and poles po, res2xf generates the corresponding FRFs evaluated at
the frequency points w. res2xf uses the options idopt.Residual, .DataType, AbscissaUnits,
PoleUnits, FittingModel. (see idopt for details).

The FRF generated correspond to the FRF used for identification with id rc except for the complex
residue model with positive imaginary poles only idopt.Fit=’Posit’ where the contributions of
the complex conjugate poles are added.

For MIMO systems, res2tf and res2xf do not restrict the pole multiplicity. These functions and
the res2ss, qbode sequence are thus not perfectly equivalent. A unit multiplicity residue model for
which the two approaches are equivalent can be obtained using the matrices new res and new po

generated by id rm

[psib,cpsi,new_res,new_po]=id_rm(IIres,IIpo,idopt,[1 1 1 1]);

IIxh = res2xf(new_res,new_po,IIw,idopt);

The use of id rm is demonstrated in demo id.

See also

res2ss, res2nor, qbode, id rm, id rc



rms

Purpose

Computes the RMS response of the given frequency response function xf or auto-spectra a to a
unity white noise input over the frequency range w.

Syntax

rm = feval(id_rc(’@rms’),t,w)

rm = feval(id_rc(’@rms’),a,w,1)

Description

The presence of a third input argument indicates that an auto-spectrum a is used (instead of fre-
quency response function xf).

A trapezoidal integration is used to estimate the root mean squared response

rms =

√
1

2π

∫ ω2

ω1

|t(ω)|2dω =

√
1

2π

∫ ω2

ω1

a(ω)dω (10.70)

If xf is a matrix containing several column FRF, the output is a row with the RMS response for
each column.

Warning

If only positive frequencies are used in w, the results are multiplied by 2 to account for negative
frequencies.

See also

ii cost
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Purpose

Interface function with SAMCEF FEM code.

Syntax

Up=samcef(’read model.u18’)

Up=samcef(’read model.u18’,’buildup’)

Up=samcef(’read model.bdf’,’buildup’)

a=samcef(’lectmat’,’FileRoot’)

samcef(’write FileName’,model)

Description

read

The read command import : models from .dat files, results from .u18 file. With the ’buildup’

argument, the .u11 and .u12 files are also read to import element matrices into a superelement.
Additional DOFs linked to reduced shear formulations are properly condensed. Note that to export
a standardized form of the model, you should use the .SAUV BANQUE "FileName.dat" command in
SAMCEF.

When reading a .u18 file, it may be necessary to import the properties from the model to clarify
which DOFs are actually used in the model. You should thus have a .data file with the same root
name in the same directory. Modeshapes are stored in the model stack entry curve,record(12) disp.
Other imported results are also stored in the stack.

write

Basic writing is supported with samcef(’write FileName’,model). Please send requests to extend
these capabilities.

conv

This command lists conversion tables for elements, topologies, facetopologies. You can redefine
(enhance) these tables by setting preferences of the form setpref( ’FEMLink’, ’samcef.list’,

value), but please also request enhancements so that the quality of our translators is improved.

See also
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FEMLink
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sd pref

Purpose

Safe MATLAB preferences handling.

Syntax

sd_pref(’set’,’Group’,’Pref’,’val’); % setpref

flag=sd_pref(’get’,’Group’,’Pref’); % getpref

i1=sd_pref(’is’,’Group’); % ispref

sd_pref(’rm’,’Group’,’Pref’); % rmpref

Description

MATLAB, and MCR, have known issues of preference file corruption if accessed by several instances
at once. To avoid this issue sd pref implements a safe access strategy using fjlock .

The syntax is equivalent to ususal MATLAB *pref commands, the additional first argument provides
the function prefix to be used.
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Purpose

Line color and style sequencing utility.

Syntax

setlines

setlines(ColorMap,LineSequence)

setlines(ColorMapName,LineSequence,MarkerSequence)

Description

The M-by-3 ColorMap or ColorMapName (standard color maps such as jet, hsv, etc.) is used as color
order in place or the ColorMap given in the ColorOrder axis property (which is used as a default).

The optional LineSequence is a matrix giving the linestyle ordering whose default is
[’- ’;’--’;’-.’;’: ’].

The optional MarkerSequence is a matrix giving the marker ordering. Its default is empty (marker
property is not set).

For all the axes in the current figure, setlines finds solid lines and modifies the Color, LineStyle
and Marker properties according the arguments given or the defaults. Special care is taken to remain
compatible with plots generated by feplot and iiplot.

setlines is typically used to modify line styles before printing. Examples would be

setlines k

setlines([],’-’,’ox+*s’)

setlines(get(gca,’colororder’),’:’,’o+^>’)



sdtcheck

Purpose

Installation handling and troubleshooting.

Description

For SDT to run in Matlab the path to SDT functions must be added to the Matlab search
path. Additional libraries are also required that sometimes need an explicit declaration in Matlab.
sdtcheck then packages manual input to alter the user Matlab settings if needed.

Commands

path

This command properly defines the Matlab search path to run SDT. It has to be used at startup
if the search path was not saved in your Matlab session with SDT installed.

% Initialization of SDT in MATLAB path

pw0=pwd;

cd(’path_to_my_sdt’)

sdtcheck path

cd(pw0)

patchJavaPath[,set]

SDT GUI utilities are based on Java and require additional Java libraries to be loaded by Matlab.
To ensure proper SDT GUI running the user needs to alter the default Matlab classpath.txt.

• Command patchJavaPath checks whether the Java classpath contains the libraries needed
by SDT. If not a warning will be issued along with an executable link to modify the Java
classpath.

• Command patchJavaPathSet generates a custom Java classpath for the user Matlab con-
figuration to add the libraries required by SDT. Note that you will need to restart Matlab
for the modification to be effective.

This setup is highly depending on the MATLAB version

• For MATLAB versions greater or equal to 8.0 (from R2012b). There is no known issue for the
Java path setup.
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• For MATLAB versions up to 7.14 (up to R2012a). The setup strategy allows local customiza-
tion but using a file that will impact all MATLAB versions. By default this function thus
attemps to alter the base MATLAB file. For certain users, this operation can be not permit-
ted, and it is then advised to run the following command

sdtcheck(’PatchJavaPathSet-forceStartupDir’)

Be aware that this command will add a file in your startup directory. Make
sure to delete it before launching other MATLAB versions from the same startup
directory. Corruption and failed Desktop launches can otherwise occur.

patchFile[,set]

To distribute more intricate examples, SDTools uses patches in the form of zip files downloaded
to the fullfile(sdtdef(’tempdir’),’sdtdemos’) directory and possibly extracted in the same
directory. For example

fname=sdtcheck(’PatchFile’,struct(’fname’,’DbTest.unv’,’in’,’DrumBrake.zip’));

will search a DbTest.unv file and if not found will download the DrumBrake.zip set of files where
DbTest.unv is expected to be located.

patchMkl[,path, rt]

The new ofact solver based on MKL Pardiso requires additional libraries to run. patchMkl packages
its installation.

• patchMkl downloads and installs the libraries.

• patchMklPath verifies the search path and library path.

• patchMkl rt provides troubleshooting information regarding library installation.

SdtRootDir

Provides the SDT root directory.

wd=sdtcheck(’SdtRootDir’)
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sdtdef

Purpose

Internal function used to handle default definitions.

Syntax

sdtdef(’info’)

[i1,r1]=sdtdef(’in’,’Pref’)

sdtdef(’Pref’)

sdtdef(’Group.Pref’)

sdtdef(’Pref’,Value)

sdtdef(’Pref-safe’,Value)

sdtdef(’Pref-SetPref’,Value)

Description

Allows to handle preferences of SDT, FEMLink and OpenFEM.

This function was initially developped to limit the risks of curruption of the MATLAB preference
file, which can occur if multiple instances of MATLAB try to access this file at the same time with
standard commands getpref/setpref.

To handle preferences of SDT, FEMLink and OpenFEM, the recommended use is to

• setpref(’[SDT,OpenFEM,FEMLink]’,’Pref’,’value’) for the first creation of the prefer-
ence.

• [i1,r1]=sdtdef(’in’,’Pref’) to check if a preference is defined and get back the value .

• sdtdef(’[,OpenFEM.,FEMLink.]Pref’,’value’) to perform a local modification of the pref-
erence value (in the current MATLAB session).

• sdtdef(’[,OpenFEM.,FEMLink.]Pref-safe’,’value’) only perfoms the local modification
if the preference does not exist (previous call fail in this case)

• sdtdef(’[,OpenFEM.,FEMLink.]Pref-SetPref’,’value’) performs a hard modification of
the preference (through a setpref). Only works if the preference already exists, only setpref
can be used to create a preference for the first time.

To reset values to factory defaults use sdtdef(’factory’).
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info

The command sdtdef(’info’) provides the full list of preferences of SDT.

The command sdtdef(’info’,’OpenFEM’) provides the full list of preferences of OpenFEM.

The command sdtdef(’info’,’FEMLink’) provides the full list of preferences of FEMLink.

The command sdtdef(’info’,’SDTools’) provides the full list of preferences of SDTools.

in

To check if a preference already exists in order to create it with setpref if not, use
[i1,r1]=sdtdef(’in’,’[,OpenFEM.,FEMLink.]Pref’). It tells if ’Group’,’Pref’ exists in i1 as
bool, and provides value r1 if true, empty if false.

With an empty Pref, the full list of preferences in the Group is forwarded in r1 if the group exists.

SDT preferences

Preferences of SDT are accessed directly by the call sdtdef(’Pref’) (replaced by the standard call
getpref(’SDT’,’value’). It returns an error if the preference does not exist.

Here is a partial list of SDT preferences :

• avi : cell array of default AVI properties, see the Matlab avifile command.

• DefaultZeta :Default value for the viscous damping ratio. The nominal value is 1e-2. The
value can also be specified in a model stack and is then handled by fe def defzeta and fe def

defeta commands.

• KikeMemSize : Memory in megabytes used to switch to an out-of-core saving of element matrix
dictionaries.

• DefaultFeplot : cell array of default feplot figure properties. For Matlab versions earlier
than 6.5, the OpenGL driver is buggy so you will typically want to set the value with

sdtdef(’DefaultFeplot’,{’Renderer’ ’zbuffer’ ... ’doublebuffer’ ’on’})

• epsl : tolerance on node coincidence used by femesh, feutil. Defaults to 1e-6 which is
generally OK except for MEMS applications, ...

• tempdir : can be used to specify a directory different than the tempdir returned by Matlab.
This is typically used to specify a faster local disk.
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• OutOfCoreBufferSize : Memory in bytes used to decide switching to an out-of-core procedure.
This is currently used by nasread when reading large OUTPUT2 files.

FEMLink preferences

Preferences of SDT are accessed directly by the call sdtdef(’FEMLink.Pref’) (replaced by the
standard call getpref(’FEMLink’,’value’). It returns an error if the preference does not exist.

Here is a partial list of FEMLink preferences :

• CopyFcn : command used to copy file to remote locations. See naswrite job commands.

• DmapDir : directory where FEMLink is supposed to look for NASTRAN DMAP and standard
files.

• NASTRAN : NASTRAN version. This is used to implement version dependent writing of NAS-
TRAN files.

• RemoteDir : location of remote directory where files can be copied. See naswrite job com-
mands.

• SoftwareDocRoot : defines the path or URL for a given software. You can use
sdtweb(’$Software/file.html’) commands to access the proper documentation. For example

setpref(’FEMLink’,’SdtDocRoot’, ...

’http://www.sdtools.com/help/’);

sdtweb(’$sdt/sdt.html’);

• TextUnix : set to 1 if text needs to be converted to UNIX (rather than DOS) mode before
any transfer to another machine.

OpenFEM preferences

Preferences of SDT are accessed directly by the call sdtdef(’OpenFEM.Pref’) (replaced by the
standard call getpref(’OpenFEM’,’value’). It returns an error if the preference does not exist.

Here is a partial list of OpenFEM preferences :
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Purpose

Class constructor for SDT handle objects.

Description

The Structural Dynamics Toolbox now supports SDT handles (sdth objects). Currently imple-
mented types for sdth objects are

SDTRoot global context information used by the toolbox
IDopt identification options (see idopt)
FeplotFig feplot figure handle
IiplotFig iiplot figure handle
VectCor Vector correlation handle (see ii mac)
XF stack pointer (see xfopt)

SDT handles are wrapper objects used to give easier access to user interface functions. Thus idopt
displays a detailed information of current identification options rather than the numeric values really
used.

Only advanced programmers should really need access to the internal structure of SDT handles.
The fixed fields of the object are opt, type, data, GHandle (if the sdth object is stored in a graphical
object), and vfields.

Most of the information is stored in the variable field storage field vfields and a field of vfields is
accessible using GetData. To get the model of a cf FeplotFig, you may use the syntax cf.mdl.GetData.

See also

feplot, idopt, iiplot, ii mac, xfopt
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Purpose

Description

sdthdf handles MATLAB data/metadata information. Its main purpose if to deal efficiently with
the binary MATLAB file format .mat that is based on the HDF file format.

The new hdf5 file format, supported by MATLAB since version 7.3, allows very efficient data access
from files. Partial loading is possible, as well as data location by pointers. sdthdf allows the user to
unload RAM by saving specific data to dedicated files, and to optimize file loading using pointers. To
be able to use these functionalities, the file must have been saved in hdf5 format, which is activated
in MATLAB using the -v7.3 option of the save function.

File handling commands based on HDF5

The following commands are supported.

hdfReadRef

This command handles partial data loading, depending on the level specified by the user.

For unloaded data, a v handle pointer respecting the data structure and names is generated, so that
the access is preserved. Further hdfreadref application to this specific data can be done later.

By default, the full file is loaded. Command option -level allows specifying the desired loading
level. For structured data, layers are organized in which substructures are leveled. This command
allows data loading until a given layer. Most common levels used are given in the following list

• -level0 Load only the data structure using pointers.

• -level1 Load the data structure and fully load fields not contained in substructures.

• -level2 Load the data structure, and fully load fields including the ones contained in the main
data substructures

• -level100 Load the data structure, and fully load all fields (Until level 100, which is generally
sufficient).

It takes in argument either a file, or a data structure containing hdf5 v handle pointers. In the case
where a file is specified, the user can precise the data to be loaded, by giving its named preceded
by a slash /, substructure names can also be specified giving the name path to the variable to be
loaded with a succession of slashes.
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% To load an hdf5 file

r1=sdthdf(’hdfreadref’,’my_file.mat’);

% To load it using \vhandle pointers

r1=sdthdf(’hdfreadref-level0’,’my_file.mat’);

% To load a specified variable

r2=sdthdf(’hdfreadref-level0’,’my_file.mat’,’/var2’);

% To load a specified sub data

r3=sdthdf(’hdfreadref-level1’,’my_file.mat’,’/var2/subvar1’);

% To load a subdata from a previously loaded pointer

r4=sdthdf(’hdfreadref’,r2.subvar1);

hdfdbsave

This command handles partial data saving to a temporary file. It is designed to unload large
numerical data, such as sparse matrices, or deformation fields. Command option -struct however
allows to save more complex data structures.

The function takes in argument the data to save and a structure with a field Dbfile containing the
temporary file path (string). The function outputs the v handleto the saved data. The v handlehas
the same data structure than the original. The v handledata can be recovered by hdfreadref.

opt.Dbfile=nas2up(’tempname_DB.mat’);

r1=sdthdf(’hdfdbsave’,r1,opt);

r2=sdthdf(’hdfdbsave-struct’,r2,opt);

hdfmodelsave

This command handles similar saving strategy than hdfdbsave but is designed to integrate feplotmodels
in hdf5 format. The file linked to the model is not supposed to be temporary, and data names are
linked to an SDT model data structure, which are typically in the model stack. The variable data
names, must be of format field name to store model.field in hdf5 format.

For model stack entries, the name must be of the type Stack type name to store
cf.Stack{’type’,’name’}.

The function takes in argument the data base file, the feplot handle and the data name, which will
be interpreted to be found in the feplotmodel. The data will be replaced by v handlepointers in
the feplotmodel. Data can be reloaded with command hdfmodel

sdthdf(’hdfmodelsave’,’my_file.mat’,cf,’Stack_type_name’);
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hdfmodel

This command loads v handledata pointers in the feplotmodel at locations where hdf5 data have
been saved. This command works from the hdf file side, and loads all the data contained with
standard names in the feplotmodel. See hdfmodelsave for more information on the standard data
names. Commando option -check only loads the data contained in the hdf file that is already
instanced in the feplotmodel.

sdthdf(’hdfmodel’,’my_file.mat’,cf);

hdfclose

Handling hdf5 files in data structures can become very complex when multiple handles are generated
in multiple data. This command thus aims to force a file to be closed.

sdthdf(’hdfclose’,’my_file.mat’);

A lower level closing call allows clearing the hdf5 libraries, when needed,

sdthdf(’hdfH5close’)

Here is an example of offload to HDF5 based mat files, and how to access the data afterwards.

fname=fullfile(sdtdef(’tempdir’),’ubeam_Stack_SE.mat’);

fname2=fullfile(sdtdef(’tempdir’),’ubeam_model.mat’);

model=demosdt(’demoubeam’);cf=feplot;

cf.mdl=fe_case(cf.mdl,’assemble -matdes 2 1 NoT -SE’);

cf.Stack{’curve’,’defR’}=fe_eig(cf.mdl,[5 50 1e3]);

% save(off-load) some stack entries to a file

sdthdf(’hdfmodelsave’,fname,cf,’Stack_curve_defR’)

% save model but not the off-loaded entries

fecom(’save’,fname2);

cf=fecom(’load’,fname2); % reload the model

sdthdf(’hdfmodel’,fname,cf); % reload pointers to the entries

cf.Stack{’defR’}

For MATLAB ¿7.3 HDF based .mat files, you can open a v handle pointer to a variable in the file
using

fname=fullfile(sdtdef(’tempdir’),’ubeam_Stack_SE.mat’);

var=sdthdf(’hdfreadref -level0’,fname,’Stack_curve_defR’)
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ioClearCache,ioLoad, ...

io commands are meant to allow I/O operations tailored to memory demanding operations.

sdthdf(’ioFreeCache’,’fname’) or sdthdf(’ioFreeCache’,’ vhandlename’) free the cache of
a given file or the file associated with a specific v handle.

sdthdf(’ioLoadVarName’,’fname’) loads VarName from file fname and frees the associated cache.
This operation still requires memory to store the variable and the file cache and may thus fail for
large variables.

sdthdf(’ioBufReadVarName’,’fname’) will load VarName from file fname while controlling the
cache used. This is only intended for large data sets written to file as contiguous uncompressed
data.

MATLAB data handling utilities

compare

The compare command checks the data equivalence of two MATLAB variables. This is an efficient
utility to spot local differences in large or complex data.

Any data compound can be input, mixing any native MATLAB classes. The compare command
will then recursively check the equivalence of the data compound structure and content.Its output
will be a cell array with as many lines as differences were found. The cell array output is empty if
all fields were found equal.

% Comparing two sets of data compounds

r1=struct(’data1’,{{speye(15)}},’data2’,rand(15,1));
r2=struct(’data1’,{{speye(14)}},’data2’,rand(15,1),...
’data3’,1);

sdthdf(’compare’,r1,r2)

pointerList[sortm,-mb]

The pointerList command outputs the internal memory address of each variable, (expanded for
structures and cell arrays) specified in input and provides a statistic on the total amount of data
pointed in memory versus the total memory allocated to the storage. As MATLAB performs lazy
variable copy, copied variables share the same pointed memory data until one of the instances is
modified, the traditional output of the who command may thus be inappropriate to assess memory
usage. The following command options allow output variations
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• sortm sorts the output in increasing memory, so that the user sees the largest memory usage
at the bottom of the command window.

• -mb converts the memory sizes outputs from Bytes to Megabytes.

If not output is specified, the statistics are directly printed on screen, else a cell array with as many
lines as found variables is output, and three columns. First column is the variable name, second is
the memory address, third is the memory size.

The input is required to be a structure, cell array, v handle object or a string containing whos. In
the latter case, a reformatting of the output of the whos command is performed.

% Getting information on data sizes in memory

% Generate a sample data structure

r1=struct(’data1’,speye(12),’data2’,rand(15,1));

r1.data3=r1.data1; % lazy copy

% reformat the output of whos

sdthdf(’pointerlistsortm’,’whos’)

% Get memory information on r1

sdthdf(’pointerlistsortm’,r1)

See also

SDT handle
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Purpose

Base SDT gui figure handling.

Description

This function is used to implement base SDT mechanisms for tabs shown in JAVA GUI. It also sup-
ports advanced structure manipulations (stored here due to interactions with structure like objects
aka handles and other SDT objects)

Init

Commands for tab initialisation/refreshing. InitPTree is an example of initialization of the nav-
igation pane. InitProject implements the typical project tab which is detailed in section 8.1.2 .
InitPref opens the SDT preference editor.

Set

Commands for property setting. Implements SetPref for preferences, SetProject for generic project
parameters and and generic setting of fields defined in PARAM.

The default mechanism for set is to specify the tab in the command and provide data to be set a
structure where each field describes a cell in the tab. An example for the Project tab.

tdir=sdtdef(’tempdir’);

sdtroot(’SetProject’,struct(’ProjectWd’,tdir, ... % Root file location

’PlotWd’,fullfile(tdir,’plots’), ... % Plot directory

’PlotWord’,fullfile(tdir,’tmp_word.docx’))); % Word file for image insert

PARAM

PARAM commands are used to retrieve data stored normally stored in the userdata of the project
figure.

• PA=sdtroot(’paramVH’) gives a v handle to the main project data structure.

• RO=sdtroot(’PARAM2RO’) resolves all java dependencies and returns a basic MATLAB struct

containing all parameters.
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• To access individual data prefer calls with field names. The -safe option performs inits if
needed.

st=sdtroot(’PARAM.Project.ProjectWd -safe’)

r1=sdtroot(’PARAM.Project’)

• sdtroot(’PARAMWord’) initializes for potential export based on content of PlotWd and PlotWord

OsDic

Each project figure supports a dictionnary (or OsDic) of named comgui objSet styles that can be
used to format figures, images, ... The following illustrates simple manipulations, for a list of usual
categories see section 8.1 .

% Sample style definition, see examples in d_imw

my_style={’position’,[NaN,NaN,1087,384],’@line’,{’linewidth’,5}};
sdtroot(’InitOsDic’); % Display list of named styles

sdtroot(’setOsDic’,{’ImMyStyle’,my_style}) % Associate ImMyStyle name to this style

figure(1);plot([0 1]);

comgui(’objset’,1,{’@OsDic(SDT Root)’,’ImMyStyle’}); % Apply named style

@sfield

Subcommand sfield provides structure manipulation utilities. It can be accessed by calling
sfield=sdtroot(’@sfield’);.

The following commands are available

• AddMissing Completes a structure with fields found missing from a default structure.
r1=sfield(’AddMissing’,r1,r2). Inputs r1 is the working structure, r2 is a default struc-
ture. Output r1 is the input structure for which fields of r2 that were not present have been
added. Field names are case sensitive.

r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

r2=struct(’Opt’,’ttt’,’other’,’value’);

r1=feval(sdtroot(’@sfield’),’AddMissing’,r1,r2);

• AddSelected Completes a structure with fields found missing from a default structure, for a
given list of field names to intersect. r1=sfield(’AddSelected’,r1,r2,list);. Inputs r1

is the working structure, r2 is a default structure, list is a list of field names to consider.
Output r1 is the input structure for which fields of r2 that were not present and intersected
in list have been added. Field names are case sensitive.
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r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

r2=struct(’Opt’,’ttt’,’other’,’value’,’field’,true);

r1=feval(sdtroot(’@sfield’),’AddSelected’,r1,r2,{’field’});

• AddIncF Adds to a main structure the fields from another structure, fields names in the second
structure that are already present are incremented with a number added to the field name end.
r1=sfield(’AddIncF’,r1,r2).

r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

r2=struct(’Opt’,’ttt’);

r1=feval(sdtroot(’@sfield’),’AddIncF’,r1,r2);

• Cell2Struct Robust transform of a cell array in format {tag,data,...}, or {tag,data;
...} to a structure. r1=sfield(’Cell2Struct’,list);.

list={’tag’,{’value’,’test’},’opt’,1};
r1=feval(sdtroot(’@sfield’),’Cell2Struct’,list);

• GetField Case insensitive field recovery. val=sfield(’GetField’,r1,field,typ); r1 is an
input structure, field is the field name to recover, typ is the output wanted, if set to ’name’

the fieldname is output, the associated value is provided otherwise.

r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

v1=feval(sdtroot(’@sfield’),’GetField’,r1,’postname’,’field’);

f1=feval(sdtroot(’@sfield’),’GetField’,r1,’postname’,’name’);

• MergeI Merge two structures into a single one with case insensitive field name union.
r1=sfield(’MergeI’,r1,r2);. Output r1 is a structure with merged fields of inputs r1 and
r2 with priority given on r1.

r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

r2=struct(’opt’,’ttt’,’other’,’value’);

r1=feval(sdtroot(’@sfield’),’MergeI’,r1,r2);

• Sub Recovers fields from a structures whose names match a given pattern (through a regular
expression). r2=sfield(’Sub’,r1,pat,typ):. Output r2 is a structure whose fields are fields
from input structure r1 that were matched with pat as a regular expression. If typ is set to
true, the matched pattern is removed from the output field name, kept otherwise.

r1=struct(’PostCheck’,1,’Opt’,’test’,’PostName’,’NameP’,’run’,true);

r2=feval(sdtroot(’@sfield’),’Sub’,r1,’^Post’,1);
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Purpose

SDT file navigation function.

Description

This function allows opening the SDT documentation, opening classical file types outside Matlab,
and source code navigation.

OpenFileAtTag

When not called by a command starting with , sdtweb opens a file.

The documentation can be displayed at two locations :

• In the MATLAB help browser : define this location as default with
sdtdef(’browser-SetPref’,’’) or
sdtdef(’browser-SetPref’,’-helpbrowser’)

• In the MATLAB web browser : : define this location as default with
sdtdef(’browser-SetPref’,’hack’)

(Note that without the -SetPref, the displayed location is only modified for the current session,
which is useful to temporarily switch from one display to the other.)

Their is a MATLAB bug when displayed in the help browser : links to locations on a page sometimes
do not work properly, so that using the web browser is more convienient for now. It is recommended
to use the help browser only to do a research in the documentation or if the table of content is really
needed.

The main cases are

sdtweb feutil % Html documentation of feutil

sdtweb feutil#Renumber % at a tag in the HTML file

sdtweb feutil#Renumber -browser % same but in external browser

sdtweb feutil(’renumber’) % open .m file at tag ’renumber’

sdtweb source.c#tag % source.c file at tag

sdtweb file.doc % opens word for a given file.doc

sdtweb(’ path’) lists the help search path. sdtweb(’ pathReset’) redefines preferences.
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Utils

sdtweb(’ link’,’callback’,’comment’) creates a clickable link.

sdtweb(’ links’,’callback’,’comment’) creates a clickable link showing just the comment.

sdtweb(’ wd’,wd0,wd1) recursively searches for a subdirectory of wd0 named wd1. Command option
-reset regenerates the underlying directory scan.

sdtweb(’ fname’,fname,wd0) recursively searches for a file named fname in wd0 or any of its
subdirectories, or the current directory.

sdtweb(’ find’,’base wd’,’filename’) searches for a file within the base working directory.

sdtweb(’ tracker’,’support’,979) opens a tracker on the support web site.

sdtweb(’ BP’,’FunctionName’,’Tag’) Find Tag in FunctionName (result of sdtweb FunctionName

Tag and set breakup here for debug.

sdtweb(’ TexFromHTML’,’HmtlFileName’) Find .tex and line source corresponding to the Hmtl-
FileName.html help file.

taglist

This commands opens the TagList figure (tree view of your file providing links for source code
navigation)

sdtweb _taglist % Open taglist of current editor file (if not docked)

sdtweb _taglist feutil % Open taglist of feutil

Accepted command options are

• -sortABC will display the navigation tree alphabetically sorted.

• -levelval in combination with sortABC perform the alphabetical sorting up to level val.

The coding styles convention associated to the TagList parsing are detailed in section 7.17
(sdtweb(’syntax’)).
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Purpose

Sparse matrix utilities.

Description

This function should be used as a mex file. The .m file version does not support all functionalities,
is significantly slower and requires more memory.

The mex code is not Matlab clean, in the sense that it often modifies input arguments. You are
thus not encouraged to call sp util yourself.

The following comments are only provided, so that you can understand the purpose of various calls
to sp util.

• sp util with no argument returns its version number.

• sp util(’ismex’) true if sp util is a mex file on your platform/path.

• ind=sp util(’profile’,k) returns the profile of a sparse matrix (assumed to be symmetric).
This is useful to have an idea of the memory required to store a Cholesky factor of this matrix.

• ks=sp util(’sp2sky’,sparse(k)) returns the structure array used by the ofact object.

• ks = sp util(’sky dec’,ks) computes the LDL’ factor of a ofact object and replaces the
object data by the factor. The sky inv command is used for forward/backward substitution
(take a look at the @ofact\mldivide.m function). sky mul provides matrix multiplication for
unfactored ofact matrices.

• k = sp util(’nas2sp’,K,RowStart,InColumn,opt) is used by nasread for fast transforma-
tion between NASTRAN binary format and Matlab sparse matrix storage.

• k = sp util(’spind’,k,ind) renumbering and/or block extraction of a matrix. The input
and output arguments k MUST be the same. This is not typically acceptable behavior for
Matlab functions but the speed-up compared with k=k(ind,ind) can be significant.

• k = sp util(’xkx’,x,k) coordinate change for x a 3 by 3 matrix and DOFs of k stacked by
groups of 3 for which the coordinate change must be applied.

• ener = sp util(’ener’,ki,ke,length(Up.DOF),mind,T) is used by upcom to compute en-
ergy distributions in a list of elements. Note that this function does not handle numerical
round-off problems in the same way as previous calls.
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• k = sp util(’mind’,ki,ke,N,mind) returns the square sparse matrix k associated to the
vector of full matrix indices ki (column-wise position from 1 to N^2) and associated values ke.
This is used for finite element model assembly by fe mk and upcom. In the later case, the op-
tional argument mind is used to multiply the blocks of ke by appropriate coefficients. mindsym
has the same objective but assumes that ki,ke only store the upper half of a symmetric matrix.

• sparse = sp util(’sp2st’,k) returns a structure array with fields corresponding to the
Matlab sparse matrix object. This is a debugging tool.

• sp util(’setinput’,mat,vect,start) places vector vect in matrix mat starting at C posi-
tion start. Be careful to note that start is modified to contain the end position.
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Purpose

Stack handling functions.

Syntax

[StackRows,index]=stack_get(model,typ);

[StackRows,index]=stack_get(model,typ,name);

[StackRows,index]=stack_get(model,typ,name,opt);

Up=stack_set(model,typ,name,val)

Up=stack_rm(model,typ,name);

Up=stack_rm(model,typ);

Up=stack_rm(model,’’,name);

[model,r1]=stack_rm(model,typ,name,opt);

Description

The .Stack field is used to store a variety of information, in a N by 3 cell array with each row of
the form {’type’,’name’,val} (see section 7.6 or section 7.7 for example). The purpose of this
cell array is to deal with an unordered set of data entries which can be classified by type and name.

Since sorting can be done by name only, names should all be distinct. If the types are different, this
is not an obligation, just good practice.

In get and remove calls, typ and name can start by # to use a regular expression based on matching
(use doc regexp to access detailed documentation on regular expressions). To avoid selection by
typ or name one can set it to an empty string.

Command options can be given in opt to recover stack lines or entries.

• stack get outputs selected sub-stack lines by default.

– Using opt set to get or to GetData allows directly recovering the content of the stack
entry instead of the stack line.

– Using opt set to multi asks to return sub stack lines for multiple results, this is seldom
used.

• stack rm outputs the model from which stack lines corresponding to typ and name have been
removed.

– Using opt set to get will output in a second argument the removed lines.
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– Using opt set to GetData will output in a second argument the content of the removed
lines. If several lines are removed,

Syntax

% Sample calls to stack_get and stack_rm

Case.Stack={’DofSet’,’Point accel’,[4.03;55.03];

’DofLoad’,’Force’,[2.03];

’SensDof’,’Sensors’,[4 55 30]’+.03};

% Replace first entry

Case=stack_set(Case,’DofSet’,’Point accel’,[4.03;55.03;2.03]);

Case.Stack

% Add new entry

Case=stack_set(Case,’DofSet’,’P2’,[4.03]);

Case.Stack

% Remove entry

Case=stack_rm(Case,’’,’Sensors’);Case.Stack

% Get DofSet entries and access

[Val,ind]=stack_get(Case,’DofSet’)

Case.Stack{ind(1),3} % same as Val{1,3}
% Direct access to cell content

[Val,ind]=stack_get(Case,’DofSet’,’P2’,’get’)

% Regular expression match of entries starting with a P

stack_get(Case,’’,’#P*’)

% Remove Force entry and keep it

[Case,r1]=stack_rm(Case,’’,’Force’,’get’)

SDT provides simplified access to stacks in feplot (see section 4.4.3 ) and iiplot figures (see sec-
tion 2.1.2 ). cf.Stack{’Name’} can be used for direct access to the stack, and cf.CStack{’Name’}
for access to FEM model case stacks.
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Purpose

Read from Universal Files.

Syntax

ufread

ufread(’FileNameOrList’)

UFS = ufread(’FileName’)

UFS = ufread(’FileList*.uff’)

Description

The Universal File Format is a set of ASCII file formats widely used to exchange analysis and test
data. As detailed below ufread supports test related UFF (15 grid point, UFF55 analysis data at
node, UFF58 response data at DOF) and with the FEMLink extension FEM related datasets.

ufread with no arguments opens a GUI to let you select a file and displays the result using
feplot and/or iiplot. ufread(’FileName’) opens an feplot or iiplot figure with the con-
tents. UFS=ufread(’FileName’) returns either a FEM model (if only model information is given)
or a curve stack UFS pointing to the universal files present in FileName grouped by blocks of files
read as a single dataset in the SDT (all FRFs of a given test, all trace lines of a given structure,
etc.). You can specify a file list using the * character in the file name.

You get a summary of the file contents by displaying UFS

>> UFS

UFS = UFF curve stack for file ’example.uff’

{1} [.Node (local) 107x7, .Elt (local) 7x156] : model

2 [.w (UFF) 512x1, .xf (UFF) 512x3] : response data

3 [.po (local) 11x2, .res (local) 11x318] : shape data

which indicates the content of each dataset in the stack, the current data set between braces { }, the
type and size of the main data fields. For response data (UFF type 58), the data is only imported
when you refer to it (UFS(i) call) but it is imported every time you do so unless you force loading
into memory using UFS(i)=UFS(i).

The UFS object gives you direct access to the data in each field. In the example above, you can
display the modeshapes using

cf = feplot;
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cf.model = UFS(1);

cf.def = UFS(3);

When loading response data, you may want to transfer all options from the universal file to an iiplot

stack entry using calls of the form ci.Stack{’curve’,’Test’}=UFS(3).If you need to extract partial
sets of DOF, consider fe def SubDof.

15 Grid point

Grid points stored in a node matrix (see node page 273) in a UFS(i).Node field.

The format is a (4I10,1P3E13.5) record for each node with fields
[NodeID PID DID GID x y z]

where NodeID are node numbers (positive integers with no constraint on order or continuity), PID
and DID are coordinate system numbers for position and displacement respectively (this option is
not currently used), GID is a node group number (zero or any positive integer), and x y z are the
coordinates.

55 Analysis data at node

UFF55 Analysis data at nodes are characterized by poles .po and residues .res (corresponding to
DOFs .dof) and correspond to shape at DOF datasets (see more info under the xfopt help).

The information below gives a short description of the universal file format. You are encouraged to
look at comments in the ufread and ufwrite source codes if you want more details.

Header1 (80A1). The UFF header lines are stored in the .header field
Header2 (80A1)
Header3 (80A1) DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1)
Header5 (80A1)
Fun (6I10) This is stored in the .fun field
SpeInt (8I10) NumberOfIntegers on this line (3-N are type specific), NumberOfReals on the

next line, SpeInt type specific integers (see table below for details)
SpeRea Type specific real parameters
NodeID (I10) Node number
Data (6E13.5) Data At This Node : NDV Real Or Complex Values (real imaginary for

data 1, ...)
Records 9 And 10 Are Repeated For Each Node.

Type specific values depend on the Signification value and are stored in the .r55 field.
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0 Unknown [ 1 1 ID Number]

[0.0]

1 Static [1 1 LoadCase]

[0.0]

2 Normal model [2 4 LoadCase ModeNumber]

[FreqHz ModalMass DampRatioViscous DampRatioHysteretic]

3 Complex [2 6 LoadCase ModeNumber]

eigenvalue [ReLambda ImLambda ReModalA ImModalA ReModalB ImModalB]

4 Transient [2 1 LoadCase TimeStep]

[TimeSeconds]

5 Frequency [2 1 LoadCase FreqStepNumber]

response [FrequencyHz]

6 Buckling [1 1 LoadCase]

[Eigenvalue]

58 Function at nodal DOF

UFF58 Functions at nodal DOF (see Response data) are characterized by frequencies w, a data set
xf, as well as other options. The information below gives a short description of the universal file
format. You are encouraged to look at comments in the ufread and ufwrite source codes if you
want more details. Functions at nodal DOFs are grouped by type and stored in response data sets
of UFS.

Header1 (80A1) Function description
Header2 (80A1) Run Identification
Header3 (80A1) Time stamp DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1) Load Case Name
Header5 (80A1)
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DOFID This is stored in .dof field (which also has a file number as address in column 3).
Values are

• 2(I5,I10) : FunType (list with xfopt(’ funtype’), stored in .fun(1)), FunID (ID
in .dof(:,5)), VerID version or sequence number, LoadCase (0 single point)

• (1X,10A1,I10,I4) : ResponseGroup (NONE if unused, ID in .dof(:,4) ),
ResponseNodeID, ResponseDofID (1:6 correspond to SDT DOFs .01 to .06,
-1:-6 to SDT DOFs .07 to .12). DOF coding stored in .dof(:,1)).

• (1X,10A1,I10,I4) : ReferenceGroup (NONE if unused, ID in .dof(:,4)),
ReferenceNodeID, ReferenceDofID. These are only relevant if LoadCase is

zero. DOF coding stored in .dof(:,2)).

DataForm (3I10,3E13.5)

DFormat (2 : real, single precision, 4 : real, double precision, 5 : complex, single pre-
cision, 6 : complex, double precision), NumberOfDataPoints, XSpacing (0 - uneven,
1 - even (no abscissa values stored)), XMinimum (0.0 if uneven), XStep (0.0 if spacing
uneven), ZAxisValue (0.0 if unused)

XDataForm (I10,3I5,2(1X,20A1)) DataType (list with xfopt(’ datatype’)), lue length unit ex-
ponents, fue force, tue temperature, AxisLabel, AxisUnits
Note : exponents are used to define dimensions. Thus Energy (Force * Length) has
[fue lue tue]=[1 1 0]. This information is generally redundant with DataType.

YNDataForm Ordinate (or ordinate numerator) Data Form (same as XDataForm

YDDataForm Ordinate Denominator Data Characteristics
ZDataForm Z-axis Data Characteristics
DataValue a series of x value (if uneven x spacing, always with format E13.5), real part, imaginary

part (if exists) with precision (E13.5 or E20.12) depending on DFormat.

82, Trace Line

UFF82 Trace Line matrix LDraw where each non-empty row corresponds to a line to be traced. All
trace lines, are stored as element groups of UFS(1).Elt.

LDraw can be used to create animated deformation plots using feplot.

Opt (3I10) LineNumber, NumberOfNodes, Color
Label (80A1) Identification for the line
Header3 (8I10) node numbers with 0 for discontinuities
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( ,1:2) [NumberOfNodes GroupID]

( ,3:82) [LineName] (which should correspond to the group name)
( ,83:end) [NodeNumbers] (NumberOfNodes of them, with zeros to break the line)

151, Header

Header stored as a string matrix header (with 7 rows).

780, 2412, Elements

These universal file formats are supported by the SDT FEMLink extension.

SDT UNV element (UNV Id)
beam1 rod (11), linear beam (21)
tria3 thin shell lin triangle (91), plane stress lin tri (41), plan strain lin tri (51),

flat plate lin triangle (74)
tria6 thin shell para tri (92), plane stress para tri (42), plane strain para tri (51),

flat plate para tri (62), membrane para tri (72)
quad4 thin shell lin quad (94), plane stress lin quad (44), plane strain lin quad

(54), flat plate lin quad (64), membrane lin quad (71)
quadb thin shell para quad (95), plane stress para quad (54), plane strain para

quad(55), flat plate para quad (65), membrane para quad(75)
tetra4 solid lin tetra (111)
tetra10 solid para tetra (118)
penta6 solid lin wedge (112)
penta15 solid para wedge (113)
hexa8 solid lin brick (115)
hexa20 solid para brick (116)
rigid rigid element (122)
bar1 node-node trans spring (136), node-node rot spring (137)
mass2 lumped mass (161)

773, 1710 Material Database

These universal file formats are supported by the SDT FEMLink extension.

All materials properties are read, but obviously only those currently supported by the SDT are
translated to the corresponding row format (see m elastic and section 7.4 ).
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772, 788, 789, 2437, Element Properties

These universal file formats are supported by the SDT FEMLink extension.

All element (physical) properties are read, but obviously only those currently supported by the SDT
are translated to the corresponding row format (see p beam, p shell, section 7.3 ).

2414, Analysis data

These universal file formats are supported by the SDT FEMLink extension.

Note that the list of FEMLink supported dataset is likely to change between manual editions. Please
get in touch with SDTools if a dataset you want to read is not supported.

See also

nasread, ufwrite, xfopt
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Purpose

Write to a Universal File.

Syntax

ufwrite(FileName,UFS,i)

ufwrite(FileName,model)

Description

You can export to UFF using the feplot and iiplot export menus.
ufwrite(FileName,UFS,i) appends the dataset i from a curve stack UFS to the file FileName. For
details on curve stacks see section 2.1.2 . ufwrite(FileName,model) can be used to export FEM
models.

For datasets representing

• models, ufwrite writes a UFF of type 15 for the nodes and a trace line (UFF 82) for test wire
frames (all EGID negative) or without FEMLink. With FEMLink, nodes are written in UFF 2411
format and elements in UFF 2412.

• response data, ufwrite writes a response at DOF (UFF 58) for each column of the response set.

• shape data, ufwrite writes a data at nodal DOF (UFF 55) for each row in the shape data set.

Starting from scratch, you define an curve stack DB=xfopt(’empty’). You can then copy data sets
from the stack XF (previously initialized by iiplot or xfopt) using DB(i)=XF(j). You can also
build a new data set by giving its fields (see xfopt for the fields for the three supported dataset
types). The following would be a typical example

UF=xfopt(’empty’)

UF(1)={’node’,FEnode,’elt’,FEelt};
UF(2)={’w’,IIw,’xf’,IIxf};
UF(3)={’po’,IIres,’res’,IIres,’dof’,XFdof};

Once the curve stack built, ufwrite(’NewFile’,UF,1:3) will write the three datasets.

With iiplot, you can use the stack to change properties as needed then write selected datasets to
a file. For example,

tname=nas2up(’tempname .uf’);

ci=iicom(’CurveLoad’,’gartid’);
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ci.Stack{’Test’}.x=’frequency’; % modify properties, see xfopt(’_datatype’)

ci.Stack{’Test’}.yn=’accele’;
iicom(’sub’); % reinitialize plot to check

ufwrite(tname,ci,’Test’);

% write a model

ci.Stack{’SE’,’model’}=demosdt(’demo gartte’);

ufwrite(tname,ci,’model’);

% write a time trace

C1=fe_curve(’TestRicker .6 2’,linspace(0,1.2,120));

C1=ufwrite(’_toxf’,C1); % Transform to xf format

C1.x= xfopt(’_datatype’,’time’);

C1.yn= xfopt(’_datatype’,’Acceleration’);

C1.fun= xfopt(’_funtype’,1);

ufwrite(tname,ci,’Ricker’);

UFS=ufread(tname); % reread the UFF to check result

Note that you can edit these properties graphically in the iiplot properties ... figure.

See also

ufread, iiplot, nasread
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Purpose

User interface function for parameterized superelements.

Description

The upcom interface supports type 3 superelements which handle parameterization by storing element
matrix dictionaries and thus allowing reassembly of mass and stiffness matrices computed as weighted
sums of element matrices (6.120).

By default, upcom uses a special purpose superelement stored in the global variable Up. You
can however use more than one type 3 superelement by providing the appropriate variables as
input/output arguments. upcom(’info’) applies to Up whereas upcom(model,’info’) applies to
model.

The par commands are used to dynamically relate the element matrix weights to physical parameters
thus allowing fairly complex parametric studies on families of models. The main objective for upcom
is to enable finite element model updating, but it can also be used for optimization and all problems
using with families of models or hysteretic damping modeling as illustrated in section 5.3.2 .

The following paragraphs detail calling formats for commands supported by upcom and are followed
by an explanation of the signification of the fields of Up (see the commode help for hints on how to
build commands and understand the variants discussed in this help).

More details on how these commands are typically sequenced are given in the Tutorial section 6.4
and section 6.5 .

Commands

Clear, Load File , Save File

upcom(’clear’) clears the global variable Up and the local and base variables Up if they exist. If
these local variables are not cleared then the global variable Up is reset to that value.

upcom(’load File’) loads the superelement fields from File.mat and creates the file if it does not
currently exist. upcom(’save File’) makes sure that the current values of the various fields are
saved in File.mat. Certain commands automatically save the superelement but efficiency mandates
not to do it all the time. The working directory field Up.wd lets you work in a directory that differs
from the directory where the file is actually located.

Assemble [,m,k] [,coef cur],[,delta i][,NoT][,Point]
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[m,k] = upcom(’assemble’) returns the mass and stiffness parameters associated with the pa-
rameters by the last parcoef command. You should look up newer assembly calls in section 4.8.8
.

Assemble Coef cur uses the parameter values cur for the assembly. Assemble CoefNone does not
use any parameter definitions (all the element matrices are used with a unit weighting coefficient).
AssembleMind uses columns 5 and 6 of Up.mind for element matrix coefficients.

Assemble Delta i assembles the derivative of matrices with respect to parameter i. To assemble a
derivative with non zero components on more than one parameter, use [dm,dk]=upcom(’assemble

delta’,dirp) where dirp (with Npar rows) characterizes the amplitude of the derivative on each
parameter for the current change. dirp can for example be used to describe simultaneous changes
in mass and stiffness parameters.

k=upcom(’assemble k coef 2 3’) only assembles the stiffness with parameter coefficients set to 2
and 3. Similarly, dm=upcom(’assemble m delta 2’) will assemble the mass derivative with respect
to parameter 2.

The NoT option can be used to prevent the default projection of the matrices on the master DOFs
defined by the current case.

The Point option can be used return the v handle object pointing to the non assembled matrix.
This matrix can then be used in feutilb(’tkt’) and feutilb(’a*b’) out of core operations.

ComputeMode [ ,full,reduced] [,eig opt]

[mode,freq] = upcom(’ComputeMode’) assembles the model mass and stiffness based on current
model parameters (see the parcoef command) and computes modes. The optional full or reduced
can be used to change the current default (see the opt command). The optional eig opt can be
used to call fe eig with options other than the current defaults (see the opt command).

upcom(’load GartUp’);

def = upcom(’computemode full 105 10 1e3’);

For reduced model computations, the outputs are [moder,freq,modefull].

ComputeModal [ ,full,reduced]

Given a parameterized model, the command ComputeModal computes the frequency response associ-
ated to all the inputs and outputs of the model, taken into account the damping ratio. ComputeModal
computes the normal modes and static corrections for inputs of the full or reduced order models
based on the full or reduced model. nor2xf is then called to build the responses (for sensor load
definitions within the model, see nor2xf).

879



upcom

Up=upcom(’load GartUp’);

Up=fe_case(Up,’SensDof’,’sensors’,[3.03;54.03],’DofLoad’,’input’,3.03);

upcom(Up,’compute modal full acc iiplot "updated" -po -reset’);

You may want to compute the direct frequency response associated the inputs on all the DOFs
structure. It does not compute modes and is thus faster than ComputeModal for a full order model
and a few frequency points. The high level call uses the fe simul function

cf=fecom(’load’,which(’GartUp.mat’));

cf.mdl=fe_case(cf.mdl,’DofLoad’,’input’,3.03);

cf.mdl=stack_set(cf.mdl,’info’,’Freq’,linspace(0,15,50)’);

cf.def=fe_simul(’DFRF’,cf.mdl);fecom(’ch22’);

Ener [m, k]

ener = upcom(’ener k’,def) computes the strain energy in each element for the deformations
def. ener is a data structure with fields .IndInElt specifying the element associated with each
energy row described in the .data field. You can display the kinetic energy in an arbitrary element
selection of a structure, using a call of the form

cf.sel={’group6’,’colordata elt’,upcom(’ener m’,’group6’,mode)};

Fix

upcom(’fix0’) eliminates DOFs with no stiffness contribution. upcom(’fix’,adof) only retains
DOFs selected by adof.

This command is rather inefficient and you should eliminate DOFs with FixDOF case entries (see
fe case) or assemble directly with the desired DOFs (specify adof in the SetNominal command).

Get

Information about the superelement is stored in fields of the global variable Up. The easiest way to
access those fields is to make the variable local to your workspace (use global Up) and to access
the fields directly. The superelement also has pseudo-fields mi,me,ki,ke which are always stored in
Up.file. Commands of the form load(Up.file,’ke’) are used to get them.

femesh

upcom femesh copies Up.Elt to FEelt and Up.Node to FEnode so that femesh commands can be
applied to the model.
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IndInElt

upcom(’IndInElt’) returns a vector giving the row position in Up.Elt of each row in Up.mind.
This is in particular used for color coded energy plots which should now take the form

feplot(’ColorDataElt’,upcom(’eners’,res),upcom(’indinelt’));

Although it is typically easier to use high level calls of the form

upcom(’load GartUp’);upcom(’plotelt’);

cf=feplot;cf.def=fe_eig(Up,[5 10 1e3]);fecom(’ch7’);

cf.sel={’groupall’,’colordata enerk’};

Info [ ,par,elt]

upcom(’info’) prints information about the current content of Up: size of full and reduced model,
values of parameters currently declared, types, etc.

InfoPar details currently defined parameters. InfoElt details the model.

Opt

upcom(’opt Name ’ ’) sets the option Name to a given Value. Thus upcom (’opt gPrint 11’)

sets the general printout level to 11 (maximum). Accepted names and values are detailed in the
Up.copt field description below.

Par [add type values,reset]

These commands allow the creation of a parameter definition stack. Each parameter is given a type
(k for stiffness, m for mass, t for thickness) optional current, min and max values, a name, and an
element selection command.

Up=upcom(’load GartUp’); % Load sample model

Up=fe_case(Up,’ParReset’) % Reset parameters

Up=fe_case(Up,’ParAdd k 1.0 0.5 2.0’,’Tail’,’group3’);

Up=fe_case(Up,’ParAdd t 1.0 0.9 1.1’,’Constrained Layer’,’group6’);

Up=fe_case(Up,’parcoef’,[1.2 1.3]);

upcom(Up,’info par’);

Parameters are stored in the case stack and can be selected with

des=fe_case(Up,’stack_get’,’par’)
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des is a cell array where each row has the form {’par’,’name’,data} with data containing fields

.sel string or cell array allowing selection of elements affected by the parameter

.coef vector of parameter coefficients (see format description under upcom ParCoef).

.pdir Boolean vector giving the positions of affected elements in Up.mind (for upcom models)

.name Parameter name

.zCoef optional string definition of the zcoef associated to the parameter.

ParCoef

The value of each physical parameter declared using upcom Par or fe case par commands is de-
scribed by a row of coefficients following the format

[type cur min max vtype]

with

• type 1 stiffness proportional to parameter value. This is the case for a variable Young’s
modulus. 2 mass proportional to parameter. This is the case for a variable mass density.

3 variable thickness (upcom only). Currently only valid for quad4 and quadb elements. tria3
elements can be handled with degenerate quad4. Element groups with variable thickness must
be declared at assembly during upcom(’SetNominal’).

• cur for current value

• min for minimum value

• max for maximum value

• vtype deals with the type of variation 1 linear, 2 log (not fully implemented)

upcom(Up,’parcoef’,cur) is used to set current values (cur must be a vector of length the number
of declared parameters), while upcom(Up,’parcoef’,par) also sets min, max and vtype values. You
can also use [cur,par]=upcom(Up,’parcoef’) or par=upcom(Up,’parcoefpar’) to obtain current
values or the parameter value matrix.

An example of parameter setting is thus

Up=demosdt(’gartup’); % see sdtweb demosdt(’gartup’)

% MatType cur min max vtype

par = [ 1 1.0 0.1 3.0 1 ; ... % Linear

3 0.0 -1 2.0 2 ]; % Log variation

Up=upcom(Up,’parcoef’,par);
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upcom(Up,’info par’);

[cur,par]=upcom(Up,’parcoef’)

Note that to prevent user errors, upcom does not allow parameter overlap for the same type of matrix
(modification of the modulus and/or the thickness of the same element by two distinct parameters).

ParRed

upcom(’par red’,T) projects the current full order model with the currently declared parameters
on the basis T. Typical reduction bases are discussed in section 6.2.7 and an example is shown in
the gartup demo. Matrices to be projected are selected based on the currently declared variable
parameters in such a way that projected reduced model is able to make predictions for new values
of the parameters.

ParTable

tt=upcom(’partable’) returns a cell array of string describing the parameters currently declared.
This cell array is useful to generate formatted outputs for inclusion in various reports using
comstr(tt,-17,’excel’) for example.

PlotElt

upcom plotelt initializes a feplot figure displaying the model in upcom. If Up has deformations
defined in a .def field, these are shown using cf=feplot;cf.def=Up.

Profile [,fix]

Renumbers DOFs and pseudo-fields mi,me,ki,ke using symrcm to minimize matrix bandwidth.
ProfileFix eliminates DOFs with no stiffness on the diagonal at the same time.
upcom(’ProfileFix’,fdof) profiles and eliminates DOFs in fdof and DOFs with no stiffness on
the diagonal.

Support for case entries (see fe case) makes this command obsolete.

SensMode [,reduced]

[fsen,mdsen,mode,freq] = upcom(’SensMode’,dirp,indm,T) returns frequency and modeshape
sensitivities of modes with indices given in indm for modifications described by dirp.
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For a model with NP parameters (declared with the Par commands), dirp is a matrix with Npar
rows where each column describe a case of parameter changes of the form par = dirp(:,j). The
default for dirp the identity matrix (unit change in the direction of each parameter).

The optional argument T can be used to give an estimate of modeshapes at the current design point.
If T is given the modes are not computed which saves time but decreases accuracy if the modes are
not exact.

fsen gives, for modes indm, the sensitivities of modal frequencies squared to all parameters (one
column of fsen per parameter). mdsen stores the modeshape sensitivities sequentially (sensitivities
of modes in indm to parameter 1, parameter 2, ...).

When modeshape sensitivities are not desired (output is [fsen] or [fsen, mode, freq]), they are
not computed which takes much less computational time.

By default SensMode uses the full order model. The first order correction to the modal method dis-
cussed in Ref. [42] is used. You can access the reduced order model sensitivities using SensModeReduced
but should be aware that accuracy will then strongly depend on the basis you used for model reduc-
tion (ParRed command).

SetNominal [ , t groups]

To generate a new model, you should first clear any Up variable in the workspace, specify the file
that where you will want the element matrices to be saved, then perform the assembly. For example

model=demosdt(’demogartfe’);

model.wd=sdtdef(’tempdir’);model.file=’GartUp_demo.mat’;

Up=upcom(model,’setnominal’)

% delete(fullfile(Up.wd,[Up.file,’.mat’])) % to remove the result

Case information (boundary conditions, ... see fe case) in model is saved in Up.Stack and will be
used in assembly unless the NoT option is included in the Assemble command.

If the parameter that will be declared using the Par commands include thickness variations of some
plate/shell elements, the model will use element sub-matrices. You thus need to declare which
element groups need to have a separation in element submatrices (doing this separation takes time
and requires more final storage memory so that it is not performed automatically). This declaration
is done with a command of the form SetNominal T groups which gives a list of the groups that
need separation.

Obsolete calling formats upcom(’setnominal’,FEnode,FEelt,pl,il) and
upcom( ’setnominal’,FEnode,FEelt,pl,il,[],adof) ( where the empty argument [] is used
for coherence with calls to fe mk) are still supported but you should switch to using FEM model
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structures.

Fields of Up

Up is a generic superelement (see description under fe super) with additional fields described below.
The Up.Opt(1,4) value specifies whether the element matrices are symmetric or not.

Up.copt

The computational options field contains the following information

(1,1:7) = [oMethod gPrint Units Wmin Wmax Model Step]

oMethod optimization algorithm used for FE updates
1: fmins of Matlab (default)
2: fminu of the Optimization Toolbox
3: up min

gPrint printout level (0 none to 11 maximum)
Units for the frequency/time data vector w and the poles

01: w in Hertz 02: w in rad/s 03: w time seconds
10: po in Hertz 20: po in rad/s
example: Up.copt(1,3) = 12 gives w in rad/sec and po in Hz

Wmin index of the first frequency to be used for update
Wmax index of the last frequency to be used for update
Model flag for model selection (0 full Up, 1 reduced UpR)
Step step size for optimization algorithms (foptions(18))

(2,1:5) = [eMethod nm Shift ePrint Thres MaxIte]

are options used for full order eigenvalue computations (see fe eig for details).

(3,1) = [exMethod ]

exMethod expansion method (0: static, 1: dynamic, 2: reduced basis dynamic, 3: modal, 4: reduced
basis minimum residual)

Up.mind, Up.file, Up.wd, mi, me, ki, ke

Up stores element submatrices in pseudo-fields mi,me,ki,ke which are loaded from Up.file when
needed and cleared immediately afterwards to optimize memory usage. The working directory Up.wd

field is used to keep tract of the file location even if the user changes the current directory. The
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upcom save command saves all Up fields and pseudo-fields in the file which allows restarts using
upcom load.

ki,mi are vectors of indices giving the position of element matrix values stored in ke,me. The indices
use the column oriented numbering from 1 to N2 where N is the assembled matrix size.

Up.mind is a NElt x6 matrix. The first two columns give element (sub-)matrix start and end indices
for the mass matrix (positions in mi and me). Columns 3:4 give element (sub-)matrix start and end
indices for the stiffness matrix (positions in ki and ke). Column 5 (6) give the coefficient associated
to each element mass (stiffness) matrix. If columns 5:6 do not exist the coefficients are assumed
equal to 1. The objective of these vectors is to optimize model reassembly with scalar weights on
element matrices.

Up.Node, Up.Elt, Up.pl, Up.il, Up.DOF, Up.Stack

Model nodes (see section 7.1 ), elements (see section 7.2 ), material (see section 7.3 ) and element
(see section 7.4 ) property matrices, full order model DOFs. These values are set during the assembly
with the setnominal command.

Up.Stack contains additional information. In particular parameter information (see upcom par

commands) are stored in a case (see section 7.7 ) saved in this field.

Up.sens

Sensor configuration array built using fe sens. This is used for automatic test / analysis correlation
during finite element update phases.

See also

fesuper, up freq, up ixf
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up freq, up ifreq

Purpose

Sensitivity and iterative updates based on a comparison of modal frequencies.

Syntax

[coef,mode,freq]=up_freq(’Method’,fID,modeID,sens);

[coef,mode,freq]=up_ifreq(’Method’,fID,modeID,sens);

Description

up freq and up ifreq seek the values coef of the currently declared Up parameters (see the upcom

Par command) such that the difference between the measured fID and model normal mode frequen-
cies are minimized.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC (see ii mac) to
match test and analysis modes. To allow the MAC comparison modeshapes. You are expected to
provide test modeshapes modeID and a sensor configuration matrix (initialized with fe sens).

The cost used in both functions is given by

norm(new_freq(fDes(:,1))-fDes(:,2))/ norm(fDes(:,2))

up freq uses frequency sensitivities to determine large steps. As many iterations as alternate ma-
trices are performed. This acknowledges that the problem is really non-linear and also allows a
treatment of cases with active constraints on the coefficients (minimum and maximum values for the
coefficients are given in the upcom Par command).

up ifreq uses any available optimization algorithm (see upcom opt) to minimize the cost. The
approach is much slower (in particular it should always be used with a reduced model). Depending
on the algorithm, the optimum found may or may not be within the constraints set in the range
given in the upcom Par command.

These algorithms are very simple and should be taken as examples rather than truly working so-
lutions. Better solutions are currently only provided through consulting services (ask for details at
info@sdtools.com).

See also

up ixf, up ifreq, fe mk, upcom



up ixf

Purpose

Iterative FE model update based on the comparison of measured and predicted FRFs.

Syntax

[jump]=up_ixf(’basic’,b,c,IIw,IIxf,indw)

Description

up ixf seeks the values coef of the currently declared Up parameters (see the upcom Par command)
such that the difference Log least-squares difference (3.4) between the desired and actual FRF is
minimized. Input arguments are

method Currently ’basic’ is the only Method implemented.
range a matrix with three columns where each row gives the minimum, maximum and initial

values associated the corresponding alternate matrix coefficient
b,c input and output shape matrices characterizing the FRF given using the full order

model DOFs. See section 5.1 .
IIw selected frequency points given using units characterized by Up.copt(1,3)

IIxf reference transfer function at frequency points IIw

indw indices of frequency points where the comparison is made. If empty all points are
retained.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC (see ii mac) to
match test and analysis modes. To allow the MAC comparison modeshapes. You are expected to
provide test modeshapes modeID and a sensor configuration matrix (initialized with fe sens).

up ixf uses any available optimization algorithm (see upcom opt) to minimize the cost. Depending
on the algorithm, the optimum found may or may not be within the constraints set in the range
given in the upcom Par command.

This algorithm is very simple and should be taken as an example rather than an truly working
solution. Better solutions are currently only provided through consulting services (ask for details at
info@sdtools.com).

See also

up freq, upcom, fe mk



v handle

Purpose

Description

Class constructor for variable handle objects.

v handle

The Structural Dynamics Toolbox supports variable handle objects, which act as pointers to vari-
ables that are actually stored as

• uo user data of graphical objects (init with v handle(’uo’,go)). This is in particular used in
feplot to store the model in cf.mdl. For easier access, the format
v handle(’uo’,parent,’tag’,’TipCh’) allows search by tag and possible creation as a in-
visible uicontrol.

It is possible to associate a callback executed when the variable is modified using
v handle(’uo’,go,SetFcn)

• so reference to another (stored) object.

• mat data in files. This latter application may become very useful when handling very large
models. sdthdf indeed allows RAM unloading by keeping data on drive while using a pointed
to it. A trade-off between data access performance (limited to your drive I/O performance) and
amount of free memory will occur. Some supported file formats are MATLAB 6 .mat files (use
v handle(’mat’,’varname’,’filename’)), NASTRAN .op2,op4 (see nasread), ABAQUS
.fil ...

For data in files, methods of interest are extraction def(rows,cols), total read def.GetData

or def(:,:), and matrix multiplication c*def.

• hdf data in MATLAB ¿7.3 HDF based .mat files (see sdthdf hdfReadRef)

• base global variables (init with v handle(’global’,’name’)), use is discontinued

• mkls 32 bit sparse (init with v handle(’mkls’,k)) used for improved time response

v handle objects essentially behave like global variables with the notable exception that a clear

command only deletes the handle and not the pointed data.

Only advanced programmers should really need access to the internal structure of v handle.
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Purpose

User interface for curve stack pointer objects. Stack, see section 2.1.2 , are now preferred so
this function is documented mostly for compatibility.

Syntax

xfopt command

XF(1).FieldName=FieldValue

XF(1).command=’value’

XF.check

r1=XF(1).GetData

curve=XF(1).GetAsCurve

XF.save=’FileName’

Description

SDT considers data sets in curve, curve Response data or Shapes at DOFs formats. Handling of
datasets is described in the iiplot tutorial which illustrates the use of curve stacks (previously called
database wrappers).

ufread and ufwrite also use curve stacks which can be stored as variables. In this case, FEM
models can also be stored in the stack.

The use of a stack pointer (obtained with XF=iicom(ci,’curvexf’);) has side advantages that
further checks on user input are performed.

XF.check verifies the consistency of information contained in all data sets and makes corrections
when needed. This is used to fill in information that may have been left blank by the user.

disp(XF) gives general information about the datasets. XF(i).info gives detailed and formatted
information about the dataset in XF(i). XF(i) only returns the actual dataset contents.

Object saving is overloaded so that data is retrieved from a iiplot figure if appropriate before
saving the data to a mat file.

Object field setting is also overloaded (consistency checks are performed before actually setting a
field) This is illustrated by the following example

[ci,XF]=iiplot

XF(1)

XF(1).x=’time’; XF(1).x

where XF(1) is a Response data set (with abscissa in field .w, responses in field .xf, ...).
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XF(1).x=’time’ sets the XF(1).x field which contains a structure describing its type. Notice how
you only needed to give the ’time’ argument to fill in all the information. The list of supported
axis types is given using xfopt(’ datatype’)

XF(1).w=[1:10]’ sets the XF(1).w field.

FunType, DataType, FieldType

These commands are used internally by SDT. xfopt FunType returns the current list of function
types (given in the format specification for Universal File 58).
label=xfopt(’ FunType’,type) and type=xfopt(’ FunType’,’label’) are two other accepted
calls.

xfopt DataType returns the current list of data types (given in the format specification for Universal
File 58). xfopt(’ DataType’,type) and
xfopt(’ DataType’,’label’) are two other accepted calls.

For example XF.x.label=’Frequency’ or XF.x=18.

Data types are used to characterize axes (abscissa (x), ordinate numerator (yn), ordinate denomi-
nator (yd) and z-axis data (z)). They are characterized by the fields

.type four integers describing the axis function type fun (see list with
xfopt(’ datatype’)), length, force and temperature unit exponents

.label a string label for the axis

.unit a string for the unit of the axis

xfopt FieldType returns the current list of field types.

See also

idopt, id rm, iiplot, ufread
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[37] M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dy-
namics. John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris, 1993.
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Index

.ID, 794

, 497

actuator dynamics, 748
addresses, 290
adof, 292
AMIF, 789
animation, 156, 506
AnimMovie, 161
assembly, 671
asymptotic correction, 738
attachment mode, 245, 701
automated meshing, 146

b, 200, 609, 663
bar element, 386
beam element, 387
boundary condition, 166, 610
BuildConstit, 325

c, 200, 609
Case.GroupInfo, 308
cases, 284, 612
cf, 150, 589, 770, 870
channel, 288
CMIF, 789
collocated, 105, 212, 751
color mode, 508
ColorMap, 510, 797
COMAC, 122, 781
command formatting, 489
command function, 489

complex mode
computation and normalization, 631
definition, 210
identification, 96, 747, 751

Complex Mode Indicator Function, 789
Component Mode Synthesis, 247, 633
connectivity line matrix, 97, 873
coordinate, 273, 475
cost function

logLS, 774
quadratic, 96, 774

cp, 202
Craig Bampton reduction, 246, 698
Cross generalized mass, 782
curve, 286
curve stack, 46, 890
Cyclic symmetry, 643

damping, 203
non-proportional, 108, 205, 742
proportional or modal, 107, 204, 840
Rayleigh, 205
structural, 205, 206, 816
viscoelastic, 205, 206

damping ratio, 284
data structure

case, 284
curve, 286
deformation, 285
element constants, 309
element property, 277
GroupInfo, 308
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material, 276
model, 280
sens, 623

database wrapper, 46, 50, 64, 870, 890
def, 285
DefaultZeta, 853
degree of freedom (DOF), 201

active, 609, 631, 650
definition vector, 278, 290, 292, 609
element, 279
master, 301
nodal, 278
selection, 292, 609

demonstrations, 12
design parameters, 258
DID, 273, 392, 476
dirp, 262
dock, 483
drawing axes, 762

effective mass, 244
EGID, 275, 279, 297
eigenvalue, 189, 631, 650
element

bar, 386
beam, 387
EGID, 275, 279
EltID, 325
fluid, 396, 398
function, 274, 311, 321, 594
group, 274, 518
identification number (EltId), 279
plate, 394, 444, 447, 451
property row, 275, 409, 438, 668
rigid link, 390, 448
selection, 296, 518, 528, 546
solid, 399
user defined, 311

EltId, 275
EltOrient, 299

eta, 206, 284
expansion, 132, 654

family of models, 258
FE model update, 265–267

based on FRFs, 888
based on modal frequencies, 887
command function, 878

FEelt, 144, 524
FEMLINK, 460, 471, 498
FEMLink, 805, 831, 846
FEnode, 144, 524
feplot, 139, 149, 589
frequency

unit, 650
frequency response function (FRF), 214, 747
frequency units, 738, 748, 839, 885
frequency vector w, 215, 748

ga, 202
generalized mass, 189, 243, 735
GID, 273
global variable, 17, 144, 524, 538, 594
Guyan condensation, 246, 698

hexahedron, 406

identification, 54
direct system parameter, 76, 740
minimal model, 103, 105, 751
normal mode model, 742
options, 737
orthogonal polynomials, 77, 746
poles, complex mode residues, 96, 747
poles, normal mode residues, 107, 747
reciprocal model, 751
scaled modeshapes, 108, 751

IDopt, 66, 291, 737, 890
iiplot, 44, 770
IIxf, 49, 50, 74
il, 277
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importing data, 63, 65, 146
ImWrite, 161
input shape matrix b, 200, 609
integinfo, 325
isostatic constraint, 701

LabFcn, 513, 686
load, 200, 663
localization matrix, 201
loss factor, 206, 284

MAC, 122, 775, 777
MACCO, 122, 780
Map, 548
mass

effective, 244
generalized, 243
normalization, 108, 243, 650, 677

material function, 276
material properties, 276, 668
MatID, 509
MatId, 275, 276, 297, 325
matrix

ofact, 826, 866
sparse/full, 826, 866

mdof, 278
meshing, 146
MIMO, 103
minimal model, 103, 751
MMIF, 788
modal

damping, 107
input matrix, 204, 210
mass, 189, 243, 735
output matrix, 204, 210
participation factor, 212
scale factor, 783
stiffness, 243

Modal Scale Factor, 782
mode

acceleration method, 245
attachment, 701
complex, 210, 631
constraint, 698
displacement method, 245
expansion, 132, 654
normal, 242, 650
scaling, 211, 243

model, 280
description matrix, 274
reduction, 501

multiplicity, 103, 752
Multivariate Mode Indicator Function, 788

NASTRAN, 805, 810
node, 139, 273

group, 273
selection, 273, 293, 528, 546

NodeId, 273
nor, 202, 816
normal, 548
normal mode

computation and normalization, 650
definition, 242
format, 202
identification, 108, 742
model, 816
residue, 107

NoT, 301
notations, 17

object
ofact, 826
sdth, 855
v handle, 889

observation, 200
om, 202
orientation

triax, 523
orthogonality conditions, 243, 631, 650, 677
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output shape matrix c, 200, 609

ParamEdit, 331
pb, 202
pentahedron, 405
PID, 273, 475
pl, 276
plate element, 394, 444, 447, 451
po, 801
POC, 122, 782
pole, 212, 244

formats, 801
lines, 770, 794
multiplicity, 103, 751

pole residue format, 212
polynomial model format, 214
ProID, 509
ProId, 275, 277, 297, 325
property function, 277

quadrilateral, 403

Rayleigh, 205
reciprocity, 105, 211, 610, 751
reduction basis, 241, 698
renderer, 516
res, 212, 840, 841
residual

dynamic, 128–130
high frequency, 212, 244
low frequency, 212

residue matrix, 103, 107, 204, 210, 213
rigid body modes, 245, 698
rigid link, 390, 448

scalar spring, 390
scaling, 517, 751, 779
scatter, 772
segment, 401
selection

element, 296

node, 293
sensor, 168

dynamics, 748
placement, 120, 703

simulate, 187
solid element, 399
sparse eigensolution, 650
ss, 209, 838
stack, 16, 281
stack entries, 281
state-space models, 209, 838, 841
static correction, 192, 212, 244, 245, 501
static flexible response, 701
structural modification, 134
subplot, 522, 762
superelement

command function, 594

tempdir, 853
test/analysis correlation, 703
tetrahedron, 404
tf, 214, 838, 844
time-delays, 748
triangle, 402
two-bay truss, 139

UFS, 870, 876
Universal File Format, 870

VectMap, 310
vector correlation, 775
view, 767, 769

wire-frame plots, 97, 525, 541, 873

XF, 50, 871, 890
xf, 214, 890
XFdof, 51

zeta, 204, 284
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