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1 Preface

1.1 Key areas

This section is intended for people who don’t want to read the manual. It summarizes
what you should know before going through the SDT demos to really get started.

You can find a primer for beginners at http://www.sdtools.com/help/primer.

pdf.

Self contained code examples are distributed throughout the manual. Additional
demonstration scripts can be found in the sdt/sdtdemos directory which for a proper
installation should be in your Matlab path. If not, use sdtcheck path to fix your
path.

The MATLAB doc command no longer supports non MathWorks toolboxes, docu-
mentation access is thus now obtained with sdtweb FunctionName.

The SDT provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification
(data acquisition and signal processing, followed parametric identification) with in-
formation about the spatial position of multiple sensors and actuators.

An experimental modal analysis project can be decomposed in following steps

• before the test, preparation and design (see section 2.2 )

• acquisition of test data, import into the SDT, direct exploitation of measurements
(visualization, operational deflection shapes, ...) (see section 2.1 )

• identification of modal properties from test data (see section 2.3 )

• handling of MIMO tests and other model transformations (output of identified
models to state-space, normal mode, ... formats, taking reciprocity into account,
...) (see section 2.4 )

The series of gart.. demos cover a great part of the typical uses of the SDT. These
demos are based on the test article used by the GARTEUR Structures & Materi-
als Action Group 19 which organized a Round Robin exercise where 12 European
laboratories tested a single structure between 1995 and 1997.
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Figure 1.1: GARTEUR structure.

gartfe builds the finite element model using the femesh pre-processor

gartte shows how to prepare the visualization of test results and perform basic cor-
relation

gartid does the identification on a real data set

gartsens discusses sensor/shaker placement

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation
for modal tests. Chapter 3 addresses topology correlation, test preparation, corre-
lation criteria, modeshape expansion, and structural dynamic modification. Details
on the complete range of sensor definitions supported by SDT can be found in 4.6.
Indications on how to use SDT for model updating are given in section 6.5 .

gartco shows how to use fe sens and fe exp to perform modeshape expansion and
more advanced correlation

gartup shows how the upcom interface can be used to further correlate/update the
model

13



1 Preface

Area 3: Basic finite element analysis

Chapter 4 gives a tutorial on FEM modeling in SDT. Developer information is given
in chapter 7. Available elements are listed in chapter 8.

A good part of the finite element analysis capabilities of the SDT are developed as
part of the OpenFEM project. OpenFEM is typically meant for developers willing
to invest in a stiff learning curve but needing an Open Source environment. SDT
provides an integrated and optimized access to OpenFEM and extends the library
with

• solvers for structural dynamics problems (eigenvalue (fe eig), component
mode synthesis (section 6.3 ), state-space model building (fe2ss), ... (see
fe simul);

• solvers capable of handling large problems more efficiently than Matlab;

• a complete set of tools for graphical pre/post-processing in an object oriented
environment (see section 4.4 );

• high level handling of FEM solutions using cases;

• interface with other finite element codes through the FEMLink extension to
SDT.

Area 4: Advanced FE analysis (model reduction, component mode
synthesis, families of models)

Advanced model reduction methods are one of the key applications of SDT. To
learn more about model reduction in structural dynamics read section 6.2 . Typical
applications are treated in section 6.3 .

Finally, as shown in section 6.4 , the SDT supports many tools necessary for finite
element model updating.

1.2 Key notions in SDT architecture
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functions, commands

To limit the number of functions SDT heavily relies on the use of string commands.
Functions group related commands (feutil for mesh manipulation, iiplot for curve
visualization, ...). Within each functions commands (for example iicom ImWrite),
are listed with their options.

command string and structure options (CAM,Cam,RO)

Most SDT functions accept inputs of the form function(’command’,data, ...).

Command options can be specified within the command (parsed from the string).
Thus iicom(’ch+5’) is parsed to ask for a step of +5 channels. See commode for
conventions linked to parsed commands (case insensitive, ...).

When reading SDT source code, look for the CAM (original command) and Cam (lower
case version of the command). Section 7.17 gives more details on SDT coding style.

While command parsing is very often convenient, it many become difficult to use in
graphical user interfaces or when to many options are required. SDT thus typically
supports a mechanism to provide options using either commands options, or option
values as a data structure typically called RO (for Run Options but any variable
name is acceptable). Support for both string and structure options is documented
and is being generalized to many commands.

% Equivalent command an structure calls

figure(1);plot(sin(1:10));title(’Test’);legend(’sin’);

cd(sdtdef(’tempdir’)); % Use SDT temp dir

% Give options in string

comgui(’ImWrite -NoCrop Test.png’)

% Give options as structure (here allows dynamic generation of title)

RO=struct(’NoCrop’,1,’FileName’,{{pwd,’@Title’,’@legend’,’.png’}});
comgui(’ImWrite’,RO);

structures used for typical data

The SDT supports a number of data structures used to store common structures.
The main structures are

• model for FEM models and wire frame displays
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• def for responses at DOF

• curve for multi-dimensional data

• sens sensor definition, see section 4.6.3 .

Stack

When extensible and possibly large lists of mixed data are needed, SDT uses .Stack
fields which are N by 3 cell arrays with each row of the form {’type’,’name’,val}.
The purpose of these cell arrays is to deal with unordered sets of data entries which
can be classified by type and name.

stack get, stack set and stack rm are low level functions used to get/set/remove
single or multiple entries from stacks.

Higher level pointer access to stacks stored in iiplot (curve stacks) and feplot

(model and case stacks) are described in section 2.1.2 and section 4.5.3 .

GUI Graphical User Interfaces

GUI functions automatically generate views of data and associated parameters. The
main GUI in SDT are

• iiplot and the associated iicom (commands to edit plots) to view frequency
and time responses defined at multiple channels.

• feplot and the associated fecom (commands to edit plots) to view 3D FEM
and test meshes and responses.

• idcom for experimental modal analysis.

• ii mac for test/analysis correlation.

• sdtroot for parameter editing.

Graphically supported operations (interactions between the user and plots/ menus/mouse
movements/key pressed) are documented under iimouse.

The policy of the GUI layer is to let the user free to perform his own operations at
any point. Significant efforts are made to ensure that this does not conflict with the
continued use of GUI functions. But it is accepted that it may exceptionally do so,
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since command line and script access is a key to the flexibility of SDT. In most such
cases, clearing the figure (using clf) or in the worst case closing it (use close or
delete) and replotting will solve the problem.

pointers (and global variables)

Common data is preferably stored in the userdata of graphical objects. SDT pro-
vides two object types to ease the use of userdata for information that the user is
likely to modify

• SDT handle objects implement methods used to access data in the feplot

figure (see section 4.4.3 ), the iiplot figure (see section 2.1.2 ), or the ii mac

menu.

• v handle to allow editing of user data of any userdata.

For example in a feplot figure, cf=feplot(5) retrieves the SDT handle object
associated with the figure, while cf.mdl is a SDT handle method that retrieves the
v handle object where the model data structure is stored.

global variables are no longer used by SDT, since that can easily be source of errors.
The only exceptions are upcom which will use the global variable Up if a model is
not provided as argument and the femesh user interface for finite element mesh
handling (feutilimplements the same commands without use of global variables),
which uses the global variables shown below

FEnode main set of nodes (also used by feplot)
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

By default, femesh automatically use base workspace definitions of the standard
global variables: base workspace variables with the correct name are transformed
to global variables even if you did not dot it initially. When using the standard
global variables within functions, you should always declare them as global at the
beginning of your function. If you don’t declare them as global modifications that
you perform will not be taken into account, unless you call femesh, ... from your
function which will declare the variables as global there too. The only thing that
you should avoid is to use clear and not clear global within a function and then
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reinitialize the variable to something non-zero. In such cases the global variable is
used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual

courier blue monospace font : Matlab function names, variables
feplot light blue monospace font: SDT function names
command pink : strings and SDT Commands

var italic pink: part of command strings that have to be replaced by
their value

% comment green: comments in script examples
Italics Matlab Toolbox names, mathematical notations, and new terms

when they are defined
Bold key names, menu names and items
Small print comments
(1,2) the element of indices 1, 2 of a matrix
(1,:) the first row of a matrix
(1,3:end) elements 3 to whatever is consistent of the first row of a matrix

Programming rules are detailed under section 7.17 . Conventions used to specify
string commands used by user interface functions are detailed under commode.

Usual abbreviations are

CMS Component Mode Synthesis (see section 6.3.3 )
COMAC Coordinate Modal Assurance Criterion (see ii mac)
DOF,DOFs degree(s) of freedom (see section 7.5 )
FE finite element
MAC Modal Assurance Criterion (see ii mac)
MMIF Multivariate Mode Indicator Function (see ii mmif)
POC Pseudo-orthogonality check (see ii mac)

For mathematical notations, an effort was made to comply with the notations of the
International Modal Analysis Conference (IMAC) which can be found in Ref. [1]. In
particular one has
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[ ],{ } matrix, vector
¯ conjugate
[b] input shape matrix for model with N DOFs and NA inputs (see

section 5.1 ).
{
φTj b

}
,
{
ψTj b

}
modal input matrix of the jth normal

/ complex mode
[c] sensor output shape matrix, model with N DOFs and NS outputs

(see section 5.1 ). {cφj} , {cψj} modal output matrix of the jth

normal / complex mode
[E]NS×NA correction matrix for high frequency modes (see section 5.6 )
[F ]NS×NA correction matrix for low frequency modes (see section 5.6 )
M,C,K mass, damping and stiffness matrices
N,NM numbers of degrees of freedom, modes
NS,NA numbers of sensors, actuators
{p}NM×1 principal coordinate (degree of freedom of a normal mode model)

(see section 5.2 )
{q}N×1 degree of freedom of a finite element model
s Laplace variable (s = iω for the Fourier transform)

[Rj ] = {cψj}
{
ψTj b

}
residue matrix of the jth complex mode (see sec-

tion 5.6 )

[Tj ] = {cφj}
{
φTj b

}
residue matrix of the jth normal mode (used for

proportionally damped models) (see section 5.6 )
{u(s)}NA×1 inputs (coefficients describing the time/frequency content of applied

forces)
{y(s)}NS×1 outputs (measurements, displacements, strains, stresses, etc.)
[Z(s)] dynamic stiffness matrix (equal to

[
Ms2 + Cs+K

]
)

[α(s)] dynamic compliance matrix (force to displacement transfer func-
tion)

p, α design parameters of a FE model (see section 6.4.2 )
∆M,∆C,∆K additive modifications of the mass, damping and stiffness matrices

(see section 6.4.2 )
[Γ] non-diagonal modal damping matrix (see section 5.3 )
λj complex pole (see section 5.5 )
[φ]N×NM real or normal modes of the undamped system(NM ≤ N)[
\Ω2

\
]

modal stiffness (diagonal matrix of modal frequencies squared) ma-
trices (see section 5.2 )

[θ]N×NM NM complex modes of a first order symmetric structural model (see
section 5.5 )

[ψ]N×NM NM complex modes of damped structural model (see section 5.5 )
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1.4 Other toolboxes from SDTools

SDTools also develops other modules that are distributed under different licensing
schemes. These modules are often much less documented and address specialized
themes, so that only a technical discussion of what you are trying to achieve will let
us answer the question of whether the module is useful for you.

• Viscoelastic tools : an SDT extension for the analysis and design of viscoelastic
damping. Beta documentation at http://www.sdtools.com/help/visc.pdf.

• Rotor tools : an SDT extension for rotor dynamics and cyclic symmetry. Beta
documentation at http://www.sdtools.com/help/rotor.pdf.

• Contact tools : an SDT extension for contact/friction handling (generation ob-
servation matrices, tangent coupling matrices, various post-treatments). Beta
documentation at http://www.sdtools.com/help/contactm.pdf.

• non linear vibration tools : an SDT extension for non-linear vibration and
in particular time and frequency domain simulation of problems with contact
and friction.

• OSCAR : a module for the study of pantograph/catenary interaction developed
with SNCF.

Selected cross references to these other modules are listed here.

• fevisco Range this command is part of the viscoelastic tools.

• fe2xf this function is part of the viscoelastic tools.

• fe cyclicb ShaftEig this command is part of the rotor tools.

• Follow is part of the contact and rotor tools. nl spring is the generic imple-
mentation of time domain non-linearities in SDT.
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1.5 Release notes for SDT and FEMLink 6.7

1.5.1 Key features

SDT 6.7 is the only version compatible with MATLAB 8.4 (2014b) and later. Key
changes of this release are

• A major revision of all the SDT interfaces for compatibility with the new graphical
system of MATLAB 8.4 (2014b).

• Major extensions legend/filename generation capabilities, see comgui.

• Significant enhancement of documentation with more readable links to be reused
in sdtweb calls.

• introduction of more readable Java based results tables in many functions.

Key changes for FEMLink are

• ans2sdt major extension of CDB reading capabilities and bug fixes associated
to changes in MATLAB R2013a behavior and 64 bit pointers in newer ANSYS
versions. Reading of mapping is now supported. Reading of stresses and other
ESL output in .rst files.

• nasread better handling of CROD cases that correspond to bar1. Support of
rectangular DMIG writing. Enhanced PBEAM,PROD translation.

• abaqus more consistent reading of steps the BuildCase command allows setting-
up the case relative to a desired step. Revision of the resolve command to
enhance handling of node and element sets in general cases (compatibility with
assembly of part instances). Translation of contact (for the *CONTACT PAIR com-
mand) to the contact module or SDT/NL, see section 1.4 , is now supported for
most classical rules. *Orientation properly translated into pro.MAP.

• samcef improved multiple files with INPUT cards. Detailed improvement of .AEL,
.FRA, .MCT, .STI, ...

For Matlab compatibility see section 1.5.3 .
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1.5.2 Detail by function

comgui major revision of image (ImWrite), filename (ImFtitle) and legend
(def.Legend) generation utilities.
Major extensions of the grouped object setting objSet commands used
by SDT for figure and object formatting. Name generation extended
and properly documented in objString

Export of java tables to LaTeX/csv/text formats.
cinguj major rewrite of the JAVA based GUI part of the toolbox with

many bug fixes. A static javapath is now desired and fixed with
sdtcheck(’PatchJavaPath’).

fe2ss introduced -cpx command option for complex mode state-space support
where hysteretic damping models can be used. This complements the
alternative -loss2C. fe2ss SysDef now support restitution of enforced
displacement.

feplot significant extensions of colormaps. Full rewrite of fecom AnimMovie.
feutil extended support for non OpenFEM face numbering schemes.

OptimDegen transforms degenerate elements to their lower node num-
ber counterpart. Extended support of silent mode with ; at end of
command.

feutilb provides commands CombineModel and SubModel to support combina-
tion of models or extraction of submodels with clean handling of Stack,
Mat/Pro, Case entries.

fe case more robust handling of hysteretic damping assembly for interpolated
materials. Introduced fe case SetCurve commands to easier handling
of time/frequency varying loads.

fe ceig first order correction is now supported with CeigMethod=2.
fe cyclic support of inertial loading on partial model.
fe eig

GenMass command generates table of generalized masses.
fe exp major rewrite of function and documentation to support newer data

structures and optimize performance.
fe load improved support of DofLoad.
fe mat robustness of unit handling, extensions of material law interpolation.
fe mpc

FixDofBas2mpc supports transform of local basis FixDof to MPC en-
tries. DofSetMerge combines multiple DOFSet into one, which is the
only case supported by most solvers.

fe sens
tdofTable handling of sensor definitions as tables has been further
documented and robustified.

fe range significantly extend commands previously in fe def(’range’) for DOE
handling.

fe simul extended support of damping and enforced input (DofSet) entries in
direct frequency response.

fe time support for enforced displacement with DOFSet entries has been intro-
duced.

fe time significant extensions and performance enhancements for explicit
solvers.

fe mknl optimized support for node numbers above 2e9. Robustness and docu-
mentation extensions for pro.MAP.

fe stress computation of Von Mises stress is now compiled.
iicom significant extension of support for 2D plots (contour, image, ...). Ro-

bustness and documentation improvements of multiple image generation
ImWrite.

iimouse major rewrite for R2014b compatibility, interactivity with java tables
(comstr -17). Support of docking and datatip interactivity. Additional
keyboard callbacks (press ? in iiplot or feplot).

id rc enhanced support of error and quality indicators of identification qual-
ity.

id rm robustness and GUI enhancements.
ii mac significant GUI rewrite in particular for table generation.
ii mmif robustness enhancements for signal processing capabilities.
ii plp major extensions of Legend, TickFcn, introduction of new ColorMap

m piezo support for a database of commercial piezo patches has been introduced.
Materials have been added and properties corrected.

nor2ss fixed compatibility issues with the Control Toolbox and Simulink. Im-
proved warnings.

p piezo introduced new Tab commands to display model and material properties
in a easily readable forms.

p solid improved support of anisotropic materials and composite shell.
res2ss notable rewrite and fixed compatibility issues with the Control Toolbox

and Simulink.
sdtroot has been notably extended to support floating tabs in GUI development.

Related changes affect sdt locale, sdcedit, sdt dialogs.
sdtweb significant robustness enhancements. Improved TagList. Introduction

of find command for file search.
setlines improved compatibility with comgui objSet.
ufread,ufwriteimproved compatibility LMS-Testlab and performance enhancements.
cbush,celasimproved support for gyroscopic matrices and loss factor.
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1.5.3 Notes by MATLAB release

• Matlab 7.6 (2008a) to 8.5 (2015a). SDT & FEMLink 6.7 are developed for
these versions of Matlab and are fully compatible with them.

• Matlab 7.9 has known compatibility problems in its HDF library and should
be avoided for large FEM applications using sdthdf.

• Earlier Matlab releases are no longer supported.
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1.6 Release notes for SDT and FEMLink 6.6

1.6.1 Key features

SDT 6.6 is the first version compatible with MATLAB 8.2 (2013b) and 8.3 (2014a).
Key changes of this release are

• piezo modeling utilities have undergone major revision and are now documented
in specific manual, see sdtweb(’piezo’).

• support for composite materials in shells has been significantly enhanced.

• a major effort on parallel FEM assembly in leads to significantly improved per-
formance for all compiled elements.

• handling of stress sensors section 4.7 has been significantly extended and now
supports more multi-physics cases.

• automated figure and report generation has been significantly extended, see comgui.

Key changes for FEMLink are

• ans2sdt significant extension of CDB reading capabilities and bug fixes associated
to changes in MATLAB R2013a behavior and 64 bit pointers in newer ANSYS
versions.

• nasread performance of op2 reading was enhanced. Matrix reading in op2 form
was introduced. Bugs were fixed for files ¿ 2GB.

For Matlab compatibility see section 1.6.3 .

1.6.2 Detail by function

Outside documentation and demos in sdtdemos, the following functions have been
modified.
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comgui enhancement of automated image generation with ImWrite.
fe2ss systematic treatment of fe load DofSet was introduced and tested for

piezo application. In compatibilities with control toolbox were cor-
rected.

fecom improved generality and documentation of color scaling options. Energy
sums by group in InfoMass are more general.

fe case
SensDof sensor and stress-cut handling was robustified and further doc-
umented. Labels for unique DOFs are more consistently filled.

ConnectionSurface supports a new MatchS option that can be very
much faster.

fe curve enhancements and revision of documentation of test curves and com-
mands for fe load.

fe cyclic now supports periodicity condition building based in DOF rather than
nodes. This is important for multi-physic applications.

fe def robustness of AppendDef and SubRef was enhanced. Range commands
for the representation of experiments (parameters of a design space)
were extended.

fe gmsh interface and documentation enhancement. Partial read of geometry
files.

fe mat unit conversion was enhanced with new call formats and now support
piezo-electric properties.

fe mknl introduced an optimized strategy for matrix preallocation.
fe norm memory footprint was improved for intensive operations.
fe quality interaction with feplot for viewing mesh quality was improved.
fe reduc a new Call command now supports user defined methods, while keep-

ing the standard model initialization. Free-bset is a new option for
enforced motion.

fe simul improved handling hysteretic damping and enforced motion for full or-
der frequency computations DRFR.

fe stress GetTop supports handling of stress topologies coming from external
FEM codes.

fe time .Follow handling and theta method implementation were revised.
fesuper the new command DefCh supports expansion for specific DOF. This is

used for on the fly display of responses in superelements. SeInfoNode

recurses in components for information about elements connected to a
node.
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feutil support with silent operation using the ; command option was ex-
tended.

idcom implemented silent versions of most commands (ending by ;). The error
indicator now also provides a contribution indication that quantifies the
modal contribution with respect to overall transfer level.
a contribution indicator was added to the error plot.

ii mac default table output is now in java
matgui matgui(’jpl’,model) supports java rendering of properties.
nor2ss

LabOut and LabIn commands are used for robust interaction with tool-
boxes from the MathWorks.

p beam clarified documentation and robustness of subtype 3 (standard sections)
q4cs now supports piezoelectric shell formulations for topologies other than

the quadrangle.
sdt locale new function supporting handling of button definitions in CSV files.

Supports the generation of extensible GUI.
mklserv utilsan external ofact solver based on MKL Pardiso. This solver is much

faster at factorization than the base spfmex. This patch to SDT can
be downloaded with sdtcheck patchMkl.

mkl utils supports optimized residual computations in fe time. This patch to
SDT can be downloaded with sdtcheck patchMkl.

m elastic
-therm used to include thermal constants in database material proper-
ties. Improved support for composite materials.

p beam improved documentation of predefined sections.
p shell improved support for composites.
sdtweb development of navigation with tagList was continued, documenta-

tion was improved.

1.6.3 Notes by MATLAB release

• Matlab 7.6 (2008a) to 8.3 (2014a). SDT 6.6 and FEMLink 3.9 are developed
for these versions of Matlab and are fully compatible with them.

• Earlier Matlab releases are no longer supported.
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1.7 Release notes for SDT 6.5 and FEMLink 3.8

1.7.1 Key features

SDT 6.5 is the first version compatible with MATLAB 8.0 (2012b). Key features of
this release are

• Major update of iiplot,iicom to support more general plots (contour, surface,
...) and documented control procedures for automated inits, legend, marker lines,
text based tick, ...

• Major revision of feplot. Rewrite of the color field handling : support for colored
vector field display, reuse of pre-computed energy at elements data structures, ...
Introduction of a complete iicom ImWrite command for generation of image
sequences to be included in automated reports.

• Significant improvement of utilities for piezo modeling : visualization of charges
and electrical fields, ...

• Improved compatibility with MATLAB figure toolbar callbacks and japanese ver-
sion of MATLAB.

Key features of FEMLink 3.8 are

• abaqus improved reading of .fil (velocity, acceleration and resultant fields),
read/write .inp (*nset, *spring, *orientation, composite and orthotropic materi-
als, element conversion table, contact)

• ans2sdt improved reading of beam sections, velocity and resultant fields in .rst

files.

• nasread corrected support of MAT9 and MATT entries to reflect improved im-
plementation in SDT. Bugs were corrected with writing of rigid case entries.

• samcef improved u18 reading speed and support for 64 bit format files.

For Matlab compatibility see section 1.7.3 .

1.7.2 Detail by function

The following functions have been modified.
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beam1 robustness enhancements for compatibility with fe caseg StressCut.
elem0 enhanced VectFromDir (see section 7.13 )
comgui Major rewrite of comgui ImWrite and iicom ImWrite for automated

figure generation.
fe cyclic

Build-ByMat allows interfaces with coincident nodes.
fe case improved handling of parameters, see upcom Par and fe defRange

fe caseg Robustness enhancements in Assemble (see section 4.8.8 ), major ex-
tension of StressCut, ZoomClip.

fe curve corrected errors on noise generation for odd numbers of samples.
fe gmsh significant extension of CAD definition commands.
fe def

fe defRange commands for the description of design maps are now
documented. Many detail robustness enhancements.

fe mat robustness enhancements for unit conversion (convert command) and
for support of interpolated properties, see section 7.3 .

fe mpc
model=fe mpc(’Rbe3Id’,model) generated unique identifiers for RBE3
constraints.
Handling of local displacement coordinates was corrected and docu-
mented.

fe quality improved integration in feplot and robustness.
fe reduc

Free (reduction on free modes) now supports DofSet (enforced displace-
ment) commands. A .UseLoad option has been added to CraigBampton

to allow computation of load residuals for a Craig Bampton reduction.
fe sens rewriting of the gartte and gartsens demos associated with robustness

enhancements.
fe stress output of the Enerprovides newer options and output in the newer curve

format. feplot now allows dynamic switching between energy value,
density or group value.

fe time improved implementation of Theta method integration.
feplot complete rewrite of ColorData for energy computations, ColorScale

for more accurate display, field display for StressCut.
improved support of HDF file delayed reading.

feutil Major extension of the feutil SetPro command. Improved handling
of surface sets. GetDof corrections for master DOFs in rigid elements.

feutilb
Match implements a new node matching strategy as MatchSurf and
has undergone significant speed enhancements. CombineModel supports
extended renumbering.

idcom improved integration of Error computations. GUI robustness improve-
ments.

ii plp significant rewrite and documentation of iiplot PlotInfo utilities.
Significant extensions of the Legend command. Documentation of the
TickFcn capabilities.

iiplot documentation was revised to include PlotInfo in particular.
compatibility with MATLAB figure toolbar callbacks (including
datatip) was improved
Mouse editing of xlabel, ... is made persistent when scanning through
channels by modification of the comgui objSet commands applied to
ua.axProp.

iicom rewriting of the SubSave command to allowing easier switch between
multiple views.
Show now supports 3D (f(x, y)) plots more consistently : inits, cursor,
surface, contour, ...
CurveInit clarifies the init and display. PoleLine, ImWrite are revised
and better documented.

q4cs improved integration of stress computations.
p piezo charge and electrical field viewing are available.
p solid material coordinate systems are now supported for anisotropic elasticity.

Improved Default command and support of constitutive law output.
sdtweb major rewrite for links at support of tagList command that opens the

MATLAB editor at proper lines.
setlines objSet has been documented.
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1.7.3 Notes by MATLAB release

• Matlab 7.6 to 8.0 (2012b). SDT 6.5 and FEMLink 3.8 are developed for
these versions of Matlab and are fully compatible with them.

• Matlab 7.5 is fully compatible with the exception of the new curvemodel

object which requires the newer MATLAB object.

• Earlier Matlab releases are no longer supported.
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1.8 Release notes for SDT 6.4 and FEMLink 3.7

1.8.1 Key features

SDT 6.4 is a relatively minor release due to significant architectural work on GUI
and implicit curve models that is not yet mature enough for general release. Key
features are

• significant enhancement of sensor support in terms of speed and functionality
with the new stress cut (see section 4.7 ). The objective is to allow detailed stress
analysis on arbitrary viewing meshes. This strategy is particularly interesting for
the analysis of stress responses in long transients where the volume of data can
become very large. Detail extensions of stress processing were also introduced
with this functionality.

• proper documentation and introduction of an Euler solver was made for the study
of transient heat equation problems, see section 6.1.13 and p heat.

• feplot handling of field colors has undergone a major revision for more consistent
handling and improved on the fly generation of color maps for the animation of
long transients.

• rewriting of documentation and improvement of correlation criteria.

Key features of FEMLink 3.7 are

• abaqus significant robustness enhancements, in particular for parts and motion
commands.

• ans2sdt improved CP reading in multi-physics configurations. Added some el-
ements missing from the supported list. Fixed compatibility issues with newer
ANSYS binaries.

• nasread introduced partial support for OUTPUT4 in text format. Detail correc-
tions and performance enhancements.

• samcef now supports an imp2 command to build explicit second order models
from implicit ones. A number of detail enhancements are also introduced.

For Matlab compatibility see section 1.8.3 .
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1.8.2 Detail by function

The following functions have been modified.

feplot fecom ColorScale commands were fully revised for improved stability
and performance. ColorDataEner was fully revised to allow reuse of
existing energy computations. A new InfoMass command is available
to summarize component masses. ColorDataEval was significantly ex-
tended in particular for the support of StressCut selections. A new
-ColorBarTitle option was added. Minor corrections to the AnimAvi

command were introduced.
feutil Major extension of the feutil SetPro command. Improved handling

of surface sets.
feutilb major improvement in matching speed (used for ConnectionSurface or

StressCut). Robustness enhancement for out-of-core operations.
fe2ss Minor bug corrections on damping handling.
fe case SensDof entry has been extended for better rotation sensor support.

Incompatible matching speed has been greatly enhanced. The new
StressCut command (see section 4.7 ) was introduced to allow stress
processing of long transient simulations.

ConnectionSurface now support multi-physics FEM problems.

stack get and set commands are now supported.
fe def Enhanced documentation, label generation, curve joining, ...
fe fmesh now packages calls to MATLAB 3D delaunay capabilities.
fe mknl,
basis

Fixed minor bugs with the generation of dependent coordinate systems
and improved handling of round-off errors. Port of right hand side
computations to of mk has been extended.

fe mpc a new FixRbe3Alt was introduced to ease reformatting of RBE3 entries.
fe reduc the documentation was rewritten. The Craig-Bampton command was

revised to support out-of-core operations with .mat files in the HDF
format.

fe time support for θ-method and Euler solvers has been added. Improvements
of on the fly processing with have been made in of time. Major im-
provements for for non-linear time simulation are being developed and
will be offered as a SDT extension.

fe sens ToFEM option was added to the basis command to improve test mesh
orientation procedures.

fe simul Static now supports mixed DofSet and DofLoad entries.
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sdtweb m-file opening with tag searches has been enhanced.
curvemodel This new object (requires Matlab >= 7.6) is used for implicit curve

models. This object is the basis for future extensions of signal processing
and FEM restitution capabilities in SDT.

idcom Robustness enhancements and improved support of quality indicator.
id rm Minor revisions for data structure support.
ii mac now supports a SubDof option for MAC computation on partial DOF

sets. Documentation was rewritten. Minor bug corrections on COMAC
and MACCO labels.

ii plp Extended vertical line generation capabilities.
iicom,
iiplot

Extended support of HDF file reading. Significant extensions of polar
and 2D plots. Many minor bug corrections.

line2 was introduced as topology holder for multi-physics 3D line elements.
p piezo Enhanced compatibility with fe simul and minor bug fixes.
p beam Introduced NSM support for subtype 3 and revised section display ca-

pabilities.
p heat Support and documentation of solvers for transient heat equation has

been extended.
ufread Improved robustness reading headers.
upcom Major documentation rewriting and better integration with fe case.
cingui Major revision in preparation for SDT/Java integration and improved

command option handling.
sdthdf improved robustness and performance.
tria3 now properly supports local fiber orientation.

1.8.3 Notes by MATLAB release

• Matlab 7.6 to 7.13 (2011b). SDT 6.4 and FEMLink 3.7 are developed for
these versions of Matlab and are fully compatible with them.

• Matlab 7.5 is fully compatible with the exception of the new curvemodel

object which requires the newer MATLAB object.

• Matlab7.1 to 7.4 compatibility is no longer tested. But there are only mi-
nor limitations in HDF support (only affects users interested in large FEM
computations).

• Earlier Matlab releases are no longer supported.
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2 Modal test tutorial

An experimental modal analysis project can be decomposed in following steps

• before the test, preparation and design (see section 2.2 )

• acquisition of test data, import into the SDT, direct exploitation of measurements
(visualization, operational deflection shapes, ...) (see section 2.1 )

• identification of modal properties from test data (see section 2.3 )

• handling of MIMO tests and other model transformations (output of identified
models to state-space, normal mode, ... formats, taking reciprocity into account,
...) (see section 2.4 )

Further steps (test/analysis correlation, shape expansion, structural dynamics mod-
ification) are discussed in chapter section 3 .

2.1 iiplot interface tutorial

iiplot is the response viewer used by SDT. It is essential for the identification
procedures but can also be used to visualize FEM simulation results.

As detailed in section 2.3 , identification problems should be solved using the stan-
dard commands for identification provided in idcom while running the iiplot inter-
face for data visualization. To perform an identification correctly, you need to have
some familiarity with the interface and in particular with the iicom commands that
let you modify what you display.

2.1.1 The main figure

For simple data viewing you can open an iiplot figure using ci=iiplot (or ci=iiplot(2)
to specify a figure number). For identification routines you should use ci=idcom

(standard datasets are then used see section 2.3 ).

To familiarize yourself with the iiplot interface, run demosdt(’demogartidpro’).
Which opens the iiplot figure and the associated iiplot(2) properties figure
whose tabs are detailed in the following sections.
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Figure 2.1: Display figure of the iiplot interface.
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2 Modal test tutorial

Toolbar

Toggles the display or not of the iiplot property figure.

Previous channel/deformation, see iicom ch+.

Next channel/deformation.

Fixed zoom on FRF, see iicom wmin. Note that the variable zoom
(drag box) is always active, see iimouse zoom.

Start cursor, see iimouse Cursor.

Refresh the displayed axes.

No subplot. See iicom Sub[1,1].

2 subplots. See iicom Sub[2,1].

Amplitude and phase subplots. See iicom Submagpha.

switch lin/log scale for x axis. See iicom xlin.

switch lin/log scale for y axis. See iicom ylog.

switch lin/log scale for z axis. See iicom xlog.

Show absolute value. See iicom Showabs.

Show phase. See iicom Showpha.
Show real part. See iicom Showrea.
Show imaginary part. See iicom Showima.
Show real and imaginary part. See iicom Showr&i.

Show Nyquist diagram. See iicom Shownyq.

Show unwrapped phase. See iicom Showphu.

Snapshot. See iicom ImWrite

Mouse operation and keyboard shortcuts

Mouse and keypress operations are handled by iimouse within iiplot, feplot, and
ii mac figures. For a list of active keys press ? in the current figure.

Drag your mouse on the plot to select a region of interest and see how you directly
zoom to this region. Double click on the same plot to go back to the initial zoom.
On some platforms the double click is sensitive to speed and you may need to type
the i key with the axis of interest active. An axis becomes active when you click on
it.
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Open the ContextMenu associated with any axis (click anywhere in the axis using
the right mouse button), select Cursor, and see how you have a vertical cursor giving
information about data in the axis. To stop the cursor use a right click or press the
c key. Note how the left click gives you detailed information on the current point or
the left click history. In iiplot you can for example use that to measure distances.

Click on pole lines (vertical dotted lines) and FRFs and see how additional infor-
mation on what you just clicked on is given. You can hide the info area by clicking
on it.

Context menus

The axes ContextMenu (click on the axis using the right mouse button) lets you
select , set axes title options, set pole line defaults, ...

• Cursor tracks mouse movements and displays information about pointed ob-
ject. For ODS cursor see iicom ods.

• Show chooses what to display.

• Compute... [MMIF,CMIF...] chooses what to compute and display. The
iicom(’show [MMIF,CMIF...]’) command line is similar. Details on what
can be computed are given in ii mmif.

• Variables in current axis... chooses which variable to display, see iicom
IIx.

• iiplot properties, same as iicom(’pro’), opens the property figure.

• Scale...[x lin, x log...] chooses the axis scale as the. See iicom xlin

or use iimouse(’axisscale[xlin,xlog...]’) commands.

• TitOpt chooses the title, axis and legend labels-format.

• PoleLine pole line selection.

• Views... chooses the views, see iimouse view.

• colorbar shows the colorbar and is equivalent to cingui(’ColorBarMenu’)

command line.

• Zoom reset is the same as the iimouse(’resetvie’) command line to reset
the zoom.
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2 Modal test tutorial

• setlines calls the associated function.

The line ContextMenu lets you can set line type, width, color ...

The title/label ContextMenu lets you move, delete, edit ... the text

After running through these steps, you should master the basics of the iiplot in-
terface. To learn more, you should take time to see which commands are available
by reading the Reference sections for iicom (general list of commands for plot ma-
nipulations), iimouse (mouse and key press support for SDT and non SDT figures),
iiplot (standard plots derived from FRFs and test results that are supported).

2.1.2 The curve stack

iiplot considers data sets in the following format

• Response data related to UFF58 format

• Curves generated by SDT

• Shapes at DOFs related to UFF55 format

This data is stored in iiplot figures as a Stack field (a cell array with the first
column giving ’curve’ type entries, the second giving a name for each dataset and
the last containing the data, see stack get). To allow easier access to the data,
SDT handle objects are used. Thus the following calls are equivalent ways to get
access to the data

ci=iicom(’curveload’,’gartid’);

iicom(ci,’pro’);iicom(ci,’CurTab Stack’); % show stack tab

% Normal use : the figure pointer stack

ci.Stack % show content of iiplot stack

ci.Stack{’Test’} % a copy of the same data, selected by name

ci.Stack{1,3} % the same by index

% Use regular expresion (’II.*’ here) for multiple match

ci=stack_rm(ci,’curve’,’#II.*’)

% If you really insist on low level calls

r1=get(2,’userdata’); % object containing the data (same as ci)

40



s=ci.vfields.Stack.GetData % get a copy of the stack (cell array with

% type,name,data where data is stored)

s{1,3} % the first data set

% Alternative use (obsolete) : the XF stack pointer

XF1=iicom(ci,’curvexf’);

XF1(’Test’) % still the same dataset, indexed by name

XF2=XF1.GetData; % Copy the data from the figure to variable XF2

The ci.Stack handler allows regular expression based access, as for cf.Stack. The
text then begins by the # character.

Figure 2.2: Stack tab of the iiplot interface.

The graphical representation of the stack shown in figure 2.2 lets you do a number
of manipulations witch are available trough the context menu of the list of datasets
in the stack

Compute gives access to data processing commands in ii mmif. You perform the anal-
ysis from the command line with iicom(ci,’sum’,’Test’). The list of avail-
able post processing functions is given by ii mmif list.

Load lets you load more data with iicom(ci,’curveload-append’,’gartid’), re-
place the current data with iicom(ci,’curveload’,’gartid’)

Display lets you display one or more selected dataset in the iiplot figure (see corre-
sponding command iicom IIx).

Save lets you save one or more dataset (see corresponding command iicom CurveSave).
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Join combines selected datasets that have comparable dimensions (see correspond-
ing command iicom CurveJoin).

Cat concatenates selected datasets along time or frequency dimension (see corre-
sponding command iicom CurveCat).

Remove removes selected dataset (see corresponding command iicom CurveRemove).

NewId opens a new idcom figure with the selected dataset (see corresponding com-
mand iicom CurveNewId).

2.1.3 Handling what you display, axes and channel tabs

iiplot lets you display multiple axes see iicom Sub. Information about each axis
is show in the axes tab.

Figure 2.3: Axes tabs of the iiplot interface.

For example open the interface with the commands below and see a few thing you
can do

ci=idcom;iicom(ci,’CurveLoad sdt_id’);

ci.Stack{’IdFrf’}=ci.Stack{’Test’}; % copy dataset

ci.Stack{’IdFrf’}.xf=ci.Stack{’Test’}.xf*2; % double amplitude

iicom(’CurTab Axes’);
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Sub Subplots : Type iicom submagpha to display a standard magnitude/phase
plot. Open the IIplot:sub commands menu and see that you could have
achieved the same thing using this pull-down menu. Note that using ci=iiplot(2);
iicom(ci,’SubMagPha’) gives you control on which figure the command ap-
plies to.

Show Type iicom(’;cax1;showmmi’); to display the MMIF in the lower plot. Go
back to the phase, by making axis 1 active (click on it) and selecting phase(w)

in the axis type menu (which is located just on the right of the current axis
button).

IIx select sets you want to display using iicom(’;showabs;ch1’);iicom(’iix

only’,{’Test’,’IdFrf’}). You could also achieve the same thing using the
IIplot:Variables menu.

• Note that when you print the figure, you may want to use the comgui(’ImWrite’,’FileName.ext’)
command or -noui switch so that the GUI is not printed. It is the same com-
mand as for feplot image printing (see iicom ImWrite).

Once you have selected the datasets to be displayed, you can use the channel tab to
scan trough the data.

Figure 2.4: Channel tabs of the iiplot interface.

Major commands you might want to know

• use the to scan trough different transfer functions. Note that you can
also use the + or - keys when a drawing axis is active.
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2 Modal test tutorial

• Go the Channel tab of the property figure and select more than one channel in
the list. Note that you can also select channels from the command line using
iicom(’ch 1 5’).

2.1.4 Importing FRF data

There are two main mechanisms to import FRF data into SDT. Universal files are
easiest if generated by your acquisition system. Writing of an import script defining
fields used by SDT is also fairly simple and described below (you can then use
ufwrite to generate universal files for export).

The ufread and ufwrite functions allow conversions between the xf format and
files in the Universal File Format which is supported by most measurement systems.
A typical call would be

fname=demosdt(’build gartid.unv’); % generate the gartid.unv file

UFS=ufread(fname); % read

ci=idcom; % For identification purposes open IDCOM

ci.Stack{’curve’,’Test’}=UFS(1); % Define FRFs in set ’Test’

% possibly extract channels 1:4

% ci.Stack{’curve’,’Test’}=fe_def(’SubDofInd’,UFS(1),1:4)

% To only view data in figure(11) the following would be sufficient

cj=iiplot(11); % open an iiplot in figure 11

iiplot(cj,UFS(1)); % show UFS(1) there

where you read the database wrapper UFS (see xfopt), initialize the idcom figure, as-
sign dataset 3 of UFS to dataset ’Test’ 1 of ci (assuming that dataset three represents
frequency response functions of interest).

Note that some acquisition systems write many universal files for a set of measure-
ments (one file per channel). This is supported by ufread with a stared file name

UFS=ufread(’FileRoot*.unv’);

Measured frequency responses are stored in the .xf field (frequencies in .w) and
should comply with the specifications of the xf format (see details under xf page
173). Other fields needed to specify the physical meaning of each FRF are detailed
in the xfopt reference section. When importing data from your own format or using
a universal file where some fields are not correct, the SDT will generally function
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with default values set by the xfopt function, but you should still complete/correct
these variables as detailed below.

For correct display in feplot and title/legend generation, you should set the
ci.Stack{’Test’}.dof field (see section 2.2 for details on geometry declaration,
and mdof reference). For example one can consider a MIMO test with 2 inputs and
4 outputs stored as columns of field .xf with the rows corresponding to frequencies
stored in field .w. You script will look like

ci=idcom;

[XF1,cf]=demosdt(’demo2bay xf’);% sample data and feplot pointer

out_dof=[3:6]+.02’; % output dofs for 4 sensors in y direction

in_dof=[6.02 3.01]; % input dofs for two shakers at nodes 1 and 10

out_dof=out_dof(:)*ones(1,length(in_dof));

in_dof=ones(length(out_dof),1)*in_dof(:)’;

XF1=struct(’w’,XF1.w, ... % frequencies in Hz

’xf’,XF1.xf, ... % responses (size Nw x (40))

’dof’,[out_dof(:) in_dof(:)]);

ci.Stack{’Test’}=XF1; % sets data and verifies

ci.IDopt.nsna=size(out_dof,1); % define IDCOM prop

ci.IDopt.recip=’mimo’; % define IDCOM prop

iicom(ci,’sub’);

cf.def=ci.Stack{’Test’}; fecom(’ch35’); % frequency of first mode

You can also edit these values using the iiplot properties:channel tab.

For correct identification using id rc, you should verify the fields of ci.IDopt.
These correspond to the IDcomGUI:Options tab (see section 2.3 ). You can also edit
these values in a script. For correct identification, you should set

ci=demosdt(’demogartid’);

ci.IDopt.Residual=’3’;

ci.IDopt.DataType=’Acc’;

ci.IDopt.Absci=’Hz’;

ci.IDopt.PoleU=’Hz’;

iicom(’wmin 6 40’) % sets ci.IDopt.Selected

ci.IDopt.Fit=’Complex’;

ci.IDopt % display current options

For correct transformations using id rm, you should also verify ci.IDopt.NSNA

(number of sensors/actuators), ci.IDopt.Reciprocity and ci.IDopt.Collocated.
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For correct labels using iiplot you should set the abscissa, and ordinate numera-
tor/denominator types in the data base wrapper. You can edit these values using
the iiplot properties:channel tab. A typical script would declare frequencies,
acceleration, and force using (see list with xfopt datatype)

UFS(2).x=’Freq’;UFS(2).yn=’Acc’;UFS(2).yd=’Load’;UFS(2).info

2.1.5 Handling displayed units and labels

ci=iicom(’curveload gartid’);

ci.Stack{’Test’}.yn.unit=’N’;
ci.Stack{’Test’}.yd.unit=’M’;
iicom sub

2.1.6 SDT 5 compatibility

With SDT 6, global variables are no longer used and iiplot supports display of
curves in other settings than identification.

If you have saved SDT 5 datasets into a .mat file, iicom(’CurveLoad FileName’)

will place the data into an SDT 6 stack properly. Otherwise for an operation similar
to that of SDT 5, where you use XF(1).xf rather than the new ci.Stack{’Test’}.xf,
you should start iiplot in its identification mode and obtain a pointer XF (SDT
handle object) to the data sets (now stored in the figure itself) as follows

>> ci=iicom(’curveid’);XF=iicom(ci,’curveXF’)

XF (curve stack in figure 2) =

XF(1) : [.w 0x0, xf 0x0] ’Test’ : response (general or unknown)

XF(2) : [.w 0x0, xf 0x0] ’IdFrf’ : response (general or unknown)

XF(3) : [.w 0x0, xf 0x0] ’IIxh’ : response (general or unknown)

XF(4) : [.w 0x0, xf 0x0] ’IIxi’ : response (general or unknown)

XF(5) : [.po 0x0, res 0x0] ’IdMain’ : shape data

XF(6) : [.po 0x0, res 0x0] ’IdAlt’ : shape data

The following table lists the global variables that were used in SDT 5 and the new
procedure to access those fields which should be defined directly.

46



XFdof described DOFs at which the responses/shapes are defined, see .dof
field for response and shape data in the xfopt section, was a global
variable pointed at by the ci.Stack{’name’}.dof fields.

IDopt which contains options used by identification routines, see idopt)
is now stored in ci.IDopt.

IIw was a global variable pointed at by the ci.Stack{’name’}.w fields.
IIxf (main data set) was a global variable pointed at by the

ci.Stack{’Test’}.xf fields.
IIxe (identified model) was a global variable pointed at by the

ci.Stack{’IdFrf’}.xf fields.
IIxh (alternate data set) was a global variable pointed at by the

ci.Stack{’IIxh’}.xf fields.
IIxi (alternate data set) was a global variable pointed at by the

ci.Stack{’IIxi’}.xf fields.
IIpo (main pole set) was a global variable pointed at by the

ci.Stack{’IdMain’}.po fields.
IIres (main residue set) was a global variable pointed at by the

ci.Stack{’IdMain’}.res fields.

IIpo1 (alternate pole set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.po fields.

IIres1 (alternate residue set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.res fields.

XF was a global variable pointed holding pointers to data
sets (it was called a database wrapper). The local
pointer variable XF associated with a given iiplot figure
can be found using CurrentFig=2;ci=iiplot(CurrentFig);

XF=iicom(ci,’curveXF’).
The normalized datasets for use with idcom are generated using
ci=idcom;XF=iicom(ci,’curvexf’). They contain four response
datasets (XF(’Test’) to XF(’IdFrf’)) and two shape datasets
(XF(’IdMain’) and XF(’IdAlt’)).

2.1.7 iiplot for signal processing
iiplot figure lets you perform standard signal processing operations (FFT, MMIF,

filtering...) directly from the GUI. Opening iiplot properties figure, they are ac-
cessible trough the contextual menu compute (right click on the curve list in the
Stack tab). Once an operation has been performed, its parameters can be edited in
the GUI, and it can be recomputed using the Recompute button.
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2 Modal test tutorial

Following example illustrates some signal processing commands.

[mdl,def]=fe_time(’demobar10-run’); % build mdl and perform time computation

cf=feplot(2); cf.model=mdl; cf.def=def;

ci=iiplot(3);

fecom(cf,’CursorOnIiplot’) % display deformations in iiplot

% all following operations can be performed directly in the GUI:

% see the list of curves contained in iiplot figure, Stack tab:

iicom(ci,’pro’);iicom(ci,’curtab Stack’);

% compute FFT of deformations. Name of entry ’feplot(2)_def(1)’

ename=ci.Stack(:,2); ename=ename{strncmp(ename,’feplot’,5)};
ii_mmif(’FFT’,ci,ename) % compute

fname=sprintf(’fft(%s)’,ename);

iicom(ci,’curtab Stack’,fname); % show FFT options that are editable

% edit options & Recompute:

ci.Stack{fname}.Set={’fmax’,50};
iicom(ci,’curtab Stack’,fname,’Recompute’);

% filter and display (the bandpass removes a lot of transient)

ii_mmif(’BandPass -fmin 40 -fmax 50’,ci,ename) % compute

fname=sprintf(’bandpass(%s)’,ename);

ci.Stack{fname}.Set={’fmin’,10,’fmax’,20};
iicom(ci,’curtab Stack’,fname,’Recompute’);

iicom(ci,’iix’,{ename,fname});

Figure 2.5: GUI for FFT computation
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2.1.8 iiplot FAQ

This section lists various questions that were not answered elsewhere.

• How do I display a channel with an other channel in abscissa?
The low level call ci.ua.ob(1,11)=channel; defines the channel number
channel of the displayed curve as the abscissa of other channels.

ci.ua.ob(1,11)=3; % define channel 3 as abscissa

iiplot; % display the changes

set(ci.ga,’XLim’,[0 1e-3]); % redefine axis bounds

• Channel selection in multi-dimensional arrays

% sdtweb(’demosdt.m#DemoGartteCurve’) % FRF with 2 damping levels

ci=iiplot(demosdt(’demogarttecurve’))

ci.Stack{’New’}
iicom(ci,’ChAllzeta’)

2.2 Modal test: geometry declaration and data acquisi-
tion/import

Before actually taking measurements, it is good practice to prepare a wire frame-
display (section 2.2.1 and section 4.1.1 for other examples) and define the sensor
configuration (section 2.2.2 ).

The information is typically saved in a specific .m file which should look like the
gartte demo without the various plot commands. The d pre demo also talks about
test preparation.

2.2.1 Modal test geometry declaration

A wire-frame model is composed of node and connectivity declarations.
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2 Modal test tutorial

Figure 2.6: Test analysis : wire-frame model.

Starting from scratch (if you have not imported your geometry from universal files).
You can declare nodes and wire frame lines using the fecom Add editors. Test wire
frames are simply groups of beam1 elements with an EGID set to -1. For example in
the two bay truss (see section 4.1.1 )

cf=feplot;cf.model=’reset’;

% fecom(’AddNode’) would open a dialog box

fecom(’AddNode’,[0 1 0; 0 0 0]); % add nodes giving coordinates

fecom(’AddNode’,[3 1 1 0;4 1 0 0]); % NodeId and xyz

fecom(’AddNode’,[5 0 0 0 2 0 0;

6 0 0 0 2 1 0]);

% fecom(’AddLine’) would add cursor to pick line (see below)

fecom(’AddLine’,[1 3 2 4 3]); % continuous line in first group

fecom(’AddLine’,[3 6 0 6 5 0 4 5 0 4 6]); % 0 for discontinuities

fecom(’Curtab:Model’,’Edit’)

%fecom(’save’) % will let you save the model to a mat file

feutilb(’write’,cf.mdl) % generates a script

Note that

• fecom(cf,’AddLine’), use after node declaration, starts a cursor letting you
build the wire-frame line graphically. Click on nodes continue the line, while the
context menu allows breaks, last point removal, exit, and display of the commands
in the Matlab command window. This procedure is particularly useful if you
already have a FEM model of your test article.

• fecom(cf,’AddElt’) accessible in the Model:Edit tab can be used to add surface
or volume elements graphically.

• the curor:3DLinePick command in the feplot axis context menu is a general
SDT mechanism to pick node numbers.

• other GUI based mesh editing tools are described in section 4.4.5 .
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• femesh ObjectBeamLine and related commands are also typically used to define
the experimental mesh (see also feutil).

• If you have a FE mesh, you should define the wireframe as a set of sensors,
see section 3.1.1 .

The feplot and fecom functions provide a number of tools that are designed to
help in visualizing test results. You should take the time to go through the gartid,
gartte and gartco demos to learn more about them.

2.2.2 Sensor/shaker configurations

The geometry declaration defines fields .Node and .Elt. The next step is to declare
sensors. Once a sensor configuration defined and consistent with input/output pair
declarations in measurements (see section 2.1.4 ), you can directly animate measured
shapes (called Operational Deflection Shapes) as detailed in section 2.2.4 . Except
for roving hammer tests, the number of input locations is usually small and only
used for MIMO identification (see section 2.4 ).

In the basic configuration with translation sensors, sensor declaration is simply done
with a .tdof field. Acceptable forms are

• a DOF definition vector (see mdof) allows the description of translation DOFs
in global directions. The convention that DOFs .07 to .09 correspond to
translations in the −x,−y,−z directions is implemented specifically for the
common case where test sensors are oriented this way.

• a 5 column format ([SensID NodeID tx ty tz] giving a sensor identifier (in-
teger or real), a node identifier (positive integer), and the measurement direc-
tion in the test mesh axes. This format supports arbitrary orientation.

• a 2 column form DOF where each DOF is associated with a local basis, that
must be defined in TEST.bas.

• the tabular (cell array) definition of sensors and their position, which is more
appropriate for large configurations, and is described in section 4.6.2 .

The definition of sensors trough a .tdof field is the simplest configuration. For more
general setups, see section 4.6 for sensor definitions and section 4.6.4 for topology
correlation.
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2 Modal test tutorial

For interpolation of unmeasured DOFs see section 3.3.2 .

The following illustrates the first two forms

TEST=demosdt(’DemoGartteWire’);

% simply give DOFs (as a column vector)

TEST.tdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...

1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 ...

2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 1303.03]’;

% Transfor to 5 column format, which allow arbitrary orientation

TEST.tdof=fe_sens(’tdof’,TEST);TEST.tdof

feplot(TEST) % With a .tdof field, a SensDof,Test is defined automatically

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’)

% You can now display FRFs or modes using

ci=iicom(’curveload gartid’); % load data

fecom(’;ProviewOff;Showline’)

% Display FRF

cf.def=ci.Stack{’Test’}; % automatically uses sensor definition ’Test’

% Identify and display mode

idcom(’e .05 6.5’)

cf.def=ci.Stack{’IdAlt’}; % automatically uses sensor definition ’Test’

This new example, mixes all 3 forms

cf=demosdt(’demogartteplot’) % Load data

% simply give DOFs

cf.mdl=fe_case(cf.mdl,’sensdof’,’Test’, ...

[1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...

1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07]’);

% Give DOF defined in a local basis

cf.mdl=fe_case(cf.mdl,’sensdof append’,’Test’, ...

[2201.01 1; 3201.03 0; 1206.03 0; 1205.01 1; 1302.01 1]);

% Give identifier, node and measurement direction

cf.mdl=fe_case(cf.mdl,’sensdof append’,’Test’, ...

52



[1 2301 -1 0 0; 2 1301 0 0 1; 3 2303 -1 0 0; 4 1303 0 0 1]);

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’)

It is also fairly common to glue sensors normal to a surface. The sensor array table
(see section 4.6.2 ) is the easiest approach for this objective since it allows mixing
global, normal, triax, laser, ... sensors. The following example shows how this can
also be done by hand how to obtain normals to a volume and use them to define
sensors.

% This is an advanced code sample

model=demosdt(’demo ubeam’);

MAP=feutil(’getnormal node MAP’,model.Node, ...

feutil(’selelt selface’,model)); % select outer boundary for normal

i1=ismember(MAP.ID,[360 365 327 137]); % nodes where sensors are placed

MAP.ID=MAP.ID(i1);MAP.normal=MAP.normal(i1,:);

model=fe_case(model,’sensdof’,’test’, ...

[(1:length(MAP.ID))’ MAP.ID MAP.normal]);

% display the mesh and sensors

cf=clean_get_uf(’feplotcf’,model);

cf.sel(1)=’groupall’;cf.sel(2)=’-test’;

cf.o(1)={’sel2ty7’,’edgecolor’,’r’,’linewidth’,2}

2.2.3 Data acquisition

The SDT does not intend to support the acquisition of test data since tight integra-
tion of acquisition hardware and software is mandatory. A number of signal process-
ing tools are gradually being introduced in iiplot (see ii mmif FFT or fe curve

h1h2). But the current intent is not to use SDT as an acquisition driver. The
following example generates transfers from time domain data

frame=fe_curve(’Testacq’); % 3 DOF system response

% Time vector in .X field, measurements in .Y columns

frf=fe_curve(’h1h2 1’,frame); % compute FRF

ci=iicom(’Curveid’);ci.Stack{’Test’}.w=frf.X; ci.Stack{’Test’}.xf=frf.H1;
iicom(’Sub’);

You can find theoretical information on data acquisition for modal analysis in
Refs. [2][3][4][5][6].
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2 Modal test tutorial

Import procedures are described in section 2.1.4 . The following table gives a partial
list of systems with which the SDT has been successfully interfaced.

Vendor Procedure used

Bruel & Kjaer

Export data from Pulse to the UFF and read into SDT with
ufread or use the Bridge To Matlab software and pulse2sdt.

Dactron Export data from RT-Pro software to the UFF. Use the Active-
X API to drive the Photon from Matlab see photon.

LMS Export data from LMS CADA-X to UFF.
MathWorks Use Data Acquisition and Signal Processing toolboxes to es-

timate FRFs and create a script to fill in SDT information
(see section 2.1.4 ).

MTS Export data from IDEAS-Pro software to UFF.
Polytec Export data from PSV software to UFF.
Spectral Dynamics Create a Matlab script to format data from SigLab to SDT

format.

2.2.4 Animating test data, operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial re-
lation of forced vibration measured at two or more sensors. Time responses of
simultaneously acquired measurements, frequency responses to a possibly unknown
input, transfer functions, transmissibilities, ... are example of ODS.

When the response is known at global DOFs no specific information is needed
to relate node motion and measurements. Thus any deformation with DOFs will be
acceptable. The two basic displays are a wire-frame defined as a FEM model or a
wire-frame defined as a SensDof entry.

% A wire frame and Identification results

[TEST,IdMain]=demosdt(’DemoGartteWire’)

cf=feplot(TEST); % wire frame

cf.def=IdMain; % to fill .dof field see sdtweb(’diiplot#xfread’)

% or the low level call : cf.def={IdMain.res.’,IdMain.dof,IdMain.po}

% Sensors in a model and identification results

cf=demosdt(’demo gartfeplot’); % load FEM

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

cf.mdl=fe_case(cf.mdl,’sensdof’,’outputs’,TEST)
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cf.sel=’-outputs’; % Build a selection that displays the wire frame

cf.def=IdMain; % Display motion on sensors

fecom(’curtab Plot’);

When the response is known at sensors that need to be combined (non global
directions, non-orthogonal measurements, ...) a SensDof entry must really be de-
fined.

When displaying responses with iiplot and a test geometry with feplot, iiplot
supports an ODS cursor. Run demosdt(’DemoGartteOds’) then open the context
menu associated with any iiplot axis and select ODS Cursor. The deflection show
in the feplot figure will change as you move the cursor in the iiplot window.

More generally, you can use fecom InitDef commands to display any shape as soon
as you have a defined geometry and a response at DOFs. The Deformations tab of
the feplot properties figure then lets you select deformations within a set.

[cf,ci]=demosdt(’DemoGartteOds’)

cf.def=ci.Stack{’Test’};
% or the low level call :

% cf.def={ci.Stack{’Test’}.xf,ci.Stack{’Test’}.dof,ci.Stack{’Test’}.w}
fecom(’CurTab Plot’);

You can also display the actual measurements as arrows using

cf.sens=ci.Stack{’Test’}.dof; fecom ShowArrow; fecom scc1;

For a tutorial on the use of feplot see section 4.4 .
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2 Modal test tutorial

2.3 Identification of modal properties

Identification is the process of estimating a parametric model (poles and mode-
shapes) that accurately represents measured data. The main algorithm proposed
in the SDT is a frequency domain output error method that builds a model in the
pole residue form (see section 5.6 ) through a tuning strategy. Key theoretical no-
tions are pole/residue models, residual terms, and the relation between residues and
modeshapes (see cpx).

Section 2.3.2 gives a tutorial on the standard procedure. Theoretical details about
the underlying algorithm are given in section 2.3.3 . Section 2.3.4 addresses its
typical shortcomings. Other methods implemented in the SDT but not considered
as efficient are addressed in later sections.

For the handling of MIMO tests, reciprocity,... see section 2.4 . The gartid script
gives real data and an identification result for the GARTEUR example. The demo id

script analyses a simple identification example.

2.3.1 The idcom interface

For identification, the idcom interface uses a standard set of curves and identification
options accessible from the IDopt tab or from the command line trough the pointer
ci.IDopt. idcom(ci) turns the environment on, idcom(ci,’Off’) removes options
but not datasets.

ci=iicom(’Curveid’); ci.Stack

’curve’ ’Test’ [1x1 struct]

’curve’ ’IdFrf’ [1x1 struct]

’curve’ ’IdMain’ [1x1 struct]

’curve’ ’IdAlt’ [1x1 struct]

• Test contains measured frequency response functions. See section 2.1.4 ways
to initialize this data set.

• IdFrf contains the synthesis of transfers associated with given set of transfers.

• IdMain contains the main set of modes (poles and residues)

• IdAlt contains the alternate set of modes (poles and residues)
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2.3.2 The id rc procedure step by step

The id rc identification method is based on an iterative refinement of the poles of
the current model. Illustrated by the diagram below.

The main steps of the methodology are

• finding initial pole estimates (with the narrow band estimator, idcom e com-
mand), adding missed poles, removing computational poles (using the arrows
between the main and alternate pole sets, ea and er commands)

• estimating residues and residual terms for a given set of poles (est com-
mand/button or direct call to id rc)

• optimizing poles (and residues) of the current model using a broad or narrow
band update (eup, eopt, eoptlocal, ... commands/buttons, with frequency
band selection using the wmin, wmo, ... commands/buttons)
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- ’e’ Advanced pole picking -

Other algorithms

?

Alternate set of poles
ci.Stack{’IdAlt’}

?
6

-

’er’ remove ’ea’ add

Main set of poles
ci.Stack{’IdMain’}

?

Frequency band selection
’wmin’, ’wmo’, ...

?
LS estimate of residues

’est’ gives ci.Stack{’IdMain’}
and ci.Stack{’IdFrf’}

?

Visual inspection using
the iiplot interface
(FRF, MMIF, ...)

?
Constraints on
ci.Stack{’IdMain’}
See next section

Missing mode

Computational mode

Needs tuning

-

6

NLLS Model tuning

’eup’, ’eopt’ broadband

’wmo’,... band selection
’eoptlocal’ narrowband

After verification of the Options tab of the idcom GUI figure, the Identification
tab shown below gives you easy access to these steps (to open this figure, just run
idcom from the Matlab prompt). More details on how to proceed for each step are
given below using data of the demo id script.
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estimator

Frequency band selection Pole optimization algorithms

Main set of poles

Alternate set of poles

Figure 2.7: idcom tab in the iiplot property figure

The iteratively refined model is fully characterized by its poles (and the measured
data). It is thus convenient to cut/paste the pole estimates into and out of a text
editor (you can use the context menu of the main pole set to display this in the
Matlab command window). Saving the current pole set in a text file as the lines

ci.Stack{’IdMain’}.po =[...

1.1298e+02 1.0009e-02

1.6974e+02 1.2615e-02

2.3190e+02 8.9411e-03];

gives you all you need to recreate an identified model (even if you delete the current
one) but also lets you refine the model by adding the line corresponding to a pole that
you might have omitted. The context menu associated with the pole set listboxes
lets you easily generate this list.

1 finding initial pole estimates, adding missed poles, removing computa-
tional poles

Getting an initial estimate of the poles of the model is the first difficulty. Dynamic
responses of structures, typically show lightly damped resonances. The easiest way
to build an initial estimate of the poles is thus to use a sequence of narrow band
single pole estimations near peaks of the response or minima of the Multivariate
Mode Indicator function (use iicom Showmmi and see ii mmif for a full list of mode
indicator functions).

The idcom e command (based on a call to the ii poest function) lets you to indicate
a frequency (with the mouse or by giving a frequency value) and seeks a single pole
narrow band model near this frequency (the pole is stored in ci.Stack{’IdAlt’}.
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2 Modal test tutorial

Once the estimate found the iiplot drawing axes are updated to overlay ci.Stack{’Test’}
and ci.Stack{’IdFrf’}.

�

Figure 2.8: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the
information displayed by ii poest

LinLS: 1.563e-11, LogLS 8.974e-05, nw 10

mean(relE) 0.00, scatter 0.00

Found pole at 1.1299e+02 9.9994e-03

which indicates the linear and quadratic costs in the narrow frequency band used
to find the pole, the number of points in the band, the mean relative error (norm
of difference between test and model over norm of response which should be below
0.1), and the level of scatter (norm of real part over norm of residues, which should
be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in you current model,
you can add the estimated pole (add poles in ci.Stack{’IdAlt’} to those in
ci.Stack{’IdMain’}) using the idcom ea command (or the associated button). If
the fit is not appropriate you can change the number of selected points/bandwidth
and/or the central frequency. In rare cases where the local pole estimate does not
give appropriate results you can add a pole by just indicating its frequency (f com-
mand) or you can use the polynomial (id poly), direct system parameter (id dspi),
or any other identification algorithm to find your poles. You can also consider the
idcom find command which uses the MMIF to seek poles that are present in your
data but not in ci.Stack{’IdMain’}.

In cases where you have added too many poles to your current model, the idcom er

command then lets you remove certain poles.

This phase of the identification relies heavily on user involvement. You are expected
to visualize the different FRFs (use the +/- buttons/keys), check different frequency
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bands (zoom with the mouse and use iicom w commands), use Bode, Nyquist,
MMIF, etc. (see iicom Show commands). The iiplot graphical user interface was
designed to help you in this process and you should learn how to use it (you can get
started in section 2.1 ).

2 estimating residues and residual terms

Once a model is created (you have estimated a set of poles), idcom est determines
residues and displays the synthesized FRFs stored in ci.Stack{’IdFrf’}. A careful
visualization of the data often leads to the discovery that some poles are missing
from the initial model. The idcom e and ea commands can again be used to find
initial estimates for the missing poles.

The need to add/remove poles is determined by careful examination of the match
between the test data ci.Stack{’Test’} and identified model ci.Stack{’IdFrf’}.
You should take the time to scan through different sensors, look at amplitude, phase,
Nyquist, ...

�
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Figure 2.9: Pole estimation.

Quality and error plots are of particular interest. The quality plot (lower right,
obtained with iicom Showqual) gives an indication of the quality of the fit near
each pole. Here pole 2 does not have a very good fit (relative error close to 0.2)but
the response level (dotted line) is very small. The error plot (lower left, obtained with
iicom Showerr) shows the same information for the current pole and each transfer
function (you change the current pole by clicking on pole lines in the top plot). Here
it confirms that the relative Nyquist error is close to 0.2 for most channels. This
clearly indicates the need to update this pole as detailed in the next section (in this
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example, the relative Nyquist error is close to 0.1 after updating).

3 updating poles of the current model using a broad or narrow frequency
band update

The various procedures used to build the initial pole set (see step 1 above) tend to
give good but not perfect approximations of the pole sets. In particular, they tend
to optimize the model for a cost that differs from the broadband quadratic cost that
is really of interest here and thus result in biased pole estimates.

It is therefore highly desirable to perform non-linear update of the poles in ci.Stack{’IdMain’}.
This update, which corresponds to a Non-Linear Least-Squares minimization, can
be performed using the commands idcom eup (id rc function) and eopt (id rcopt

function). The optimization problem is very non linear and non convex, good results
are thus only found when improving results that are already acceptable (the result
of phase 2 looks similar to the measured transfer function).

When using the eup command id rc starts by reminding you of the currently se-
lected options (accessible from the figure pointer ci.IDopt) for the type of residual
corrections, model selected and, when needed, partial frequency range selected

Low and high frequency mode correction

Complex residue symmetric pole pattern

the algorithm then does a first estimation of residues and step directions and outputs

% mode# dstep (%) zeta fstep (%) freq

1 10.000 1.0001e-02 -0.200 7.1043e+02

2 -10.000 1.0001e-02 0.200 1.0569e+03

3 10.000 1.0001e-02 -0.200 1.2176e+03

4 10.000 1.0001e-02 -0.200 1.4587e+03

Quadratic cost

4.6869e-09

Log-mag least-squares cost

6.5772e+01

how many more iterations? ([cr] for 1, 0 to exit) 30

which indicates the current pole positions, frequency and damping steps, as well
as quadratic and logLS costs for the complete set of FRFs. These indications and
particularly the way they improve after a few iterations should be used to determine
when to stop iterating.

Here is a typical result after about 20 iterations
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% mode# dstep (%) zeta fstep (%) freq

1 -0.001 1.0005e-02 0.000 7.0993e+02

2 -0.156 1.0481e-02 -0.001 1.0624e+03

3 -0.020 9.9943e-03 0.000 1.2140e+03

4 -0.039 1.0058e-02 -0.001 1.4560e+03

Quadratic cost

4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10

Log-mag least-squares cost

6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01

how many more iterations? ([cr] for 1, 0 to exit) 0

Satisfactory convergence can be judged by the convergence of the quadratic and
logLS cost function values and the diminution of step sizes on the frequencies and
damping ratios. In the example, the damping and frequency step-sizes of all the
poles have been reduced by a factor higher than 50 to levels that are extremely low.
Furthermore, both the quadratic and logLS costs have been significantly reduced
(the leftmost value is the initial cost, the right most the current) and are now
decreasing very slowly. These different factors indicate a good convergence and the
model can be accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which
generally corresponds passing over the optimal value). Thus, you need to have all
(or at least most) steps divided by 8 for an acceptable convergence. Upon exit
from id rc, the idcom eup command displays an overlay of the measured data
ci.Stack{’Test’} and the model with updated poles ci.Stack{’IdFrf’}. As
indicated before, you should use the error and quality plots to see if mode tuning is
needed.

The optimization is performed in the selected frequency range (idopt wmin and wmax

indices). It is often useful to select a narrow frequency band that contains a few
poles and update these poles. When doing so, model poles whose frequency are not
within the selected band should be kept but not updated (use the euplocal and
eoptlocal commands). You can also update selected poles using the ’eup ’ i’

command (for example if you just added a pole that was previously missing).

id rc (eup command) uses an ad-hoc optimization algorithm, that is not guaranteed
to improve the result but has been found to be efficient during years of practice.
id rcopt (eopt command) uses a conjugate gradient algorithm which is guaranteed
to improve the result but tends to get stuck at non optimal locations. You should
use the eopt command when optimizing just one or two poles (for example using
eoptlocal or ’eopt ’ i’ to optimize different poles sequentially).
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2 Modal test tutorial

In many practical applications the results obtained after this first set of iterations
are incomplete. Quite often local poles will have been omitted and should now be
appended to the current set of poles (going back to step 1). Furthermore some poles
may be diverging (damping and/or frequency step not converging towards zero).
This divergence will occur if you add too many poles (and these poles should be
deleted) and may occur in cases with very closely spaced or local modes where the
initial step or the errors linked to other poles change the local optimum for the pole
significantly (in this case you should reset the pole to its initial value and restart
the optimization).

Once a good complex residue model obtained, one often seeks models that verify
other properties of minimality, reciprocity or represented in the second order mass,
damping, stiffness form. These approximations are provided using the id rm and
id nor algorithms as detailed in section 2.4 .

2.3.3 Background theory

The id rc algorithm (see [7][8]) seeks a non linear least squares approximation of
the measured data

pmodel = arg min
NS,NA,NW∑
j,k,l=1

(
αjk(id)(ωl, p)− αjk(test)(ωl)

)2
(2.1)

for models in the nominal pole/residue form (also often called partial fraction ex-
pansion [9])

[α(s)] =
∑

jidentified

(
[Rj ]

s− λj
+

[
R̄j
]

s− λ̄j

)
+ [E] +

[F ]

s2
= [Φ(λj , s)] [Rj , E, F ] (2.2)

or its variants detailed under res page 171.

These models are linear functions of the residues and residual terms [Rj , E, F ] and
non linear functions of the poles λj . The algorithm thus works in two stages with
residues found as solution of a linear least-square problem and poles found through
a non linear optimization.

The id rc function (idcom eup command) uses an ad-hoc optimization where all
poles are optimized simultaneously and steps and directions are found using gradient
information. This algorithm is usually the most efficient when optimizing more than
two poles simultaneously, but is not guaranteed to converge or even to improve the
result.

The id rcopt function (idcom eopt command) uses a gradient or conjugate gradient
optimization. It is guaranteed to improve the result but tends to be very slow
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when optimizing poles that are not closely spaced (this is due to the fact that
the optimization problem is non convex and poorly conditioned). The standard
procedure for the use of these algorithms is described in section 2.3.2 . Improved
and more robust optimization strategies are still considered and will eventually find
their way into the SDT.

2.3.4 When id rc fails

This section gives a few examples of cases where a direct use of id rc gave poor
results. The proposed solutions may give you hints on what to look for if you
encounter a particular problem.

�

Figure 2.10: Identification problem with low frequency error found for piezoelectric
accelerometers

In many cases frequencies of estimated FRFs go down to zero. The first few points
in these estimates generally show very large errors which can be attributed to both
signal processing errors and sensor limitations. The figure above, shows a typical
case where the first few points are in error by orders of magnitude. Of two models
with the same poles, the one that keeps the low frequency erroneous points (- — -)
has a very large error while a model truncating the low frequency range (- - -) gives
an extremely accurate fit of the data (—).
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2 Modal test tutorial

�

�

�

Figure 2.11: Identification problem linked to the proximity of influent out of band
modes

The fact that appropriate residual terms are needed to obtain good results can have
significant effects. The figure above shows a typical problem where the identification
is performed in the band indicated by the two vertical solid lines. When using the 7
poles of the band, two modes above the selected band have a strong contribution so
that the fit (- - -) is poor and shows peaks that are more apparent than needed (in
the 900-1100 Hz range the FRF should look flat). When the two modes just above
the band are introduced, the fit becomes almost perfect (- — -) (only visible near
750 Hz).

Keeping out of band modes when doing narrow band pole updates is thus quite
important. You may also consider identifying groups of modes by doing sequential
identifications for segments of your test frequency band [8].

The example below shows a related effect. A very significant improvement is ob-
tained when doing the estimation while removing the first peak from the band. In
this case the problem is actually linked to measurement noise on this first peak (the
Nyquist plot shown in the lower left corner is far from the theoretical circle).
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Figure 2.12: Identification problem linked to measurement noise at a major reso-
nance

Other problems are linked to poor test results. Typical sources of difficulties are

• mass loading (resonance shifts from FRF to FRF due to batch acquisition with
displaced sensors between batches),

• leakage in the estimated FRFs,

• significant non-linearities (inducing non-symmetric resonances or resonance
shifts for various excitation positions),

• medium frequency range behavior (the peaks of more than a few modes overlay
significantly it can be very hard to separate the contributions of each mode
even with MIMO excitation).

2.3.5 Direct system parameter identification algorithm

A class of identification algorithms makes a direct use of the second order parame-
terization. Although the general methodology introduced in previous sections was
shown to be more efficient in general, the use of such algorithms may still be inter-
esting for first-cut analyses. A major drawback of second order algorithms is that
they fail to consider residual terms.

The algorithm proposed in id dspi is derived from the direct system parameter
identification algorithm introduced in Ref. [10]. Constraining the model to have the
second-order form
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2 Modal test tutorial

[
−ω2I + iωCT +KT

]
{p(ω)} = [bT ] {u(ω)}

{y(ω)} = [cT ] {p(ω)} (2.3)

it clearly appears that for known [cT ], {yT }, {uT } the system matrices [CT ], [KT ],
and [bT ] can be found as solutions of a linear least-squares problem.

For a given output frequency response {yT } =xout and input frequency content
{uT } =xin, id dspi determines an optimal output shape matrix [cT ] and solves the
least squares problem for [CT ], [KT ], and [bT ]. The results are given as a state-space
model of the form{

q̇
q̈

}
=

[
0 I
−KT −CT

]{
q
q̇

}
+

[
0
bT

]
{u(t)}

{y(t)} = [cT 0]

{
q
q̇

} (2.4)

The frequency content of the input {u} has a strong influence on the results obtained
with id dspi. Quite often it is efficient to use it as a weighting, rather than using
a white input (column of ones) in which case the columns of {y} are the transfer
functions.

As no conditions are imposed on the reciprocity (symmetry) of the system matrices
[CT ] and [KT ] and input/output shape matrices, the results of the algorithm are
not directly related to the normal mode models identified by the general method.
Results obtained by this method are thus not directly applicable to the prediction
problems treated in section 2.4.2 .

2.3.6 Orthogonal polynomial identification algorithm

Among other parameterizations used for identification purposes, polynomial repre-
sentations of transfer functions (5.27) have been investigated in more detail. However
for structures with a number of lightly damped poles, numerical conditioning is of-
ten a problem. These problems are less acute when using orthogonal polynomials
as proposed in Ref. [11]. This orthogonal polynomial method is implemented in
id poly, which is meant as a flexible tool for initial analyses of frequency response
functions. This function is available as idcom poly command.
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2.4 MIMO, Reciprocity, State-space, ...

The pole/residue representation is often not the desired format. Access to transfor-
mations is provided by the post-processing tab in the idcom properties figure. There
you can select the desired output format and the name of the variable in the base
Matlab workspace you want the results to be stored in.

Figure 2.13: idcom interface

The id rm algorithm is used for the creation of minimal and/or reciprocal pole/residue
models (from the command line use sys=id rm(ci.Stack{’IdMain’})). For the ex-
tra step of state-space model creation use sys=res2ss(ci.Stack{’IdMain’}).
nor=res2nor(ci.Stack{’IdMain’}) or nor=id nor(ci.Stack{’IdMain’}) allow
transformations to the normal mode form. Finally direct conversions to other for-
mats are given by
struct=res2xf(ci.Stack{’IdMain’},w) with w=ci.Stack’Test’.w, and [num,den]=res2tf(ci.Stack{’IdMain’}).

These calls are illustrated in demo id.

2.4.1 Multiplicity (minimal state-space model)

Theory
As mentioned under res page 171, the residue matrix of a mode can be written as
the product of the input and output shape matrices, so that the modal contribution
takes the form

Rj
s− λj

=
{cψj}

{
ψTj b

}
s− λj

(2.5)

For a single mode, the product {cψj}
{
ψTj b

}
has rank 1. Thus for a truly MIMO test

(with more than one input and output), the residue matrix found by id rc usually
has full rank and cannot be written as shown in (2.5). In some cases, two poles of a
structure are so close that they can be considered as a multiple pole λj = λj+1, so
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2 Modal test tutorial

that

Rj
s− λj

=
{cψj}

{
ψTj b

}
+ {cψj+1}

{
ψTj+1b

}
s− λj

(2.6)

In such cases, the residue matrix [Rj ] has rank two. Minimality (i.e. rank con-
straint on the residue matrix) is achieved by computing, for each mode, the singular
value decomposition of the residue matrix Rj = UΣV T . By definition of the singular
value decomposition [

R̃j
]
NS×NA

= {U1}NS×1 σ1 {V1}TNA×1 (2.7)

is the best rank 1 approximation (in the matrix norm sense) of Rj . Furthermore,
the ratio σ2/σ1 is a measure of the relative error made by retaining only the first
dyad. This ratio gives, for MIMO tests, an indication of the coherence of estimated
mode shapes and occasionally an indication of the pole multiplicity if two poles are
sufficiently close to be considered as identical (see the example below).

Minimal pole/residue models are directly linked to a state-space model of the form(
s [I]2N×2N −

[
\λj\

])
{η} =

[
ψT b

]
{u}

{y} = [cψ] {η}
(2.8)

which can then be transformed to a real valued state-space model (see res2ss) or
a second order normal mode model (see section 2.4.3 ).

Practice id rm builds a rank constrained approximation of the residue matrix associated to
each pole. When not enforcing reciprocity, the output of the call

ci=demosdt(’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.reci=’no’;

RES = id_rm(ci.Stack{’IdMain’},[1 2 1 1]);

% or low level call

[pb,cp,new_res]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 2 1 1]);

returns an output that has has the form

The system has 5 sensors and 2 actuators

FRF 7 (actuator 2 sensor 2) is collocated

Po # freq mul Ratio of sing. val. to max

1 7.10e+02 2 : 0.3000 k 0.0029

2 9.10e+02 1 : 0.1000 0.0002

3 1.20e+03 1 : 0.0050 0.0001

4 1.50e+03 1 : 0.0300 0.0000
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where the first three columns indicate pole number, frequency and retained multi-
plicity and the following give an indication of the difference between the full rank
residue matrix and the rank constrained one (the singular value ratio should be
much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between
the full order residue matrix and a rank 1 approximation is of the order of 30% while
the difference with a rank 2 approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual
multiplicity but more often indicates poor identification or incoherent data. For
poor identification the associated pole should be updated as shown in section 2.3 .
For incoherent data (for example modes slightly modified due to changing shakers
during sequential SIMO tests), one should perform separate identifications for each
set of coherent measurements. The rank constrained approximation can then be a
way to reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try
to update the identification in the vicinity of the pole: select a narrow frequency
range near this pole, then create and optimize a two or more pole model as shown
section 2.3.2 . True modal multiplicity being almost impossible to design into a
physical structure, it is generally possible to resolve such problems. Keeping multiple
poles should thus only remain an intermediate step when not having the time to do
better.

2.4.2 Reciprocal models of structures

Theory
In many cases, the structures tested are assumed to be reciprocal (the transfers force
at A/response at B and force at B/response at A are equal) and one wants to build a
reciprocal model. For modal contributions of the form (2.5), reciprocity corresponds
to the equality of collocated input and output shape matrices

([ccol] {ψj})T = {ψj}T [bcol] (2.9)

For reciprocal structures, the residue matrix associated to collocated FRFs should
be symmetric. id rm thus starts computing the symmetric part of the collocated

residues R̂jcol =
(
Rjcol +RTjcol

)
/2. This matrix being symmetric, its singular

value decomposition is given by R̂jcol = UcolΣcolV
T
col which leads to the reciprocal

input and output shape matrices

{ccolψj} =
{
ψTj bcol

}T
=
√
σ1col {U1col} (2.10)
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2 Modal test tutorial

Typically, there are many more sensors than inputs. The decomposition (2.10)
is thus only used to determine the collocated input shape matrices and the output
shape matrices at all sensors are found as solution of a least square problem {cψj} =

[Rj ]
{
ψTj bcol

}+
which does require that all inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the
same as that obtained with the analytical scaling condition (5.20). The interest of
using reciprocal models is to predict non measured transfer functions.

Practice When collocated transfer functions are declared and ci.IDopt.Reciprocity=’1

FRF’ or MIMO, id rm seeks a minimal and reciprocal approximation to the model.
For the call

ci=demosdt(’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.Col=[1 7];

ci.IDopt.reci=’mimo’;

RES = id_rm(ci.Stack{’IdMain’},[1 1 1 1]);

ci.Stack{’IIxh’}=res2xf(RES,ci.Stack{’Test’}.w); iicom(’IIxhOn’)

% or low level call

[pb,cp,new_res,new_po]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 1 1 1]);

ci.Stack{’IIxh’}.xf = res2xf(new_res,new_po,ci.Stack{’Test’}.w,ci.IDopt);
iicom(’IIxhOn’)

id rm shows information of the form

The system has 5 sensors and 2 actuators

FRF 1 (actuator 1 sensor 1) is collocated

FRF 7 (actuator 2 sensor 2) is collocated

Reciprocal MIMO system

Po# freq mul sym. rel.e.

1 1.13e+02 1 : 0.0001 0.0002

2 1.70e+02 1 : 0.0020 0.0040

3 1.93e+02 1 : 0.0003 0.0005

4 2.32e+02 1 : 0.0022 0.0044

where the output indicates the number of sensors and actuators, the collocated
FRFs, the fact the resulting model will enforce MIMO reciprocity, and details the
accuracy achieved for each mode.

The algorithm first enforces symmetry on the declared collocated transfer functions
the symmetry error sym. shows how asymmetric the original residue matrices where.
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If for a given mode this number is not close to zero, the mode is poorly identified or
the data is far from verifying reciprocity and building a reciprocal model makes no
sense.

The algorithm then seeks a rank constrained approximation, the relative error num-
ber rel. e. shows how good an approximation of the initial residue matrix the
final result is. If this number is larger than .1, you should go back to identifying
a minimal but non reciprocal model, determine the actual multiplicity, and update
the pole, if it is not very well identified, or verify that your data is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the
synthesized FRFs (IIxh/ci.Stack{’IIxh’} in the example above). An alternate
FRF generation call would be

[a,b,c,d]=res2ss(res,po,idopt);

IIxh=qbode(a,b,c,d,IIw*2*pi);

This more expensive computationally, but state-space models are particularly useful
for coupled system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer
functions. For example the response associated to a shaker placed at the uind

sensor (not a collocated one) can be computed using

ci=demosdt(’Demo demo_id’)

[psib,cpsi]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po, ...

ci.IDopt,[1 1 1 1]);

uind=3; res_u = (cpsi*diag(cpsi(uind,:))).’;

ci.Stack{’IdFrf’}=ci.Stack{’Test’};
ci.Stack{’IdFrf’}.xf=...
res2xf(res_u,ci.Stack{’IdMain’}.po,ci.Stack{’Test’}.w,ci.IDopt);

iiplot

You should note that the res u model does not contain any residual terms, since
reciprocity does not give any information on those. Good predictions of unmeasured
transfers are thus limited to cases where residual terms can be neglected (which is
very hard to know a priori).

2.4.3 Normal mode form

Modal damping assumption
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2 Modal test tutorial

While the most accurate viscous damping models are obtained with a full damping
matrix Γ (supported by psi2nor and id nor as detailed in the next section), modal
damping (where Γ is assumed diagonal which is valid assumption when (2.15) is
verified) is used in most industrial applications and is directly supported by id rc,
id rm and res2nor. The use of this functionality is demonstrated in demo id.

For a modally damped model (diagonal modal damping matrix Γ), the normal mode
model (5.4) can be rewritten in a rational fraction form (with truncation and residual
terms)

[α(s)] =
NM∑
j=1

{cφj}
{
bTφj

}T
s2 + 2ζjωjs+ ω2

j

+ [E] +
[F ]

s2
=

NM∑
j=1

[Tj ]NS×NA
s2 + 2ζjωjs+ ω2

j

+ E(s) (2.11)

This parameterization, called normal mode residue form, has a symmetric pole pat-
tern and is supported by various functions (id rc, id rm, res2xf , ...) through the
use of the option ci.IDopt.Fit=’Normal’. As for the complex residues (5.26), the
normal mode residue matrix given by id rc and used by other functions is stacked
using one row for each pole or asymptotic correction term and, as the FRFs (see
the xf format), a column for each SISO transfer function (stacking NS columns for
actuator 1, then NS columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue
matrix Tj is directly related to the true normal modes

[Tj ] = {cφj}
{
φTj b

}
(2.12)

and the dyadic decomposition of the residue matrix can be used as in the complex
mode case (see section 2.4.1 and the function id rm) to obtain a minimal and/or
reciprocal models (as well as scaled input and output shape matrices).

The scaling implied by equations (2.11) and (2.12) and used in the functions of the
Toolbox is consistent with the assumption of unit mass normalization of the normal
modes (see details under nor page 160). This remains true even for multiple modes.
A result rarely obtained by other methods.

When a complex mode identification has been performed (ci.IDopt.Fit=’Complex’
or ’Posit’), the function res2nor also provides a simple approximation of the
complex residue model by a normal mode residue model.

Non proportional damping assumption

Theory The complex modes of a minimal/reciprocal model are related to the mass / damp-
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ing / stiffness matrices by (see Ref. [12])

M =
(
ψ̃Λψ̃T

)−1
, C = −Mψ̃Λ2ψ̃TM, and K =

(
ψ̃Λ−1ψ̃T

)−1
(2.13)

if and only if the complex modes are also proper. That is, they verify verify
2N∑
j=1

{
ψ̃j
}{

ψ̃j
}T

=
[
ψ̃
]
N×2N

[
ψ̃
]T
N×2N

= [0]N×N (2.14)

The transformation id nor is thus done in two stages. id rm is used to find a
minimal and reciprocal approximation of the identified residue model of the form
(2.8). psi2nor then determines c and ψ̃ such that the ψ̃ verify the condition (2.14)
and cψ̃ is “optimally” close to the cψ resulting from id rm. Using the complex
modes ψ̃ and the identified poles λ, the matrices are then computed and the model
transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered
group of modes is not significantly coupled to other modes by damping [12]. Groups
of modes which can be approximated by a second order non proportionally damped
model can be easily detected using the frequency separation criterion which must
be verified between modes j in the group and modes k outside the group

ζjωjζkωk
ωjωk

2

� 1 (2.15)

If there does not exist a normal mode model that has complex modes close to the
identification result cψ, the algorithm may not work. This will happen in particular
if cψΛψT cT = cM−1cT does not have NQ positive eigenvalues (estimated mass not
positive definite).

Practice For comparisons with undamped FE models, it is essential to obtain estimates of
normal modes. The most accurate results are obtained using a non-proportionally
damped normal mode model obtained with id nor. A coarse approximation is given
by res2nor(useful if the identification is not good enough to build the minimal and
reciprocal model used by id nor). In such cases you can also consider using id rc

with the assumption of proportional damping which directly identifies normal modes
(see more details in section 2.4.3 ).

Scaling problems are often encountered when using the reciprocity to condition to
scale the complex modes in id rm. The function id nor allows an optimization of
collocated residues based on a comparison of the identified residues and those linked
to the normal mode model. You should be aware that id nor only works on very
good identification results, so that trying it without spending the time to go through
the pole update phase of id rc makes little sense.
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2 Modal test tutorial

The use of this functionality is demonstrated in the following example.

ci=demosdt(’demodemo_id’) % load data and identify

f=ci.Stack{’Test’}.w;
nor = id_nor(ci.Stack{’IdMain’});
nor2xf(nor,f,’hz iiplot "IdFrf"’); % Compute response

% compute residual effects and add normal model contributions

res2xf(ci.Stack{’IdMain’},f,ci.IDopt,[5 6],’iiplot "Nor+Stat"’);% residues

ci.Stack{’Nor+Stat’}.xf=ci.Stack{’Nor+Stat’}.xf+nor2xf(nor,f,’hz’);
iicom(’ch1’);

The normal mode input nor.pb and output nor.cp matrices correspond to those of
an analytical model with mass normalized modes. They can be compared (ii mac) or
combined (fe exp) with analytical models and the modal frequencies nor.freq and
damping matrix nor.ga can be used for predictions (see more details in section 3.4
).

The id nor and res2nor algorithms only seek approximations the modes. For FRF
predictions one will often have to add the residual terms. The figure below (taken
from demo id) shows an example where including residual terms tremendously im-
proves the prediction. Out of band modes and residual terms are here represented
by the E(s) term. Second order models are said to be complete when E(s) can be
neglected [13]. The addition of residual terms was illustrated in the example above.

�

Figure 2.14: FRF xx
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3 Test/analysis correlation tutorial

Modal testing differs from system identification in the fact that responses are mea-
sured at a number of sensors which have a spatial distribution which allows the
visualization of the measured motion. Visualization is key for a proper assessment
of the quality of an experimental result. One typically considers three levels of
models.

• Input/output models are defined at sensors. In the figure, one represents these
sensors as arrows corresponding to the line of sight measurements of a laser vi-
brometer. Input/output models are the direct result of the identification proce-
dure described in chapter 2.

• Wire frame models are used to visualize test results. They are an essential verifica-
tion tool for the experimentalist. Designing a test well, includes making sure that
the wire frame representation is sufficiently detailed to give the experimentalist a
good understanding of the measured motion. With non-triaxial measurements, a
significant difficulty is to handle the perception of motion assumed to be zero.

• Finite element models are used for test/analysis correlation. In most industrial
applications, test and FEM nodes are not coincident so that special care must be
taken when predicting FEM motion at test nodes/sensors (shape observation) or
estimating test motion at FEM DOFs (shape expansion).

Figure 3.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are
detailed in section 2.2 . Topology correlation and sensor/shaker placement tools are
details in section 3.1 . A summary of general tools used to compare sets of shapes
is made in section 3.2 . Shape expansion, which deals with the transformations
between the wire-frame and FE models, is introduced in section 3.3 . The results
of correlation can be used for hybrid models combining experimental and analytical
results (see section 3.4 ) or for finite element model updating (see section 6.5 ).
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3.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical
and sensor/shaker configurations. Most of this effort is handled by fe sens with
some use of femesh.

Starting with SDT 6.0, FEM sensors (see section 4.6 ) can be associated with wire
frame model, the strategy where the two models where merged is thus obsolete.

As described in the following sections the three important phases of topology corre-
lation are

• combining test and FEM model including coordinate system definition for the
test nodes if there is a coordinate system mismatch,

• building of an observation matrix allowing the prediction of measurements
based on FEM deformations,

• sensor and shaker placement.

3.1.1 Defining sensors in the FEM model

Prior steps are to declare

• a FEM model (see section 4.5 ). For this simple example, the FEM model must
describe nodes, elements and DOFs.

• a test wire-frame model (stored in TEST in the demo) with sensors in the .tdof
field, as detailed in section 2.2.1 for the geometry and section 2.2.2 for sensors

One then declares the wire frame (with sensors) as SensDof case entry as done below
(see also the gartte demo). The objective of this declaration is to allow observation
of the FEM response at sensors (see sensor Sens).

cf=demosdt(’demo gartfeplot’); % load FEM

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

cf.mdl=fe_case(cf.mdl,’sensdof’,’outputs’,TEST)

% View the Case entry in the properties figure

fecom(cf,’curtabCase’,’outputs’);fecom(’ProViewOn’)
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fecom(’TextStack’) % display sensor text

% now display FEM shape on sensors

fe_case(cf.mdl,’sensmatch’)

cf.sel(2)=’-outputs’;

cf.o(1)={’sel 2 def 1 ch 7 ty2 scc .25’,’edgecolor’,’r’};

Section 4.6 gives many more details the sensor GUI, the available sensors (sensor
trans, sensor triax, laser, ...). Section 4.6.4 discusses topology correlation vari-
ants in more details.

3.1.2 Test and FEM coordinate systems

In many practical applications, the coordinate systems for test and FEM differ.
fe sens supports the use of a local coordinate system for test nodes with the basis

command. A three step process is considered. Phase 1 is used get the two meshes
oriented and coarsely aligned. The guess is more precise if a list of paired nodes on
the FEM and TEST meshes can be provided. In phase 2, the values displayed by
fe sens, in phase 1 are fine tuned to obtain the accurate alignment. In phase 3, the
local basis definition is eliminated thus giving a cf.CStack{’sensors’} entry with
both .Node and .tdof fields in FEM coordinates which makes checks easier.

In peculiar cases, the FEM and TEST mesh axes differ, and a correction in rotation
in the Phase 2 may be easier to use. An additional rotation to apply in the TEST
mesh basis can be obtained by fulfilling the field rotation in Phase 2. The rotations
are applied after other modifications so that the user can directly interpret the
current feplot display. The rotation field corresponds to a basis rotate call.
The command string corresponding to a rotation of 10 degrees along axis y is then
’ry=10;’. Several rotations can be combined: ’ry=10; rx=-5;’ will thus first
perform a rotation along y of 10 degrees and a rotation along x of -5 degrees. These
combinations are left to the user’s choice since rotation operations are not symmetric
(e.g. ’rz=5;rx=10;’ is a different call from ’rx=10;rz=5;’).

cf=demosdt(’demo garttebasis’); % Load the demo data

cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe

% Phase 1: initial adjustments done once

% if the sensors are well distributed over the whole structure

fe_sens(’basis estimate’,cf,’sensors’);

% Phase 1: initial adjustments done once, when node pairs are given
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% if a list of paired nodes on the TEST and FEM can be provided

% For help on 3DLinePick see sdtweb(’3DLinePick’)

cf.sel=’reset’; % Use 3DLinePick to select FEM ref nodes

cf.sel=’-sensors’; % Use 3DLinePick to select TEST ref

i1=[62 47 33 39; % Reference FEM NodeId

2112 2012 2301 2303]’;% Reference TEST NodeId

cf.sel=’reset’; % show the FEM part you seek

fe_sens(’basis estimate’,cf,’sensors’,i1);

%Phase 2 save the commands in an executable form

% The ’BasisEstimate’ command displays these lines, you can

% perform slight adjustments to improve the estimate

fe_sens(’basis’,cf,’sensors’, ...

’x’, [0 1 0], ... % x_test in FEM coordinates

’y’, [0 0 1], ... % y_test in FEM coordinates

’origin’,[-1 0 -0.005],... % test origin in FEM coordinates

’scale’, [0.01],... % test/FEM length unit change

’rotation’,’’); % additional rotations

%Phase 3 : Force change of TEST.Node and TEST.tdof to FEM coordinates

fe_sens(’basisToFEM’,cf.mdl,’sensors’)

fe_case(cf.mdl,’sensmatch’)

Note that FEM that use local coordinates for displacement are discussed in sensor

trans.

3.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test,
it is good practice to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

• Wire frame representations resulting from the placement should allow a good
visualization of test results without expansion. Achieving this objective, en-
hances the ability of people doing the test to diagnose problems with the test,
which is obviously very desirable.

• seen at sensors, it is desirable that modes look different. This is measured by
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the condition number of [cφ]T [cφ] (modeshape independence, see [14]) or by
the magnitude of off-diagonal terms in the auto-MAC matrix (this measures
orthogonality). Both independence and orthogonality are strongly related.

• sensitivity of measured modeshape to a particular physical parameter (param-
eter visibility)

Sensor placement capabilities are accessed using the fe sens function as illustrated
in the gartsens demo. This function supports the effective independence [14] and
maximum sequence algorithms which seek to provide good placement in terms of
modeshape independence.

It is always good practice to verify the orthogonality of FEM modes at sensors using
the auto-MAC (whose off-diagonal terms should typically be below 0.1)

cphi = fe_c(mdof,sdof)*mode; ii_mac(’cpa’,cphi,’mac auto plot’)

For shaker placement, you typically want to make sure that

• you excite a set of target modes,

• or will have a combination of simultaneous loads that excites a particular mode
and not other nearby modes.

The placement based on the first objective is easily achieved looking at the mini-
mum controllability, the second uses the Multivariate Mode Indicator function (see
ii mmif). Appropriate calls are illustrated in the gartsens demo.

3.2 Test/analysis correlation

Correlation criteria seek to analyze the similarity and differences between two sets
of results. Usual applications are the correlation of test and analysis results and the
comparison of various analysis results.

Ideally, correlation criteria should quantify the ability of two models to make the
same predictions. Since, the predictions of interest for a particular model can rarely
be pinpointed precisely, one has to use general qualities and select, from a list of
possible criterion, the ones that can be computed and do a good enough job for the
intended purpose.

82



3.2.1 Shape based criteria

The ii mac interface implements a number of correlation criteria. You should at
least learn about the Modal Assurance Criterion (MAC) and Pseudo Orthogonality
Checks (POC). These are very popular and should be used first. Other criteria
should be used to get more insight when you don’t have the desired answer or to
make sure that your answer is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific
as to what you are trying to do with your model. Since that rarely happens, you
should know the possibilities and stick to what is good enough for the job.

The following table gives a list of criteria implemented in the ii mac interface.

MAC Modal Assurance Criterion (9.8). The most popular criterion for correlating
vectors. Insensitive to vector scaling. Sensitive to sensor selection and level
of response at each sensor. Main limitation : can give very misleading
results without warning. Main advantage : can be used in all cases. A
MAC criterion applied to frequency responses is called FRAC.

POC Pseudo Orthogonality Checks (9.13). Required in some industries for model
validation. This criterion is only defined for modes since other shapes do
verify orthogonality conditions. Its scaled insensitive version (9.9) corre-
sponds to a mass weighted MAC and is implemented as the MAC M com-
mands. Main limitation : requires the definition of a mass associated with
the known modeshape components. Main advantage : gives a much more
reliable indication of correlation than the MAC.

Error Modeshape pairing (based on the MAC or MAC-M) and relative frequency
error and MAC correlation.

Rel Relative error (9.14). Insensitive to scale when using the modal scale factor.
Extremely accurate criterion but does not tell much when correlation poor.

COMAC Coordinate Modal Assurance Criteria (three variants implemented in
ii mac) compare sets of vectors to analyze which sensors lead poor cor-
relation. Main limitation : does not systematically give good indications.
Main advantage : a very fast tool giving more insight into the reasons of
poor correlation.

MACCO What if analysis, where coordinates are sequentially eliminated from the
MAC. Slower but more precise than COMAC.

3.2.2 Energy based criteria
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The criteria that make the most mechanical sense are derived from the equilibrium
equations. For example, modes are defined by the eigenvalue problem (6.84). Thus
the dynamic residual

{
R̂j
}

=
[
K − ω2

jidM
]
{φidj} (3.1)

should be close to zero. A similar residual (3.5) can be defined for FRFs.

The Euclidean norm of the dynamic residual has often been considered, but it tends
to be a rather poor choice for models mixing translations and rotations or having
very different levels of response in different parts of the structure.

To go to an energy based norm, the easiest is to build a displacement residual

{Rj} =
[
K̂
]−1 [

K − ω2
jidM

]
{φidj} (3.2)

and to use the strain |R̃j |K = R̃Tj KR̃j or kinetic |R̃j |M = R̃Tj MR̃j energy norms for
comparison.

Note that
[
K̂
]

need only be a reference stiffness that appropriately captures the

system behavior. Thus for cases with rigid body modes, a pseudo-inverse of the
stiffness (see section 6.2.4 ), or a mass shifted stiffness can be used. The displace-
ment residual R̃j is sometimes called error in constitutive law (for reasons that have
nothing to do with structural dynamics).

This approach is illustrated in the gartco demo and used for MDRE in fe exp.
While much more powerful than methods implemented in ii mac, the development
of standard energy based criteria is still a fairly open research topic.

3.2.3 Correlation of FRFs

Comparisons of frequency response functions are performed for both identification
and finite element updating purposes.

The quadratic cost function associated with the Euclidean norm

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2 (3.3)

is the most common comparison criterion. The main reason to use it is that it leads to
linear least-squares problem for which there are numerically efficient solvers. (id rc
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uses this cost function for this reason).

The quadratic cost corresponds to an additive description of the error on the transfer
functions and, in the absence of weighting, it is mostly sensitive to errors in regions
with high levels of response.

The log least-squares cost, defined by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)

Hij(sk)

∣∣∣∣∣ |2 (3.4)

uses a multiplicative description of the error and is as sensitive to resonances than to
anti-resonances. While the use of a non-linear cost function results in much higher
computational costs, this cost tends to be much better at distinguishing physically
close dynamic systems than the quadratic cost (except when the difference is very
small which is why the quadratic cost can be used in identification phases).

The utility function ii cost computes these two costs for two sets of FRFs xf1

and xf2 (obtained through test and FE prediction using nor2xf for example). The
evaluation of these costs provides a quick and efficient way to compare sets of MIMO
FRF and is used in identification and model update algorithms.

Note that you might also consider the complex log of the transfer functions which
would give a simple mechanism to take phase errors into account (this might be-
come important for extremely accurate identification sometimes needed for control
synthesis).

If the response at a given frequency can be expanded to the full finite element
DOF set, you should consider an energy criterion based on the dynamic residual in
displacement, which in this case takes the form

{Rj} =
[
K̂
]−1

[[Z(ω)] {qex(ω)} − [b] {u(ω)}] (3.5)

and can be used directly of test/analysis correlation and/or finite element updating.

Shape correlation tools provided by ii mac can also be used to compare frequency
responses. Thus the MAC applied to FRFs is sometimes called FRAC.

3.3 Expansion methods

Expansion methods seek to estimate the motion at all DOFs of a finite element
model based on measured information (typically modeshapes or frequency response
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functions) and prior, but not necessarily accurate, information about the structure
under test in the form of a reference finite element model. As for all estimation tech-
niques, the quality of expansion results is deteriorated by poor test results and/or
poor modeling, but good results can be obtained when one or both are accurate.

The gartco demonstration illustrates modeshape expansion in the SDT. This sec-
tion summarizes the theory and you are encouraged to download [15][16] from
sdtools.com if you want more details.

3.3.1 Underlying theory for expansion methods

The unified perspective driving the SDT architecture is detailed in [15][16]. The
proposed classification is based on how various methods combine information about
test and modeling errors.

Test results yTest and expanded shapes qex are related by the observation equation
(4.1). Test error is thus measured by a norm of the difference between the test
quantity and the observed expanded shape

ε = ‖{yTest} − [c] {qex}‖2Q (3.6)

where the choice of the Q norm is an important issue. While the Euclidian norm
(Q = I) is used in general, a norm that takes into account an estimated variance
of the various components of yTest seems most appropriate. Various energy based
metrics have also been considered in [17] although the motivation for using a energy
norm on test results is unclear.

The expanded vector is also supposed to verify an equilibrium condition that de-
pends on its nature. Since the model and test results don’t match exactly one does
not expect the expanded vector to verify this equation exactly which leads to the
definition of a residual. Standard residuals are Rj = Z(ωj)φj for modeshapes and
Rj = Z(ω)q − F for frequency response to the harmonic load F .

Dynamic residuals correspond to generalized loads, so they should be associated to
displacement residuals and an energy norm. A standard solution [18] is to compute
the static response to the residual and use the associated strain energy, which is a
good indicator of modeling error,

‖Rj(qex)‖2K = {Rj}T
[
K̂
]−1
{Rj} (3.7)

where K̂ is the stiffness of a reference FEM model and can be a mass-shifted stiffness
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in the presence of rigid body modes (see section 6.2.4 ). Variants of this energy norm
of the dynamic residual can be found in [17].

like all estimation techniques, expansion methods should clearly indicate a trade-off
between test and modeling errors, since both test and model are subject to error. But
modeling errors are not easily taken into account. Common expansion techniques
thus only use the model to build a subspace of likely displacements.

Interpolation methods, the simplest form of subspace method are discussed in sec-
tion 3.3.2 . Standard subspace methods and their implementation are discussed in
section section 3.3.3 . Methods taking modeling errors into account are discussed in
section 3.3.4 .

3.3.2 Basic interpolation methods for unmeasured DOFs

Translations are always measured in a single direction. By summing the measure-
ments of all sensors at a single physical node, it is possible for triaxial measurements
to determine the 3-D motion. Using only triaxial measurements is often econom-
ically/technically impossible and is not particularly desirable. Assuming that all
unmeasured motions are zero is however often not acceptable either (often distorts
the perception of test modeshapes in 3-D wire frame displays).

Historically, the first solutions to this problem used geometrical interpolation meth-
ods estimating the motion in less important directions based on measurements at a
few selected nodes.

Wire-frame displays can be considered as trivial interpolation methods since the
motion between two test nodes is interpolated using linear shape functions.

In the SDT, you can easily implement interpolation methods using matrices which
give the relation between measured DOFs tdof and a larger set of deformation DOFs
ndof. The easiest approach is typically a use of the fe sens WireExp command as
in the example below

% generate example, see sdtweb(’demosdt.m#Sleeper’)

cf=demosdt(’sleeper’);

TR=fe_sens(’wireexp’,cf.CStack{’Test’})
fe_sens(’WireExpShow’,cf,TR)

% display partial shapes as cell array

disp(TR)

r1=[{’’} fe_c(TR.adof([1 3 5]))’;

fe_def(’subdof-cell’,fe_def(’subdef’,TR,[1 3 5]),[1 2 46 48]’)]
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Given an interpolation matrix TR, you can animate interpolated shapes using
cf.def={def,exp}. The interpolation (expansion) matrix TR has fields

• TR.DOF lists DOFs where the response is interpolated

• TR.adof lists input DOFs, these should match identifiers in the first column
of a sens.tdof field.

• TR.def give the displacement at all DOFs corresponding to a unit sensor
motion. Note as shown in the example above that a 1.08 (1− y) measurement
should lead to a negative value on the 1.02 (1y) DOF. The same holds for
measurements in arbitrary directions, �TR.def should be unity when projected
in the measurement direction.

The fe sens WireExp command considers the wire frame as a coarse FEM model
and uses expansion (see section 3.3.3 for details) to generate the interpolation. This
is much more general than typical geometric constructions (linear interpolations,
spline), which cannot handle arbitrary geometries.

Manual building of the interpolation matrix can be done by filling in the TR.def

columns. fe sens(’WireExpShow’,cf,TR) can then be used to verify the interpo-
lation associated with each sensor (use the +/- buttons to scan trough sensors).

Starting from a basis of vectors exp.def with non unit displacements at the mea-
surement DOFs, you can use

TR=exp;TR.adof=tdof(:,1);

TR.def=exp.def*pinv(fe_c(exp.DOF,tdof)*exp.def);

to minimize the norm of the test error (3.6) for a response within the subspace
spanned by exp.def and thus generate a unmeasured DOF interpolation matrix.

3.3.3 Subspace based expansion methods

If one can justify that true motion can be well represented by a vector within the
subspace characterized by a basis T with no more columns than there are sensors (one
assumes that the true displacement is of the form {qEx} = [T ] {qR}), an estimate
of the true response simply obtained by minimizing test error, that is solving the
least-squares problem

{qR} = arg min || {yTest} − [c] [T ] {qR} ||22 (3.8)
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Modeshape expansion based on the subspace of low frequency modes is known as
modal [19] or SEREP [20] expansion. The subtle difference between the two ap-
proaches is the fact that, in the original paper, modal expansion preserved test results
on test DOFs (DOFs and sensors were assumed to coincide) and interpolated motion
on other DOFs. The SDT supports modal expansion using

yExp = fe_exp(yTest,sens,T)

where yTest are the measured vectors, sens is the sensor configuration (see fe sens)
or an observation matrix c, and T is a set of target modes (computed using fe eig

or imported from an other FE code).

An advantage of the modal methods is the fact that you can select less target modes
that you have sensors which induces a smoothing of the results which can alleviate
some of the problems linked to measurement/identification errors.

The study presented in [15] concludes that modal based methods perform very well
when an appropriate set of target modes is selected. The only but essential limita-
tion seems to be the absence of design/verification methodologies for target mode
selection. Furthermore it is unclear whether a good selection always exists.

Modeshape expansion based on the subspace of static responses to unit displace-
ments at sensors is known as static expansion or Guyan reduction [21].

When expanding modeshapes or FRFs, each deformation is associated to a fre-
quency. It thus seems reasonable to replace the static responses by dynamic re-
sponses to loads/displacements at that frequency. This leads to dynamic expansion
[22]. In general, computing a subspace for each modeshape frequency is too costly.
The alternative of using a single “representative” frequency for all modes was pro-
posed in [23] but suffers from the same limitations as choosing this frequency to be
zero (Guyan reduction).

The SDT supports full order static and dynamic expansion using

yExp=fe_exp(yTest,fTest,sens,m,k,mdof)

where fTest can a single frequency (0 for static) or have a value for each shape.
In the later case, computational times are usually prohibitive so that reduced basis
solutions discussed below should be used.

For tests described by observation matrices, the unit displacement problem defining
static modes can be replaced by a unit load problem [T ] = [K]−1 [c]T . For structures
without rigid body modes this generates the same subspace as the unit displacement
problem. In other cases [K] is singular and can be simply mass-shifted (replaced
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by K + αM with α usually taken small when compared to the square of the first
flexible frequency, see section 6.2.4 ).

In practice, static expansion can be restated in the form (3.8) where T corresponds
to constraint or modes associated to the load collocated to the output shape matrix
characterizing sensors (see section 6.2 ). Restating the problem in terms of mini-
mization is helpful if you want to compute your static responses outside the SDT
(you won’t need to import your mass and stiffness matrices but only the considered
static responses).

The weakness of static expansion is the existence of a frequency limit found by com-
puting modes of the structure with all sensors fixed. In many practical applications,
this frequency limit is not that low (typically because of lack of sensors in certain
areas/directions). You can easily compute this frequency limit using fe exp.

Full order dynamic expansion is typically too expensive to be considered for a full or-
der model. The SDT supports reduced basis dynamic expansion where you compute
dynamic expansion on a subspace combining modes and static responses to loads at
sensors. A typical calling sequence combining modeshape computations and static
correction would be

[md0,f0,kd] = fe_eig(m,k,[105 30 1e2]);

T = [kd \ ((sens.ctn*sens.cna)’) md0];

mdex = fe_exp(IIres.’,IIpo(:,1)*2*pi,sens,m,k,mdof,T);

You should note however that the minimum dynamic residual expansion (MDRE)
discussed in the next section typically gives better results at a marginal computa-
tional cost increase, so that you should only use dynamic expansion to expands FRFs
(MDRE for FRFs is not currently implemented in fe exp) or operational deflection
shapes (for which modeling error is hard to define).

3.3.4 Model based expansion methods

Given metrics on test (3.6) and modeling (3.7) error, one uses a weighted sum of
the two types of errors to introduce a generalized least-squares problem

minqj,ex ‖R(qj,ex)‖2K + γjεj (3.9)

MDRE (Minimum Dynamic Residual Expansion) assumes test errors to be zero.
MDRE-WE (MDRE With test Error) sets the relative weighting (γj coefficient)

90



iteratively until the desired bound on test error is reached (this is really a way to
solve the least-squares problem with a quadratic inequality as proposed in [24]).

These methods are currently only implemented for modeshape expansion. When
they can be used, they are really superior to subspace methods. The proper strategy
to choose the error bound in MDRE-WE is still an open issue but it directly relates
to the confidence you have in your model and test results.

3.4 Structural dynamic modification

While test results are typically used for test/analysis correlation and update, exper-
imental data have direct uses. In particular,

• experimental damping ratios are often used for finite element model predic-
tions;

• identified models can be used to predict the response after a modification (if
this modification is mechanical, one talks about structural modification, if it
is a controller one does closed loop response prediction);

• identified models can be used to generate control laws in active control appli-
cations;

• if some input locations of interest for structural modification have only been
tested as output locations, the reciprocity assumption (see section 2.4.2 ) can
be used to predict unmeasured transfers. But these predictions lack residual
terms (see section 6.2.3 ) which are often important in coupled predictions.

Structural modification and closed loop predictions are important application ar-
eas of SDT. For closed loop predictions, users typically build state-space models
with res2ss and then use control related tools (Control Toolbox, Simulink). If
mechanical modifications can be modeled with a mass/damping/stiffness model di-
rectly connected to measured inputs/outputs, predicting the effect of a modification
takes the same route as illustrated below. Mass effects correspond to acceleration
feedback, damping to velocity feedback, and stiffness to displacement feedback.

The following illustrates on a real experimental dataset the prediction of a 300 g
mass loading effect at a locations 1012 − z and 1112 − z (when only 1012 − z is
excited in the gartid dataset used below).
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ci=demosdt(’demo gartid est’);

ci.Stack{’Test’}.xf=-ci.Stack{’Test’}.xf;% driving 1012-z to 1012z

ci.Stack{’Test’}.dof(:,2)=12.03;
ci.IDopt.reci=’1 FRF’; idcom(ci,’est’);

ind=fe_c(ci.Stack{’IdMain’}.dof(:,1),[1012;1112],’ind’);
po_ol=ci.Stack{’IdMain’}.po;

% Using normal modes

NOR = res2nor(ci.Stack{’IdMain’}); NOR.pb=NOR.cp’;

S=nor2ss(NOR,’hz’); % since NOR.idopt tells acc. SS is force to Acc

mass=.3; a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;

po_cln=ii_pof(eig(a_cl)/2/pi,3,2)

if getpref(’SDT’,’UseControlToolbox’,1) && any(exist(’ss’,’file’)==[2 6]);

SS=S;set(SS,’b’,S.b(:,4),’d’,S.d(:,4),’InputName’,S.InputName(4))

else % Without CTbox

SS=S;SS.b=SS.b(:,4);SS.d=SS.d(:,4);SS.dof_out=SS.dof_out(4,:);

end

qbode(SS,ci.Stack{’Test’}.w*2*pi,’iiplot "Normal"’);

% Using complex modes

SA = res2ss(ci.Stack{’IdMain’},’AllIO’);
a_cl = S.a - S.b(:,ind)*S.c(ind,:)*mass;

po_clx=ii_pof(eig(a_cl)/2/pi,3,2)

if getpref(’SDT’,’UseControlToolbox’,1) && any(exist(’ss’,’file’)==[2 6]);

SS=SA;set(SS,’b’,S.b(:,4),’d’,S.d(:,4)*0,’InputName’,S.InputName(4))

else % Without CTbox

SS=SA;SS.b=SS.b(:,4);SS.d=SS.d(:,4)*0;SS.dof_out=S.dof_out(4,:);

end

qbode(SS,ci.Stack{’Test’}.w*2*pi,’iiplot "Cpx"’);

iicom(’ch4’);

% Frequencies

figure(1);in1=1:8;subplot(211);

bar([ po_clx(in1,1) po_cln(in1,1)]./po_ol(in1,[1 1]))

ylabel(’\Delta F / F’);legend(’Complex modes’,’Normal modes’)

set(gca,’ylim’,[.5 1])

% Damping
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subplot(212);bar([ po_clx(in1,2) po_cln(in1,2)]./po_ol(in1,[2 2]))

ylabel(’\Delta \zeta / \zeta’);legend(’Complex modes’,’Normal modes’)

set(gca,’ylim’,[.5 1.5])

Notice that the change in the sign of ci.Stack{’Test’}.xf needed to have a positive
driving point FRFs (this is assumed by id rm). Reciprocity was either applied using
complex (the ’AllIO’ command in res2ss returns all input/output pairs assuming
reciprocity) or normal modes with NOR.pb=NOR.cp’.

Closed loop frequency predictions agree very well using complex or normal modes
(as well as with FEM predictions) but damping variation estimates are not very
good with the complex mode state-space model.

There is much more to structural dynamic modification than a generalization of this
example to arbitrary point mass, stiffness and damping connections. And you can
read [25] or get in touch with SDTools for our latest advances on the subject.

93

mailto:info@sdtool.com


3 Test/analysis correlation tutorial

94



4

FEM tutorial

4.1 FE mesh declaration . . . . . . . . . . . . . . . . . 97

4.1.1 Direct declaration of geometry (truss example) . . 97

4.2 Building models with feutil . . . . . . . . . . . . . 98

4.3 Building models with femesh . . . . . . . . . . . . 103

4.3.1 Automated meshing capabilities . . . . . . . . . . 104

4.3.2 Importing models from other codes . . . . . . . . . 105

4.3.3 Importing model matrices from other codes . . . . 105

4.4 The feplot interface . . . . . . . . . . . . . . . . . . 107

4.4.1 The main feplot figure . . . . . . . . . . . . . . . . 107

4.4.2 Viewing stack entries . . . . . . . . . . . . . . . . . 111

4.4.3 Pointers to the figure and the model . . . . . . . . 111

4.4.4 The property figure . . . . . . . . . . . . . . . . . 112

4.4.5 GUI based mesh editing . . . . . . . . . . . . . . . 114

4.4.6 Viewing shapes . . . . . . . . . . . . . . . . . . . . 115

4.4.7 Viewing property colors . . . . . . . . . . . . . . . 117

4.4.8 Viewing colors at nodes . . . . . . . . . . . . . . . 118

4.4.9 Viewing colors at elements . . . . . . . . . . . . . 118

4.4.10 feplot FAQ . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Other information needed to specify a problem . 121

4.5.1 Material and element properties . . . . . . . . . . 121

4.5.2 Other information stored in the stack . . . . . . . 124

4.5.3 Cases GUI . . . . . . . . . . . . . . . . . . . . . . 124

4.5.4 Boundary conditions and constraints . . . . . . . . 126

4.5.5 Loads . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.1 Sensor GUI, a simple example . . . . . . . . . . . . 128

4.6.2 Sensor definition from a cell array . . . . . . . . . 129

95



4.6.3 Sensor data structure and init commands . . . . . 132

4.6.4 Topology correlation and observation matrix . . . 140

4.7 Stress observation . . . . . . . . . . . . . . . . . . . 144

4.7.1 Building view mesh . . . . . . . . . . . . . . . . . 144

4.7.2 Building and using a selection for stress observation 145

4.7.3 Observing resultant fields . . . . . . . . . . . . . . 146

4.8 Computing/post-processing the response . . . . . 147

4.8.1 Simulate GUI . . . . . . . . . . . . . . . . . . . . . 147

4.8.2 Static responses . . . . . . . . . . . . . . . . . . . . 147

4.8.3 Normal modes (partial eigenvalue solution) . . . . 148

4.8.4 State space and other modal models . . . . . . . . 149

4.8.5 Viewing shapes, stress, energy, ... . . . . . . . . . . 152

4.8.6 Time computation . . . . . . . . . . . . . . . . . . 152

4.8.7 Manipulating large finite element models . . . . . 154

4.8.8 Optimized assembly strategies . . . . . . . . . . . 155



This chapter introduces notions needed to use finite element modeling in the SDT.
It illustrates how to define mechanical problems (model, boundary conditions, loads,
etc.), compute and post-process the response

• using the feplot Graphical User Interface,

• or using script commands.

The GUIs are described and the connections between graphical and low level data
are detailed for

• the model data structures,

• the case (i.e. DOFs, boundary conditions, loads, ...),

• the response to a specified case,

• the results post-processing .

4.1 FE mesh declaration

This section gives a summary of FE mesh declaration with pointers to more detailed
documentation.

4.1.1 Direct declaration of geometry (truss example)

Hand declaration of a model can only be done for small models and later sections
address more realistic problems. This example mostly illustrates the form of the
model data structure.

Figure 4.1: FE model.

The geometry is declared in the model.Node matrix (see section 7.1 and section 7.1.1
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). In this case, one defines 6 nodes for the truss and an arbitrary reference node to
distinguish principal bending axes (see beam1)

% NodeID unused x y z

model.Node=[ 1 0 0 0 0 1 0; ...

2 0 0 0 0 0 0; ...

3 0 0 0 1 1 0; ...

4 0 0 0 1 0 0; ...

5 0 0 0 2 0 0; ...

6 0 0 0 2 1 0; ...

7 0 0 0 1 1 1]; % reference node

The model description matrix (see section 7.1 ) describes 4 longerons, 2 diagonals
and 2 battens. These can be declared using three groups of beam1 elements

model.Elt=[ ...

% declaration of element group for longerons

Inf abs(’beam1’) ; ...

%node1 node2 MatID ProID nodeR, zeros to fill the matrix

1 3 1 1 7 0 ; ...

3 6 1 1 7 0 ; ...

2 4 1 1 7 0 ; ...

4 5 1 1 7 0 ; ...

% declaration of element group for diagonals

Inf abs(’beam1’) ; ...

2 3 1 2 7 0 ; ...

4 6 1 2 7 0 ; ...

% declaration of element group for battens

Inf abs(’beam1’) ; ...

3 4 1 3 7 0 ; ...

5 6 1 3 7 0 ];

You may view the declared geometry

cf=feplot; cf.model=model; % create feplot axes

fecom(’;view2;textnode;triax;’); % manipulate axes

The demo fe script illustrates uses of this model.

4.2 Building models with feutil
Declaration by hand is clearly not the best way to proceed in general.feutil pro-

vides a number of commands for finite element model creation.feutil should be
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preferred to femesh which is a lower level command. One can find meshing exam-
ples through the feutil commands in

• d truss : this demo builds a truss model using beam elements.

• d ubeam : the beginning of the demo builds a volume model that is used is
various examples of this documentation.

The principle of feutil meshing strategy is to build sub model parts using the feu-
til basic meshing commands (extrusion, rotation, revolution, division, ...) and to
assemble those models to form the resulting model thanks to the feutil AddTest

commands.

Following detailed example builds the GARTEUR model.

First the model data structure is initialized (see sdtweb model), with fields Node

(that contains some initial nodes that will be used to begin building of elements by
elementary operations), Elt (which is empty at this step), unit (that contains the
unit of the mesh, that must be coherent with material properties defined later. Here
the SI system is used that means that node positions are defined in meters.), and
name (that contains model name that is used to identify the model in the assembly
steps for example).

% Initialize model:

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 0.15;

3 0 0 0 0.4 1.0 0.176; 4 0 0 0 0.4 0.9 0.176],...

’Elt’,[],’unit’,’SI’,’name’,’GARTEUR’);

Now the fuselage is built by creating an initial beam between nodes 1 and 2 (see
feutil Object commands to easily create a number of elementary models). Then
the beam is extruded with an irregular spatial step in the x direction, to form quad4

elements that represents the fuselage.

% Fuselage

model.Elt=feutil(’ObjectBeamLine 1 2’,model);

model=feutil(’Extrude 0 1.0 0.0 0.0’,model,...

[linspace(0,.55,5) linspace(.65,1.4,6) 1.5]);

The same strategy is used to mesh the quads corresponding to the plane tail. The ex-
tremities of the initial beam to be extruded are not explicitely defined as previously,
but are found in the nodes created in the last step through the feutil FindNode

command (that returns the NodeId of nodes found by FindNode). Here nodes are
found at z position equal to .15, and x upper than 1.4. The vertical tail is built in a
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temporary model named mo0. Note that mo0 is first initialized with principal model
nodes (mo0=model;) so that new nodes that will be added during the extrusion re-
spect the NodeId numerotation of the main model. Then we can simply add the
vertical tail mo0 to the main model using the feutil AddTestCombine command
(if node numerotation was not coherent for the new part mo0 and the main model

already defined nodes, we would have to use the feutil AddTestMerge command
that can be really time consuming).

% Vertical tail

n1=feutil(’FindNode z==.15 & x>=1.4’,model);

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Extrude 3 0 0 .1’,mo0);

model=feutil(’AddTestCombine-noori’,model,mo0);

Then the vertical horizontal tail, the right and left drums, the wings and the con-
nection plate are built and added to main model using the same strategy:

% Vertical horizontal tail

n1=feutil(’FindNode z==.45’,model)

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Extrude 0 0.0 0.2 0.0’,mo0,[-1 -.5 0 .5 1]);

model=feutil(’AddTestCombine;-noori’,model,mo0);

% right drum

mo0=model; mo0.Elt=feutil(’ObjectBeamLine 3 4’);

mo0=feutil(’Extrude 1 .4 0 0’,mo0);

mo0=feutil(’Divide’,mo0,[0 2/40 15/40 25/40 1],[0 .7 1]);

model=feutil(’AddTestCombine;-noori’,model,mo0);

% left drum

mo0=feutil(’SymSel 1 0 1 0’,mo0);

model=feutil(’AddTestCombine;-noori’,model,mo0);

% wing

n1=feutil(’FindNode y==1 & x>=.55 & x<=.65’,model);

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Divide’,mo0,[0 1-.762 1]);

mo0=feutil(’Extrude 0 0.0 -1.0 0.0’,mo0,[0 0.1 linspace(.15,.965,9) ...

linspace(1.035,1.85,9) 1.9 2.0]);

model=feutil(’AddTestCombine;-noori’,model,mo0);
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% Connection plate

n1=feutil(’FindNode y==0.035 | y==-0.035 & x==.55’,model)

mo0=model; mo0.Elt=feutil(’ObjectBeamLine’,n1);

mo0=feutil(’Divide 2’,mo0);

mo0=feutil(’TransSel -.02 0 0’,mo0);

mo0=feutil(’Extrude 0 1 0 0’,mo0,[0 .02 .12 .14]);

i1=intersect(feutil(’FindNode group6’,model),feutil(’FindNode group1’,mo0));

mo0=feutil(’TransSel 0.0 0.0 -0.026’,mo0);

model=feutil(’AddTestCombine;-noori’,model,mo0);

The stiffness connecting the connection plate are built extruding a mass object to
form a beam, and then changing the name of the beam group as celas which are
the spring elements in SDT.

% Stiff links for the connection

mo0=model; mo0.Elt=feutil(’Object mass’,i1);

mo0=feutil(’Extrude 1 0 0 -.026’,mo0);

mo0.Elt=feutil(’set group1 name celas’,mo0);

The celas properties are defined in the element matrix (see sdtweb celas for more
details). First row of mo0 is the header, the springs are stored as following rows (2nd
row to the end). The springs connect the master DOF (column 3) x, y, z, θx and θy
to the same DOF on the slave nodes (column 4, 0 that mean the same as master).
The stiffness (column 7) is defined at 1e12. The 4 springs inmo0 are then added to
the main model.

% set connected DOFs and spring value

mo0.Elt(2:end,3)=12345; % master dof

mo0.Elt(2:end,4)=0; % same dof as master

mo0.Elt(2:end,7)=1e12; % stiffness

model=feutil(’AddTestCombine;-noori’,model,mo0); % add springs to main model

Then group 6 is divided in 2 groups to get the part covered by constraining layer
in a separated group (in order to help the later manipulations of this part, such as
material identifier definition).

% Make a group of the part covered by the constraining layer

model.Elt=feutil(’Divide group 6 InNode {x>.55 & y<=.85 & y>=-.85}’,model);

Then some masses are added through the ObjectMass command. Then all masses
are regrouped in a same group.

% Tip masses

i1=feutil(’FindNode y==0.93 | y==-0.93 & x==0.42’,model)
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mo0=model; mo0.Elt=feutil(’Object mass’,i1,[0.2 0.2 0.2]); %200g

model=feutil(’AddTestCombine;-noori’,model,mo0);

i1=feutil(’FindNode z==.45 & y==0’,model)

mo0=model; mo0.Elt=feutil(’Object mass’,i1,[0.5 0.5 0.5]); %500g

model=feutil(’AddTestCombine;-noori’,model,mo0);

model=feutil(’Join mass1’,model); % all mass in the same group

Then plates are oriented (see the feutil Orient command) so that offset in correct
direction can be defined. Offset (distances in the normal direction from element
plane to reference plane) are defined in element matrices in the 9th column for quad4
elements. The feutil FindElt command is used to find the indices of considered
elements in the model element matrix model.Elt.

% Orient plates that will need an off-set

model.Elt=feutil(’Orient 4:8 n 0 0 3’,model);

i1=feutil(’FindElt group4:5’,model);

model.Elt(i1,9)=0.005; % drums (positive off-set)

i1=feutil(’FindElt group6:7’,model);

model.Elt(i1,9)=-0.005; % wing

i1=feutil(’FindElt group8’,model);

model.Elt(i1,9)=0.008; % wing

Now ProId (element property identifier) and MatId (material identifier) are defined
for each element. In last meshing steps, elements have been added by group (or
separated), so that we only attribute a material and element property identifier for
each group.

% Deal with material and element properties identifier:

model.Elt=feutil(’Set group1 mat1 pro3’,model);

model.Elt=feutil(’Set group2:7 mat1 pro1’,model);

model.Elt=feutil(’Set group8 mat2 pro2’,model);

model.Elt=feutil(’Set group6 pro4’,model);

And following lines define associated properties:

% Define associated properties:

model.pl=[m_elastic(’dbval 1 aluminum’);

m_elastic(’dbval 2 steel’)];

model.il = [1 fe_mat(’p_shell’,’SI’,1) 2 1 0 .01

2 fe_mat(’p_shell’,’SI’,1) 2 1 0 .016

3 fe_mat(’p_shell’,’SI’,1) 2 1 0 .05

4 fe_mat(’p_shell’,’SI’,1) 2 1 0 .011];

The result is then displayed in feplot, coloring each material differently:

% Display resulting model in feplot:

cf=feplot(model); fecom(’;sub 1 1;view3; colordatamat’);
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4.3 Building models with femesh

Declaration by hand is clearly not the best way to proceed in general.femesh provides
a number of commands for finite element model creation. The first input argument
should be a string containing a single femesh command or a string of chained com-
mands starting by a ; (parsed by commode which also provides a femesh command
mode).

To understand the examples, you should remember that femesh uses the following
standard global variables

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

In the example of the previous section (see also the d truss demo), you could use
femesh as follows: initialize, declare the 4 nodes of a single bay by hand, declare
the beams of this bay using the objectbeamline command

FEel0=[]; FEelt=[];

FEnode=[1 0 0 0 0 0 0;2 0 0 0 0 1 0; ...

3 0 0 0 1 0 0;4 0 0 0 1 1 0]; ...

femesh(’objectbeamline 1 3 0 2 4 0 3 4 0 1 4’);

The model of the first bay in is now selected (stored in FEel0). You can now put it
in the main model, translate the selection by 1 in the x direction and add the new
selection to the main model

femesh(’;addsel;transsel 1 0 0;addsel;info’);

model=femesh(’model’); % export FEnode and FEelt geometry in model

cf=feplot; cf.model=model;

fecom(’;view2;textnode;triax;’);

You could also build more complex examples. For example, one could remove the
second bay, make the diagonals a second group of bar1 elements, repeat the cell 10
times, rotate the planar truss thus obtained twice to create a 3-D triangular section
truss and show the result (see d truss)

femesh(’reset’);
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femesh(’test2bay’);

femesh(’removeelt group2’);

femesh(’divide group 1 InNode 1 4’);

femesh(’set group1 name bar1’);

femesh(’;selgroup2 1;repeatsel 10 1 0 0;addsel’);

femesh(’;rotatesel 1 60 1 0 0;addsel;’);

femesh(’;selgroup3:4;rotatesel 2 -60 1 0 0;addsel;’);

femesh(’;selgroup3:8’);

model=femesh(’model0’); % export FEnode and FEel0 in model

cf=feplot; cf.model=model;

fecom(’;triaxon;view3;view y+180;view s-10’);

femesh allows many other manipulations (translation, rotation, symmetry, extru-
sion, generation by revolution, refinement by division of elements, selection of groups,
nodes, elements, edges, etc.) which are detailed in the Reference section.

Other more complex examples are treated in the following demonstration scripts
d plate, beambar, d ubeam, gartfe.

4.3.1 Automated meshing capabilities

While this is not the toolbox focus, SDT supports some free meshing capabilities.

fe gmsh is an interface to the open source 3D mesher GMSH. Calls to this external
program can be used to generate meshes by direct calls from MATLAB. Examples
are given in the function reference.

fe tetgen is an interface to the open source 3D tetrahedral mesh generator. See
help fe tetgen for commands.

fe fmesh(’qmesh’) implements a 2D quad mesher which meshes a coarse mesh
containing triangles or quads into quads of a target size. All nodes existing in the
rough mesh are preserved. The -noTest option removes the initial mesh.

% build rough mesh

model=feutil(’Objectquad 1 1’,[0 0 0;2 0 0; 2 3 0; 0 3 0],1,1);

model=feutil(’Objectquad 1 1’,model,[2 0 0;8 0 0; 8 1 0; 2 1 0],1,1);

% start the mesher with characteristic length of .1

model=fe_fmesh(’qmesh .1’,model.Node,model.Elt);

feplot(model);

Other resources in the MATLAB environment are initmesh from the PDE toolbox
and the Mesh2D package.
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4.3.2 Importing models from other codes

The base SDT supports reading/writing of test related Universal files. All other
interfaces are packaged in the FEMLink extension. FEMLink is installed within the
base SDT but can only be accessed by licensed users.

You can get a list of currently supported interfaces trough the

comgui(’FileExportInfo’). You will find an up to date list of interfaces with
other FEM codes at www.sdtools.com/tofromfem.html). Import of model matrices
in discussed in section 4.3.3 .

These interfaces evolve with user needs. Please don’t hesitate to ask for a patch
even during an SDT evaluation by sending a test case to info@sdtools.com.

Interfaces available when this manual was revised were

ans2sdt reads ANSYS binary files, reads and writes .cdb input (see FEMLink)
abaqus reads ABAQUS binary output .fil files, reads and writes input and

matrix files (.inp,.mtx) (see FEMLink)
nasread reads the MSC/NASTRAN [26] .f06 output file (matrices, tables, real

modes, displacements, applied loads, grid point stresses), input bulk

file (nodes, elements, properties). FEMLink provides extensions of the
basic nasread, output2 to model format conversion including element
matrix reading, output4 file reading, advanced bulk reading capabili-
ties).

naswrite writes formatted input to the bulk data deck of MSC/NASTRAN
(part of SDT), FEMLink adds support for case writing.

nopo This OpenFEM function reads MODULEF models in binary format.
perm2sdt reads PERMAS ASCII files (this function is part of FEMLink)
samcef reads SAMCEF text input and binary output .u18, .u11 , .u12 files

(see FEMLink)
ufread reads results in the Universal File format (in particular, types: 55 analy-

sis data at nodes, 58 data at DOF, 15 grid point, 82 trace line). Reading
of additional FEM related file types is supported by FEMLink through
the uf link function.

ufwrite writes results in the Universal File format. SDT supports writing of
test related datasets. FEMLink supports FEM model writing.

4.3.3 Importing model matrices from other codes
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FEMLink handles importing element matrices for NASTRAN (nasread BuildUp),
ANSYS (ans2sdt BuildUp), SAMCEF (samcef read) and ABAQUS (abaqus read).

Reading of full matrices is supported for NASTRAN in the binary .op2 and .op4

formats (writing to .op4 is also available). For ANSYS, reading of .matrix ASCII
format is supported. For ABAQUS, reading of ASCII .mtx format is supported.

Note that numerical precision is very important when importing model matrices.
Storing matrices in 8 digit ASCII format is very often not sufficient.

To incorporate full FEM matrices in a SDT model, you can proceed as follows. A
full FEM model matrix is most appropriately integrated as a superelement. The
model would typically be composed of

• a mass m and stiffness matrix k linked to DOFs mdof which you have imported with
your own code (for example, using nasread output2 or output4 and appropriate
manipulations to create mdof). Note that the ofact object provides translation
from skyline to sparse format.

• an equivalent mesh defined using standard SDT elements. This mesh will be used
to plot the imported model and possibly for repeating the model in a periodic
structure. If you have no mesh, define nodes and associated mass elements.

fesuper provides functions to handle superelements. In particular, fesuper SEAdd

lets you define a superelement model, without explicitly defining nodes or elements
(you can specify only DOFs and element matrices), and add it to another model.
Following example loads ubeam model, defines additional stiffness and mass matrices
(that could have been imported) and a visualization mesh.

% Load ubeam model :

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

% Define superelement from element matrices :

SE=struct(’DOF’,[180.01 189.01]’,...

’K’,{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},...
’Klab’,{{’m’,’k’}},...
’Opt’,[1 0;2 1]); % Matrix types, sdtweb secms#SeStruct

% Define visualization mesh :

SE.Node=feutil(’GetNode 180 | 189’,model);

SE.Elt=feutil(’ObjectBeamLine 180 189 -egid -1’);

% Add as a superelement to model :

model=fesuper(’SEadd -unique 1 1 selt’,model,SE);
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You can easily define weighting coefficient associated to matrices of the superelement,
by defining an element property (see p super for more details). Following line defines
a weighting coefficient of 1 for mass and 2 for stiffness (1001 is the MatId of the
superelement).

model.il=[1001 fe_mat(’p_super’,’SI’,1) 1 2];

You may also want to repeat the superelement defined by element matrices. Follow-
ing example shows how to define a model, from repeated superelement:

% Define matrices (can be imported from other codes) :

model=femesh(’testhexa8’);

[m,k,mdof]=fe_mk(model);

% Define the superelement:

SE=struct(’DOF’,[180.01 189.01]’,...

’K’,{{[.1 0; 0 0.1] 4e10*[1 -1; -1 1]}},...
’Klab’,{{’m’,’k’}},...
’Opt’,[1 0;2 1]);

SE.Node=model.Node; SE.Elt=model.Elt;

% Add as repeated superelement:

% (need good order of nodes for nodeshift)

model=fesuper(’SEAdd -trans 10 0.0 0.0 1.0 4 1000 1000 cube’,[],SE);

cf=feplot(model)

Superelement based substructuring is demonstrated in d cms2 which gives you a
working example where model matrices are stored in a generic superelement. Note
that numerical precision is very important when importing model matrices. Storing
matrices in 8 digit ASCII format is very often not sufficient.

4.4 The feplot interface

Three kinds of manipulations are possible using the feplot GUI

• viewing the model and post-processing the responses,

• setting and displaying the mechanical problem (model properties and cases),

• setting the view properties.

4.4.1 The main feplot figure
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feplot figures are used to view FE models and hold all the data needed to run sim-
ulations. Data in the model can be viewed in the property figure (see section 4.4.4
). Data in the figure can be accessed from the command line through pointers as
detailed in section 4.4.3 . The feplot help gives architecture information, while
fecomlists available commands. Most demonstrations linked to finite element mod-
eling (see section 1.1 for a list) give examples of how to use feplot and fecom.

Feplot�
properties

Context menu

Start/stop�
animation

Channel�
Selection

Figure 4.2: Main feplot figure.

The first step of most analyzes is to display a model in the main feplot figure.
Examples of possible commands are (see fecom load for more details)

• cf=feplot(model) display the model in a variable and returns a pointer object
cf to the figure.

• cf=feplot(5);cf.model=model; do the same thing but in figure 5. cf=feplot;cf.model={node,elt};
will work for just nodes and elements. Note that cf.model is a method to define
the model and is not a pointer. cf.mdl is a pointer to the model, see section 4.4.3
.

• feplot(’load’,’File.mat’) load a model from a .mat file.

As an example, you can load the data from the gartfe demo, get cf a SDT handle

for a feplot figure, set the model for this figure and get the standard 3D view of
the structure

model=demosdt(’demogartfe’)
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cf=feplot; % open FEPLOT and define a pointer CF to the figure

cf.model=model;

The main capabilities the feplot figure are accessible using the figure toolbar, the
keyboard shortcuts, the right mouse button (to open context menus) and the menus.

Toolbar

List of icons used in GUIs

Model properties used to edit the properties of your model.

Start/stop animation

Previous Channel/Deformation

Next Channel/Deformation

iimouse zoom

Orbit. Remaining icons are part of MATLAB cameratoolbar func-
tionality.

Snapshot. See iicom ImWrite.

Keyboard shortcuts

At this level note how you can zoom by selecting a region of interest with your
mouse (double click or press the i key to zoom back). You can make the axis active
by clicking on it and then use any of the u, U, v, V, w, W, 3, 2 keys to rotate the plot
(press the ? key for a list of iimousekey shortcuts).

Menus and context menu

The contextmenu associated with your plot may be opened using the right mouse
button and select Cursor. See how the cursor allows you to know node numbers and
positions. Use the left mouse button to get more info on the current node (when
you have more than one object, the n key is used to go to the next object). Use the
right button to exit the cursor mode.

Notice the other things you can do with the ContextMenu (associated with the figure,
the axes and objects). A few important functionalities and the associated commands
are

• Cursor Node tracks mouse movements and displays information about pointed
object. This is equivalent to the iimouse(’cursor’) command line.
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• Cursor...[Elt,Sel,Off] selects what information to display when tracking
the mouse. The iimouse(’cursor[onElt,onSel,Off]’) command lines are
possible.

• Cursor... 3DLinePick (which can be started with fe fmesh(’3DLineInit’))
allows node picking. Once started, the context menu gives access info (lists
picked nodes and distances) and done prints the list of picked nodes.

• TextNode activates the node labeling. It is equivalent to the fecom(’TextNode’)
command line.

• Triax displays the orientation triax. It is equivalent to the fecom(’triax’)

command line.

• Undef shows the undeformed structure. Other options are accessible with the
fecom(’undef[dot,line]’) command line.

• View�s... [View n+x,...] selects default plot orientation. The
iimouse(’[vn+x,...]’) command lines are available.

• colorbar on shows the colorbar, for more accurate control see fecom ColorBar.

• Zoom Reset is the same as the iimouse(’resetvie’) command line to reset
the zoom.

• setlines is the same as the setlines command line.

The figure Feplot menu gives you access to the following commands (accessible by
fecom)

• Feplot:Feplot/Model properties opens the property figure (see section 4.4.4
).

• Feplot:Sub commands:Sub IsoViews (same as iicom(’subiso’)) gets a plot
with four views of the same mode. Use iicom(’sub2 2 step’) to get four
views of different modes.

• Feplot:Show menu generates standard plots. For FE analyses one will gener-
ally use surface plots color-coded surface plots using patch objects) or wire-
frame plots (use Feplot:Show menu to switch).

• Feplot:Misc shows a Triax or opens the channel selector.

• Feplot:Undef is used to show or not the undeformed structure.
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• Feplot:Colordata shows structure with standard colors.

• Feplot:Selection shows available selections.

• Feplot:Renderer is used to choose the graphical rendering. Continuous an-
imation in OpenGL rendering is possible for models that are not too large.
The fecom SelReduce can be use to coarsen the mesh otherwise.

• Feplot:Anim chooses the animation mode.

• Feplot:View defaults changes the orientation view.

4.4.2 Viewing stack entries

You can typically view stack entries by clicking on the associated entry and using
ProViewOn ( icon). Handling of which deformation is shown in multi-channel
entries is illustrated below

model=demosdt(’demo UbeamDofLoad’);cf=feplot;

fecom(’curtabCases’,’Point load 1’);fecom(’proViewOn’);

% Control channel in multi column DOFLoad

cf.CStack{’Point load 1’}.Sel.ch=2;fecom(’proViewOn’);

4.4.3 Pointers to the figure and the model

cf1=feplot returns a pointer to the current feplot figure. The handle is used
to provide simplified calling formats for data initialization and text information
on the current configuration. You can create more than one feplot figure with
cf=feplot(FigHandle). If many feplot figures are open, one can define the target
giving an feplot figure handle cf as a first argument to fecom commands.

The model is stored in a graphical object. cf.model is a method that calls fecom

InitModel. cf1.mdl is a method that returns a pointer to the model. Modi-
fications to the pointer are reflected to the data stored in the figure. However
mo1=cf.mdl;mo1=model makes a copy of the variable model into a new variable
mo1.

cf.Stack gives access to the model stack as would cf.mdl.Stack but allows text
based access. Thus cf.Stack{’EigOpt’} searches for a name with that entry and
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returns an empty matrix if it does not exist. If the entry may not exist a type must
be given, for example cf.Stack{’info’,’EigOpt’}=[5 10 1].

cf.CStack gives access to the case stack as would calls of the form

Case=fe case(cf.mdl,’getcase’);stack get(Case,’FixDof’,’base’) but it al-
lows more convenient string based selection of the entries.

cf.Stack and cf.CStack allow regular expressions text based access. First character
of such a text is then #. One can for example access to all of the stack entries
beginning by the string test with cf.Stack{’#test.*’}. Regular expressions used
by SDT are standard regular expressions of Matlab. For example . replaces any
character, * indicates 0 to any number repetitions of previous character...

4.4.4 The property figure

Finite element models are described by a data structures with the following main
fields (for a full list of possible fields see section 7.6 )

.Node nodes

.Elt elements

.pl material properties

.il element properties

.Stack stack of entries containing additional information cases (boundary
conditions, loads, etc.), material names, etc.

The model content can be viewed using the feplot property figure. This figure is

opened using the icon, or fecom(’ProInit’).
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Figure 4.3: Model property interface.

This figure has the following tabs

• Model tab gives general information on the model nodes and elements. You can
declare those by hand as shown in section 4.1.1 , through structured mesh manip-
ulations with feutil see section 4.3 , or through import see section 4.3.2 . (see
section 4.5 and Figure 4.3). You can visualize one or more groups by selecting
them in the left group list of this tab.

• Mat tab lists and edits all the material. In the mode, associated elements in
selection are shown. See section 4.5.1 .

• ElProp tab lists and edits all the properties. See section 4.5.1 .

• Stack tab lists and edits general information stored in the model (see section 7.7
for possible entries). You can access the model stack with the cf.Stack method.

• Cases tab lists and edits load and boundary conditions (see section 4.5.3 and
Figure 4.9). You can access the case stack with the cf.CStack method.

• Simulate tab allows to launch the static and dynamic simulation (see section 4.8
and Figure 4.12).

The figure icons have the following uses
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Model properties used to edit the properties of your model.

Active display of current group, material, element property, stack
or case entry. Activate with fecom(’ProViewOn’);

Open the iiplot GUI.

Open/close feplot figure

Refresh the display, when the model has been modified from script.

4.4.5 GUI based mesh editing

This section describes functionality accessible with the Edit list item in the Model

tab. To force display use fecom(’CurtabModel’,’Edit’).

• AddNode opens a dialog that lets you enter nodes by giving their coordinates
x y z, their node number and coordinates NodeId x y z or all the node in-
formation NodeId CID DID GID x y z.

• AddNodeCG starts the 3D line picker. You can then select a group of nodes
by clicking with the left button on these nodes. When you select Done with
the context menu (right click), a new node is added at the CG of the selected
nodes.

• AddNodeOnEdge starts the 3D line picker to pick two nodes and adds nodes at
the middle point of the segment.

• AddElt Name starts the 3D line picker and lets you select nodes to mesh indi-
vidual elements. With Done the elements are added to the model as a group.

• AddRbe3 starts a line picker to define an RBE3 constraint. The first node
picked is slave to the motion of other nodes.

• RemoveWithNode starts the 3D line picker. You can then select a group of
nodes by clicking with the left button on these nodes. When you select Done

with the context menu (right click), elements containing the selected nodes are
removed.

• RemoveGroup opens a dialog to remove some groups.

Below are sample commands to run the functionality from the command line.

model=demosdt(’demoubeam’);cf=feplot;

fecom(’CurtabModel’,’Edit’)
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fecom(cf,’addnode’)

fecom(cf,’addnodecg’)

fecom(cf,’addnodeOnEdge’)

fecom(cf,’RemoveWithNode’)

fecom(cf,’RemoveGroup’)

fecom(cf,’addElt tria3’)

fe_case(cf.mdl,’rbe3’,’RBE3’,[1 97 123456 1 123 98 1 123 99]);

fe_case(cf.mdl,’rbe3 -append’,’RBE3’,[1 100 123456 1 123 101 1 123 102]);

fecom addRbe3

4.4.6 Viewing shapes

feplot displays shapes and color fields at nodes. The basic def data structure
provides shapes in the .def field and associates each value with a .DOF (see mdof).
For other inits see fecom InitDef.

[model,def]=demosdt(’Demo gartfe’); % Get example

cf=feplot(model,def); % display model and shapes

fecom(’ch7’); % select channel 7 (first flex mode)

fecom(’pro’); % Show model properties

Scan through the various deformations using the +/- buttons/keys or clicking in the
deformations list in the Deformations tab. From the command line you can use
fecom ch commands.

Animate the deformations by clicking on the button. Notice how you can still
change the current deformation, rotate, etc. while running the animation. Anima-
tion properties can be modified with fecom Anim commands or in the General tab
of the feplot properties figure.

Modeshape scaling can be modified with the l/L key, with fecom Scale commands
or in the Axes tab of the feplot properties figure.

You may also want to visualize the measurement at various sensors (see section 4.6
and fe sens) using a stick or arrow sensor visualization (fecom showsens or fecom
showarrow). On such plots, you can label some or all degrees of freedom using the
call fecom (’doftext’,idof).

Look at the fecom reference section to see what modifications of displayed plots are
available.
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Superposing shapes

Modeshape superposition is an important application (see plot of section 2.2.1 )
which is supported by initializing deformations with the two deformation sets given
sequentially and a fecom ch command declaring more than one deformation. For
example you could compare two sets of deformations using

[model,def]=demosdt(’demo gartfe’);cf=feplot(model); % demo init

cf.def(1)=def; % First set of deformations

def.def=def.def+rand(size(def.def))/5;

cf.def(2)=def; % second set of deformations

fecom(’show2def’); fecom(’scalematch’);

where the scalematch command is used to compare deformations with unequal
scaling. You could also show two deformations in the same set

cf=demosdt(’demo gartfe plot’);

fecom(’;showline; ch7 10’)

The -,+ buttons/commands will then increment both deformations numbers (overlay
8 and 11, etc.).

Element selections

Element selections play a central role in feplot. They allow selection of a model
subpart (see section 7.12 ) and contain color information. The following example
selects some groups and defines color to be the z component of displacement or all
groups with strain energy deformation (see fecom ColorData commands)

cf=demosdt(’demo gartfe plot’);

cf.sel(1)={’group4:9 & group ~=8’,’colordata z’};
pause

cf.def=fe_eig(cf.mdl,[6 20 1e3]);

cf.sel(1)={’group all’,’colordata enerk’};
fecom(’colorbar’);

You can also have different objects point to different selections. This model has
an experimental mesh stored in element group 11 (it has EGID -1). The following
commands define a selection for the FEM model (groups 1 to 10) and one for the
test wire frame (it has EGID<0). The first object cf.o(1) displays selection 1 as a
surface plot (ty1 with a blue edge color. The second object displays selection to
with a thick red line.
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cf=demosdt(’demo gartfe plot’);

cf.sel(1)={’group1:10’}; cf.sel(2)=’egid<0’;

cf.o(1)={’ty1 def1 sel1’,’edgecolor’,’b’}
cf.o(2)={’ty2sel2’,’edgecolor’,’r’,’linewidth’,2}

Note that you can use FindNode commands to display some node numbers. For
example try fecom(’textnode egid<0 & y>0’).

Figure 4.4: Stress level plot.

4.4.7 Viewing property colors

For reference information on colors, see fecom ColorData.

When preparing a model, one often needs to visualize property colors.

cf=feplot(demosdt(’demogartfe’));

fecom(’ColorDataMat’); % Display color associated with MatId

% Now a partial selection with nicer transparency

cf.sel={’eltname~=mass’,’ColorDataPro-alpha.1-edgealpha .05’}

How do I keep group colors constant when I select part of a model?

One can define different types of color for selection using fecom ColorData. In par-
ticular one can color by GroupId, by ProId or by MatId using respectively fecom

colordatagroup, colordatapro or colordatamat. Without second argument, col-
ors are attributed automatically. One can define a color map with each row of the
form [ID Red Green Blue] as a second argument: fecom(’colordata’,colormap).
All ID do not need to be present in colormap matrix (colors for missing ID are then
automatically attributed). Following example defines 3 color views of the same
GART model:

cf=demosdt(’demo gartFE plot’);
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% ID Red Green Blue

r1=[(1:10)’ [ones(3,1); zeros(7,1)] ...

[zeros(3,1); ones(7,1)] zeros(10,1)]; % colormap

fecom(’colordatagroup’,r1) % all ID associated with color

% redefine groups 4,5 color

cf.Stack{’GroupColor’}(4:5,2:4)=[0 0 1;0 0 1];

fecom(’colordatagroup’);

% just some ID associated with color

fecom(’colordatapro’,[1 1 0 0; 3 1 0 0])

fecom(’colordatamat’) % no color map defined

cf.Stack

4.4.8 Viewing colors at nodes

Color at nodes can be based on the current display. In particular, ColorDataEvalA,
EvalX, ... EvalRadZ, EvalTanZ use the information of current motion from initial
position to generate a color field dynamically. The advantage of this strategy is that
no prior computation is needed.

Display of specific fields is another common application. Thus ColorDataDOF 19

displays DOF .19 (pressure). This the field is not needed to display the motion of
nodes, prior extraction from the deformations is needed.

4.4.9 Viewing colors at elements

Display of energies is a typical case of color at elements. Since computing energies for
many deformations can take time, it is considered best practice to compute energies
first and display energies next.

cf=demosdt(’demo gartFE plot’);

% If EltId are not consistent you may need to fix them

% The ; in ’eltidfix;’ is used to prevent display of warning messages

[eltid,cf.mdl.Elt]=feutil(’eltidfix;’,cf.mdl);

Ek=fe_stress(’Enerk -curve’,cf.mdl,cf.def);

fecom(cf,’ColorDataElt’,Ek) % Values for each element

% Sum by group

fecom(cf,’ColorDataElt -bygroup -frac -colorbartitle "Frac %"’,Ek)

More details are given in fe stress feplot.
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4.4.10 feplot FAQ

feplot lets you define and save advanced views of your model, and export them as
.png pictures.

• How do I display part of the model as wire frame? (Advanced object
handling)

What is displayed in a feplot figure is defined by a set of objects. Once you
have plotted your model with cf=feplot(model), you can access to displayed
objects through cf.o(i) (i is the number of the object). Each object is defined
by a selection of model elements (’seli’) associated to some other properties
(see fecom SetObject). Selections are defined as FindElt commands through
cf.sel(i). Displayed objects or selections can be removed using cf.o(i)=[]

or cf.sel(i)=[].
Following example loads ubeam model, defines 2 complementary selections,
and displays the second as a wire frame (ty2):

model=demosdt(’demoubeam’); cf=feplot

% define visualisation

cf.sel(1)=’WithoutNode{z>1 & z<1.5}’;
cf.sel(2)=’WithNode{z>1 & z<1.5}’;
cf.o(1)={’sel1 ty1’,’FaceColor’,[1 0 0]}; % red patch

cf.o(3)={’sel2 ty2’,’EdgeColor’,[0 0 1]}; % blue wire frame

% reinit visualisation :

cf.sel(1)=’groupall’;

cf.sel(2)=[]; cf.o(3)=[];

• Is feplot able to display very large models?

There is no theoretical size limitation for models to be displayed. However,
due to the use of Matlab figures, and although optimization efforts have been
done, feplot can be very slow for large models. This is due to the inefficient
use of triangle strips by the Matlab calls to OpenGL, but to ensure robustness
SDT still sticks to strict Matlab functionality for GUI operation.

When encountering problems, you should first check that you have an ap-
propriate graphics card, that has a large memory and supports OpenGL and
that the Renderer is set to opengl. Note also that any X window forwarding
(remote terminal) can result in very slow operation: large models should be
viewed locally since Matlab does not support an optimized remote client.

To increase fluidity it is possible to reduce the number of displayed patches
using fecom command SelReducerp where rp is the ratio of patches to be
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kept. Adjusting rp, fluidity can be significantly improved with minor visual
quality loss.
Following example draws a 50x50 patch, and uses fecom(’ReduceSel’) to
keep only a patch out of 10:

model=feutil(’ObjectQuad’,[-1 -1 0;-1 1 0;1 1 0;1 -1 0],50,50);

cf=feplot(model); fecom(cf,’showpatch’);

fecom(cf,’SelReduce .1’); % keep only 10% of patches.

If you encounter memory problems with feplot consider using fecom load-hdf.

• How do I save figures?

You should not save feplot figures but models using fecom Save.

To save images shown in feplot, you should see iicom ImWrite. If using
the MATLAB print, you should use the -noui switch so that the GUI is not
printed. Example print -noui -depsc2 FileName.eps.

• MATLAB gives the warning Warning: RGB color data not yet sup-
ported in Painter’s mode. This is due to the use of true colors for ColorDataMat
and other flat colors. You should save your figure as a bitmap or use the fecom
ShowLine mode.

• How do I define a colorbar scale and keep it constant during anima-
tion?

When using fecom ColorDataEval commands (useful when displayed defor-
mation is restituted from reduced deformation at each step), color scaling is
updated at each step.
One can use fecom(’ScaleColorOne’) to force the colorbar scale to remain
constant. In that case one can define the limit of the color map with set(cf.ga,’clim’,[-1

1]) where cf is a pointer to target feplot figure, and -1 1 can be replaced by
color map boundaries.

• How do I make an animation based on my deformation field dis-
played in feplot ?

Several strategies are available depending on the user needs.

– The simplest way to do this is to generate an avi file using the feplot fig-
ure menu: Feplot > Anim > MakeAVI. Equivalent command line inputs
with variants are provided in fecom AnimMovie documentation.

– SDT allows generating animated gif from feplot animations using the
convert function. convert(’AnimMovie25’) will generate a 25 steps
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feplot animation as an animated gif. To pilot a subsampling of steps,
see fecom Anim. Note that the convert function is a gateway function
to the convert function of ImageMagick, that should be installed on
your system. You can look up http://www.imagemagick.org for more
information.

– Better avi results can be obtained in recent MATLAB by using the
VideoWriter object with lower level feplot calls. The following code
allows doing this

writerObj = VideoWriter([’TEST2_ANIM.avi’]); %’Archival’);

writerObj.FrameRate=830; % fps

writerObj.Quality=100;

open(writerObj);

cf.ua.PostFcn=sprintf([’evalin(’’base’’,’...

’’’frame = getframe(gcf);writeVideo(writerObj,frame);’’)’]);

frame = getframe;

writeVideo(writerObj,frame); % frame will contain the film

close(writerObj);

4.5 Other information needed to specify a problem

Once the mesh defined, to prepare analysis one still needs to define

• material and element properties associated to the various elements.

• boundary conditions, constraints (see section 4.5.4 ) and applied loads (see sec-
tion 4.5.5 )

Graphical editing of case properties is supported by the case tab of the model prop-
erties GUI (see section 4.5.3 ). The associated information is stored in a case data
structure which is an entry of the .Stack field of the model data structure.

4.5.1 Material and element properties

You can edit material properties using the Mat tab of the Model Properties figure
which lists current materials and lets you choose new ones from the database of each
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Edit values in table

Use context menu
to remove, duplicate,
export, ...

Select pre-defined
materials in the new table

Figure 4.5: Material tab.

material type. m elastic is the only material function defined for the base SDT. It
supports elastic materials, linear acoustic fluids, piezo-electric volumes, etc.

Similarly the ElProp tab lets you edit element properties. p beam p shell p solid

and p spring are supported element property functions.

Figure 4.6: Property tab.

When the view mode is selected ( icon pressed), you can see the elements affected
by each material or element property by selecting it in the associated tab.

You can edit properties using the Pro tab of the Model Properties figure which
lists current properties and lets you choose new ones from the database of each
property type (Figure 4.6).

The properties are stored with one property per row in model.il (see section 7.3 )
and model.il (see section 7.4 ). When using scripts, it is often more convenient to
use low level definitions of the material properties. For example (see demo fe), one
can define aluminum and three sets of beam properties with

femesh(’reset’);
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model=femesh(’test 2bay plot’);

model.pl = m_elastic(’dbval 1 steel’)

model.il = [ ...

... % ProId SecType J I1 I2 A

1 fe_mat(’p_beam’,’SI’,1) 5e-9 5e-9 5e-9 2e-5 0 0 ; ...

p_beam(’dbval 2’,’circle 4e-3’) ; ... % circular section 4 mm

p_beam(’dbval 3’,’rectangle 4e-3 3e-3’)...% rectangular section

];

Unit system conversion is supported in property definitions, through two command
options.

• -unit command option asks for a specific unit system output. It thus expects
possible input data in SI, prior to converting (and generating a proper typ

value).

• -punit command option tells the function that a specific unit system is used.
It thus expects possible input data in the specified unit system, and generates
a proper typ value.

The 3 following calls are thus equivalent to define a beam of circular section of 4mm
in the MM unit system:

il = p_beam(’dbval -unit MM 2 circle 4e-3’); % given data in SI, output in MM

il = p_beam(’dbval -punit MM 2 circle 4’); % given data in MM, output in MM

il = p_beam(’dbval -punit CM -unit MM circle 0.4’); % given data in CM, output in MM

To assign a MatID or a ProID to a group of elements, you can use

• the graphical procedure (in the context menu of the material and property
tabs, use the Select elements and affect ID procedures and follow the
instructions);

• the simple femesh set commands. For example femesh(’set group1 mat101

pro103’) will set values 101 and 103 for element group 1.

• more elaborate selections based on FindElt commands. Knowing which col-
umn of the Elt matrix you want to modify, you can use something of the form
(see gartfe)

FEelt(femesh(’find EltSelectors’), IDColumn)=ID;

You can also get values with mpid=feutil(’mpid’,elt), modify mpid, then
set values with elt=feutil(’mpid’,elt,mpid).
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4.5.2 Other information stored in the stack

The stack can be used to store many other things (options for simulations, results,
...). More details are given in section 7.7 . You can get a list of current default entry
builders with fe def(’new’).

info, EigOpt, getpref(’SDT’,’DefaultEigOpt’,[5 20 1e3])

info, Freq, getpref(’SDT’,’DefaultFreq’,[1:2])

sel, Sel, struct(’data’,’groupall’,’ID’,1)

...

Figure 4.7: Stack tab.

4.5.3 Cases GUI
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Figure 4.8: Cases properties tab.

When selecting New ... in the case property list, as shown in the figure, you get a
list of currently supported case properties. You can add a new property by clicking
on the associated new cell in the table. Once a property is opened you can typically
edit it graphically. The following sections show you how to edit these properties
trough command line or .m files.

Figure 4.9: Cases properties tab.

125



4 FEM tutorial

4.5.4 Boundary conditions and constraints

Boundary conditions and constraints are described in in Case.Stack using FixDof,
Rigid, ... case entries (see fe case and section 7.7 ). (KeepDof still exists but often
leads to misunderstanding)

FixDof entries are used to easily impose zero displacement on some DOFs. To treat
the two bay truss example of section 4.1.1 , one will for example use

femesh(’reset’);

model=femesh(’test 2bay plot’);

model=fe_case(model, ... % defines a new case

’FixDof’,’2-D motion’,[.03 .04 .05]’, ...

’FixDof’,’Clamp edge’,[1 2]’);

fecom(’ProInit’) % open model GUI

When assembling the model with the specified Case (see section 4.5.3 ), these con-
straints will be used automatically.

Note that, you may obtain a similar result by building the DOF definition vector
for your model using a script. FindNode commands allow node selection and fe c

provides additional DOF selection capabilities. Details on low level handling of fixed
boundary conditions and constraints are given in section 7.14 .

4.5.5 Loads

Loads are described in Case.Stack using DOFLoad, FVol and FSurf case entries (see
fe case and section 7.7 ).

To treat a 3D beam example with volume forces (x direction), one will for example
use

femesh(’reset’);

model = femesh(’test ubeam plot’);

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volume load’,data);

Load = fe_load(model);

feplot(model,Load);fecom(’;undef;triax;ProInit’);

To treat a 3D beam example with surface forces, one will for example use

femesh(’reset’);
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model = femesh(’testubeam plot’);

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);

To treat a 3D beam example and create two loads, a relative force between DOFs
207x and 241x and two point loads at DOFs 207z and 365z, one will for example
use

femesh(’reset’);

model = femesh(’test ubeam plot’);

data = struct(’DOF’,[207.01;241.01;207.03],’def’,[1 0;-1 0;0 1]);

model = fe_case(model,’DOFLoad’,’Point load 1’,data);

data = struct(’DOF’,365.03,’def’,1);

model = fe_case(model,’DOFLoad’,’Point load 2’,data);

Load = fe_load(model);

feplot(model,Load);

fecom(’textnode365 207 241’); fecom(’ProInit’);

The result of fe load contains 3 columns corresponding to the relative force and
the two point loads. You might then combine these forces, by summing them

Load.def=sum(Load.def,2);

cf.def= Load;

fecom(’textnode365 207 241’);

4.6 Sensors

Sensors are used for test/analysis correlation and in analysis for models where one
wants to post-process partial information. This general objective is supported by
the use of SensDof entries. This section addresses the following issues

• translation measurements associated simplified views (often wire-frame) is clas-
sical for modal testing and FEM post-processing. These can be simply defined
using a .tdof field, see also section 2.2.1 and section 2.2.2 for wire frame
geometry and sensor declaration. Commands trans, triax and laser provide
simplified calls to generate the associated translation sensors.

• other sensor types typically used in analysis are
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– rel relative displacement sensor.

– general general sensor (low level).

– resultant resultant force sensor.

– strain strain or stress sensor.

• topology correlation is the process in which sensor output is related to the
DOFs of the underlying FEM. This is implemented as the SensMatch command
detailed section 4.6.4 . In the case of translation measurements, this is only
needed for test/analysis correlation.

4.6.1 Sensor GUI, a simple example

Using the feplot properties GUI, one can edit and visualize sensors. The following
example loads ubeam model, defines some sensors and opens the sensor GUI.

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

model=fe_case(model,’SensDof append trans’,’output’,...

[1,0.0,0.5,2.5,0.0,0.0,1.0]); % add a translation sensor

model=fe_case(model,’SensDof append triax’,’output’,8); % add triax sensor

model=fe_case(model,’SensDof append strain’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]); % add strain sensor

model=fe_case(model,’sensmatch radius1’,’output’); % match sensor set ’output’

fecom(cf,’promodelviewon’);

fecom(cf,’curtab Cases’,’output’); % open sensor GUI

Clicking on Edit Label one can edit the full list of sensor labels.
The whole sensor set can be visualized as arrows in the feplot figure clicking on the
eye button on the top of the figure. Once visualization is activated one can activate
the cursor on sensors by clicking on CursorSel. Then one can edit sensor properties
by clicking on corresponding arrow in the feplot figure.

The icons in the GUI can be used to control the display of wire-frame, arrows and
links.
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Figure 4.10: GUI for sensor edition

4.6.2 Sensor definition from a cell array

Experimental setups can be defined with a cell array containing all the informa-
tion relative to the sensors (only displacement/velocity/acceleration sensors are
currently supported). This array is meant to be filled any table editor, possibly
outside MATLAB. Using EXCEL you can read it with data=sdtacx(’excel read

filename’,sheetnumber).

The first row gives column labels (the order in which they are given is free). Each
of the following rows defines a sensor. Known column headers are

• ’lab’ contains the names of the sensors. Providing a name for each sensor is
mandatory.

• ’SensType’ contains optional information such as the name of the sensor
manufacturer, their types, etc.

• ’SensId’ contains the identification numbers of the sensors. Each sensor must
have a unique SensId. If the identification is non integer, the integer part is
taken to be a NodeId. For example 10.01 will be taken to be node 10.

• ’X’, ’Y’ and ’Z’ contain the cartesian coordinates of each sensor in the refer-
ence frame. For cylindrical coordinates replace the column headers by ’R’,
’Theta’ and ’Z’ (mixing both types of coordinates inside the cell array is not
currently supported). Such columns are mandatory.

• ’DirSpec’ contains a specification of the direction in which the measurement
is done at each sensor. A minus in front of any specification can be used
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to generate the opposite direction (-TX for example). Available entries are

’dir x

y ’’

Direction of measurement specified trough its components
in global coordinates (the vector is normalized).

’X’ [1 0 0], in the reference frame

’Y’ [0 1 0], in the reference frame

’Z’ [0 0 1], in the reference frame

’N’
normal to the element(s) to which the sensor is
matched (automatically detected in the subsequent call to
SensMatch)

’TX’
tangent to matched surface in the N,X plane.

’TY’
tangent to matched surface in the N,Y plane

’TZ’
tangent to matched surface in the N,Z plane

’N^TX’
tangent orthogonal to the N,X plane

’N^TY’
tangent orthogonal to the N,Y plane

’N^TZ’
tangent orthogonal to the N,Z plane

’laser

xs ys

zs’

where (xs, ys, zs) are the coordinates of the primary or sec-
ondary source (when mirrors are used).

triax sensors are dealt with by defining three sensors with the same ’lab’ but
different ’SensId’ and ’DirSpec’. In this case, a straightforward way to define
the measurement directions is to make the first axis be the normal to the matching
surface. The second axis is then forced to be parallel to the surface and oriented
along a preferred reference axis, allowed by the possibility to define ’T*’. The third
axis is therefore automatically built so that the three axes form a direct orthonormal
basis with a specification such as N^T*. Note that there is no need to always consider
the orthonormal basis as a whole and a single trans sensor with either ’T*’ or N^T*
as its direction of measure can be specified.

In the example below, one considers a pentahedron element and aims to observe
the displacement just above the slanted face. The first vector is the normal to that
face whose coordinates are [−

√
2/2,
√

2/2, 0]. The second one is chosen (i.) parallel
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to the observed face, (ii.) in the (x, y) plane and (iii.) along x axis, so that its
coordinates are [

√
2/2,
√

2/2, 0]. Finally, the coordinates of the last vector can only
be [0, 0,−1] to comply with the orthonormality conditions. The resulting sensor
placement is depicted in figure 4.11

cf=feplot;cf.model=femesh(’testpenta6’);fecom(’triax’);

% sensor definition as cell array

tcell={’lab’,’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...
’sensor 1’,’’,1.02,.4,.6,.5,’N’;

’sensor 2’,’’,1.01,.4,.6,.5,’TX’;

’sensor 3’,’’,2.01,.4,.6,1.,’dir 1 -1 1’;

’sensor 4’,’’,1.09,.4,.6,.5,’N^TX’};disp(tcell)
sens=fe_sens(’tdoftable’,tcell);

cf.mdl=fe_case(cf.mdl,’SensDof’,’Test’,sens);

cf.mdl=fe_case(cf.mdl,’SensMatch radius1’,’Test’,’selface’);

fecom(cf,’curtab Cases’,’Test’); fecom(cf,’ProViewOn’)% open sensor GUI

sens=fe_case(cf.mdl,’sens’);sens.tdof % Check orientation

fname=fullfile(sdtdef(’tempdir’),’SensSpec.xls’);

if ~isunix % Test write to excel to illustrate ability to reread

xlswrite(fname,tcell,’Sensors’);

sdtweb(’_link’,sprintf(’open(’’%s’’)’,fname))

end

Figure 4.11: Typical axis definition of a triax sensor attached to a penta6

It is now possible to generate the experimental setup of the ubeam example described
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in the previous section by the means of a single cell array containing the data relative
to both the trans and triax sensors.

model=demosdt(’demo ubeam-pro’);

cf=feplot; model=cf.mdl;

n8=feutil(’getnode NodeId 8’,model); % triax pos.

tdof={’lab’,’SensType’,’SensId’,’X’,’Y’,’Z’,’DirSpec’;...
’sensor1 - trans’,’’,1,0.0,0.5,2.5,’Z’;

’sensor2 - triax’,’’,2,n8(:,5),n8(:,6),n8(:,7),’X’;

’sensor2 - triax’,’’,3,n8(:,5),n8(:,6),n8(:,7),’Y’;

’sensor2 - triax’,’’,4,n8(:,5),n8(:,6),n8(:,7),’Z’};
sens=fe_sens(’tdoftable’,tdof);

cf.mdl=fe_case(cf.mdl,’SensDof’,’output’,sens);

cf.mdl=fe_case(cf.mdl,’SensMatch radius1’);

fecom(cf,’curtab Cases’,’output’); % open sensor GUI

4.6.3 Sensor data structure and init commands

This is a reference section on SensDof case entries. A tutorial on the basic con-
figuration with a test wire frame and translation sensors is given in section 2.2 .
SensDof entries can contain the following fields
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sens.Node (optional) node matrix for sensor nodes that are not in the model.
When defined, all node numbers in sens.tdof should refer to these
nodes. The order typically differs from that in .tdof, you can get
the positions with fe sens(’tdofNode’,model,SensName).

sens.Elt element description matrix for a wire-frame display of the sensors
(typically for test wire-frames).

sens.bas Coordinate system definitions for sens.Node, see fe sens basis

sens.tdof see details below.
sens.DOF DOF definition vector for the analysis (finite element model). It

defines the meaning of columns in sens.cta.
sens.cta is an observation matrix associated with the observation equation

{y} = [c] {q} (where q is defined on sens.DOF ). This is built using
the fe case sens command illustrated below.

sens.Stack cell array with one row per sensor giving
’sens’,’SensorTag’,data with data is a structure. SensorTag

is obtained from SensId (first column of tdof) using
feutil(’stringdof’,SensId). It is used to define the tag
uniquely and may differ from the label that the user may want to
associated with a sensor which is stored in data.lab.

The sens.tdof field

• nominally is 5 column matrix with rows containing [SensID NodeID nx ny

nz] giving a sensor identifier (integer or real), a node identifier (positive inte-
ger, if relevant), a direction.

• can be single column DOF definition vector which can be transformed to 5
column format using tdof = fe sens(’tdof’,sens.tdof)

• SensId gives an identifier for each sensor. It should thus be unique and there
may be conflicts if it is not.

• NodeId specifies a node identifier for the spatial localization of the sensor. If
not needed (resultant sensors for example), NodeId can be set for zero.

NodeId>0 corresponds is for use of model.Node locations and sens.Node should
not be defined.

NodeId<0 is used to look for the node position in sens.Node rather than
model.Node. Mixed definitions (some NodeId positive and other negative) are
not supported.

Most initialization calls accept the specification of a physical x y z position,
a .vert0 field is then defined.
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• nx ny nz specifies a measurement direction for sensors that need one.

All sensors are generated with the command
fe case(model,’SensDof <append, combine> Sensor type’,Sensor,data,SensLab)

Sensor is the case entry name to which sensors will be added. data is a structure,
a vector, or a matrix, which describes the sensor to be added. The nature of data
depends on Sensor type as detailed below. SensLab is an optional cell array used
to define sensor labels. There should be as much elements in SensLab as sensors
added. If there is only one string in the cell array SensLab, it is used to generate
labels substituting for each sensor $id by its SensId, $type by its type (trans, strain
...), $j1 by its number in the set currently added. If SensLab is not given, default
label generation is $type $id.
In the default mode (’SensDof’ command), new sensors replace any existing ones.
In the append mode (’SensDof append’), if a sensor is added with an existing
SensID, the SensID of new sensor will changed to a free SensID value. In the
combine mode (’SensDof combine’), existing sensor with the same SensID will be
replaced by the new one.

rel

Relative displacement sensor or relative force sensor (spring load). Data passed to
the command is [NodeID1 NodeID2].

This sensor measures the relative displacement between NodeID1 and NodeID2, along
the direction defined from NodeID1 to NodeID2. One can use the command option
-dof in order to measure along the defined DOF directions (mandatory if the two
nodes are coincident). As many sensors as DOF are then added. For a relative
force sensor, on can use the command option -coef to define the associated spring
stiffness (sensor value is the product of the relative displacement and the stiffness
of the spring).

If some DOF are missing, the sensor will be generated with a warning and a partial
observation corresponding to the found DOF only.

The following example defines 3 relative displacement sensors (one in the direction
of the two nodes, and two others along x and y):

model=demosdt(’demo ubeam-pro’)

data=[30 372];

model=fe_case(model,’SensDof append rel’,’output’,data);

model=fe_case(model,’SensDof append rel -dof 1 2’,’output’,data);
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general

General sensors are defined by a linear observation equation. This is a low level
definition that should be used for sensors that can’t be described otherwise. Data
passed to the command is a structure with field .cta (observation matrix), .DOF
DOF associated to the observation matrix, and possibly .lab giving a label for each
row of the observation matrix.

The following example defines a general sensor

model=demosdt(’demo ubeam-pro’);

Sensor=struct(’cta’,[1 -1;0 1],’DOF’,[8.03; 9.03]);

model=fe_case(model,’SensDof append general’,’output’,Sensor);

trans

Translation sensors (see also section 2.2.2 ) can be specified by giving

[DOF]

[DOF, BasID]

[SensID, NodeID, nx, ny, nz]

[SensID, x, y, z, nx, ny, nz]

This is often used with wire frames, see section 2.2.2 . The definition of test sensors
is given in section 3.1.1 .

The basic case is the measurement of a translation corresponding the main directions
of a coordinate system. The DOF format (1.02 for 1y, see section 7.5 ) can then be
simply used, the DOF values are used as is then used as SensID. Note that this form
is also acceptable to define sensors for other DOFs (rotation, temperature, ...).

A number of software packages use local coordinate systems rather than a direction
to define sensors. SDT provides compatibility as follows.

If model.bas contains local coordinate systems and deformations are given in the
global frame (DID in column 3 of model.Node is zero), the directions nx ny nz

(sens.tdof columns 3 to 5) must reflect local definitions. A call giving [DOF,

BasID] defines the sensor direction in the main directions of basis BasID and the
sensor direction is adjusted.

If FEM results are given in local coordinates, you should not specify a basis for the
sensor definition, the directions nx ny nz (sens.tdof columns 3 to 5) should be [1

0 0], ... as obtained with a simple [DOF] argument in the sensor definition call.
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When specifying a BasId, it the sensor direction nx ny nz is adjusted and given in
global FEM coordinates. Observation should thus be made using FEM deformations
in global coordinates (with a DID set to zero). If your FEM results are given in local
coordinates, you should not specify a basis for the sensor definition. You can also
perform the local to global transformation with

cGL= basis(’trans E’,model.bas,model.node,def.DOF)

def.def=cGL*def.def

The last two input forms specify location as x y z or NodeID, and direction nx ny

nz (this vector need not be normalized, sensor value is the scalar product of the
direction vector and the displacement vector).

One can add multiple sensors in a single call fe case(model,’SensDof <append>

trans’, Name, Sensor) when rows of sensors contain sensor entries of the same
form.

Following example defines a translation sensor using each of the forms

model=demosdt(’demo ubeam-pro’)

model.bas=basis(’rotate’,[],’r=30;n=[0 1 1]’,100);

model=fe_case(model,’SensDof append trans’,’output’,...

[1,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append trans’,’output’,...

[2,8,-1.0,0.0,0.0]);

model=fe_case(model,’SensDof append trans’,’output’,...

[314.03]);

model=fe_case(model,’SensDof append trans’,’output’,...

[324.03 100]);

cf=feplot;cf.sel(2)=’-output’;cf.o(1)={’sel2 ty 7’,’linewidth’,2};

Sens.Stack entries for translation can use the following fields

.vert0 physical position in global coordinates.

.ID
NodeId for physical position. Positive if a model node, negative
if SensDof entry node.

.match cell array describing how the corresponding sensor
is matched to the reference model. Columns are
ElemF,elt,rstj,StickNode.
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dof

One can simply define a set of sensors along model DOFs with a direct SensDof call
model=fe case(model,’SensDof’,’SensDofName’,DofList). There is no need in
that case to pass through SensMatch step in order to get observation matrix.

model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof’,’output’,[1.01;2.03;10.01]);

Sens=fe_case(model,’sens’,’output’)

triax,laser

A triax is the same as defining 3 translation sensors, in each of the 3 translation DOF
(0.01, 0.02 and 0.03) of a node. Use fe case(model,’SensDof append triax’,

Name, NodeId) with a vector NodeId to add multiple triaxes. A positive NodeId

refers to a FEM node, while a negative refers to a wire frame node.

For scanning laser vibrometer tests
fe sens(’laser px py pz’,model,SightNodes,’SensDofName’)

appends translation sensors based on line of sight direction from the laser scanner
position px py pz to the measurement nodes SightNodes. Sighted nodes can be
specified as a standard node matrix or using a node selection command such as
’NodeId>1000 & NodeId<1100’ or also giving a vector of NodeId. If a test wire
frame exists in the SensDofName entry, node selection command or NodeId list are
defined in this model. If you want to flip the measurement direction, use a call of
the form

cf.CStack{’output’}.tdof(:,3:5)=-cf.CStack{’output’}.tdof(:,3:5)

The following example defines some laser sensors, using a test wire frame:

cf=demosdt(’demo gartfeplot’); model=cf.mdl;% load FEM

TEST=demosdt(’demo garttewire’); % see sdtweb(’pre#presen’)

TEST.tdof=[];%Define test wire frame, but start with no tdof

model=fe_case(model,’SensDof’,’test’,TEST)

model=fe_case(model,’SensDof Append Triax’,’test’,-TEST.Node(1))

% Add sensors on TEST wire frame location

model=fe_sens(’laser 0 0 6’,model,-TEST.Node(2:end,1),’test’);

% Show result

fecom(’curtab Cases’,’output’); fecom(’proviewon’);
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To add a sensor on FEM node you would use model=fe sens(’laser 0 0 6’,model,20,’test’);

but this is not possible here because SensDof entries do not support mixed defini-
tions on test and FEM nodes.

strain,stress

Note that an extended version of this functionality is now discussed in section 4.7
. Strain sensors can be specified by giving

[SensID, NodeID]

[SensID, x, y, z]

[SensID, NodeID, n1x, n1y, n1z]

[SensID, x, y, z, n1x, n1y, n1z]

[SensID, NodeID, n1x, n1y, n1z, n2x, n2y, n2z]

[SensID, x, y, z, n1x, n1y, n1z, n2x, n2y, n2z]

when no direction is specified 6 sensors are added for stress/strains in the x, y, z,
yz, zx, and xy directions (SensId is incremented by steps of 1). With n1x n1y n1z

(this vector need not be normalized) on measures the axial strain in this direction.
For shear, one specifies a second direction n2x n2y n2z (this vector need not be
normalized) (if not given n2 is taken equal to n1). The sensor value is given by
{n2}T [ε] {n1}.
Sensor can also be a matrix if all rows are of the same type. Then, one can add a set
of sensors with a single call to the fe case(model,’SensDof <append> strain’,

Name, Sensor) command.

Following example defines a strain sensor with each possible way:

model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof append strain’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append strain’,’output’,...

[6,134,0.5,0.5,0.5]);

model=fe_case(model,’SensDof append strain’,’output’,...

[5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append strain’,’output’,...

[7,370,0.0,0.0,1.0,0.0,1.0,0.0]);

Stress sensor.
It is the same as the strain sensor. The sensor value is given by {n2}T [σ] {n1}.
Following example defines a stress sensor with each possible way:
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model=demosdt(’demo ubeam-pro’)

model=fe_case(model,’SensDof append stress’,’output’,...

[4,0.0,0.5,2.5,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append stress’,’output’,...

[6,134,0.5,0.5,0.5]);

model=fe_case(model,’SensDof append stress’,’output’,...

[5,0.0,0.4,1.25,1.0,0.0,0.0,0.0,0.0,1.0]);

model=fe_case(model,’SensDof append stress’,’output’,...

[7,370,0.0,0.0,1.0,0.0,1.0,0.0]);

Element formulations (see section 6.1 ) include definitions of fields and their deriva-
tives that are strain/stress in mechanical applications and similar quantities other-
wise. The general formula is {ε} = [B(r, s, t)] {q}. These (generalized) strain vectors
are defined for all points of a volume and the default is to use an exact evaluation
at the location of the sensor.

In practice, the generalized strains are more accurately predicted at integration
points. Placing the sensor arbitrarily can generate some inaccuracy (for example
stress and strains are discontinuous across element boundaries two nearby sensors
might give different results). The -stick option can be used to for placement at
specific gauss points. -stick by itself forces placement of the sensor and the center
of the matching element. This will typically be a more appropriate location to
evaluate stresses or strains.

To allow arbitrary positioning some level of reinterpolation is needed. The proce-
dure is then to evaluate strain/stresses at Gauss points and use shape functions
for reinterpolation. The process must however involve multiple elements to limit
interelement discontinuities. This procedure is currently implemented through the
fe caseg(’StressCut’) command, as detailed in section 4.7 .

resultant

Resultant sensors measure the resultant force on a given surface. bf Note that the
observation of resultant fields is discussed in section 4.7.3 . They can be specified
by giving a structure with fields
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.ID sensor ID.

.EltSel FindElt command that gives the elements concerned by the resultant.

.SurfSel FindNode command that gives the surface where the resultant is com-
puted.

.dir with 3 components direction of resultant measurement, with 6 origin
and direction of resulting moment in global coordinates. This vector
need not be normalized (scalar product). For non-mechanical DOF,
.dir can be a scalar DOF ( .21 for electric field for example)

.type contains the string ’resultant’.

Following example defines a resultant sensor:

model=demosdt(’demo ubeam-pro’)

Sensor.ID=1;

Sensor.EltSel=’WithNode{z==1.25} & WithNode{z>1.25}’;
Sensor.SurfSel=’z==1.25’;

Sensor.dir=[0.0 0.0 1.0];

Sensor.type=’resultant’;

model=fe_case(model,’SensDof append resultant’,’output’,Sensor);

Resultant sensors are not yet available for superelements model.

4.6.4 Topology correlation and observation matrix

Sens, observation

This command is used after SensMatch to build the observation equation that relates
the response at sensors to the response a DOFs

{y(t)}NS×1 = [c]NS×N {q(t)}N×1 (4.1)

where the c matrix in stored in the sens.cta field and DOFs expected for q are
given in sens.tdof.

After the matching phase, one can build the observation matrix with
SensFull=fe case(model,’sens’,SensDofEntryName) or when using a reduced
superelement model SensRed=fe case(model,’sensSE’,SensDofEntryName). Note
that with superelements, you can also define a field .UseSE=1 in the sensor entry
to force use of the reduced model. This is needed for the generation of reduced
selections in feplot (typically cf.sel=’-Test’).
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The following example illustrates nominal strategies to generate the observed shape,
here for a static response.

model=demosdt(’demoUbeamSens’); def=fe_simul(’static’,model);

% Manual observation, using {y} = [c] {q}
sens=fe_case(model,’sens’);

def=feutilb(’placeindof’,sens.DOF,def); % If DOF numbering differs

% could use sens=feutilb(’placeindof’,def.DOF,sens); if all DOF present

y=sens.cta*def.def

% Automated curve generation

C1=fe_case(’sensObserve’,model,’sensor 1’,def)

SensMatch

Once sensors defined (see trans, ...), sensors must be matched to elements of the
mesh. This is done using
model = fe case(model,’sensmatch’,SensDofEntryName);

You may omit to provide the name if there is only one sensor set. The command
builds the observation matrix associated to each sensor of the entry Name, and stores
it as a .cta field, and associated .DOF, in the sensor stack.

Storing information in the stack allows multiple partial matches before generating
the global observation matrix. The observation matrix is then obtained using
Sens = fe case(model,’sens’,SensDofEntryName);

The matching operation requires finding the elements that contain each sensor and
the position within the reference element shape so that shape functions can be used
to interpolate the response. Typical variants are

• a radius can be specified to modify the default sphere in which a match is
sought. This is typically needed in cases some large elements.

model=fe case(model,’sensmatch radius1.0’,Name)

• elements on which to match can be specified as a FindElt string. In particular,
matching nodes outside volumes is not accepted. To obtain a match in cases
where test nodes are located outside volume elements, you must thus match
on the volume surface using
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fe case(model,’sensmatch radius1.0’,Name,’selface’)

which selects external surface of volumes and allows a normal projection to-
wards the surface and thus proper match of sensors outside the model volume.

Note that this selection does not yet let you selected implicit elements within
a superelement.

• Matching on elements is not always acceptable, one can then force matching
to the closest node. SensMatch-Near uses the motion at the matched node.
SensMatch-Rigid uses a rigid body constraints to account for the distance
between the matched node and the sensor (but is thus only applicable to cases
with rotations defined at the nearby node).

In an automated match, the sensor is not always matched to the correct elements
on which the sensor is glued, you may want to ensure that the observation matrices
created by these commands only use nodes associated to a subset of elements. You
can use a selection to define element subset on which perform the match. If you
want to match one or more specific sensors to specific element subset, you can give
cell array with SensId of sensor to match in a first column and with element string
selector in a second column.
model=fe case(model,’SensMatch’,Name,{SensIdVector,’FindEltString’});

This is illustrated below in forcing the interpolation of test node 1206 to use FEM
nodes in the plane where it is glued.

cf=demosdt(’demo gartte cor plot’);

fe_case(cf,’sensmatch -near’)

fecom(’curtabCases’,’sensors’);fecom(’promodelviewon’);

% use fecom CursorSelOn to see how each sensor is matched.

cf.CStack{’sensors’}.Stack{18,3}
% modify link to 1206 to be on proper surface

cf.mdl=fe_case(cf.mdl,’SensMatch-near’,...

’sensors’,{1206.02,’withnode {z>.16}’});
cf.CStack{’sensors’}.Stack{18,3}
% force link to given node (may need to adjust distance)

cf.mdl=fe_case(cf.mdl,’SensMatch-rigid radius .5’,’sensors’,{1205.07,21});
cf.CStack{’sensors’}.Stack{19,3}

fecom(’showlinks sensors’);fecom(’textnode’,[1206 1205])
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DofLoadSensDof

The generation of loads is less general than that of sensors. As a result it may be
convenient to use reciprocity to define a load by generating the collocated sensor.
When a sensor is defined, and the topology correlation performed with SensMatch,
one can define an actuator from this sensor using
model=fe case(model,’DofLoad SensDof’,Input Name,’Sens Name:Sens Nb’) or
for model using superelements
model=fe case(model,’DofLoad SensDofSE’,Input Name,’Sens Name:Sens Nb’).
Sens Name is the name of the sensor set entry in the model stack of the translation
sensor that defines the actuator, and Sens Nb is its number in this stack entry.
Thus Sensors:1 2 5 will define actuators with sensors 1, 2 and 5 for SensDof en-
try Sensors. Input Name is the name of the DofLoad entry that will be created in
the model stack to describe the actuator.

Note that a verification of directions can be performed a posteriori using feutilb

GeomRB.

Animation of sensor wire-frame models

This is discussed in section 2.2.4 .

Obsolete

SDT 5.3 match strategies are still available. Only the arigid match has not been
ported to SDT 6.1. This section thus documents SDT 5.3 match calls.

For topology correlation, the sensor configuration must be stored in the sens.tdof

field and active FEM DOFs must be declared in sens.DOF. If you do not have
your analysis modeshapes yet, you can use sens.DOF=feutil(’getdof’,sens.DOF).
With these fields and a combined test/FEM model you can estimate test node motion
from FEM results. Available interpolations are

near defines the projection based on a nearest node match.

rigid defines the projection based on a nearest node match but assumes a rigid body
link between the DOFs of the FE model and the test DOFs to obtain the DOF
definition vector adof describing DOFs used for FEM results.

arigid is a variant of the rigid link that estimates rotations based on translations of
other nodes. This interpolation is more accurate than rigid for solid elements
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(since they don’t have rotational DOFs) and shells (since the value of drilling
rotations is often poorly related to the physical rotation of a small segment).

At each point, you can see which interpolations you are using with
fe sens(’info’,sens). Note that when defining test nodes in a local basis, the
node selection commands are applied in the global coordinate system.

The interpolations are stored in the sens.cta field. With that information you can
predict the response of the FEM model at test nodes. For example

[model,def]=demosdt(’demo gartte cor’);

model=fe_sens(’rigid sensors’,model); % link sensors to model

% display sensor wire-frame and animate FEM modes

cf=feplot; cf.model=model; cf.sel=’-sensors’;

cf.def=def;fecom(’;undefline;scd.5;ch7’)

4.7 Stress observation

Observation of stress and resultant fields is an application that requires specific tools
for performance. A number of commands are thus available for this purpose. The
two main commands are fe caseg StressCut for generation of the observation
and fe caseg StressObserve for the generation of a format Multi-dim curve

showing observations as a table.

This functionality has been significantly stabilized for SDT 6.5 but improvements
and minor format changes are still likely for future releases.

4.7.1 Building view mesh

Stresses can be observed at nodes of arbitrary meshes (view meshes that are very
much related to test wireframes). You should look-up feutil(’object’) commands
for ways to build simple shapes. A few alternate model generation calls are provided
in fe caseg(’StressCut’) as illustrated below and in the example for resultant
sensors.

% Build straight line by weighting of two nodes

VIEW=fe_caseg(’stresscut’, ...

struct(’Origin’,[0 0 0;0 0 1], ... % [n1,n2]

’steps’,linspace(0,1,10)))
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% Automated build of a cut (works on convex cuts)

model=demosdt(’demoubeam-pro’);cf=feplot;

RO=struct(’Origin’,[0 0 .5],’axis’,[0 0 1]);

VIEW=fe_caseg(’StressCut’,RO,cf);

feplot(VIEW) % note problem due to non convex cut

%View at Gauss points

model=demosdt(’demoubeam-pro’);cf=feplot;

cut=fe_caseg(’StressCut-SelOut’,struct(’type’,’Gauss’),model);

% Observe beam strains at Gauss points

[model,def]=beam1t(’testeig’)

mo1=fe_caseg(’StressCut’,struct(’type’,’BeamGauss’),model);

cut=fe_caseg(’stresscut -radius 10 -SelOut’,mo1,model);

C1=fe_caseg(’stressobserve -crit""’,cut,def) % Observation as CURVE

4.7.2 Building and using a selection for stress observation

The first use of StressCut is to build a feplot selection to be used to view/animate
stress fields on the view mesh. A basic example is shown below.

% build model

model=demosdt(’volbeam’);cf=feplot(model);

% build view mesh

VIEW=fe_caseg(’stresscut’, ...

struct(’Origin’,[0 .05 .05;1 .05 .05], ... % [n1,n2]

’steps’,linspace(1,0,10)))

% build stress cut view selection

sel=fe_caseg(’stresscut -selout’,VIEW,cf);cla(cf.ga);feplot % generation observation

cf.def=fe_eig(model,[5 10 0]);

fe_caseg(’stresscut’,sel,cf) % Overlay view and nominal mesh

fecom(’scc2’) % Force equal scaling

The result of StressCut is found in sel.StressObs.cta which is an observation
matrix giving the linear relation between motion at DOF of the elements connected
to target points, to stress components at these target points. The procedure used
to build this observation matrix in fe caseg is as follows
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• match desired nodes to the interior of elements and keep the resulting element
coordinates. One then adds to the selected element set, one layer of elements
with the same material and property ID (all elements that have one node in
common with the matched elements);

• generate stress observation at Gauss points of the selected elements;

• for each stress component compute the stress at nodes that would lead to the
same values at Gauss points. In other words one resolves∑

g

(wgJg {Ni(g)}T {Nj(g)}σj) =
∑
g

(wgJg {Ni(g)}T σg) (4.2)

• finally use the element shape functions to interpolate each stress component
from nodal values to values at the desired points using element coordinates
found at the first step.

Note that typically, a sel.StressObs.trans field gives the observation matrix as-
sociated with translations at the target points to allow animation of positions as
well as colors.

4.7.3 Observing resultant fields

StressCut sensors provide stress post-treatments in model cutoffs. The command
interprets a data structure with fields

.EltSel FindElt command that gives the elements concerned by the resultant.

.SurfSel FindNode command that gives the selection where the resultant is com-
puted.

.type contains the string ’resultant’.

Following example defines a StressCut call to show modal stresses in an internal
surface of a volumic model

demosdt(’demoubeam’)

cf=feplot;fecom(’showpatch’)

cf.mdl=feutil(’lin2quad’,cf.mdl); % better stress interpolation

def=fe_eig(cf.mdl,[5 10 1e3]);

cf.def=def;

r1=struct(’EltSel’,’withnode {z<2}’, ...

’SurfSel’,’inelt{innode{z==2}}’, ...

’type’,’Resultant’);
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fe_caseg(’stresscut’,r1,cf);

% adapt transparencies

fecom(cf,’SetProp sel(1).fsProp’,’FaceAlpha’,0.01,’EdgeAlpha’,0.2);

The observation in feplot is performed on the fly, with data stored in cf.sel(2).StressObs

(for the latter example).

Command option -SelOut allows recovering the observation data. Field .cta is
here compatible with general sensors, for customized observation.

cta=fe_caseg(’StressCut-SelOut’,r1,cf);

4.8 Computing/post-processing the response

4.8.1 Simulate GUI

Access to standard solvers is provided through the Simulate tab of the Model

properties figure. Experienced users will typically use the command line equivalent
to these tabs as detailed in the following sections.

Type of 
simulation

Launch
simulation

Name of
exported variable

Select
export/plotting

Figure 4.12: Simulation properties tab.

4.8.2 Static responses
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The computation of the response to static loads is a typical problem. Once loads
and boundary conditions are defined in a case as shown in previous sections, the
static response may be computed using the fe simul function.

This is an example of the 3D beam subjected to various type of loads (points, surface
and volume loads) and clamped at its base:

model=demosdt(’demo ubeam vol’); % Initialize a test

def=fe_simul(’static’,model’);% Compute static response

cf=feplot; cf.def=def;% post-process

cf.sel={’Groupall’,’ColorDataStressMises’}

Low level calls may also be used. For this purpose it is generally simpler to create
system matrices that incorporate the boundary conditions.

fe c (for point loads) and fe load (for distributed loads) can then be used to define
unit loads (input shape matrix using SDT terminology). For example, a unit vertical
input (DOF .02) on node 6 can be simply created by

model=demosdt(’demo2bay’); Case=fe_case(model,’gett’); %init

% Compute point load

b = fe_c(Case.DOF,[6.02],1)’;

In many cases the static response can be computed using Static=kr \b. For very
large models, you will prefer

kd=ofact(k); Static = kd\b; ofact(’clear’,kd);

For repeated solutions with the same factored stiffness, you should build the factored
stiffness kd=ofact(k) and then Static = kd \b as many times are needed. Note
that fe eig can return the stiffness that was used when computing modes (when
using methods without DOF renumbering).

For models with rigid body modes or DOFs with no stiffness contribution (this
happens when setting certain element properties to zero), the user interface function
fe reduc gives you the appropriate result in a more robust and yet computationally
efficient manner

Static = fe reduc(’flex’,m,k,mdof,b);

4.8.3 Normal modes (partial eigenvalue solution)

fe eig computes mass normalized normal modes.
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The simple call def=fe eig(model) should only be used for very small models (be-
low 100 DOF). In other cases you will typically only want a partial solution. A
typical call would have the form

model = demosdt(’demo ubeam plot’);

cf.def=fe_eig(model,[6 12 0]); % 12 modes with method 6

fecom(’colordata stress mises’)

You should read the fe eig reference section to understand the qualities and limi-
tations of the various algorithms for partial eigenvalue solutions.

You can also load normal modes computed using a finite element package (see sec-
tion 4.3.2 ). If the finite element package does not provide mass normalized modes,
but a diagonal matrix of generalized masses mu (also called modal masses). Mass
normalized modeshapes will be obtained using

ModeNorm = ModeIn * diag( diag(mu).^(-1/2) );

If a mass matrix is given, an alternative is to use mode = fe norm(mode,m). When
both mass and stiffness are given, a Ritz analysis for the complete problem is ob-
tained using [mode,freq] = fe norm(mode,m,k).

Note that loading modes with in ASCII format 8 digits is usually sufficient for good
accuracy whereas the same precision is very often insufficient for model matrices
(particularly the stiffness).

4.8.4 State space and other modal models

A typical application of SDT is the creation of input/output models in the normal
mode nor, state space ss or FRF xf form. (The SDT does not replicate existing
functions for time response generation such as lsim of the Control Toolbox which
creates time responses using a model in the state-space form).

The creation of such models combines two steps creation of a modal or enriched
modal basis; building of input/output model given a set of inputs and outputs.

As detailed in section 4.8.3 a modal basis can be obtained with fe eig or loaded from
an external FEM package. Inputs and outputs are easily handled using case entries
corresponding to loads (DofLoad, DofSet, FVol, FSurf) and sensors (SensDof).
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Figure 4.13: Truss example.

For the two bay truss examples shown above, the following script defines a load as
the relative force between nodes 1 and 3, and translation sensors at nodes 5 and 6

model=demosdt(’demo2bay’);

DEF=fe_eig(model,[2 5]); % compute 5 modes

% Define loads and sensors

Load=struct(’DOF’,[3.01;1.01],’def’,[1;-1]);

Case=fe_case(’DofLoad’,’Relative load’,Load, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);

% Compute FRF and display

w=linspace(80,240,200)’;

nor2xf(DEF,.01,Case,w,’hz iiplot "Main" -reset’);

You can easily obtain velocity or acceleration responses using

xf=nor2xf(DEF,.01,Case,w,’hz vel plot’);

xf=nor2xf(DEF,.01,Case,w,’hz acc plot’);

�
�

Figure 4.14: FRF synthesis : with and without static correction.

As detailed in section 6.2.3 , it is desirable to introduce a static correction for each
input. fe2ss builds on fe reduc to provide optimized solutions where you compute
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both modes and static corrections in a single call and return a state-space (or normal
mode model) and associated reduction basis. Thus

model=demosdt(’demo ubeam sens -pro’);

model=stack_set(model,’info’,’Freq’,linspace(10,1e3,500)’);

model=stack_set(model,’info’,’DefaultZeta’,.01);

[SYS,T]=fe2ss(’free 6 10’,model); %ii_pof(eig(SYS.a),3)

qbode(SYS,linspace(10,1e3,1500)’*2*pi,’iiplot "Initial" -reset’);

nor2xf(T,[.04],model,’hz iiplot "Damped" -po’);

computes 10 modes using a full solution (Eigopt=[6 10 0]), appends the static
response to the defined loads, and builds the state-space model corresponding to
modal truncation with static correction (see section 6.2.3 ). Note that the load and
sensor definitions where now added to the case in model since that case also contains
boundary condition definitions which are needed in fe2ss.

The different functions using normal mode models support further model truncation.
For example, to create a model retaining the first four modes, one can use

model=demosdt(’demo2bay’);

DEF=fe_eig(model,[2 12]); % compute 12 modes

Case=fe_case(’DofLoad’,’Horizontal load’,3.01, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);

SYS =nor2ss(DEF,.01,Case,1:4);

ii_pof(eig(SYS.a)/2/pi,3) % Frequency (Hz), damping

A static correction for the displacement contribution of truncated modes is auto-
matically introduced in the form of a non-zero d term. When considering velocity
outputs, the accuracy of this model can be improved using static correction modes
instead of the d term. Static correction modes are added if a roll-off frequency fc is
specified (this frequency should be a decade above the last retained mode and can
be replaced by a set of frequencies)

SYS =nor2ss(DEF,.01,Case,1:4,[2e3 .2]);

ii_pof(eig(SYS.a)/2/pi,3,1) % Frequency (Hz), damping

Note that nor2xf always introduces a static correction for both displacement and
velocity.
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For damping, you can use uniform modal damping (a single damping ration damp=.01

for example), non uniform modal damping (a damping ratio vector damp), non-
proportional modal damping (square matrix ga), or hysteretic (complex DEF.data).
This is illustrated in demo fe.

4.8.5 Viewing shapes, stress, energy, ...

NEED TO INTRODUCE PROPER REFERENCES XXX

4.8.6 Time computation

To perform a full order model time integration, one needs to have a model, a load
and a curve describing time evolution of the load.

% define model and load

model=fe_time(’demo bar’);fe_case(model,’info’)

% Define curves stack (time integration curve will be chosen later):

% - step with ones from t=0 to t=1e-3, 0 after :

model=fe_curve(model,’set’,’input’,’TestStep t1=1e-3’);

% - ramp from t=.1 to t=2 with final value 1.1;

model=fe_curve(model,’set’,’ramp’,’TestRamp t0=.1 tf=2 Yf=1.1’);

% - Ricker curve from t=0 to t=1e-3 with max amplitude value 1:

model=fe_curve(model,’set’,’ricker’,’TestRicker t0=0 dt=1e-3 A=1’);

% - Sinus (with evaluated string depending on t time vector) :

model=fe_curve(model,’set’,’sinus’,...

’Test eval sin(2*pi*1000*t)’);

% - Another sinus definition, explicit curve (with time vector,

% it will be interpolated during the time integration if needed)

model=fe_curve(model,’set’,’sinus2’,...

struct(’X’,linspace(0,100,10)’,...

’Y’,sin(linspace(0,100,10)’))); % tabulated

% - Have load named ’Point load 1’ reference ’input’

% curve (one can choose any of the model stack

% curve from it stack entry name) :

model=fe_case(model,’SetCurve’,’Point load 1’,’input’);

cf=feplot(model) % plot the model
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Once model is plotted in feplot one can edit each curve under the model properties
Stack tab. Parameters can be modified. Curve can be plotted in iiplot using the
Show pop-up button. One has to define the number of steps (NStep) and the total
time to be displayed (Tf) and click Using NStep & Tf. One can also display curve
on the info TimeOpt time options by clicking on Using TimeOpt.

Figure 4.15: GUI associated to a curve

One can change the curve associated to the load in the Case tab.

% Define time computation options : dt=1e-4, 100 time steps

cf.Stack{’info’,’TimeOpt’}=...
fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

% Compute and store/display in feplot :

cf.def=fe_time(cf.mdl);

figure;plot(cf.def.data,cf.def.def(cf.def.DOF==2.01,:)); % show 2.01 result

Time domain responses can also be obtained by inverse transform of frequency
responses as illustrated in the following example

model=demosdt(’demo ubeam sens’);DEF=fe_eig(model,[5 10 1e3]);

w=linspace(0,600,6000)’; % define frequencies

R1=nor2xf(DEF,.001,model,w,’hz struct’); % compute freq resp.

R2=ii_mmif(’ifft -struct’,R1);R2.name=’time’; % compute time resp.

iiplot(R2);iicom(’;sub 1 1 1 1 3;ylin’); % display
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4.8.7 Manipulating large finite element models

The flexibility given by the Matlab language comes at a price for large finite el-
ement computations. The two main bottlenecks are model assembly and static
computations.

During assembly compiled elements provided with OpenFEM allow much faster
element matrix evaluations (since these steps are loop intensive they are hard to op-
timize in Matlab). The sp util.mex function alleviates element matrix assembly
and large matrix manipulation problems (at the cost of doing some very dirty tricks
like modifying input arguments).

Starting with SDT 6.1, model.Dbfile can be defined to let SDT know that the file
can be used as a database. In particular optimized assembly calls (see section 4.8.8
) make use of this functionality. The database is a .mat file that uses the HDF5
format defined for MATLAB ¿= 7.3.

For static computations, the ofact object allows method selection. Currently the
most efficient (and default ofact method) is the multi-frontal sparse solver spfmex.
This solver automatically performs equation reordering so this needs not be done
elsewhere. It does not use the Matlab memory stack which is more efficient for
large problems but requires ofact(’clear’) calls to free memory associated with
a given factor.

With other static solvers (Matlab lu or chol, or SDT true skyline sp util method)
you need to pay attention to equation renumbering. When assembling large models,
fe mk (obsolete compared to fe mknl) will automatically renumber DOFs to mini-
mize matrix bandwidth (for partial backward compatibility automatic renumbering
is only done above 1000 DOF).

The real limitation on size is linked to performance drops when swapping. If the
factored matrix size exceeds physical memory available to Matlab in your com-
puter, performance tends to decrease drastically. The model size at which this limit
is found is very much model/computer dependent.

Finally in fe eig, method 6 (IRA/Sorensen) uses low level BLAS code and thus
tends to have the best memory performance for eigenvalue computations.

Note finally, that you may want to run Matlab with the -nojvm option turned on
since it increases the memory addressable by Matlab(version ¡=6.5).

For out-of-core operations (supported by fe mk, upcom, nasread and other func-
tions). SDT creates temporary files whose names are generated with nas2up(’tempnameExt’).
You may need to set sdtdef(’tempdir’,’your dir’) to an appropriate location.
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The directory should be located on a local disk or a high speed disk array. If you
have a RAID array, use a directory there.

4.8.8 Optimized assembly strategies

The handling of large models, often requires careful sequencing of assembly opera-
tions. While fe mknl, fe load, and fe case, can be used for user defined proce-
dures, SDT operations typically use the an internal (closed source) assembly call to
fe case Assemble . Illustrations of most calls can be found in fe simul.

[k,mdl,Case,Load]=fe case(mdl,’assemble matdes 1 NoT loadback’,Case); re-
turn the stiffness without constraint elimination and evaluates loads.

[SE,Case,Load,Sens]=fe case(mdl,’assemble -matdes 2 1 3 4 -SE NoTload Sens’)

returns desired matrices in SE.K, the associated case, load and sensors (as requested
in the arguments).

Accepted command options for the assemble call are

• -fetime forces the nominal assembly using mass, viscous damping and stiff-
ness, output in this order: 2 3 1. If a reduced model is defined as an SE,MVR,
the assembly is shortcut to output MVR as the assembled model, and MVR.Case

as the Case. If the field .Case is absent, the case stacked in the base model is
output.

• -reset forces reassembly even if the .K field is defined and filled.

• keep retains model.DOF even if some DOF are unused.

• load requires load assembly and output.

• sens requires sensor assembly and output.

• GetT outputs a struct containing Case.Stack, Case.T and Case.DOF.

• NoT is the usual option to prevent constraint elimination (computation of
T TKT ). With NoT DOFs are given in model.DOF or Case.mDOF. Without
the option they are consistent with Case.DOF.

• -MatDes specifies the list of desired matrices. Basic types are 2 for mass and
1 for stiffness, for a complete list see MatType. -1 is used separate matrices
associated with parameters (see upcom Par). -1.1 removes the subparameters
from the nominal matrix.
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-2 is used to obtain matrices associated with assembled superelements. When
combined with standard elements, the non SE elements are integrated in the
first matrix of each type. To avoid this behavior specify a matrix type 1, ...
where all SE and non SE elements will be assembled.
With 5 and a predefined deformation in ’curve’,’StaticState’, the internal
load is computed and added to returned loads.

• InitFcn allows pre-emptive behavior at the beginning of assembly. ExitFcn

does the same at exit.

• -SE returns the assembled result as a superelement structure. One can use
-SeCDof (superelement Case DOF) to fill .DOF field with constrained DOF
(Case.DOF).

• -cell sets the first output as a cell array containing all assembled matrices.

• -cfield keeps the Case.MatGraph to allow further reassembly.
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5 Structural dynamic concepts

This theoretical chapter is intended as a reference for the fundamental notions and
associated variables used throughout the SDT. This piece of information is grouped
here and hypertext reference is given in the HTML version of the manual.

Models of dynamic systems are used for identification phases and links with control
applications supported by other Matlab toolboxes and Simulink. Key concepts
and variables are

b,c input/output shape matrices (b,c,pb,cp variables)
nor normal mode models (freq,damp,cp,pb variables)
damp damping for full and reduced models
cpx complex mode models (lambda, psi variables)
res pole/residue model (res,po variables)
ss state space model (a,b,c,d variables)
tf parametric transfer function (num,den variables)
xf non-parametric transfer function (w,xf variables)

5.1 I/O shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a
product {F}q = [b] {u(t)} where

• the input shape matrix [b] is time invariant and characterizes spatial properties
of the applied forces

• the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses,
etc.) are linearly related to the model coordinates {q} through the sensor output
shape matrix ({y} = [c] {q}).

Input and output shape matrices are typically generated with fe c or fe load.
Understanding what they represent and how they are transformed when model
DOFs/states are changed is essential.

Linear mechanical models take the general forms

[
Ms2 + Cs+K

]
N×N {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(5.1)

158



in the frequency domain (with Z(s) = Ms2 + Cs+K), and

[M ] {q̈}+ [C] {q̇}+ [K] {q} = [b] {u(t)}
{y(t)} = [c] {q(t)} (5.2)

in the time domain.

In the model form (5.1), the first set of equations describes the evolution of {q}. The
components of q are called Degrees Of Freedom (DOFs) by mechanical engineers and
states in control theory. The second observation equation is rarely considered by
mechanical engineers (hopefully the SDT may change this). The purpose of this
distinction is to lead to the block diagram representation of the structural dynamics

{u(s)}
- [b]

{F (s)}
- [

Ms2 + Cs+K
]−1

{q(s)}
- [c]

{y(s)}
-

which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ql, the input shape matrix is
equal to zero except for DOF l where it takes the value 1

[bl] =



...
0
1
0
...

 ← l
(5.3)

Since {ql} = [bl]
T {q}, the transpose this Boolean input shape matrix is often called

a localization matrix. Boolean input/output shape matrices are easily generated by
fe c (see the section on DOF selection page 249).

Input/output shape matrices become really useful when not Boolean. For applica-
tions considered in the SDT they are key to

• distributed FEM loads, see fe load.

• test analysis correlation. Since you often have measurements that do not directly
correspond to DOFs (accelerations in non global directions at positions that do
not correspond to finite element nodes, see section 2.2.2 ).
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• model reduction. To allow the changes to the DOFs q while retaining the physical
meaning of the I/O relation between {u} and {y} (see section 6.2 ).

5.2 Normal mode models

The spectral decomposition is a key notion for the resolution of linear differential
equations and the characterization of system dynamics. Predictions of the vibrations
of structures are typically done for linear elastic structures or, for non-linear cases,
refer to an underlying tangent elastic model.

Spectral decomposition applied to elastic structures leads to modal analysis. The
main objective is to correctly represent low frequency dynamics by a low order model
whose size is typically orders of magnitude smaller than that of the finite element
model of an industrial structure.

The use of normal modes defined by the spectral decomposition of the elastic model
and corrections (to account for the restricted frequency range of the model) is fun-
damental in modal analysis.

Associated models are used in the normal mode model format

[
[I] s2 + [Γ] s+

[
Ω2
]]
{p(s)} =

[
φT b

]
{u(s)}

{y(s)} = [cφ] {p(s)}
(5.4)

where the modal masses (see details below) are assumed to be unity.

The nor2res, nor2ss, and nor2xf functions are mostly based on this model form
(see nor2ss theory section). They thus support a low level entry format with four
arguments
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om modal stiffness matrix Ω2. In place of a full modal stiffness matrix om, a
vector of modal frequencies freq is generally used (in rad/s if Hz is not
specified in the type string). It is then assumed that om=diag(freq.^2).
om can be complex for models with structural damping (see the section on
damping page 162).

ga modal damping matrix Γ (viscous). damping ratios damp corresponding to
the modal frequencies freq are often used instead of the modal damping
matrix ga (damp cannot be used with a full om matrix). If damp is a vector of
the same size as freq, it is then assumed that ga=diag(2*freq.*damp). If
damp is a scalar, it is assumed that ga=2*damp*diag(freq). The application
of these models is discussed in the section on damping page 162).

pb modal input matrix {φj}T [b] (input shape matrix associated to the use of
modal coordinates).

cp modal output matrix [c] {φj} (output shape matrix associated to the use of
modal coordinates).

Higher level calls, use a data structure with the following fields

.freq frequencies (units given by .fsc field, 2*pi for Hz). This field may be
empty if a non diagonal nor.om is defined.

.om alternate definition for a non diagonal reduced stiffness. Nominally om

contains diag(freq.^2).
.damp modal damping ratio. Can be a scalar or a vector giving the damping

ratio for each frequency in nor.freq.
.ga alternate definition for a non diagonal reduced viscous damping.
.pb input shape matrix associated with the generalized coordinates in which

nor.om and nor.ga are defined.
.cp output shape matrix associated with the generalized coordinates in

which nor.om and nor.ga are defined.
.dof in A six column matrix where each row describes a load by [SensID

NodeID nx ny nz Type] giving a sensor identifier (integer or real), a
node identifier (positive integer), the projection of the measurement
direction on the global axes (if relevant), a Type.

.lab in A cell array of string labels associated with each input.

.dof out A six column matrix describing outputs following the .dof in format.

.lab out A cell array of string labels associated with each output.

General load and sensor definitions are then supported using cases (see section 4.5.3
).

Transformations to other model formats are provided using nor2ss (state-space
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model), nor2xf (FRFs associated to the model in the xf format), and nor2res

(complex residue model in the res format). The use of these functions is demon-
strated in demo fe.

Transformations from other model formats are provided by fe2ss, fe eig, fe norm,
. . . (from full order finite element model), id nor and res2nor (from experimentally
identified pole/residue model).

5.3 Damping

Models used to represent dissipation at the local material level and at the global
system level should typically be different. Simple viscous behavior is very often not
appropriate to describe material damping while a viscous model is appropriate in the
normal mode model format (see details in Ref. [27]). This section discusses typical
damping models and discusses how piece-wise Rayleigh damping is implemented in
SDT.

5.3.1 Viscous damping in the normal mode model form

In the normal mode form, viscous damping is represented by the modal damping
matrix Γ which is typically used to represent all the dissipation effects at the system
level.

Models with modal damping assume that a diagonal Γ is sufficient to represent
dissipation at a system level. The non-zero terms of Γ are then usually expressed in
terms of damping ratios Γjj = 2ζjωj . The damping ratio ζj are accepted by most
SDT functions instead of a full Γ. The variable name damp is then used instead of
ga in the documentation.

For a model with modal damping, the matrices in (6.86) are diagonal so that the
contributions of the different normal modes are uncoupled and correspond exactly
to the spectral decomposition of the model (see cpx page 169for the definition of
complex modes). The rational fraction expression of the dynamic compliance matrix
(transfer from the inputs {u} to displacement outputs {y}) takes the form

[α(s)] =
N∑
j=1

{cφj}
{
bTφj

}T
s2 + 2ζjωjs+ ω2

j

=
N∑
j=1

[Tj ]NS×NA
s2 + 2ζjωjs+ ω2

j

(5.5)

where the contribution of each mode is characterized by the pole frequency ωj ,
damping ratio ζj , and the residue matrix Tj (which is equal to the product of the
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normal mode output shape matrix {cφj} by the normal mode input shape matrix{
φTj b

}
).

Modal damping is used when lacking better information. One will thus often set
a uniform damping ratio (ζj = 1% or damp = 0.01) or experimentally determined
damping ratios that are different for each pole (po=ii pof(po,3); damp=po(:,2);).

Historically, modal damping was associated to the proportional damping model
introduced by Lord Rayleigh which assumes the usefulness of a global viscously
damped model with a dynamic stiffness of the form

[Z(s)] =
[
Ms2 + (αM + βK)s+K

]
While this model indeed leads to a modally damped normal mode model, the α and
β coefficients can only be adjusted to represent physical damping mechanisms over
very narrow frequency bands. The modal damping matrix thus obtained writes

Γ =
[
\α+ βω2

j \

]
which leads to damping ratios

2ζj =
α

ωj
+ βωj

Mass coefficient α leads to high damping ratios in the low frequency range. Stiffness
coefficient β leads to a damping ratio linearly increasing with the frequency.

Using a diagonal [Γ] can introduce significant errors when normal mode coupling
through the spatial distribution of damping mechanisms is possible. The condition

2ζjωj/|ωj − ωk| � 1

proposed by Hasselman [28], gives a good indication of when modal coupling will
not occur. One will note that a structure with a group of modes separated by a few
percent in frequency and levels of damping close to 1% does not verify this condition.
The un-coupling assumption can however still be applied to blocks of modes [12].

A normal mode model with a full Γ matrix is said to be non-proportionally damped
and is clearly more general/accurate than the simple modal damping model. The
SDT leaves the choice between the non-proportional model using a matrix ga and
the proportional model using damping ratio for each of the pole frequencies (in this
case one has ga=2*diag(damp.*freq) or ga=2*damp*diag(freq) if a scalar uniform
damping ratio is defined).

For identification phases, standard approximations linked to the assumption of
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modal damping are provided by (id rc, id rm and res2nor), while id nor pro-
vides an original algorithm of the determination of a full Γ matrix. Theoretical
aspects of this algorithm and details on the approximation of modal damping are
discussed in [12]).

5.3.2 Viscous damping in finite element models

Standard damped finite element models allow the incorporation of viscous and struc-
tural damping in the form of real C and complex K matrices respectively.

fe mk could assemble a viscous damping matrix with user defined elements that
would support matrix type 3 (viscous damping) using a call of the form
fe mk(MODEL,’options’,3) (see section 7.16 for new element creation). Viscous
damping models are rarely appropriate at the finite element level [27], so that it is
only supported by celas and cbush elements. Piece-wise Rayleigh damping where
the viscous damping is a combination of element mass and stiffness on element
subsets

C =
NS∑
j=1

[
αSjM

S
j + βSj K

S
j

]
(5.6)

is supported as follows. For each material or group that is to be considered in the
linear combination one defines a row entry giving GroupId MatId AlphaS BetaS

(note that some elements may be counted twice if they are related to a group and
a material entry). One can alternatively define ProId as a 5th column (useful for
celas element that have no matid). Note that each line is separately accounted for,
so that duplicated entries or multiple references to same GroupId, MatId or ProId

will also be combined. For example

model=demosdt(’demogartfe’);

model=stack_set(model,’info’,’Rayleigh’, ...

[10 0 1e-5 0.0; ... % Elements of group 10 (masses)

9 0 0.0 1e-3; ... % Elements of group 9 (springs)

0 1 0.0 1e-4; ... % Elements with MatId 1

0 2 0.0 1e-4]); % Elements with MatId 2

% Note that DOF numbering may be a problem when calling ’Rayleigh’

% See sdtweb simul#feass for preferrred assembly in SDT

c=feutilb(’Rayleigh’,model); figure(1);spy(c);

dc=fe_ceig(model,[1 5 20 1e3]);cf=feplot(model,dc);
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Such damping models are typically used in time integration applications. Info,Rayleigh
entries are properly handled by Assemble commands.

You can also provide model=stack set(model,’info’,’Rayleigh’,[alpha beta]).

Note that in case of Rayleigh damping, celas element viscous damping will also be
taken into account.

5.3.3 Hysteretic damping in finite element models

Structural or hysteretic damping represents dissipation by giving a loss factor at the
element level leading to a dynamic stiffness of the form

Z(s) =
[
Ms2 +K + iB

]
= Ms2 +

NE∑
j=1

[
Ke
j

]
(1 + iηej ) (5.7)

The name loss factor derives from the fact that η is equal to the ratio of energy
dissipated for one cycle Ed =

∫ T
0 σε̇dt by 2π the maximum potential energy Ep =

1/2E.

If dissipative materials used have a loss factor property, these are used by Assemble

commands with a desired matrix type 4. If no material damping is defined, you can
also use DefaultZeta to set a global loss factor to eta=2*DefaultZeta.

Using complex valued constitutive parameters will not work for most element func-
tions. Hysteretic damping models can thus be assembled using the Rayleigh com-
mand shown above (to assemble the imaginary part of K rather than C or using
upcom (see section 6.4 ). The following example defines two loss factors for group
6 and other elements of the Garteur FEM model. Approximate damped poles are
then estimated on the basis of real modes (better approximations are discussed in
[29])

Up=upcom(’load GartUp’); cf=feplot(Up);

Up=fe_case(Up,’parReset’, ...

’Par k’,’Constrained Layer’,’group 6’, ...

’Par k’,’Main Structure’,’group~=6’);

% type cur min max vtype

par = [ 1 1.0 0.1 3.0 1 ; ...

1 1.0 0.1 3.0 1 ];

Up=upcom(Up,’ParCoef’,par);

% assemble using different loss factors for each parameter
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B=upcom(Up,’assemble k coef .05 .01’);

[m,k]=upcom(Up,’assemble coef 1.0 1.0’);

Case=fe_case(Up,’gett’);

% Estimate damped poles on real mode basis

def=fe_eig({m,k,Case.DOF},[6 20 1e3]);

mr=def.def’*m*def.def; % this is the identity

cr=zeros(size(mr));

kr=def.def’*k*def.def+i*(def.def’*B*def.def);

dr=fe_ceig({mr,cr,kr,[]});dr.def=def.def*dr.def;dr.DOF=def.DOF;
cf.def=dr

Note that in this model, the poles λj are not complex conjugate since the hysteretic
damping model is only valid for positive frequencies (for negative frequencies one
should change the sign of the imaginary part of K).

Given a set of complex modes you can compute frequency responses with res2xf, or
simply use the modal damping ratio found with fe ceig. Continuing the example,
above one uses

Up=fe_case(Up,’Dofload’,’Point loads’,[4.03;55.03], ...

’SensDof’,’Sensors’,[4 55 30]’+.03);

Sens=feutilb(’placeindof’,def.DOF,fe_case(Up,’sens’));

Load=fe_load(Up);

ind=find(dr.data(:,1)>5); % flexible modes

% Standard elastic response with modal damping

f=linspace(5,60,2048);

d1=def; d1.data(7:20,2)=dr.data(ind,2);

nor2xf(d1,Up,f,’hz iiplot "Normal" -reset -po’);

% Now complex modes

RES=struct(’res’,[],’po’,dr.data(ind,:),’idopt’,idopt(’new’));

RES.idopt.residual=2;RES.idopt.fitting=’complex’;

for j1=1:length(ind); % deal with flexible modes

Rj=(Sens.cta*dr.def(:,ind(j1))) * ... % c psi

(dr.def(:,ind(j1)).’*Load.def); % psi^T b

RES.res(j1,:)=Rj(:).’;

end

% Rigid body mode residual
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RES.res(end+1,:)=0;

for j1=1:6;

Rj=(Sens.cta*def.def(:,j1))*(def.def(:,j1)’*Load.def);

RES.res(end,:)=RES.res(end,:)+Rj(:).’;

end

res2xf(RES,f,’hz iiplot "Res2xf"’);

damp=dr.data(ind,2);

d2=def;d2.data(7:20)=sqrt(real(d2.data(7:20).^2)).*sqrt(1+i*damp*2);

nor2xf(d2,Up,f,’hz iiplot "Hysteretic"’);

iicom(’submagpha’);

Note that the presence of rigid body modes, which can only be represented as resid-
ual terms in the pole/residue format (see section 5.6 ), makes the example more
complex. The plot illustrates differences in responses obtained with true complex
modes, viscous modal damping or hysteretic modal damping (case where one uses
the pole of the true complex mode with a normal mode shape). Viscous and hys-
teretic modal damping are nearly identical. With true complex modes, only channels
2 and 4 show a visible difference, and then only near anti-resonances.

To incorporate static corrections, you may want to compute complex modes on bases
generated by fe2ss, rather than simple modal bases obtained with fe eig.

The use of a constant loss factor can be a crude approximation for materials ex-
hibiting significant damping. Methods used to treat frequency dependent materials
are described in Ref. [30].

5.4 State space models

While normal mode models are appropriate for structures, state-space models
allow the representation of more general linear dynamic systems and are commonly
used in the Control Toolbox or Simulink. The standard form for state space-models
is

{ẋ} = [A] {x(t)}+ [B] {u(t)}
{y} = [C] {x(t)}+ [D] {u(t)} (5.8)

with inputs {u}, states {x} and outputs {y}. State-space models are represented
in the SDT, as generally done in other Toolboxes for use with Matlab, using four
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independent matrix variables a, b, c, and d (you should also take a look at the LTI
state-space object of the Control Toolbox).

The natural state-space representation of normal mode models (5.4) is given by{
ṗ
p̈

}
=

[
0 I
−Ω2 −Γ

]{
p
ṗ

}
+

[
0
φT b

]
{u(t)}

{y(t)} = [cφ 0]

{
p
ṗ

} (5.9)

Transformations to this form are provided by nor2ss and fe2ss. Another special
form of state-space models is constructed by res2ss.

A state-space representation of the nominal structural model (5.1) is given by{
q̇
q̈

}
=

[
0 I

−M−1K −M−1C

]{
q
q̇

}
+

[
0

M−1b

]
{u(t)}

{y(t)} = [c 0]

{
q
q̇

} (5.10)

The interest of this representation is mostly academic because it does not preserve
symmetry (an useful feature of models of structures associated to the assumption
of reciprocity) and because M−1K is usually a full matrix (so that the associated
memory requirements for a realistic finite element model would be prohibitive). The
SDT thus always starts by transforming a model to the normal mode form and the
associated state-space model (5.9).

The transfer functions from inputs to outputs are described in the frequency domain
by

{y(s)} =
(
[C] [s I −A]−1 [B] + [D]

)
{u(s)} (5.11)

assuming that [A] is diagonalizable in the basis of complex modes, model (5.8) is
equivalent to the diagonal model(

s [I]−
[
\λj\

])
{η(s)} =

[
θTLb

]
{u}

{y} = [cθR] {η(s)}
(5.12)

where the left and right modeshapes (columns of [θR] and [θL]) are solution of
{θjL}T [A] = λj {θjL}T and [A] {θjR} = λj {θjR} (5.13)

and verify the orthogonality conditions

[θL]T [θR] = [I] and [θL]T [A] [θR] =
[
\λj\

]
(5.14)
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The diagonal state space form corresponds to the partial fraction expansion

{y(s)} =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

=
2N∑
j=1

[Rj ]NS×NA
s− λj

(5.15)

where the contribution of each mode is characterized by the pole location λj and
the residue matrix Rj (which is equal to the product of the complex modal output

{cθj} by the modal input
{
θTj b

}
).

The partial fraction expansion (5.15) is heavily used for the identification routines
implemented in the SDT (see the section on the pole/residue representation ref page
171.

5.5 Complex mode models

The standard spectral decomposition discussed for state-space models in the previous
section can be applied directly to second order models of structural dynamics. The
associated modes are called complex modes by opposition to normal modes
which are associated to elastic models of structures and are always real valued.

Left and right eigenvectors, which are equal for reciprocal structural models, can be
defined by the second order eigenvalue problem,[

Mλ2
j + Cλj +K

]
{ψj} = {0} (5.16)

In practice however, mathematical libraries only provide first order eigenvalue solvers
to that a transformation to the first order form is needed. Rather than the trivial
state-space form (5.10), the following generalized state-space form is preferred[

C M
M 0

]{
q̇
q̈

}
+

[
K 0
0 −M

]{
q
q̇

}
=

[
b
0

]
{u}

{y} =
[
c 0

]{ q
q̇

} (5.17)

The matrices M,C and K being symmetric (assumption of reciprocity), the general-
ized state-space model (5.17) is symmetric. The associate left and right eigenvectors
are thus equal and found by solving([

C M
M 0

]
λj +

[
K 0
0 −M

])
{θj} = {0} (5.18)

Because of the specific block from of the problem, it can be shown that

{θj} =

{
ψj
ψjλj

}
(5.19)
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where it should be noted that the name complex modeshape is given to both θj (for
applications in system dynamics) and ψj (for applications in structural dynamics).

The initial model being real, complex eigenvalues λj come in conjugate pairs asso-
ciated to conjugate pairs of modeshapes {ψj}. With the exception of systems with
real poles, there are 2N complex eigenvalues for the considered symmetric systems
(ψ[N+1...2N ] = ψ̄[1...N ] and λ[N+1...2N ] = λ̄[1...N ]).

The existence of a set of 2N eigenvectors is equivalent to the verification of two
orthogonality conditions

[θ]T
[
C M
M 0

]
[θ] = ψTCψ + ΛψTMψ + ψTMψΛ =

[
\I\
]

2N

[θ]T
[
K 0
0 −M

]
[θ] = ψTKψ − ΛψTMψΛ = −

[
\Λ\

]
2N

(5.20)

where in (5.20) the arbitrary diagonal matrix was chosen to be the identity because it
leads to a normalization of complex modes that is equivalent to the collocation con-
straint used to scale experimentally determined modeshapes ([12] and section 2.4.2
).

Note that with hysteretic damping (complex valued stiffness, see section 5.3.2 ) the
modes are not complex conjugate but opposite. To use a complex mode basis one
thus needs to replace complex modes whose poles have negative imaginary parts
with the conjugate of the corresponding mode whose pole has a positive imaginary
part.

For a particular dynamic system, one will only be interested in predicting or measur-

ing how complex modes are excited (modal input shape matrix
{
θTj B

}
=
{
ψTj b

}
)

or observed (modal output shape matrix {Cθj} = {cψj}).

In the structural dynamics community, the modal input shape matrix is often
called modal participation factor (and noted Lj) and the modal output shape
matrix simply modeshape. A different terminology is preferred here to convey the

fact that both notions are dual and that
{
ψTj bl

}
= {clψj} for a reciprocal structure

and a collocated pair of inputs and outputs (such that uẏ is the power input to the
structure).

For predictions, complex modes can be computed from finite element models using
fe ceig. Computing complex modes of full order models is typically not necessary
so that approximations on the basis of real modes or real modes with static correction
are provided. Given complex modes, you can obtain state-space models with res2ss.
For further discussions, see Ref. [31] and low level examples in section 5.3.3 .
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For identification phases, complex modes are used in the form of residue matrices

product [Rj ] = {cψj}
{
ψTj b

}
(see the next section). Modal residues are obtained by

id rc and separation of the modal input and output parts is obtained using id rm.

For lightly damped structures, imposing the modal damping assumption, which
forces the use of real modeshapes, may give correct result and simplify your identi-
fication work very much. Refer to section 2.4.3 for more details.

5.6 Pole/residue models

The spectral decomposition associated to complex modes, leads to a representation
of the transfer function as a sum of modal contributions

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

 =
2N∑
j=1

(
[Rj ]

s− λj

)
(5.21)

For applications in identification from experimental data, one can only determine
modes whose poles are located in the test frequency range. The full series thus need
to be truncated. The contributions of out-of-band modes cannot be neglected for
applications in structural dynamics. One thus introduces a high frequency residual
correction for truncated high frequency terms and, when needed, (quite often for
suspended test articles) a low frequency residual for modes below the measurement
frequency band.

These corrections depend on the type of transfer function so that the SDT uses
ci.IDopt options (see the reference section on the idopt function) to define the cur-
rent type. ci.IDopt.Residual specifies which corrections are needed (the default is
3 which includes both a low and high frequency residuals). ci.IDopt.Data specifies
if the FRF is force to displacement, velocity or acceleration. For a force to displace-
ment transfer function with low and high frequency correction), the pole/residue
model (also called partial fraction expansion) thus takes the form

[α(s)] =
∑

j∈identified

(
[Rj ]

s− λj
+

[
R̄j
]

s− λ̄j

)
+ [E] +

[F ]

s2
(5.22)

The SDT always stores pole/residue models in the displacement/force format. The
expression of the force to acceleration transfer function is thus

[A(s)] =
∑

j∈identified

(
s2 [Rj ]

s− λj
+
s2
[
R̄j
]

s− λ̄j

)
+ s2 [E] + [F ] (5.23)

The nominal pole/residue model above is used when ci.IDopt.Fit=’Complex’.
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This model assumes that complex poles come in conjugate pairs and that the residue
matrices are also conjugate which is true for real system.

The complex residues with asymmetric pole structure (ci.IDopt.Fit=’Posit’)
only keep the poles with positive imaginary parts

[α(s)] =
∑

j∈identified

(
[Rj ]

s− λj

)
+ [E] +

[F ]

s2
(5.24)

which allows slightly faster computations when using id rc for the identification but
not so much so that the symmetric pole pattern should not be used in general. This
option is only maintained for backward compatibility reasons.

The normal mode residues with symmetric pole structure (ci.IDopt.Fit=’Nor’)

[α(s)] =
∑

j∈identified

(
[Tj ]

s2 + 2ζjωjs+ ω2
j

)
+ [E] +

[F ]

s2
(5.25)

can be used to identify normal modes directly under the assumption of modal damp-
ing (see damp page 162).

Further characterization of the properties of a given pole/residue model is given by
a structure detailed under the Shapes at DOFs section.

The residue matrices res are stored using one row for each pole or asymptotic
correction term and, as for FRFs (see the xf format), a column for each SISO transfer
function (stacking NS columns for actuator 1, then NS columns for actuator 2, etc.).

res =



... . . . . . . . . .
Rj(11) Rj(21) . . . Rj(12) Rj(22) . . .

...
. . .

...
. . .

E11 E21 . . . E12 E22 . . .
F11 F21 . . . F12 F22 . . .


(5.26)

The normal mode residues (ci.IDopt.Fit=’Normal’) are stored in a similar fashion
with for only difference that the Tj are real while the Rj are complex.

5.7 Parametric transfer function

Except for the id poly and qbode functions, the SDT does not typically use the
numerous variants of the ARMAX model that are traditional in system identification
applications and lead to the ratio of polynomials called transfer function format
(tf) in other Matlab Toolboxes. In modal analysis, transfer functions refer to the
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functions characterizing the relation between inputs and outputs. The tf format
thus corresponds to the parametric representations of sets of transfer functions in
the form of a ratio of polynomials

Hj(s) =
aj,1s

na−1 + aj,2s
na−2 + . . .+ aj,na

bj,1snb−1 + bj,2snb−2 + . . .+ bj,nb
(5.27)

The SDT stacks the different numerator and denominator polynomials as rows of
numerator and denominator matrices

num =

 a11 a12 . . .
a21 a22 . . .
...

. . .

 and den =

 b11 b12 . . .
b21 b22 . . .
...

. . .

 (5.28)

Other Matlab toolboxes typically only accept a single common denominator (den
is a single row). This form is also accepted by qbode which is used to predict FRFs
at a number of frequencies in the non-parametric xf format).

The id poly function identifies polynomial representations of sets of test functions
and res2tf provides a transformation between the pole/residue and polynomial
representations of transfer functions.

5.8 Non-parametric transfer function

Response data structures are the classical format to store non-parametric transfer
functions. Multi-dim curve can also be used.

For a linear system at a given frequency ω, the response vector {y} at NS sensor
locations to a vector {u} of NA inputs is described by the NS by NA rectangular
matrix of Frequency Responses (FRF)

y1(ω)
...

yNS(ω)

 = [H] {u} =

 H11(ω) H12(ω) . . .
H21(ω) H22(ω)

...
. . .


NS×NA


u1(ω)

...
uNA(ω)

 (5.29)

The SDT stores frequencies at which the FRF are evaluated as a column vector w

w =


ω1
...

ωNW


NW×1

(5.30)

and SISO FRFs Hij are stored as columns of the matrix xf where each row corre-
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sponds to a different frequency (indicated in w). By default, it is assumed that the
correspondence between the columns of xf and the sensors and actuator numbers is
as follows. The NS transfer functions from actuator 1 to the NS sensors are stored
as the first NS columns of xf, then the NS transfer functions of actuator 2, etc.

xf =

 H11(ω1) H21(ω1) . . . H12(ω1) H22(ω1) . . .
H11(ω2) H21(ω2) . . . H12(ω2) H22(ω2) . . .

...
. . .

...
. . .


NW×(NS×NA)

(5.31)

Further characterization of the properties of a given set of FRFs is given by a
structure detailed under Response data section.

Frequency response functions corresponding to parametric models can be generated
in the xf format using qbode (transformation from ss and tf formats), nor2xf,
or res2xf. These functions use robustness/speed trade-offs that are different from
algorithms implemented in other Matlab toolboxes and are more appropriate for
applications in structural dynamics.
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6.1 FEM problem formulations

This section gives a short theoretical reminder of supported FEM problems. The
selection of the formulation for each element group is done through the material and
element properties.

6.1.1 3D elasticity

Elements with a p solid property entry with a non-zero integration rule are de-
scribed under p solid. They correspond exactly to the *b elements, which are now
obsolete. These elements support 3D mechanics (DOFs .01 to .03 at each node)
with full anisotropy, geometric non-linearity, integration rule selection, ... The ele-
ments have standard limitations. In particular they do not (yet)

• have any correction for shear locking found for high aspect ratios

• have any correction for dilatation locking found for nearly incompressible mate-
rials

With m elastic subtypes 1 and 3, p solid deals with 3D mechanics with strain
defined by 

εx
εy
εz
γyz
γzx
γxy





N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w

 (6.1)

where the engineering notation γyz = 2εyz, ... is used. Stress by
σx
σy
σz
σyz
σzx
σxy

=


d1,1N, x+d1,5N, z+d1,6N, y d1,2N, y+d1,4N, z+d1,6N, x d1,3N, z+d1,4N, y+d1,5N, x
d2,1N, x+d2,5N, z+d2,6N, y d2,2N, y+d2,4N, z+d2,6N, x d2,3N, z+d2,4N, y+d2,5N, x
d3,1N, x+d3,5N, z+d3,6N, y d3,2N, y+d3,4N, z+d3,6N, x d3,3N, z+d3,4N, y+d3,5N, x
d4,1N, x+d4,5N, z+d4,6N, y d4,2N, y+d4,4N, z+d4,6N, x d4,3N, z+d4,4N, y+d4,5N, x
d5,1N, x+d5,5N, z+d5,6N, y d5,2N, y+d5,4N, z+d5,6N, x d5,3N, z+d5,4N, y+d5,5N, x
d6,1N, x+d6,5N, z+d6,6N, y d6,2N, y+d6,4N, z+d6,6N, x d6,3N, z+d6,4N, y+d6,5N, x

{ u
v
w

}

Note that the strain states are {εx εy εz γyz γzx γxy} which may not be the
convention of other software.

Note that NASTRAN, SAMCEF, ANSYS and MODULEF order shear stresses with
σxy, σyz, σzx (MODULEF elements are obtained by setting p solid integ value to
zero). Abaqus uses σxy, σxz, σyz

In fe stress the stress reordering can be accounted for by the definition of the
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proper TensorTopology matrix.

For isotropic materials

D =



E(1−ν)
(1+ν)(1−2ν)

 1 ν
1−ν

ν
1−ν

ν
1−ν 1 ν

1−ν
ν

1−ν
ν

1−ν 1

 0

0

 G 0 0
0 G 0
0 0 G




(6.2)

with at nominal G = E/(2(1 + ν)).

For orthotropic materials, the compliance is given by

{ε} = [D]−1 {σ} =



1/E1 −ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1/E2 −ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1/E3 0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0 0 0 0 0 1
G12




σx
σy
σz
σyz
σzx
σxy

 (6.3)

For constitutive law building, see p solid.

6.1.2 2D elasticity

With m elastic subtype 4, p solid deals with 2D mechanical volumes with strain
defined by (see q4p constants)


εx
εy
γxy

 =

 N, x 0
0 N, y

N, y N, x

{ u
v

}
(6.4)

and stress by
σεx
σεy
σγxy

 =

 d1,1N, x+ d1,3N, y d1,2N, y + d1,3N, x
d2,1N, x+ d2,3N, y d2,2N, y + d2,3N, x
d3,1N, x+ d3,3N, y d3,2N, y + d3,3N, x

{ u
v

}
(6.5)

For isotropic plane stress (p solid form=1), one has
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D =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (6.6)

For isotropic plane strain (p solid form=0), one has

D =
E(1− ν

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (6.7)

6.1.3 Acoustics

With m elastic subtype 2, p solid deals with 2D and 3D acoustics (see flui4

constants) where 3D strain is given by
p, x
p, y
p, z

 =

 N, x
N, y
N, z

{ p
}

(6.8)

This replaces the earlier flui4 ... elements.

6.1.4 Classical lamination theory
Both isotropic and orthotropic materials are considered. In these cases, the general

form of the 3D elastic material law is



σ11

σ22

σ33

τ23

τ13

τ12


=



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

(s) C55 0
C66





ε11

ε22

ε33

γ23

γ13

γ12


(6.9)

Plate formulation consists in assuming one dimension, the thickness along x3, neg-
ligible compared with the surface dimensions. Thus, vertical stress σ33 = 0 on the
bottom and upper faces, and assumed to be neglected throughout the thickness,

σ33 = 0⇒ ε33 = − 1

C33
(C13ε11 + C23ε22) , (6.10)
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and for isotropic material,

σ33 = 0⇒ ε33 = − ν

1− ν
(ε11 + ε22) . (6.11)

By eliminating σ33, the plate constitutive law is written, with engineering notations,



σ11

σ22

σ12

σ23

σ13


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55





ε11

ε22

γ12

γ23

γ13


. (6.12)

The reduced stiffness coefficients Qij (i,j = 1,2,4,5,6) are related to the 3D stiffness
coefficients Cij by

Qij =

 Cij −
Ci3Cj3
C33

if i,j=1,2,

Cij if i,j=4,5,6.
(6.13)

The reduced elastic law for an isotropic plate becomes,

 σ11
σ22
τ12

 =
E

(1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 ε11
ε22
γ12

, (6.14)

and

{
τ23
τ13

}
=

E

2(1 + ν)

[
1 0
0 1

]{
γ23
γ13

}
. (6.15)

Under Reissner-Mindlin’s kinematic assumption the linearized strain tensor is

ε =

 u1,1 + x3β1,1
1
2(u1,2 + u2,1 + x3(β1,2 + β2,1)) 1

2(β1 + w,1)
u2,2 + x3β2,2

1
2(β2 + w,2)

(s) 0

 . (6.16)

So, the strain vector is written,
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{ε} =



εm11 + x3κ11

εm22 + x3κ22

γm12 + x3κ12

γ23

γ13


, (6.17)

with εm the membrane, κ the curvature or bending, and γ the shear strains,

εm =


u1,1

u2,2

u1,2 + u2,1

 , κ =


β1,1

β2,2

β1,2 + β2,1

 , γ =

{
β2 + w,2
β1 + w,1

}
, (6.18)

Note that the engineering notation with γ12 = u1,2 + u2,1 is used here rather than
the tensor notation with ε12 = (u1,2 + u2,1)/2 . Similarly κ12 = β1,2 + β2,1, where a
factor 1/2 would be needed for the tensor.

The plate formulation links the stress resultants, membrane forces Nαβ, bending
moments Mαβ and shear forces Qα3, to the strains, membrane εm, bending κ and
shearing γ,  N

M
Q

 =

 A B 0
B D 0
0 0 F

 εm

κ
γ

. (6.19)

The stress resultants are obtained by integrating the stresses through the thickness
of the plate,

Nαβ =

∫ ht

hb
σαβ dx3, Mαβ =

∫ ht

hb
x3 σαβ dx3, Qα3 =

∫ ht

hb
σα3 dx3, (6.20)

with α, β = 1, 2.

Therefore, the matrix extensional stiffness matrix [A], extension/bending coupling
matrix [B], and the bending stiffness matrix [D] are calculated by integration over
the thickness interval [hb ht]

Aij =

∫ ht

hb
Qij dx3, Bij =

∫ ht

hb
x3 Qij dx3,

Dij =

∫ ht

hb
x2

3 Qij dx3, Fij =

∫ ht

hb
Qij dx3.

(6.21)

An improvement of Mindlin’s plate theory with tranverse shear consists in modifying
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the shear coefficients Fij by
Hij = kijFij , (6.22)

where kij are correction factors. Reddy’s 3rd order theory brings to kij = 2
3 . Very

commonly, enriched 3rd order theory are used, and kij are equal to 5
6 and give good

results. For more details on the assessment of the correction factor, see [32].

For an isotropic symmetric plate (hb = −ht = h/2), the in-plane normal forces N11,
N22 and shear force N12 become


N11

N22

N12

 =
Eh

1− ν2

 1 ν 0
1 0

(s) 1−ν
2




u1,1

u2,2

u1,2 + u2,1

 , (6.23)

the 2 bending moments M11, M22 and twisting moment M12
M11

M22

M12

 =
Eh3

12(1− ν2)

 1 ν 0
1 0

(s) 1−ν
2




β1,1

β2,2

β1,2 + β2,1

 , (6.24)

and the out-of-plane shearing forces Q23 and Q13,{
Q23

Q13

}
=

Eh

2(1 + ν)

[
1 0
0 1

]{
β2 + w,2
β1 + w,1

}
. (6.25)

One can notice that because the symmetry of plate, that means the reference plane
is the mid-plane of the plate (x3(0) = 0) the extension/bending coupling matrix [B]
is equal to zero.

Using expression (6.21) for a constant Qij , one sees that for a non-zero offset, one
has
Aij = h [Qij ] Bij = x3(0)h [Qij ] Cij = (x3(0)2h+ h3/12) [Qij ] Fij = h [Qij ](6.26)

where is clearly appears that the constitutive matrix is a polynomial function of h,
h3, x3(0)2h and x3(0)h. If the ply thickness is kept constant, the constitutive law is
a polynomial function of 1, x3(0), x3(0)2.

6.1.5 Piezo-electric volumes

A revised version of this information is available at http://www.sdtools.

com/pdf/piezo.pdf. Missing PDF links will be found there.

The strain state associated with piezoelectric materials is described by the six clas-
sical mechanical strain components and the electrical field components. Following
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the IEEE standards on piezoelectricity and using matrix notations, S denotes the
strain vector and E denotes the electric field vector (V/m) :

{
S
E

}
=



εx
εy
εz
γyz
γzx
γxy
Ex
Ey
Ez



=



N, x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N, x 0
N, y N, x 0 0

0 0 0 −N, x
0 0 0 −N, y
0 0 0 −N, z




u
v
w
φ

 (6.27)

where φ is the electric potential (V ).

The constitutive law associated with this strain state is given by{
T
D

}
=

[
CE eT

e −εS

]{
S
−E

}
(6.28)

in which D is the electrical displacement vector (a density of charge in Cb/m2), T
is the mechanical stress vector (N/m2). CE is the matrix of elastic constants at
zero electric field (E = 0, short-circuited condition, see section 6.1.1 for formulas
(there CE is noted D). Note that using −E rather than E makes the constitutive
law symmetric.

Alternatively, one can use the constitutive equations written in the following man-
ner : {

S
D

}
=

[
sE dT

d εT

]{
T
E

}
(6.29)

In which sE is the matrix of mechanical compliances, [d] is the matrix of piezoelectric
constants (m/V = Cb/N):

[d] =

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (6.30)

Matrices [e] and [d] are related through

[e] = [d]
[
CE
]

(6.31)

Due to crystal symmetries, [d] may have only a few non-zero elements.

Matrix
[
εS
]

is the matrix of dielectric constants (permittivities) under zero strain
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(constant volume) given by [
εS
]

=

 εS11 εS12 εS13

εS21 εS22 εS23

εS31 εS32 εS33

 (6.32)

It is more usual to find the value of εT (Permittivity at zero stress) in the datasheet.
These two values are related through the following relationship :

[
εS
]

=
[
εT
]
− [d] [e]T (6.33)

For this reason, the input value for the computation should be
[
εT
]
.

Also notice that usually relative permittivities are given in datasheets:

εr =
ε

ε0
(6.34)

ε0 is the permittivity of vacuum (=8.854e-12 F/m)

The most widely used piezoelectric materials are PVDF and PZT. For both of these,

matrix
[
εT
]

takes the form

[
εT
]

=

 εT11 0 0
0 εT22 0
0 0 εT33

 (6.35)

For PVDF, the matrix of piezoelectric constants is given by

[d] =

 0 0 0 0 0 0
0 0 0 0 0 0
d31 d32 d33 0 0 0

 (6.36)

and for PZT materials :

[d] =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 (6.37)

6.1.6 Piezo-electric shells

184



Shell strain is defined by the membrane, curvature and transverse shear as well as
the electric field components. It is assumed that in each piezoelectric layer i = 1...n,
the electric field takes the form ~E = (0 0 Ezi). Ezi is assumed to be constant
over the thickness hi of the layer and is therefore given by Ezi = −∆φi

hi
where ∆φi

is the difference of potential between the electrodes at the top and bottom of the
piezoelectric layer i. It is also assumed that the piezoelectric principal axes are
parallel to the structural orthotropy axes.

z

hp

m

piezo

mid-plane
z

h

The strain state of a piezoelectric shell takes the form



εxx
εyy
2εxy
κxx
κyy
2κxy
γxz
γyz
−Ez1
...
−Ezn



=



N, x 0 0 0 0 0 ... 0
0 N, y 0 0 0 0 ... 0

N, y N, x 0 0 0 0 ... 0
0 0 0 0 −N, x 0 ... 0
0 0 0 N, y 0 0 ... 0
0 0 0 N, x −N, y 0 ... 0
0 0 N, x 0 N 0 ... 0
0 0 N, y −N 0 0 ... 0
0 0 0 0 0 − 1

h1
... 0

... ... ... ... ... 0 ... − 1
hn





u
v
w
ru
rw

∆φ1

...
∆φn


(6.38)

There are thus n additional degrees of freedom ∆φi, n being the number of piezo-
electric layers in the laminate shell

The constitutive law associated to this strain state is given by :
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N
M
Q
Dz1

...
Dzn


=



A B 0 GT1 ... GTn
B D 0 zm1G

T
1 ... zmnG

T
n

0 0 F HT
1 ... HT

n

G1 zm1G1 H1 −ε1 ... 0
... ... ... 0 ... 0
Gn zmnGn Hn 0 ... −εn





ε
κ
γ
−Ez1
...
−Ezn


(6.39)

where Dzi is the electric displacement in piezoelectric layer (assumed constant and
in the z-direction), zmi is the distance between the midplane of the shell and the
midplane of piezoelectric layer i, and Gi, Hi are given by

Gi =
{
e.1 e.2 0

}
i
[Rs]i (6.40)

Hi =
{
e.4 e.5

}
i
[R]i (6.41)

where . denotes the direction of polarization. If the piezoelectric is used in ex-
tension mode, the polarization is in the z-direction, therefore Hi = 0 and Gi ={
e31 e32 0

}
i

. If the piezoelectric is used in shear mode, the polarization is in

the x or y-direction, therefore Gi = 0, and Hi = {0 e15}i or Hi = {e24 0}i . It turns
out however that the hypothesis of a uniform transverse shear strain distribution
through the thickness is not satisfactory, a more elaborate shell element would be
necessary. Shear actuation should therefore be used with caution.

[Rs]i and [R]i are rotation matrices associated to the angle θ of the piezoelectric
layer.

[Rs] =

 cos2 θ sin2 θ sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (6.42)

[R] =

[
cos θ − sin θ
sin θ cos θ

]
(6.43)

6.1.7 Geometric non-linearity

The following gives the theory of large transformation problem implemented in
OpenFEM function of mk pre.c Mecha3DInteg.
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The principle of virtual work in non-linear total Lagrangian formulation for an hy-
perelastic medium is ∫

Ω0

(ρ0u
′′, δv) +

∫
Ω0

S : δe =

∫
Ω0

f.δv ∀δv (6.44)

with p the vector of initial position, x = p + u the current position, and u the
displacement vector. The transformation is characterized by

Fi,j = I + ui,j = δij + {N,j}T {qi} (6.45)

where the N, j is the derivative of the shape functions with respect to Cartesian
coordinates at the current integration point and qi corresponds to field i (here trans-
lations) and element nodes. The notation is thus really valid within a single element
and corresponds to the actual implementation of the element family in elem0 and
of mk. Note that in these functions, a reindexing vector is used to go from engineer-
ing ({e11 e22 e33 2e23 2e31 2e12}) to tensor [eij ] notations ind ts eg=[1 6 5;6 2

4;5 4 3];e tensor=e engineering(ind ts eg);. One can also simplify a number
of computations using the fact that the contraction of a symmetric and non sym-
metric tensor is equal to the contraction of the symmetric tensor by the symmetric
part of the non symmetric tensor.

One defines the Green-Lagrange strain tensor e = 1/2(F TF − I) and its variation

deij =
(
F TdF

)
Sym

=
(
Fki {N,j}T {qk}

)
Sym

(6.46)

Thus the virtual work of internal loads (which corresponds to the residual in non-
linear iterations) is given by∫

Ω
S : δe =

∫
Ω
{δqk}T {N,j}FkiSij (6.47)

and the tangent stiffness matrix (its derivative with respect to the current position)
can be written as

KG =

∫
Ω
Sijδuk,iul,j +

∫
Ω
de :

∂2W

∂e2
: δe (6.48)

which using the notation ui,j = {N,j}T {qi} leads to

Ke
G =

∫
Ω
{δqm} {N,l}

(
Fmk

∂2W

∂e2 ijkl
Fni + Slj

)
{N,j} {dqn} (6.49)

The term associated with stress at the current point is generally called geometric
stiffness or pre-stress contribution.

In isotropic elasticity, the 2nd tensor of Piola-Kirchhoff stress is given by

S = D : e(u) =
∂2W

∂e2
: e(u) = λTr(e)I + 2µe (6.50)

the building of the constitutive law matrix D is performed in p solid BuildConstit

for isotropic, orthotropic and full anisotropic materials. of mk pre.c nonlin elas

then implements element level computations. For hyperelastic materials ∂2W
∂e2

is not
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constant and is computed at each integration point as implemented in hyper.c.

For a geometric non-linear static computation, a Newton solver will thus iterate with

[K(qn)]
{
qn+1 − qn

}
= R(qn) =

∫
Ω
f.dv −

∫
Ω0

S(qn) : δe (6.51)

where external forces f are assumed to be non following.

For an example see staticNewton.

6.1.8 Thermal pre-stress

The following gives the theory of the thermoelastic problem implemented in Open-
FEM function of mk pre.c nonlin elas.

In presence of a temperature difference, the thermal strain is given by [eT ] = [α] (T−
T0), where in general the thermal expansion matrix α is proportional to identity
(isotropic expansion). The stress is found by computing the contribution of the
mechanical deformation

S = C : (e− eT ) = λTr(e)I + 2µe− (C : [α])(T − T0) (6.52)

This expression of the stress is then used in the equilibrium (6.44), the tangent
matrix computation(6.48), or the Newton iteration (6.51). Note that the fixed con-
tribution

∫
Ω0

(−C : eT ) : δe can be considered as an internal load of thermal origin.

The modes of the heated structure can be computed with the tangent matrix.

An example of static thermal computation is given in ofdemos ThermalCube.

6.1.9 Hyperelasticity

The following gives the theory of the thermoelastic problem implemented in Open-
FEM function hyper.c (called by of mk.c MatrixIntegration).

For hyperelastic media S = ∂W/∂e with W the hyperelastic energy. hyper.c cur-
rently supports Mooney-Rivlin materials for which the energy takes one of following
forms

W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)2, (6.53)
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W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)− (C1 + 2C2 +K) ln(J3), (6.54)

where (J1, J2, J3) are the so-called reduced invariants of the Cauchy-Green tensor
C = I + 2e, (6.55)

linked to the classical invariants (I1, I2, I3) by

J1 = I1I
− 1

3
3 , J2 = I2I

− 2
3

3 , J3 = I
1
2
3 , (6.56)

where one recalls that

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, I3 = detC. (6.57)

Note : this definition of energy based on reduced invariants is used to have the
hydrostatic pressure given directly by p = −K(J3−1) (K “bulk modulus”), and the
third term of W is a penalty on incompressibility.

Hence, computing the corresponding tangent stiffness and residual operators will
require the derivatives of the above invariants with respect to e (or C). In an
orthonormal basis the first-order derivatives are given by:

∂I1

∂Cij
= δij ,

∂I2

∂Cij
= I1δij − Cij ,

∂I3

∂Cij
= I3C

−1
ij , (6.58)

where (C−1
ij ) denotes the coefficients of the inverse matrix of (Cij). For second-order

derivatives we have:
∂2I1

∂Cij∂Ckl
= 0,

∂2I2

∂Cij∂Ckl
= −δikδjl + δijδkl,

∂2I3

∂Cij∂Ckl
= Cmnεikmεjln, (6.59)

where the εijk coefficients are defined by
εijk = 0 when 2 indices coincide

= 1 when (i, j, k) even permutation of (1, 2, 3)
= −1 when (i, j, k) odd permutation of (1, 2, 3)

(6.60)

Note: when the strain components are seen as a column vector (“engineering
strains”) in the form (e11, e22, e33, 2e23, 2e31, 2e12)′, the last two terms of (6.59) thus
correspond to the following 2 matrices

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1/2


, (6.61)
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0 C33 C22 −C23 0 0
C33 0 C11 0 −C13 0
C22 C11 0 0 0 −C12

−C23 0 0 −C11/2 C12/2 C13/2
0 −C13 0 C12/2 −C22/2 C23/2
0 0 −C12 C13/2 C23/2 −C33/2


. (6.62)

We finally use chain-rule differentiation to compute

S =
∂W

∂e
=
∑
k

∂W

∂Ik

∂Ik
∂e

, (6.63)

∂2W

∂e2
=
∑
k

∂W

∂Ik

∂2Ik
∂e2

+
∑
k

∑
l

∂2W

∂Ik∂Il

∂Ik
∂e

∂Il
∂e
. (6.64)

Note that a factor 2 arise each time we differentiate the invariants with respect to e
instead of C.

The specification of a material is given by specification of the derivatives of the en-
ergy with respect to invariants. The laws are implemented in the hyper.c EnPassiv

function.

6.1.10 Gyroscopic effects

Written by Arnaud Sternchuss ECP/MSSMat.

In the fixed reference frame which is Galilean, the Eulerian speed of the particle in
x whose initial position is p is

∂x

∂t
=
∂u

∂t
+ Ω ∧ (p + u)

and its acceleration is
∂2x

∂t2
=
∂2u

∂t2
+
∂Ω

∂t
∧ (p + u) + 2Ω ∧ ∂u

∂t
+ Ω ∧Ω ∧ (p + u)

Ω is the rotation vector of the structure with

Ω =

 ωx
ωy
ωz


in a (x, y, z) orthonormal frame. The skew-symmetric matrix [Ω] is defined such
that

[Ω] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0
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The speed can be rewritten
∂x

∂t
=
∂u

∂t
+ [Ω] (p + u)

and the acceleration becomes
∂2x

∂t2
=
∂2u

∂t2
+
∂ [Ω]

∂t
(p + u) + 2 [Ω]

∂u

∂t
+ [Ω]2 (p + u)

In this expression appear

• the acceleration in the rotating frame ∂2u
∂t2

,

• the centrifugal acceleration ag = [Ω]2 (p + u),

• the Coriolis acceleration ac = ∂[Ω]
∂t (p + u) + 2 [Ω] ∂u∂t .

Se0 is an element of the mesh of the initial configuration S0 whose density is ρ0.
[N ] is the matrix of shape functions on these elements, one defines the following
elementary matrices[

De
g

]
=

∫
Se0

2ρ0 [N ]> [Ω] [N ] dSe0 gyroscopic coupling

[Ke
a] =

∫
Se0
ρ0 [N ]> ∂[Ω]

∂t [N ] dSe0 centrifugal acceleration[
Ke
g

]
=

∫
Se0
ρ0 [N ]> [Ω]2 [N ] dSe0 centrifugal softening/stiffening

(6.65)

6.1.11 Centrifugal follower forces

This is the embryo of the theory for the future implementation of centrifugal follower
forces.

δWω =

∫
Ω
ρω2R(x)δvR, (6.66)

where δvR designates the radial component (in deformed configuration) of δv. One
assumes that the rotation axis is along ez. Noting nR = 1/R{x1 x2 0}T , one then
has

δvR = nR · δv. (6.67)

Thus the non-linear stiffness term is given by

−dδWω = −
∫

Ω
ρω2(dRδvR +RdδvR). (6.68)

One has dR = nR · dx(= dxR) and dδvR = dnR · δv, with

dnR = −dR
R
nR +

1

R
{dx1 dx2 0}T .
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Thus, finally

−dδWω = −
∫

Ω
ρω2(du1δv1 + du2δv2). (6.69)

Which gives

du1δv1 + du2δv2 = {δqα}T {N}{N}T {dqα}, (6.70)

with α = 1, 2.

6.1.12 Poroelastic materials

The poroelastic formulation comes from [33], recalled and detailed in [34].

Domain and variables description:

Ω Poroelastic domain
∂Ω Bounding surface of poroelastic domain
n Unit external normal of ∂Ω
u Solid phase displacement vector

uF Fluid phase displacement vector uF = φ
ρ̃22ω

2∇p−
ρ̃12
ρ̃22

u

p Fluid phase pressure
σ Stress tensor of solid phase

σt Total stress tensor of porous material σt = σ − φ
(

1 +
Q̃

R̃

)
pI

Weak formulation, for harmonic time dependence at pulsation ω:

∫
Ω
σ(u) : ε(δu) dΩ− ω2

∫
Ω
ρ̃ u.δu dΩ−

∫
Ω

φ

α̃
∇p.δu dΩ

−
∫

Ω
φ

(
1 +

Q̃

R̃

)
p∇.δu dΩ−

∫
∂Ω

(σt(u).n).δu dS = 0 ∀δu
(6.71)

∫
Ω

φ2

α̃ρoω2
∇p.∇δp dΩ−

∫
Ω

φ2

R̃
p δp dΩ−

∫
Ω

φ

α̃
u.∇δp dΩ

−
∫

Ω
φ

(
1 +

Q̃

R̃

)
δp∇.u dΩ−

∫
∂Ω
φ(uF − u).n δp dS = 0 ∀δp

(6.72)

Matrix formulation, for harmonic time dependence at pulsation ω:
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[
K − ω2M −C1 − C2

−CT1 − CT2 1
ω2F −Kp

]{
u
p

}
=

{
F ts
Ff

}
(6.73)

where the frequency-dependent matrices correspond to:

∫
Ω
σ(u) : ε(δu) dΩ ⇒ δuTKu∫

Ω
ρ̃ u.δu dΩ ⇒ δuTMu∫

Ω

φ2

α̃ρo
∇p.∇δp ⇒ δpTKpp∫

Ω

φ2

R̃
p δp ⇒ δpTFp∫

Ω

φ

α̃
∇p.δu dΩ ⇒ δuTC1p∫

Ω
φ

(
1 +

Q̃

R̃

)
p∇.δu dΩ ⇒ δuTC2p∫

∂Ω
(σt(u).n).δu dS ⇒ δuTF ts∫

∂Ω
φ(uF − u).n δp dS ⇒ δpTFf

(6.74)

N.B. if the material of the solid phase is homogeneous, the frequency-dependent
parameters can be eventually factorized from the matrices:

 (1 + iηs)K̄ − ω2ρ̃M̄ −φ
α̃ C̄1 − φ

(
1 + Q̃

R̃

)
C̄2

−φ
α̃ C̄

T
1 − φ

(
1 + Q̃

R̃

)
C̄T2

1
ω2

φ2

R̃
F̄ − φ2

α̃ρo
K̄p

{ u
p

}
=

{
F ts
Ff

}
(6.75)

where the matrices marked with bars are frequency independent:

K = (1 + iηs)K̄ M = ρ̃M̄ C1 = φ
α̃ C̄1

C2 = φ
(
1 + Q̃

R̃

)
C̄2 F = φ2

R̃
F̄ Kp = φ2

α̃ρo
K̄p

(6.76)

Material parameters:
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φ Porosity of the porous material
σ̄ Resistivity of the porous material
α∞ Tortuosity of the porous material
Λ Viscous characteristic length of the porous material
Λ′ Thermal characteristic length of the skeleton
ρ Density of the skeleton
G Shear modulus of the skeleton
ν Poisson coefficient of the skeleton
ηs Structural loss factor of the skeleton
ρo Fluid density
γ Heat capacity ratio of fluid (= 1.4 for air)
η Shear viscosity of fluid (= 1.84× 10−5 kg m−1 s−1 for air)

Constants:

Po = 1, 01× 105 Pa Ambient pressure
Pr = 0.71 Prandtl number

Poroelastic specific (frequency dependent) variables:
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ρ11 Apparent density of solid phase ρ11 = (1− φ)ρ− ρ12

ρ22 Apparent density of fluid phase ρ22 = φρo − ρ12

ρ12 Interaction apparent density ρ12 = −φρo(α∞ − 1)

ρ̃ Effective density of solid phase ρ̃ = ρ̃11 −
(ρ̃12)2

ρ̃22

ρ̃11 Effective density of solid phase ρ̃11 = ρ11 + b̃
iω

ρ̃22 Effective density of fluid phase ρ̃22 = ρ22 + b̃
iω

ρ̃12 Interaction effective density ρ̃12 = ρ12 − b̃
iω

b̃ Viscous damping coefficient b̃ = φ2σ̄

√
1 + i

4α2
∞ηρoω

σ̄2Λ2φ2

γ̃ Coupling coefficient γ̃ = φ

(
ρ̃12
ρ̃22
− Q̃
R̃

)
Q̃ Elastic coupling coefficient

Biot formulation Q̃ =
1− φ− Kb

Ks

1− φ− Kb

Ks
+ φ

Ks

K̃f

φKs

Approximation from Kb/Ks << 1 Q̃ = (1− φ)K̃f

R̃ Bulk modulus of air in fraction volume

Biot formulation R̃ = φ2Ks

1− φ− Kb

Ks
+ φ

Ks

K̃f

Approximation from Kb/Ks << 1 R̃ = φK̃f

Kb Bulk modulus of porous material in vacuo Kb =
2G(1 + ν)
3(1− 2ν)

Ks Bulk modulus of elastic solid

est. from Hashin-Shtrikman’s upper bound Ks = 1+2φ
1−φ Kb

K̃f Effective bulk modulus of air in pores K̃f = Po

1− γ − 1

γα′

α′ Function in K̃f (Champoux-Allard model) α′ = 1 + ωT
2iω

(
1 + iω

ωT

) 1
2

ωT Thermal characteristic frequency ωT = 16η
PrΛ′2ρo

To add here:

• coupling conditions with poroelastic medium, elastic medium, acoustic medium

• dissipated power in medium
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6.1.13 Heat equation

This section is based on an OpenFEM contribution by Bourquin Frédéric and Nas-
siopoulos Alexandre from Laboratoire Central des Ponts et Chaussées.

The variational form of the Heat equation is given by

∫
Ω

(ρcθ̇)(v) dx+

∫
Ω

(Kgrad θ)(grad v) dx+

∫
∂Ω
αθv dγ =∫

Ω
fv dx+

∫
∂Ω

(g + αθext)v dγ

∀v ∈ H1(Ω)

(6.77)

with

• ρ the density, c the specific heat capacity.

• K the conductivity tensor of the material. The tensor K is symmetric, positive
definite, and is often taken as diagonal. If conduction is isotropic, one can write
K = k(x)Id where k(x) is called the (scalar) conductivity of the material.

• Acceptable loads and boundary conditions are

– Internal heat source f

– Prescribed temperature (Dirichlet condition, also called boundary condi-
tion of first kind)

θ = θext on ∂Ω (6.78)

modeled using a DofSet case entry.

– Prescribed heat flux g (Neumann condition, also called boundary condi-
tion of second kind)

(Kgrad θ) · ~n = g on ∂Ω (6.79)

leading to a load applied on the surface modeled using a FVol case entry.
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– Exchange and heat flux (Fourier-Robin condition, also called boundary
condition of third kind)

(Kgrad θ) · ~n+ α(θ − θext) = g on ∂Ω (6.80)

leading to a stiffness term (modeled using a group of surface elements
with stiffness proportional to α) and a load on the associated surface
proportional to g + αθext (modeled using FVol case entries).

Test case

One considers a solid square prism of dimensions Lx, Ly, Lz in the three directions
(Ox), (Oy) and (Oz) respectively. The solid is made of homogeneous isotropic
material, and its conductivity tensor thus reduces to a constant k.

The faces, Γi(i = 1..6,∪6
i=1Γi = ∂Ω), are subject to the following boundary condi-

tions and loads

• f = 40 is a constant uniform internal heat source

• Γ1 (x = 0) : exchange & heat flux (Fourier-Robin) given by α = 1, g1 =

αθext + αfL2
x

2k = 25

• Γ2 (x = Lx) : prescribed temperature : θ(Lx, y, z) = θext = 20

• Γ3 (y = 0), Γ4 (y = Ly), Γ5 (z = 0), Γ6 (z = Lz): exchange & heat flux

g + αθext = αθext + αf
2k (L2

x − x2) + g1 = 25− x2

20

The problem can be solved by the method of separation of variables. It admits the
solution

θ(x, y, z) = − f

2k
x2 + θext +

fL2
x

2k
=
g(x)

α
= 25− x2

20

The resolution for this example can be found in demo/heat equation.

197



6 Advanced FEM tools
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Figure 6.1: Temperature distribution along the x-axis

6.2 Model reduction theory

Finite element models of structures need to have many degrees of freedom to repre-
sent the geometrical detail of complex structures. For models of structural dynamics,
one is however interested in

• a restricted frequency range (s = iω ∈ [ω1 ω2])

• a small number of inputs and outputs (b, c)

• a limited parameter space α (updated physical parameters, design changes, non-
linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models
that accurately represent the dynamics of the full order model in all the considered
loading/parameter conditions.

Model reduction notions are key to many SDT functions of all areas: to motivate
residual terms in pole residue models (id rc, id nor), to allow fine control of model
order (nor2ss, nor2xf), to create normal models of structural dynamics from large
order models (fe2ss, fe reduc), for test measurement expansion to the full set
of DOFs (fe exp), for substructuring using superelements (fesuper, fe coor), for
parameterized problems including finite element model updating (upcom).

6.2.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they
seek solutions in the subspace generated by a reduction matrix T . Assuming {q} =
[T ] {qR}, the second order finite element model (5.1) is projected as follows
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[
T TMTs2 + T TCTs+ T TKT

]
NR×NR

{qR(s)} =
[
T T b

]
NR×NA

{u(s)}NA×1

{y(s)}NS×1 = [cT ]NS×NR {qR(s)}NR×1

(6.81)

Modal analysis, model reduction, component mode synthesis, and related methods
all deal with an appropriate selection of singular projection bases ([T ]N×NR with
NR � N). This section summarizes the theory behind these methods with refer-
ences to other works that give more details.

The solutions provided by SDT making two further assumptions which are not hard
limitations but allow more consistent treatments while covering all but the most
exotic problems. The projection is chosen to preserve reciprocity (left multiplication
by T T and not another matrix). The projection bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved
for a given frequency and parameter range

[c] [Z(s, α)]−1 [b] ≈ [cT ]
[
T TZ(s, α)T

]−1 [
T T b

]
(6.82)

Traditional modal analysis, combines normal modes and static responses. Compo-
nent mode synthesis methods extend the selection of boundary conditions used to
compute the normal modes. The SDT further extends the use of reduction bases to
parameterized problems.

A key property for model reduction methods is that the input/output behavior of
a model only depends on the vector space generated by the projection matrix T .
Thus range(T ) = range(T̃ ) implies that

[cT ]
[
T TZT

]−1 [
T T b

]
=
[
cT̃
] [
T̃ TZT̃

]−1 [
T̃ T b

]
(6.83)

This equivalence property is central to the flexibility provided by the SDT in CMS
applications (it allows the decoupling of the reduction and coupled prediction phases)
and modeshape expansion methods (it allows the definition of a static/dynamic
expansion on sensors that do not correspond to DOFs).

6.2.2 Normal mode models

Normal modes are defined by the eigenvalue problem

− [M ] {φj}ω2
j + [K]N×N {φj}N×1 = {0}N×1 (6.84)
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based on inertia properties (represented by the positive definite mass matrix M) and
underlying elastic properties (represented by a positive semi-definite stiffness K).
The matrices being positive there are N independent eigenvectors {φj} (forming a

matrix noted [φ]) and eigenvalues ω2
j (forming a diagonal matrix noted

[
\ω2

j \

]
).

As solutions of the eigenvalue problem (6.84), the full set of N normal modes verify
two orthogonality conditions with respect to the mass and the stiffness

[φ]T [M ] [φ] =
[
\µj\

]
N×N

and [φ]T [K] [φ] =
[
\µjω

2
j \

]
(6.85)

where µ is a diagonal matrix of modal masses (which are quantities depending
uniquely on the way the eigenvectors φ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that

[µ] = [I] (implying [φ]T [M ] [φ] = [I] and [φ]T [K] [φ] =
[
\ω2

j \

]
). The mass nor-

malization of modeshapes is independent from a particular choice of sensors or
actuators.

Another traditional normalization is to set a particular component of φ̃j to 1. Using
an output shape matrix this is equivalent to clφ̃j = 1 (the observed motion at sensor
cl is unity). φ̃j , the modeshape with a component scaled to 1, is related to the mass
normalized modeshape by φ̃j = φj/(clφj).

mj(cl) = (clφj)
−2

is called the modal or generalized mass at sensor cl. A large modal mass denotes
small output. For rigid body translation modes and translation sensors, the modal
mass corresponds to the mass of the structure. If a diagonal matrix of generalized
masses mu is provided and ModeIn is such that the output cl is scaled to 1, the mass
normalized modeshapes will be obtained by

ModeNorm = ModeIn * diag(diag(mu).^(-1/2));

Modal stiffnesses are are equal to
kj(cl) = (clφj)

−2 ω2
j

The use of mass-normalized modes, simplifies the normal mode form (identity mass
matrix) and allows the direct comparison of the contributions of different modes
at similar sensors. From the orthogonality conditions, one can show that, for an
undamped model and mass normalized modes, the dynamic response is described
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by a sum of modal contributions

[α(s)] =
N∑
j=1

{cφj}
{
φTj b

}
s2 + ω2

j

(6.86)

which correspond to pairs of complex conjugate poles λj = ±iωj .

In practice, only the first few low frequency modes are determined, the series in (6.86)
is truncated, and a correction for the truncated terms is introduced (see section 6.2.3
).

Note that the concept of effective mass [35], used for rigid base excitation tests, is
very similar to the notion of generalized mass.

6.2.3 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition (6.86). In prac-
tice, one distinguishes modes that have a resonance in the model bandwidth and
need to be kept and higher frequency modes for which one assumes ω � ωj . This
assumption leads to

[c]
[
Ms2 +K

]−1
[b] ≈

NR∑
j=1

[c] {φj} {φj}T [b]

s2 + ω2
j

+
N∑

j=NR+1

[c] {φj} {φj}T [b]

ω2
j

(6.87)

Figure 6.2: Normal mode corrections.

For the example treated in the demo fe script, the figure shows that the exact
response can be decomposed into retained modal contributions and an exact residual.
In the selected frequency range, the exact residual is very well approximated by a
constant often called the static correction.

The use of this constant is essential in identification phases and it corresponds to
the E term in the pole/residue models used by id rc (see under res page 171).

For applications in reduction of finite element models, a little more work is typically
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done. From the orthogonality conditions (6.85), one can easily show that for a
structure with no rigid body modes (modes with ωj = 0)

[TA] = [K]−1 [b] =
N∑
j=1

{φj}
{
φTj b

}
ω2
j

(6.88)

The static responses K−1b are called attachment modes in Component Mode
Synthesis applications [36]. The inputs [b] then correspond to unit loads at all
interface nodes of a coupled problem.

One has historically often considered residual attachment modes defined by

[TAR] = [K]−1 [b]−
NR∑
j=1

{φj}
{
φTj b

}
ω2
j

(6.89)

where NR is the number of normal modes retained in the reduced model.

The vector spaces spanned by [φ1 . . . φNR TA] and [φ1 . . . φNR TAR] are clearly
the same, so that reduced models obtained with either are dynamically equivalent.
For use in the SDT, you are encouraged to find a basis of the vector space that
diagonalizes the mass and stiffness matrices (normal mode form which can be easily
obtained with fe norm).

Reduction on modeshapes is sometimes called the mode displacement method,
while the addition of the static correction leads to the mode acceleration
method.

When reducing on these bases, the selection of retained normal modes guarantees
model validity over the desired frequency band, while adding the static responses
guarantees validity for the spatial content of the considered inputs. The reduc-
tion is only valid for this restricted spatial/spectral content but very accurate for
solicitation that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer.
The standard, but conservative, criterion (attributed to Rubin) is to keep modes
with frequencies below 1.5 times the highest input frequency of interest.

6.2.4 Static correction with rigid body modes

For a system with NB rigid body modes kept in the model, [K] is singular. Two
methods are typically considered to overcome this limitation.

The approach traditionally found in the literature is to compute the static response
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of all flexible modes. For NB rigid body modes, this is given by

[K]∗ [b] =
N∑

j=NB+1

{φj}
{
φTj b

}
ω2
j

(6.90)

This corresponds to the definition of attachment modes for free floating structures
[36]. The flexible response of the structure can actually be computed as a static
problem with an iso-static constraint imposed on the structure (use the fe reduc

flex solution and refer to [37] or [38] for more details).

The approach preferred in the SDT is to use a mass-shifted stiffness leading to the
definition of shifted attachment modes as

[TAS ] = [K + αM ]−1 [b] =
N∑
j=1

{φj}
{
φTj b

}
(ω2
j + α)

(6.91)

While these responses don’t exactly span the same subspace as static corrections,
they can be computed using the mass-shifted stiffness used for eigenvalue computa-
tions. For small mass-shifts (a fraction of the lowest flexible frequency) and when
modes are kept too, they are a very accurate replacement for attachment modes. It
is the opinion of the author that the additional computational effort linked to the
determination of true attachment modes is not mandated and shifted attachment
modes are used in the SDT.

6.2.5 Other standard reduction bases

For coupled problems linked to model substructuring, it is traditional to state the
problem in terms of imposed displacements rather than loads.

Assuming that the imposed displacements correspond to DOFs, one seeks solutions
of problems of the form[

ZII(s) ZIC(s)
ZCI(s) ZCC(s)

]{
< qI(s) >
qC(s)

}
=

{
RI(s)
< 0 >

}
(6.92)

where < > denotes a given quantity (the displacement qI are given and the reaction
forces RI computed). The exact response to an imposed harmonic displacement
qI(s) is given by

{q(s)} =

[
I

−Z−1
CCZCI

]
{qI} (6.93)

The first level of approximation is to use a quasistatic evaluation of this response
(evaluate at s = 0, that is use Z(0) = K). Model reduction on this basis is known
as static or Guyan condensation [21].
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This reduction does not fulfill the requirement of validity over a given frequency
range. Craig and Bampton [39] thus complemented the static reduction basis by
fixed interface modes : normal modes of the structure with the imposed boundary
condition qI = 0. These modes correspond to singularities ZCC so their inclusion
in the reduction basis allows a direct control of the range over which the reduced
model gives a good approximation of the dynamic response.

The Craig-Bampton reduction basis takes the special form{
qI(s)
qC(s)

}
=

[
I 0

−K−1
CCKCI φC

]
{qR} (6.94)

where the fact that the additional fixed interface modes have zero components on the
interface DOFs is very useful to allow direct coupling of various component models.
fe reduc provides a solver that directly computes the Craig-Bampton reduction
basis.

A major reason of the popularity of the Craig-Bampton reduction basis is the fact
that the interface DOFs qI appear explicitly in the generalized DOF vector qR. This
is actually a very poor reason that has strangely rarely been challenged. Since the
equivalence property tells that the predictions of a reduced model only depend on the
projection subspace, it is possible to select the reduction basis and the generalized
DOFs independently. The desired generalized DOFs can always be characterized by
an observation matrix cI . As long as [cI ] [T ] is not rank deficient, it is thus possible
to determine a basis T̃ of the subspace spanned by T such that

[cI ]
[
T̃
]

=
[
[I]NI×NI [0]NI×(NR−NI)

]
(6.95)

The fe coor function builds such bases, and thus let you use arbitrary reduction
bases (loaded interface modes rather than fixed interface modes in particular) while
preserving the main interest of the Craig-Bampton reduction basis for coupled sys-
tem predictions (see example in section 6.3.3 ).

6.2.6 Substructuring

Substructuring is a process where models are divided into components and com-
ponent models are reduced before a coupled system prediction is performed. This
process is known as Component Mode Synthesis in the literature. Ref. [36]
details the historical perspective while this section gives the point of view driving
the SDT architecture (see also [40]).
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One starts by considering disjoint components coupled by interface component(s)
that are physical parts of the structure and can be modeled by the finite element
method. Each component corresponds to a dynamic system characterized by its
I/O behavior Hi(s). Inputs and outputs of the component models correspond to
interface DOFs.

Figure 6.3: CMS procedure.

Traditionally, interface DOFs for the interface model match those of the compo-
nents (the meshes are compatible). In practice the only requirement for a coupled
prediction is that the interface DOFs linked to components be linearly related to
the component DOFs qjint = [cj ] [qj ]. The assumption that the components are dis-
joint assures that this is always possible. The observation matrices cj are Boolean
matrices for compatible meshes and involve interpolation otherwise.

Because of the duality between force and displacement (reciprocity assumption),
forces applied by the interface(s) on the components are described by an input
shape matrix which is the transpose of the output shape matrix describing the
motion of interface DOFs linked to components based on component DOFs. Reduced
component models must thus be accurate for all those inputs. CMS methods achieve
this objective by keeping all the associated constraint or attachment modes.

Considering that the motion of the interface DOFs linked to components is imposed
by the components, the coupled system (closed-loop response) is simply obtained
adding the dynamic stiffness of the components and interfaces. For a case with two
components and an interface with no internal DOFs, this results in a model coupled
by the dynamic stiffness of the interface([

Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

]
[Zint]

[
c1 0
0 c2

]){
q1

q2

}
= [b] {u(s)} (6.96)

The traditional CMS perspective is to have the dimension of the interface(s) go to
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zero. This can be seen as a special case of coupling with an interface stiffness
[
Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

] [ I −I
−I I

]
ε

[
c1 0
0 c2

]
{
q1

q2

}
= [b] {u(s)} (6.97)

where ε tends to zero. The limiting case could clearly be rewritten as a problem with
a displacement constraint (generalized kinematic or Dirichlet boundary condition)[

Z1 0
0 Z2

]{
q1

q2

}
= [b] {u(s)} with [c1 − c2]

{
q1

q2

}
= 0 (6.98)

Most CMS methods state the problem this way and spend a lot of energy finding
an explicit method to eliminate the constraint. The SDT encourages you to use
fe coor which eliminates the constraint numerically and thus leaves much more
freedom on how you reduce the component models.

In particular, this allows a reduction of the number of possible interface deformations
[40]. But this reduction should be done with caution to prevent locking (excessive
stiffening of the interface).

6.2.7 Reduction for parameterized problems
Methods described up to now, have not taken into account the fact that in (6.82)

the dynamic stiffness can depend on some variable parameters. To apply model
reduction to a variable model, the simplest approach is to retain the low frequency
normal modes of the nominal model. This approach is however often very poor even
if many modes are retained. Much better results can be obtained by taking some
knowledge about the modifications into account [41].

In many cases, modifications affect a few DOFs: ∆Z = Z(α) − Z(α0) is a matrix
with mostly zeros on the diagonal and/or could be written as an outer product

∆ZN×N = [bI ]
[
∆Ẑ

]
NB×NB

[bI ]
T with NB much smaller than N . An appropriate

reduction basis then combines nominal normal modes and static responses to the
loads bI

T =

[
φ1...NR

[
K̂
]−1

[bI ]

]
(6.99)

In other cases, you know a typical range of allowed parameter variations. You can
combine normal modes are selected representative design points to build a multi-
model reduction that is exact at these points

T = [φ1...NR(α1) φ1...NR(α2) ...] (6.100)

If you do not know the parameter ranges but have only a few parameters, you should
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consider a model combining modeshapes and modeshape sensitivities [42] (as shown
in the gartup demo)

T =

[
φ1...NR(α0)

∂φ1...NR

∂α
...

]
(6.101)

For a better discussion of the theoretical background of fixed basis reduction for
variable models see Refs. [41] and [42].

6.3 Superelements and CMS

6.3.1 Superelements in a model

A superelement is a model that is included in another global model as an element.
In general superelements are reduced: the response at all DOFs is described by a
linear combination of shapes characterized by generalized DOFs. The use of multiple
superelements to generate system predictions is called Component Mode Synthesis
(CMS).

Starting with SDT 6, superelements are stored as ’SE’ entries in the model stack (of
the form ’SE’, SEname, SEmodel) with field detailed in section 6.3.2 . Superele-
ments are then referenced by element rows in a group of SE elements in the global
model. A group of superelements in the Elt matrix begins by the header row [Inf

abs(’SE’) 0]. Each superelement is then defined by a row of the form

[NameCode N1 Nend BasId Elt1 EltEnd MatId ProId EltId].

• NameCode is an identifier encoding the superelement name using fesuper(’s name’).
It is then assumed that the model stack contains an ’SE’,name entry contain-
ing the model constituting the superelement. The encoding uses base2dec

and is limited to 8 alphabetic lower case characters and numbers,
you can use NameCode = feval(fesuper(’@cleanSEname’),NameCode); to
test the name compatibility.

• [N1 Nend] and [Elt1 EltEnd] are ranges of implicit NodeId and EltId of
the superelement nodes and elements in the global model. That is to say that
each node or element of the superelement is identified in the global model by
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an Id that can be different from the original Id of the superelement model
stored in the stack. For more details see Node.

• BasId is the basis identifier in the bas field of the global model. It allows
repositioning of the superelement in the global model.

• Elt1,EltEnd give the range of EltId used to identify elements constituting
the superelement. These numbers are distinct from the superelement identifier
itself.

• MatId,ProId,EltId are used to associate properties to a given superelement.
Superelements support p super property entries. Material information can be
used for selection purposes.

The d cms demo illustrates the Component Mode Synthesis based on a superelement
element strategy. The model of this example (shown below) is composed by two
stiffened plates. CMS here consists in splitting the model into two superelement
plates that will be reduced, before computation of the global model modes.

Figure 6.4: CMS example: 2 stiffened plates.

cf=demosdt(’demoCMSSE feplot’); % get the full model

fecom(’curtab Model’)

feutilb(’write’,cf.mdl); % display the mode in text

Examples of superelement use are given in section 6.3.3 .

6.3.2 SE data structure reference
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The superelement data is stored as a ’SE’,Name,Data entry of the global model
stack. The following entries describe standard fields of the superelement Data struc-
ture (which is a standard SDT model data structure with possible additional fields).

Opt

Options characterizing the type of superelement as follows:

Opt(1,1) 1 classical superelements, 3 FE update unique superelements
(see upcom).

Opt(1,4) 1 for FE update superelement uses non symmetric matrices.
Opt(2,:) matrix types for the superelement matrices. Each non zero

value on the second row of Opt specifies a matrix stored in
the field K{i} (where i is the column number). The value of
Opt(2,i) indicates the matrix type of K{i}. For standard types
see MatType.

Opt(3,:) is used to define the coefficient associated with each of the ma-
trices declared in row 2. An alternative mechanism is to define
an element property in the il matrix. If these coefficients are
not defined they are assumed to be equal to 1. See p super for
high level handling.

Node

Nominal node matrix. Contains the nodes used by the unique superelement or the
nominal generic superelement (see section 7.1 ). The only restriction in comparison
to a standard model Node matrix is that it must be sorted by NodeId so that the
last node has the biggest NodeId.

In the element row declaring the superelement (see above) one defines a node range
N1 NEND. The constraint on node numbers is that the defined range corresponds
to the largest node number in the superelement (NEND-N1+1=max(SE.Node(:,1))).
Not all nodes need to be defined however.

Nodes numbers in the full model are given by
NodeId=SE.Node(:,1)-max(SE.Node(:,1))+NEND

N1 is really only used for coherence checking).
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K{i},Klab{i},DOF

Superelement matrices. The presence and type of these matrices is declared in the
Opt field (see above) and should be associated with a label giving the meaning of
each matrix.

All matrices must be consistent with the .DOF field which is given in internal node
numbering. When multiple instances of a superelement are used, node identifiers
are shifted.

For multiple instances of a superelement that are in rotated reference frames, the
matrices are no longer rotated (as available in SDT 5 with the .Ref field) since we
have found this strategy to have a negative performance impact in most applications.

Elt, Node, il, pl

Initial model retrieval for unique superelements. Elt field contains the initial model
description matrix which allows the construction of a detailed visualization as well
as post-processing operations. Node contains the nodes used by this model. The
.pl and .il fields store material and element properties for the initial model.

Once the matrices built, SE.Elt may be replaced by a display mesh if appropriate.

TR

TR field contains the definition of a possible projection on a reduction basis. This
information is stored in a structure array with fields

• .DOF is the model active DOF vector.

• .def is the projection matrix. There is as many columns as DOFs in the
reduced basis (stored in the DOF field of the superelement structure array),
and as many row as active DOFs (stored in TR.DOF).

• .adof, when appropriate, gives a list of DOF labels associated with columns
of TR.def

• .data, when appropriate, gives a list frequencies associated with columns of
TR.def

210



6.3.3 An example of SE use for CMS

Following example splits the 2 stiffened plane models into 2 sub models, and defines
a new model with those 2 sub models taken as superelements.
First the 2 sub models are built

model=demosdt(’demo CMS’);

SE1.Node=model.Node; SE2.Node=model.Node;

[ind,SE1.Elt]=feutil(’FindElt WithNode{x>0|z>0}’,model); % sel 1st plate

SE1.Node=feutil(’OptimModel’,SE1); SE1=feutil(’renumber’,SE1);

[ind,SE2.Elt]=feutil(’FindElt WithNode{x<0|z<0}’,model); % sel 2nd plate

SE2.Node=feutil(’OptimModel’,SE2); SE2=feutil(’renumber’,SE2);

Then mSE model is built including those 2 models as superelements

mSE.Node=[];

mSE.Elt=[Inf abs(’SE’) 0 0 0 0 0 0; % header row for superelements

fesuper(’s_se1’) 1 16 0 1 1 100 100 1 ; % SE1

fesuper(’s_se2’) 101 116 0 2 2 101 101 2]; % SE2

mSE=stack_set(mSE,’SE’,’se1’,SE1); mSE=stack_set(mSE,’SE’,’se2’,SE2);

feplot(mSE); fecom(’promodelinit’)

This is a low level strategy. fesuper provides a set of commands to easily manipulate
superelements. In particular the whole example above can be performed by a single
call to fesuper(’SelAsSE’) command as shown in the CMS example in section 6.3.3
.

In this example one takes a full model split it into two superelements trough element
selections

model=demosdt(’demoCMS’); % get the full model

feutil(’infoelt’,model)

mSE=fesuper(’SESelAsSE-dispatch’,model, ...

{’WithNode{x>0|z>0}’;’WithNode{x<0|z<0}’});
feutil(’infoelt’,mSE)

[eltid,mSE.Elt]=feutil(’eltidfix’,mSE);

Then the two superelements are stored in the stack of mSE. Both of them are reduced
using fe reduc (with command option -SE for superelement, and -UseDof in order
to obtain physical DOFs) Craig-Bampton reduction. This operation creates the .DOF
(reduced DOFs), .K (superelement reduced matrices) and .TR (reduction basis) fields
in the superelement models.
Those operations can be performed with following commands (see fesuper)
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mSE=fesuper(mSE,’setStack’,’se1’,’info’,’EigOpt’,[5 50 1e3]);

mSE=fesuper(mSE,’settr’,’se1’,’CraigBampton -UseDof’);

mSE=fesuper(mSE,’setStack’,’se2’,’info’,’EigOpt’,[5 50 1e3]);

mSE=fesuper(mSE,’settr’,’se2’,’CraigBampton -UseDof’);

This is the same as following lower level commands

SE1=stack_get(mSE,’SE’,’se1’,’getdata’);

SE1=stack_set(SE1,’info’,’EigOpt’,[5 50.1 1e3]);

SE1=fe_reduc(’CraigBampton -SE -UseDof’,SE1);

mSE=stack_set(mSE,’SE’,’se1’,SE1);

SE2=stack_get(mSE,’SE’,’se2’,’getdata’);

SE2=stack_set(SE2,’info’,’EigOpt’,[5 50.1 1e3]);

SE2=fe_reduc(’CraigBampton -SE -UseDof’,SE2);

mSE=stack_set(mSE,’SE’,’se2’,SE2);

Then the modes can be computed, using the reduced superelements

def=fe_eig(mSE,[5 20 1e3]); % reduced model

dfull=fe_eig(model,[5 20 1e3]); % full model

The results of full and reduced models are very close. The frequency error for the
first 20 modes is lower than 0.02 %.

fesuper provides a set of commands to manipulate superelements. fesuper(’SEAdd’)
lets you add a superelement in a model. One can add a model as a unique superele-
ment or repeat it with translations or rotations.

For CMS for example, one has to split a model into sub structure superelement mod-
els. It can be performed by the fesuper SESelAsSE command. This command can
split a model into superelements defined by selections, or can build the model from
sub models taken as superelements. The fesuper SEDispatch command dispatches
the global model constraints (FixDof, mpc, rbe3, DofSet and rigid elements) into
the related superelements and defines DofSet (imposed displacements) on the inter-
face DOFs between sub structures.

6.3.4 Obsolete superelement information

The following strategy is now obsolete and should not be used even though it is still
tested.

Superelements are stored in global variables whose name is of the form SEName.
fe super ensures that superelements are correctly interpreted as regular elements
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during model assembly, visualization, etc. The superelement Name must differ from
all function names in your Matlab path. By default these variables are not declared
as global in the base workspace. Thus to access them from there you need to use
global SEName.

Reference to the superelements is done using element group headers of the form
[Inf abs(’name’)].

The fesuper user interface provides standard access to the different fields (see
fe super for a list of those fields). The following sections describe currently im-
plemented commands and associated arguments (see the commode help for hints on
how to build commands and understand the variants discussed in this help).

Warnings. In the commands superelement names must be followed by a space (in
most other cases user interface commands are not sensitive to spaces).

Info Outputs a summary of current properties of the superelement Name.

Load, Save Load FileName loads superelements (variables with name of the form SEName)
present in the file.
SaveFileName Name1 Name2 ... saves superelements Name1, Name2 ... in the
file.
Note that these commands are really equivalent to global SEName;save FileName

SEName and global SEName;load FileName SEName.

Make elt=fesuper(’make Name generic’) takes a unique superelement and makes
it generic (see fe super for details on generic superelements). Opt(1,1) is set
to 2. SEName.DOF is transformed to a generic DOF form. The output elt is a
model description matrix for the nominal superelement (header row and one
element property row). This model can by used by femesh to build structures
that use the generic superelement several times (see the d cms2 demo).

make complete adds zero DOFs to nodes which have less than 3 translations
(DOFs .01 to .03) or rotations (DOFs .04 to .06). Having complete superele-
ments is important to be able to rotate them (used for generic superelements
with a Ref property).

New New unique superelement declaration using the general format
fesuper (’New Name’,FEnode,FEelt). If a superelement called Name exists
it is erased. The Node and Elt properties are set to those given as arguments.
The Patch property used by feplot for display is initialized.

Set calls of the form fesuper(’Set Name FieldOrCommand’, ’Value’) are obso-
lete and replaced as follows
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ref field are now replaced by the definition of local bases for each instance of the
superelement.

patch simply replace the superelement .Elt field by another simplified model to be
used for viewing once the matrices have been defined.

ki type fesuper(’set Name k i type’,Mat) sets the superelement matrix K{i} to
Mat and its type to type. The size of Mat must be coherent with the su-
perelement DOF vector. type is a positive integer giving the meaning of the
considered matrix (see MatType).

6.3.5 Sensors and superelements

All sensors, excepted resultant sensor, are supported for superelement models. One
can therefore add a sensor with the same way as for a standard model with fe case

(’SensDof’) commands: fe case(model, ’SensDof [append, combine] SenType’,

Name, Sensor). Name contains the entry name in the stack of the set of sensors
where Sensor will be added. Sensor is a structure of data, a vector, or a matrix,
which describes the sensor (or sensors) to be added to model. Command option
append specifies that the SensId of latter added sensors is increased if it is the same
as a former sensor SensId. With combine command option, latter sensors take the
place of former same SensId sensors. See section 4.6 for more details.

Following example defines some sensors in the last mSE model

model=demosdt(’demoCMS’); % get the full model

mSE=fesuper(’SESelAsSE-dispatch’,model, ...

{’WithNode{x>0|z>0}’;’WithNode{x<0|z<0}’});
[eltid,mSE.Elt]=feutil(’eltidfix’,mSE);

mSE=fesuper(mSE,’setStack’,’se1’,’info’,’EigOpt’,[5 50 1e3]);

mSE=fesuper(mSE,’settr’,’se1’,’CraigBampton -UseDof’);

mSE=fesuper(mSE,’setStack’,’se2’,’info’,’EigOpt’,[5 50 1e3]);

mSE=fesuper(mSE,’settr’,’se2’,’CraigBampton -UseDof’);

Sensors={[0,0.0,0.75,0.0,0.0,1.0,0.0]; % Id,x,y,z,nx,ny,nz

[0,10,0.0,0.0,1.0]; % Id,NodeId,nx,ny,nz

[29.01]}; % DOF

for j1=1:length(Sensors);

mSE=fe_case(mSE,’SensDof append trans’,’output’,Sensors{j1});
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end

mSE=fe_case(mSE,’SensDof append stress’,’output’,[111,22,0.0,1.0,0.0]);

fe case(’SensMatch’) command is the same as for standard models

mSE=fe_case(mSE,’SensMatch Radius2’,’output’);

Use fe case(’SensSE’) to build the observation matrix on the reduced basis

Sens=fe_case(mSE,’SensSE’,’output’);

For resultant sensors, standard procedure does not work at this time. If the resultant
sensor only relates to a specific superelement in the global model, it is however
possible to define it. The strategy consists in defining the resultant sensor in the
superelement model. Then one can build the observation matrix associated to this
sensor, come back to the implicit nodes in the global model, and define a general
sensor in the global model with the observation matrix. This strategy is described
in following example.

One begins by defining resultant sensor in the related superelement

SE=stack_get(mSE,’SE’,’se2’,’GetData’); % get superelement

Sensor=struct(’ID’,0, ...

’EltSel’,’WithNode{x<-0.5}’); % left part of the plate

Sensor.SurfSel=’x==-0.5’; % middle line of the plate

Sensor.dir=[1.0 0.0 0.0]; % x direction

Sensor.type=’resultant’; % type = resultant

SE=fe_case(SE,’SensDof append resultant’,...

’output’,Sensor); % add resultant sensor to SE

Then one can build the associated observation matrix

SE=fe_case(SE,’SensMatch radius .6’,’output’); % SensMatch

Sens=fe_case(SE,’Sens’,’output’); % Build observation

Then one can convert the SE observation matrix to a mSE observation matrix,
by renumbering DOF (this step is not necessary here since the use of fesuper

SESelAsSE command assures that implicit numbering is the same as explicit num-
bering)

cEGI=feutil(’findelt eltname SE:se2’,mSE);

% implicit nodes of SE in mSE

i1=SE.Node(:,1)-max(SE.Node(:,1))+mSE.Elt(cEGI,3);

% renumber DOF to fit with the global model node numbers:

NNode=sparse(SE.Node(:,1),1,i1);

Sens.DOF=full(NNode(fix(Sens.DOF)))+rem(Sens.DOF,1);

215



6 Advanced FEM tools

Finally, one can add the resultant sensor as a general sensor

mSE=fe_case(mSE,’SensDof append general’,’output’,Sens);

One can define a load from a sensor observation as following, and compute FRFs:

mSE=fe_case(mSE,’DofLoad SensDofSE’,’in’,’output:2’) % from 2nd output sensor

def=fe_eig(mSE,[5 20 1e3]); % reduced model

nor2xf(def,mSE,’acc iiplot’); ci=iiplot;

6.4 Model parameterization

6.4.1 Parametric models, zCoef

Different major applications use families of structural models. Update problems,
where a comparison with experimental results is used to update the mass and stiff-
ness parameters of some elements or element groups that were not correctly modeled
initially. Structural design problems, where component properties or shapes are op-
timized to achieve better performance. Non-linear problems where the properties of
elements change as a function of operating conditions and/or frequency (viscoelastic
behavior, geometrical non-linearity, etc.).

A family of models is defined (see [41] for more details) as a group of models of the
general second order form (5.1) where the matrices composing the dynamic stiffness
depend on a number of design parameters p

[Z(p, s)] =
[
M(p)s2 + C(p)s+K(p)

]
(6.102)

Moduli, beam section properties, plate thickness, frequency dependent damping,
node locations, or component orientation for articulated systems are typical p pa-
rameters. The dependence on p parameters is often very non-linear. It is thus often
desirable to use a model description in terms of other parameters α (which depend
non-linearly on the p) to describe the evolution from the initial model as a linear
combination

[Z(p, s)] =
NB∑
j=1

αj(p) [Zjα(s)] (6.103)

with each [Zjα(s)] having constant mass, damping and stiffness properties.
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Plates give a good example of p and α parameters. If p represents the plate thickness,
one defines three α parameters: t for the membrane properties, t3 for the bending
properties, and t2 for coupling effects.

p parameters linked to elastic properties (plate thickness, beam section properties,
frequency dependent damping parameters, etc.) usually lead to low numbers of α
parameters so that the α should be used. In other cases (p parameters representing
node positions, configuration dependent properties, etc.) the approach is impractical
and p should be used directly.

par

SDT handles parametric models where various areas of the model are associated
with a scalar coefficient weighting the model matrices (stiffness, mass, damping, ...).
The first step is to define a set of parameters, which is used to decompose the full
model matrix in a linear combination.

The elements are grouped in non overlapping sets, indexed m, and using the fact
that element stiffness depend linearly on the considered moduli, one can represent
the dynamic stiffness matrix of the parameterized structure as a linear combination
of constant matrices

[Z(Gm, s)] = s2 [M ] +
∑
m

pm [Km] (6.104)

Parameters are case stack entries defined by using fe case par commands (which
are identical to upcom Par commands for an upcom superelement).

A parameter entry defines a element selection and a type of varying matrix. Thus

model=demosdt(’demoubeam’);

model=fe_case(model,’par k 1 .1 10’,’Top’,’withnode {z>1}’);
fecom(’proviewon’);fecom(’curtabCase’,’Top’) % highlight the area

zcoef

The weighting coefficients in (6.104) are defined formally using the
cf.Stack{’info’,’zCoef’} cell array viewed in the figure and detailed below.
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The columns of the cell array, which can be modified with the feplot interface, give

• the matrix labels Klab which must coincide with the defined parameters

• the values of coefficients in (6.104) for the nominal mass (typically mCoef=[1

0 0 ... ])

• the real valued coefficients zCoef0 in (6.104) for the nominal stiffness K0

• the values or strings zCoefFcn to be evaluated to obtain the coefficients for
the dynamic stiffness (6.104).

Given a model with defined parameters/matrices, model=fe def(’zcoef-default’,model)

defines default parameters.

zcoef=fe def(’zcoef’,model) returns weighting coefficients for a range of values
using the frequencies (see Freq) and design point stack entries

Frequencies are stored in the model using a call of the form model=stack set(model,’info’,’Freq’,w hertz colum).
Design points (temperatures, optimization points, ...) are stored as rows of the
’info’,’Range’ entry, see fevisco Range for generation.

When computing a response, fe def zCoef starts by putting frequencies in a local
variable w (which by convention is always in rd/s), and the current design point (row
of ’info’,’Range’ entry or row of its .val field if it exists) in a local variable par.
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zCoef2:end,4 is then evaluated to generate weighting coefficients zCoef giving the
weighting needed to assemble the dynamic stiffness matrix (6.104). For example
in a parametric analysis, where the coefficient par(1) stored in the first column of
Range. One defines the ratio of current stiffness to nominal Kvcurrent = par(1) ∗
Kv(nominal) as follows

% external to fexf

zCoef={’Klab’,’mCoef’,’zCoef0’,’zCoefFcn’;
’M’ 1 0 ’-w.^2’;

’Ke’ 0 1 1+i*fe_def(’DefEta’,[]);

’Kv’ 0 1 ’par(1)’};
model=struct(’K’,{cell(1,3)});
model=stack_set(model,’info’,’zCoef’,zCoef);

model=stack_set(model,’info’,’Range’, ...

struct(’val’,[1;2;3],’lab’,{{’par’}}));

%Within fe2xf

w=[1:10]’*2*pi; % frequencies in rad/s

Range=stack_get(model,’info’,’Range’,’getdata’);

for jPar=1:size(Range.val,1)

Range.jPar=jPar;zCoef=fe2xf(’zcoef’,model,w,Range);

disp(zCoef)

% some work gets done here ...

end

6.4.2 Reduced parametric models

As for nominal models, parameterized models can be reduced by projection on a
constant reduction basis T leading to input/output models of the form[

T TZ(p, s)T
]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR}
(6.105)

or, using the α parameters,∑NB
j=1 αj(p)

[
T T∆Zjα(s)T

]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR}
(6.106)

6.4.3 upcom parameterization for full order models
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Although superelements can deal with arbitrary models of the form (6.103), the
upcom interface is designed to allow easier parameterization of models. This interface
stores a long list of mass M e and stiffness Ke matrices associated to each element
and provides, through the assemble command, a fast algorithm to assemble the full
order matrices as weighted sums of the form

[M(p)] =
NE∑
j=1

αk(p) [M e
k ] [K(p)] =

NE∑
j=1

βk(p) [Ke
k] (6.107)

where the nominal model corresponds to αk(p) = βk(p) = 1.

The basic parameterizations are mass pi and stiffness pj coefficients associated to
element selections ei, ej leading to coefficients

αk, βk = 1 for k /∈ ei
αk = pi for k ∈ ei
βk = pj for k ∈ ej

(6.108)

Only one stiffness and one mass parameter can be associated with each element.
The element selections ei and ej are defined using upcom Par commands. In some
upcom commands, one can combine changes in multiple parameters by defining a
matrix dirp giving the pi, pj coefficients in the currently declared list of parameters.

Typically each element is only associated to a single mass and stiffness matrix. In
particular problems, where the dependence of the element matrices on the design
parameter of interest is non-linear and yet not too complicated more than one sub-
matrix can be used for each element.

In practice, the only supported application is related to plate/shell thickness. If p
represents the plate thickness, one defines three α, β parameters: t for the membrane
properties, t3 for the bending properties, and t2 for coupling effects. This decompo-
sition into element submatrices is implemented by specific element functions, q4up
and q8up, which build element submatrices by calling quad4 and quadb. Triangles
are supported through the use of degenerate quad4 elements.

Element matrix computations are performed before variable parameters are declared.
In cases where thickness variations are desired, it is thus important to declare which
group of plate/shell elements may have a variable thickness so that submatrices
will be separated during the call to fe mk. This is done using a call of the form
upcom(’set nominal t GroupID’,FEnode,FEel0,pl,il).

6.4.4 Getting started with upcom
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Basic operation of the upcom interface is demonstrated in gartup.

The first step is the selection of a file for the superelement storage using upcom(’load

FileName’). If the file already exists, existing fields of Up are loaded. Otherwise,
the file is created.

If the results are not already saved in the file, one then computes mass and stiffness
element matrices (and store them in the file) using

upcom(’setnominal’,FEnode,FEelt,pl,il)

which calls fe mk. You can of course eliminate some DOFs (for fixed boundary
conditions) using a call of the form

upcom(’setnominal’,FEnode,FEelt,pl,il,[],adof)

At any time, upcom info will printout the current state of the model: dimensions
of full/reduced model (or a message if one or the other is not defined)

’Up’ superelement (stored in ’/tmp/tp425896.mat’)

Model Up.Elt with 90 element(s) in 2 group(s)

Group 1 : 73 quad4 MatId 1 ProId 3

Group 6 : 17 q4up MatId 1 ProId 4

Full order (816 DOFs, 90 elts, 124 (sub)-matrices, 144 nodes)

Reduced model undefined

No declared parameters

In most practical applications, the coefficients of various elements are not indepen-
dent. The upcom par commands provide ways to relate element coefficients to a small
set of design variables. Once parameters defined, you can easily set parameters with
the parcoef command (which computes the coefficient associated to each element
(sub-)matrix) and compute the response using the upcom compute commands. For
example

upcom(’load GartUp’);

upcom(’ParReset’)

upcom(’ParAdd k’,’Tail’,’group3’);

upcom(’ParAdd t’,’Constrained Layer’,’group6’);

upcom(’ParCoef’,[1.2 1.1]);

upcom(’info’)

cf=upcom(’plotelt’)

cf.def(1)=upcom(’computemode full 6 20 1e3 11’)

fecom(’scd.3’);
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6.4.5 Reduction for variable models

The upcom interface allows the simultaneous use of a full and a reduced order model.
For any model in a considered family, the full and reduced models can give estimates
of all the qualities (static responses, modal frequencies, modeshapes, or damped
system responses). The reduced model estimate is however much less numerically
expensive, so that it should be considered in iterative schemes.

The selection of the reduction basis T is essential to the accuracy of a reduced
family of models. The simplest approach, where low frequency normal modes of the
nominal model are retained, very often gives poor predictions. For other bases see
the discussion in section 6.2.7 .

A typical application (see the gartup demo), would take a basis combining modes
and modeshape sensitivities, orthogonalize it with respect to the nominal mass and
stiffness (doing it with fe norm ensures that all retained vectors are independent),
and project the model

upcom(’parcoef’,[1 1]);

[fsen,mdsen,mode,freq] = upcom(’sens mode full’,eye(2),7:20);

[m,k]=upcom(’assemble’);T = fe_norm([mdsen mode],m,k);

upcom(’par red’,[T])

In the gartup demo, the time needed to predict the first 20 modes is divided by
10 for the reduced model. For larger models, the ratio is even greater which really
shows how much model reduction can help in reducing computational times.

Note that the projected model corresponds to the currently declared variable pa-
rameters (and in general the projection basis is computed based on knowledge of
those parameters). If parameters are redefined using Par commands, you must thus
project the model again.

6.4.6 Predictions of the response using upcom

The upcom interface provides optimized code for the computation, at any design
point, of modes (ComputeMode command), modeshape sensitivities (SensMode), fre-
quency response functions using a modal model (ComputeModal) or by directly in-
verting the dynamic stiffness (ComputeFRF). All predictions can be made based on
either the full or reduced order model. The default model can be changed using
upcom(’OptModel[0,1]’) or by appending full or reduced to the main command.
Thus
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upcom(’ParCoef’,[1 1]);

[md1,f1] = upcom(’compute mode full 105 20 1e3’);

[md2,f2] = upcom(’compute mode reduced’);

would be typical calls for a full (with a specification of the fe eig options in the
command rather than using the Opt command) and reduced model.

Warning: unlike fe eig, upcom typically returns frequencies in Hz (rather than
rd/s) as the default unit option is 11 (for rd/s use upcom(’optunit22’))

Given modes you could compute FRFs using

IIxh = nor2xf(freq,0.01,mode’*b,c*mode,IIw*2*pi);

but this does not include a static correction for the inputs described by b. You should
thus compute the FRF using (which returns modes as optional output arguments)

[IIxh,mode,freq] = upcom(’compute modal full 105 20’,b,c,IIw);

This approach to compute the FRF is based on modal truncation with static cor-
rection (see section 6.2.3 ). For a few frequency points or for exact full order results,
you can also compute the response of the full order model using

IIxh = upcom(’compute FRF’,b,c,IIw);

In FE model update applications, you may often want to compute modal frequencies
and shape sensitivities to variations of the parameters. Standard sensitivities are
returned by the upcom sens command (see the Reference section for more details).

6.5 Finite element model updating

While the upcom interface now provides a flexible environment that is designed for
finite element updating problems, integrated methodologies for model updating are
not stabilized. As a result, the SDT currently only intends to provide an efficient
platform for developing model updating methodologies. This platform has been
successfully used, by SDTools and others, for updating industrial models, but the
details of parameter selection and optimization strategies are currently only provided
through consulting services.
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Cost Function
Modal: geometric,
energy, etc. 
I/O: TD, FD, 
lin-LS, log-LS

Data
Modal: identified, 
reduced, expanded
I/O: filtered, averaged, 
bandlimited

Algorithm
Direct
Optimization strategy
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Parametrization
Choice of update 
parameters
Reduced evaluation 
model

Updated 
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Figure 6.5: FE updating process.

The objective of finite element updating is to estimate certain design parameters
(physical properties of the model) based on comparisons of test and analysis results.
All the criteria discussed in section 3.2 can be used for updating.

The correlation tools provided by fe sens and fe exp are among the best existing
on the market and major correlation criteria can easily be implemented. With SDT
you can thus easily implement most of the existing error localization algorithms.
No mechanism is however implemented to automatically translate the results of this
localization into a set of parameters to be updated. Furthermore, the updating
algorithms provided are very basic.

6.5.1 Error localization/parameter selection

The choice of design parameters to be updated is central to FE update problems.
Update parameters should be chosen based on the knowledge that they have not
been determined accurately from initial component tests. Whenever possible, the
actual values of parameters should be determined using refined measurements of
the component properties as the identifiability of the parameters is then clear. If
such refined characterizations are not possible, the comparison of measured and
predicted responses of the overall system provide a way to assess the probable value
of a restricted set of parameters.

Discrepancies are always expected between the model and test results. Parameter
updates made based on experimentally measured quantities should thus be limited
to parameters that have an impact on the model that is large enough to be clearly
distinguished from the expected residual error. Such parameters typically are asso-
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ciated to connections and localized masses.

In practice with industrial models, the FE model is initially divided into zones
with one mass/stiffness parameter associated with each zone. The feutil FindElt

commands can greatly help zone definition.

Visualizing the strain/kinetic energy distribution of modeshapes is a typical way to
analyze zones where modifications will significantly affect the response. The gartup

demo shows how the strain energy of modeshapes and displacement residuals can
be used in different phases of the error localization process.

6.5.2 Update based on frequencies

As illustrated in demo fe, once a set of update parameters chosen, you should verify
that the proper range is set (see min and max values in section 6.4.4 ), make sure
that Up.copt options are appropriately set to allow the computation of modes and
sensitivities (see upcom copt commands), and define a sensor configuration matrix
sens using fe sens.

With test results typically stored in poles IIpo and residues IIres (see section 2.3
), the update based on frequencies is then simply obtained by a call of the form

i2=1:8; % indices of poles used for the update

[coef,md1,f1] = up_freq(’basic’,IIpo(i2,:),IIres(i2,:).’,sens);

The result is obtained by a sensitivity method with automated matching of test and
analysis modes using the MAC criterion. A non-linear optimization based solution
can be found using up ifreq but computational costs tend to prevent actual use of
this approach. Using reduced order models (see section 6.4.5 and start use with
upcom(’opt model 1’)) can alleviate some of the difficulties but the sensitivity
based method (up freq) is clearly better.

6.5.3 Update based on FRF

An update algorithm based on a non-linear optimization of the Log-Least-Squares
cost comparing FRFs is also provided with up ixf. The call to up ixf takes the
form

coef = up_ixf(’basic’,b,c,IIw,IIxf,indw)

Using up min for the optimization you will have messages such as
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Step size: 1.953e-03

Cost Parameter jumps ...

3.9341e-01 -9.83e+00 4.05e+00

which indicate reductions in the step size (Up.copt(1,7)) and values of the cost and
update parameters at different stages of the optimization. With Up.copt(1,2) set
to 11 you can follow the evolution of predictions of the first FRF in the considered
set. The final result here is shown in the figure where the improvement linked to
the update is clear.

�

�

�

�

�

Figure 6.6: Updated FRF.

This algorithm is not very good and you are encouraged to use it as a basis for
further study.
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6.6 Handling models with piezoelectric materials

This has been moved to the piezoelectric manual (see sdtweb(’piezo’)) and is no
longer reproduced here.

6.7 Viscoelastic modeling tools

The viscoelastic modeling tools are not part of the base SDT but licensed on an
industrial basis only. Their documentation can be found at http://www.sdtools.

com/pdf/visc.pdf.

6.8 SDT Rotor

Work on the integration of cyclic symmetry capabilities into a complete SDT RO-
TOR package is under progress. Their documentation can be found at http:

//www.sdtools.com/pdf/rotor.pdf.
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This chapter gives a detailed description of the formats used for variables and data
structures. This information is grouped here and hypertext reference is given in the
HTML version of the manual.

7.1 Nodes

7.1.1 Node matrix

Nodes are characterized using the convention of Universal files. model.Node and
FEnode are node matrices. A node matrix has seven columns. Each row of gives

NodeId PID DID GID x y z

where NodeId are node numbers (positive integers with no constraint on order or
continuity), PID and DID are coordinate system numbers for position and displace-
ment respectively (zero or any positive integer), GID is a node group number (zero
or any positive integer), and x y z are the coordinates . For cylindrical coordinate
systems, coordinates represent r teta z (radius, angle in degrees, and z axis value).
For spherical coordinates systems, they represent r teta phi (radius, angle from
vertical axis in degrees, azimuth in degrees). For local coordinate system support
see section 7.1.1 .

A simple line of 10 nodes along the x axis could be simply generated by the command

node = [[1:10]’ zeros(10,3) linspace(0,1,10)’*[1 0 0]];

For other examples take a look at the finite element related demonstrations (see
section 4.5 ) and the mesh handling utility femesh.

The only restriction applied to the NodeId is that they should be positive integers.
The earlier limit of round((2^31-1)/100) ≈ 21e6 is no longer applicable.

In many cases, you will want to access particular nodes by their number. The
standard approach is to create a reindexing vector called NNode. Thus the commands

NNode=[];NNode(node(:,1))=1:size(node,1);

Indices_of_Nodes = NNode(List_of_NodeId)

gives you a simple mechanism to determine the indices in the node matrix of a set of
nodes with identifiers List of NodeId. The feutil FindNode commands provide
tools for more complex selection of nodes in a large list.
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Coordinate system handling

Local coordinate systems are stored in a model.bas field (see NodeBas). Columns
2 and 3 of model.Node define respectively coordinate system numbers for position
and displacement.

Use of local coordinate systems is illustrated in section 3.1.1 where a local basis is
defined for test results.

feplot, fe mk, rigid, ... now support local coordinates. feutil does when the
model is described by a data structure with the .bas field. femesh assumes you are
using global coordinate system obtained with

[FEnode,bas] = basis(model.Node,model.bas)

To write your own scripts using local coordinate systems, it is useful to know the
following calls:

[node,bas,NNode]=feutil(’getnodebas’,model) returns the nodes in global co-
ordinate system, the bases bas with recursive definitions resolved and the reindexing
vector NNode.

To obtain, the local to global transformation matrix (meaning {qglobal} = [cGL] {qlocal})
use

cGL=basis(’trans l’,model.bas,model.Node,model.DOF)

7.2 Model description matrices

A model description matrix describes the model elements. model.Elt and FEelt are,
for example, model description matrices. The declaration of a finite element model
is done through the use of element groups stacked as rows of a model description
matrix elt and separated by header rows whose first element is Inf in Matlab or
%inf in Scilab and the following are the ascii values for the name of the element.
In the following, Matlab notation is used. Don’t forget to replace Inf by %inf in
Scilab.
For example a model described by

elt = [Inf abs(’beam1’) 0 0

1 2 11 12 5 0 0 0

2 3 11 12 5 0 0 0

Inf abs(’mass1’) 0 102

2 1e2 1e2 1e2 5e-5 5e-5 5e-5 0 ];
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has 2 groups. The first group contains 2 beam1 elements between nodes 1-2 and 2-3
with material property 11, section property 12, and bending plane containing node
5. The second group contains a concentrated mass on node 2.

Note how columns unused for a given type element are filled with zeros. The 102

declared for the mass corresponds to an element group identification number EGID.

You can find more realistic examples of model description matrices in the demon-
strations (see section 4.5 ).

The general format for header rows is

[Inf abs(’ElementName’) 0 opt ]

The Inf that mark the element row and the 0 that mark the end of the element name
are required (the 0 may only be omitted if the name ends with the last column of
elt).

For multi-platform compatibility, element names should only contain lower case
letters and numbers. In any case never include blanks, slashes, ... in the element
name. Element names reserved for supported elements are listed in the element
reference chapter 8 (or doc(’eltfun’) from the command line) .

Users can define new elements by creating functions (.m or .mex in Matlab, .sci
in Scilab) files with the element name. Specifications on how to create element
functions are given in section 7.16 .

Element group options opt can follow the zero that marks the end of the element
name. opt(1), if used, should be the element group identification number EGID . In
the example, the group of mass1 elements is this associated to the EGID 102. The
default element group identification number is its order in the group declaration.
Negative EGID are ignored in FEM analyzes (display only, test information, ...).

Between group headers, each row describes an element of the type corresponding to
the previous header (first header row above the considered row).

The general format for element rows is

[NodeNumbers MatId ProId EltId OtherInfo]

where

• NodeNumbers are positive integers which must match a unique NodeId identifier
in the first column of the node matrix.
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• MatId and ProId are material and element property identification numbers. They
should be positive integers matching a unique identifier in the first column of the
material pl and element il property declaration matrices.

• EltId are positive integers uniquely identifying each element. See feutil EltId

for a way to return the vector and verify/fix identifiers.

• OtherInfo can for example be the node number of a reference node (beam1 el-
ement). These columns can be used to store arbitrary element dependent infor-
mation. Typical applications would be node dependent plate thickness, offsets,
etc.

Note that the position of MatId, ProId and EltId in the element rows are returned
by calls of the form ind=elem0(’prop’) (elem0 is a generic element name, it can
be bar1, hexa8, . . . ).

Element property rows are used for assembly by fe mk, display by feplot, model
building by femesh, ...

7.3 Material property matrices and stack entries

This section describes the low level format for material properties. The actual
formats are described under m functions m elastic, m piezo, ... For Graphical
edition and standard scripts see section 4.5.1 .

A material is normally defined as a row in the material property matrix pl. Such
rows give a declaration of the general form [MatId Type Prop] with

MatId a positive integer identifying a particular material property.
Type a positive real number built using calls of the form

fe mat(’m elastic’,’SI’,subtype), the subtype integer is de-
scribed in m functions.

Prop as many properties (real numbers) as needed (see fe mat, m elastic

for details).

Additional information can be stored as an entry of type ’mat’ in the model stack
which has data stored in a structure with at least fields
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.name Description of material.

.pl a single value giving the MatId of the corresponding row in the model.pl
matrix or row of values.
Resolution of the true .pl value is done by
pl=fe mat(’getpl’,model). The property value in .pl should
be -1 for interpolation in GetPl, -2 for interpolation using the table
at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see fe mat Convert

and Unit commands).
.type the name of the material function handling this particular type of ma-

terial (for example m elastic).
.field can be a structure allowing the interpolation of a value called field

based on the given table. Thus
mat.E=struct(’X’,[-10;20],’Xlab’,{{’T’}},’Y’,[10 20]*1e6)

will interpolate value E based on field T. The positions of interpolated
variables within the pl row are given by list=feval(mat.type,

’propertyunittype cell’, subtype).

7.4 Element property matrices and stack entries

This section describes the low level format for element properties. The actual formats
are described under p functions p shell, p solid, p beam, p spring. For Graphical
edition and standard scripts see section 4.5.1 .

An element property is normally defined as a row in the element property matrix
il. Such rows give a declaration of the general form [ProId Type Prop] with

ProId a positive integer identifying a particular element property.
Type a positive real number built using calls of the form

fe mat(’p beam’,’SI’,1), the subtype integer is described in
the p functions.

Prop as many properties (real numbers) as needed (see fe mat, p solid for
details).

Additional information can be stored as an entry of type ’pro’ in the model stack
which has data stored in a structure with fields
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.name description of property.

.il a single value giving the ProId of the corresponding row in the il matrix
or row of values
Resolution of the true .il value is done by
il=fe mat(’getil’,model). The property value in .il should
be -1 for interpolation in GetIl, -2 for interpolation using the table
at each integration point, -3 for direct use of a FieldAtNode value as
constitutive value.

.unit a two character string describing the unit system (see the fe mat

Convert and Unit commands)
.type the name of the property function handling this particular type of ele-

ment properties (for example p beam)
.NLdata used to stored non-linear property information
.MAP specifications of a field at node, see section 7.13
.gstate specifications of a field at integration points, see section 7.13
.field can be a structure allowing the interpolation of a value called field

based on the given table. Thus
pro.A=struct(’X’,[-10;20],’Xlab’,{{’x’}},’Y’,[10 20]*1e6)

will interpolate value A based on field x. The positions of interpolated
variables within the il row are given by list=feval(pro.type,

’propertyunittype cell’, subtype).

The handling of a particular type of constants should be fully contained in the p *

function. The meaning of various constants should be defined in the help and TeX
documentation. The subtype mechanism can be used to define several behaviors
of the same class. The generation of the integ and constit vectors should be
performed through a BuildConstit call that is the same for a full family of element
shapes. The generation of EltConst should similarly be identical for an element
family.

7.5 DOF definition vector

The meaning of each Degree of Freedom (DOF) is handled through DOF definition
vectors typically stored in .DOF fields (and columns of .dof in test cases where a
DOF specifies an input/output location). All informations defined at DOFs (de-
formations, matrices, ...) should always be stored with the corresponding DOF
definition vector. The fe c function supports all standard DOF manipulations (ex-
traction, conversion to label, ...)
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Nodal DOFs are described as a single number of the form NodeId.DofId where
DofId is an integer between 01 and 99. For example DOF 1 of node 23 is described
by 23.01. By convention

• DOFs 01 to 06 are, in the following order u, v, w (displacements along the global
coordinate axes) and θu, θv, θw (rotations along the same directions)

• DOFs 07 to 12 are, in the following order −u, −v, −w (displacements along the
reversed global coordinate axes) and −θu, −θv, −θw (rotations along the same
directions). This convention is used in test applications where measurements are
often made in those directions and not corrected for the sign change. It should
not be used for finite element related functions which may not all support this
convention.

While these are the only mandatory conventions, other typical DOFs are .19 pres-
sure, .20 temperature, .21 voltage, .22 magnetic field.

In a small shell model, all six DOFs (translations and rotations) of each node would
be retained and could be stacked sequentially node by node. The DOF definition
vector mdof and corresponding displacement or load vectors would thus take the
form

mdof =



1.01

1.02

1.03

1.04

1.05

1.06
...


, q =



u1 u2

v1 v2

w1 w2

θu1 θu2 . . .
θv1 θv2

θw1 θw2
...

. . .


and F =



Fu1 Fu2

Fv1 Fv2

Fw1 Fw2

Mu1 Mu2 . . .
Mv1 Mv2

Mw1 Mw2
...

. . .


Typical vectors and matrices associated to a DOF definition vector are

• modes resulting from the use of fe eig or read from FE code results (see
nasread, ufread).

• input and output shape matrices which describe how forces are applied and
sensors are placed (see fe c, fe load, bc page 158 ).

• system matrices : mass, stiffness, etc. assembled by fe mk.

• FRF test data. If the position of sensors is known, it can be used to animate
experimental deformations (see feplot , xfopt, and fe sens ).

Note that, in Matlab version, the functions fe eig and fe mk, for models with more
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than 1000 DOFs, renumber DOF internally so that you may not need to optimize
DOF numbering yourself. In such cases though, mdof will not be ordered sequentially
as shown above.

Element DOFs are described as a single number of the form -EltId.DofId where
DofId is an integer between 001 and 999. For example DOF 1 of the element with
ID 23001 is described by -23001.001. Element DOFs are typically only used by
superelements (see section 6.3 ). Due to the use of integer routines for indexing
operations, you cannot define element DOFs for elements with and EltId larger
than 2 147 484.

7.6 FEM model structure

Finite element simulations are best handled using standard data structures sup-
ported by OpenFEM. The two main data structures are model which contains in-
formation needed to specify a FEM problem, and DEF which stores a solution.

Finite element models are described by their topology (nodes, elements and pos-
sibly coordinate systems), their properties (material and element). Computations
performed with a model are further characterized by a case as illustrated in sec-
tion 4.5.3 and detailed in section 7.7 .

Data structures describing finite element models have the following standardized
fields, where only nodes and elements are always needed.
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.bas local coordinate system definitions.

.cta sensor observation matrix. Used by fe sens.

.copt solver options. For use by upcom. This field is likely to disappear in
favor of defaults in sdtdef.

.DOF DOF definition vector for the matrices of the model. Boundary con-
ditions can be imposed using cases.

.Elt elements. This field is mandatory.

.file Storage file name. Used by upcom.

.il element property description matrix. Can also be stored as ’pro’ en-
tries in the Stack.

.K{i} cell array of constant matrices for description of model as a linear com-
bination. Indices i match definitions in .Opt(2,:) and .Opt(3,:).
Should be associated with a .Klab field giving a string definition of
each matrix. See details in the fe super reference.

.mind element matrix indices. Used by upcom.

.Node nodes. This field is mandatory.

.Opt options characterizing models that are to be used as superelements.

.pl material property description matrix. Can also be stored as ’mat’

entries in the Stack.
.Patch Patch face matrix. See fe super.
.Stack A cell array containing optional properties further characterizing a finite

element model. See stack get for how to handle the stack and the next
section for a list of standardized entries.

.TR projection matrix. See fe super.

.unit main model unit system (see fe mat Convert for a list of supported
unit systems and the associated two letter codes). Specifying this field
let you perform conversion from materials defined in US system unit
from the GUI.

.wd working directory

Obsolete fields are .Ref Generic coordinate transformation specification, .tdof test
DOF field (now in SensDof entries).

7.7 FEM stack and case entries

Various information are stored in the model.Stack field. If you use a SDT handle

refering to a feplot figure, modification of the model and case entries is often easier
using cf.Stack calls (see feplot).
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Currently supported entry types in the stack are

case defines a case : boundary conditions, loading, ...
curve curve to be used for simulations (see fe curve).
info non standard information used by solvers or meshing procedures (see

below).
info,map used to define a normal MAP, see feutil GetNormal for format
mat defines a material entry.
pro defines an element property entry.
SE defines a superelement entry.
sel defines a element selection.
seln defines a node selection. Typically a structure with fields .ID giving

the reference number and .data giving either node numbers or a node
selection command.

set defines a set that is a structure with fields .ID (a reference number
of the set), .data (defines the data) and .type (nature of the set:
NodeId, EltId, FaceId, EdgeId or DOF). .data contains NodeId for
nodes, EltId for elements, two columns giving EltId and face/edge
number (as detailed in integrules) for faces and edges, DOF values for
DOF sets. Sets are often used to define loaded surfaces. The feutil

AddSet commands let you define a set from a selection.
For FaceId sets, a third column can be added to specify subgroups
within the set and a .NodeCon sparse matrix can be used to specify
nodes (rows) connected to each subgroup (column).

Currently reserved names for info entries are
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DefaultZeta value to be used as default modal damping ratio (viscous damp-
ing). The default loss factor if needed is taken to be twice that
value.’ Default damping is only used when no other damping
information is available.

DefaultEta (discontinued) value to be used as default loss factor should be
replaced by DefaultZeta=eta/2.

EigOpt gives real eigenvalue solver options (see fe eig).
FluidEta Default loss factor for use in vibroacoustic fluid computations.
Freq Frequencies given as a structure with field .data with frequency

values and .ID a integer identifier. A .unit field can specify
rad/s,Hz,rev/mn,RPM. f=fe def(’DefFreq’,model) is used to
obtain the frequency vector in Hz.

NewNodeFrom integer giving the next NodeId to be used when adding nodes
to the model (used by some commands of feutil).

Omega rotation vector used for rotating machinery com-
putations (see fe cyclic) can be specified as
a structure for unit selection. For example
r1=struct(’data’,250,’unit’,’RPM’);f hz=fe def(’deffreq’,r1)

OrigNumbering original node numbering (associated with feutil Renumber

command). Two int32 columns giving original and new node
numbers.

StressCritFcn string to be evaluated for a specific stress criterion, see
fe stress.

Other commonly used entries are

• ’curve’,’StaticState’ used to assemble prestressed matrices (type 5).

Rayleigh defines a Rayleigh damping entry.
MifDes defines the list of desired response output (see fe2xf).
NasJobOpt structure with options to be used for automated job runs by

the NASTRAN job handler.
NastranJobEdit cell array giving a list of job editing commands to be used

through a naswrite EditBulk call.

TimeOpt gives time solver options (see fe time).

A case defines finite element boundary conditions, applied loads, physical param-
eters, ... The associated information is stored in a case data structure with fields
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Case.Stack list of boundary conditions, constraints, parametric design point,
and loading cases that need to be considered. A table of accepted
entries is given under fe case. Each row gives {Type,Name,data}.

Case.T basis of subspace verifying fixed boundary conditions and con-
straints.

Case.DOF DOF definition vector describing the columns of T, the rows of
T are described by the .DOF field of the model.

The various cases are then stored in the .Stack field of the model data structure
(this is done by a call to fe case). If you use a SDT handle referring to a feplot

figure, modification of the case entries is often easier using cf.CStack calls (see
feplot).

7.8 FEM result data structure

Deformations resulting from finite element computations (fe eig, fe load, . . . ) are
described by def structures with fields

.def deformations (NDOF by NDef matrix)

.DOF DOF definition vector

.data (optional) (NDef by Ninfo vector or matrix) characterizing the content
of each deformation (frequency, time step, ...)

.fun function description [Model Analysis Field FieldType Format

NDV]. This is based on the UNV 55 format detailed below. Typically
field with [0 fe curve(’TypeAnalysis’)]. This field is needed for
proper automated display setup.

.lab (optional) cell array of strings characterizing the content of each defor-
mation (columns of .def). For large arrays, the use of a .LabFcn is
preferable.

.ImWrite
(optional) can be used to control automated multiple figure generation,
see iicom ImWrite.

.LabFcn callback for label generation see fecom LabFcn

.Legend data for legend generation, see fecom Legend

.label (optional) string describing the content

.DofLab optional cell array of strings specifying a label for each DOF. This is
used for display in iiplot.

.scale field used by feplot to store scaling information.
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The .fun field is a numeric row with values (a typical value for static responses is
def.fun=[0 1 0])

Model (0 Unknown, 1 Structural, 2 Heat Transfer, 3 Fluid Flow)

Analysis see list with fe curve(’TypeAnalysis’)

Field see list with 0: Unknown (or general SDT), 1: Scalar, 2: Tx Ty Tz, 3: Tx Ty
Tz Rx Ry Rz, 4: Sxx Sxy Syy Sxz Syz Szz, 5: Sxx Syx Szx Sxy Syy Szy Sxz
Syz Szz

FieldType see list with fe curve(’typefield’)

Format 0 default, 2 Real, 5 Complex

NDV Number Of Data Values Per Node (0 for variable number)

SDT provides a number of utilities to manipulate deformation structures. In par-
ticular you should use

• def=fe def(’subdef’,def,ind) extracts some deformations (columns of def.def).
You can select based on the data field, for example with ind=def.data(:,1)>100.

• def=fe def(’AppendDef’,def,def1) combines two sets of deformations

• def=fe def(’SubDof’,def,DOF) extracts some DOF (rows of def.def). To
select based on DOF indices, use def=fe def(’SubDofInd’,def,ind).

• def=feutilb(’placeindof’,DOF,def) is similar but DOF may be larger than
def.DOF.

• fe def(’SubDofInd-Cell’,def,ind dof,ind def) return clean display of
deformation as a cell array.

7.9 Curves and data sets

Curves are used to specify Inputs (for time or frequency domain simulation) and
store results from simulations. The basic formats are the Multi-dim curve and
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FEM result def. For experimental modal analysis, Response data and Shapes at

DOFs are also used.

All these formats can be displayed using the iiplot interface.

Multi-dim curve

A curve is a data structure with fields
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.X axis data. A cell array with as many entries as dimensions of .Y.
Contents of each cell can be

• a vector (for example vector of frequencies or time steps),

• a matrix with as many rows a steps in curve.Y. Each column
then corresponds to a different definition of the same data
(time and position for example) and you can have as many
rows in curve.Xlab{i} as colums.

• a cell array describing data vectors in .Y (for example re-
sponse labels) with as many rows as elements in correspond-
ing dimension of .Y. In such a cell array, column 2 is for units
and 3 for unit type (see fe curve datatype). To use a spe-
cific curve.X{i} to generate labels for the data, specify the
index of the associated dimension in curve.Ylab.

.X giving x-axis data as a vector is obsolete and should be avoided.
.Xlab a cell array giving the meaning of each entry in .X. Each cell can

be a string (giving the dimension name) or itself a cell array with
columns giving {’name’,’UnitString’,unitcode,’fmt’}. Typ-
ical entries are obtained using the fe curve datatypecell com-
mand. Multiple rows can be used to describe multiple columns in
the .X entry (matrix input for curve.X{i}).

fmt, if provided, gives a formatting instruction for
example ’length=%i m’. If more intricate format-
ting is needed a callback can be obtained with
\zs{’#st3{’}}=sprintf(’’PK=%.2fkm’’,r2(j2)*1e-3);’.

.Y response data with as many dimensions as the length of curve.X
and curve.Xlab. If a 2D matrix rows correspond to .X{1} values
and columns are called channels described by .X{2}.

.Ylab describes content of .Y data. It can be a string, a 1x3 unit type cell
array, or a number that indicates which dimension (index in .X{i}
field cell array) describes the .Y unit.

.ID Optional. It can be used to generate automatically vertical lines in
iiplot. See ii plp Call from iiplot for more details.

.name name of the curve used for legend generation.

.type Optional. ’fe curve’.

.Interp optional interpolation method. Available interpolations are linear,
log and stair.

.Extrap optional extrapolation method. Available extrapolations are flat,
zero (default for fe load) and exp.

.PlotInfo indications for automated plotting, see iiplot PlotInfo

.DimPos order of dimensions to be shown by iiplot.
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The following gives a basis generation example.

t=linspace(0,10,100)’;lab={’ux’;’uy’};
C1=struct(’X’,{{t,lab}},’Xlab’,{{’Time’,’DOF’}}, ...

’Y’,[sin(t) cos(t)],’name’,’Test’);

iicom(’curveinit’,C1.name,C1);iicom(’ch1:2’);

FEM Result

See section 7.8 or sdtweb(’def’).

Inputs

Inputs for time or frequency simulations are stored as entries {’curve’, Name,

data} in the model stack or in the case of inputs in the load.curve cell array.

A curve can be used to define a time (or frequency) dependent load {F} = [B] {u}.
[B] defines the spatial distribution of the load on DOFs and its unit is the same as F .
[B] is defined by a DOFLoad entry in the Case. {u} defines the time (or frequency)
dependency as a unitless curve. There should be as many curves as columns in the
matrix of a given load def. If a single curve is defined for a multi-load entry, it will
affect all the loads of this entry.

As an illustration, let us consider ways to define a time dependent load by defining
a .curve field in the load data structure. This field may contain a string referring
to an existing curve (name is ’input’ here)

model=fe_time(’demo bar’);fe_case(model,’info’)

% Define input curve structure (single input step)

% For examples see: sdtweb fe_curve#Test

model=fe_curve(model,’set’,’input’,’TestStep t1=1e-3’);

% define load.curve{1} to use that input

model=fe_case(model,’setcurve’,’Point load 1’,’input’);

% Run a simulation

TimeOpt=fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); feplot(model,def); fecom ColorDataAll

It is also possible to directly define the .curve field associated with a load
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model=fe_time(’demo bar’);fe_case(model,’info’)

model=fe_case(model,’remove’,’fd’); % loads at both ends

data=struct(’DOF’,[1.01;2.01],’def’,1e6*eye(2),...

’curve’,{{’test ricker dt=1e-3 A=1’,...

’test ricker dt=2e-3 A=1’}});
model = fe_case(model,’DOFLoad’,’Point load 1’,data);

TimeOpt=fe_time(’timeopt newmark .25 .5 0 1e-4 100’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); feplot(model,def); fecom ColorDataAll

Response data

Response data sets correspond to groups of universal files of type UFF58 that have
the same properties (type of measurement, abscissa, units, ...). They are used for
identification with idcom while the newer curve format is used for simulation results.
They are characterized by the following fields

.w abscissa values

.xf response data, one column per response, see section 5.8

.dof characteristics of individual responses (one row per column in the re-
sponse data as detailed below)

.fun general data set options, contain [FunType DFormat NPoints

XSpacing Xmin XStep ZValue] as detailed in ufread 58.
.idopt options used for identification related routines (see idopt)
.header header (5 text lines with a maximum of 72 characters)
.x abscissa description (see xfopt(’ datatype’))
.yn numerator description (see xfopt(’ datatype’))
.yd denominator description (see xfopt(’ datatype’))
.z third axis description (see xfopt(’ datatype’))
.group (optional) cell array containing DOF group names
.load (optional) loading patterns used in the data set

The .w and .xf fields contain the real data while other fields give more precisions
on its nature.

The .dof field describes DOF/channel dependent options of a MIMO data set. The
dof field contains one row per response/DOF with the following information (this
corresponds to data in line 6 of ufread 58 except for address)

[RespNodeID.RespDOFID ExciNodeID.ExciDOFID Address ...
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RespGroupID ExciGroupID FunID LoadCase ZaxisValue]

• Standard DOF definitions of the form NodeID.DOFID are introduced in sec-
tion 7.5 . When considering sensors in general directions (see section 4.6 ) the
SensId should match RespNodeID.RespDOFID.

• Addresses are integer numbers used to identify columns of xf matrices. They
typically correspond to a measurement number.

• Sensor / actuator groups are correspond to the group names given in the group
field (this is really only supported by ufread).

• Other columns are given in the universal format specification but unused in
SDT.

The idopt field is used to point to identification options used on the data set. These
should point to the figure options ci.IDopt.

The Group field is used to associate a name to the group identification numbers
RespGroupID ExciGroupID defined in the .dof columns 4 and 5. These names are
saved by ufwrite but currently not used in other parts of the SDT.

The load field describes loading cases by giving addresses of applied loads in odd
columns and the corresponding coefficients in even columns. This field is used in
test cases with multiple correlated inputs.

Shapes at DOFs

Shapes at DOFs is used to store modeshapes, time responses defined at all nodes,
... and are written to universal file format 55 (response at nodes) by ufwrite. The
fields used for such datasets are
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.po pole values, time steps, frequency values ...
For poles, see ii pof which allows conversions between the different
pole formats.

.res residues / shapes (one row per shape). Residue format is detailed in sec-
tion 5.6 .

.dof characteristics of individual responses (follow link for description).

.fun function characteristics (see UFF58)

.header header (5 text lines with a maximum of 72 characters)

.idopt identification options. This is filled when the data structure is obtained
as the result of an idcom call.

.label string describing the content

.lab in optional cell array of names for the inputs

.lab out optional cell array of names for the outputs

.group optional cell group names

7.10 DOF selection

fe c is the general purpose function for manipulating DOF definition vectors. It is
called by many other functions to select subsets of DOFs in large DOF definition
vectors. DOF selection is very much related to building an observation matrix c,
hence the name fe c.

For DOF selection, fe c arguments are the reference DOF vector mdof and the DOF
selection vector adof. adof can be a standard DOF definition vector but can also
contain wild cards as follows

NodeId.0 means all the DOFs associated to node NodeId

0.DofId means DofId for all nodes having such a DOF
-EltN.0 means all the DOFs associated to element EltId

Typical examples of DOF selection are

ind = fe c(mdof,111.01,’ind’); returns the position in mdof of the x translation
at node 111. You can thus extract the motion of this DOF from a vector using
mode(ind,:). Note that the same result would be obtained using an output shape
matrix in the command fe c(mdof,111.01)*mode.

model = fe mk(model,’FixDOF’,’2-D motion’,[.03 .04 .05])
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assembles the model but only keeps translations in the xy plane and rotations around
the z axis (DOFs [.01 .02 .06]’). This is used to build a 2-D model starting from
3-D elements.

The feutil FindNode commands provides elaborate node selection tools. Thus
femesh(’findnode x>0’) returns a vector with the node numbers of all nodes in
the standard global variable FEnode that are such that their x coordinate is posi-
tive. These can then be used to select DOFs, as shown in the section on boundary
conditions section 7.14 . Node selection tools are described in the next section.
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7.11 Node selection

feutil FindNode supports a number of node selection criteria that are used by
many functions. A node selection command is specified by giving a string command
(for example ’GroupAll’, or the equivalent cell array representation described at
the end of this section) to be applied on a model (nodes, elements, possibly alternate
element set).

Output arguments are the numbers NodeId of the selected nodes and the selected
nodes node as a second optional output argument. The basic commands are

• [NodeId,node]=feutil([’findnode ...’],model) or node=feutil([’getnode
...’],model)

this command applies the specified node selection command to a model struc-
ture. For example, [NodeId,node] = feutil(’findnode x==0’,model);

selects the nodes in model.Node which first coordinate is null.

• [NodeId,node]=femesh([’findnode ...’])

this command applies the specified node selection command to the standard
global matrices FEnode, FEelt, FEel0, . . . For example,
[NodeId,node] = femesh(’findnode x==0’); selects the node in FEnode

which first coordinate is null.

Accepted selectors are
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GID i selects the nodes in the node group i (specified in column 4 of
the node matrix). Logical operators are accepted.

Group i selects the nodes linked to elements of group(s) i in the main
model. Same as InElt{Group i}

Groupa i selects nodes linked to elements of group(s) i of the alternate
model

InElt{sel} selects nodes linked to elements of the main model that are
selected by the element selection command sel.

NodeId >i selects nodes selects nodes based relation of NodeId to integer
i. The logical operator >, <, >=, <=, ~=, or == can be omitted
(the default is then ==).

feutil(’findnode 1 2’,model) interprets the values as
NodeId unless three values are given (then interpreted as x y

z). feutil(’findnode’,model,IdList) should then be used.
NotIn{sel} selects nodes not linked to elements of the main model that are

selected by the element selection command sel.
Plane == i nx ny

nz

selects nodes on the plane containing the node number i and
orthogonal to the vector [nx ny nz]. Logical operators apply
to the oriented half plane. i can be replaced by string o xo yo

zo specifying the origin.
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rad <=r x y z selects nodes based on position relative to the sphere specified
by radius r and position x y z node or number x (if y and z

are not given). The logical operator >, <, >=, <= or == can be
omitted (the default is then <=).

cyl <=r i nx ny

nz z1 z2

selects nodes based on position relative to the cylinder specified
by radius r and axis of direction nx ny nz and origin the node
i (NodeId i can be replaced by string o xo yo zo). Optional
arguments z1 and z2 define bottom and top boundaries from
origin along cylinder axis.

Setname name finds nodes based on a set defined in the model stack. Note
that the name must not contain blanks or be given between
double quotes "name". Set can be a NodeId or even an EltId

or FaceId, EdgeId set. "name:con IdList" can be used to
select a subset connected to nodes in the IdList.

x>a selects nodes such that their x coordinate is larger than a. x

y z r (where the radius r is taken in the xy plane) and the
logical operators >, <, >=, <=, == can be used.
Expressions involving other dimensions can be used for the right
hand side. For example r>.01*z+10.

x y z selects nodes with the given position. If a component is set to
NaN it is ignored. Thus [0 NaN NaN] is the same as x==0.

Element selectors EGID, EltId, EltName, MatId and ProId are interpreted as InElt
selections.

Command option epsl value can be used to give an evaluation tolerance for equality
logical operators.

Different selectors can be chained using the logical operations & (finds nodes that
verify both conditions), | (finds nodes that verify one or both conditions). Condition
combinations are always evaluated from left to right (parentheses are not accepted).

While the string format is typically more convenient for the user, the reference
format for a node selection is really a 4 column cell array :

{ Selector Operator Data
Logical Selector Operator Data
}
The first column gives the chaining between different rows, with Logical being
either &, | or a bracket ( and ). The Selector is one of the accepted commands for
node selection (or element selection if within a bracket). The operator is a logical
operator >, <, >=, <=, ~=, or ==. The data contains numerical or string values that
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are used to evaluate the operator. Note that the meaning of ~= and == operators is
slightly different from base Matlab operators as they are meant to operate on sets.

The feutil FindNodeStack command returns the associated cell array rather than
the resulting selection.
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7.12 Element selection

feutil FindElt supports a number of element selection criteria that are used
by many functions. An element selection command is specified by giving a string
command (for example ’GroupAll’) to be applied on a model (nodes, elements,
possibly alternate element set).

Basic commands are :

• [eltind,elt] = feutil(’findelt selector’,model);

or elt = feutil(’selelt selector’,model); this command applies the
specified element selection command to a model structure. For example,
[eltind,selelt] = feutil(’findelt eltname bar1’,model) selects the el-
ements in model.Elt which type is bar1.

• [eltind,elt] = feutil(’findelt selector’,model);

this command applies the specified element selection command to the standard
global matrices FEnode, FEelt, FEel0, . . . For example, [eltind,selelt]

= feutil(’findelt eltname bar1’,model) selects the elements in FEelt

which type is bar1.

Output arguments are eltind the selected elements indices in the element descrip-
tion matrix and selelt the selected elements.

Accepted selectors are
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ConnectedTo i finds elements in a group that contains the nodes i. This calls
feutil DivideInGroups and thus only operates on groups of ele-
ments of a single type.

EGID i finds elements with element group identifier i. Operators accepted.
EltId i finds elements with identifiers i in FEelt. Operators accepted.
EltInd i finds elements with indices i in FEelt. Operators accepted.
EltName s finds elements with element name s. EltName flui will select all

elements with name starting with flui. EltName ~ = flui will
select all elements with name not starting with flui. One can
select superelements from their name using EltName SE:SEName.

Facing > cos

x y z

finds topologically 2-D elements whose normal projected on the
direction from the element CG to x y z has a value superior to
cos. Inequality operations are accepted.

Group i finds elements in group(s) i. Operators accepted.
InNode i finds elements with all nodes in the set i. Nodes numbers in i can

be replaced by a string between braces defining a node selection
command. For example feutil(’FindElt withnode {y>-230 &

NodeId>1000}’,model).
MatId i finds elements with MatId equal to i. Relational operators are also

accepted (MatId =1:3, ...).
ProId i finds elements with ProId equal to i. Operators accepted.
WithNode i finds elements with at least one node in the set i. i can be a list

of node numbers. Replacements for i are accepted as above.
Set i finds elements in element set(s) based on the .ID field (see set

stack entries). Elements belonging to any set of ID of value i will
be selected.

SetName s finds elements in element set named s (see set stack entries).
SetName "name:con IdList" can be used to select a subset con-
nected to nodes in the IdList (assuming the .NodeCon field is de-
fined).

WithoutNode i finds elements without any of the nodes in the set i. i can be a list
of node numbers. Replacements for i are accepted as above.
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SelEdge type selects the external edges (lines) of the currently selected elements
(any element selected before the SelEdge selector), any further se-
lector is applied on the model resulting from the SelEdge command
rather than on the original model. The -All option skips the inter-
nal edge elimination step. It can be combined with option -noUni

to keep edge duplicates between elements.
Type g retains inter-group edges. m retains inter-material edges.
Type p retains inter-property edges. all retains all edges. The
MatId for the resulting model identifies the original properties of
each side of the edge. The edge number is stored in the column
after EltId.

SelFace type selects the external faces (surfaces) of the currently selected ele-
ments. The face number is stored in the column after EltId to
allow set generation. See more details under SelEdge. The -All

option skips the internal face elimination step. Warning: the face
number stored in the column after the EltId column interferes with
the Theta property for shell elements (see quad4,tria3). If the se-
lection output will be used as elements in a model, ensure that the
Theta property is properly set for your application.

Different selectors can be chained using the logical operations & (finds elements
that verify both conditions), | (finds elements that verify one or both conditions).
i1=feutil(’FindEltGroup 1:3 & with node 1 8’,model) for example. Condi-
tion combinations are always evaluated from left to right (parentheses are not ac-
cepted). Note that SelEdge and SelFace selectors do not output elements of the
mesh but new elements of respectively 1D or 2D topology, so that some combinations
may not be directly possible (e.g. if later combined to Group selector).

Command option epsl value can be used to give an evaluation tolerance for equality
logical operators.

Numeric values to the command can be given as additional arguments. Thus
the command above could also have been written i1=feutil(’findelt group &

withnode’,model,1:3,[1 8]).

7.13 Defining fields trough tables, expressions, ...

Finite element fields are used in four main formats

• def field at DOFs
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• InfoAtNode field at nodes of an element group can be built from a pro.MAP

field which can be an VectFromDir structure, a structure with fields .bas and
.EltId with EltId=0 to define material orientations.
info,EltOrient is an alternative to specify the orientation of all elements
rather than associate values for each property entry. .

• gstate field at integration points of an element group (can be built from a
pro.gstate field).

• a field definition structure to be transformed to the other formats using a
elem0(’VectFromDir’) command as illustrated below.

The VectFromDir structure has fields

data.dir a cell array specifying the value of various fields. Each cell of data.dir
can give a constant value, a position dependent value defined by a string
FcnName that is evaluated using

fv(:,jDir)=eval(FcnName) or fv(:,jDir)=feval(FcnName,node) if
the first fails. Note that node corresponds to nodes of the model in
the global coordinate system and you can use the coordinates x,y,z for
your evaluation.

data.lab cell array giving label for each field of an InfoAtNode or gstate struc-
ture.

data.DOF a vector defining the DOF associated with each .dir entry. The
transformation to a vector defined at model.DOF is done using
vect=elem0(’VectFromDirAtDof’,model,data,model.DOF).

For example

% Analytical expression for a displacement field

model=femesh(’testubeam’);

data=struct(’dir’,{{’ones(size(x))’,’y’,’1*x.^3’}}, ...

’DOF’,[.01;.02;.03]);

model.DOF=feutil(’GetDOF’,model);

def=elem0(’VectFromDirAtDof’,model,data,model.DOF)

% Orientation field at nodes

data=struct(’dir’,{{’x./sqrt(x.^2+y.^2)’,’y./sqrt(x.^2+y.^2)’,0}}, ...

’lab’,{{’v1x’,’v1y’,’v1z’}});
pro=struct(’il’,1,’type’,’p_solid’,’MAP’,data);

model=stack_set(model,’pro’,’WithMap’,pro);
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C1=fe_mknl(’init’,model);InfoAtNode=C1.GroupInfo{7}
feplot(model);fecom(’showMap’,’WithMap’) % display map
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7.14 Constraint and fixed boundary condition handling

7.14.1 Theory and basic example

rigid links, FixDof, MPC entries, symmetry conditions, continuity constraints in
CMS applications, ... all lead to problems of the form

[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)}
[cint] {q(s)} = 0

(7.1)

The linear constraints [cint] {q(s)} = 0 can be integrated into the problem using
Lagrange multipliers or constraint elimination. Elimination is done by building a
basis T for the kernel of the constraint equations, that is such that

range([T ]N×(N−NC)) = ker([cint]NS×N ) (7.2)

Solving problem[
T TMTs2 + T TCTs+ T TKT

]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR(s)}
is then strictly equivalent to solving (7.1).

The basis T is generated using [Case,NNode,model.DOF]=fe case(model,’gett’)

where Case.T gives the T basis and Case.DOF describes the active or master DOFs
(associated with the columns of T ), while model.DOF or the Case.mDOF field when
it exists, describe the full list of DOFs.

The NoT command option controls the need to return matrices, loads, ... in the full
of unconstrained DOFs [M ] , {b} ... or constrained T TMT, T T b in fe mknl, fe load,
... .

For the two bay truss example, can be written as follows :

model = femesh(’test 2bay’);

model2=fe_case(model, ... % defines a new case

’FixDof’,’2-D motion’,[.03 .04 .05]’, ... % 2-D motion

’FixDof’,’Clamp edge’,[1 2]’); % clamp edge

Case=fe_case(’gett’,model) % Notice the size of T and

fe_c(Case.DOF) % display the list of active DOFs

model = fe_mknl(model)
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% Now reassemble unconstrained matrices and verify the equality

% of projected matrices

[m,k,mdof]=fe_mknl(model,’NoT’);

norm(full(Case.T’*m*Case.T-model.K{1}))
norm(full(Case.T’*k*Case.T-model.K{2}))

7.14.2 Local coordinates

In the presence of local coordinate systems (non zero value of DID in node column
3), the Case.cGL matrix built during the gett command, gives a local to global
coordinate transformation

{qall,global} = [cGL] {qall,local}

Constraints (mpc, rigid, ...) are defined in local coordinates, that is they corre-
spond to

{qall,local} = [Tlocal] {qmaster,local}
with qmaster,local master DOFs (DOFs in Case.DOF) defined in the local coordinate
system and the Case.T corresponding to

{qall,global} = [T ] {qmaster,local} = [cGL] [Tlocal] {qmaster,local}
As a result, model matrices before constraint elimination (with NoT) are expected
to be defined in the global response system, while the projected matrix T TMT are
defined in local coordinates.

celas use local coordinate information for their definition. cbush are defined in
global coordinates but allow definition of orientation through the element CID.

An example of rigid links in local coordinates can be found in se gimbal(’ScriptCgl’).

7.14.3 Enforced displacement

For a DofSet entry, one defines the enforced motion in Case.TIn and associated
DOFs in Case.DofIn. The DOFs specified in Case.DofIn are then fixed in Case.T.

7.14.4 Resolution as MPC and penalization transformation

Whatever the constraint formulation it requires a transformation into an explicit
multiple point constraint during the resolution. This transformation is accessible for
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RBE3 and rigidconstraints, a cleaned resolution of MPC constraints is also accessible
using fe mpc.

• RBE3c provides the resolution for RBE3 constraints.

• RigidC provides the resolution for rigidconstraints.

• MPCc provides the resolution for MPC constraints.

The output is of the format struct with fields

• c the constraint matrix.

• DOF the DOF vector relative to the constraint.

• slave slave DOF indices in DOF.

Such format allows the user to transform a constraint into a penalization using the
constraint matrix as an observation matrix. One can indeed introduce for each
constraint equation a force penalizing its violation through a coefficient kc so that
{f}penal = kc [c]Nc×N {q}N×1. This can be written by means of a symmetric stiffness

matrix [kpenal]N×N = kc [c]T [I]Nc×Nc [c]Nc×N added to the system stiffness.

% Transformation of a constraint into a penalty

% Generation of a screw model example

model=demosdt(’demoscrew layer 1 40 20 3 3 space .2 layer 2 40 20 4’);

% Model a screw connection with a RBE3 constraint

% see sdtweb fe_case.html#ConnectionScrew

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[0 0 111 1 0;3 0 111 1 0; % [z0 type ProId zTol rTol]

5.2 0 112 1 6; 7.2 0 112 1 6], ...

’MatProId’,[101 101],’rigid’,[Inf abs(’rigid’)],’NewNode’,0);

r1.planes(:,2)=1; % RBE3

mo2=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

% display the connection in feplot

cf=feplot(mo2);fecom(’colordatamat -alpha .1’);

% Replace RBE3 by a penalized coupling

% Get the constraint matrix

r1=fe_mpc(’rbe3c’,mo2,’screw1’);
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% remove the RBE3 constraint

mo2=fe_case(mo2,’reset’);

% Generate the penalization stiffness with default kc

kc=sdtdef(’kcelas’);

SE=struct(’DOF’,r1.DOF,’Opt’,[1;1],...

’K’,{{feutilb(’tkt’,r1.c,kc*speye(length(r1.slave)))}});
% Instance the superelement in the model

mo2=fesuper(’seadd -unique 1 1 screw1’,mo2,SE,[1 1]);

% Compute the system modes

def=fe_eig(cf.mdl,[5 20 1e3]);

7.14.5 Low level examples

A number of low level commands (feutil GetDof, FindNode, ...) and functions
fe c can be used to operate similar manipulations to what fe case GetT does, but
things become rapidly complex. For example

% Low level handling of constraints

femesh(’reset’); model = femesh(’test 2bay’);

[m,k,mdof]=fe_mknl(model)

i1 = femesh(’findnode x==0’);

adof1 = fe_c(mdof,i1,’dof’,1); % clamp edge

adof2 = fe_c(mdof,[.03 .04 .05]’,’dof’,1); % 2-D motion

adof = fe_c(mdof,[adof1;adof2],’dof’,2);

ind = fe_c(model.DOF,adof,’ind’);

mdof=mdof(ind); tmt=m(ind,ind); tkt=k(ind,ind);

Handling multiple point constraints (rigid links, ...) really requires to build a basis T
for the constraint kernel. For rigid links the obsolete rigid function supports some
constraint handling. The following illustrates restitution of a constrained solution
on all DOFs

% Example of a plate with a rigid edge

model=femesh(’testquad4 divide 10 10’);femesh(model)

% select the rigid edge and set its properties

femesh(’;selelt group1 & seledge & innode {x==0};addsel’);
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femesh(’setgroup2 name rigid’);

FEelt(femesh(’findelt group2’),3)=123456;

FEelt(femesh(’findelt group2’),4)=0;

model=femesh;

% Assemble

model.DOF=feutil(’getdof’,model);% full list of DOFs

[tmt,tkt,mdof] = fe_mknl(model); % assemble constrained matrices

Case=fe_case(model,’gett’); % Obtain the transformation matrix

[md1,f1]=fe_eig(tmt,tkt,[5 10 1e3]); % compute modes on master DOF

def=struct(’def’,Case.T*md1,’DOF’,model.DOF) % display on all DOFs

feplot(model,def); fecom(’;view3;ch7’)

7.15 Internal data structure reference

7.15.1 Element functions and C functionality
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Pre-/Post-
feutil,femesh

fe case, femesh
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Element level
fe mk

fe mknl assemble

Element function :
nodes, face, DOFs, ...

Element function :
constitutive law
integ,constit,
element constants
EltConst
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Property function :
p solid Resolve mate-
rial constants Resolve
element integration rule

Element function :
matrix building

�
�
�
�
�
�
���

-

of mk.c :
- of mk subs.c MODULEF
- MatrixIntegration new el-
ements

In OpenFEM, elements are defined by element functions. Element functions provide
different pieces of information like geometry, degrees of freedom, model matrices, . . .

OpenFEM functions like the preprocessor femesh, the model assembler fe mk or the
post-processor feplot call element functions for data about elements.

For example, in the assembly step, fe mk analyzes all the groups of elements. For
each group, fe mk gets its element type (bar1, hexa8, . . . ) and then calls the asso-
ciated element function.
First of all, fe mk calls the element function to know what is the right call form to
compute the elementary matrices (eCall=elem0(’matcall’) or eCall=elem0(’call’),
see section 7.16.6 for details). eCall is a string. Generally, eCall is a call to the
element function. Then for each element, fe mk executes eCall in order to compute
the elementary matrices.

This automated work asks for a likeness of the element functions, in particular for
the calls and the outputs of these functions. Next section gives information about
element function writing.
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7.15.2 Standard names in assembly routines

cEGI vector of element property row indices of the current element group
(without the group header)

constit real (double) valued constitutive information. The constit for each
group is stored in Case.GroupInfo{jGroup,4};.

def.def vector of deformation at DOFs. This is used for non-linear, stress or
energy computation calls that need displacement information.

EGID Element Group Identifier of the current element group (different from
jGroup if an EGID is declared).

elt model description matrix. The element property row of the current
element is given by elt(cEGI(jElt),:) which should appear in the
calling format eCall of your element function.

ElemF name of element function or name of superelement
ElemP parent name (used by femesh in particular to allow property inheri-

tance)
gstate real (double) valued element state information.
integ

int32 valued constitutive information.
jElt number of the current element in cEGI

jGroup number of the current element group (order in the element matrix).
[EGroup,nGroup]=getegroup(elt); finds the number of groups and
group start indices.

nodeE nodes of the current element. In the compiled functions, NodeId is
stored in column 4, followed by the values at each node given in
the InfoAtNode. The position of known columns is identified by
the InfoAtNode.lab labels (the associated integer code is found with
comstr(’lab’,-32)). Of particular interest are

• v1x (first vector of material orientation, which is assumed to be
followed by v1y,v1z and for 3D orientation v2x,y,z), see stack
entry info,EltOrient

• v3x,v3y,v3z for normal maps

• T is used for temperature (stack entry info,RefTemp)
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NNode node identification reindexing vector. NNode(ID) gives the row index
(in the node matrix) of the nodes with identification numbers ID. You
may use this to extract nodes in the node matrix using something like
node(NNode(elt(cEGI(jElt),[1 2])),:) which will extract the two
nodes with numbers given in columns 1 and 2 of the current element
row (an error occurs if one of those nodes is not in node). This can be
built using NNode=sparse(node(:,1),1,1:size(node,1).

pointers one column per element in the current group gives.

7.15.3 Case.GroupInfo cell array

The meaning of the columns of GroupInfo is as follows

DofPos Pointers Integ Constit gstate ElMap InfoAtNode EltConst

DofPos int32 matrix whose columns give the DOF positions in the full matrix
of the associated elements. Numbering is C style (starting at 0) and -1
is used to indicate a fixed DOF.

pointers int32 matrix whose columns describe information each element of the
group. Pointers has one column per element giving
[OutSize1 OutSize2 u3 NdNRule MatDes IntegOffset

ConstitOffset StateOffset u9 u10]

Outsize1 size of element matrix (for elements issued from MODULEF),
zero otherwise.
MatDes type of desired output. See the MatType section for a current
list.
IntegOffset gives the starting index (first element is 0) of integer op-
tions for the current element in integ.
ConstitOffset gives the starting index (first element is 0) of real op-
tions for the current element in constit.
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integ int32 matrix storing integer values used to describe the element formu-
lation of the group. Meaning depends on the problem formulation and
should be documented in the property function (p solid BuildConstit

for example).
The nominal content of an integ column (as return by the element
integinfo call) is
MatId,ProId,NDofPerElt,NNodePerElt,IntegRuleType

where integrules(ElemP,IntegRuleType) is supposed to return the
appropriate integration rule.

constit double matrix storing integer values used to describe the element
formulation of the group. Meaning depends on element family and
should be documented in the element property function (p solid

BuildConstit for example).
gstate a curve with field .Y describing the internal state of each element in the

group. Typical dimensions stress, integration points, elements so that
.Y has size Nstrain × Nw × NElt. The labels in .X{1} can be used
to find positions in the .Y matrix. The .X{2} should contain the gauss
point locations within the reference element. Automated generation of
initial states is discussed in section 7.13 .
Users are of course free to add any appropriate value for their own
elements, a typical application is the storage of internal variables. For
an example of gstate initialization see fe stress thermal.
the old format with a double matrix with one column per element is
still supported but will be phased out.

ElMap int32 element map matrix used to distinguish between internal and
external element DOF numbering (for example : hexa8 uses all x DOF,
then all y ... as internal numbering while the external numbering is
done using all DOFs at node 1, then node 2, ...). The element matrix
in external sort is given by k ext=ke(ElMap). EltConst.VectMap gives
similar reordering information for vectors (loads, ...).

InfoAtNode a structure with .NodePos (int32) with as many columns as elements
in the group giving column positions in a .data field. Each row in
.data corresponds to a field that should be described by a cell array
of string in .lab used to identify fields in assembly, see nodeE. Initial-
ization for a given element type is done the GroupInit phase, which
uses pro.MAP fields (see section 7.13 ). Typical labels for orientation
are {’v1x’,’v1y’,’v1z’,’v2x’,’v2y’,’v2z’}
Obsolete format : double matrix whose rows describe information at
element nodes (as many columns as nodes in the model).

EltConst struct used to store element formulation information (integration rule,
constitutive matrix topology, etc.) Details on this data structure are
given in section 7.15.4 .268



7.15.4 Element constants data structure

The EltConst data structure is used in most newer generation elements imple-
mented in of mk.c. It contains geometric and integration rule properties. The
shape information is generated by calls to integrules. The formulation informa-
tion is generated p function const calls (see p solid, p heat, ...).

.N nw ×Nnode shape functions at integration points

.Nr nw × Nnode derivative of shape function with respect to the first ref-
erence coordinate r

.Ns nw × Nnode derivative of shape function with respect to the second
reference coordinate s

.Nt nw × Nnode derivative of shape function with respect to the second
reference coordinate t

.NDN Nshape × nw(1 + Ndim) memory allocation to store the shape
functions and their derivatives with respect to physical coordinates
[N N,x N, y N, z]. of mk currently supports the following geometry
rules 3 3D volume, 2 2D volume, 23 3D surface, 13 3D line (see
integrules BuildNDN for calling formats). Cylindrical and spherical
coordinates are not currently supported. In the case of rule 31 (hyper-
elastic elements), the storage scheme is modified to be (1 + Ndim) ×
Nshape× nw which preserves data locality better.

.jdet Nw memory allocation to store the determinant of the jacobian matrix
at integration points.

.bas 9×Nw memory allocation to store local material basis. This is in par-
ticular used for 3D surface rules where components 6:9 of each column
give the normal.

.Nw number of integration points (equal to size(EltConst.N,1))

.Nnode number of nodes (equal to size(EltConst.N,2)=size(EltConst.NDN,1))

.xi Nnode× 3 reference vertex coordinates

.VectMap index vector giving DOF positions in external sort. This is needed for
RHS computations.

.CTable low level interpolation of constitutive relation based on field val-
ues. Storage as a double vector is given by [Ntables CurrentValues

(Ntables x 7) tables] with CurrentValues giving [i1 xi si

xstartpos Nx nodeEfield constit(pos Matlab)]. Implementation
is provided for m elastic to account for temperature dependence,
fe mat to generate interpolated properties.
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7.16 Creating new elements (advanced tutorial)

In this section one describes the developments needed to integrate a new element
function into OpenFEM. First, general information about OpenFEM work is given.
Then the writing of a new element function is described. And at last, conventions
which must be respected are given.

7.16.1 Generic compiled linear and non-linear elements

To improve the ease of development of new elements, OpenFEM now supports a new
category of generic element functions. Matrix assembly, stress and load assembly
calls for these elements are fully standardized to allow optimization and generation
of new element without recompilation. All the element specific information stored
in the EltConst data structure.

Second generation volume elements are based on this principle and can be used as
examples. These elements also serve as the current basis for non-linear operations.

The adopted logic is to develop families of elements with different topologies. To
implement a family, one needs

• shape functions and integration rules. These are independent of the problem
posed and grouped systematically in integrules.

• topology, formatting, display, test, ... information for each element. This is
the content of the element function (see hexa8, tetra4, ...) .

• a procedure to build the constit vectors from material data. This is nominally
common to all elements of a given family and is used in integinfo element
call. For example p solid(’BuildConstit’).

• a procedure to determine constants based on current element information. This
is nominally common to all elements of a given family and is used in groupinit

phase (see fe mk). The GroupInit call is expected to generate an EltConst

data structure, that will be stored in the last column of Case.GroupInfo. For
example hexa8 constants which calls p solid(’ConstSolid’).

• a procedure to build the element matrices, right hand sides, etc. based on
existing information. This is compiled in of mk MatrixIntegration and
StressObserve commands. For testing/development purposes is expected
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that for sdtdef(’diag’,12) an .m file implementation in elem0.m is called
instead of the compiled version.

The following sections detail the principle for linear and non-linear elements.

7.16.2 What is done in the element function

Most of the work in defining a generic element is done in the element property
function (for initializations) and the compile of mk function. You do still need to
define the commands

• integinfo to specify what material property function will be called to build
integ, constit and elmap. For example, in hexa8, the code for this command
command is

if comstr(Cam,’integinfo’)

%constit integ,elmap ID,pl,il

[out,out1,out2]= ...

p_solid(’buildconstit’,[varargin{1};24;8],varargin{2},varargin{3});
input arguments passed from fe mknl are ID a unique pair of MatId and
ProId in the current element group. pl and il the material and element
property fields in the model. Expected outputs are constit, integ and
elmap, see Case.GroupInfo. Volume elements hexa8, q4p, ... are topol-
ogy holders. They call p solid BuildConstit which in turn calls as an-
other property function as coded in the type (column two of il coded with
fe mat(’p fun’,’SI’,1)). When another property function is called, it is
expected that constit(1:2)=[-1 TypeM] to allow propagation of type infor-
mation to parts of the code that will not analyze pl.

• constants to specify what element property function will be called to initialize
EltConst data structure and possibly set the geometry type information in
pointers(4,:). For example, in hexa8, the code for this command is

...

elseif comstr(Cam,’constants’)

integ=varargin{2};constit=varargin{3};
if nargin>3; [out,idim]=p_solid(’const’,’hexa8’,integ,constit);

else; p_solid(’constsolid’,’hexa8’,[1 1 24 8],[]);return;

end

out1=varargin{1};out1(4,:)=idim; % Tell of_mk(’MatrixInt’) this is IDIM

...
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input arguments passed from fe mknl are pointers,integ,constit the output
arguments are EltConst and a modified pointers where row 4 is modified to
specify a 3D underlying geometry.

If constit(1:2)=[-1 TypeM] p solid calls the appropriate property function.

For elements that have an internal orientation (shells, beams, etc.) it is ex-
pected that orientation maps are built during this command (see beam1t, ...).
Note, that the ’info’,’EltOrient’ stack entry can also be used for that
purpose.

• standard topology information (commands node, dof, prop, line, patch,
face, edge, parent) see section 7.16.6 .

hexa8 provides a clean example of what needs to be done here.

7.16.3 What is done in the property function

p fcn Commands specific to p * are associated to the implementation of a particular phys-
ical formulation for all topologies.

BuidConstit

As shown in section 7.15.1 and detailed under fe mknl the FEM initialization phase
needs to resolve

• constitutive law information from model constants (elem0 integinfo call to
the element functions, which for all topology holder elements is forwarded to
p solid BuildConstit)

• and to fill-in integration constants and other initial state information (using
groupinit to generate the call and constant build the data).

Many aspects of a finite element formulation are independent of the supporting
topology. Element property functions are thus expected to deal with topology inde-
pendent aspects of element constant building for a given family of elements.

Thus the element integinfo call usually just transmits arguments to a property
function that does most of the work. That means defining the contents of integ

272



and constit columns. For example for an acoustic fluid, constit columns generated

by p solid BuildConstit contain
[

1
ρC2 η 1

ρ

]
.

Generic elements (hexa8, q4p, ...) all call p solid BuildConstit. Depending on
the property type coded in column 2 of the current material, p solid attempts to
call the associated m mat function with a BuildConstit command. If that fails, an
attempt to call p mat is made (this allows to define a new family of elements trough
a single p fcn p heat is such an example).

integ nominally contains MatId,ProId,NDofPerElt,NNodePerElt,IntegRuleNumber.

Const

Similarly, element constant generation of elements that support variable integration
rules is performed for an element family. For example, p solid const supports
for 3D elastic solids, for 2D elastic solids and 3D acoustic fluid volumes. p heat

supports 2D and 3D element constant building for the heat equation.

Generic elements (hexa8, q4p, ...) all use the call
[EltConst,NDNDim] = p solid(’Const’,ElemF, integ, constit).
User extendibility requires that the user be able to bypass the normal operation of
�p solid const. This can be achieved by setting constit(1)=-1 and coding a property
type in the second value (for example constit(1)=fe mat(’p heat’,’SI’,1). The
proper function is then called with the same arguments as p solid.

* fcn Expected commands common to both p * and m * functions are the following

Subtype

With no argument returns a cell array of strings associated with each subtype (max-
imum is 9). With a string input, it returns the numeric value of the subtype. With
a numeric input, returns the string value of the subtype. See m elastic for the
reference implementation.

database

Returns a structure with reference materials or properties of this type. Additional
strings can be used to give the user more freedom to build properties.
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dbval

Mostly the same as database but replaces or appends rows in model.il (for element
properties) or model.pl (for material properties).

PropertyUnitType

i1=p function(’PropertyUnitType’,SubType) returns for each subtype the units
of each value in the property row (column of pl).

This mechanism is used to automate unit conversions in fe mat Convert.

[list,repeat]=p function(’PropertyUnitTypeCell’,SubType) returns a cell ar-
ray describing the content of each column, the units and possibly a longer description
of the variable. When properties can be repeated a variable number of times, use the
repeat (example in p shell for composites). This mechanism is used to generate
graphical editors for properties.

Cell arrays describing each subtype give

• a label. This should be always the same to allow name based manipulations
and should not contain any character that cannot be used in field names.

• a conversion value. Lists of units are given using fe mat(’convertSITM’). If
the unit is within that list, the conversion value is the row number. If the
unit is the ratio of two units in the list this is obtained using a non integer
conversion value. Thus 9.004 corresponds to kg/m (9 is kg and 4 is m).

• a string describing the unit

7.16.4 Compiled element families in of mk

of mk is the C function used to handle all compiled element level computations.
Integration rules and shape derivatives are also supported as detailed in BuildNDN.

Generic multi-physic linear elements

This element family supports a fairly general definition of linear multi-physic ele-
ments whose element integration strategy is fully described by an EltConst data
structure. hexa8 and p solid serve as a prototype element function. Element matrix
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and load computations are implemented in the of mk.c MatrixIntegration com-
mand with StrategyType=1, stress computations in the of mk.c StressObserve

command.

EltConst=hexa8(’constants’,[],[1 1 24 8],[]);

integrules(’texstrain’,EltConst)

EltConst=integrules(’stressrule’,EltConst);

integrules(’texstress’,EltConst)

Elements of this family are standard element functions (see section 7.16 ) and the
element functions must thus return node, prop, dof, line, patch, edge, face,
and parent values. The specificity is that all information needed to integrate the
element is stored in an EltConst data structure that is initialized during the fe mknl

GroupInit phase.

For DOF definitions, the family uses an internal DOF sort where each field is given
at all nodes sequentially 1x2x...8x1y...8y... while the more classical sort by node
1x1y...2x... is still used for external access (internal and external DOF sorting are
discussed in section 7.16.6 ).

Each linear element matrix type is represented in the form of a sum over a set of
integration points

k(e) =
∑
ji,jj

∑
jw

[
{Bji}Dji jk(w(jw)) {Bjj}T

]
J(w(jw))W ((jw)) (7.3)

where the jacobian of the transformation from physical xyz to element rst coordi-
nates is stored in EltConst.jdet(jw) and the weighting associated with the inte-
gration rule is stored in EltConst.w(jw,4).

The relation between the Case.GroupInfo constit columns and the Dij constitu-
tive law matrix is defined by the cell array EltConst.ConstitTopology entries. For
example, the strain energy of a acoustic pressure formulation (p solid ConstFluid)
is given by

EltConst.MatrixTopology{1} = [3 0 0

0 3 0

0 0 3]

constit(:,j1)=[1/rho/C2; eta ; 1/rho]

D =

 1/ρ 0 0
0 1/ρ 0
0 0 1/ρ
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The integration rule for a given element is thus characterized by the strain obser-
vation matrix Bji(r, s, t) which relates a given strain component εji and the nodal
displacements. The generic linear element family assumes that the generalized strain
components are linear functions of the shape functions and their derivatives in eu-
clidian coordinates (xyz rather than rst).

The first step of the element matrix evaluation is the evaluation of the EltConst.NDN
matrix whose first Nw columns store shape functions, Nw next their derivatives with
respect to x, then y and z for 3D elements

[NDN ]Nnode×Nw(Ndims+1) =

[
[N(r, s, t)]

[
∂N

∂x

] [
∂N

∂y

] [
∂N

∂z

]]
(7.4)

To improve speed the EltConst.NDN and associated EltConst.jdet fields are pre-
allocated and reused for the assembly of element groups.

For each strain vector type, one defines an int32 matrix

EltConst.StrainDefinition{jType} with each row describing row, NDNBloc, DOF,

NwStart, NwTot giving the strain component number (these can be repeated since
a given strain component can combine more than one field), the block column in
NDN (block 1 is N , 4 is ∂N/∂z), the field number, and the starting integration point
associated with this strain component and the number of integration points needed
to assemble the matrix. The default for NwStart NwTot is 1, Nw but this formalism
allows for differentiation of the integration strategies for various fields. The figure
below illustrates this construction for classical mechanical strains.

EltConst.StrainDefinition{1} = [1 2 1 1 8

2 3 2 1 8

3 4 3 1 8

4 4 2 1 8

4 3 3 1 8

5 4 1 1 8

5 2 3 1 8

6 3 1 1 8

6 2 2 1 8]



εx
εy
εz
γyz
γzx
γxy


=



N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w



[NDN ]Nnode×Nw(Ndims+1) =

[
[N(r, s, t)]

[
∂N

∂x

] [
∂N

∂y

] [
∂N

∂z

]] 8∑
jw=1

To help you check the validity of a given rule, you should fill the

EltConst.StrainLabels{jType} and EltConst.DofLabels fields and use the
integrules( ’texstrain’, EltConst) command to generate a LATEX printout
of the rule you just generated.
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The .StrainDefinition and .ConstitTopology information is combined automat-
ically in integrules to generate .MatrixIntegration (integrules MatrixRule

command) and .StressRule fields (integrules StressRule command). These ta-
bles once filed properly allow an automated integration of the element level matrix
and stress computations in OpenFEM.

Phases in of mk.c matrix integration

The core of element computations is the matrixintegration command that com-
putes and assembles a group of elements.

After a number of inits, one enters the loop over elements.

The nodeE matrix, containing field at element nodes, is filled with information at the
element nodes as columns. The first 3 columns are positions. Column 4 is reserved
for node numbers in case a callback to MATLAB makes use of the information. The
following columns are based on the InfoAtNode structure whos indexing strategy is
compatible with both continuous and discontinuous fields at each node. See sdtweb

elem0(’get nodeE’) for details.

Initialization of InfoAtNode is performed with fe mknl(’Init -gstate’) calls.
The m elastic AtNodeGState command is an illustration of init used to interpolate
material properties in volume elements.

The defe vector/matrix contains the values at the current element DOF of the
provided deformation(s).

Generic RHS computations

Right hand side (load) computations can either be performed once (fixed set of
loads) through fe load which deals with multiple loads, or during an iterative pro-
cess where a single RHS is assembled by fe mknl into the second column of the
state argument dc.def(:,2) along with the matrices when requiring the stiffness
with MatDes=1 or MatDes=5 (in the second case, the forces are assumed following if
implemented).

There are many classical forms of RHS, one thus lists here forms that are imple-
mented in of mk.c MatrixIntegration. Computations of these rules, requires that
the EltConst.VectMap field by defined. Each row of EltConst.RhsDefinition

specifies the procedure to be used for integration.

Two main strategies are supported where the fields needed for the integration of
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loads are stored either as columns of dc.def (for fields that can defined on DOFs of
the model) or as nodeE columns.

Currently the only accepted format for rows of EltConst.RhsDefinition is

101(1) InfoAtNode1(2) InStep(3) NDNOff1(4) FDof1(5) NDNCol(6)

NormalComp(7) w1(8) nwStep(9)

Where InfoAtNode1 gives the first row index in storing the field to be integrated
in InfoAtNode. InStep gives the index step (3 for a 3 dimensional vector field),
NDNOff1 gives the block offset in the NDN matrix (zero for the nominal shape func-
tion). FDof1 gives the offset in force DOFs for the current integration. NDNCol.
If larger than -1, the normal component NormalComp designs a row number in
EltConst.bas, which is used as a weighting coefficient. tt w1 gives the index of
the first gauss point to be used (in C order starting at 0). nwStep gives the number
of gauss points in the rule being used.

• volume forces not proportional to density

∫
Ω0

fv(x).du(x) = {Fv}k =
∑
jw

({Nk(jw)} {Nj(jw)} fv(xj)) J(jw)W (jw) (7.5)

are thus described by

opt.RhsDefinition=int32( ...

[101 0 3 0 0 0 -1 rule+[-1 0];

101 1 3 0 1 0 -1 rule+[-1 0];

101 2 3 0 2 0 -1 rule+[-1 0]]);

for 3D solids (see p solid).

Similarly, normal pressure is integrated as 3 volume forces over 3D surface
elements with normal component weighting

Fm =
∫
∂Ω0

p(x)nm(x).dv(x)

=
∑
jw ({Nk(jw)} {Nj(jw)} p(xj)nm) J(jw)W (jw)

(7.6)

• inertia forces (volume forces proportional to density)

F =

∫
Ω0

ρ(x)fv(x).dv(x) (7.7)

• stress forces (will be documented later)
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Large transformation linear elasticity

Elastic3DNL fully anisotropic elastic elements in geometrically non-linear mechan-
ics problems. Element matrix are implemented in the of mk.c MatrixIntegration

command with StrategyType=2 for the linear tangent matrix (MatType=5). Other
computations are performed using generic elements (section 7.16.4 ) (mass MatType=2).
This formulation family has been tested for the prediction of vibration responses un-
der static pre-load.

Stress post-processing is implemented using the underlying linear element.

Hyperelasticity

Simultaneous element matrix and right hand side computations are implemented
in the of mk.c MatrixIntegration command with StrategyType=3 for the linear
tangent matrix (MatType=5). In this case (and only this case!!), the EltConst.NDN

matrix is built as follow:
for 1 ≤ jw ≤ Nw

[NDN ](Ndims+1)×Nnode(Nw) =
[
[NDN ]jw

]
(7.8)

with

[NDN ]jw(Ndims+1)×Nnode =


[N(r, s, t)]jw[

∂N
∂x

]
jw[

∂N
∂y

]
jw[

∂N
∂z

]
jw

 (7.9)

This implementation corresponds to case 31 of NDNSwitch function in of mk pre.c.
The purpose is to use C-BLAS functions in element matrix and right hand side com-
putations implemented in the same file (function Mecha3DintegH) to improve speed.

Other computations are performed using generic elements (section 7.16.4 ) (mass
MatType=2). This formulation family has been tested for the RivlinCube test.

Stress post-processing is not yet implemented for hyperelastic media.

7.16.5 Non-linear iterations, what is done in of mk

Non linear problems are characterized by the need to perform iterations with multi-
ple assemblies of matrices and right hand sides (RHS). To optimize the performance,
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the nominal strategy for non-linear operations is to

• perform an initialization (standard of mknl init call)

• define a deformation data structure dc with two columns giving respectively
the current state and the non linear RHS.

At a given iteration, one resets the RHS and performs a single fe mknl call that
returns the current non-linear matrix and replaces the RHS by its current value
(note that fe mknl actually modifies the input argument dc which is not an normal
Matlab behavior but is needed here for performance)

% at init allocate DC structure

dc=struct(’DOF’,model.DOF,’def’,zeros(length(model.DOF),2);

% ... some NL iteration mechanism here

dc.def(:,2)=0; % reset RHS at each iteration

k=fe_mknl(’assemble not’,model,Case,dc,5); % assemble K and RHS

Most of the work for generic elements is done within the of mk MatrixIntegration

command that is called by fe mknl. Each call to the command performs matrix
and RHS assembly for a full group of elements. Three strategies are currently
implemented

• Linear multiphysics elements of arbitrary forms, see section 7.16.4

• Elastic3DNL general elastic elements for large, see section 7.16.4 transforma-
tion,

• Hyperelastic elements for large transformation problems. see section 7.16.4
. These elements have been tested through the RivlinCube example.

7.16.6 Element function command reference

Nominally you should write topology independent element families, if hard coding
is needed you can however develop new element functions.

In Matlab version, a typical element function is an .m or .mex file that is in your
Matlab path. In Scilab version, a typical element function is an .sci or .mex file
that is loaded into Scilab memory (see getf in Scilab on-line help).

The name of the function/file corresponds to the name of the element (thus the
element bar1 is implemented through the bar1.m file)
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To build a new element take q4p.m or q4p.sci as an example.

As for all Matlab or Scilab functions, the header is composed of a function syntax
declaration and a help section. The following example is written for Matlab. For
Scilab version, don’t forget to replace % by //. In this example, the name of the
created element is elem0.

For element functions the nominal format is

function [out,out1,out2]=elem0(CAM,varargin);

%elem0 help section

The element function should then contain a section for standard calls which let other
functions know how the element behaves.

if isstr(CAM) %standard calls with a string command

[CAM,Cam]=comstr(CAM,1); % remove blanks

if comstr(Cam,’integinfo’)

% some code needed here

out= constit; % real parameter describing the constitutive law

out1=integ; % integer (int32) parameters for the element

out2=elmap;

elseif comstr(Cam,’matcall’)

out=elem0(’call’);

out1=1; % SymFlag

elseif comstr(Cam,’call’); out = [’AssemblyCall’];

elseif comstr(Cam,’rhscall’); out = [’RightHandSideCall’];

elseif comstr(Cam,’scall’); out = [’StressComputationCall’];

elseif comstr(Cam,’node’); out = [NodeIndices];

elseif comstr(Cam,’prop’); out = [PropertyIndices];

elseif comstr(Cam,’dof’); out = [ GenericDOF ];

elseif comstr(Cam,’patch’);

out = [ GenericPatchMatrixForPlotting ];

elseif comstr(Cam,’edge’); out = [ GenericEdgeMatrix ];

elseif comstr(Cam,’face’); out = [ GenericFaceMatrix ];

elseif comstr(Cam,’sci_face’); out = [ SciFaceMatrix ];

elseif comstr(Cam,’parent’); out = [’ParentName’];

elseif comstr(Cam,’test’)
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% typically one will place here a series of basic tests

end

return

end % of standard calls with string command

The expected outputs to these calls are detailed below.

call,matcall

Format string for element matrix computation call. Element functions must be able
to give fe mk the proper format to call them (note that superelements take prece-
dence over element functions with the same name, so avoid calling a superelement
beam1, etc.).

matcall is similar to call but used by fe mknl. Some elements directly call the
of mk mex function thus avoiding significant loss of time in the element function. If
your element is not directly supported by fe mknl use matcall=elem0(’call’).

The format of the call is left to the user and determined by fe mk by executing the
command eCall=elem0(’call’). The default for the string eCall should be (see
any of the existing element functions for an example)

[k1,m1]=elem0(nodeE,elt(cEGI(jElt),:),...

pointers(:,jElt),integ,constit,elmap);

To define other proper calling formats, you need to use the names of a number of
variables that are internal to fe mk. fe mk variables used as output arguments of
element functions are

k1 element matrix (must always be returned, for opt(1)==0 it should be
the stiffness, otherwise it is expected to be the type of matrix given by
opt(1))

m1 element mass matrix (optional, returned for opt(1)==0, see below)

[ElemF,opt,ElemP]=

zrfeutil(’getelemf’,elt(EGroup(jGroup),:),jGroup)

returns, for a given header row, the element function name ElemF, options opt, and
parent name ElemP.

fe mk and fe mknl variables that can be used as input arguments to element function
are listed in section 7.15.2 .
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dof, dofcall

Generic DOF definition vector. For user defined elements, the vector returned by
elem0(’dof’) follows the usual DOF definition vector format (NodeId.DofId or
-1.DofId) but is generic in the sense that node numbers indicate positions in the
element row (rather than actual node numbers) and -1 replaces the element identifier
(if applicable).

For example the bar1 element uses the 3 translations at 2 nodes whose number are
given in position 1 and 2 of the element row. The generic DOF definition vector is
thus [1.01;1.02;1.03;2.01;2.01;2.03].

A dofcall command may be defined to bypass generic dof calls. In particular,
this is used to implement elements where the number of DOFs depends on the
element properties. The command should always return out=elem0(’dofcall’);.
The actual DOF building call is performed in p solid(’BuildDof’) which will call
user p *.m functions if needed.

Elements may use different DOF sorting for their internal computations.

edge,face,patch,line,sci face

face is a matrix where each row describes the positions in the element row of nodes
of the oriented face of a volume (conventions for the orientation are described under
integrules). If some faces have fewer nodes, the last node should be repeated
as needed. feutil can consider face sets with orientation conventions from other
software.

edge is a matrix where each row describes the node positions of the oriented edge
of a volume or a surface. If some edges have fewer nodes, the last node should be
repeated as needed.

line (obsolete) is a vector describes the way the element will be displayed in the line
mode (wire frame). The vector is generic in the sense that node numbers represent
positions in the element row rather than actual node numbers. Zeros can be used
to create a discontinuous line. line is now typically generated using information
provided by patch.

patch. In MATLAB version, surface representations of elements are based on the
use of Matlab patch objects. Each row of the generic patch matrix gives the indices
nodes. These are generic in the sense that node numbers represent positions in the
element row rather than actual node numbers.
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For example the tetra4 solid element has four nodes in positions 1:4. Its generic
patch matrix is [1 2 3;2 3 4;3 4 1;4 1 2]. Note that you should not skip nodes
but simply repeat some of them if various faces have different node counts.

sci face is the equivalent of patch for use in the SCILAB implementation of Open-
FEM. The difference between patch and sci face is that, in SCILAB, a face must
be described with 3 or 4 nodes. That means that, for a two nodes element, the last
node must be repeated (in generality, sci_face = [1 2 2];). For a more than 4
nodes per face element, faces must be cut in subfaces. The most important thing is
to not create new nodes by the cutting of a face and to use all nodes. For example,
9 nodes quadrilateral can be cut as follows :

75

6 3

481

2

9 75

6 3

481

2

9

Figure 7.1: Lower order patch representation of a 9 node quadrilateral

but a 8 nodes quadrilaterals cannot by cut by this way. It can be cut as follows:
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6 3

481

2

75

6 3

481

2

Figure 7.2: Lower order patch representation of a 8 node quadrilateral

integinfo, BuildConstit

integinfo, BuildConstit are commands to resolve constants in elements and p function

respectively.
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[constit,integ,elmap]=elem0(’integinfo’,[MatId ProId],pl,il,model,Case)

is supposed to search pl and il for rows corresponding to MatId and ProId and
return a real vector constit describing the element constitutive law and an integer
vector integ.

ElMap is used to build the full matrix of an element which initially only gives it lower
or upper triangular part. If a structure is return, fe mknl can do some group wise
processing (typically initialization of internal states).

In most elements, one uses [constit,integ,elmap]=p solid(’buildconstit’,

[varargin{1};Ndof;Nnode],varargin{2:end}) since p solid passes calls to other
element property functions when needed.

elmap can also be used to pass structures and callbacks back to fe mknl.

node

Vector of indices giving the position of nodes numbers in the element row. In general
this vector should be [1:n] where n is the number of nodes used by the element.

prop

Vector of indices giving the position of MatId, ProId and EltId in the element row.
In general this vector should be n+[1 2 3] where n is the number of nodes used
by the element. If the element does not use any of these identifiers the index value
should be zero (but this is poor practice).

parent

Parent element name. If your element is similar to a standard element (beam1,
tria3, quad4, hexa8, etc.), declaring a parent allows the inheritance of properties.
In particular you will be able to use functions, such as fe load or parts of femesh,
which only recognize standard elements.

rhscall

rhscall is a string that will be evaluated by fe load when computing right hand
side loads (volume and surface loads). Like call or matcall, the format of the call
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is determined by fe load by executing the command eCall=elem0(’call’). The
default for the string eCall should be :

be=elem0(nodeE,elt(cEGI(jElt),:),pointers(:,jElt),...

integ,constit,elmap,estate);

The output argument be is the right hand side load. The inputs arguments are the
same as those for matcall and call.

Matrix, load and stress computations

The calls with one input are followed by a section on element matrix assembly. For
these calls the element function is expected to return an element DOF definition
vector idof and an element matrix k. The type of this matrix is given in opt(1).
If opt(1)==0, both a stiffness k and a mass matrix m should be returned. See the
fe mk MatType section for a current list.

Take a look at bar1 which is a very simple example of element function.

A typical element assembly section is as follows :

% elem0 matrix assembly section

% figure out what the input arguments are

node=CAM; elt=varargin{1};
point=varargin{2}; integ=varargin{3};
constit=varargin{4}; elmap=varargin{5};
typ=point(5);

% outputs are [k,m] for opt(1)==0

% [mat] for other opt(1)

switch point(5)

case 0

[out,out1] = ... % place stiffness in out and mass in out1

case 1

out= ... % compute stiffness

case 2

out= ... % compute mass

case 100

out= ... % compute right hand side

case 200

out= ... % compute stress ...
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otherwise

error(’Not a supported matrix type’);

end

Distributed load computations (surface and volume) are handled by fe load. Stress
computations are handled by fe stress.

There is currently no automated mechanism to allow users to integrate such compu-
tations for their own elements without modifying fe load and fe stress, but this
will appear later since it is an obvious maintenance requirement.

The mechanism that will be used will be similar to that used for matrix assembly.
The element function will be required to provide calling formats when called with
elem0(’fsurf’) for surface loads, elem0(’fvol’) for volume loads, and
elem0(’stress’) for stresses. fe load and fe stress will then evaluate these calls
for each element.

7.17 Variable names and programming rules (syntax)

The following rules are used in programming SDT and OpenFEM as it makes reading
the source code easier.

All SDT functions are segmented and tagged so that the function structure is clearly
identified. Its tree structure can be displayed and browsable through the sdtweb

taglist interface. You should produce code compatible with this browser including
tags (string beginning by # in a comment), in particular at each command of your
function.

In addition, input parsing section 7.17.3 and some utilities for directory han-
dling section 7.17.4 , post-treatment display section 7.17.4 and figure format-
ting/capturing section 7.17.4 have been standardized.

7.17.1 Variable naming conventions

Standardized variable names are
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carg index of current argument. For functions with vari-
able number of inputs, one seeks the next argument with
NewArg=varargin{carg};carg=carg+1;

CAM, Cam string command to be interpreted. Cam is the lower case version of
CAM.

j1,j2,j3 ... loop indices.
jGroup,jElt,jWindices for element groups, elements, integration points. For code

samples use help(’getegroup’)

i,j unit imaginary
√
−1. i,j should never be used as indices to avoid

any problem overloading their default value.
i1,i2,i3 ... integer values intermediate variables
r1,r2,r3 ... real valued variables or structures
ind,in2,in3 ... vectors of indices, cind is used to store the complement of ind when

applicable.
out,out1,out2

...
output variables.

The following names are also used throughout the toolbox functions
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model, mo1,

mo2 ...
SDT model structures.

node,FEnode,

n1, n2 ...
nodes, FEnode is reserved as a global variable.

elt, FEelt,

el1, el2 ...
elements, FEelt is reserved as a global variable.

EGroup,

nGroup

starting index of each group and number of groups in an element
structure, see help(’getegroup’).

cEGI index of elements for a given group in an element structure, see
help(’getegroup’).

NNode reindexing vector, verifies NodeInd=NNode(NodeId). Can be built
using NNode=sparse(node(:,1),1,1:size(node,1)).

nd reindexing object for DOF, verifies
DofPos=feval(nd.getPosFcn,nd,DOF). Is built using
nd=feval(fe mknl(’@getPosFromNd’),[],DOF);

RunOpt run options, a structure used to store options that are used in a
command. RO can also be used.

adof current active DOF vector.
cf pointer to a feplot figure.
gf, uf, ga,

ua, go, uo

respectively handle and userdata to a figure, handle and userdata
to an axis, handle and userdata to a graphics subobject.

gc, evt respectively active object and associated event in Java triggered
callbacks.

7.17.2 Coding style

The coding styles convention are detailed in the example below.

• Tags for taglist are marked with the # token, not to interfere with pragma

tokens, ensure that it is not directly following a %, but leave at least one space.

– The tag level can be specified by placing -i at the end of the line, i

being the level. If not each tag is assumed to be level 1. Tags with lines
finishing by - - - or after the #SubFunc tag are assumed level 2.

– By default, the taglist will concatenate consecutive tags with the same
starting letters, the subsequent tags will thus be shifted.

• Code sections are usually delimited using the cell display %%.
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• The first input argument should be a string whose parsing will determine the
command to execute and associated command options.

• An error should be returned if the command is unknown.

• Access from the outside to subfunction handles should be made possible through
a call suf=my func(’@my sub fun’).

• Subversion tags should be present to allow easy administration using cvs or
svn, in a unique command cvs, that will output a string containing the cvs

or svn tags.

function [out,out1,out2,out3]=my_func(varargin);

% Here you should place your help

% SDT functions always use varargin for input and [out,out1, ...] for

% output.

% ask MATLAB to avoid some warnings the in the editor MLint

%#ok<*NASGU,*ASGLU,*CTCH,*TRYNC,*NOSEM>

% Get the command in varargin{1} and strip front/end blanks with comstr

% CAM is as input, Cam is lower case.

[CAM,Cam]=comstr(varargin{1},1);carg=2;

%% #Top : main level command Top ------------------------------

% the %% is to use Matlab cell, while #Top is a sdtweb _taglist tag

% by default tags are set to level 1

% Now test that Cam starts by ’top’ and then strip 3 characters and trim (+1)

if comstr(Cam,’top’);[CAM,Cam]=comstr(CAM,4);

if comstr(Cam,’manual’)

%% #TopLevel2 : subcommand level 2 - - - - - - - - - -2

% - - - tells sdtweb this is a level 2 tag

% if sufficies to end the line with -2 in practice

% any other level can be used by adding a higher number at the end of the tag line

% recover other inputs

r1=varargin{carg}; carg=carg+1; % get input and increment counter
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% get optionnal input arguments

if carg<=nargin; r2=carargin{carg}; carg=carg+1; else; r2=[]; end

% ...

%% #TopEnd -2

else; error(’Top%s unknown’,CAM);

end

%% #End : typical commands placed at end of function

elseif comstr(Cam,’@’);out=eval(CAM);

elseif comstr(Cam,’cvs’)

out=’$Revision: 1.3 $ $Date: 2014/12/19 11:34:11 $’;

else; error(’my_func %s unknown’,CAM);

end

%% #SubFunc : indicates start of subfunctions to taglist parsing

%% #my_sub_fun - - ------------------------------------------

function out=my_sub_fun(varargin)

7.17.3 Input parsing conventions

Passing command options is a critical feature to enable little behavior alteration
as function of the user needs although most of the functionality is the same. This
allows in particular limiting code duplication.

From the input CAM variable, command option parsing utilities have been defined and
standardized. The goal is to build a run option structure from the input command
string while keeping the possibility to provide it as an extra argument.

The command parsing code is then

% Usual run options handling

% first possible to recover in extra input

if carg>nargin||~isstruct(varargin{2});RO=struct;
else;RO=varargin{carg};carg=carg+1;
end

% then parse CAM for command options,

% and assign default values to unspecified options

% values declared prior to the paramedit call are not overriden

291



7 Developer information

[RO,st,CAM]=cingui(’paramedit -DoClean’,[ ...

’param(val#%g#"Description")’ ...

’token(#3#"token modes does...")’ ...

’-parS("string"#%s#"parS modes available...")’ ...

],{RO,CAM}); Cam=lower(CAM);

The paramEdit call from cingui performs standard operations for each token in the
second input string of the command. Each token follows the format token(val#typ#"info"),
and will generate a case sensitive field token in the structure RO. val is a default
value that is applied if the field token is missing before the call. info is a string
providing information on the token effect. typ tells the type of input that should
be parsed after the token, with the following rules:

• 3 Only checks for the presence of token in the command without any other
value. Sets field token to 1(double) if found, 0(as double) if not. val must
remain empty. e.g. Top token, will set RO.token=1.

• 31 Behaves as type 3 but also checks for an optional integer input. Sets field
token to 1(double) if found, 0(as double) if not, or to the found integer if
found. val must remain empty. e.g. Top token 2 will set RO.token=2, and
Top token will set RO.token=1.

• %g Checks for token followed by a float. If found RO.token is set to the float,
if no float is found the field is left empty. If the token is not found, the default
value val is set. e.g. Top token 3.14 will set RO.token=3.14.

• %i Checks for token followed by an integer. If found RO.token is set to the
integer, if no integer is found the field is left empty. If the token is not found,
the default value val is set. e.g. Top token 31 will set RO.token=31.

• %s Checks for token followed by a string (delimited by two "). If found
RO.token is set to the string, if no string is found the field is left empty.
If the token is not found, the default value val is set. e.g. Top token"test"

will set RO.token=’test’. Note that for this type if val is not empty one de-
fines the token as token("val"#%s#"info"), but if val is empty, one should
use token(#%s#"info").

The output CAM has been stripped from any parsed data.

The format -token(val#typ#"info") will require the presence of -token in the
command to generate the token field in RO.
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By convention, to handle interferences between the extra input argument RO and
default values overriding, any field present in RO prior to calling paramEdit will be
left unchanged by the command.

7.17.4 Commands associated to project application functions

The development of project application functions follow some must have such as
project directory handling section 7.17.4 , post-treatment handling section 7.17.4 ,
image capture generation section 7.17.4 . Some of these steps have been standardized
over the years, which are documented in the present sections.

wd,fname

The files relative to a specific application are usually stored in a specific file ar-
borescence. It is thus useful to access standardly defined save directories in a robust
manner, regardless of the operating system or the user. Standard applications de-
veloped by SDTools usually involve a user defined root directory from which the
following subdirectories are defined

• m contains the project source code.

• tex contains the project documentation source code.

• mat contains reference data files.

• plots contains the image captures.

• doc contains other project support documentation.

Each of these directories may contain any further arborescence to class data as
desired.

To allow efficient recovery of a specific subdirectory or file in the final project file
architecture, sdtweb provides commands in its utilities (see sdtweb Utils) that
should be used by the main project function to search the project architecture sub-
directories.

The wd command should package a search in its known subdirectories.

%% #wd -------------------------------------------------

elseif comstr(Cam,’wd’)
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if nargin==1 % output the possible root directories

% assume this function is stored in root/m

out=fileparts(which(’my_func’));

% possibly add specific root dirs outside the project

% should be better handled with a preference

wd2={’/p/my_files’}; % add as many as needed

out=[out wd2];

else % get the subdirectory searched

wd1=varargin{carg}; carg=carg+1;

% get the project root directory (several ones admitted)

wd0=my_func(’wd’);

% find the subdirectory

out=sdtweb(’_wd’,wd0,wd1);

end

The fname command should package a file search in the known subdirectories

%% #fname -----------------------------------------------

elseif comstr(Cam,’fname’)

fname=varargin{carg}; carg=carg+1;

% get the available root directories

wd=my_func(’wd’);

% search for the file

out=sdtweb(’_fname’,fname,wd);

view

The generation of displayed post-treatments should be handled by a command
named View, that will centralize the feplot manipulations required to generate
ad hoc displays. Variations of display are handled in the command, first and second
input should be the feplot pointer and optionally a deformation data.

• Handling of legend (location, labels, ...) can be performed by defining a Legend

field to deformation curves, see comgui def.Legend for more details.

• Handling of colorbars and their legends can be performed using fecom ColorBar

and fecom ColorLegend commands.
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• Stress post-treatments can be handled through a fe caseg StressCut com-
mand.

• Energy post-treatment can be handled through fe stress Ener and their
corresponding display through fe stress feplot

• Handling of color scales can be handled with fecom ColorScale.

A sample call to be handled by the view command could then be.

my_project(’ViewUpStress’,cf);

im
The generation of image captures from figures (feplot iiplot or standard MAT-

LAB figures) should be handled by a command named im, that will centralize for-
matting and saving. This command should

• Provide figure formatting data for implemented modes

• Perform figure formatting according to a required mode

• Perform figure capture and save to an appropriate directory

For details on figure formatting, see comgui objSet, for details on figure nam-
ing strategy see comgui ImFtitle, for low level image capturing calls, see comgui

ImWrite.

A suggested layout for the im command of a sample my func function is then

%% #im : figure formatting ---------------------------------------------------

elseif comstr(Cam,’im’)

% sdt_table_generation(’Rep{SmallWide}’);comstr(ans,-30)

if nargin==2 % generate the calling string

pw0=pwd;

if isfield(varargin{2},’ch’) % multiple generation with imwrite ch

RO=varargin{2};cf=feplot;
% Create an possibly change to directory

sdtkey(’mkdircd’,my_func(’wd’,’plots’,sscanf(cf.mdl.name,’%s’,1)));

RO.RelPath=1; % Save links with path relative to current position

RO=iicom(cf,’imwrite’,RO);
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fid=fopen(’index.html’,’w’);fprintf(fid,’%s’,RO.Out{:});fclose(fid);
cd(pw0);

elseif ~ischar(varargin{2}); % Apply reshaping to figure

gf=varargin{2};if ~ishandle(gf);figure(gf);plot([0 1]);end

cingui(’objset’,gf,my_func(CAM))

% if feplot, center the display

if strcmpi(get(gf,’tag’),’feplot’);iimouse(’resetvie’);end

elseif strcmpi(varargin{2},’.’) % if ’.’ get automatic naming

st=sprintf(’imwrite-objSet"@my_func(’’%s’’)"-ftitle’,varargin{1});
comgui(st);

else

cd(my_func(’wd’,’plots’));

st=sprintf(’imwrite-objSet"@my_func(’’%s’’)"-ftitle%s’,varargin{1:2});
comgui(st);

cd(pw0);

end

elseif comstr(Cam,’imw1’) % Figure formatting options for w1

out={’position’,[NaN,NaN,450*[1.5 2]],’paperpositionmode’,’auto’, ...

’@exclude’,{’legend.*’},’@text’,{’FontSize’,14}, ...

’@axes’,{’FontSize’,14,’box’,’on’}, ...

’@ylabel’,{’FontSize’,14,’units’,’normalized’}, ...

’@zlabel’,{’FontSize’,14,’units’,’normalized’}, ...

’@title’,{’FontSize’,14}, ...

’@line’,{’linewidth’,1}, ...

’@xlabel’,{’FontSize’,14,’units’,’normalized’}};

% elseif ... use as many commands as needed

else; error(’%s unknown’,CAM);

end

This way, the following tasks can be easily performed

% Im calls for figure capturing

gf=figure(1); plot([1 0]);

% Capture an image from figure 1 with formatting w1 and named test.png

my_func(’imw1’,’test.png’);
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% Capture an image from figure 1 with formatting w1 with an automatic name

my_func(’imw1’,’.’);

% Format figure 1 according to w1 options

my_func(’imw1’,gf);

% Get formatting options for w1

r1=my_func(’imw1’);

7.18 Legacy information

This section gives data that is no longer used but is important enough not to be
deleted.

7.18.1 Legacy 2D elements

These elements support isotropic and 2-D anisotropic materials declared with a
material entry described in m elastic. Element property declarations are p solid

subtype 2 entries

[ProId fe_mat(’p_solid’,’SI’,2) f N 0]

Where

f Formulation : 0 plane stress, 1 plane strain, 2 axisymmetric.
N Fourier coefficient for axisymmetric formulations
Integ set to zero to select this family of elements.

The xy plane is used with displacement DOFs .01 and .02 given at each node.
Element matrix calls are implemented using .c files called by of mk subs.c and
handled by the element function itself, while load computations are handled by
fe load. For integration rules, see section 7.18.2 . The following elements are
supported

• q4p (plane stress/strain) uses the et*2q1d routines for plane stress and
plane strain.

• q4p (axisymmetric) uses the et*aq1d routines for axisymmetry. The radial
ur and axial uz displacement are bilinear functions over the element.

• q5p (plane stress/strain) uses the et*5noe routines for axisymmetry.

There are five nodes for this incompressible quadrilateral element, four nodes
at the vertices and one at the intersection of the two diagonals.
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• q8p uses the et*2q2c routines for plane stress and plane strain and et*aq2c

for axisymmetry.

• q9a is a plane axisymmetric element with Fourier support. It uses the e*aq2c

routines to generate matrices.

• t3p uses the et*2p1d routines for plane stress and plane strain and et*ap1d

routines for axisymmetry.

The displacement (u,v) are assumed to be linear functions of (x,y) (Linear
Triangular Element), thus the strain are constant (Constant Strain Triangle).

• t6p uses the et*2p2c routines for plane stress and plane strain and et*ap2c

routines for axisymmetry.

7.18.2 Rules for elements in of mk subs

hexa8, hexa20

The hexa8 and hexa20 elements are the standard 8 node 24 DOF and 20 node 60
DOF brick elements.

The hexa8 element uses the et*3q1d routines.

hexa8 volumes are integrated at 8 Gauss points

ωi = 1
8 for i = 1, 4

bi for i = 1, 4 as below, with z = α1

bi for i = 4, 8 as below, with z = α2

hexa8 surfaces are integrated using a 4 point rule

ωi = 1
4 for i = 1, 4

b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) and b4 = (α1, α2)

with α1 = 1
2 −

1
2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751.

The hexa20 element uses the et*3q2c routines.

hexa20 volumes are integrated at 27 Gauss points ωl = wiwjwk for i, j, k = 1, 3

with

w1 = w3 = 5
18 and w2 = 8

18 bl = (αi, αj , αk) for i, j, k = 1, 3
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with

α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

α1 =
1−
√

3
5

2 , α2 = 0.5 and

hexa20 surfaces are integrated at 9 Gauss points ωk = wiwj for i, j = 1, 3 with

wi as above and bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2 .

penta6, penta15

The penta6 and penta15 elements are the standard 6 node 18 DOF and 15 node
45 DOF pentahedral elements. A derivation of these elements can be found in [43].

The penta6 element uses the et*3r1d routines.

penta6 volumes are integrated at 6 Gauss points

Points bk x y z

1 a a c

2 b a c

3 a b c

4 a a d

5 b a d

6 a b d

with a = 1
6 = .16667, b = 4

6 = .66667, c = 1
2 −

1
2
√

3
= .21132, d = 1

2 + 1
2
√

3
= .78868

penta6 surfaces are integrated at 3 Gauss points for a triangular face (see tetra4)
and 4 Gauss points for a quadrangular face (see hexa8).

penta15 volumes are integrated at 21 Gauss points with the 21 points formula

a = 9−2
√

15
21 , b = 9+2

√
15

21 ,

c = 6+
√

15
21 , d = 6−

√
15

21 ,

e = 0.5(1−
√

3
5),

f = 0.5 and g = 0.5(1 +
√

3
5)
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α = 155−
√

15
2400 , β = 5

18 ,

γ = 155+
√

15
2400 , δ = 9

80 and ε = 8
18 .

Positions and weights of the 21 Gauss point are

Points bk x y z weight ωk
1 d d e α.β

2 b d e α.β

3 d b e α.β

4 c a e γ.β

5 c c e γ.β

6 a c e γ.β

7 1
3

1
3 e δ.β

8 d d f α.ε

9 b d f α.ε

10 d b f α.ε

11 c a f γ.ε

12 c c f γ.ε

13 a c f γ.ε

14 1
3

1
3 f δ.ε

15 d d g α.β

16 b d g α.β

17 d b g α.β

18 c a g γ.β

19 c c g γ.β

20 a c g γ.β

21 1
3

1
3 g δ.β

penta15 surfaces are integrated at 7 Gauss points for a triangular face (see tetra10)
and 9 Gauss points for a quadrangular face (see hexa20).

tetra4, tetra10

The tetra4 element is the standard 4 node 12 DOF trilinear isoparametric solid
element. tetra10 is the corresponding second order element.

You should be aware that this element can perform very badly (for poor aspect ratio,
particular loading conditions, etc.) and that higher order elements should be used
instead.
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The tetra4 element uses the et*3p1d routines.

tetra4 volumes are integrated at the 4 vertices ωi = 1
4 for i = 1, 4 and bi = Si the

i-th element vertex.

tetra4 surfaces are integrated at the 3 vertices with ωi = 1
3 for i = 1, 3 and bi = Si

the i-th vertex of the actual face

The tetra10 element is second order and uses the et*3p2c routines.

tetra10 volumes are integrated at 15 Gauss points

Points bk λ1 λ2 λ3 λ4 weight ωk
1 1

4
1
4

1
4

1
4

8
405

2 b a a a α

3 a b a a α

4 a a b a α

5 a a a b α

6 d c c c β

7 c d c c β

8 c c d c β

9 c c c d β

10 e e f f γ

11 f e e f γ

12 f f e e γ

13 e f f e γ

14 e f e f γ

15 f e f e γ

with a = 7−
√

15
34 = 0.0919711 , b = 13+3

√
15

34 = 0.7240868 , c = 7+
√

15
34 = 0.3197936 ,

d = 13−3
√

15
34 = 0.0406191 , e = 10−2

√
15

40 = 0.0563508 , f = 10+2
√

15
40 = 0.4436492

and α = 2665+14
√

15
226800 , β = 2665−14

√
15

226800 et γ = 5
567

λj for j = 1, 4 are barycentric coefficients for each vertex Sj :

bk =
∑
j=1,4 λjSj for k = 1, 15

tetra10 surfaces are integrated using a 7 point rule
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Points bk λ1 λ2 λ3 weight ωk
1 c d c α

2 d c c α

3 c c d α

4 b b a β

5 a b b β

6 b a b β

7 1
3

1
3

1
3 γ

with γ = 9
80 = 0.11250 , α = 155−

√
15

2400 = 0.06296959, β = 155+
√

15
2400 = 0.066197075

and a = 9−2
√

15
21 = 0.05961587 , b = 6+

√
15

21 = 0.47014206 , c = 6−
√

15
21 = 0.10128651 ,

d = 9+2
√

15
21 = 0.797427

λj for j = 1, 3 are barycentric coefficients for each surface vertex Sj :

bk =
∑
j=1,3 λjSj for k = 1, 7

q4p (plane stress/strain)

The displacement (u,v) are bilinear functions over the element.

For surfaces, q4p uses numerical integration at the corner nodes with ωi = 1
4 and

bi = Si for i = 1, 4.

For edges, q4p uses numerical integration at each corner node with ωi = 1
2 and

bi = Si for i = 1, 2.

q4p (axisymmetric)

For surfaces, q4p uses a 4 point rule with

• ωi = 1
4 for i = 1, 4

• b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) , b4 = (α1, α2)
with α1 = 1

2 −
1

2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751

For edges, q4p uses a 2 point rule with

• ωi = 1
2 for i = 1, 2

• b1 = α1 and b2 = α2 the 2 gauss points of the edge.
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q5p (plane stress/strain)

For surfaces, q5p uses a 5 point rule with bi = Si for i = 1, 4 the corner nodes and
b5 the node 5.

For edges, q5p uses a 1 point rule with ω = 1
2 and b the midside node.

q8p (plane stress/strain)

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3 with w1 = w3 = 5
18 et w2 = 8

18

• bk = (αi, αj) for i, j = 1, 3 with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si for i = 1, 2 corner nodes of the edge et b3 the midside.

q8p (axisymmetric)

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3
with w1 = w3 = 5

18 and w2 = 8
18

• bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω3 = 5
18 , ω2 = 8

18

• b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985
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t3p (plane stress/strain)

For surfaces, t3p uses a 3 point rule at the vertices with ωi = 1
3 and bi = Si.

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and bi = Si.

t3p (axisymmetric)

For surfaces, t3p uses a 1 point rule at the barycenter (b1 = G) with ω1 = 1
2 .

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and b1 = 1

2 −
2

2
√

3
and

b2 = 1
2 + 2

2
√

3
.

t6p (plane stress/strain)

For surfaces, t6p uses a 3 point rule with

• ωi = 1
3 for i = 1, 6

• bi = Si+3,i+4 the three midside nodes.

For edges, t6p uses a 3 point rule

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si, i = 1, 2 the i-th vertex of the actual edge and b3 = Si,i+1 the midside.

t6p (axisymmetric)

For surfaces, t6p uses a 7 point rule

Points bk λ1 λ2 λ3 weight ωk
1 1

3
1
3

1
3

a
2 α β β b
3 β β α b
4 β α β b
5 γ γ δ c
6 δ γ γ c
7 γ δ γ c
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a = 9
80

= 0.11250 , b = 155+
√

15
2400

= 0.066197075 and

c = 155−
√

15
2400

= 0.06296959

α = 9−2
√

15
21 = 0.05961587 , β = 6+

√
15

21
= 0.47014206

γ = 6−
√

15
21

= 0.10128651 , δ = 9+2
√

15
21

= 0.797427

λj for j = 1, 3 are barycentric coefficients for each vertex Sj :

bk =
∑
j=1,3 λjSj for k = 1, 7

For edges, t6p uses a 3 point rule with ω1 = ω3 = 5
18 , ω2 = 8

18

b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985
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Element functions supported by OpenFEM are listed below. The rule is to have
element families (2D and 3D) with families of formulations selected through element
properties and implemented for all standard shapes

3-D volume element shapes

hexa8 8-node 24-DOF brick
hexa20 20-node 60-DOF brick
hexa27 27-node 81-DOF brick
penta6 6-node 18-DOF pentahedron
penta15 15-node 45-DOF pentahedron
tetra4 4-node 12-DOF tetrahedron
tetra10 10-node 30-DOF tetrahedron

2-D volume element shapes

q4p 4-node quadrangle
q5p 5-node quadrangle
q8p 8-node quadrangle
q9a 9-node quadrangle
t3p 3-node 6-DOF triangle
t6p 6-node 12-DOF triangle

Supported problem formulations are listed in section 6.1 , in particular one consid-
ers 2D and 3D elasticity, acoustics, hyperelasticity, fluid/structure coupling, piezo-
electric volumes, ...

Other elements, non generic elements, are listed below

3-D plate/shell Elements

dktp 3-node 9-DOF discrete Kirchoff plate
mitc4 4-node 20-DOF shell
quadb quadrilateral 4-node 20/24-DOF plate/shell
quad9 (display only)
quadb quadrilateral 8-node 40/48-DOF plate/shell
tria3 3-node 15/18-DOF thin plate/shell element
tria6 6-node 36DOF thin plate/shell element



Other elements

bar1 standard 2-node 6-DOF bar
beam1 standard 2-node 12-DOF Bernoulli-Euler beam
beam1t pretensionned 2-node 12-DOF Bernoulli-Euler beam
beam3 (display only)
celas scalar springs and penalized rigid links
mass1 concentrated mass/inertia element
mass2 concentrated mass/inertia element with offset
rigid handling of linearized rigid links

Utility elements

fe super element function for general superelement support
integrules FEM integration rule support

fsc fluid/structure coupling capabilities
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bar1

Purpose Element function for a 6 DOF traction-compression bar element.

Description The bar1 element corresponds to the standard linear interpolation for axial traction-
compression. The element DOFs are the standard translations at the two end nodes
(DOFs .01 to .03).

In a model description matrix, element property rows for bar1 elements follow the
standard format (see section 7.16 ).

[n1 n2 MatID ProID EltID]

Isotropic elastic materials are the only supported (see m elastic).

For supported element properties see p beam. Currently, bar1 only uses the element
area A with the format

[ProID Type 0 0 0 A]

See also m elastic, p beam, fe mk, feplot
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beam1, beam1t

Purpose Element functions for a 12 DOF beam element. beam1t is a 2 node beam with
pretension available for non-linear cable statics and dynamics.

Description
beam1

In a model description matrix, element property rows for beam1 elements follow the
format

[n1 n2 MatID ProID nR 0 0 EltID p1 p2 x1 y1 z1 x2 y2 z2]

where

n1,n2 node numbers of the nodes connected
MatID material property identification number
ProID element section property identification number
nr 0 0 number of node not in the beam direction defining bending plane 1 in

this case {v} is the vector going from n1 to nr. If nr is undefined it is
assumed to be located at position [1.5 1.5 1.5].

vx vy vz alternate method for defining the bending plane 1 by giving the com-
ponents of a vector in the plane but not collinear to the beam axis.
If vy and vz are zero, vx must be negative or not an integer.
MAP=beam1t(’map’,model) returns a normal vector MAP giving the
vector used for bending plane 1. This can be used to check your model.

p1,p2 pin flags. These give a list of DOFs to be released (condensed before
assembly). For example, 456 will release all rotation degrees of freedom.
Note that the DOFS are defined in the local element coordinate system.

x1,... optional components in global coordinate system of offset vector at node
1 (default is no offset)

x2,... optional components of offset vector at node 2
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beam1, beam1t

Isotropic elastic materials are the only supported (see m elastic). p beam describes
the section property format and associated formulations.

Failure to define orientations is a typical error with beam models. In the following
example, the definition of bending plane 1 using a vector is illustrated.

cf=feplot(femesh(’test2bay’));

% Map is in very variable direction due to undefined nr

% This is only ok for sections invariant by rotation

beam1t(’map’,cf.mdl);fecom(’view3’);

% Now define generator for bending plane 1

i1=feutil(’findelt eltname beam1’,cf.mdl); % element row index

cf.mdl.Elt(i1,5:7)=ones(size(i1))*[-.1 .9 0]; % vx vy vz

beam1t(’map’,cf.mdl);fecom(’view2’);

beam1 adds secondary inertia effects which may be problematic for extremely short
beams and beam1t may then be more suitable.

beam1t

This element has an internal state stored in a InfoAtNode structure where each col-
umn of Case.GroupInfo{7}.data gives the local basis, element length and tension
[bas(:);L;ten]. Initial tension can be defined using a .MAP field in the element
property.

This is a simple example showing how to impose a pre-tension :

model=femesh(’TestBeam1 divide 10’);

model=fe_case(model,’FixDof’,’clamp’,[1;2;.04;.02;.01;.05]);

model.Elt=feutil(’SetGroup 1 name beam1t’,model);

d1=fe_eig(model,[5 10]);

model=feutil(’setpro 112’,model,’MAP’, ...

struct(’dir’,{{’1.5e6’}},’lab’,{{’ten’}}));
d2=fe_eig(model,[5 10]);

figure(1);plot([d2.data./d1.data-1]);

xlabel(’Mode index’);ylabel(’Frequency shift’);

Strains in a non-linear Bernoulli Euler section are given by

ε11 =

(
∂u

∂x
+

1

2

(
∂w0

∂x

2
))
− z ∂

2w0

∂x2
(8.1)
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See also p beam, m elastic, fe mk, feplot
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celas,cbush

Purpose element function for scalar springs and penalized rigid links

Description
celas

In an model description matrix a group of celas elements starts with a header
row [Inf abs(’celas’) 0 ...] followed by element property rows following the
format

[n1 n2 DofID1 DofID2 ProID EltID Kv Mv Cv Bv]

with
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n1,n2 node numbers of the nodes connected. Grounded springs are obtained
by setting n1 or n2 to 0.

DofID Identification of selected DOFs.
For rigid links, the first node defines the rigid body motion of the other
extremity slave node. Motion between the slave node and the second
node is then penalized. DofID (positive) defines which DOFs of the
slave node are connected by the constraint. Thus [1 2 123 0 0 0

1e14] will only impose the penalization of node translations 2 by mo-
tion of node 1, while [1 2 123456 0 0 0 1e14] will also penalize the
difference in rotations.

For scalar springs, DofID1 (negative) defines which DOFs of node 1
are connected to which of node 2. DofID2 can be used to specify dif-
ferent DOFs on the 2 nodes. For example [1 2 -123 231 0 0 1e14]

connects DOFs 1.01 to 2.02, etc.

ProID Optional property identification number (see format below)
Kv Optional stiffness value used as a weighting associated with the con-

straint. If Kv is zero (or not given), the default value in the element
property declaration is used. If this is still zero, Kv is set to 1e14.

p spring properties for celas elements take the form [ProID type KvDefault m

c eta S]

Below is the example of a 2D beam on elastic supports.

model=femesh(’Testbeam1 divide 10’);
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celas,cbush

model=fe_case(model,’FixDof’,’2D’,[.01;.02;.04]);

model.Elt(end+1,1:6)=[Inf abs(’celas’)]; % spring supports

model.Elt(end+[1:2],1:7)=[1 0 -13 0 0 0 1e5;2 0 -13 0 0 0 1e5];

def=fe_eig(model,[5 10 0]); feplot(model,def);

When using local displacement bases (non zero DID), the stiffness is defined in the
local basis and transformed to global coordinates.

cbush

The element property row is defined by

[n1 n2 MatId ProId EltId x1 x2 x3 CID S OCID S1 S2 S3]

The orientation of the spring can be specified, by using distinct n1,n2, giving com-
ponents x1,x2,x3 of an orientation vector (x1 should not be an integer if x2 and
x3 are zero), a node number as NodeIdRef,0,0, the specification of a coordinate
system CID. If a DID is specified on n1, this is used.

The spring/damper is located at a position interpolated between n1 and n2 using S,
such that xi = Sn1 + (1−S)n2. The midpoint is used by default, that-is-to-say S is
taken at 0.5 if left to zero. To use other locations, specify a non-zero OCID and an
offset S1,S2,S3.

It is possible to set n2 to 0 to define a grounded cbush.

See also p spring, rigid
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dktp

Purpose 2-D 9-DOF Discrete Kirchhoff triangle

Description

FT ∈ P
2

1

T

T̂

3̂

2̂1̂

3

2

1

In a model description matrix, element property rows for dktp elements follow
the standard format

[n1 n2 n3 MatID ProID EltID Theta]

giving the node identification numbers ni, material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between ma-
terial x axis and element x axis (currently unused)

The elements support isotropic materials declared with a material entry described in
m elastic. Element property declarations follow the format described in p shell.

The dktp element uses the et*dktp routines.

There are three vertices nodes for this triangular Kirchhoff plate element and the
normal deflection W (x, y) is cubic along each edge.

We start with a 6-node triangular element with a total D.O.F = 21 :

• five degrees of freedom at corner nodes :

W (x, y) ,
∂ W

∂x
,
∂ W

∂y
, θx , θy (deflection W and rotations θ)

• two degrees of freedom θx and θy at mid side nodes.

Then, we impose no transverse shear deformation γxz = 0 and γyz = 0 at selected
nodes to reduce the total DOF = 21− 6 ∗ 2 = 9 :
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dktp

• three degrees of freedom at each of the vertices of the triangle.

W (x, y) , θx = (
∂ W

∂x
) , θy = (

∂ W

∂y
)

The coordinates of the reference element’s vertices are Ŝ1(0., 0.), Ŝ2(1., 0.) and
Ŝ3(0., 1.).

Surfaces are integrated using a 3 point rule ωk = 1
3 and bk mid side node.

See also fe mat, m elastic, p shell, fe mk, feplot
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fsc

Purpose Fluid structure/coupling with non-linear follower pressure support.

Description Elasto-acoustic coupling is used to model structures containing a compressible, non-
weighing fluid, with or without a free surface.

ΩF

ΩS

n

F
ext

The FE formulation for this type of problem can be written as [44]

s2

[
M 0
CT Kp

]{
q
p

}
+

[
K(s) −C

0 F

]{
q
p

}
=

{
F ext

0

}
(8.2)

with q the displacements of the structure, p the pressure variations in the fluid and
F ext the external load applied to the structure, where

∫
ΩS
σij(u)εij(δu)dx⇒ δqTKq∫
ΩS
ρSu.δudx⇒ δqTMq

1
ρF

∫
ΩF
∇p∇δpdx⇒ δpTFp

1
ρF c2

∫
ΩF

pδpdx⇒ δpTKpp∫
Σ pδu.ndx⇒ δqTCp

(8.3)

To assemble fluid/structure coupling matrix you should declare a set of surface
elements (any topology) with property p solid(’dbval 1 fsc’). The C matrix
(solid forces induced by pressure field) is assembled with the stiffness (matrix type
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fsc

1), while the CT matrix (fluid pressure due to normal velocity of solid) is assembled
with the mass (matrix type 2).

Some formulations, consider a surface impedance proportional to the pressure. This
matrix can be computed by defining a group of surface elements with an acoustic
material (see m elastic 2) and a standard surface integration rule (p solid(’dbval

1 d2 -3’)). This results in a mass given by

δpTKpp =
1

ρF c2

∫
ΩF

δppdx (8.4)

Follower force One uses the identity

ndS =
∂x

∂r
∧ ∂x
∂s

drds, (8.5)

where (r, s) designate local coordinates of the face (assumed such that the normal
is outgoing). Work of the pressure is thus:

δWp = −
∫
r,s

Π (
∂x

∂r
∧ ∂x
∂s

) · δv drds. (8.6)

On thus must add the non-linear stiffness term:

−dδWp =

∫
r,s

Π (
∂du

∂r
∧ ∂x
∂s

+
∂x

∂r
∧ ∂du

∂s
) · δv drds. (8.7)

Using ∂x
∂r = {x1,r x2,r x3,r}T (idem for s), and also

[Axr] =

 0 −x,r3 x,r2
x,r3 0 −x,r1
−x,r2 x,r1 0

 , [Axs] =

 0 −x,s3 x,s2
x,s3 0 −x,s1
−x,s2 x,s1 0

 ,
this results in

(
∂dx

∂r
∧ ∂x
∂s

+
∂x

∂r
∧ ∂dx

∂s
) · δv =

{δqik}T {Nk} (Axrij{Nl,s}T −Axsij{Nl,r}T ){dqj}. (8.8)

Tests : fsc3 testsimple and fsc3 test.

In the RivlinCube test , the pressure on each free face is given by

Π1 = − 1+λ1
(1+λ2)(1+λ3)Σ11 on face (x1 = l1)

Π2 = − 1+λ2
(1+λ1)(1+λ3)Σ22 on face (x2 = l2)

Π3 = − 1+λ3
(1+λ1)(1+λ2)Σ33 on face (x3 = l3).
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Non-conform SDT supports non conforming element for fluid/structure coupling terms corre-
sponding to the structure are computed using the classical elements of the SDT,
and terms corresponding to the fluid are computed using the fluid elements (see
flui4).

The coupling term C is computed using fluid/structure coupling elements (fsc ele-
ments).

Only one integration point on each element (the center of gravity) is used to evaluate
C.

When structural and fluid meshes do not match at boundaries, pairing of elements
needs to be done. The pairing procedure can be described for each element. For
each fluid element Fi, one takes the center of gravity Gf,i (see figure), and searches
the solid element Si which is in front of the center of gravity, in the direction of
the normal to the fluid element Fi. The projection of Gf,i on the solid element, Pi,
belongs to Si, and one computes the reference coordinate r and s of Pi in Si (if Si
is a quad4, −1 < r < 1 and −1 < s < 1). Thus one knows the weights that have to
be associated to each node of Si. The coupling term will associate the DOFs of Fi
to the DOFs of Si, with the corresponding weights.

Gf,1 Gf,2

Fluid

Solid

P1
P2

See also flui4, m elastic
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hexa8, penta6, tetra4, and other 3D volumes

Purpose Topology holders for 3D volume elements.

Description The hexa8 hexa20 hexa27, penta6 penta15 tetra4 and tetra10 elements are
standard topology reference for 3D volume FEM problems.

In a model description matrix, element property rows for hexa8 and hexa20

elements follow the standard format with no element property used. The generic
format for an element containing i nodes is [n1 ... ni MatID ProId EltId]. For
example, the hexa8 format is [n1 n2 n3 n4 n5 n6 n7 n8 MatID ProId EltId].

These elements only define topologies, the nature of the problem to be solved should
be specified using a property entry, see section 6.1 for supported problems and
p solid, p heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex
coordinates of the reference element can be found using an integrules command
containing the name of the element such as r1=integrules(’q4p’);r1.xi.

Backward compatibility note : if no element property entry is defined, or with
a p solid entry with the integration rule set to zero, the element defaults to the
historical 3D mechanic elements described in section 7.18.2 .

See also fe mat, m elastic, fe mk, feplot

.
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integrules

Purpose Command function for FEM integration rule support.

Description This function groups integration rule manipulation utilities used by various elements.
The following calls generate the reference EltConst data structure (see section 7.15.4
).

Gauss

This command supports the definition of Gauss points and associated weights. It
is called with integrules(’Gauss Topology’,RuleNumber). Supported topologies
are 1d (line), q2d (2D quadrangle), t2d (2D triangle), t3d (3D tetrahedron), p3d
(3D prism), h3d (3D hexahedron). integrules(’Gauss q2d’) will list available 2D
quadrangle rules.

• Integ -3 is always the default rule for the order of the element.

• -2 a rule at nodes.

• -1 the rule at center.

[ -3] [ 0x1 double] ’element dependent default’

[ -2] [ 0x1 double] ’node’

[ -1] [ 1x4 double] ’center’

[102] [ 4x4 double] ’gefdyn 2x2’

[ 2] [ 4x4 double] ’standard 2x2’

[109] [ 9x4 double] ’Q4WT’

[103] [ 9x4 double] ’gefdyn 3x3’

[104] [16x4 double] ’gefdyn 4x4’

[ 9] [ 9x4 double] ’9 point’

[ 3] [ 9x4 double] ’standard 3x3’

[ 2] [ 4x4 double] ’standard 2x2’

[ 13] [13x4 double] ’2x2 and 3x3’

bar1,beam1,beam3

For integration rule selection, these elements use the 1D rules which list you can
find using integrules(’Gauss1d’).
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integrules

Geometric orientation convention for segment is • (1) → (2)

One can show the edge using elt name edge (e.g. beaml edge).

t3p,t6p

Vertex coordinates of the reference element can be found using r1=integrules(’tria3’);r1.xi.

F T ∈ P 2

1

T

ˆT

3̂

2̂1̂

3

2

1

Figure 8.1: t3p reference element.

Vertex coordinates of the reference element can be found using r1=integrules(’tria6’);r1.xi.
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3
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1

∈

Figure 8.2: t6p reference element.

For integration rule selection, these elements use the 2D triangle rules which list you
can find using integrules(’Gausst2d’).

Geometric orientation convention for triangle is to number anti-clockwise in the two-
dimensional case (in the three-dimensional case, there is no orientation).
• edge [1]: (1) → (2) (nodes 4, 5,... if there are supplementary nodes) • edge [2]:
(2) → (3) (...) • edge [3]: (3) → (1) (...)
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One can show the edges or faces using elt name edge or elt name face (e.g. t3p

edge).

q4p, q5p, q8p

Vertex coordinates of the reference element can be found using r1=integrules(’quad4’);r1.xi.

3̂
4̂

3
4

F T Q 2

1
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∈

Figure 8.3: q4p reference element.
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Figure 8.4: q5p reference element.

Vertex coordinates of the reference element can be found using the r1=integrules(’quadb’);r1.xi.
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7̂4̂

8̂
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Figure 8.5: q8p reference element.

For integration rule selection, these elements use the 2D quadrangle rules which list
you can find using integrules(’Gaussq2d’).

Geometric orientation convention for quadrilateral is to number anti-clockwise (same
remark as for the triangle)
• edge [1]: (1) → (2) (nodes 5, 6, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) →
(4) • edge [4]: (4) → (1)

One can show the edges or faces using elt name edge or elt name face (e.g. q4p

edge).

tetra4,tetra10

3D tetrahedron geometries with linear and quadratic shape functions. Vertex coordi-
nates of the reference element can be found using r1=integrules(’tetra4’);r1.xi

(or command ’tetra10’).
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Figure 8.6: tetra4 reference element.
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Figure 8.7: tetra10 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which
list you can find using integrules(’Gausst3d’).

Geometric orientation convention for tetrahedron is to have trihedral ( ~12, ~13, ~14)
direct (~ij designates the vector from point i to point j).
• edge [1]: (1) → (2) (nodes 5, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (4) • edge [6]: (3) → (4) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise:
• face [1]: (1) (3) (2) (nodes p+1, ...) • face [2]: (1) (4) (3) (...)
• face [3]: (1) (2) (4) • face [4]: (2) (3) (4)

One can show the edges or faces using elt name edge or elt name face (e.g.
tetra10 face).

penta6, penta15

3D prism geometries with linear and quadratic shape functions. Vertex coordinates
of the reference element can be found using r1=integrules(’penta6’);r1.xi (or
command ’penta15’).
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Figure 8.8: penta6 reference element.

1̂

2̂

3̂

4̂ 6̂

5̂

1̂5

1̂0
1̂1

1̂2

8̂7̂

9̂

1̂3 1̂4

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

Figure 8.9: penta15 reference element.

For integration rule selection, these elements use the 3D pentahedron rules which
list you can find using integrules(’Gaussp3d’).

Geometric orientation convention for pentahedron is to have trihedral ( ~12, ~13, ~14)
direct
• edge [1]: (1) → (2) (nodes 7, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (5) • edge [6]: (3) → (6)
• edge [7]: (4) → (5) • edge [8]: (5) → (6) • edge [9]: (6) → (4) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (3) (2) (nodes p+1, ...) • face [2] : (1) (4) (6) (3) • face [3] : (1) (2)
(5) (4)
• face [4] : (4) (5) (6) • face [5] : (2) (3) (5) (6)

One can show the edges or faces using elt name edge or elt name face (e.g.
penta15 face).
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hexa8, hexa20, hexa21, hexa27

3D brick geometries, using linear hexa8, and quadratic shape functions. Vertex coor-
dinates of the reference element can be found using r1=integrules(’hexa8’);r1.xi
(or command ’hexa20’, ’hexa27’).
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Figure 8.10: hexa8 reference topology.
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Figure 8.11: hexa20 reference topology.

For integration rule selection, these elements use the 3D hexahedron rules which list
you can find using integrules(’Gaussh3d’).

Geometric orientation convention for hexahedron is to have trihedral ( ~12, ~14, ~15)
direct
• edge [1]: (1) → (2) (nodes 9, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3) → (4)
• edge [4]: (4) → (1) • edge [5]: (1) → (5) • edge [6]: (2) → (6)
• edge [7]: (3) → (7) • edge [8]: (4) → (8) • edge [9]: (5) → (6)
• edge [10]: (6) → (7) • edge [11]: (7) → (8) • edge [12]: (8) → (5) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (4) (3) (2) (nodes p+1, ...) • face [2] : (1) (5) (8) (4)
• face [3] : (1) (2) (6) (5) • face [4] : (5) (6) (7) (8)
• face [5] : (2) (3) (7) (6) • face [6] : (3) (4) (8) (7)
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One can show the edges or faces using elt name edge or elt name face (e.g. hexa8
face).

BuildNDN

The commands are extremely low level utilities to fill the .NDN field for a given set
of nodes. The calling format is of mk(’BuildNDN’,type,rule,nodeE) where type

is an int32 that specifies the rule to be used : 2 for 2D, 3 for 3D, 31 for 3D with xyz
sorting of NDN columns, 23 for surface in a 3D model, 13 for a 3D line. A negative
value can be used to switch to the .m file implementation in integrules.

The 23 rule generates a transformation with the first axis along N, r, the second
axis orthogonal in the plane tangent to N, r, N, s and the third axis locally normal
to the element surface. If a local material orientation is provided in columns 5 to
7 of nodeE then the material x axis is defined by projection on the surface. One
recalls that columns of nodeE are field based on the InfoAtNode field and the first
three labels should be ’v1x’,’v1y’,’v1z’.

With the 32 rule if a local material orientation is provided in columns 5 to 7 for x
and 8 to 10 for y the spatial derivatives of the shape functions are given in this local
frame.

The rule structure is described earlier in this section and node has three columns
that give the positions in the nodes of the current element. The rule.NDN and
rule.jdet fields are modified. They must have the correct size before the call is
made or severe crashes can be experienced.

If a rule.bas field is defined (9 × Nw), each column is filled to contain the local
basis at the integration point for 23 and 13 types. If a rule.J field with (4×Nw),
each column is filled to contain the jacobian at the integration point for 23.

model=femesh(’testhexa8’); nodeE=model.Node(:,5:7);

opt=integrules(’hexa8’,-1);

nodeE(:,5:10)=0; nodeE(:,7)=1; nodeE(:,8)=1; % xe=z and ye=y

integrules(’buildndn’,32,opt,nodeE)

model=femesh(’testquad4’); nodeE=model.Node(:,5:7);

opt=integrules(’q4p’,-1);opt.bas=zeros(9,opt.Nw);opt.J=zeros(4,opt.Nw);

nodeE(:,5:10)=0; nodeE(:,5:6)=1; % xe= along [1,1,0]

integrules(’buildndn’,23,opt,nodeE)

See also elem0
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mass1,mass2

Purpose Concentrated mass elements.

Description

mass1 places a diagonal concentrated mass and inertia at one node.

In a model description matrix, element property rows for mass1 elements follow
the format

[NodeID mxx myy mzz ixx iyy izz EltID]

where the concentrated nodal mass associated to the DOFs .01 to .06 of the indi-
cated node is given by

diag([mxx myy mzz ixx iyy izz])

Note feutil GetDof eliminates DOFs where the inertia is zero. You should thus
use a small but non zero mass to force the use of all six DOFs.

For mass2 elements, the element property rows follow the format

[n1 M I11 I21 I22 I31 I32 I33 EltID CID X1 X2 X3 MatId ProId]

which, for no offset, corresponds to matrices given by

M symmetric
M

M
I11

−I21 I22

−I31 −I32 I33


=



∫
ρdV symmetric

M
M ∫

ρ(x2 + y2)dV
−I21 I22

−I31 −I32 I33


Note that local coordinates CID are not currently supported by mass2 elements.

See also femesh, feplot
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m elastic

Purpose Material function for elastic solids and fluids.

Syntax mat= m_elastic(’default’)

mat= m_elastic(’database name’)

mat= m_elastic(’database -therm name’)

pl = m_elastic(’dbval MatId name’);

pl = m_elastic(’dbval -unit TM MatId name’);

pl = m_elastic(’dbval -punit TM MatId name’);

pl = m_elastic(’dbval -therm MatId name’);

Description This help starts by describing the main commands of m elastic : Database and
Dbval. Materials formats supported by m elastic are then described.

Database,Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials.
See section 7.3 for material property interface.

m elastic(’database Steel’) returns a the data structure describing steel.
m elastic(’dbval 100 Steel’) only returns the property row.

% List of materials in data base

m_elastic info

% examples of row building and conversion

pl=m_elastic([100 fe_mat(’m_elastic’,’SI’,1) 210e9 .3 7800], ...

’dbval 101 aluminum’, ...

’dbval 200 lamina .27 3e9 .4 1200 0 790e9 .3 1780 0’);

pl=fe_mat(’convert SITM’,pl);

pl=m_elastic(pl,’dbval -unit TM 102 steel’)

Command option -unit asks the output to be converted in the desired unit system.
Command option -punit tells the function that the provided data is in a desired
unit system (and generates the corresponding type). Command option -therm asks
to keep thermal data (linear expansion coefficients and reference temperature) if
existing.

You can generate orthotropic shell properties using the Dbval 100 lamina VolFrac

Ef nu f rho f G f E m nu m Rho m G m command which gives fiber and matrix
characteristics as illustrated above (the volume fraction is that of fiber).
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The default material is steel.

To orient fully anisotropic materials, you can use the following command

% Behavior of a material grain assumed orthotropic

C11=168.4e9; C12=121.4e9; C44=75.4e9; % GPa

C=[C11 C12 C12 0 0 0;C12 C11 C12 0 0 0;C12 C12 C11 0 0 0;

0 0 0 C44 0 0; 0 0 0 0 C44 0; 0 0 0 0 0 C44];

pl=[m_elastic(’formulaPlAniso 1’,C,basis(’bunge’,[5.175 1.3071 4.2012]));

m_elastic(’formulaPlAniso 2’,C,basis(’bunge’,[2.9208 1.7377 1.3921]))];

Subtypes m elastic supports the following material subtypes

1 : standard isotropic

Standard isotropic materials, see section 6.1.1 and section 6.1.2 , are described by
a row of the form

[MatID typ E nu rho G Eta Alpha T0]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,1) command,
E (Young’s modulus), ν (Poisson’s ratio), ρ (density), G (shear modulus, set to
G = E/2(1 + ν) if equal to zero). η loss factor for hysteretic damping modeling. α
thermal expansion coefficient. T0 reference temperature.

2 : acoustic fluid

Acoustic fluid , see section 6.1.3 ,are described by a row of the form

[MatId typ rho C eta]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,2) command,
ρ (density), C (velocity) and η (loss factor). The bulk modulus is then given by
K = ρC2.

3 : 3-D anisotropic solid

3-D Anisotropic solid, see section 6.1.1 , are described by a row of the form

[MatId typ Gij rho eta A1 A2 A3 A4 A5 A6 T0]
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m elastic

with typ an identifier generated with the fe mat(’m elastic’,’SI’,3) command,
rho (density), eta (loss factor) and Gij a row containing

[G11 G12 G22 G13 G23 G33 G14 G24 G34 G44 ...

G15 G25 G35 G45 G55 G16 G26 G36 G46 G56 G66]

Note that shear is ordered gyz, gzx, gxy which may not be the convention of other
software.

4 : 2-D anisotropic solid

2-D Anisotropic solid, see section 6.1.2 , are described by a row of the form

[MatId typ E11 E12 E22 E13 E23 E33 rho eta a1 a2 a3 T0]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,4) command,
rho (density), eta (loss factor) and Eij elastic constants and ai anisotropic thermal
expansion coefficients.

5 : shell orthotropic material

shell orthotropic material, see section 6.1.4 corresponding to NASTRAN MAT8,
are described by a row of the form

[MatId typ E1 E2 nu12 G12 G1z G2z Rho A1 A2 T0 Xt Xc Yt Yc S Eta ...

F12 STRN]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,5) command,
rho (density), ... See m elastic Dbvallamina for building.

6 : Orthotropic material

3-D orthotropic material, see section 6.1.1 , are described by a set of engineering
constants, in a row of the form

[MatId typ E1 E2 E3 Nu23 Nu31 Nu12 G23 G31 G12 rho a1 a2 a3 T0 eta]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,6) command,
Ei (Young modulus in each direction), νij (Poisson ratio), Gij (shear modulus), rho
(density), ai (anisotropic thermal expansion coefficient), T0 (reference temperature),
and eta (loss factor). Care must be taken when using these conventions, in particular,
it must be noticed that
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νji =
Ej
Ei
νij (8.9)

See also Section 4.5.1, section 7.3 , fe mat, p shell
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m heat

Purpose Material function for heat problem elements.

Syntax mat= m_heat(’default’)

mat= m_heat(’database name’)

pl = m_heat(’dbval MatId name’);

pl = m_heat(’dbval -unit TM MatId name’);

pl = m_heat(’dbval -punit TM MatId name’);

Description This help starts by describing the main commands of m heat : Database and Dbval.
Materials formats supported by m heat are then described.

Database,Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials.
See section 7.3 for material property interface.

m heat(’DataBase Steel’) returns a the data structure describing steel.
m heat(’DBVal 100 Steel’) only returns the property row.

% List of materials in data base

m_heat info

% examples of row building and conversion

pl=m_heat(’DBVal 5 steel’);

pl=m_heat(pl,...

’dbval 101 aluminum’, ...

’dbval 200 steel’);

pl=fe_mat(’convert SITM’,pl);

pl=m_heat(pl,’dbval -unit TM 102 steel’)

Subtypes m heat supports the following material subtype

1 : Heat equation material

[MatId fe_mat(’m_heat’,’SI’,2) k rho C Hf]

k conductivity
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rho mass density

C heat capacity

Hf heat exchange coefficient

See also Section 4.5.1, section 7.3 , fe mat, p heat
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m hyper

Purpose Material function for hyperelastic solids.

Syntax mat= m_hyper(’default’)

mat= m_hyper(’database name’)

pl = m_hyper(’dbval MatId name’);

pl = m_hyper(’dbval -unit TM MatId name’);

pl = m_hyper(’dbval -punit TM MatId name’);

Description Function based on m elastic function adapted for hyperelastic material. Only
subtype 1 is currently used:

1 : Nominal hyperelastic material

Nominal hyperelastic materials are described by a row of the form

[MatID typ rho Wtype C_1 C_2 K]

with typ an identifier generated with the fe mat(’m hyper’,’SI’,1) command,
rho (density), Wtype (value for Energy choice), C1, C2, K (energy coefficients).
Possible values for Wtype are:

0 : W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)2

1 : W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)− (C1 + 2C2 +K) ln(J3)

Other energy functions can be added by editing the hyper.c Enpassiv function.

In RivlinCube test, m hyper is called in this form:

model.pl=m_hyper(’dbval 100 Ref’); % this is where the material is defined

the hyperelastic material called “Ref” is described in the database of m hyper.m file:

out.pl=[MatId fe_mat(’type’,’m_hyper’,’SI’,1) 1e-06 0 .3 .2 .3];

out.name=’Ref’;

out.type=’m_hyper’;

out.unit=’SI’;

Here is an example to set your material property for a given structure model:

model.pl = [MatID fe_mat(’m_hyper’,’SI’,1) typ rho Wtype C_1 C_2 K];

model.Elt(2:end,length(feval(ElemF,’node’)+1)) = MatID;
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m piezo

Purpose Material function for piezoelectric solids

Syntax mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 6.1.5 for tutorial calls. Accepted commands are

[Database,Dbval] [-unit TY] [,MatiD]] Name

m piezo contains a number of defaults obtained with the database and dbval com-
mands which respectively return a structure or an element property row. You can
select a particular entry of the database with using a name matching the database
entries.

Piezoelectric materials are associated with two material identifiers, the main defines
the piezoelectric properties and contains a reference ElasMatId to an elastic material
used for the elastic properties of the material (see m elastic for input formats).

m_piezo(’info’) % List of materials in data base

% database piezo and elastic properties

pl=m_piezo(’dbval 3 -elas 12 Sample_ULB’)

Theoretical details on piezoelectric materials are given in chapter 6.1.5. The m piezo

Const and BuildConstit commands support integration constant building for piezo
electric volumes integrated in the standard volume elements. Element properties are
given by p solid entries, while materials formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call
uses an option structure with fields

• .name of the form ProIdval+patchName. For example ProId1+SmartM.MFC-P1.2814.

• MatId value for the initial MatId.

THIS NEEDS FURTHER DOCUMENTATION.

The piezoelectric constants can be declared using the following sub-types

339



m piezo

1 : Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 eps1T eps2T eps3T EDType]

These simplified piezoelectric properties (??) can be used for PVDF, but also for
PZT if shear mode actuation/sensing is not considered (d24 = d15 = 0). For
EDType==0 on assumes d is given. For EDType==1, e is given. Note that the values
of εT (permittivity at zero stress) should be given (and not εS).

2 : General 3D piezo

[ProId Type ElasMatId d 1:18 epsT 1:9]

d 1:18 are the 18 constants of the [d] matrix (see section 6.1.5 ), and epsT 1:9 are

the 9 constants of the
[
εT
]

matrix. One reminds that strains are stored in order
xx, yy, zz, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e 1:18 epsT 1:9]

e 1:18 are the 18 constants of the [d] matrix, and epsT 1:9 are the 9 constants of

the
[
εT
]

matrix in the constitutive law (see section 6.1.5 ).

See also p piezo.
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p beam

Purpose Element property function for beams

Syntax il = p_beam(’default’)

il = p_beam(’database’,’name’)

il = p_beam(’dbval ProId’,’name’);

il = p_beam(’dbval -unit TM ProId name’);

il = p_beam(’dbval -punit TM ProId name’);

il2= p_beam(’ConvertTo1’,il)

Description This help starts by describing the main commands : p beam Database and Dbval.
Supported p beam subtypes and their formats are then described.

Database,Dbval] ...

p beam contains a number of defaults obtained with p beam(’database’) or
p beam(’dbval MatId’). You can select a particular entry of the database with
using a name matching the database entries. You can also automatically compute
the properties of standard beams

circle r beam with full circular section of radius r.
rectangle b h beam with full rectangular section of width b and

height h. See beam1 for orientation.
Type r1 r2 ... other predefined sections of subtype 3 are listed using

p beam(’info’).

For example, you will obtain the section property row with ProId 100 associated
with a circular cross section of 0.05m or a rectangular 0.05 × 0.01m cross section
using

% ProId 100, rectangle 0.05 m by 0.01 m

pro = p_beam(’database 100 rectangle .05 .01’)

% ProId 101 circle radius .05

il = p_beam(pro.il,’dbval 101 circle .05’)

p_beam(’info’)

% ProId 103 tube external radius .05 internal .04

il = p_beam(il,’dbval -unit SI 103 tube .05 .04’)

% Transform to subtype 1
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p beam

il2=p_beam(’ConvertTo1’,il)

il(end+1,1:6)=[104 fe_mat(’p_beam’,’SI’,1) 0 0 0 1e-5];

il = fe_mat(’convert SITM’,il);

% Generate a property in TM, providing data in SI

il = p_beam(il,’dbval -unit TM 105 rectangle .05 .01’)

% Generate a property in TM providing data in TM

il = p_beam(il,’dbval -punit TM 105 rectangle 50 10’)

format description and subtypes

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4 ). Element property
functions such as p beam support graphical editing of properties and a database of
standard properties.

For a tutorial on material/element property handling see section 4.5.1 . For a pro-
grammers reference on formats used to describe element properties see section 7.4
.

1 : standard

[ProID type J I1 I2 A k1 k2 lump NSM]

ProID element property identification number.
type identifier obtained with fe mat(’p beam’,’SI’,1).
J torsional stiffness parameter (often different from polar moment

of inertia I1+I2).
I1 moment of inertia for bending plane 1 defined by a third node

nr or the vector vx vy vz (defined in the beam1 element). For
a case with a beam along x and plane 1 the xy plane I1 is equal
to Iz =

∫
S y

2ds.
I2 moment of inertia for bending plane 2 (containing the beam

and orthogonal to plane 1.
A section area.
k1 (optional) shear factor for motion in plane 1 (when not 0, a

Timoshenko beam element is used). The effective area of shear
is given by k1A.

k2 (optional) shear factor for direction 2.
lump (optional) request for lumped mass model if set to 1.
NSM (optional) non structural mass (density per unit length).
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bar1 elements only use the section area. All other parameters are ignored.

beam1 elements use all parameters. Without correction factors (k1 k2 not given
or set to 0), the beam1 element is the standard Bernoulli-Euler 12 DOF element
based on linear interpolations for traction and torsion and cubic interpolations for
flexion (see Ref. [37] for example). When non zero shear factors are given, the
bending properties are based on a Timoshenko beam element with selective reduced
integration of the shear stiffness [45]. No correction for rotational inertia of sections
is used.

3 : Cross section database

This subtype can be used to refer to standard cross sections defined in database. It
is particularly used by nasread when importing NASTRAN PBEAML properties.

[ProID type 0 Section Dim(i) ... ]

ProID element property identification number.
type identifier obtained with fe mat(’p beam’,’SI’,3).
Section identifier of the cross section obtained with

comstr(’SectionName’,-32’ where SectionName is a
string defining the section (see below).

Dim1 ... dimensions of the cross section.

Cross section, if existing, is compatible with NASTRAN PBEAML definition. Equiv-
alent moment of inertia and tensional stiffness are computed at the centroid of the
section. Currently available sections are listed with p beam(’info’). In particular
one has ROD (1 dim), TUBE (2 dims), T (4 dims), T2 (4 dims), I (6 dims), BAR (2
dims), CHAN1 (4 dims), CHAN2 (4 dims).

For NSM and Lump support ConverTo1 is used during definition to obtain the equiv-
alent subtype 1 entry.

See also Section 4.5.1, section 7.4 , fe mat
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p heat

Purpose Formulation and material support for the heat equation.

Syntax il = p_heat(’default’)

Description This help starts by describing the main commands : p heat Database and Dbval.
Supported p heat subtypes and their formats are then described. For theory see
section 6.1.13 .

Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4 ). Element property
functions such as p solid support graphical editing of properties and a database of
standard properties.

p heat database

il=p_heat(’database’);

Accepted commands for the database are

• d3 Integ SubType : Integ integration rule for 3D volumes (default -3).

• d2 Integ SubType : Integ integration rule for 2D volumes (default -3).

For fixed values, use p heat(’info’).

Example of database property construction

il=p_heat([100 fe_mat(’p_heat’,’SI’,1) 0 -3 3],...

’dbval 101 d3 -3 2’);

Heat equation element properties

Element properties are described by the row of an element property matrix or a
data structure with an .il field containing this row. Element property functions
such as p beam support graphical editing of properties and a database of standard
properties.
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1 : Volume element for heat diffusion (dimension DIM)

[ProId fe_mat(’p_heat’,’SI’,1) CoordM Integ DIM]

ProID element property identification number
type identifier obtained with fe mat(’p beam’,’SI’,1)

Integ is rule number in integrules
DIM is problem dimension 2 or 3 D

2 : Surface element for heat exchange (dimension DIM-1)

[ProId fe_mat(’p_heat’,’SI’,2) CoordM Integ DIM]

ProID element property identification number
type identifier obtained with fe mat(’p beam’,’SI’,2)

Integ is rule number in integrules

DIM is problem dimension 2 or 3 D

SetFace

This command can be used to define a surface exchange and optionally associated
load. Surface exchange elements add a stiffness term to the stiffness matrix related
to the exchange coefficient Hf defined in corresponding material property. One then
should add a load corresponding to the exchange with the source temperature at T0

through a convection coefficient Hf which is Hf.T 0. If not defined, the exchange is
done with source at temperature equal to 0.

model=p heat(’SetFace’,model,SelElt,pl,il);

• SelElt is a findelt command string to find faces that exchange heat (use
’SelFace’ to select face of a given preselected element).

• pl is the identifier of existing material property (MatId), or a vector defining
an m heat property.

• il is the identifier of existing element property (ProId), or a vector defining
an p heat property.

Command option -load T can be used to defined associated load, for exchange with
fluid at temperature T. Note that if you modify Hf in surface exchange material
property you have to update the load.
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p heat

Following example defines a simple cube that exchanges with thermal source at 55
deg on the bottom face.

model=femesh(’TestHexa8’); % Build simple cube model

model.pl=m_heat(’dbval 100 steel’); % define steel heat diffusion parameter

model.il=p_heat(’dbval 111 d3 -3 1’); % volume heat diffusion (1)

model=p_heat(’SetFace-load55’,... % exchange at 55 deg

model,...

’SelFace & InNode{z==0}’,... % on the bottom face

100,... % keep same matid for exchange coef

p_heat(’dbval 1111 d3 -3 2’)); % define 3d, integ-3, for surface exchange (2)

cf=feplot(model); fecom colordatapro

def=fe_simul(’Static’,model); % compute static thermal state

mean(def.def)

2D validation

Consider a bi-dimensional annular thick domain Ω with radii re = 1 and ri = 0.5.
The data are specified on the internal circle Γi and on the external circle Γe. The
solid is made of homogeneous isotropic material, and its conductivity tensor thus
reduces to a constant k. The steady state temperature distribution is then given by

−k∆θ(x, y) = f(x, y) in Ω. (8.10)

The solid is subject to the following boundary conditions

• Γi (r = ri) : Neumann condition

∂θ

∂n
(x, y) = g(x, y) (8.11)

• Γe (r = re) : Dirichlet condition

θ(x, y) = θext(x, y) (8.12)

In above expressions, f is an internal heat source, θext an external temperature at
r = re, and g a function. All the variables depend on the variable x and y.

The OpenFEM model for this example can be found in ofdemos(’AnnularHeat’).
Numerical application : assuming k = 1, f = 0, Hf = 1e−10, θext(x, y) =
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exp(x) cos(y) and g(x, y) = −exp(x)

ri
(cos(y)x− sin(y)x), the solution of the problem

is given by

θ(x, y) = exp(x) cos(y)

See also section 6.1.13 , section 4.5.1 , fe mat
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p shell

Purpose Element property function for shells

Syntax il = p_shell(’default’);

il = p_shell(’database ProId name’);

il = p_shell(’dbval ProId name’);

il = p_shell(’dbval -unit TM ProId name’);

il = p_shell(’dbval -punit TM ProId name’);

il = p_shell(’SetDrill 0’,il);

Description This help starts by describing the main commands : p shell Database and Dbval.
Supported p shell subtypes and their formats are then described.

Database,Dbval] ...

p shell contains a number of defaults obtained with the database and dbval com-
mands which respectively return a structure or an element property row. You can
select a particular entry of the database with using a name matching the database
entries.

You can also automatically compute the properties of standard shells with

kirchhoff e Kirchhoff shell of thickness e.
mindlin e Mindlin shell of thickness e.
laminate MatIdi Ti

Thetai

Specification of a laminate property by giving the dif-
ferent ply MatId, thickness and angle. By default the
z values are counted from -thick/2, you can specify an-
other value with a z0.

You can append a string option of the form -f i to select the appropriate shell
formulation. For example, you will obtain the element property row with ProId 100
associated with a .1 thick Kirchhoff shell (with formulation 5) or the corresponding
Mindlin plate use

il = p_shell(’database 100 MindLin .1’)

il = p_shell(’dbval 100 kirchhoff .1 -f5’)

il = p_shell(’dbval 100 laminate z0=-2e-3 110 3e-3 30 110 3e-3 -30’)

il = fe_mat(’convert SITM’,il);

il = p_shell(il,’dbval -unit TM 2 MindLin .1’) % set in TM, provide data in SI

il = p_shell(il,’dbval -punit TM 2 MindLin 100’) % set in TM, provide data in TM
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For laminates, you specify for each ply the MatId, thickness and angle.

Shell format description and subtypes

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4 ). Element property
functions such as p shell support graphical editing of properties and a database of
standard properties.

For a tutorial on material/element property handling see section 4.5.1 . For a refer-
ence on formats used to describe element properties see section 7.4 .

p shell currently only supports two subtypes

1 : standard isotropic

[ProID type f d O h k MID2 RatI12_T3 MID3 NSM Z1 Z2 MID4]

type identifier obtained with fe mat(’p shell’,’SI’,1).
f 0 default, for other formulations the specific help for each element (quad4,

...).
d -1 no drilling stiffness. The element DOFs are the standard translations and

rotations at all nodes (DOFs .01 to .06). The drill DOF (rotation .06 for
a plate in the xy plane) has no stiffness and is thus eliminated by fe mk if
it corresponds to a global DOF direction. The default is d=1 (d is set to 1
for a declared value of zero).

d arbitrary drilling stiffness with value proportional to d is added. This stiff-
ness is often needed in shell problems but may lead to numerical conditioning
problems if the stiffness value is very different from other physical stiffness
values. Start with a value of 1. Use il=p shell(’SetDrill d’,il) to
set to d the drilling stiffness of all p shell subtype 1 rows of the property
matrix il.

h plate thickness.
k k shear correction factor (default 5/6, default used if k is zero). This correction

is not used for formulations based on triangles since tria3 is a thin plate
element.

RatI12 T3Ratio of bending moment of inertia to nominal T3/I12 (default 1).
NSM Non structural mass per unit area.
MID2 unused.
MID3 unused.
z1,z2 (unused) offset for fiber computations.
MID4 unused.
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p shell

Shell strain is defined by the membrane, curvature and transverse shear (display
with p shell(’ConstShell’)).

εxx
εyy
2εxy
κxx
κyy
2κxy
γxz
γyz


=



N, x 0 0 0 0
0 N, y 0 0 0

N, y N, x 0 0 0
0 0 0 0 N, x
0 0 0 −N, y 0
0 0 0 −N, x N, y
0 0 N, x 0 −N
0 0 N, y N 0





u
v
w
ru
rv


(8.13)

2 : composite

[ProID type Z0 NSM SB FT TREF GE LAM MatId1 T1 Theta1 SOUT1 ...]

ProID Section property identification number.
type Identifier obtained with fe mat(’p shell’,’SI’,2).
Z0 Distance from reference plate to bottom surface.
NSM Non structural mass per unit area.
SB Allowable shear stress of the bonding material.
FT Failure theory.
TREF Reference temperature.
Eta Hysteretic loss factor.
LAM Laminate type.
MatIdi

MatId for ply i.
Ti Thickness of ply i.
Thetai Orientation of ply i.
SOUTi Stress output request for ply i.

Note that this subtype is based on the format used by NASTRAN for PCOMP and the
formulation used for each topology is discussed in each element (see quad4, tria3).
You can use the DbvalLaminate commands to generate standard entries.


N
M
Q

 =

 A B 0
B D 0
0 0 F




ε
κ
γ

 (8.14)
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setTheta

When dealing with laminated plates, the classical approach uses a material orienta-
tion constant per element. OpenFEM also supports more advanced strategies with
orientation defined at nodes but this is still poorly documented.

The material orientation is the reference for plies. Any angle defined in a laminate
command is an additional rotation. In the example below, the element orientation is
rotated 30 degrees, and the ply another 30. The fibers are thus oriented 60 degrees
in the xy plane. Stresses are however given in the material orientation thus with a
30 degree rotation. Per ply output is not currently implemented.

The element-wise material angle is stored for each element. In column 7 for tria3, 8
for quad4, ... The setTheta command is a utility to ease the setting of these angles.
By default, the orientation is done at element center. To use the mean orientation
at nodes use command option -strategy 2.

model=ofdemos(’composite’);

model.il = p_shell(’dbval 110 laminate 100 1 30’); % single ply

% Define material angle based on direction at element

MAP=feutil(’getnormalElt MAP -dir1’,model);

bas=basis(’rotate’,[],’rz=30;’,1);

MAP.normal=MAP.normal*reshape(bas(7:15),3,3)’;

model=p_shell(’setTheta’,model,MAP);

% Obtain a MAP of material orientations

MAP=feutil(’getnormalElt MAP -dir1’,model);

feplot(model);fecom(’showmap’,MAP)

% Set elementwise material angles using directions given at nodes.

% Here a global direction

MAP=struct(’normal’,ones(size(model.Node,1),1)*bas(7:9), ...

’ID’,model.Node(:,1),’opt’,2);

model=p_shell(’setTheta’,model,MAP);

% Using an analytic expression to define components of

% material orientation vector at nodes

data=struct(’sel’,’groupall’,’dir’,{{’x-0’,’y+.01’,0}},’DOF’,[.01;.02;.03]);
model=p_shell(’setTheta’,model,data);

MAP=feutil(’getnormalElt MAP -dir1’,model);

feplot(model);fecom(’showmap’,MAP)
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p shell

model=p shell(’setTheta’,model,0) is used to reset the material orientation to
zero.

Technically, shells use the of mk(’BuildNDN’) rule 23 which generates a basis at
each integration point. The first vector v1x,v1y,v1z is built in the direction of
r lines and v2x,v2y,v2z is tangent to the surface and orthogonal to v1. When a
InfoAtNode map provides v1x,v1y,v1z, this vector is projected (NEED TO VER-
IFY) onto the surface and v2 taken to be orthogonal.

See also Section 4.5.1, section 7.4 , fe mat
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p solid

Purpose Element property function for volume elements.

Syntax il=p_solid(’database ProId Value’)

il=p_solid(’dbval ProId Value’)

il=p_solid(’dbval -unit TM ProId name’);

il=p_solid(’dbval -punit TM ProId name’);

model=p_solid(’default’,model)

Description This help starts by describing the main commands : p solid Database and Dbval.
Supported p solid subtypes and their formats are then described.

Database,Dbval,Default] ...

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4 ). Element property
functions such as p solid support graphical editing of properties and a database of
standard properties.

Accepted commands for the database are

• d3 Integ : Integ integration rule for quadratic 3D volumes. For information
on rules available see integrules Gauss. Examples are d3 2 2x2x2 integra-
tion rule for linear volumes (hexa8 ... ); d3 -3 default integration for all 3D
elements, ...

• d2 Integ : Integ integration rule for quadratic 2D volumes. For example d2

2 2x2x2 integration rule for linear volumes (q4p ... ). You can also use d2 1

0 2 for plane stress, and d2 2 0 2 for axisymmetry.

• fsc Integ : integration rule selection for fluid/structure coupling.

For fixed values, use p solid(’info’).

For a tutorial on material/element property handling see section 4.5.1 . For a refer-
ence on formats used to describe element properties see section 7.4 .

Examples of database property construction
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p solid

il=p_solid([100 fe_mat(’p_solid’,’SI’,1) 0 3 0 2], ...

’dbval 101 Full 2x2x2’,’dbval 102 d3 -3’);

il=fe_mat(’convert SITM’,il);

il=p_solid(il,’dbval -unit TM 2 Reduced shear’)

% Try a smart guess on default

model=femesh(’TestHexa8’);model.il=[];

model=p_solid(’default’,model)

1 : 3D volume element

[ProID fe_mat(’p_solid’,’SI’,1) Coordm In Stress Isop ]

ProID Property identification number.
Coordm Identification number of the material coordinates system. Warn-

ing not implemented for all material formulations.
In Integration rule selection (see integrules Gauss). 0 selects the

legacy 3D mechanics element (of mk pre.c), -3 the default rule.
Stress Location selection for stress output (NOT USED).
Isop Integration scheme (will be used to select shear protection mecha-

nisms).

The underlying physics for this subtype are selected through the material property.
Examples are 3D mechanics with m elastic, piezo electric volumes (see m piezo),
heat equation (p heat).

2 : 2D volume element

[ProId fe_mat(’p_solid’,’SI’,2) Form N In]

ProID Property identification number.
Type Identifier obtained with fe mat(’p solid,’SI’,2).
Form Formulation (0 plane strain, 1 plane stress, 2 axisymmetric), see

details in m elastic.
N Fourier harmonic for axisymmetric elements that support it.
In Integration rule selection (see integrules Gauss). 0 selects legacy

2D element, -3 the default rule.

The underlying physics for this subtype are selected through the material property.
Examples are 2D mechanics with m elastic.

3 : ND-1 coupling element

[ProId fe_mat(’p_solid’,’SI’,3) Integ Form Ndof1 ...]
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ProID Property identification number.
Type Identifier obtained with fe mat(’p solid,’SI’,3).
Integ Integration rule selection (see integrules Gauss). 0 or -3 selects

the default for the element.
Form 1 volume force, 2 volume force proportional to density, 3 pressure, 4:

fluid/structure coupling, see fsc, 5 2D volume force, 6 2D pressure.

See also Section 4.5.1, section 7.4 , fe mat
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p spring

Purpose Element property function for spring and rigid elements

Syntax il=p_spring(’default’)

il=p_spring(’database MatId Value’)

il=p_spring(’dbval MatId Value’)

il=p_spring(’dbval -unit TM ProId name’);

il=p_spring(’dbval -punit TM ProId name’);

Description This help starts by describing the main commands : p spring Database and Dbval.
Supported p spring subtypes and their formats are then described.

Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4 ).

Examples of database property construction

il=p_spring(’database 100 1e12 1e4 0’)

il=p_spring(’dbval 100 1e12’);

il=fe_mat(’convert SITM’,il);

il=p_spring(il,’dbval 2 -unit TM 1e12’) % Generate in TM, provide data in SI

il=p_spring(il,’dbval 2 -punit TM 1e9’) % Generate in TM, provide data in TM

p spring currently supports 2 subtypes

1 : standard

[ProID type k m c Eta S]

ProID property identification number.
type identifier obtained with fe mat(’p spring’,’SI’,1).
k stiffness value.
m mass value.
c viscous damping value.
eta loss factor.
S Stress coefficient.

356



2 : bush

Note that type 2 is only functional with cbush elements.

[ProId Type k1:k6 c1:c6 Eta SA ST EA ET m v]

ProID property identification number.
type identifier obtained with fe mat(’p spring’,’SI’,2).
ki stiffness for each direction.
ci viscous damping for each direction.
SA stress recovery coef for translations.
ST stress recovery coef for rotations.
EA strain recovery coef for translations.
ET strain recovery coef for rotations.
m mass.
v volume.

See also Section 4.5.1, section 7.4 , fe mat, celas, cbush
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p super

Purpose Element property function for superelements.

Syntax il=p_super(’default’)

il=p_super(’database MatId Value’)

il=p_super(’dbval MatId Value’)

il=p_super(’dbval -unit TM ProId name’);

il=p_super(’dbval -punit TM ProId name’);

Description If ProID is not given, fe super will see if SE.Opt(3,:) is defined and use coef-
ficients stored in this row instead. If this is still not given, all coefficients are set
to 1. Element property rows (in a standard property declaration matrix il)
for superelements take the forms described below with ProID the property iden-
tification number and coefficients allowing the creation of a weighted sum of the
superelement matrices SEName.K{i}. Thus, if K{1} and K{3} are two stiffness ma-
trices and no other stiffness matrix is given, the superelement stiffness is given by
coef1*K{1}+coef3*K{3}.

Database,Dbval] ...

There is no database call for p super entries.

1 : simple weighting coefficients

[ProId Type coef1 coef2 coef3 ... ]

ProID Property identification number.
Type Identifier obtained with fe mat(’p super’,’SI’,1).
coef1 Multiplicative coefficient of the first matrix of the superelement

(K{1}). Superelement matrices used for the assembly of the global
model matrices will be {coef1*K{1}, coef2*K{2}, coef3*K{3},
...}. Type of the matrices (stiffness, mass ...) is not changed.
Note that you can define parameters for superelement using
fe case(model,’par’), see fe case.

2 : matrix type redefinition and weighting coefficients

[ProId Type Form type1 coef1 type2 coef2 ...]
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ProID Property identification number.
Type Identifier obtained with fe mat(’p super’,’SI’,2).
type1 Type redefinition of the first matrix of the superelement (K{1})

according to SDT standard type (1 for stiffness, 2 for mass, 3 for
viscous damping... see fe mknl MatType).

coef1 Multiplicative coefficient of the first matrix of the superelement
(K{1}). Superelement matrices used for the assembly of the global
model matrices will be {coef1*K{1}, coef2*K{2}, coef3*K{3},
...}. Type of the matrices (stiffness, mass ...) is changed according
to type1, type2, ... . Note that you can define parameters for
superelement using fe case(model,’par’), see fe case.

See also fesuper, section 6.3
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p piezo

Purpose Property function for piezoelectric shells and utilities associated with piezoelectric
models.

Syntax mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 6.1.5 for tutorial calls. Accepted commands are

ElectrodeMPC

[model,InputDOF(end+1,1)]=p piezo(’ElectrodeMPC Name’,model,’z==5e-5’);

defines the isopotential constraint as a case entry Name associated with FindNode

command z==5e-5. An illustration is given in section 6.1.5 .

Accepted command options are

• -Ground defines a fixed voltage constraint FixDof,V=0 on Name.

• -Input"InName" defines an enforced voltage DofSet,InName entry for voltage
actuation.

• MatIdi is used to define a resultant sensor to measure the charge associated
with the electrode. Note that the electrode surface must not be inside the
volume with MatIdi. If that is the case, you must arbitrarily decompose your
mesh in two parts with different MatId. You can also generate this sensor
a posteriori using ElectrodeSensQ, which attempts to determine the MatIdi

based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSensQ 1682 Q-Base’,model); adds a charge sensor (resultant)
called Q-Base on node 1682. (See (??) for theory).

For shells, the node number is used to identify the p piezo shell property and thus
the associated elements. It is reminded that p piezo entries must be duplicated
when multiple patches are used. For volumes, the p piezo ElectrodeMPC should
be first defined, so that it can be used to obtain the electrode surface information.
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Note that the command calls fe case(’SensMatch’) so that changes done to ma-
terial properties after this call will not be reflected in the observation matrix of this
sensor.

To obtain sensor combinations (add charges of multiple sensors as done with spe-
cific wiring), specify a data structure with observation .cta at multiple .DOF as
illustrated below.

For a voltage sensor, you can simply use a DOF sensor model=fe case(model,’SensDof’,’V-Base’,1682.21).

model=d_piezo(’meshULBPlate cantilever’); % creates the model

% If you don’t remember the electrode node numbers

p_piezo(’ElectrodeDOF’,model)

% Combined charge

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’QS2+3’);

model=p_piezo(’ElectrodeSensQ’,model,r1);

sens=fe_case(model,’sens’);

% Combined voltage

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’VS2+3’);

model=fe_case(model,’SensDof’,r1.name,r1);

sens=fe_case(model,’sens’);sens.lab

ElectrodeDOF

p piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode.
With no name for selection p piezo(’ElectrodeDof’,model) the command returns
the list of electrode DOFs based on MPC defined using the ElectrodeMPC command
or p piezo shell entries. Use ElectrodeDof.* to get all DOFs.

ElectrodeView ...

p piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a
clear text summary of electrode information. To only get the summary, pass a model
model rather than a pointer cf to a feplot figure.

p piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the
visualization of charge density. You should be aware that only resultant charges at
nodes are known. For proper visualization a transformation from charge resultant
to charge density is performed, this is known to have problem in certain cases so
you are welcome to report difficulties.

361



p piezo

Electrode2Case

Electrode2Case uses electrode information defined in the Electrode entry to gen-
erate appropriate case entries : V In for enforced voltage actuators, V Out for voltage
measurements, Q Out for charge sensors. This form is considered obsolete.

ElectrodeInit

ElectrodeInit analyses the model to find electric master DOFs in piezo-electric
shell properties or in MPC associated with volume models.

Tab

Tab commands are used to generate tabulated information about model contents.
The calling format is p piezo(’TabDD’,model). With no input argument, the cur-
rent feplot figure is used. Currently generated tabs are

• TabDD constitutive laws

• TabPro material and element parameters shown as java tables.

View

p piezo(’ViewDD’,model) displays information about piezoelectric constitutive laws
in the current model.

p piezo(’ViewElec ...’,model) is used to visualize the electrical field. An exam-
ple is given in section 6.1.5 . Command options are DefLenval to specify the arrow
length, EltSelval for the selection of elements to be viewed, Reset to force reinit
of selection.

ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical
definition as a layered composite, see p shell 2, and an electrode definition with
element property rows of the form

[ProId Type UnderlyingProId ElNodeId1 LayerId1 UNU1 ElNodeId2...]
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• Type typically fe mat(’p piezo’,’SI’,1)

• UnderlyingProId : ProId of underlying element p shell 2 composite entry.
The MatIdi for piezo layers must be associated with piezo electric material
properties.

• ElNodId1 : NodeId for electrode 1. This needs to be a node declared in the
model but its position is not used since only the value of the electric potential
(DOF 21) is used. You may use a node of the shell but this is not necessary.

• LayerId : layer number as declared in the composite entry.

• UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section 6.1.5 . The
following gives a sample declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110

% MatId 1 : steel, MatId 12 : PZT elastic prop

model.pl=m_elastic(’dbval 1 Steel’);

% Sample ULB piezo material, sdtweb m_piezo(’sample_ULB’)

model.pl=m_piezo(model.pl,’dbval 3 -elas 12 Sample_ULB’);

% ProId 111 : 3 layer composite (mechanical properties)

model.il=p_shell(model.il,[’dbval 111 laminate ’ ...

’3 1e-3 0 ’ ... % MatID 3 (PZT), 1 mm piezo, 0

’1 2e-3 0 ’ ... % MatID 1 (Steel), 2 mm

’3 1e-3 0’]); % MatID 3 (PZT), 1 mm piezo, 0

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683

model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’,model) % Details about the constitutive law

p_piezo(’ElectrodeInfo’,model) % Details about the layers
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quad4, quadb, mitc4

Purpose 4 and 8 node quadrilateral plate/shell elements.

Description

In a model description matrix, element property rows for quad4, quadb and
mitc4 elements follow the standard format

[n1 ... ni MatID ProID EltID Theta Zoff T1 ... Ti]

giving the node identification numbers ni (1 to 4 or 8), material MatID, property
ProID. Other optional information is EltID the element identifier, Theta the angle
between material x axis and element x axis, Zoff the off-set along the element z axis
from the surface of the nodes to the reference plane (use feutil Orient command
to check z-axis orientation), Ti the thickness at nodes (used instead of il entry,
currently the mean of the Ti is used).

If n3 and n4 are equal, the tria3 element is automatically used in place of the
quad4.

Isotropic materials are currently the only supported (this may change soon). Their
declaration follows the format described in m elastic. Element property declara-
tions follow the format described p shell.

quad4

Supported formulations (p shellil(3) for isotropic materials and element default
for composites) are

364



• 0 element/property dependent default. This is always used for composites
(p shell subtype 2).

• 5 Q4CS is a second implementation MITC4 elements that supports classical
laminated plate theory (composites) as well as the definition of piezo-electric
extension actuators. This is the default for SDT. Non flat shell geometries are
supported with interpolation of normal fields.

• 1 4 tria3 thin plate elements with condensation of central node. Old and not
very efficient formulation implemented in quad4.

• 2 Q4WT for membrane and Q4gamma for bending (implemented in quad4).
This is only applicable if the four nodes are in a single plane. When not,
formulation 1 is called.

• 4 MITC4 calls the MITC4 element below. This implementation has not been
tested extensively, so that the element may not be used in all configurations.
It uses 5 DOFs per node with the two rotations being around orthogonal
in-plane directions. This is not consistent for mixed element types assembly.
Non smooth surfaces are not handled properly because this is not implemented
in the feutil GetNormal command which is called for each group of mitc4
elements.

The definition of local coordinate systems for composite fiber orientation still needs
better documentation. Currently, q4cs the only element that supports composites,
uses the local coordinate system resulting from the BuildNDN 23 rule. A tempo-
rary solution for uniform orientation is provided with model=feutilb(’shellmap

-orient dx dy dz’,model).

quadb

Supported formulations (p shellil(3) for isotropic materials and element default
for composites) are
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quad4, quadb, mitc4

• 1 8 tria3 thin plate elements with condensation of central node.

• 2 isoparametric thick plate with reduced integration. For non-flat elements,
formulation 1 is used.

See also m elastic, p shell, fe mk, feplot
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q4p, q8p, t3p, t6p and other 2D volumes

Purpose 2-D volume elements.

Description The q4p q5p, q8p, q9a, t3p, t6p elements are topology references for 2D volumes
and 3D surfaces.

In a model description matrix, element property rows for this elements follow
the standard format

[n1 ... ni MatID ProID EltID Theta]

giving the node identification numbers n1,...ni, material MatID, property ProID.
Other optional information is EltID the element identifier, Theta the angle be-
tween material x axis and element x axis (material orientation maps are generally
preferable).

These elements only define topologies, the nature of the problem to be solved should
be specified using a property entry, see section 6.1 for supported problems and
p solid, p heat, ... for formats.

Integration rules for various topologies are described under integrules. Vertex
coordinates of the reference element can be found using an integrules command
containing the name of the element such as r1=integrules(’q4p’);r1.xi.

Backward compatibility note : if no element property entry is defined, or with
a p solid entry with the integration rule set to zero, the element defaults to the
historical 3D mechanic elements described in section 7.18.2 .

These volume elements are used for various problem families.

See also fe mat, fe mk, feplot
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rigid

Purpose Linearized rigid link constraints.

Description Rigid links are often used to model stiff connections in finite element models. One
generates a set of linear constraints that relate the 6 DOFs of master M and slave
S nodes by 

u
v
w
rx
ry
rz


S

=



1 0 0 0 zMS −yMS

0 1 0 −zMS 0 xMS

0 0 1 yMS −xMS 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





u
v
w
rx
ry
rz


M

Resolution of linear constraints is performed using fe case or model assembly (see
section 4.8.8 ) calls. The theory is discussed in section 7.14 . Note that the master
node of a rigid link has 6 DOF, even if the model may only need less (3 DOF for
volumes).

If coordinate systems are defined in field model.bas (see basis), PID (position co-
ordinate system) and DID (displacement coordinate system) declarations in columns
2 and 3 of model.Node are properly handled.

Although rigid are linear constraints rather than true elements, such connections
can be declared using an element group of rigid connection with a header row of the
form [Inf abs(’rigid’)] followed by as many element rows as connections of the
form

[ n1 n2 DofSel MatId ProId EltId]

where node n2 will be rigidly connected to node n1 which will remain free. DofSel

lets you specify which of the 3 translations and 3 rotations are connected (thus 123
connects only translations while 123456 connects both translations and rotations).
The rigid elements thus defined can then be handled as standard elements.

With this strategy you can use penalized rigid links (celas element) instead of truly
rigid connections. This requires the selection of a stiffness constant but can be easier
to manipulate. To change a group of rigid elements into celas elements and set a
stiffness constant Kv, one can do

model=feutil(’SetGroup rigid name celas’,model);
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model.Elt(feutil(’findelt group i’,model),7) = Kv; % celas in group i

The other rigid definition strategy is to store them as a case entry. rigid entries
are rows of the Case.Stack cell array giving {’rigid’, Name, Elt}.

The syntax is

model=fe_case(model,’rigid’,Name,Elt);

where Name is a string identifying the entry. Elt is a model description matrix
containing rigid elements. Command option Append allows concatenating a new
list of rigid constraints to a preexisting list in Case.Stack.

The call model=fe_case(model,’rigidAppend’,’Name’,Elt1); would thus con-
catenate the previously defined list Name with the new rigid element matrix Elt1.

Using the fe case call to implement rigid allows an alternative rigid constraint
input that can be more comprehensive in some applications. You may use a list of
the form [MasterNode slaveDOF slaveNode 1 slaveNode 2 ... slaveNode i]

instead of the element matrix. Command option Append is also valid.

The following sample calls are thus equivalent, and consists in implementing a rigid
link between nodes 1 and 2, and 1 and 3 (with 1 as master) for all six DOF in a
sample model:

model=fe_case(model,’rigid’,’Rigid edge’,...

[Inf abs(’rigid’);

1 2 123456 0 0 0;

1 3 123456 0 0 0]);

% or

model=fe_case(model,’rigid’,’Rigid edge’,[1 123456 2 3]);

In some cases, interactions with feplot visualization may transform the Elt matrix
into a structure with fields Elt that contains the original data, and Sel that is
internally used by feplot to display the rigid constraint on the mesh.

The following example generates the mesh of a square plate with a rigid edge, the
rigid constraint is here declared as rigid elements

% generate a sample plate model

model=femesh(’testquad4 divide 10 10’);

% generate beam1 elements based on the edge
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rigid

% of the underlying 2D model at x=0

elt=feutil(’selelt seledge & innode{x==0}’,model);
% remove element header from selection,

% we only use the node connectivity

elt=elt(2:end,:);

% assign the rigid element property

elt(2:end,3)=123456; % all 6 DOF are slave

% remove old data from the previous element selection

elt(2:end,4:end)=0;

% add rigid elements to the model

model=feutil(’addelt’,model,’rigid’,elt);

% % alternative possible: define as a case entry

% model=fe_case(model,’rigid’,’Rigid edge’,[Inf abs(’rigid’); elt]);

% Compute and display modes

def=fe_eig(model,[6 20 1e3]);

feplot(model,def);fecom(’;view3;ch8;scd.1’);

The rigid function itself is only used for low level access by generating the subspace
T that verifies rigid constraints

[T,cdof] = rigid(node,elt,mdof)

[T,cdof] = rigid(Up)

See also Section 7.14, celas
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tria3, tria6

Purpose Element functions for a 3 node/18 DOF and 6 nodes/36 DOF shell elements.

Description

In a model description matrix, element property rows for tria3 elements follow
the standard format

[n1 n2 n3 MatID ProID EltID Theta Zoff T1 T2 T3]

giving the node identification numbers ni, material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between mate-
rial x axis and element x axis (currently unused), Zoff the off-set along the element
z axis from the surface of the nodes to the reference plane, Ti the thickness at nodes
(used instead of il entry, currently the mean of the Ti is used).

The element only supports isotropic materials with the format described in m elastic.

The supported property declaration format is described in p shell. Note that tria3
only supports thin plate formulations.

tria3 uses a T3 triangle for membrane properties and a DKT for flexion (see [46]
for example).

tria6 can only be used with p shellformulation 5.

See also quad4, quadb, fe mat, p shell, m elastic, fe mk, feplot
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This section contains detailed descriptions of the functions in Structural Dynamics
Toolbox. It begins with a list of functions grouped by subject area and continues with
the reference entries in alphabetical order. From Matlab short text information is
available through the help command while the HTML version of this manual can
be accessed through doc.

For easier use, most functions have several optional arguments. In a reference entry
under syntax, the function is first listed with all the necessary input arguments
and then with all possible input arguments. Most functions can be used with any
number of arguments between these extremes, the rule being that missing, trailing
arguments are given default values, as defined in the manual.

As always in Matlab, all output arguments of functions do not have to be specified,
and are then not returned to the user.

As indicated in their synopsis some functions allow different types of output argu-
ments. The different output formats are then distinguished by the number of output
arguments, so that all outputs must be asked by the user.

Typesetting conventions and mathematical notations used in this manual are de-
scribed in section 1.3 .

Element functions are detailed in chapter 8.

A list of demonstrations is given in section 1.1 .



User Interface (UI) and Graphical User Interface (GUI) Tools

fecom UI command function for deformations created with feplot

femesh UI command function for mesh building and modification
feplot GUI for 3-D deformation plots
fesuper UI commands for superelement manipulations
idcom UI commands for standard identification procedures
idopt manipulation of identification options
iicom UI commands for measurement data visualization
ii mac GUI for MAC and other vector correlation criteria
iiplot GUI for the visualization of frequency response data

Experimental Model Identification

idcom UI commands linked to identification
idopt manipulation of options for identification related functions
id rc broadband pole/residue model identification
id rcopt alternate optimization algorithm for id rc

id rm minimal and reciprocal MIMO model creation
id nor optimal normal mode model identification
id poly weighted least square orthogonal polynomial identification
id dspi direct system parameter identification algorithm
ii poest narrow-band single pole model identification
ii pof transformations between pole representation formats
psi2nor optimal complex/normal mode model transformation
res2nor simplified complex to normal mode residue transformation

UI and GUI Utilities

comgui general purpose functions for the graphical user interfaces
commode general purpose parser for UI command functions
comstr general purpose string handling routine
iimouse mouse related callbacks (zooming, info, ...)
feutil mesh handling utilities
ii plp overplot vertical lines to indicate pole frequencies
setlines line style and color sequencing utility

Frequency Response Analysis Tools

db amplitude in dB (decibels)
ii cost FRF comparison with quadratic and logLS cost
ii mmif Multivariate Mode Indicator Function
phaseb phase (in degrees) with an effort to unwrap along columns
rms Root Mean Square response
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Test/analysis correlation tools

fe exp experimental shape expansion
fe sens sensor configuration declaration and sensor placement tools
ii comac obsolete (supported by ii mac)
ii mac GUI for MAC and other vector correlation criteria

Finite Element Analysis Tools

fe2ss methods to build ss models from full order FEM
fe c DOF selection and I/O matrix creation
fe case Cases (loads, boundary conditions, etc.) handling
fe ceig computation and normalization of complex modes
fe coor transformation matrices for Component Mode Synthesis
fe eig partial and full eigenvalue computations
fe load assembly of distributed load vectors
fe mat material property handling utilities
fe mk assembly of full and reduced FE models
fe norm orthonormalization and collinearity check
fe reduc utilities for finite element model reduction
fe stress element energies and stress computations
fe super generic element function for superelement support
rigid projection matrix for linearized rigid body constraints

Model Format Conversion

nor2res normal mode model to complex mode residue model
nor2ss assemble state-space model linked to normal mode model
nor2xf compute FRF associated to a normal mode model
qbode fast computation of FRF of a state-space model
res2ss pole/residue to state space model
res2tf pole/residue to/from polynomial model
res2xf compute FRF associated to pole/residue model
ss2res state-space to pole/residue model

Finite Element Update Tools

upcom user interface for finite element update problems
up freq semi-direct update by comparison modal frequencies
up ifreq iterative update by comparison of modal frequencies
up ixf iterative update based on FRF comparison
up min minimization algorithm for FE update algorithms

378



Interfaces with Other Software

ans2sdt reading of ANSYS binary files (FEMLink)
nasread read from MSC/NASTRAN .dat, .f06, .o2, .o4 files (some

with FEMLink)
naswrite write data to MSC/NASTRAN bulk data deck (some with

FEMLink)
nas2up extended reading of NASTRAN files
ufread read Universal File Format (some with FEMLink)
ufwrite write Universal File Format (some with FEMLink)

Other Utilities

basis coordinate transformation utilities
ffindstr find string in a file
order sorts eigenvalues and eigenvectors accordingly
remi integer rem function (remi(6,6)=6 and not 0)
setlines line type and color sequencing
sdth SDT handle objects

ofact creation and operators on ofact matrix objects

sdtcheck installation handling and troubleshooting utilities
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Purpose Interface between ABAQUS and SDT (part of FEMLink) Warning this function
requires MATLAB 7.1 or later.

Syntax abaqus(’read FileName’);

abaqus(’job’);

read[*.fil, *.inp, *.mtx]

By itself the read command imports the model from a .inp ASCII input or .fil

binary output file. Models created by an *Assembly command using several in-
stances and/or additional nodes or elements are treated with superelements. Each
part instance (called by *Instance. . . *end instance) becomes then a specific su-
perelement in the SDT model. A packaged call allows to get a full model back

model=abaqus(’read Job-1.inp’);

model=abaqus(’ResolveModel’,model);

% both calls at once:

model=abaqus(’read-resolve Job-1.inp’);

The ResolveModel command has a limited robustness in the general case due to the
difficulty to handle heterogeneous Stack data while renumbering parts of a model.
Most cases should be properly handled. One can use command read-resolve to
perform both operations at once.

When reading deformations, getpref(’SDT’, ’OutOfCoreBufferSize’) is used to
determine whether the vectors are left in the file or not. When left, def.def is
a v handle object that lets you access deformations with standard indexing com-
mands. Use def.def=def.def(:,:) to load all. If a modal basis is read, it is stored
in the model stack, as curve,Mode. If static steps are present all associated deforma-
tion are concatenated in order of occurrence in the model stack as curve,step(1).

Command option -wd allows to save the model generated in a directory different
from the one in which the abaqus files are saved.

You can request the output of element matrices which will then be read into an
upcom model. To do so, you need to define an element set. To read matrices, you
have to provide some information before running the job in order to select which
matrices you want to write and read. In the .inp input file you may enter the
following line
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*ELSET, ELSET=ALL ELT FOR SDT

THIN SHELL1 , THIN SHELL1_1

(second line contains all the ABAQUS defined sets) just before the *STEP line and

*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, STIFFNESS=YES

*ELEMENT MATRIX OUTPUT, ELSET=ALL ELT FOR SDT, MASS=YES

just after the *STEP line.

Note that this information are automatically generated using the following command
abaqus(’elementmatrices model.inp’); .

Running the Abaqus job generates outputs specified by the user, with *OUTPUT

commands in the Abaqus job input file. Current default use generates an odb file,
using commands of the type *NODE OUTPUT. The odb format however requires the
use of Abaqus libraries to be read.

Imports are thus handled in SDT using the .fil output binary file. This file is
readable without Abaqus, and its reading has been optimized in FEMLink. This
type of output is generated using commands of the type *NODE FILE. A sample
command to obtain nodal deformation a the end of a step is then

** general command to .fil and ask for nodal deformation field

*OUTPUT, FIELD

*NODE FILE

U

All nodal variable keywords should be expressed on separated lines. This must be
repeated in all steps of interest in an ABAQUS computation file input .inp.

Most common and general nodal variables keywords of interest are the following
(this is not applicable to all ABAQUS procedures)

• U, V, A respectively for nodal displacement, velocity and acceleration output

• RF,CF, VF, TF respectively for nodal reaction forces, constrained forces, viscous
forces, and total forces output

• GU, GV, GA respectively for generalized displacement, velocity ad acceleration
(when reduction is involved)

Since not all information (materials, set names, ...) can be found in the .fil, you
may want to combine two reads into an upcom model
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abaqus(’read file.inp’, ’buildup file.fil’);.

Abaqus features a matrix sparse output starting from version 6.7-1. Their generation
is performed in a dedicated step as follows

*STEP

*MATRIX GENERATE, STIFFNESS, MASS

*END STEP

The output is one ASCII file .mtx by matrix requested, which can be read by abaqus.

write

abaqus(’write Name.inp’,model); writes and ABAQUS input file.

abaqus(’BwMTX’,model); writes all matrices stored in model.K in the abaqus sparse
output format. Each matrix file is named after the model.file entry and model.Klab.
For a model stored in model.mat containing a matrix ’k’, the file output will be
named model k.mat.

BwMat ; BwMp ; BwSet ; Bwbas ; BwStepEig are implemented.

JobOpt

JobOpt = abaqus(’JobOpt’,Opt); This command returns a filled JobOpt struc-
ture to be run by sdtjob. Opt is a structure containing at least the field Job as
the job name or file. InList and OutList must be filled. Further options concern
the fields Input when the input file is different from the job name, RunOptions to
append the usual option to the Abaqus command, RemoveFile to remove files from
the remote directory when needed.

conv

This command lists conversion tables for elements, topologies, face topologies. You
can redefine (enhance) these tables by setting preferences of the form setpref(

’FEMLink’,’abaqus.list’,value), but please also request enhancements so that
the quality of our translators is improved.

splitcelas
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model=abaqus(’SplitCelas’,model) splits all SDT celas elements to one dimen-
sion celas elements that can be handled by Abaqus. This command can change the
EltId so it must be used when meshing the model.

uniquematpro

Merges duplicated pl/il instances.

Resolve

This set of commands transforms a raw model import by abaqus read into en
exploitable SDT model. This is useful when the ABAQUS model has been generated
with *PART and *INSTANCE. In such case, the representation of an ABAQUS model
becomes very far from an SDT model. The raw reading obtained by read will thus
interpret parts as superelements, and leave the instance data, and some internal
information not translated.

Some adaptations, performed by ResolveModel are thus needed. In particular,
renumbering can occur, however all sets definitions are maintained.

• ResolveModel

This command will create the elements conforming to the instance information.
Commands ResolveSet and ResolveMass will also be called, to generate a
fully exploitable SDT model.

• ResolveSet

This command transforms each ABAQUS implicitly defined sets into explicit
SDT sets. This is very useful if some sets have been defined in ABAQUS using
internal part numerotations. Called by ResolveModel.

• ResolveCase

This command aims at resolving all implicitly defined case entries in the model.
Only implicit MPC resolution as been implemented at the moment (SDT version
of *TIE constraints). This also handles the multiple slave resolution in the
manner of ABAQUS, and should thus be performed before assembling models
if multiple slave error occur.

• ResolveMass

This command handles the model stack entry info,UnResolvedMasses that
may have been created during the read call, and assigns mass values missing
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in mass elements. This is necessary when masses have been defined in an
ABAQUS part, such that the attribution of the mass amplitude by *MASS is
not directly retrievable. Called by ResolveModel.

AssembleUserElements

Returns a matrix and its corresponding DOF, from the assembly of all USER ELE-
MENT instances in an ABAQUS model.

[K,dof] = abaqus(’AssembleUserElements’,model);

odb2sdt

Utility functions to transfer Abaqus .odb file data into a format similar to MATLAB
6 binary .mat file and readable by sdthdf. The changes in the format are introduced
to support datasets larger than 2GB.

Abaqus outputs are commonly written in .odb files, using a non documented format.
The only way to access its data is to use Abaqus CAE or Abaqus Python. These
utility functions are to be used with Abaqus Python to extract data from the output
database for further use outside Abaqus. The modules used are

• odbAccess. Abaqus access libraries.

• abaqusConstants. Common output values dictionary, such as ’U’, ’UR’

• Numeric. Module for array handling utilities.

• struct. Module to pack data into binary strings.

For the moment, only nodal data transfer is completely implemented. More infor-
mation can be found on Python at http://www.python.org. Note that def is a
reserved word in Python for the function definition command; remember not to use
it in another way!

The following script is a quick example of what can be done with these functions. It
can be launched directly if written in a .py file readODB.py for example, by abaqus

python readODB.py

from odb2sdt import * # import read functions

jobName=’my_abaqus_job’
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odb=openOdb(jobName + ’.odb’)

allNodal2mat(odb)

This second script will only write the DOF set in a .mat binary file

from odb2sdt import * # import read functions

jobName=’my_abaqus_job’

odb=openOdb(jobName + ’.odb’) #open the database

stepName=odb.steps.keys()[0] #get the name of the first step

fieldItem=[’U’] #I want the ’U’ displacement field

# get the fieldOutputs instances list from the first frame:

fieldOutputs=odb.steps.__getitem__(stepName).getFrame(0).fieldOuputs

f=matFile(jobName + ’_dof.mat’) # Initialize the file

dof2mat(f,fieldOutputs,fieldItem,stepName) # write the DOF array to it

f.close()

Once a file allNodal.mat file has been generated, it is possible to load the defor-
mation structure fields using

def=abaqus(’read file_allNodal.mat’)

def output is here a cell array containing all def structures found in the allNodal.mat
file. Only simple cases of .odb outputs are supported. The rest of the data is not
automatically read, it can nevertheless be attained using

r1=sdthdf(’open’,file_allNodal.mat);

where r1 is a cell array containing all the fields contained in the allNodal.mat file.

odb2sdt.py reference

The following lists the main subfunctions in odb2sdt.py
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matFile(fname) Creation of a the file fname, with the standard .mat

header.f=matFile(fname)

dof2mat(f, fields

,fieldItems, stepName)

Writes the DOF array in SDT format to file f. fields
is the list of fieldOutput instances from the step
named stepName. fieldItems is the sorted list con-
taining the displacement fieldOutputs present in the
fieldOuputs list. It must contain in that order, and at
least one entry of the list [’U’ , ’UR’ , ’UT’]. It is
a direct call with no output.

defSet2mat(f, step,

fieldList)

Writes a fieldOutput set for all frames of a step, con-
tiguously into file f. step is a step instance, fieldList
is the list of fieldOutputs to be output from the frame
object. All kind of nodal vector output can be treated
although this was designed to treat displacement fields
linked to the dof2mat function. It is a direct call with
no output. In case of a modal deformation set, the
EIGIMAG, EIGFREQ, EIGREAL and DAMPRATIO history-
Output data are also output.

nodalScalarValues2mat

(f, field, stepName,

frameName)

Outputs an array of scalar nodal values to file f, for a
particular fieldOutput instance field. stepName is the
name of the step considered, frameName the name of
the frame. However, since the fieldOutput is given the
last two arguments are strings only needed to compose
the array name in f.It is a direct call with no output.

allNodal2mat(odb) This function combines the lower level nodal output
function to create and fill directly a .mat file containing
DOFs, deformations sets, and nodal scalar values form
an odb instance, created with openOdb. It is a direct
call with no output.

The following are lower level calls, and alternative calls, with output in the workspace.
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sortFieldList(

fieldList)

Returns a field keys list in which the existing
displacement field keys have been sorted at the
list beginning, in the order ’U’, ’UR’ , ’UT’.
fieldList=sortFieldList(fieldList).

rmFromList(list1, list2)Returns list1 in which the items in list2 have been
removed.

arrayHead2mat(f,

nValSize, isCpx,

dim1,dim2, arrayName)

Low level command. Initialization of an array entry
into the file f. The corresponding header is written
such that the array values can be written right after.
nValSize is the space needed to store the values form
the array in Bytes. isCpx takes the value 0 if the
data to store are real, or 16 if the values to store are
complex. dim1 and dim2 are the dimensions of the
array in direction 1 and 2. arrayName is the name
given to the array. It is a direct call with no output.

getNodes(frame) Returns a nodeId array in the workspace, taken in a
frame instance.nodeId=getNodes(frame)

getLabels(frame,

fieldKeys)

Returns the list of componentLabels contained in
all the fieldKeys list, in a frame instance. It
also generates a list in which the field keys
are repeated to match the componentLabels list.
labels,labelField=getLabels(frame,fieldKeys)

setDOF(nodeId, field,

fieldKeys)

Returns a DOF array interpreted from a fieldOuputs

list, a nodeId array and fieldKeys giving the
fieldOutput displacement keys relevant in field.
DOF=setDOF(nodeId,fieldOutputs,[’U’])

readData(value) A way to output a data member of a value instance re-
gardless of the precision used during the computation.
data=readData(value)

readNodalValues(field,

outList)

Returns optionally the nodeId array, the correspond-
ing data array and the componentLabels lists found,
from a fieldOutput instance. OutList is a list
of length 3 being [1,1,1] for a complete output,
[0,1,0] to output only the data array, and [1,1,0]
to output the combo nodeId array and data ar-
ray. nodeId,data=readNodalValues(fieldOutput,

[1,1,0])
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Examples

See also FEMLink
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Purpose Interface between ANSYS and SDT (part of FEMLink)

Syntax ans2sdt(’read FileName’) % .rst, .cdb, .matrix, .mode files

ans2sdt(’write FileName’) % .cdb file

ans2sdt(’BuildUp FileName’) % .rst and .emat files

... = ans2sdt(’def FileName.rst’)% .rst or .mode files

Description

BuildUp

ans2sdt(’BuildUp FileName’) reads the binary files FileName.rst for model def-
inition and FileName.emat for element matrices. The result is stored in Up (a type 3
superelement handled by upcom). FileName.mat is used to store the superelement.
Valid calls are

Up=ans2sdt(’buildup file’);

[m,k]=upcom(Up,’assemble not’);

For recent versions of ANSYS, you will have to manually add the ematwrite,yes

command to the input file to make sure that all element matrices are written. This
command is not accessible from the ANSYS menu.

There is a partial attempt to fill in element properties in Up.il. You can also use
data=stack get(model,’info’,’RealConstants’,’getdata’) to obtain the cell
array containing the ANSYS real constants for various elements. The index in this
cell array corresponds to element ProId values.

def

def=ans2sdt(’read’,’file.mode’) reads deformations in .mode files.

To read responses .rst files you should use

model=ans2sdt(’readdef’,’test.rst’); % read all data

def=stack_get(model,’curve’,’NSL’);

% Partial read of only specific entries

model=ans2sdt(’rstdef’,’sdtforced.rst’, ...

struct(’DefUse’,{{’NSL’}})); % give the block names to be read
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Since multiple blocks can be read, the results is saved in the model stack and can be
retrieved by name using stack get(model,’curve’,’NSL’); or similar calls. The
standard names used by ANSYS are NSL (displacement), VSL (velocity response), RF
(reaction forces), ESL (element solution, see ans2sdt ESLread). If you are interested
in reading other results, please send a test case.

conv

This command lists conversion tables for elements, topologies, face topologies. You
can redefine (enhance) these tables by setting preferences of the form setpref(’FEMLink’,

’ansys.elist’,value), but please also request enhancements so that the quality
of our translators is improved.

read

This command reads files based on their standard ANSYS extension.

• .matrix files are read assuming ASCII Harwell Boeing format obtained with
HBMAT, Fname,Ext,--,ASCII,STIFF. RHS vectors or binary matrices are not
read yet. You can read the mapping file at the same time using ans2sdt(’matrix’,’k.txt’,’k.mapping’);
or DOF=ans2sdt(’mapping’,’k.mapping’).

• .mode files contain deformations which are read into the usual SDT format.

• .rst files contains model information topology, some material/element prop-
erties and boundary conditions (but these are more consistently read in the
.cdb), ...

– When an .emat file is present, the read call attempts to run the BuildUp

command.

– Responses are read using a call of the form ans2sdt(’readdef’,’file.rst’),
see ans2sdt def

• .cdb input files also written by ANSYS using the CDWRITE ALL,FileName,cdb

command. Please also request enhancements on the support of this format so
that the quality of our translators is improved.

ANSYS does not store boundary conditions in the .rst files so that these can only
be imported from .cdb file. If you only have fixed boundary conditions, you can
easily generate those with
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model=ans2sdt(’buildup test’); % read model

def=ans2sdt(’def test.rst’); % read deformations

model = fe_case(model,’fixdof’,’Fixed_Dofs’, ...

fe_c(model.DOF,def.DOF,’dof’,2));

cf=feplot; cf.model=model; cf.def=def; % display

Def

def=ans2sdt(’def FileName.rst’) or def=ans2sdt(’def FileName.mode’) reads
deformations in .rst or .mode files

ESLread

To read element output data if any, that were detected during the reading of an
output file (.rst).

model=ans2sdt(’ESLread’’,model); will generate a stack entry named ESL:token

in the model that will contain the element data.

token is an element output data identifier as documented by ANSYS, and mentioned
in the model stack entry info,ptrESL.

Command option groupi allows generating the output for a given group number i

Write

ans2sdt(’write FileName.cdb’,model) is the current prototype for the ANSYS
writing capability. In ANSYS .cdb files are written with the CDWRITE ALL, FileName,

cdb command. This does not currently write a complete .CDB file so that some man-
ual editing is needed for an ANSYS run after the write.

See also FEMLink
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Purpose Coordinate system handling utilities

Syntax p = basis(x,y)

[bas,x] = basis(node)

[ ... ] = basis(’Command’, ... )

Description

nodebas [nodeGlob,bas]=basis(’nodebas’,model)

NodeBas performs a local to global node transformation with recursive transfor-
mation of coordinate system definitions stored in bas. Column 2 in nodeLocal is
assumed give displacement coordinate system identifiers PID matching those in the
first column of bas. [nodeGlobal,bas]= basis(nodeLocal,bas) is an older ac-
ceptable format. -force is a command option used to resolve all dependencies in
bas even when no local coordinates are used in node.

Coordinate systems are stored in a matrix where each row represents a coordinate
system using any of the three formats

% different type of coordinate defintition

CorID Type RefID A1 A2 A3 B1 B2 B3 C1 C2 C3 0 0 0 s

CorID Type 0 NIdA NIdB NIdC 0 0 0 0 0 0 0 0 0 s

CorID Type 0 Ax Ay Az Ux Uy Uz Vx Vy Vz Wx Wy Wz s

Supported coordinate types are 1 rectangular, 2 cylindrical, 3 spherical. For these
types, the nodal coordinates in the initial nodeLocal matrix are x y z, r teta z,
r teta phi respectively.
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Figure 9.1: Coordinates convention.

The first format defines the coordinate system by giving the coordinates of three
nodes A, B, C as shown in the figure above. These coordinates are given in coordinate
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system RefID which can be 0 (global coordinate system) or another CordId in the
list (recursive definition).

The second format specifies the same nodes using identifiers NIdA, NIdB, NIdC of
nodes defined in node.

The last format gives, in the global reference system, the position Ax Ay Az of the
origin of the coordinate system and the directions of the x, y and z axes. When
storing these vectors as columns one thus builds the xG = [cGL]xL transform.

The s scale factor can be used to define position of nodes using two different unit
systems. This is used for test/analysis correlation. The scale factor has no effect on
the definition of displacement coordinate systems.

trans[ ,t][ ,l][,e] cGL= basis(’trans [ ,t][ ,l][,e]’,bas,node,DOF)

The transformation basis for displacement coordinate systems is returned with this
call. Column 3 in node is assumed give displacement coordinate system identifiers
DID matching those in the first column of bas.

By default, node is assumed to be given in global coordinates. The l command
option is used to tell basis that the nodes are given in local coordinates.

Without the DOF input argument, the function returns a transformation defined at
the 3 translations and 3 rotations at each node. The t command option restricts
the result to translations. With the DOF argument, the output is defined at DOFs
in DOF. The e command option returns a square transformation matrix.

gnode:nodeGlobal = basis(’gnode’,bas,nodeLocal)

Given a single coordinate system definition bas, associated nodes nodeLocal (with
coordinates x y z, r teta z, r teta phi for Cartesian, cylindrical and spherical
coordinate systems respectively) are transformed to the global Cartesian coordinate
system. This is a low level command used for the global transformation [node,bas]

= basis(node,bas).

bas can be specified as a string compatible with a basis(’rotate’ call. In such
case, the actual basis is generated on the fly by basis(’rotate’) before applying
the node transformation.
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[p,nodeL] = basis(node)

Element basis computation With two output arguments and an input node matrix,
basis computes an appropriate local basis bas and node positions in local coordi-
nates x. This is used by some element functions (quad4) to determine the element
basis.

rotate

bas=basis(’rotate’,bas,’command’,basId); is used to perform rotations on co-
ordinate systems of bas given by their basId. command is a string to be executed
defining rotation in degrees (rx=45; defines a 45 degrees rotation along x axis). One
can define more generally rotation in relation to another axis defining angle r=angle
and axis n=[nx,ny,nz]. It is possible to define translations (an origin displacement)
by specifying in command translation values under names tx, ty and tz, using the
same formalism than for rotations.

For example, one can define a basis using

% Sample basis defintion commands

bas=basis(’rotate’,[],’rz=30;’,1); % 30 degrees / z axis

bas=basis(’rotate’,[],’r=30;n=[0 1 1]’,1); % 30 degrees / [0 1 1] axis

bas=basis(’rotate’,[],’tx=12;’,1); % translation of 12 along x

bas=basis(’rotate’,[],’ty=24;r=15;n=[1 1 1];’,1); % translation of 24 along y and rotation

p = basis(x,y)

Basis from nodes (typically used in element functions to determine local coordinate
systems). x and y are two vectors of dimension 3 (for finite element purposes)
which can be given either as rows or columns (they are automatically transformed
to columns). The orthonormal matrix p is computed as follows

p =

[
~x

‖~x‖
,
~y1

‖~y1‖
,
~x× ~y1

‖~x‖‖~y1‖

]
where ~y1 is the component of ~y that is orthogonal to ~x

~y1 = ~y − ~x ~x
T~y

‖~x‖2

If x and y are collinear y is selected along the smallest component of x. A warning
message is passed unless a third argument exists (call of the form basis(x,y,1)).
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p = basis([2 0 0],[1 1 1]) gives the orthonormal basis matrix p

% Generation of an orthonormal matrix

p = basis([2 0 0],[1 1 1])

p =

1.0000 0 0

0 0.7071 -0.7071

0 0.7071 0.7071

See also beam1, section 7.1 ,section 7.2
Note : the name of this function is in conflict with basis of the Financial Toolbox.
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comgui,cingui

Purpose General utilities for graphical user interfaces.

Syntax comgui(’Command’, ...)

cingui(’Command’, ...)

comgui is an open source function that the user is expected to call directly while
cingui is closed source and called internally by SDT.

ImWrite, ...

ImwriteFileName.ext does a clean print of the current figure. The preferred strat-
egy is to predefine options, so that comgui(’ImWrite’) alone defines options. This
can be done by

• defining ua.ImWrite (axes properties) as illustrated under comgui ImFtitle.

• setting ua.ImWrite in the iiplot PlotInfo so that the proper data is used
when a curve is displayed in iiplot.

• setting ImWrite in comgui def.Legend so that the proper configuration is
used when a def is displayed in feplot.

comgui(’ImWrite’,gf,RO) with a figure handle given in gf and options stored in
the RO structure, is the most general. gf can be omitted and will be taken to be gcf.
RO can be omitted if options are given in the command. Acceptable options options
are detailed below. For details for multi-image capture strategies (for example a set
of modeshapes), see iicom ImWrite.

• FileName The default extension is .png. With no file name a dialog opens to
select one. RO.FileName can be a cell array for a ImFtitle call.

• -NoCrop (or RO.NoCrop=1) avoids the default behavior where white spaces are
eliminated around bitmap images.

• -FTitle (or RO.FTitle=1) uses the title/legend information to generate a file
name starting with the provided filename.

A typical example would be comgui(’imwrite-FTitle plots/root’) which
will generate a root detail.png file in local directory plots.

For a given plot, comgui(’imFTitle’) can be used to check the target name.
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• -LaTeX (or RO.LaTeX=1) displays LATEX commands to be used to include the
figure in a file.

• -objSet"@Rep{SmallWide}" provides a tag to obtain predefined comgui objSet

information to format the figure. Default formats available are

– SmallWide for a wide picture (9:16) (landscape style) adapted to reports.

– SmallSquare for a square picture (4:3) adapted to reports.

– SmallHigh for a vertical rectangular picture (9:16) adapted to reports.

– LargeWide for a wide picture (landscape style) adapted to posters.

– LargeSquare for a square picture (4:3) adapted to posters.

– WideBar for a (4:3) landscape style picture. It has the same width than
SmallWide but is higher, this is mostly convenient for wide bar diagrams.

• -clipboard copies to clipboard.

• -SubToFig copies the display to another figure before reformatting (avoids
modifying the current figure).

• -Java (or RO.Java=1) uses java to do a screen capture. RO.Java=2 captures
the figure with the GUI, RO.Java=3 can be used to capture the dock containing
the figure.

• -open (or RO.open=1) opens the figure in a browser.

• RO

• comgui(’ImWrite ...’,gf) ensures that the correct figure with pointer gf is
captured.

ImFtitle, ...

ImFtitle generates a file name for the figure based on current displayed content.
Text is searched in objects with tags legend, ii legend, in the axes title. By
default all the text is concatenated and that can generate excessively long names so
finer control is achieved by providing the name as a cell array in the ImWrite field
of the userdata. The underlying mechanism to generate the string is described in
comgui objString.
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comgui,cingui

figure(1);clf; t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

legend(’a’,’b’,’c’);title(’MyTit’);

% Define target plot directory in the figure

cingui(’objset’,1,{’@PlotWd’,sdtdef(’tempdir’)})

% Check name generation, from string

comgui(’imftitle’,1,{’@PlotWd’,’@title’,’.png’})
% Do a direct call with name building

comgui(’imwrite’,struct(’FileName’,{{’@PlotWd’,’@title’,’.png’}}))

% Predefine the figure save name in the userdata.Imwrite of current axis

ua=v_handle(’uo’,gca); % Get handle to allow setting of .ImWrite field

ua.ImWrite={’@Plotwd’,’@title’, ... % Search for plotwd, use title name

’@legend(1:2)’,’.png’}; % use first legend entry

% check image name, display clickable link for image generation

comgui(’imftitle’)

sdtweb(’_link’,’comgui(’’Imwrite’’)’,’Generate’);

% Iiplot predefine strategy

% - for curve : see sdtweb iiplot#PlotInfo

% Feplot predefine strategy

% - for model : cf.ua.ImWrite as above

% - during .Legend display see sdtweb comgui#def.Legend

dock

SDT uses some docking utilities that are not supported by MATLAB. The actual
implementation is thus likely to undergo changes.

gf=1;figure(gf);clf; t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

comgui(’objset’,1,{’@dock’,’MAC’}); % Set in named dock group

% set the dock name and position

comgui(’objset’,1,{’@dock’,{’name’,’MAC’, ...

’arrangement’,[1 3],’position’,[0 0 300 200],...

’tileWidth’,[.5 .25 .25]}});
% tileHeight also possible if arrangement(2)>1

pos=feval(iimouse(’@getGroupPosition’),’MAC’); % get group position on screen

feval(iimouse(’@deleteGroup’),’MAC’) % Delete group (and figures)

Capture of a dock group figure is possible with comgui imwrite-Java3
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objSet

cingui(’objSet’,h,Prop) is the base SDT mechanism to generalize the MATLAB
set command. It allows recursion into objects and on the fly replacement. Prop is
a cell array of tag-value pairs classical in MATLAB handle properties with possible
modifications. Three base mechanisms are object search, expansion and verification.

Object search ’@tag’,value applies value to an object to determined on the fly.
For example ’@xlabel’ applies to the xlabel of the current axis.

• @xlabel accepts a value that is a cell array that will be propagated for all x
labels. A typical example would be {’@xlabel’,{’FontSize’,12}}. Other
accepted components are @ylabel, @zlabel, @title, @axes, @text,

• @axes, @figure will search for parent or child axes objects

• @tag is assumed to search for object with the given tag, so that its proper-
ties can be set. For example {’@ii legend’,{’FontSize’,12}} will set the
fontsize of an object with tag ii legend.

• @tag(val) allows the selection of a specific object by index when multiple
objects with the same tag are found.

• @ImFtitle is used to store the cell array for image name generation see comgui
ImFtitle. This must be set after displaying title and legend entries, since the
information is stored in these objects.

• @TickFcn allows a tick generation callback, see ii plp TickFcn

• @dock handles docking operations, see comgui dock.

• @ToFig replicate the figure before applying operations. Property {’cf’,val}
can be used to force replication into figure val.

Expansion ’’,’@tag’ is first expanded by inserting a series of tag-value pairs
resulting from the replacement of @tag. You can verify the expansion result using

cingui(’fobjset’,’RepRef’,{’’,’@Rep{SmallWide}’})

Replacement/verification

• position accepts NaN for reuse of current values. Thus [NaN NaN 300 100]

only sets width and height.
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comgui,cingui

• @def The value is a default stored in sdt table generation(’Command’).
One can search values by name within a cell array. This is in particular used
for preset report formats @Rep{SmallWide} in comgui ImWrite.

• xlim, ... clim accept callbacks for the setting of limits. ’set(ga,”clim”,[-
1 1]*max(abs(get(ga,”clim”))))’ is a typical example setting symmetric color
limits.

• ’@setlines(’’marker’’)’ or ’@out=setlines(’’marker’’);’ are two vari-
ants where the value is obtained as the result of a callback. Note that the vari-
ant with @out must end with a semicolumn. This is illustrated in the example
below.

figure(1);t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));

cingui(’objset’,1, ... % Handle to the object to modify

{’’,’@Rep{SmallWide}’, ... % Predefined figure type

’@line’,’@setlines(’’marker’’)’}) % Line sequencing

cingui(’fobjset’,’RepRef’,{’’,’@Rep{SmallWide}’})

objString

cingui(’objString’,h,SCell) is a mechanism to generate strings based on a set
of properties. This is used by comgui ImFtitle but can also be used elsewhere.

figure(1);clf;

t=linspace(0,2*pi);h=plot(t,[1:3]’*sin(t));title(’MyTit’)

legend(’a’,’b’,’c’);

SCell= {’@Plotwd/plots’, ... % Search for plotwd/plot

’@title’, ... % use title name

’.png’}; % extension

cingui(’objstring’,1,SCell) % Handle of base object

• @PlotWd is the base mechanism to find the plotting directory. One seeks
cf.def.PlotWd, cf.mdl.PlotWd, if they exist, then in objects with tag iicom imwrite

or PlotWd.

@PlotWd/relpath is accepted in name generation to allow simple generation
of relative paths.
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• @tag(1:2) allows selection of a subset of objects when multiple exist. Typical
are @legend(1) to select the first string of a MATLAB legend, or @ii legend(1)

for an SDT ii plp Legend entry. @headsub for the text used by feplot to
display titles.

• @colorbar seeks the string associated with a colorbar

def.Legend

The def.Legend field is used to control dynamic generation of text associated with
a given display. It is stored using the classical form of property/value pairs stored
in a cell array, whose access can be manual or more robustly done with sdsetprop.

Accepted properties any text property (see doc text) and the specific, case sensitive,
properties

• set gives the initialization command in a string. This command if of the form
’legend -corner .01 .01 -reset’ with

– cornerx y gives the position of the legend corner with respect to the
current axis.

– -reset option deletes any legend existing in the current axis.

• string gives a cell array of string whose rows correspond to lines of the legend.
$title is replaced by the string that would classically be displayed as label
by feplot. Individual formatting of rows can be given as a cell array in the
second column. For example {’\eta 1’,{’interpreter’,’tex’}}.

• ImWrite can be used to control file name generation (later used in automated
multiple figure generation, see iicom ImWrite). The format in this case is a
cell array giving the target directory followed by components used to build the
string. Numbers then indicate rows of the legend text.

You can also use ’@tag’ to force replacement with string of a text with the
appropriate tag. In particular ’@ColorbarTitle’ lets you incorporate the
colorbar string into your file name.

[model,def]=hexa8(’testeig’);cf=feplot(model);

def.Legend={’set’,’legend -corner .1 .9 -reset’, ... % Init

’string’,{’$title’;’\it MyCube’}, ... % The legend strings

’FontSize’,12} % Other test properties
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comgui,cingui

def=sdsetprop(def,’Legend’,’ImWrite’,{ ...

’objSet’,’@Rep{SmallWide}’, ... % Possible ImWrite options (optName)

sdtdef(’tempdir’), ... % directory for writting file

’FigRoot’, ... % root of figure name

’@ii_legend([2 1])’, ... % insert second and first legend lines in file name

’.png’}) % Generate file as png

cf.def=def;

comgui(’imFTitle’) % Display the file name used comgui(’imwrite’)

FitLabel

comgui(’fitlabel’) attempts to replace axes of the current figure so that xlabel,
ylabel, ... are not cropped.
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commode

Purpose General purpose command parser for user interface command functions.

Syntax Commode (’CommandFcn’,’ChainOfCommands’)

Description Commands and options are central to SDT. These strings are passed to functions to
allow multiple variations in behavior. Accepted commands are listed in the help

(text) and sdtweb (html) documentations (see iicom, fecom, feutil, etc.).

• commands are case insensitive, thus FindNode and findnode are equivalent.
The uppercase is used to help reading.

• options can be separated by blanks : ’ch1’ or ’ch 1’ are the same.

• option values (that must be provided) are indicated italic in the HTML help
and in brackets () in the text help.

For example ch i indicates that the command ch expects an integer. ch 14

is valid, but ch or ch i are not.

• in the help alterative options are indicated by [c1,c2] (separated by commas).

For example ch[,c] [i,+,-,+i,-i] means as a first alternative that ch and
chc are possible. Then alternatives are i a number, + for next, - for previous,
+i for shift by i. ch 14, chc 12:14, chc+, ch-2 are all valid commands.

• Commands are text strings so that you can use fecom ch[1,4], fecom ’ch

14’ or fecom(’ch 1 4’) but not fecom ch 1 4 where ch, 1 and 4 are inter-
preted by Matlab as 3 separate strings.

• ; placed at the end of a command requests a silent operation as in MATLAB.

• When building complex commands you may need to compute the value used
for an option. Some commands actually let you specify an additional numeric
argument (feplot(’textnode’,[1 2 3]) and feplot(’textnode 1 2 3’)

are the same) but in other cases you will have to build the string yourself
using calls of the form feplot([’textnode’ sprintf(’ %i’,[1 2 3])])

The UI command functions only accept one command at a time, so that commode

was introduced to allow
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• command chaining: several commands separated by semi-columns ;. The parsing
is then done by commode.

• scripting: execute all commands in a file.

• command mode: replace the Matlab prompt >> by a CommandFcn> which directly
sends commands to the command function(s).

Most command functions send a command starting by a ’;’ to commode for parsing.
Thus commode (’iicom’,’cax1; abs’) is the same as iicom (’;cax1;abs’)

The following commands are directly interpreted by commode (and not sent to the
command functions)

q,quit exits the command mode provided by commode but not Matlab .
script FName reads the file FName line by line and executes the lines as command

strings.

The following syntax rules are common to commode and Matlab

%comment all characters after a % and before the next line are ignored.
[] brackets can be used to build matrices.
; separate commands (unless within brackets to build a matrix).

See also comstr, iicom, fecom, femesh
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comstr

Purpose String handling functions for the Structural Dynamics Toolbox.

Syntax See details below

Description The user interfaces of the Structural Dynamics Toolbox have a number of string
handling needs which have been grouped in the comstr function. The appropriate
formats and usual place of use are indicated below.

Cam,stringistrue=comstr(Cam,’string’)

String comparison. 1 is returned if the first characters of Cam contain the complete
’string’. 0 is returned otherwise. This call is used extensively for command
parsing. Note that istrue is output in format double and not logical. See also
strncmp.

Cam,string,format[opt,CAM,Cam]=comstr(CAM,’string’,’format’)

Next string match and parameter extraction. comstr finds the first character where
lower(CAM) differs from string. Reads the remaining string using the sscanf

specified format. Returns opt the result of sscanf and CAM the remaining characters
that could not be read with the given format.

[opt,CAM,Cam]=comstr(CAM,’string’,’%c’) is used to eliminate the matching
part of string.

CAM,ind[CAM,Cam] = comstr(CAM,ind)

Command segmentation with removal of front and tail blanks. The first ind charac-
ters of the string command in capitals CAM are eliminated. The front and tail blanks
are eliminated. Cam is a lowercase version of CAM. This call to comstr is used in all
UI command functions for command segmentation.
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-1opt = comstr(CAM,[-1 default])

Option parameter evaluation. The string CAM is evaluated for numerical values which
are output in the row vector opt. If a set of default values default is given any
unspecified value in opt will be set to the default.

-3date = comstr(CAM,[-3])

Return the standard date string. Used by ufwrite, naswrite, etc. See also date,
datenum.

-4CAM = comstr(CAM,[-4 nc ])

Fills the string CAM with blanks up to nc characters.

-5 comstr(Matrix,[-5 fid],’format’)

Formatted output of Matrix, the format is repeated as many times as Matrix has
columns and a formatted output to fid (default is 1 standard output). For example
you might use comstr(ii mac(md1,md2)*100,[-5 1],’%6.0f’).

-7st1=comstr(st1,-7,’string’)

used for dynamic messaging on the command line. On UNIX platforms (the backspace
does not work properly on Windows), the string st1 is erased before ’string’ is
displayed.

-17Tab , comstr(tt,-17,’type’)

This is used to generate tabular output of the cell array tt to various supported
types : tab (opens a java tab containing the table), excel (Microsoft Excel only
available on windows), html, csv (comma separated values, readable by excel), tex
(latex formatting), text printout to the command window.

% A sample table

tab=num2cell(reshape(1:10,[],2));tab(1,:)={’c1’,’c2’};
tname=nas2up(’tempname o.html’);

% RO option structure to format a table for HTML or java output

RO=struct(’fmt’,{{’%3i’,’%.1f’}}, ... % Formatting for each column
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’HasHead’,1); % a header is provided as strings

RO.fopen={tname,’a+’}; % Opening information

RO.OpenOnExit=0;

RO.Legend=sprintf(’<p>%s</p>’,’My HTML legend’);

% comstr(tab,-17,[],RO.fmt)

comstr(tab,-17,’html’,RO);

sdtweb(’_link’,sprintf(’web(’’%s’’)’,tname))

% Show the table in JAVA tab

comstr(tab,-17,’tab’,RO);

% Generate tex output of java tabs

comstr(struct(’FigTag’,’SDT Root’),-17,’tex’);

comstr(gcf,-17,’tex’);

Accepted fields in for the options structure

• .fmt cell array of column formatting instructions

• .ColumnName cell array with first row giving column names.

• .HasHead if non zero, skips lines of strings

Fields specific for HTML generation are

• .name is used to define a title for the table.

• .fopen used for HTML generation. For example {tname,’a+’}; is for append.
.OpenOnExit asks to open the file in the web browser.

Fields specific for JAVA tabs are

• .setSort activates row sorting in java tables. 1 : basic sort, 2: selectable sort. 3
: tree table.

• .name is used to define a tab name.

• .FigTag tag or handle for figure where the tab should be displayed.

See also commode
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Purpose Handle object for implicit representation of curves.

Syntax h=curvemodel(’Source’,r1,’yRef’,fun,’getXFcn’,{fun,fun,fun}, ...

’DimPos’,[1 3 2]);

Description Multi-dim curve are multi-dimensional arrays (.Y field) with information about
the various dimensions (.X,.Xlab fields). curvemodel store similar data sets but
provide methods to generate the .X,.Xlab,.Y fields content dynamically from an
information source.

curvemodel objects are derived from MATLAB handle objects. If you copy an
object’s handle, MATLAB copies only the handle and both the original and copy
refer to the same object data.

The principle of curve models is that the computation only occurs when the user
seeks the required data.

Important fields are

• .Source contains the data to be used as source. The source can be a pointer.
For example cf.v handle.Stack{’def1’} can be used to point to a set of
deformations stored in a feplot, or iiplot stack.

• .DimPos is used to allow permutations of the array dimensions (implicit equiv-
alent of permute(c.Y,c.DimPos).

• .xRef is a cell array of length the number of dimensions in .Y allowing the
extraction from the source.

Documented methods are

• .GetData : creates a copy of the full implicit data.

This functionality mostly undocumented. Support functions are process r that
handles delayed signal processing requests, ii signal that supports curvemodel

commands associated with signal processing. The following is an example for users
willing to dig into the code.
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C1=d_signal(’RespsweepSpec’) % Create a spectrogram model

C2=C1.GetData; % create a copy where the spectrogram is computed

C2.PlotInfo=ii_plp(’plotinfo 2D’);

iicom(’curveinit’,’Spectro’,C2);
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db, phaseb

Purpose Compute the decibel magnitude.
Compute the unwrapped phase in degrees.phase

Syntax m = db(xf)

p = phaseb(xf)

Description db computes the decibel magnitude of each element of the matrix xf. An equivalent
would be

m = 20*log10(abs(xf))

phaseb is an extension to the case of multiple FRF stacked as columns of a matrix
xf of the phase routine available in the System Identification Toolbox. It computes
the phase in degrees with an effort to keep the phase continuous for each column.

Example Here is an example that generates the two FRF of a SIMO system and plots their
magnitude and phase.

a=[0 1;-1 -.01];b=[0;1];c=[1 0;0 1];d=[0;0];

w=linspace(0,2,100)’; xf=qbode(a,b,c,d,w);

clf;

subplot(211);plot(w,dbsdt(xf)); title(’dB magnitude’)

subplot(212);plot(w,phaseb(xf));title(’Unwrapped phase in degrees’)

See also The xf format, iiplot
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Purpose Build state-space or normal mode form from FE model.

Syntax
[sys,TR] = fe2ss(’command [options]’,MODEL)

[sys,TR] = fe2ss(’command [options]’,MODEL,C)

[nor,TR] = fe2ss(’command -nor’, ...)

TR = fe2ss(’command -basis’, ...)

Description fe2ss is meant to allow users to build state-space (see section 5.4 ) and normal
mode models from full order model matrices. Accepted commands are detailed
below. Accepted command options

• -nor outputs the normal mode model data structure (see section 5.2 ).

• -basis outputs the reduction basis is the structure TR

• -se outputs a reduced superelement

• -loss2c performs estimates viscous damping based on hysteretic models

• -cpx 1 computes complex modes and uses a call to res2ss to compute the
state space model. -cpx 2 uses first order correction in the fe ceig call before
using res2ss to build the state-space model. This is currently only available
for a Free command.

• -dterm includes static correction as a D term rather than additional modes.
The associated full order shapes are stored in TR.bset.

• -ind specifies indices of modes to be kept. Others are included as a D term.

The procedure is always decomposed in the following steps

• call fe reduc build a reduction basis given in TR.def (see section 6.2 ). This
usually includes a call to fe eig with options EigOpt provided in the fe2ss

command

• call fe norm to orthonormalize the basis with respect to mass and stiffness (obtain
a model in the normal mode form (5.4), see section 5.2 ) and eliminate collinear
vectors if any

• call nor2ss or project model matrices depending on the number of outputs
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The TR output argument, contains the modeshapes followed by residual vectors, is
given so that the user can display modeshapes in feplot with cf.def=TR or call
nor2ss repeatedly without computing the basis again. The later is in particular
useful for changes in the sensor configuration which have no effect on the retained
basis. -nor and -basis can be used to generate the corresponding outputs.

High level input arguments are a MODEL (see section 4.5 ) with a case defined in the
model which must contain load and sensor entries (see fe case). Damping can be
specified in the model (using a DefaultZeta case entry for example), or given as
an additional argument C which can be a system damping matrix, a scalar uniform
damping ratio or a vector of damping ratios.

The following example compares various damping models.

mdl=demosdt(’demo ubeam mix’);cf=feplot;

mdl=fe_case(mdl,’SensDof’,’Out’,[343.01 343.02 347.03]’, ...

’FixDof’,’base’,’z==0’)

freq=linspace(10,1e3,2500)’;mdl=stack_set(mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);

[sys,T] = fe2ss(’free 6 10’,mdl);

qbode(sys,freq*2*pi,’iiplot "Modal"’);

% Rayleigh damping with 1 % viscous at 200 Hz, see sdtweb(’damp’)

mdl=stack_rm(mdl,’info’,’DefaultZeta’);

mdl=stack_set(mdl,’info’,’Rayleigh’,[0 .01*2/(200*2*pi)]);

[sys2,T] = fe2ss(’free 6 10’,mdl);

qbode(sys2,freq*2*pi,’iiplot "Rayleigh"’);

% Estimate viscous from hysteretic damping

[sys3,T] = fe2ss(’free 6 10 -loss2c’,mdl);

qbode(sys3,freq*2*pi,’iiplot "Loss"’);

iicom(’iix’,{’Modal’,’Rayleigh’,’Loss’});

% display full response

RB=struct(’f’,cf.Stack{’Freq’},’u’,eye(5,1))
cf.def=fe2ss(’sysdef’,sys,T,RB);

% use iimouse(’cursorOnFeplot’) to see deformations at various freq.
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The command is used to generate a restitution of a forced response on all DOF
in TR. The calling format is fe2ss(’sysdef’,sys,TR,RB) with fields of the option
structure being

• .f frequency in Hz. or .w frequency in rad/s.

• .u input possibly a vector that should be consistent with sys.b.

Free [ , Float] [ , -dterm] EigOpt

See fe reduc Free for calling details, this generates the classical basis with free
modes and static correction to the loads defined in the model case (see fe case).
With the -dterm option, the static correction is given as a D term rather than
additional modes.

CraigBampton nm

It is really a companion function to fe reduc CraigBampton command. The retained
basis combines fixed interface attachment modes and constraint modes associated
to DOFs in bdof.

This basis is less accurate than the standard modal truncation for simple predictions
of response to loads, but is often preferred for coupled (closed loop) predictions. In
the example below, note the high accuracy up to 200 Hz.

mdl=demosdt(’demo ubeam’);cf=feplot;

mdl=fe_case(mdl,’SensDof’,’Out’,[343.01 343.02 347.03]’, ...

’FixDof’,’Base’,’z==0’)

freq=linspace(10,400,2500)’;mdl=stack_set(mdl,’info’,’Freq’,freq);

% uniform 1 % modal damping

mdl=stack_rm(mdl,’info’,’RayLeigh’);

mdl=stack_set(mdl,’info’,’DefaultZeta’,.01);

[sys,T] = fe2ss(’CraigBampton 5 10’, ...

fe_case(mdl,’DofSet’,’IN’,314.01));

qbode(sys,freq*2*pi,’iiplot "Craig"’);

% Same with free modes
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[sys2,T2] = fe2ss(’Free 5 10’, ...

fe_case(mdl,’Remove’,’IN’,’DofLoad’,’IN’,314.01));

qbode(sys2,freq*2*pi,’iiplot "Free" -po’);

iicom(’iixOnly’,{’Craig’,’Free’});iicom(’;sub 1 1;ylog’)

Low level input format

The obsolete low level input arguments are those of fe reduc with the additional
damping and output shape matrix information.

[sys,TR] = fe2ss(’command’,m,k,mdof,b,rdof,C,c)

m, k symmetric real mass and stiffness matrix
mdof associated DOF definition vector describing DOFs in m and k

b input shape matrix describing unit loads of interest. Must be coherent with
mdof.

bdof alternate load description by a set of DOFs (bdof and mdof must have
different length)

rdof contains definitions for a set of DOFs forming an isostatic constraint (see
details below). When rdof is not given, it is determined through an LU
decomposition done before the usual factorization of the stiffness. This
operation takes time but may be useful with certain elements for which
geometric and numeric rigid body modes don’t coincide.

C damping model. Can specify a full order damping matrix using the same
DOFs as the system mass M and stiffness K or a scalar damping ratio to be
used in a proportional damping model.

c output shape matrix describing unit outputs of interest (see section 5.1 ).
Must be coherent with mdof.

Standard bases used for this purpose are available through the following commands.

See also demo fe, fe reduc, fe mk, nor2ss, nor2xf
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Purpose UI command function for the visualization of 3-D deformation plots

Syntax fecom

fecom CommandString

fecom(cf,’CommandString’)

fecom(’CommandString’,AdditionalArgument)

Description fecom provides a number of commands that can be used to manipulate 3-D de-
formation plots are handled by the feplot/fecom interface. A tutorial is given
section 4.4 . Other examples can be found in gartfe, gartte and other demos.
Details on the interface architecture are given under feplot.

This help lists all commands supported by the interface (calling fecom or feplot is
insensitive to the user).

• cf1=feplot returns a pointer to the current feplot figure (see section 4.4.3 ).
The handle is used to provide simplified calling formats for data initialization
and text information on the current configuration. You can create more than one
feplot figure with cf=feplot(FigHandle). If many feplot figures are open,
one can define the target giving an feplot figure handle cf as a first argument.

• without input arguments, fecom calls commode which provides a command mode
for entering different possibly chained fecom commands.

• the first input argument should be a string containing a single fecom command,
or a chain of semi-column separated commands starting with a semi-column
(fecom(’;com1;com2’)). Such commands are parsed by commode.

• some commands, such as TextNode, allow the use of additional arguments

AddNode,Line

These commands start to implement direct model modification in the feplot figure.
Sample calls are illustrated in section 2.2.1 .

Anim[,One][,Time,Freq][,col][nCycle i, Start i, Step]

Deformed structure animation. The animation is not movie based so that you can
actively rotate, change mode, ... without delay. The AnimStep command is only
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used when you really want to create movies.

The animation is started/interrupted using the animation button which calls
the AnimStart command. You can set animation properties in the General tab of
the feplot properties figure.

To control animation speed and replay you can use fecom(’AnimTime nStep tStep

tStart’) which specifies the number of times that you want the animation to run
(0 to run continuously), the minimum time spent at each time step (default zero),
and the wait time between successive runs of the same animation (default 0, only
works with time mode animation). You can also use fecom(’AnimTime StepInc’)

to define the step increment of the animation. You may need to fix the color limits
manually using cf.ua.clim=[0 1e3].

demosdt(’demobartime’); fecom AnimeTime5;

Accepted Anim options are

• Freq the default animation (use of AnimFreq to return to the default) adds a
certain phase shift (2*pi/nCycle) to the amplification factor of the deforma-
tions currently displayed and updates the plot. The default nCycle value is
obtained using feplot AnimnCycle25.

• Time starts the animation in a mode that increments deformations while pre-
serving the amplification. This is appropriate for animation of time responses.

• One animates the current axis only rather than the default (all).

• Col sets color animation to dual sided (alternates between a max value and
its opposite) rather than the default of no animation. You can animate colors
without deformations if you define colors for the current selection without
defining a deformation.

• Slider On,Off,Tog opens an slider to select deformation.

.

Animation speed is very dependent on the figure renderer. See the fecom Renderer

command.

AnimMovie step

SDT supports creation of movies using VideoWriter, imwrite, avifile. Typical
uses are illustrated below
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cf=demosdt(’DemoGartfePlot’); fecom(’ColordataEvalZ-edgeAlpha.1’);% Load an example

fecom(’MovieProfiles’) % List profiles (supported file types)

R1=fecom(’AnimMovie’,nas2up(’tempname.gif’)) % Base give a name

% More advances specify properties

tname=nas2up(’tempname.avi’);

R2=struct(’FileName’,tname, ...

’prop’,{{’Quality’,100,’FrameRate’,10}}, ... % VideoWriter properties

’PostFcn’,’camorbit(5,0)’); % Callback after each step

R2=fecom(’AnimMovie 10’,R2); % Here save 10 animation steps

% Use a Matlab Movie

R3=struct(’Profile’,{{’’,’Matlab’,’movie’}});
R3=fecom(’AnimMovie 10’,R3); % Get a Matlab Movie in R3.M

caxi, ca+

Change current axes. cax i makes the axis i (an integer number) current. ca+

makes the next axis current.

For example, fecom(’;sub2 1;cax1;show line;ca+;show sensor’) displays a line
plot in the first axis and a sensor plot in the second.

See also the Axes tab in the feplot properties figure and the iicom sub command.
In particular SubStep is used to increment the deformation numbers in each subplot.

ch[,c] [i,+,-,+i,-i],

Displayed deformation control. feplot is generally used to initialize a number of
deformations (as many as columns in mode). ch i selects the deformation(s) i to be
displayed (for example ch 1 2 overlays deformations 1 and 2). By default the first
deformation is displayed (for line and sensor plots with less than 5 deformations,
all deformations are overlaid). You can also increment/decrement using the ch+

and ch- commands or the + and - keys when the current axis is a plot axis. ch+i

increments by i from the current deformation.

You can also select deformations shown in the Deformations tab in the feplot

properties figure.

When using more than one axis (different views or deformations), the ch commands
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are applied to all feplot axes while the chc commands only apply to the current
axis.

The SubStep command is useful to obtain different deformations in a series of axes.
Thus to display the first 4 modes of a structure you can use: fecom(’;sub 1

1;ch1;sub 2 2 step’) where the sub 1 1 is used to make sure that everything
is reinitialized. You can then see the next four using fecom(’ch+4’).

For line and sensor plots and multiple channels, each deformation corresponds to
an object and is given a color following the ColorOrder of the current axis is used.
feplot line and sensor plots compatible with the use of setlines for line type
sequences.

ColorData [,seli] [Type] [,-alphai]

Color definitions Color information is defined for element selections (see the fecom

Sel commands) and should be defined with the selection using a call of the form,
cf.sel(i)={’SelectionString’,’ColorData’, ...}. fecom(’colordata seli

...’,...) is the corresponding low level call. See also fecom ColorBar and fecom

ColorLegend commands.

Accepted options for the command are

• -alpha val can be used to set face transparency. This is only valid using
OpenGL rendering and is not compatible with the display of masses (due to a
MATLAB rendering bug).

• -edgealpha val is used for edge transparency

• -ColorBarTitle "val" is used to open a colorbar with the appropriate title
(see ColorBar and ColorScale commands). A .ColorBar field can be used
for calls with a data structure input.

Accepted ColorData commands are listed below
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Eval fecom(’ColorData EvalZ’) does dynamic evaluation of the color field
based on current displacements. Accepted eval options are x,y, z, a for
single axis translations or translation amplitudes. RadZ,TanZ for radial
and tangential displacement (assumed cylindrical coordinates with z
axis).

Ener the preferred method is now to compute energies and display using
ColorDataElt as detailed in fe stress feplot. The old command
fecom(’ColorData EnerK’) is considered obsolete.

Group,

Mat, Pro,

i

fecom(’ColorDataGroup’) defines a color for each element group, Mat
for each MatId, and Pro for each ProId. ColorDataI gives a color for
each separate triplet. A color map can be given as a second argument.

ColorData Group -edge affects colors to nodes rather than surfaces and
displays a colored wire-frame.
The color animation mode is set to ScaleColorOne.

Stress the ColordataStressi command defines the selection color by calling
fe stress with command Stressi. The color animation mode is set
to ScaleColorOne. This requires material and element properties to be
defined with InitModel.

x, y, z,

all,DOF

fecom(’ColorDataZ’) defines a color that is proportional to mo-
tion in the z direction, ... ColorData19 will select DOF 19
(pressure). The color animation mode is set to ScaleColorDef.
fecom(’ColorDataALL’) defines a color that is proportional to motion
norm.
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Uniform in this mode the deformation/object index is used to define a uniform
color following the axis ColorOrder.

Elt
fecom(’ColorDataElt’,data) specifies element colors. Nominal for-
mat is a curve (see fe stress Ener and fe stress feplot) or a struct
with .data .EltId. Older formats are a struct with fields .data

.IndInElt or two arguments data,IndInElt.
Node low level call to set a color defined at nodes

fecom(’ColorData’,cmode) where cmode is a size(node,1) by
size(mode,2) matrix defining nodal colors for each deforma-
tion (these are assumed to be consistent with the current defor-
mation set). Values are scaled, see the ScaleColor command.
fecom(’ColorDataNode’,mode,mdof) defines nodal colors that are
proportional to the norm of the nodal displacement. You can obtain
nodal colors linked to the displacement in a particular direction using
i1=fe c(mdof,.03,’ind’);fecom(’ColorDataNode’, md0(i1,:),

mdof(i1)) even though for displacements in the xyz directions
fecom(’ColorDataZ’) is shorter.

Note: When displaying results colors are sometimes scaled using the amplification
factor used for deformations. Thus, to obtain color values that match your input
exactly, you must use the fecom ScaleColorOne mode. In some animations you
may need to fix the color limits manually using cf.ua.clim=[0 1e3].

Color [,seli] [Edge ..., Face ..., Legend]

Default EdgeColor and FaceColor properties of the different patches can be set to
none, interp, flat, white, ... using fecom(’ColorEdgeNone’), ...

fecom(’ColorEdge’,ColorSpec) where ColorSpec is any valid Matlab color spec-
ification, is also acceptable.

EdgeColor and FaceColor apply to the current selection. The optional Seli argu-
ment can be used to change the current selection before applying the command.

You can also modify the properties of a particular object using calls of the form
set(cf.o(i),’edgecolor’,ColorSpec) (see fecom go commands and illustrations
in gartte).

fecom(’ColorLegend’) uses the Matlab legend command to create a legend for
group, material or property colors. Of course, the associated selection must have
such colors defined with a Colordata[M,P,G] command.
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ColorBar,ColorMap

fecom(’colorbar’) calls the Matlab colorbar to display a color scale to the left of
the figure. feplot updates this scale when you change the deformation shown. Edit-
ing of display is done with additional arguments fecom(’colorbar’,’CustomField’,NewVal,...),
where CustomField is a standard colorbar field, and NewVal the custom value to
set. See comgui objSet for details on this generic SDT procedure.

fecom ColorBarOff is used to reinitialize a subplot without a color bar.

fecom(’colorMap’) calls ii plp(’ColormapBand’) to generate specialized color
maps. See ii plp ColorMap for details.

In the following example, one plots the actual z displacement using a custom color-
bar.

cf=demosdt(’DemoGartfePlot’);

fecom(’colordataEvalZ -edgealpha .1’)

% Disp in CM (*100), 2sided ([-cmax cmax]), instant (updated scale)

fecom(’ColorScale Unit 100 2Sided Instant’);

fecom(’colorbar’, ...

’units’,’normalized’,’position’,[.88 .5 .04 .4], ...

’YAxisLocation’,’left’,’FontSize’,12, ...

’@xlabel’,{’String’,’z [cm]’,’FontSize’,14})
fecom(’colormapjet(9)’);

A .ColorBar field can be used for ColorData calls with a data structure input.

ColorAlpha

fecom ColorAlpha starts a specific coloring mode where the transparency is indexed
on the colormap level. This can be used to highlight high strain areas in volume
models. -EdgeAlpha val may be used to make the edges transparent.

Uniform transparency of faces and edges is obtained using the FaceEdgeAlpha entry
in the object context menu or with a command of the form below.

d_ubeam; cf=feplot;

% Use Value based alpha and Set the edges to be 10% transparent

fecom(’ColorAlpha -edgealpha .1’);
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ColorScale

Once colors defined with fecom ColorData, multiple scaling modes are supported.
fecom(’ColorScale’) displays current mode. For calling examples, see fecom

ColorBar. The modes are accessible through the feplot:Anim menu.

• Tight corresponds to a value of [cmin cmax]. cf.ua.clim can be used to
force values.

• 1Sided corresponds to a value of [0 cmax]. This is typically used for energy
display.

• 2Sided corresponds to a value of [-cmax cmax]. This is typically used for
translations, stresses, ...

• Fixed the color limits set in cf.ua.clim are used.

• Off the values are set at during manual refreshes (calls to fecom(’ch’) but
not during animation. This mode is useful to limit computation costs but the
color may get updated at the end of an animation.

• Instant the values of cmin,cmax are obtained using the current deformation.

• Transient the values are obtained using a range of deformations. For time
domain animation, estimation is done dynamically, so that you may have to
run your animation cycle once to find the true limit.

• One does not scale color deformations (default starting with SDT 6.4)

• Unit coef defines a fixed color scaling coefficient. This is typically used to
provide more convenient units (1e-6 to have stress colors in MPa rather than
Pa for example).

• Def uses the amplification coefficient set for the associated deformation.

Cursor

If a time deformation is defined in the feplot figure, one can see time curve at a
specific node using fecom CursorNodeIiplot command. A node cursor then appears
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on the feplot displayed model, and clicking on a node shows corresponding curve in
the iiplot figure. Reciprocally one can show a cursor on the iiplot curve to show
corresponding time deformation in feplot using iicom CursorOnFeplot command.
Note that this functionality should only be used for small models.

Following example let you test this functionality.

model=femesh(’testhexa8’); cf=feplot(model); model=cf.mdl; % simple cube

data=struct(’def’,[1 1 1 1]’,’DOF’,[5 6 7 8]’+.03,...

’curve’,fe_curve(’test sin 10e-2 5000 1 5000e-4’));

model=fe_case(model,’DofLoad’,’topload’,data); % sin load

model=fe_case(model,’FixDof’,’basefix’,’z==0’); % fix base

model=fe_time(’timeopt newmark .25 .5 0 1e-4 5000’,model); % time computation

cf.def=fe_time(model); % show time animation

fecom CursorNodeIiplot % display cursor on feplot

ci=iiplot;iicom(ci,’ch’,{’NodeId’,5}) % Test the callback

iicom CursorOnFeplot % display cursor on iiplot

% Cursor following animation

fecom(sprintf(’AnimCursor%i Start100’,ci.opt(1)))

ga i

fecom(’ga i’) or cf.ga(i) gets pointers to the associated axes. See details under
the same iicom command. A typical application would be to set multiple axes to
the same view using iimouse(’view3’,cf.ga(:)).

go i

Get handles to fecom objects. This provides and easy mechanism to modify Matlab
properties of selected objects in the plot (see also the set command).

For example, set(fecom(’go2’),’linewidth’,2) will use thick lines for feplot

object 2 (in the current feplot axis).

You will probably find easier to use calls of the form cf=feplot (to get a handle
to the current feplot figure) followed by set (cf.o(2),’linewidth’,2). If the
feplot object is associated to more than one Matlab object (as for text, mixed
plate/beam, ...) you can access separate pointers using cf.o(2,1). The gartte

demo gives examples of how to use these commands.
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LabFcn

Titles for each deformation should be generated dynamically with the def.LabFcn

callback. def=fe def(’lab’,def) attempts to provide a meaningful default call-
back for the data present in the def structure.

The callback string is interpreted with a call to eval and should return a string
defining the label for each channel. Local variables for the callback are ch (number
of the channel currently displayed in feplot) and def (current deformation).

For example def.LabFcn=’sprintf(’’t=%.2f ms’’,def.data(ch)*1000)’ can be
used to display times of a transient response in ms.

fecom(’TitOpt111’) turns automatic titles on (see iicom). fecom(’TitOpt0’)

turns them off.

Legend, Head, ImWrite

Placing a simple title over the deformation can be to coarse. Defining a comgui

def.Legend field provides a more elaborate mechanism to dynamic generation of
multi-line legends and file name (to be used in iicom ImWrite).

The iicom head commands can be used to place additional titles in the figure.
cf.head returns a pointer to the header axis. Mode titles are actually placed in
the header axis in order to bypass inappropriate placement by Matlab when you
rotate/animate deformations.

Info

Displays information about the declared structure and the objects of the current
plot in the command window. This info is also returned when displaying the SDT
handle pointing to the feplot figure. Thus cf=feplot returns

cf =

FEPLOT in figure 2

Selections: cf.sel(1)=’groupall’;

cf.sel(2)=’WithNode {x>.5}’;
Deformations: [ {816x20} ]

Sensor Sets: [ 0 (current 1)]

Axis 3 objects:

cf.o(1)=’sel 2 def 1 ch 9 ty1’; % mesh

cf.o(2) % title
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which tells what data arrays are currently defined and lists feplot objects in the
current axis. fecom(’pro’) opens the feplot properties figure which provides
an interactive GUI for feplot manipulations.

InitDef[ , Back]

Initialization of deformations. You can (re)declare deformations at any point us-
ing cf.def(i)=def. Where cf a SDT handle to the figure of interest and i the
deformation set you which to modify (if only one is defined, cf.def is sufficient).
Acceptable forms to specify the deformation are

• def is a structure with fields .def, .DOF, .data. Note that .Legend and
.LabFcn can be used to control associated titles, see comgui def.Legend.

• {mode,mdof,data} a set of vectors, a vector of DOFs. For animation of test
results, mdof can be given using the 5 column format used to define arbitrary
sensor directions in fe sens. The optional data is a vector giving the meaning
of each column in mode. fecom head is used to generate the label.

• ci.Stack{’IdMain’}, see section 2.3.1 for identification procedures and sec-
tion 5.6 for the pole residue format

• [] resets deformations

• {def,’sensors’} defines sensor motion in a case where sensors are defined in
the case (that can be accessed through cf.CStack{’sensors’}). It is then
expected that def.DOF matches the length of the sensor tdof field).

• {def,TR} supports automatic expansion/restitution, see illustrated in the fe sens

WireExp command. The same result can be obtained by defining a def.TR

field.

feplot(cf,’InitDef’,data) is an alternate calling format that defines the current
deformation. InitDef updates all axes. InitDefBack returns without updating
plots.

load, InitModel

Initialization of structure characteristics. The preferred calling format is
cf.model=model where the fields of model are described in section 7.6 . This makes
sure that all model information is stored in the feplot figure. cf.mdl then provides
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a handle that lets you modify model properties in scripts without calling InitModel

again.

Lower level calls are cf.model={node,elt,bas}
(or feplot(’InitModel’ ,node,elt,bas) (see basis for bas format information).
InitModelBack does not update the plot (you may want to use this when changing
model before redefining new deformations).

The command is also called when using femesh plotelt, or upcom plotelt (which is
equivalent to cf.model=Up). Note that cf.model=UFS(1) for a data stack resulting
from ufread and cf.model=Up for type 3 superelement.

Load from file fecom(’Load’,’FileName’) will load the model from a binary FileName.mat

file. fecom(’FileImportInfo’) lists supported import formats.

fecom(’Load-Back’,FileName) is used to load, but not display the model (this
is used for very large model reading).

fecom(’Load-Hdf’,’FileName’) loads a model from a HDF5 .mat file but retains
most data at v handle pointers to the file.

InitSens

Initialization of sensors. You can declare sensors independently of the degrees of
freedom used to define deformations (this is in particular useful to show measurement
sensors while using modeshape expansion for deformations). Sensor and arrow object
show the sensor sets declared using initsens.

Translation sensors in global coordinates can be declared using a DOF definition vec-
tor cf.sens(i)={mdof} or feplot(’initsens’,mdof). In the first calling format,
the current sensor set is first set to i.

Sensors in other directions are declared by replacing mdof by a 5 column matrix
following the format

SensorId NodeId nx ny nz

with SensorId an arbitrary identifier (often 101.99 for sensor of unknown type at
node 101), NodeId the node number of the sensor position, [nx ny nz] a unit vector
giving the sensor direction in global coordinates (see section 3.1 ).

fe sens provides additional tools to manipulate sensors in arbitrary directions. Ex-
amples are given in the gartte demo.
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Plot

feplot(’plot’), the same as feplot without argument, refreshes axes of the cur-
rent figure. If refreshing the current axis results in an error (which may occasionally
happen if you modify the plot externally), use clf;iicom(’sub’) which will check
the consistency of objects declared in each axis. Note that this will delete Text

objects as well as objects created using the SetObject command.

Pro

feplot(’pro’) initializes or refreshes the feplot property GUI. You can also use
the Edit:Feplot Properties ... menu. A description of this GUI is made in sec-
tion 4.4 .

feplot(’ProViewOn’) turns entry viewing on.

Renderer[Opengl,zBuffer,Painters][,default]

This command can be used to switch the renderer used by feplot. Animation speed
is very dependent on the figure renderer. When creating the figure fecom tries to
guess the proper renderer to use (painters, zbuffer, opengl), but you may want to
change it (using the Feplot:Render menu or set(gcf,’renderer’, ’painters’),
...). painters is still good for wire frame views, zbuffer has very few bugs but is
very slow on some platforms, opengl is generally fastest but still has some significant
rendering bugs on UNIX platforms.

To avoid crashes when opening feplot in OpenGL mode use cingui(’Renderer

zbuffer default’) in your Matlab startup file.

Save, FileExport

Save the model to a .mat file or export it to supported formats.
fecom(’FileExportInfo’) lists supported export formats.

fecom(’Save -savesel file.mat’ also saves the selection(s) which allows faster
reload of large models. fecom(’Save -savedef file.mat’ also saves the deforma-
tions(s).
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Scale [ ,Defs, Dofi, equal, match, max, one]

Automatic deformation scaling. Scaling of deformations is the use of an amplification
factor very often needed to actually see anything. A deformation scaling coefficient
is associated with each deformed object. The Scale commands let you modify all
objects of the current axis as a group.

You can specify either a length associated with the maximum amplitude or the
scaling coefficient.

The base coefficient scc for this amplification is set using fecom(’ScaleCoef scc’),
while fecom(’ScaleDef scd’) sets the target length. fecom(’scd 0.01’) is an
accepted shortcut. If scd is zero an automatic amplitude is used. You can also
modify the scaling deformation using the l or L keys (see iimouse).

fecom supports various scaling modes summarized in the table below. You can set
this modes with fecom(’scalemax’) ... commands.

Scaling
mode

Scaling of 1st deformation Scaling of other deformations

max Amplitude of Max DOF set to scd. Amplitude of Max DOF set to scd.
equal Amplitude of Max DOF set to scd. Amplitude of other deformations

equal to the first one, and ampli-
tude of other objects equal to the
first one.

match Amplitude of Max DOF set to scd. Amplitude of other deformations
set to optimize superposition.
When using two deformation sets,
rather than two modes in the
same set, their DOFs must be
compatible.

coef Deformation amplitude multiplied
by scd.

Same as first deformation.

one Sets scd to 1 and uses coef mode
(so further changes to scd lead to
amplification that is not equal to
1).

Same as first deformation.

Warning : using ScaleMax or AnimFreq can lead to negative or complex amplifi-
cation factors which only makes sense for frequency domain shapes.
fecom(’scalecoef’) will come back to positive amplification of each object in the
current feplot axis.
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ScaleDofi is used to force the scaling DOF to be i. As usual, accepted values for i
are of the form NodeId.DofId (1.03 for example). If i is zero or not a valid DOF
number an automatic selection is performed. ScaleDof can only be used with a
single deformation set.

You can change the scale mode using the FEplot:Scale menu or in the Axes tab
of the feplot properties figure.

Sel [ElementSelectors, GroupAll, Reset]

Selection of displayed elements. What elements are to be displayed in a given object
is based on the definition of a selection (see section 7.12 ).

The default command is ’GroupAll’ which selects all elements of all element groups
(see section 7.2 for details on model description matrices). cf.sel(1)=’Group1

3:5’ will select groups 1, 3, 4 and 5. cf.sel(1)=’Group1 & ProId 2 & WithNode

{x>0}’ would be a more complex selection example.

To define other properties associated with the selection (fecom ColorData in partic-
ular), use a call of the form cf.sel(i)={’SelectionString’,’OtherProp’,OtherPropData}.

To return to the default selection use fecom(’SelReset’).

fecom(’Sel ... -linface’) can be used to generate first order faces for second
order elements, which allows faster animation.

SetObjectcf.o(1)= ... fecomSetObjset i [,ty j] ...

Set properties of object i. Plots generated by feplot are composed of a number of
objects with basic properties

• ty 1 (surface view), 2 (wire frame view), 3 (stick view of sensors), 4 (unde-
formed structure), 5 (node text labels), 6 (DOF text labels), 7 (arrow view of
sensors).

def k index of the deformation set, stored in cf.def(i), seefecom InitDef.

ch k channel (column of deformation)

sel k index of display selection. See fecom Sel.

scc k scaling coefficient for the deformation.
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The following example illustrates how the SetObject can be used to create new
objects or edit properties of existing ones.

cf=feplot(femesh(’testquad4 divide 2 2’));

cf.sel(2)=’withnode {x==0}’;
% Display objects in current axis

cf

% Copy and edit one of the object lines to modify properties

cf.o(1)=’sel 1 def 1 ch 0 ty1’; % make type 1 (surface)

% Set other MATLAB patch properties

cf.o(1)={’sel 2 def 1 ch 0 ty1’,’marker’,’o’}
% Multiple object set, object index is row in cell array

fecom(cf,’setobject’,{’ty1 sel 2 ty’,’ty2 sel 1’})
% remove second object by empty string

cf.o(2)=’’

Show [patch,line,sensor,arrow, ...]

Basic plots are easily created using the show commands which are available in the
FEplot:Show ... menu).
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patch surface view with hidden face removal and possible color coding (ini-
tialized by fecom(’ShowPatch’)). cf.o(1) object type is 1. For color
coding, see colordata commands.

line wire frame plot of the deformed structure (initialized by
fecom(’ShowLine’)). cf.o(2) object type is 2.

sens Sensor plots with sticks at sensor locations in the direction and with the
amplitude of the response (initialized by fecom(’ShowSen’)). cf.o(2)
object type is 3.

arrow Sensor plots with arrows at sensor locations in the direction and with
the amplitude of the response (initialized by fecom(’ShowArrow’)).
cf.o(2) object type is 7.

DefArrow Deformation plots with lines connecting the deformed and undeformed
node positions. (initialized by fecom(’ShowDef’)). cf.o(2) object
type is 8.

Baslen shows triaxes centered a the position of each local basis. The length

of the triax arrow is specified by len.
FEM only shows FEM element groups for models mixing test and FEM in-

formation
test only shows test element groups for models mixing test and FEM infor-

mation
links shows a standard plot with the test and FEM meshes as well as links

used for topological correlation (see fe sens).
map fecom(’ShowMap’,MAP) displays the vector map specified

in MAP (see feutil GetNormalMap). Nota : to see the
real orientation, use the fecom(’scaleone’); instruction.
fecom(’ShowUndef’,MAP) also displays the underlying structure.
MAP can also be a stack entry containing orientation information
(see pro.MAP) or an element selection, as in the example below
demosdt(’demogartfeplot’);fecom(’ShowMap’,’EltName quad4’)

NodeMark fecom(’shownodemark’,1:10,’color’,’r’,’marker’,’o’) displays
the node positions of given NodeId (here 1 to 10) as a line. Here a se-
ries of red points with a o marker. You can also display positions with
fecom(’shownodemark’,[x y z],’marker’,’x’). Command option
-noclear allows to overlay several shownodemark plots, e.g. to show
two distinct sets of nodes with different colors at once.

Traj fecom(’ShowTraj’,(1:10)’) displays the trajectories of the node of
NodeIds 1 to 10 for current deformation. Command option -axis is
used to display axis node trajectories.

2def is used for cases where you want to compare two deformations sets. The
first two objects only differ but the deformation set they point to (1 and
2 respectively). A typical call would be cf.def(1)={md1,mdof,f1};
cf.def(2)={md2,mdof,f2}; fecom(’show2def’). 431
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Once the basic plot created, you can add other objects or modify the current list
using the Text and SetObject commands.

Sub [i j ], SubIso, SubStep

Drawing figure subdivision (see iicom for more details). This lets you draw more
than one view of the same structure in different axes. In particular the SubIso

command gives you four different views of the same structure/deformation.

SubStep or Sub i j Step increments the deformation shown in each subplot. This
command is useful to show various modeshapes in the same figure. Depending on
the initial state of the figure, you may have to first set all axes to the same channel.
Use fecom(’ch1;sub 2 2 step’) for example.

Text [off, Node [,Select], Dof d]

Node/DOF text display. TextOff removes all text objects from the current feplot
axis. TextNode displays the numbers of the nodes in FEnode. You can display only
certain node numbers by a node selection command Select. Or giving node numbers
in fecom(’textnode’,i). Text properties can be given as extract arguments, for
example fecom(’textnode’,i,’FontSize’,12,’Color’,’r’).

TextDOF displays the sensor node and direction for the current sensor

TextDOF Name displays sensor labels of a cf.CStack{’Name’} SenDof entry. Ad-
ditional arguments can be used to modify the text properties. fecom(’textdof’)

displays text linked to currently declared sensors, see feplot InitSens command
(note that this command is being replaced by the use of SensDof entries).

TitOpt [ ,c] i

Automated title/label generation options. TitOpt i sets title options for all axes to
the value i. i is a three digit number with units corresponding to title, decades to
xlabel and hundreds to ylabel. By adding a c after the command (TitOptC 111

for example), the choice is only applied to the current axis.

The actual meaning of options depends on the plot function (see iiplot). For
feplot, titles are shown for a non zero title option and not shown otherwise. Title
strings for feplot axes are defined using the fecom head command.
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Triax [ , On, Off]

Orientation triax. Orientation of the plotting axis is shown using a small triax.
Triax initializes the triax axis or updates its orientation. TriaxOff deletes the
triax axis (in some plots you do not want it to show). Each triax is associated to a
given axis and follows its orientation. The triax is initially positioned at the lower
left corner of the axis but you drag it with your mouse.

Finally can use fecom(’triaxc’) to generate a triax in a single active subplot.

Undef [ , Dot, Line, None]

Undeformed structure appearance. The undeformed structure is shown as a line
which is made visible/invisible using UnDef (UnDefNone forces an invisible mesh).
When visible, the line can show the node locations (use UnDefDot) or link nodes
with dotted lines (use UnDefLine).

View [...]

Orientation control. See iimouse view.

See also feplot, fe exp, feutil
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Purpose Finite element mesh handling utilities.

Syntax femesh CommandString

femesh(’CommandString’)

[out,out1] = femesh(’CommandString’,in1,in2)

Description You should use feutil function that provides equivalent commands to femesh but
using model data structure.

femesh provides a number of tools for mesh creation and manipulation. femesh uses
global variables to define the proper object of which to apply a command. femesh

uses the following standard global variables which are declared as global in your
workspace when you call femesh

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

By default, femesh automatically uses base workspace definitions of the standard
global variables (even if they are not declared as global). When using the standard
global variables within functions, you should always declare them as global at the
beginning of your function. If you don’t declare them as global modifications that
you perform will not be taken into account, unless you call femesh from your func-
tion which will declare the variables as global there too. The only thing that you
should avoid is to use clear (instead of clear global) within a function and then
reinitialize the variable to something non-zero. In such cases the global variable is
used and a warning is passed.

Available femesh commands are

;

Command chaining. Commands with no input (other than the command) or output
argument, can be chained using a call of the form femesh(’;Com1;Com2’). commode
is then used for command parsing.
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Add FEeli FEelj, AddSel

Combine two FE model description matrices. The characters i and j can specify any
of the main t, selected 0 and alternate 1 finite element model description matrices.
The elements in the model matrix FEelj are appended to those of FEeli.

AddSel is equivalent to AddFEeltFEel0 which adds the selection FEel0 to the main
model FEelt.

This is an example of the creation of FEelt using 2 selections (FEel0 and FEel1)

femesh(’Reset’);

femesh(’Testquad4’); % one quad4 created

femesh(’Divide’,[0 .1 .2 1],[0 .3 1]); % divisions

FEel0=FEel0(1:end-1,:); % suppress 1 element in FEel0

femesh(’AddSel’); % add FEel0 into FEelt

FEel1=[Inf abs(’tria3’);9 10 12 1 1 0];% create FEel1

femesh(’Add FEelt FEel1’); % add FEel1 into FEelt

femesh PlotElt % plot FEelt

AddNode [,New] [, From i] [,epsl val]

Combine, append (without/with new) FEn0 to FEnode. Additional uses of AddNode
are provided using the format

[AllNode,ind]=femesh(’AddNode’,OldNode,NewNode);

which combines NewNode to OldNode. AddNode finds nodes in NewNode that coincide
with nodes in OldNode and appends other nodes to form AllNode. ind gives the
indices of the NewNode nodes in the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates.
The minimal distance below which two nodes are considered identical is given by
sdtdef epsl (default 1e-6).

[AllNode,ind]=femesh(’AddNode From 10000’,OldNode,NewNode); gives node num-
bers starting at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb. See feutil AddNode for
more details.
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AddTest [,-EGID i][,NodeShift,Merge,Combine]

Combine test and analysis models. When combining test and analysis models you
typically want to overlay a detailed finite element mesh with a coarse wire-frame
representation of the test configuration. These models coming from different origins
you will want combine the two models in FEelt.

By default the node sets are considered to be disjoint. New nodes are added
starting from max(FEnode(:,1))+1 or from NodeShift+1 if the argument is speci-
fied. Thus femesh(’addtest NodeShift’,TNode,TElt) adds test nodes TNode to
FEnode while adding NodeShift to their initial identification number. The same
NodeShift is added to node numbers in TElt which is appended to FEelt. TElt

can be a wire frame matrix read with ufread.

With merge it is assumed that some nodes are common but their numbering is not co-
herent. femesh(’addtest merge’,NewNode,NewElt) can also be used to merge to
FEM models. Non coincident nodes (as defined by the AddNode command) are added
to FEnode and NewElt is renumbered according to the new FEnode. Merge-Edge is
used to force mid-side nodes to be common if the end nodes are.

With combine it is assumed that some nodes are common and their numbering is
coherent. Nodes with new NodeId values are added to FEnode while common NodeId

values are assumed to be located at the same positions.

You can specify an EGID value for the elements that are added using AddTest -EGID

-1. In particular negative EGID values are display groups so that they will be ignored
in model assembly operations.

The combined models can then be used to create the test/analysis correlation using
fe sens. An application is given in the gartte demo, where a procedure to match
initially different test and FE coordinate frames is outlined.

Divide div1 div2 div3

Mesh refinement by division of elements. Divide applies to all groups in FEel0.

See equivalent feutil Divide command.

% Example 1 : beam1

femesh(’Reset’);

femesh(’;Testbeam1;Divide 3;PlotEl0’); % divide by 3

fecom TextNode
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% Example 2 : you may create a command string

number=3;

st=sprintf(’;Testbeam1;Divide %f;PlotEl0’,number);

femesh(’Reset’);

femesh(st);

fecom TextNode

% Example 3 : you may use uneven division

femesh(’Reset’);femesh(’testquad4’); % one quad4 created

femesh(’DivideElt’,[0 .1 .2 1],[0 .3 1]);

femesh PlotEl0

DivideInGroups

Finds groups of FEel0 elements that are not connected (no common node) and places
each of these groups in a single element group.

femesh(’Reset’);femesh(’testquad4’); % one quad4 created

femesh(’RepeatSel 2 0 0 1’); % 2 quad4 in the same group

femesh(’DivideInGroups’); % 2 quad4 in 2 groups

DivideGroup i ElementSelectors

Divides a single group i of FEelt in two element groups. The first new element
group is defined based on the element selectors (see section 7.12 ).

Extrude nRep tx ty tz

Extrusion. Nodes, lines or surfaces that are currently selected (put in FEel0) are
extruded nRep times with global translations tx ty tz.

You can create irregular extrusion giving a second argument (positions of the sections
for an axis such that tx ty tz is the unit vector).

See feutil Extrude for more details.

% Example 1 : beam

femesh(’Reset’);

femesh(’Testbeam1’); % one beam1 created
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femesh(’;Extrude 2 1 0 0;PlotEl0’); % 2 extrusions in x direction

% Example 2 : you may create the command string

number=2;step=[1 0 0];

st=sprintf(’;Testbeam1;Extrude %f %f %f %f’,[number step]);

femesh(’Reset’);

femesh(st); femesh PlotEl0

% Example 3 : you may use uneven extrusions in z direction

femesh(’Reset’); femesh(’Testquad4’)

femesh(’Extrude 0 0 0 1’, [0 .1 .2 .5 1]); %

% 0 0 0 1 : 1 extrusion in z direction

% [0 .1 .2 .5 1] : where extrusions are made

femesh PlotEl0

FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling
format is

[ind,elt] = femesh(’FindElt withnode 1:10’)

where ind gives the row numbers of the elements (but not the header rows except for
unique superelements which are only associated to a header row) and elt (optional)
the associated element description matrix. FindEl0 applies to elements in FEel0.

When operators are accepted, equality and inequality operators can be used. Thus
group~=[3 7] or pro < 5 are acceptable commands. See also SelElt, RemoveElt
and DivideGroup, the gartfe demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of selectors listed in section 7.11 .

Different selectors can be chained using the logical operations & (finds nodes that
verify both conditions), | (finds nodes that verify one or both conditions). Condition
combinations are always evaluated from left to right (parentheses are not accepted).

Output arguments are the numbers NodeID of the selected nodes and the selected
nodes node as a second optional output argument.

As an example you can show node numbers on the right half of the z==0 plane using

438



the commands

fecom(’TextNode’,femesh(’FindNode z==0 & x>0’))

Following example puts markers on selected nodes

model=demosdt(’demo ubeam’); femesh(model); % load U-Beam model

fecom(’ShowNodeMark’,femesh(’FindNode z>1.25’),’color’,’r’)

fecom(’ShowNodeMark’,femesh(’FindNode x>0.2*z|x<-0.2*z’),...

’color’,’g’,’marker’,’o’)

Note that you can give numeric arguments to the command as additional femesh
arguments. Thus the command above could also have been written

fecom(’TextNode’,femesh(’FindNode z== & x>=’,0,0)))

See also the gartfe demo.

Info [ ,FEeli, Nodei]

Information on global variables. Info by itself gives information on all variables.
The additional arguments FEelt ... can be used to specify any of the main t, se-
lected 0 and alternate 1 finite element model description matrices. InfoNodei gives
information about all elements that are connected to node i. To get information in
FEelt and in FEnode, you may write

femesh(’InfoElt’) or femesh(’InfoNode’)

Join [,el0] [group i, EName]

Join the groups i or all the groups of type EName. JoinAll joins all the groups that
have the same element name. By default this operation is applied to FEelt but you
can apply it to FEel0 by adding the el0 option to the command. Note that with
the selection by group number, you can only join groups of the same type (with the
same element name).

femesh(’Reset’); femesh(’;Test2bay;PlotElt’);

% Join using group ID

femesh(’InfoElt’); % 2 groups at this step

femesh JoinGroup1:2 % 1 group now

% Join using element name

femesh(’Reset’); femesh(’Test2bay;PlotElt’);

femesh Joinbeam1 % 1 group now

439



femesh

Model [,0]

model=femesh(’Model’) returns the FEM structure (see section 7.6 ) with fields
model.Node=FEnode and model.Elt=FEelt as well as other fields that may be stored
in the FE variable that is persistent in femesh. model=femesh(’Model0’) uses
model.Elt=FEel0.

ObjectBeamLine i, ObjectMass i

Create a group of beam1 elements. The node numbers i define a series of nodes
that form a continuous beam (for discontinuities use 0), that is placed in FEel0 as
a single group of beam1 elements.

For example femesh(’ObjectBeamLine 1:3 0 4 5’) creates a group of three beam1
elements between nodes 1 2, 2 3, and 4 5.

An alternate call is femesh(’ObjectBeamLine’,ind) where ind is a vector con-
taining the node numbers. You can also specify a element name other than beam1

and properties to be placed in columns 3 and more using femesh(’ObjectBeamLine

-EltName’,ind,prop).

femesh(’ObjectMass 1:3’) creates a group of concentrated mass1 elements at the
declared nodes.

femesh(’Reset’)

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...

3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176];

prop=[100 100 1.1 0 0]; % MatId ProId nx ny nz

femesh(’ObjectBeamLine’,1:4,prop);femesh(’AddSel’);

%or femesh(’;ObjectBeamLine 1 2 0 2 3 0 3 4;AddSel’);

% or femesh(’ObjectBeamLine’,1:4);

femesh(’ObjectMass’,3,[1.1 1.1 1.1])

femesh AddSel

femesh PlotElt; fecom TextNode

ObjectHoleInPlate

Create a quad4 mesh of a hole in a plate. The format is ’ObjectHoleInPlate N0

N1 N2 r1 r2 ND1 ND2 NQ’. See feutil ObjectHoleInPlate for more details.

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

femesh(’ObjectHoleInPlate 1 2 3 .5 .5 3 4 4’);
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femesh(’Divide 3 4’); % 3 divisions around, 4 divisions along radii

femesh PlotEl0

% You could also use the call

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

% n1 n2 n3 r1 r2 nd1 nd2 nq

r1=[ 1 2 3 .5 .5 3 4 4];

st=sprintf(’ObjectHoleInPlate %f %f %f %f %f %f %f %f’,r1);

femesh(st); femesh(’PlotEl0’)

ObjectHoleInBlock

Create a hexa8 mesh of a hole in a rectangular block. The format is ’ObjectHoleInBlock
x0 y0 z0 nx1 ny1 nz1 nx3 ny3 nz3 dim1 dim2 dim3 r nd1 nd2 nd3 ndr’. See
feutil ObjectHoleInBlock for more details.

femesh(’Reset’)

femesh(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 1 2 3 3 .7 8 8 3 2’)

femesh(’PlotEl0’)

Object[Quad,Beam,Hexa] MatId ProId

Create or add a model containing quad4 elements. The user must define a rectan-
gular domain delimited by four nodes and the division in each direction. The result
is a regular mesh.

For example femesh(’ObjectQuad 10 11’,nodes,4,2) returns model with 4 and
2 divisions in each direction with a MatId 10 and a ProId 11.

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

femesh(’Objectquad 1 1’,node,4,3); % creates model

femesh(’PlotElt’)

node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];

femesh(’Objectquad 2 3’,node,3,2); % matid=2, proid=3

femesh(’PlotElt’); femesh Info

Divisions may be specified using a vector between [0,1] :

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

femesh(’Objectquad 1 1’,node,[0 .2 .6 1],linspace(0,1,10));

femesh(’PlotElt’);
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Other supported object topologies are beams and hexahedrons. For example

femesh(’Reset’)

node = [0 0 0; 2 0 0;1 3 0; 1 3 1];

femesh(’Objectbeam 3 10’,node(1:2,:),4); % creates model

femesh(’AddSel’);

femesh(’Objecthexa 4 11’,node,3,2,5); % creates model

femesh(’AddSel’);

femesh PlotElt; femesh Info

Object [Arc, Annulus, Circle,Cylinder,Disk]

Build selected object in FEel0. See feutil Object for a list of available objects.
For example:

femesh(’Reset’)

femesh(’;ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel’);

femesh(’;ObjectArc 0 0 0 1 0 0 0 1 0 30 1;AddSel’);

femesh(’;ObjectCircle 1 1 1 2 0 0 1 30;AddSel’);

femesh(’;ObjectCircle 1 1 3 2 0 0 1 30;AddSel’);

femesh(’;ObjectCylinder 0 0 0 0 0 4 2 10 20;AddSel’);

femesh(’;ObjectDisk 0 0 0 3 0 0 1 10 3;AddSel’);

femesh(’;ObjectAnnulus 0 0 0 2 3 0 0 1 10 3;AddSel’);

femesh(’PlotElt’)

Optim [Model, NodeNum, EltCheck]

OptimModel removes nodes unused in FEelt from FEnode.

OptimNodeNum does a permutation of nodes in FEnode such that the expected ma-
trix bandwidth is smaller. This is only useful to export models, since here DOF
renumbering is performed by fe mk.

OptimEltCheck attempts to fix geometry pathologies (warped elements) in quad4,
hexa8 and penta6 elements.

Orient, Orient i [ , n nx ny nz]

Orient elements. For volumes and 2-D elements which have a defined orientation,
femesh(’Orient’) calls element functions with standard material properties to de-
termine negative volume orientation and permute nodes if needed. This is in par-
ticular needed when generating models via Extrude or Divide operations which do
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not necessarily result in appropriate orientation (see integrules). When elements
are too distorted, you may have a locally negative volume. A warning about warped
volumes is then passed. You should then correct your mesh. Note that for 2D
meshes you need to use 2D topology holders q4p, t3p, ....

Orient normal of shell elements. For plate/shell elements (elements with parents
of type quad4, quadb or tria3) in groups i of FEelt, this command computes the
local normal and checks whether it is directed towards the node located at nx ny

nz. If not, the element nodes are permuted so that a proper orientation is achieved.
A -neg option can be added at the end of the command to force orientation away
rather than towards the nearest node.

femesh(’Orient i’,node) can also be used to specify a list of orientation nodes.
For each element, the closest node in node is then used for the orientation. node can
be a standard 7 column node matrix or just have 3 columns with global positions.

For example

% Init example

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3;’)

FEelt=FEel0; femesh(’DivideGroup1 withnode1’);

% Orient elements in group 2 away from [0 0 -1]

femesh(’Orient 2 n 0 0 -1 -neg’);

Plot [Elt, El0]

Plot selected model. PlotElt calls feplot to initialize a plot of the model contained
in FEelt. PlotEl0 does the same for FEel0. This command is really just the
declaration of a new model using feplot(’InitModel’,femesh(’Model’)).

Once the plot initialized you can modify it using feplot and fecom.

Lin2quad, Quad2Lin, Quad2Tria, etc.

Basic element type transformations.

Element type transformation are applied to elements in FEel0. See feutil Lin2Quad

fore more details and a list of transformations.

% create 4 quad4

femesh(’;Testquad4;Divide 2 3’);

femesh(’Quad2Tria’); % conversion
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femesh PlotEl0

% create a quad, transform to triangles, divide each triangle in 4

femesh(’;Testquad4;Quad2Tria;Divide2;PlotEl0;Info’);

% lin2quad example:

femesh(’Reset’); femesh(’Testhexa8’);

femesh(’Lin2Quad epsl .01’);

femesh(’Info’)

RefineBeam l

Mesh refinement. This function searches FEel0 for beam elements and divides ele-
ments so that no element is longer than l.

Remove[Elt,El0] ElementSelectors

Element removal. This function searches FEelt or FEel0 for elements which verify
certain properties selected by ElementSelectors and removes these elements from
the model description matrix. A sample call would be

% create 4 quad4

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3’);

femesh(’RemoveEl0 WithNode 1’)

femesh PlotEl0

RepeatSel nITE tx ty tz

Element group translation/duplication. RepeatSel repeats the selected elements
(FEel0) nITE times with global axis translations tx ty tz between each repetition
of the group. If needed, new nodes are added to FEnode. An example is treated in
the d truss demo.

femesh(’Reset’); femesh(’;Testquad4;Divide 2 3’);

femesh(’;RepeatSel 3 2 0 0’); % 3 repetitions, translation x=2

femesh PlotEl0

% alternate call:

% number, direction

% femesh(sprintf(’;repeatsel %f %f %f %f’, 3, [2 0 0]))
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Rev nDiv OrigID Ang nx ny nz

Revolution of selected elements in FEel0. See feutil Rev for more details. For
example:

FEnode = [1 0 0 0 .2 0 0; 2 0 0 0 .5 1 0; ...

3 0 0 0 .5 1.5 0; 4 0 0 0 .3 2 0];

femesh(’ObjectBeamLine’,1:4);

femesh(’Divide 3’)

femesh(’Rev 40 o 0 0 0 360 0 1 0’);

femesh PlotEl0

fecom(’;Triax;View 3;ShowPatch’)

% An alternate calling format would be

% divi origin angle direct

%r1 = [40 0 0 0 360 0 1 0];

%femesh(sprintf(’Rev %f o %f %f %f %f %f %f %f’,r1))

RotateSel OrigID Ang nx ny nz

Rotation. The selected elements FEel0 are rotated by the angle Ang (degrees) around
an axis passing trough the node of number OrigID (or the origin of the global
coordinate system) and of direction [nx ny nz] (the default is the z axis [0 0 1]).
The origin can also be specified by the xyz values preceded by an o

femesh(’RotateSel o 2.0 2.0 2.0 90 1 0 0’)

This is an example of the rotation of FEel0

femesh(’Reset’);

femesh(’;Testquad4;Divide 2 3’);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’;RotateSel %f %f %f %f %f’,[1 30 0 0 1]);

femesh(st); femesh PlotEl0

fecom(’;Triax;TextNode’); axis on

Sel [Elt,El0] ElementSelectors

Element selection. SelElt places in the selected model FEel0 elements of FEelt

that verify certain conditions. You can also select elements within FEel0 with the
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SelEl0 command. Available element selection commands are described under the
FindElt command and section 7.12 .

femesh(’SelElt ElementSelectors’).

SelGroup i, SelNode i

Element group selection. The element group i of FEelt is placed in FEel0 (selected
model). SelGroupi is equivalent to SelEltGroupi.

Node selection. The node(s) i of FEnode are placed in FEn0 (selected nodes).

SetGroup [i,name] [Mat j, Pro k, EGID e, Name s]

Set properties of a group. For group(s) of FEelt selector by number i, name name, or
all you can modify the material property identifier j, the element property identifier
k of all elements and/or the element group identifier e or name s. For example

femesh(’SetGroup1:3 pro 4’)

femesh(’SetGroup rigid name celas’)

If you know the column of a set of element rows that you want to modify, calls of
the form FEelt(femesh(’FindEltSelectors’),Column)= Value can also be used.

model=femesh(’Testubeamplot’);

FEelt(femesh(’FindEltwithnode {x==-.5}’),9)=2;
femesh PlotElt;

cf.sel={’groupall’,’colordatamat’};

You can also use femesh(’set groupa 1:3 pro 4’) to modify properties in FEel0.

SymSel OrigID nx ny nz

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with
respect to a plane going through the node of number OrigID (node 0 is taken to
be the origin of the global coordinate system) and normal to the vector [nx ny

nz]. If needed, new nodes are added to FEnode. Related commands are TransSel,
RotateSel and RepeatSel.
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Some unique element model examples. See list with femesh(’TestList’). For
example a simple cube model can be created using

model=femesh(’TestHexa8’); % hexa8 test element

TransSel tx ty tz

Translation of the selected element groups. TransSel replaces elements of FEel0
by their translation of a vector [tx ty tz] (in global coordinates). If needed,
new nodes are added to FEnode. Related commands are SymSel, RotateSel and
RepeatSel.

femesh(’Reset’);

femesh(’;Testquad4;Divide 2 3;AddSel’);

femesh(’;TransSel 3 1 0;AddSel’); % Translation of [3 1 0]

femesh PlotElt

fecom(’;Triax;TextNode’)

UnJoin Gp1 Gp2

Duplicate nodes which are common to two groups. To allow the creation of interfaces
with partial coupling of nodal degrees of freedom, UnJoin determines which nodes
are common to the element groups Gp1 and Gp2 of FEelt, duplicates them and
changes the node numbers in Gp2 to correspond to the duplicate set of nodes. In
the following call with output arguments, the columns of the matrix InterNode give
the numbers of the interface nodes in each group InterNode = femesh(’UnJoin 1

2’).

femesh(’Reset’); femesh(’Test2bay’);

femesh(’FindNode group1 & group2’) % nodes 3 4 are common

femesh(’UnJoin 1 2’);

femesh(’FindNode group1 & group2’) % no longer any common node

A more general call allows to separate nodes that are common to two sets of ele-
ments femesh(’UnJoin’,’Selection1’,’Selection2’). Elements in Selection1

are left unchanged while nodes in Selection2 that are also in Selection1 are du-
plicated.

See also fe mk, fecom, feplot, section 4.5 , demos gartfe, d ubeam, beambar ...
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Purpose Finite element mesh handling utilities.

Syntax
[out,out1] = feutil(’CommandString’,model,...)

Description feutil provides a number of tools for mesh creation and manipulation.

Some commands return the model structure whereas some others return only the
element matrix. To mesh a complex structure one can mesh each subpart in a
different model structure (model, mo1, ...) and combine each part using AddTest

command. To handle complex model combination (not only meshes but whole
models with materials, bases, ...), one can use the CombineModel command.

Available feutil commands are

Advanced

Advanced command with non trivial input/output formats or detailed options are
listed under feutila.

AddElt

model.Elt=feutil(’AddElt’,model.Elt,’EltName’,data)

This command can be used to add new elements to a model. EltName gives the
element name used to fill the header. data describes elements to add (one row per
element). Following example adds celas elements to the basis of a simple cube
model.

% Adding elements to a model

femesh(’Reset’); model=femesh(’Testhexa8’); % simple cube model

data=[1 0 123 0 0 1 1e3; 2 0 123 0 0 1 1e3;

3 0 123 0 0 1 1e3; 4 0 123 0 0 1 1e3]; % n1 n2 dof1 dof2 EltId ProId k

model.Elt=feutil(’AddElt’,model.Elt,’celas’,data);

cf=feplot(model);

AddNode[,New] [, From i] [,epsl val]

[AllNode,ind]=feutil(’AddNode’,OldNode,NewNode);
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Combine (without command option New) or append (with command option New)
NewNode to OldNode. Without command option New, AddNode combines NewNode

to OldNode: it finds nodes in NewNode that coincide with nodes in OldNode and
appends other nodes to form AllNode. With command option New, AddNode simply
appends NewNode to OldNode.

AllNode is the new node matrix with added nodes. ind (optional) gives the indices
of the NewNode nodes in the AllNode matrix.

NewNode can be specified as a matrix with three columns giving xyz coordinates.
The minimal distance below which two nodes are considered identical is given by
sdtdef epsl (default 1e-6).

[AllNode,ind]=feutil(’AddNode From 10000’,OldNode,NewNode); gives node num-
bers starting at 10000 for nodes in NewNode that are not in OldNode.

SDT uses an optimized algorithm available in feutilb.

By default, nodes that repeated in NewNode are coalesced onto the same node (a
single new node is added). If there is not need for that coalescence, you can get
faster results with AddNode-nocoal.

ind=feutilb(’AddNode -near epsl value’,n1,n2); returns a sparse matrix with
non zero values in a given colum indicating of n1 nodes that are within epsl of each
n2 node (rows/columns correspond to n1/n2 node numbers).

id=feutilb(’AddNode -nearest epsl value’,n1,xyz); returns vector giving the
nearest n1 NodeId to each xyz node the search area being limited to epsl. When
specified with a 7 column n2, the result is sparse(n2(:,1),1,n1 index). For
fine meshes the algorithm can use a lot of memory. If n2 is not too large it is
then preferable to use an AddNode command with a tolerance sufficient for a match
[n3,ind]=feutil(’AddNode epsl value’,n1,n2);id=n3(ind,1).

AddSet[NodeId, EltId, FaceId]

model=feutil(’AddSetNodeId’,model,’name’,’FindNodeString’) adds the se-
lection FindNodeString as a set of nodes name to model. ’FindNodeString’ can
be replaced by a column vector of NodeId. Syntax is the same for AddSetEltId

with a FindEltString selection.
The option -id value can be added to the command to specify a set ID.

Following example defines a set of each type on the ubeam model:

% Defining node elements or face sets in a model

model=demosdt(’demo ubeam’);
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cf=feplot

model=feutil(’AddSetNodeId’,model,’nodeset’,’z==1’);

model=feutil(’AddSetEltId -id18’,model,’eltset’,’WithNode{z==0}’);
[elt,ind]=feutil(’FindElt setname eltset’,model); % FindElt based on set name

r1=cf.Stack{’eltset’};r1.type=’FaceId’;r1.data(:,2)=1;
cf.Stack{’set’,’faceset’}=r1;
r1=cf.Stack{’nodeset’};r1.type=’DOF’;r1.data=r1.data+0.02;
cf.Stack{’set’,’dofset’}=r1;
fecom(cf,’curtab Stack’,’eltset’);

AddTest[,-EGID i][,NodeShift,Merge,Combine]

model=feutil(’AddTest’,mo1,mo2);

Combine test and analysis models. When combining test and analysis models you
typically want to overlay a detailed finite element mesh with a coarse wire-frame
representation of the test configuration. These models coming from different origins
you will want combine the two models in model.

If you aim at combining several finite element models into an assembly, with proper
handling of materials, element IDs, bases,. . . , you should rather use the more ap-
propriate CombineModel command.

• By default the node sets are considered to be disjoint. New nodes are added
starting from max(mo1.Node(:,1))+1 or from NodeShift+1 if the argument
is specified. Thus feutil(’AddTest NodeShift’,mo1,mo2) adds mo2 nodes
to mo1.Node while adding NodeShift to their initial identification number.
The same NodeShift is added to node numbers in mo2.Elt which is appended
to mo1.Elt. mo2 can be a wire frame matrix read with ufread for example.

• With command option Merge it is assumed that some nodes are common
but their numbering is not coherent. Non coincident nodes (as defined by
the AddNode command) are added to mo1.Node and mo2.Elt is renumbered
according to resulting model.Node. Command option Merge-Edge is used to
force mid-side nodes to be common if the end nodes are. Note that command
Merge will also merge all coincident nodes of mo2.

• With command option Combine it is assumed that some nodes are common
and their numbering is coherent. Nodes of mo2.Node with new NodeId values
are added to mo1.Node while common NodeId values are assumed to be located
at the same positions.
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• You can specify an EGID value for the elements that are added using AddTest

-EGID -1 for example. In particular negative EGID values are display groups
so that they will be ignored in model assembly operations. Command option
keeptest allows to retain existing test frames when adding a new one. If the
same EGID is declared, test frames are then combined in the same group.

• Command option -NoOri returns model without the Info,OrigNumbering

entry in the model stack.

The combined models can then be used to create the test/analysis correlation using
fe sens. An application is given in the gartte demo, where a procedure to match
initially different test and FE coordinate frames is outlined. See sdtweb(’pre’) for
details about test frame meshing strategies.

AddTest command attempts to retain as much information as possible (nodes, ele-
ments, materials, etc.) when adding the 2 models. This feature is however rather
limited with complex models.

Divide div1 div2 div3

model=feutil(’Divide div1 div2 div3’,model);

Mesh refinement by division of elements. Divide applies to all groups in model.Elt.
To apply the division to a selection within the model use ObjectDivide. Currently
supported divisions are

• segments : elements with beam1 parents are divided in div1 segments of equal
length.

• quadrilaterals: elements with quad4 or quadb parents are divided in a regular
mesh of div1 by div2 quadrilaterals.

• hexahedrons: elements with hexa8 or hexa20 parents are divided in a regular grid
of div1 by div2 by div3 hexahedrons.

• tria3 can be divided with an equal division of each segment specified by div1.

• mass1 and celas elements are kept unchanged.

If your elements have a different name but the same topological structure declare the
proper parent name or use the SetGroupName command before and after divide.
The division preserves properties other than the node numbers.

You can obtain unequal divisions by declaring additional arguments whose lines give
the relative positions of dividers. For example, an unequal 2 by 3 division of a quad4
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element would be obtained using
model=feutil(’divide’,[0 .1 1],[0 .5 .75 1],model) (see also the gartfe demo).

% Refining a mesh by dividing the elements

% Example 1 : beam1

femesh(’Reset’); model=femesh(’Testbeam1’); % build simple beam model

model=feutil(’Divide 3’,model); % divide by 3

cf=feplot(model); fecom(’TextNode’); % plot model and display NodeId

% Example 2 : you may create a command string

femesh(’Reset’); model=femesh(’Testbeam1’); % build simple beam model

number=3;

st=sprintf(’Divide %f’,number);

model=feutil(st,model);

cf=feplot(model); fecom(’TextNode’)

% Example 3 : you may use uneven division

femesh(’Reset’); model=femesh(’Testquad4’); % one quad4 created

model=feutil(’Divide’,model,[0 .1 .2 1],[0 .3 1]);

feplot(model);

An inconsistency in division for quad elements was fixed with version 1.105, you can
obtain the consistent behavior (first division along element x) by adding the option
-new anywhere in the divide command.

DivideInGroups

elt=feutil(’DivideInGroups’,model);

Finds groups that are not connected (no common node) and places each of these
groups in a single element group.

DivideGroup i ElementSelectors

elt=feutil(’DivideGroup i ElementSelector’,model);

Divides a single group i in two element groups. The first new element group is
defined based on the element selectors (see section 7.12 ).

For example elt=feutil(’divide group 1 withnode{x>10}’,model);
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EltId

[EltId]=feutil(’EltId’,elt) returns the element identifier for each element in
elt. It currently does not fill EltId for elements which do not support it.
[EltId,elt]=feutil(’EltIdFix’,elt) returns an elt where the element identi-
fiers have been made unique.
Command option -elt can be used to set new EltId.

% Handling elements IDs, renumbering elements

model=femesh(’TestHexa8’)

[EltId,model.Elt]=feutil(’EltIdFix’,model.Elt); % Fix and get EltId

[model.Elt,EltIdPos]=feutil(’eltid-elt’,model,EltId*18); % Set new EltId

model.Elt(EltIdPos>0,EltIdPos(EltIdPos>0)) % New EltId

Extrude nRep tx ty tz

Extrusion. Nodes, lines or surfaces of model are extruded nRep times with global
translations tx ty tz. Elements with a mass1 parent are extruded into beams,
element with a beam1 parent are extruded into quad4 elements, quad4 are extruded
into hexa8, and quadb are extruded into hexa20.

You can create irregular extrusion. For example, model=feutil(’Extrude 0 0 0

1’,model,[0 logspace(-1,1,5)]) will create an exponentially spaced mesh in the
z direction. The second argument gives the positions of the sections for an axis such
that tx ty tz is the unit vector.

% Extruding mesh parts to build a model

% Example 1 : beam

femesh(’Reset’); model=femesh(’Testbeam1’); % one beam1 created

model=feutil(’Extrude 2 1 0 0’,model); % 2 extrusions in x direction

cf=feplot(model);

% Example 2 : you may create the command string

number=2;step=[1 0 0];

st=sprintf(’Extrude %f %f %f %f’,[number step]);

femesh(’Reset’); model=femesh(’Testbeam1’); % one beam1 created

model=feutil(st,model);

cf=feplot(model);

% Example 3 : you may uneven extrusions in z direction

femesh(’Reset’); model=femesh(’Testquad4’);
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model=feutil(’Extrude 0 0 0 1’,model,[0 .1 .2 .5 1]);

% 0 0 0 1 : 1 extrusion in z direction

% [0 .1 .2 .5 1] : where extrusions are made

feplot(model)

GetDof ElementSelectors

Command to obtain DOF from a model, or from a list of NodeId and DOF.

Use mdof=feutil(’GetDof’,dof,NodeId); to generate a DOF vector from a list
of DOF indices dof, a column vector (e.g. dof=[.01;.02;.03]), and a list of
NodeId, a column vector. The result will be sorted by DOF, equivalent to mdof =

[NodeId+dof(1);NodeId+dof(2);...].

Call mdof=feutil(’GetDof’,NodeId,dof); will output a DOF vector sorted by
NodeId, equivalent to mdof = [NodeId(1)+dof;NodeId(2)+dof;...].

The nominal call to get DOFs used by a model is mdof=feutil(’GetDOF’,model).
These calls are performed during assembly phases (fe mk, fe load, ...). This sup-
ports elements with variable DOF numbers defined through the element rows or the
element property rows. To find DOFs of a part of the model, you should add a
ElementSelector string to the GetDof command string.

Note that node numbers set to zero are ignored by feutil to allow elements with
variable number of nodes.

FindElt ElementSelectors

Find elements based on a number of selectors described in section 7.12 . The calling
format is

[ind,elt] = feutil(’FindElt ElementSelector’,model);

where ind gives the row numbers of the elements in model.Elt (but not the header
rows except for unique superelements which are only associated to a header row)
and elt (optional) the associated element description matrix.

When operators are accepted, equality and inequality operators can be used. Thus
group~=[3 7] or pro < 5 are acceptable commands. See also SelElt, RemoveElt
and DivideGroup, the gartfe demo, fecom selections.
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FindNode Selectors

Find node numbers based on a number of node selectors listed in section 7.11 .

Different selectors can be chained using the logical operations & (finds nodes that
verify both conditions), | (finds nodes that verify one or both conditions). Condition
combinations are always evaluated from left to right (parentheses are not accepted).

The calling format is
[NodeId,Node] = feutil(’FindNode NodeSelector’,model);

Output arguments are the NodeId of the selected nodes and the selected nodes Node
as a second optional output argument.

As an example you can show node numbers on the right half of the z==0 plane using
the commands

fecom(’TextNode’,feutil(’FindNode z==0 & x>0’,model))

Following example puts markers on selected nodes

% Finding nodes and marking/displaying them in feplot

demosdt(’demo ubeam’); cf=feplot; % load U-Beam model

fecom(’ShowNodeMark’,feutil(’FindNode z>1.25’,cf.mdl),’color’,’r’)

fecom(’ShowNodeMark-noclear’,feutil(’FindNode x>0.2*z|x<-0.2*z’,cf.mdl),...

’color’,’g’,’marker’,’o’)

Note that you can give numeric arguments to the command as additional feutil ar-
guments. Thus the command above could also have been written feutil(’FindNode

z== & x>=’,0,0))

See also the gartfe demo.

GetEdge[Line,Patch]

These feutil commands are used to create a model containing the 1D edges or 2D
faces of a model. A typical call is

% Generate a contour (nD-1) model from a nD model

femesh(’reset’); model=femesh(’Testubeam’);

elt=feutil(’GetEdgeLine’,model); feutil(’infoelt’,elt)

GetEdgeLine supports the following variants MatId retains inter material edges,
ProId retains inter property edges, Group retains inter group edges, all does not
eliminate internal edges, InNode only retains edges whose node numbers are in a list
given as an additional feutil argument.
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These commands are used for SelEdge and SelFace element selection commands.
Selface preserves the EltId and adds the FaceId after it to allow face set recovery.

GetElemF

Header row parsing. In an element description matrix, element groups are sepa-
rated by header rows (see section 7.2 ) which for the current group jGroup is given
by elt(EGroup(jGroup),:) (one can obtain EGroup - the positions of the head-
ers in the element matrix - using [EGroup,nGroup]=getegroup(model.Elt)). The
GetElemF command, whose proper calling format is

[ElemF,opt,ElemP] = feutil(’GetElemF’,elt(EGroup(jGroup),:),[jGroup])

returns the element/superelement name ElemF, element options opt and the par-
ent element name ElemP. It is expected that opt(1) is the EGID (element group
identifier) when defined.

Get[Line,Patch]

Line=feutil(’GetLine’,node,elt) returns a matrix of lines where each row has
the form [length(ind)+1 ind] plus trailing zeros, and ind gives node indices (if
the argument node is not empty) or node numbers (if node is empty). elt can be
an element description matrix or a connectivity line matrix (see feplot). Each row
of the Line matrix corresponds to an element group or a line of a connectivity line
matrix. For element description matrices, redundant lines are eliminated.

Patch=feutil(’GetPatch’,Node,Elt) returns a patch matrix where each row (ex-
cept the first which serves as a header) has the form [n1 n2 n3 n4 EltN GroupN].
The ni give node indices (if the argument Node is not empty) or node numbers (if
Node is empty). Elt must be an element description matrix. Internal patches (it is
assumed that a patch declared more than once is internal) are eliminated.

The all option skips the internal edge/face elimination step. These commands are
used in wire-frame and surface rendering.

GetNode Selectors

Node=feutil(’GetNode Selectors’,model) returns a matrix containing nodes rather
than NodeIds obtained with the FindNode command. The indices of the nodes in
model.Node can be returned as a 2nd optional output argument. This command is
equivalent to the feutil call
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[NodeId,Node]=feutil(’FindNode Selectors’,model).

GetNormal[Elt,Node][,Map],GetCG

[normal,cg]=feutil(’GetNormal[elt,node]’,model) returns normals to elements/nodes
in model.
CG=feutil(’GetCG’,model) returns the CG locations. Command option -dir i

can be used to specify a local orientation direction other than the normal (this is
typically used for composites).
MAP=feutil(’getNormal Map’,model) returns a data structure with the following
fields

ID column of identifier (as many as rows in the .normal field). For
.opt=2 contains the NodeId. For .opt=1 contains the EltId.

normal N × 3 where each row specifies a vector at ID or vertex.
opt 1 for MAP at element center, 2 for map at nodes.
color N × 1 optional real value used for color selection associated with

the axes color limits.
DefLen optional scalar giving arrow length in plot units.

The MAP data structure may be viewed using

fecom(’ShowMap’,MAP);fecom(’ScaleOne’);

Info[ ,Elt, Nodei]

feutil(’Info’,model); Information on model. Info by itself gives general in-
formation about model. InfoNodei gives information about all elements that are
connected to node of NodeId i.

Join[group i, EltName]

Join the groups i or all the groups of type EltName. JoinAll joins all the groups
that have the same element name. Note that with the selection by group number,
you can only join groups of the same type (with the same element name). JoinAll
joins all groups with identical element names.

You may join groups using there ID

% Joining groups of similar element types

femesh(’Reset’); model=femesh(’Test2bay’);

% Join using group ID
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feutil(’Info’,model); % 2 groups at this step

model=feutil(’JoinGroup1:2’,model) % 1 group now

feutil(’Info’,model);

% Join using element types

% Note you can give model (above) or element matrix (below)

femesh(’Reset’); model=femesh(’Test2bay’);

model.Elt=feutil(’Joinbeam1’,model.Elt); % 1 group now

MatidProId,MPID

MatId=feutil(’MatId’,model) returns the element material identifier for each el-
ement in model.Elt.
One can also modify MatId of the model giving a third argument. model=feutil(’MatId’,model,r1)
r1 can be a global shift on all non zero MatId or a matrix whose first column gives old
MatId and second new MatId. MatId renumbering is applyed to elements, model.pl
and model.Stack ’mat’ entries. The ProId command works similarly.

MPId returns a matrix with three columns MatId, ProId and group numbers.
model.Elt=feutil(’mpid’,model,mpid) can be used to set properties of elements
in model.Elt matrix.

ObjectBeamLine i, ObjectMass i

elt=feutil(’ObjectBeamLine i’); Create a group of beam1 elements. The node
numbers i define a series of nodes that form a continuous beam (for discontinuities
use 0), that is placed in elt as a single group of beam1 elements.

For example elt=feutil(’ObjectBeamLine 1:3 0 4 5’) creates a group of three
beam1 elements between nodes 1 2, 2 3, and 4 5.

An alternate call is elt=feutil(’ObjectBeamLine’,ind) where ind is a vector
containing the node numbers. You can also specify a element name other than beam1

and properties to be placed in columns 3 and more using elt=feutil(’ObjectBeamLine
-EltName’,ind,prop).

elt=feutil(’ObjectMass 1:3’) creates a group of concentrated mass1 elements
at the declared nodes.

% Build a mesh by addition of defined beam lines and masses

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...

3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176], ’Elt’,[]);
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prop=[100 100 1.1 0 0]; % MatId ProId nx ny nz

model.Elt=feutil(’ObjectBeamLine 1 2 0 2 3 0 3 4’,prop);

% or model.Elt=feutil(’ObjectBeamLine’,1:4);

model.Elt=feutil(’ObjectMass’,model,3,[1.1 1.1 1.1]);

%model.Elt(end+1:end+size(elt,1),1:size(elt,2))=elt;

feplot(model);fecom textnode

ObjectHoleInPlate

model=feutil(’ObjectHoleInPlate ...’,model);

 

 

 

 

Create a quad4 mesh of a hole in a plate.
The format is ’ObjectHoleInPlate N0 N1

N2 r1 r2 ND1 ND2 NQ’ giving the center
node, two nodes to define the edge direction
and distance, two radiuses in the direction of
the two edge nodes (for elliptical holes), the
number of divisions along a half quadrant of
edge 1 and edge 2, the number of quadrants
to fill (the figure shows 2.5 quadrants filled).

% Build a model of a plate with a hole

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],’Elt’,[]);

model=feutil(’ObjectHoleInPlate 1 2 3 .5 .5 3 4 4’,model);

model=feutil(’Divide 3 4’,model); % 3 divisions around, 4 divisions along radii

feplot(model)

% You could also use the call

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0],’Elt’,[]);

% n1 n2 n3 r1 r2 nd1 nd2 nq

r1=[ 1 2 3 .5 .5 3 4 4];

st=sprintf(’ObjectHoleInPlate %f %f %f %f %f %f %f %f’,r1);

model=feutil(st,model);

ObjectHoleInBlock

model=feutil(’ObjectHoleInBlock ...’); Create a hexa8 mesh of a hole in a
rectangular block. The format is ’ObjectHoleInBlock x0 y0 z0 nx1 ny1 nz1
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nx3 ny3 nz3 dim1 dim2 dim3 r nd1 nd2 nd3 ndr’ giving the center of the block
(x0 y0 z0), the directions along the first and third dimensions of the block (nx1
ny1 nz1 nx3 ny3 nz3, third dimension is along the hole), the 3 dimensions (dim1
dim2 dim3), the radius of the cylinder hole (r), the number of divisions of each
dimension of the cube (nd1 nd2 nd3, the 2 first should be even) and the number of
divisions along the radius (ndr).

% Build a model of a cube with a cylindrical hole

model=feutil(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 1 2 3 3 .7 8 8 3 2’)

Object[Quad,Beam,Hexa] MatId ProId

model=feutil(’ObjectQuad MatId ProId’,model,nodes,div1,div2) Create or add
a model containing quad4 elements. The user must define a rectangular domain de-
limited by four nodes and the division in each direction (div1 and div2). The result
is a regular mesh.

For example model=feutil(’ObjectQuad 10 11’,nodes,4,2) returns model with
4 and 2 divisions in each direction with a MatId 10 and a ProId 11.

An alternate call is model=feutil(’ObjectQuad 1 1’,model,nodes,4,2): the quad-
rangular mesh is added to the model.

% Build a mesh based on the refinement of a single quad element

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,4,3); % creates model

node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];

model=feutil(’Objectquad 2 3’,model,node,3,2); % matid=2, proid=3

feplot(model);

Divisions may be specified using a vector between [0,1] :

% Build a mesh based on the custom refinement of a single quad element

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,[0 .2 .6 1],linspace(0,1,10));

feplot(model);

Other supported object topologies are beams and hexahedrons. For example

% Build a mesh based on the custom refinement of a single element

node = [0 0 0; 2 0 0;1 3 0; 1 3 1];

model=feutil(’Objectbeam 3 10’,node(1:2,:),4); % creates model

model=feutil(’Objecthexa 4 11’,model,node,3,2,5); % creates model

feutil(’infoelt’,model)
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Object [Arc, Annulus, Circle, Cylinder, Disk]

These object constructors follow the format

model=feutil(’ObjectAnnulus x y z r1 r2 nx ny nz Nseg NsegR’,model) with
x y z the coordinates of the center, nx ny nz the coordinates of the normal to the
plane containing the annulus, Nseg the number of angular subdivisions, and NsegR

the number of segments along the radius. The resulting model is in quad4 elements.

model=feutil(’ObjectArc x y z x1 y1 z1 x2 y2 z2 Nseg obt’,model) with x

y z the coordinates of the center, xi yi zi the coordinates of the first and second
points defining the arc boundaries, Nseg the number of angular subdivisions, and
obt for obtuse, set to 1 to get the shortest arc between the two points or -1 to get
the complementary arc. The resulting model is in beam1 elements.

model=feutil(’ObjectCircle xc yc zc r nx ny nz Nseg’,model) with xc yc

zc the coordinates of the center, r the radius, nx ny nz the coordinates of the normal
to the plane containing the circle, and Nseg the number of angular subdivisions. The
resulting model is in beam1 elements.

model=feutil(’ObjectCylinder x1 y1 z1 x2 y2 z2 r divT divZ’,model) with
xi yi zi the coordinates of the centers of the cylinder base and top circles, r the
cylinder radius, divT the number of angular subdivisions, and divZ the number of
subdivisions in the cylinder height. The resulting model is in quad4 elements.

model=feutil(’ObjectDisk x y z r nx ny nz Nseg NsegR’,model) with x y z,
the coordinates of the center, r the disk radius, nx ny nz the coordinates of the nor-
mal to the plane containing the disk, Nseg the number of angular subdivisions, and
NsegR the number of segments along the radius. The resulting model is in quad4

elements. Command option -nodeg avoids degenerate elements by transforming
them into tria3 elements.

For example:

% Build a mesh based on simple circular topologies

model=feutil(’object arc 0 0 0 1 0 0 0 1 0 30 1’);

model=feutil(’object arc 0 0 0 1 0 0 0 1 0 30 1’,model);

model=feutil(’object circle 1 1 1 2 0 0 1 30’,model);

model=feutil(’object circle 1 1 3 2 0 0 1 30’,model);

model=feutil(’object cylinder 0 0 0 0 0 4 2 10 20’,model);

model=feutil(’object disk 0 0 0 3 0 0 1 10 3’,model);

model=feutil(’object disk -nodeg 1 0 0 3 0 0 1 10 3’,model);

model=feutil(’object annulus 0 0 0 2 3 0 0 1 10 3’,model);

feplot(model)
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ObjectDivide

Applies a Divide command to a selection within the model

% Perform local mesh refinement

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];

model=feutil(’Objectquad 1 1’,node,4,3); % creates model

model=feutil(’ObjectDivide 3 2’,model,’WithNode 1’);

feplot(model);

Optim[Model, NodeNum, EltCheck]

model.Node=feutil(’Optim...’,model);

model.Node=feutil(’OptimModel’,model) removes nodes unused in model.Elt

from model.Node.
model.Node=feutil(’OptimNodeNum’,model) does a permutation of nodes in model.Node

such that the expected matrix bandwidth is smaller. This is only useful to export
models, since here DOF renumbering is performed by fe mk.
model=feutil(’OptimEltCheck’,model) attempts to fix geometry pathologies (warped
elements) in quad4, hexa8 and penta6 elements.

model=feutil(’OptimDegen’,model) detects degenerate elements and replaces them
by the proper lower node number case hexa -> penta.

Orient, Orient i [ , n nx ny nz]

Orient elements. For volumes and 2-D elements which have a defined orienta-
tion model.Elt=feutil(’Orient’,model) calls element functions with standard
material properties to determine negative volume orientation and permute nodes
if needed. This is in particular needed when generating models via Extrude or
Divide operations which do not necessarily result in appropriate orientation (see
integrules). When elements are too distorted, you may have a locally negative
volume. A warning about warped volumes is then passed. You should then correct
your mesh.

Note that for 2D meshes you need to use 2D element names (q4p, t3p, ...)
rather than quad4, tria3, .... Typically model.Elt=feutil(’setgroup1 name

q4p’,model).

Orient normal of shell elements. For plate/shell elements (elements with parents of
type quad4, quadb or tria3) in groups i of model.Elt, model.Elt=feutil(’Orient
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i n nx ny nz’,model) command computes the local normal and checks whether
it is directed towards the node located at nx ny nz. If not, the element nodes are
permuted to that a proper orientation is achieved. A -neg option can be added at
the end of the command to force orientation away rather than towards the nearest
node.

model.Elt=feutil(’Orient i’,model,node) can also be used to specify a list of
orientation nodes. For each element, the closest node in node is then used for the
orientation. node can be a standard 7 column node matrix or just have 3 columns
with global positions.

For example

% Specify element orientation

% Load example

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model.Elt=feutil(’Dividegroup1 WithNode1’,model);

% Orient elements in group 2 away from [0 0 -1]

model.Elt=feutil(’Orient 2 n 0 0 -1 -neg’,model);

MAP=feutil(’GetNormal MAP’,model);MAP.normal

Quad2Lin, Lin2Quad, Quad2Tria, etc.

Basic element type transformations.

model=feutil(’Lin2Quad epsl .01’,model) is the generic command to generate
second order meshes.
Lin2QuadCyl places the mid-nodes on cylindrical arcs.
Lin2QuadKnownNew can be used to get much faster results if it is known that none of
the new mid-edge nodes is coincident with an existing node. The inverse operation
can be performed using Quad2Lin command.
Quad2Tria searches elements for quad4 element groups and replaces them with
equivalent tria3 element groups.
Hexa2Tetra replaces each hexa8 element by four tetra4 elements (this is really not
a smart thing to do).
Hexa2Penta replaces each hexa8 element by six tetra4 elements (warning : this
transformation may lead to incompatibilities on the triangular faces).
Penta2Tetra replaces each penta6 element by 11 tetra4 elements.

Command option KnownNew can be used for Hexa2Tetra, Hexa2Penta, and Penta2Tetra.
Since these commands add nodes to the structure, quicker results can be obtained
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if it is known that none of the new nodes are coincident with existing ones. In a
more general manner, this command option is useful if the initial model features
coincident but free surfaces (e.g. two solids non connected by topology, when using
coupling matrices). The default behavior will add only one node for both surfaces
thus coupling them, while the KnownNew alternative will add one for each.

% Transforming elements in a mesh, element type and order

% create 2x3 quad4

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model=feutil(’Quad2Tria’,model); % conversion

feplot(model)

% create a quad, transform to triangles, divide each triangle in 4

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Quad2Tria’,model);

model=feutil(’Divide2’,model);

cf=feplot(model); cf.model

% create a hexa8 and transform to hexa20

femesh(’Reset’); model=femesh(’Testhexa8’);

model=feutil(’Lin2Quad epsl .01’,model);

feutil(’InfoElt’,model)

RefineBeam l, RefineToQuad

The RefineBeam command searches model.Elt for beam elements and divides ele-
ments so that no element is longer than l.

% Specific mesh refinement for beam

femesh(’Reset’); model=femesh(’Testbeam1’); % create a beam

model=feutil(’RefineBeam 0.1’,model);

The RefineToQuad command transforms first order triangles, quadrangles, penta,
tetra, and hexa to quad and hexa only while dividing each element each in two.
The result is a conform mesh, be aware however that nodes can be added to your
model boundaries. Using such command on model sub-parts will thus generate non
conforming interfaces between the refined and non-refined parts.

By default, new nodes are added with an AddNode command so matched new nodes
are merged. Command option KnownNew allows a direct addition of new nodes
without checking.
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% Refining mesh and transforming to quadrangle elements

model=femesh(’testtetra4’);model=feutil(’RefineToQuad’,model);

feplot(model);

RemoveElt ElementSelectors

[model.Elt,RemovedElt]=feutil(’RemoveElt ElementSelectors’,model);

Element removal. This function searches model.Elt for elements which verify cer-
tain properties selected by ElementSelectors and removes these elements from
the model description matrix. 2nd output argument RemovedElt is optional and
contains removed elements. A sample call would be

% Removing elements in a model

% create 3x2 quad4

femesh(’Reset’); model=femesh(’Testquad4’);model=feutil(’Divide 2 3’,model);

[model.Elt,RemovedElt]=feutil(’RemoveElt WithNode 1’,model);

feplot(model)

Remove [Pro, Mat] MatId, ProId

Mat, Pro removal This function takes in argument the ID of a material or integration
property and removes the corresponding entries in the model pl/il fields and in the
stack mat/pro entries.

• Command option -all removes all pl/il entries found in the model and its
stack.

• Command option -unused removes all pl/il entries not used by any element.

This call supports the info, Rayleigh stack entry (see sdtweb damp), so that the
data entries referring to removed IDs will also be removed. By default, the non-linear
properties are treated like normal properties. Care must thus be taken if a non-linear
property that is not linked to specific elements is used. Command option -unused

will alter this behavior and keep non-linear properties.

Sample calls are provided in the following to illustrate the use.

% Removing material and integration properties in a model

model=femesh(’testhexa8’);

model=stack_set(model,’pro’,’integ’,p_solid(’default’));
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model=stack_set(model,’mat’,’steel’,m_elastic(’default steel’));

model=feutil(’remove pro 110’,model);

model=feutil(’remove pro’,model,111);

model=feutil(’remove mat 100’,model);

model=feutil(’remove mat 100 pro 1’,model);

model=feutil(’remove pro -all’,model); % Command option -all

model=feutil(’remove mat pro -all’,model);

model=femesh(’testhexa8’); % Command option -unused

model=feutil(’remove mat pro -unused’,model);

Renumber

model=feutil(’Renumber’,model’NewNodeNumbers) can be used to change the
node numbers in the model. Currently nodes, elements, DOFs and deformations
, nodeset, par, cyclic and other Case entries are renumbered.

NewNodeNumbers is the total new NodeIds vector. NewNodeNumbers can also be
a scalar and then defines a global NodeId shifting. If NewNodeNumbers has two
columns, first giving old NodeIds and second new NodeIds, a selective node renum-
bering is performed.

If NewNodeNumbers is not provided values 1:size(model.Node,1) are used. This
command can be used to meet the OpenFEM requirement that node numbers be
less than 2^31/100. Another application is to joint disjoint models with coincident
nodes using

Command option -NoOri asks not to add the info,OrigNumbering data in the
model stack. info,OrigNumbering is only useful when the user needs to convert
something specific linked to the new node numerotation that is outside model.

% Finding duplicate nodes and merging them

[r1,i2]=feutil(’AddNode’,model.Node,model.Node);

model=feutil(’Renumber’,model,r1(i2,1));

Renumbering can also be applied to deformation curves, using the same syntax. Be
aware however that to keep coherence between a deformation curve and a renum-
bered model, one should input NewNodeNumbers as the renumbered model stack
entry info,OrigNumbering.

% Renumering the nodes of a model, and its data

% simple model

model=femesh(’testhexa8b’);
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% simple curve

def=fe_eig(model,[5 5 1e3]);

% first renumber model

model=feutil(’renumber’,model,1e4);

% then renumber def with renumbering info

r1=stack_get(model,’info’,’OrigNumbering’,’get’);

def=feutil(’renumber’,def,r1);

RepeatSel nITE tx ty tz

Element group translation/duplication. RepeatSel repeats the elements of input
model nITE times with global axis translations tx ty tz between each repetition of
the group. If needed, new nodes are added to model.Node. An example is treated
in the d truss demo.

% Build a mesh by replicating and moving sub-parts

femesh(’Reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

model=feutil(’RepeatSel 3 2 0 0’,model); % 3 repetitions, tx=2

feplot(model)

% an alternate call would be

% number, direction

% model=feutil(sprintf(’Repeatsel %f %f %f %f’, 3, [2 0 0]))

Rev nDiv OrigID Ang nx ny nz

Revolution. The elements of model are taken to be the first meridian. Other merid-
ians are created by rotating around an axis passing trough the node of number
OrigID (or the origin of the global coordinate system) and of direction [nx ny nz]

(the default is the z axis [0 0 1]). nDiv+1 (for closed circle cases ang=360, the
first and last are the same) meridians are distributed on a sector of angular width
Ang (in degrees). Meridians are linked by elements in a fashion similar to extrusion.
Elements with a mass1 parent are extruded into beams, element with a beam1 parent
are extruded into quad4 elements, quad4 are extruded into hexa8, and quadb are
extruded into hexa20.

The origin can also be specified by the x y z values preceded by an o using a command
like model=feutil(’Rev 10 o 1.0 0.0 0.0 360 1 0 0’).

You can obtain an uneven distribution of angles using a second argument. For
example model=feutil(’Rev 0 101 40 0 0 1’,model,[0 .25 .5 1]) will rotate
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around an axis passing by node 101 in direction z and place meridians at angles 0
10 20 and 40 degrees.

% Build a mesh by revolving a sub-part

model=struct(’Node’,[1 0 0 0 .2 0 0; 2 0 0 0 .5 1 0; ...

3 0 0 0 .5 1.5 0; 4 0 0 0 .3 2 0],’Elt’,[]);

model.Elt=feutil(’ObjectBeamLine’,1:4);

model=feutil(’Divide 3’,model);

model=feutil(’Rev 40 o 0 0 0 360 0 1 0’,model);

feplot(model)

fecom(’;triax;view 3;showpatch’)

% An alternate calling format would be

% divi origin angle direct

% r1 = [40 0 0 0 360 0 1 0];

% model=feutil(sprintf(’Rev %f o %f %f %f %f %f %f %f’,r1))

RotateNode OrigID Ang nx ny nz

Rotation. The nodes of model are rotated by the angle Ang (degrees) around an axis
passing trough the node of number OrigID (or the origin of the global coordinate sys-
tem) and of direction [nx ny nz] (the default is the z axis [0 0 1]). The origin can
also be specified by the x y z values preceded by an o model=feutil(’RotateNode o

2.0 2.0 2.0 90 1 0 0’,model) One can define as a second argument a list of
NodeId or a FindNode string command to apply rotation on a selected set of nodes.
model=feutil(’RotateNode o 2.0 2.0 2.0 90 1 0 0’,model,’x==1’)

For example:

% Rotating somes nodes in a model

femesh(’reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’RotateNode %f %f %f %f %f’,[1 30 0 0 1]);

model=feutil(st,model);

feplot(model); fecom(’;triax;textnode’); axis on

Similar operations can be realized using command basisgnode.

SelElt ElementSelectors

elt=feutil(’SelElt ElementSelectors’,model)
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Element selection. SelElt extract selected element from model that verify certain
conditions. Available element selection commands are described under the FindElt

command and section 7.12 .

SetGroup[i,name] [Mat j, Pro k, EGID e, Name s]

Set properties of a group. For group(s) selected by number i, name name, or all

you can modify the material property identifier j, the element property identifier k
of all elements and/or the element group identifier e or name s. For example

% Assigning element properties by groups

model.Elt=feutil(’SetGroup1:3 Pro 4’,model);

model.Elt=feutil(’SetGroup rigid Name celas’,model)

If you know the column of a set of element rows that you want to modify, calls of the
form model.Elt(feutil(’FindEltSelectors’,model),Column)= Value can also
be used. See MPID for higher level custom element properties assignments.

% Low level assignment of element properties

femesh(’Reset’); model=femesh(’Testubeamplot’);

model.Elt(feutil(’FindElt WithNode{x==-.5}’,model),9)=2;
cf=feplot(model);

cf.sel={’groupall’,’colordatamat’};

SetPro,SetMat,GetIl,GetPl

Set an integration property data (ProId) or material property (MatId). You can
modify an il or pl property of ID i by giving its name and its value using an
integrated call of the type

% Specifying material/integration rule parameters in a model

model=femesh(’testhexa8’);model.il

model=feutil(’SetPro 111 Integ=2’,model);

feutilb(’_writeil’,model)

mat=feutil(’GetPl 100 -struct1’,model) % Get Mat 100 as struct

The names related to the integration properties a documented in the p functions,
p solid, p shell, p beam, ... To get a type use calls of the form p pbeam(’PropertyUnitTypeCell’,1).

The command can also be used to define additional property information : pro.MAP
for field at nodes, gstate for field at integration points and NLdata for non linear
behavior data.
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The commands GetIl and GetPl respectively output the il and pl matrices of the
model for the IDs used by elements. This command provides the values used during
assembling procedures and aggregates the values stores in the model.il, model.pl
fields and pro, mat entries in the model stack.

StringDOF

feutil(’stringdof’,sdof) returns a cell array with cells containing string descrip-
tions of the DOFs in sdof.

SymSel OrigID nx ny nz

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with
respect to a plane going through the node of number OrigID (node 0 is taken to
be the origin of the global coordinate system) and normal to the vector [nx ny

nz]. If needed, new nodes are added to FEnode. Related commands are TransSel,
RotateSel and RepeatSel.

Trace2Elt

elt=feutil(’Trace2Elt’,ldraw);

Convert the ldraw trace line matrix (see ufread 82 for format details) to element
matrix with beam1 elements. For example:

% Build a beam model from a trace line matrix

TEST.Node=[1001 0 0 0 0 0 0 ; 1003 0 0 0 0.2 0 0 ;

1007 0 0 0 0.6 0 0 ; 1009 0 0 0 0.8 0 0 ;

1015 0 0 0 0 0.2 0 ; 1016 0 0 0 0.2 0.2 0;

1018 0 0 0 0.6 0.2 0; 1019 0 0 0 0.8 0.2 0];

L=[1001 1003 1007 1009];

ldraw(1,[1 82+[1:length(L)]])=[length(L) L];

L=[1015 1016 1018 1019];

ldraw(2,[1 82+[1:length(L)]])=[length(L) L];

L=[1015 1001 0 1016 1003 0 1018 1007 0 1019 1009 0];

ldraw(3,[1 82+[1:length(L)]])=[length(L) L];

TEST.Elt=feutil(’Trace2Elt’,ldraw);

cf=feplot(TEST)
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TransSel tx ty tz

Translation of the selected element groups. TransSel replaces elements by their
translation of a vector [tx ty tz] (in global coordinates). If needed, new nodes
are added. Related commands are SymSel, RotateSel and RepeatSel.

% Translate and transform a mesh part

femesh(’Reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

model=feutil(’TransSel 3 1 0’,model); % Translation of [3 1 0]

feplot(model); fecom(’;triax;textnode’)

Please, note that this command is usefull to translate only part of a model. If the full
model must be translated, use basiscommand gnode. An example is given below.

% Translate all nodes of a model

femesh(’Reset’); model=femesh(’Testquad4’); model=feutil(’Divide 2 3’,model);

model.Node=basis(’gnode’,’tx=3;ty=1;tz=0;’,model.Node);

feplot(model); fecom(’;triax;textnode’)

UnJoin Gp1 Gp2

Duplicate nodes which are common to two groups. To allow the creation of inter-
faces with partial coupling of nodal degrees of freedom, UnJoin determines which
nodes are common to the element groups Gp1 and Gp2 of model.Elt, duplicates
them and changes the node numbers in Gp2 to correspond to the duplicate set
of nodes. In the following call with 2 output arguments (2nd is optionnal), the
columns of the matrix InterNode give the numbers of the interface nodes in each
group [model,InterNode]=feutil(’UnJoin 1 2’,model).

% Generate an disjointed interface between to parts in a model

femesh(’Reset’); model=femesh(’Test2bay’);

feutil(’FindNode group1 & group2’,model) % nodes 3 4 are common

model=feutil(’UnJoin 1 2’,model);

feutil(’FindNode group1 & group2’,model) % no longer any common node

A more general call allows to separate nodes that are common to two sets of elements
[model,InterNode]=feutil(’UnJoin’,model,’Selection1’,’Selection2’). El-
ements in Selection1 are left unchanged while nodes in Selection2 that are also
in Selection1 are duplicated.

See also feutila, fe mk, fecom, feplot, section 4.5 , demos gartfe, d ubeam, beambar ...
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Purpose Advanced feutil commands.

RotateSel OrigID Ang nx ny nz

Rotation. The elements of model are rotated by the angle Ang (degrees) around an
axis passing trough the node of number OrigID (or the origin of the global coordinate
system) and of direction [nx ny nz] (the default is the z axis [0 0 1]). The origin
can also be specified by the x y z values preceded by an o

model=feutil(’RotateSel o 2.0 2.0 2.0 90 1 0 0’,model)

Note that old nodes are kept during this process. If one simply want to rotate model
nodes, see RotateNode.

For example:

% Rotate and transform part of a mesh

femesh(’reset’); model=femesh(’Testquad4’);

model=feutil(’Divide 2 3’,model);

% center is node 1, angle 30, aound axis z

% Center angle dir

st=sprintf(’RotateSel %f %f %f %f %f’,[1 30 0 0 1]);

model=feutil(st,model);

feplot(model); fecom(’;triax;textnode’); axis on
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feutilb, fe caseg

Purpose Gateway functions for advanced FEM utilities in SDT.

Description This function is only used for internal SDT operation and actual implementation
will vary over time. The following commands are documented to allow user calls
and SDT source code understanding.

Assemble

Optimized strategies for assembly are provided in SDT through the fe caseg Assemble

command. More details are given in section 4.8.8 .

AddNode

This command provides optimized operation when compared to the feutil equiv-
alent and finer control.

CombineModel

mo1=feutilb(’combinemodel’,mo1,mo2);

[mo1,r1]=feutilb(’combinemodel’,mo1,mo2);

Integrated combining of two separate models. This call aims at creating an assembly
from two separate mechanical components. This command properly handles poten-
tial NodeId, EltId, ProId, or MatId overlaying by setting disjoint ID sets before
assembly. Stack or Case entries with overlaying names are resolved, adding (1) to
common names in the second model. Sets with identical names between both models
are concatenated into a single set. The original node numbering matrix for mo2 is
output as a second argument (r1 in the second example call). The original element
numbering matrix for mo2 can also be output as a third argument.

mo1 is taken as the reference to which mo2 will be added, the Node/Elt appending
is performed by feutilAddTest.

• Command option -cleanMP cleans up duplicated mat/pro entries in the com-
bined model.
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• Command option -noSetCat, forces the sets duplication with incremented
names (adding (1)), instead of concatenation when sets with identical names
are found.

• Command option CompatNodeElt asks not to shift NodeId and EltId in the
second model. It then assumes the ID ranges are fully compatible in both
models.

• Command option CompatMatPro asks not to shift MatId and ProId in the
second model. It then assumes these IDs to be fully compatible between both
models.

• Command option CompatBas asks no to shift the BasId in the second model.
It then assumes these IDs to be fully compatible between both models.

dTKT

K = feutilb(’dtkt’,T,K) functional equivalent to diag(T’*k*T) but this call sup-
ports out of core and other optimized operations obtained through compiled func-
tionalities. K may be a cell array of matrices, in which case one operates on each
cell of the array.

GeoLineTopo, ...

r2=feutilb(’geolinetopo’,model,struct(’starts’,nodes));

r2=feutilb(’geolinetopo’,model,struct(’starts’,RO.nodes(j1,1), ...

’cos’,0,’dir’,r1.p(:,2)’,’circle’,r1));

GeoLineTopo searches a topological line by following mesh edges.

Accepted fields are

• .starts node numbers. One row per line.

• .cos optional tolerance on direction change used to stop the line.

• .dir optional initial search direction, in not provided the direction defined by
the line linking the two first nodes is used

• .circle optional, to use a detection strategy adapted to circle, with richer
information. This field is a structure with fields

– .Origin the coordinates of the circle origin
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– .radius the circle radius

– .p the local basis associated to the circle principal directions

– .cos set to zero

– .dir the normalized direction of the normal to the plane containing the
circle.

This field is mostly defined internally and used by the GeoFindCircle com-
mand.

GeoFindCircle packages the GeoLineTopo command to detect nodes on a quasi-
circular mesh,

GeoFindCircle, ...

GeoFindCircle searches a topological circular line by following mesh edges. One
can either provide three points one the circle, or one point with origin and axis.

r2=feutilb(’geofindcircle’,model,struct(’nodes’,[n1 ...]);

r2=feutilb(’geofindcircle’,model,...

struct(’nodes’,n1,’Origin’,[x y z],’axis’,[nx ny nz]);

where n1 is a NodeId, x,y,z are the coordinates of the circle origin, nx, ny, nz is
the normal to the plane containing the circle.

The output r2 contains fields

• .Origin the coordinates of the circle origin.

• .normal the normalized direction of the normal to the plane containing the
circle.

• .radius the circle radius

• .p the local basis associated to the circle principal directions

• .line the list of NodeId that belong to the circle

The following example illustrates how one can exploit this feature to define a con-
nection screw based on a hole in plates.
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% use the demostration model for screw defintions with two plates

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’);

% use 3D line pick to find three nodes on the hole

% fe_fmesh(’3dlineinit’) % acitvate option, and click on 3 nodes on the hole

nodes=[47 43 40]; % nodes picked on the hole

% detect hole

r1=feutilb(’geofindcircle’,model,struct(’nodes’,nodes)); r1=r1{1};
n1=feutil(’getnodegroupall’,model); n2=n1;

% define planes: need to detect plane altitudes

% 1- transform coordinates in the local hole basis for planes generation

n1(:,5:7)=(n1(:,5:7)-ones(size(n1,1),1)*r1.Origin)*r1.p;

[z1,i1]=unique(n1(:,7));

% 2- use global altitudes for the elements detection

z2=n2(i1,7); % use type 1

r2=[num2cell([z1 1+0*z1]) ...

cellfun(@(x) sprintf(’z==%.15g’,x),num2cell(z2),’uni’,0)];

% 3- screw model, see sdtweb fe_case

r2=struct(’Origin’,r1.Origin,’axis’,r1.normal’,’radius’,r1.radius, ...

’planes’,{r2},...
’MatProId’,[101 101],’rigid’,[Inf abs(’rigid’)],...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r2);

% compute modes to test

def=fe_eig(model,[5 10 1e3]);

cf=feplot(model); cf.def=def;

GeomRB, ...

def=feutilb(’geomrb’,node,RefXYZ,adof,m) returns a geometric rigid body modes.
If a mass matrix consistent with adof is provided the total mass, position of the cen-
ter of gravity and inertia matrix at CG is computed. You can use def=feutilb(’geomrb
cg’,Up) to force computation of rigid body mass properties.

def=feutilb(’geomrbMass’,model) returns the rigid body modes and mass, center
of gravity and inertia matrix information. -bygroup, -bymat, -bypro can be used
to detail results by subgroups. With no output argument, the results are shown in
a table that can be copied to other software.

il=feutilb(’GeomRBBeam1’,mdl,RefXYZ) returns standard p beam properties for
a given model section where RefXYZ is the coordinates of the reference point from
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the gravity center.

feutilb(’GeomRB’,mdl,[0 0 0],sens) or feutilb(’GeomRB’,mdl,[0 0 0],Load)

provide a rigid body check of the work generated by loads or loads collocated to sen-
sors on rigid body motion. This provides a direction of application and moments
around the origin. These are then used to estimate a point that would lead to the
same moments. This point should be on a line of direction of force and containing
the actual application point (xtrue = xest + αdx, ...)

Match

Non conform mesh matching utilities. The objective is to return matching elements
and local coordinates for a list of nodes.

Matching elements mean

• for volumes, that the physical node is within the element. If volumes may be
negative, check orientation using feutil orient.

• for surfaces, that that the orthogonal projection of the node is within the
element

• for lines that the orthogonal projection on the line is between the line extrem-
ities.

A typical node matching call would be

model=femesh(’test hexa8’);

match=struct(’Node’,[.1 .1 .1;.5 .5 .5;1 1 1]);

match=feutilb(’match -info radius .9 tol 1e-8’,model,match)

Accepted command options are

• MatchSurf has the same objective but uses a completely different strategy to
match nodes on a surface. This is typically well suited for contact applications.

• radiusrad. The search is limited to points that are not too far a way from
matchable element centers. Defining a search radius manually can help prevent
matching for elements that are too far away or on the contrary allow matching
within elements that are very large so that interior points may be far from the
center.
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• tolval modifies the 1e-8 tolerance used to stop the non-linear search for the
match point in second order elements

The output structure contains the fields

.Node original positions

.rstj position in element coordinates and jacobian information.

.StickNode orthogonal projection on element surface if the original node is not
within the element, otherwise original position.

.Info one row per matched node/element giving NodeId if exact match, num-
ber of nodes per element, and element type.

.match obtained when calling the command with -info, typically for row by
row post-processing of the match. A cell array with one row per matched
node/element giving eltname, slave element row, rstj, sticknode

MpcFromMatch

This command is used to build multiple point constraints from a match.
feutilb(’MpcFromMatch’,model,match).

The solution retained for surfaces is to first project the arbitrarily located connection
point P on the element surface onto a pointQ on the neutral fiber used where element
nodes are located. Then Q1 or P1 shape functions and their derivatives are used to
define a linear relation between the 6 degree of freedom of point Q and the 3 or 4
nodes of the facing surface. Motion at P is then deduced using a linearized rigid PQ
link. One chooses to ignore rotations at the nodes since their use is very dependent
on the shell element formulation.

 P

 Q

Figure 9.2: Non conform mesh handling

The local element coordinates are defined by xej , j = 1 : 3 along the r coordinate line

xej = αx
∂Ni

∂r
xij with αx = 1/

∥∥∥∥∂Ni

∂r
xij

∥∥∥∥ (9.1)
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ye that is orthogonal to xe and in the xe, ∂Ni
∂s xij plane, and ze that defines an

orthonormal basis.

The local rotations at point Q are estimated from rotations at the corner nodes
using

Rj = xej
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∂ye
uikz

e
k − yej
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e
k +

1

2
zej

(
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k −
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∂ye
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e
k

)
(9.2)

with uik the translation at element nodes and j = 1 : 3, i = 1 : Nnode, k = 1 : 3.
Displacement at Q is interpolated simply from shape functions, displacement at P
is obtained by considering that the segment QP is rigid.

For volumes, displacement is interpolated using shape functions while rotations are
obtained by averaging displacement gradients in orthogonal directions

thetax = (−Ny,z +Nz, y) /2 {u}
thetay = (Nx,z −Nz, x) /2 {u}
thetaw = (−Nx,y +Ny, x) /2 {u}

(9.3)

You can check that the constraints generated do not constrain rigid body motion
using fe caseg(’rbcheck’,model) which builds the transformation associated to
linear constraints and returns a list of DOFs where geometric rigid body modes do
not coincide with the transformation.

PlaceInDof

def2 = feutilb(’PlaceInDof’,DOF,def) returns a structure with identical fields
but with shapes ordered using the specified DOF. This is used to eliminate DOFs,
add zeros for unused DOFs or simply reorder DOFs. See also fe def SubDof.

StressCut

The StressCut command is the gateway for dynamic stress observation commands.
Typical steps of this command are

• View mesh generation, see section 4.7.1 .

• Generate a selection sel=fe caseg(’stresscut -selout’,VIEW,model);

• Display the selection in feplot using fe caseg(’stresscut’,sel,cf)

• Observe the result using curve=fe caseg(’StressObserve’,cf.sel(2),def)
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For the selection generation, accepted options are

• VIEW can be a mesh so that feutilb Match is used find elements associated
with viewing positions. A structure struct(’type’,’Gauss’) to return se-
lection at Gauss points. A structure struct(’type’,’BeamGauss’) to return
selection at beam Gauss points.

• a model or feplot handle cf can be provided as third argument.

• -SelOut requires selection output.

• -Radiusval provides a search radius for the feutilb Match call.

The sel data structure is a standard selection (see feplot sel) with additional
field .StressObs a structure with the following fields

• .cta observation matrix for stress components. The expected sort is to have
all components at first node, all at second node, ...

• .DOF expected DOF needed for the observation.

• .X,.Xlab labels for the observation, see Multi-dim curve for details.

• .CritFcn callback to be evaluated, see fe stress CritFcn.

• .Node,.Elt nodes and elements for the view mesh.

• .trans structure for the observation of interpolated displacement (needed
when view mesh nodes are not nodes of the original mesh).

StressObserve

The StressCut command typically returns all stress components (x, y, and z), for a
relevant plot, it is useful to define a further post-treatment, using the sel.StressObs.CritFcn
callback. This callback is called once the stress observation have been performed.
The current result is stored in variable r1, and follows the dimensions declared in
field .X of the observation. For example to extract stresses in the x direction, the
callback is

sel.StressObs.CritFcn=’r1=r1(1,:,:);’;
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The StressObserve command outputs the stress observation in an curve structure.
You can provide a callback -crit "my callback". The command option -trans

allows observation of translations for selections that have this observation. If empty,
all components are kept.

data=fe_caseg(’StressObserve -crit""’,cf.sel(2),def);

iiplot(data); % plot results

SubModel

This command aims at extracting a functional model from a selection of an element
subset. From a FindElt selection, this command

• Removes unused nodes

• Cleans up the set stack entries. Sets are updated (and removed is they become
empty)

• Cleans up the mat/pro entries, unused properties are removed

• Cleans up the case entries, constraints are adapted or removed if external
to the submodel (RBE3 or rigid with removed slave or master elements are
cleared), loads are adapted or removed if external.

• Updates info,Rayleigh and info,Omega stack entries.

The following command options can be used not to clear some specific fields

• -keepStack not to clean the stack.

• -keepCase not to clean the case stack.

• -keepMatPro not to clean pl/il entries.

% Call to extract a submodel from a model

model=demosdt(’demoubeam’);

mo1=feutilb(’submodel’,model,’innode{x<.5}’);
feplot(mo1)
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TKT

K = feutilb(’tkt’,T,K) functional equivalent to T’*k*T but this call supports out
of core and other optimized operations obtained through compiled functionalities. K
may be a cell array of matrices, in which case one operates on each cell of the array.

Write

feutilb(’WriteFileName.m’,model) writes a clean output of a model to a script.
Without a file name, the script is shown in the command window.

feutilb(’ writeil’,model) writes properties. feutilb(’ writepl’,model) writes
materials.

ZoomClip

The command accessible through the axes context menu Clip, can now also be called
from the command line fe caseg(’ZoomClip’,cf.ga,[xyz left;xyz right]).
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Purpose Gateway function for 3-D visualization of structures. See also the companion func-
tion fecom.

Syntax feplot

feplot(FigHandle)

feplot(model)

feplot(model,def)

Description fecom gives a complete list of commands. The rest of this section gives more details
on the feplot architecture. For a tutorial see section 4.4 . Basic ways to call feplot
are

• feplot refreshes all feplot axes of the current figure. Use cf=feplot;cla(cf.ga);feplot
to reinitialze the current plot.

• cf=feplot returns a SDT handle to the current feplot figure. You can
create more than one feplot figure with cf=feplot(FigHandle).

• cf=feplot(model) or cf.model=model calls fecom InitModel to initialize
the FE model displayed in the current figure. See fecom load loads the model
from a file.

• cf.def=def and cf.def(i)=def calls fecom InitDef to initialize a defor-
mation set.

• cf=feplot(model,def) initializes the FE model and a deformation set at
the same time.

• cf.sel={’EltSel’,’ColorInfo’, ... } calls fecom Sel to initialize the
selection used to display the model.

• cf.Stack and cf.CStack calls are detailed in section 4.4.3 .

The old formats feplot(node,elt,mode,mdof,2) and cf.model={Node,Elt} are
still supported but you are encouraged to switch to the new and more general pro-
cedure outlined above.

Views of deformed structures are obtained by combining information from various
data arrays that can be initialized/modified at any time. The object hierarchy is
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outlined below with the first row being data arrays that store information and the
second row objects that are really displayed in Matlab axes.

FeplotFig

axes mdl sel sens def

mesh arrow text

axes describe axes to be displayed within the feplot figure. Division of the figure
into subplots (Matlab axes) is obtained using the fecom Sub commands. Within
each plot, basic displays (wire mesh, surface, sensor, arrow corresponding to mesh,
arrow, or text objects) can be obtained using the fecom Show commands while more
elaborate plots are obtained using fecom SetObject commands. Other axes prop-
erties (rotations, animation, deformation selection, scaling, title generation, etc.)
can then be modified using fecom commands.

mdl Model data structure (see section 7.6 ) cf.mdl is a handle to the model
contained in the feplot figure. The model must be defined before any plot
is possible. It is initialized using the fecom InitModel command or using
the method cf.model.

Stack Model Stack entries are stored in cf.mdl.Stack, but can be more easily
reached using cf.Stack{i} or cf.Stack{EntryName} or modified using
cf.Stack{EntryType,EntryName}=EntryData.

CStack Case Stack entries are stored in the stack case (itself stored in
cf.mdl.Stack). They can be more easily reached using cf.CStack{i} or
cf.CStack{EntryName} or modified using
cf.CStack{EntryType,EntryName}=EntryData.

sel Element selections describe which elements are displayed. The standard
selection displays all elements of all groups. fecom Sel commands or
cf.sel(i) let you define selections that only display some elements. See
also the fecom SetObject commands. Color information is defined for
each selection (see fecom Color commands). cf.sel(i)= ’ElementSel’

initializes a selection to use element selected by ElementSel.
Note that you may want to declare color data simultaneously us-
ing cf.sel(i)= {’ElementSel’,’Colordata Command’,Args}. cf.o(i)=
{’ObjectSpec’,’PatchProperty’,PatchValue} modifies the proper-
ties of object i in the current feplot axis.
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sens (obsolete) sensor selections describe sets of sensors. Sensor selections are
used to display the response at measurement locations through stick or
arrows. Initialized using the InitSens command or cf.sens(i) calls
(see fecom).cf.sens(i)={sdof} initializes a sensor set (see fecom

InitSens).
def deformation sets describe deformations at a number of DOFs. Ini-

tialized using the InitDef command or cf.def(i) calls (see fecom).
cf.def(i)={def,dof} is also accepted. cf.def(i)={def,dof,freq} where
freq is a list of frequencies of poles automatically generates title labels for
each deformation (see fecom InitDef).

Objects

mesh

mesh objects represent a deformed or undeformed finite element mesh. They are used
both for wire-frame and surface representations. mesh objects are characterized by
indices giving the element selection, deformation set, channel (deformation number),
and color type. They can be modified using calls or the form

cf = feplot; % get sdth object handle

cf.o(2) = ’sel 1 def 1 ch 3’

or equivalently with fecom SetObject commands. fecom Show commands reset the
object list of the current axis.

Each mesh object is associated to up to three Matlab patch objects associated re-
spectively with real surfaces, segments and isolated nodes. You can access individual
pointers to the patch objects using cf.o(i,j) (see fecom go commands).

arrow

Arrow objects are used to represent sensors, actuators, boundary conditions, ...
They are characterized by indices giving their sensor set, deformation set, channel
(deformation number), and arrow type. They can be modified using calls or the
form (see fecom SetObject commands)

cf = feplot; % get sdth object handle

cf.o(2) = ’sen 1 def 1 ch 3’

The SDT currently supports stick sensors (object type 3) and arrows at the sensor
tip (type 7). Other arrow types will eventually be supported.
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text

fecom text objects are vectorized lists of labels corresponding to nodes, elements,
DOFs, ... They can be initialized using fecom Text commands and deleted with
textoff. You can use cf.o(i) (see fecom go commands) to get handles to the
associated Matlab text objects and thus set font name size, ... set(cf.o(1),

’fontsize’, 7) for example.

Data arrays feplot stores information in various data arrays cf.mdl for the model, cf.def(i)
for the definition of deformations, cf.sel(i) for element selections for display and
cf.sens(i) for sensor selections.

mdl

The model currently displayed is stored in cf.mdl, see fecom InitModel.

def

The deformations currently displayed are stored in cf.def, see fecom InitDef for
accepted input formats.

sel

element selections describe a selection of elements to be displayed. The standard
selection displays all elements of all groups. fecom Sel commands let you define
selections that only display some elements.
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.selelt string used for element selection

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.cna array (as many as currently declared deformations) of sparse observa-
tion matrices giving the linear relation between deformation DOFs and
translation DOFs at the selection nodes. The observation matrix gives
all x translations followed by all y translations and all z translations.

.fs face definitions for true surfaces (elements that are not represented by
lines or points). .ifs gives the element indices (possibly repeated if
multiple faces)

.f2 face definitions for lines (if any). .if2 gives the element indices (possi-
bly repeated if multiple faces).

.f1 face definitions for points (if any).

.fvcs FaceVertexCData for true surfaces (see fecom ColorData commands).
Can also be a string, which is then evaluated to obtain the color, or a
function handle used in ColorAnimFcn.

.fvc2 FaceVertexCData for lines

.fvc1 FaceVertexCData for points

sens

sensor selections describe sets of sensors. Sensor selections are used to display the
response at measurement locations through stick or arrows. The InitSens com-
mand is being replaced by the definition of SensDof stack entries.

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.ntag numerical tag identifying each sensor

.dir direction associated with each sensor

.cta array (as many as currently declared deformations) of sparse observa-
tion matrices giving the linear relation between deformation DOFs and
measurements.

.opt [Created]

.arrow defines how the arrow is related to the measurement

See also fecom, femesh, feutil, tutorial in section 4.4
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Purpose User interface for superelement support.

Syntax fesuper(’CommandString’)

[out,out1] = fesuper(’CommandString’, ...)

model = fesuper(model,’CommandString’, ... )

Description Superelements (see section 6.3 for more details) should be declared as SE entries
in model.Stack. When using this format, you should specify model as the first
argument fesuper so that any modification to the superelement is returned in the
modified stack. Superelement should be short lower case names to allow name
encoding.

F ...

Get full model from superelement model.

SE=demosdt(’demo ubeam’); SE=SE.GetData; % Load full model.

model=fesuper(’SESelAsSe’,[],SE); % Build SE model.

Node=fesuper(’FNode’,model); % Get full model nodes.

Elt=fesuper(’FElt’,model); % Get full model elements.

mfull=fesuper(’FSEModel’,model); % Get full model.

Get,Set ...

Get,set properties from a superelement. Standard superelement fields are detailed
in section 6.3.2. get and set commands are obsolete, you should really use direct
access to the feplot stack. For example

cf=demosdt(’demo cmsSE feplot’);

SE1=cf.Stack{’se1’};
SE1=stack_set(SE1,’info’,’EigOpt’,[5 10.1 1e3]);

SE1=fe_reduc(’CraigBampton -SE -UseDof’,SE1);

cf.Stack{’se1’}=SE1; fecom(’curtabStack’,’SE:se1’)

A new command to perform reduction is under development.
mdl=fesuper(mdl,’setTR’,name,’fe reduc command’) calls fe reduc to assem-
ble and reduce the superelement. The command option -drill can be added
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to the fe reduc command to consider drilling stiffness in shells. For example
mdl=fesuper(mdl, ’SetTR’, ’SE1’, ’CraigBampton -UseDof -drill’);

The modes to be kept in the superelement can be set using mdl=fesuper(mdl,

’setStack’, name, ’info’, ’EigOpt’, EigOptOptions);

Damp

model=fesuper(’Damp’,model,’SEname’,damp); Defines a modal damping on the
superelement SEname. damp can be a scalar zeta0 and defines a global damping
ratio on all computed modes. damp can also be a vector [zeta0 f0 zeta1] defining
a first damping ratio zeta0 for frequencies lower than f0 Hz and another damping
ratio zeta1 for higher frequencies. Note that all modes are computed.

SEDef

Superelement restitution. These commands are used to handle model partial or full
restitution for visualization and recovery handling.

SEDefInit is used to prepare the model for restitution matters. It adds in model.Stack

an entry info,SeRestit containing the necessary data for restitution i.e. to per-
form {q} = [T ]{qR}. This aims to limit generic work needed for multiple restitution.
Syntax is model=fesuper(’SEDefInit’,model).

SEDef is used to implement restitution on full model DOFs. Syntax is dfull=fesuper
(’SeDef’, cf, def)

SEBuildSel

SEBuildSel is used to perform partial restitution on a model. This command sets
feplot to display a restitution mesh and computes the corresponding deforma-
tion vectors. The restitution selection is defined as a cell array with rows of the
form SeName,EltSel for selection of each superelement. An EltSel entry set to
’groupall’ thus displays the full superelement. EltSel can also be an element
matrix (usefull to display deformations on a test frame) or even a vector of NodeIds.
To discard a superelement from display, use an empty string for EltSel. By default
a superelement not mentioned in the selection is displayed.

After the generation of superelement selections, it is possible to set a global selec-
tion on the full mesh by adding an entry with an empty superelement name (see
illustration below).
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Accepted command options are

• -nojoin avoids grouping elements of the same topology in a single group.

• -LinFace can be used to generate selections that only use first order faces
(tria3 instead of tria6, ...)

• -NoOptim is used to skip the restitution optimization phase.

• -cGL (used in SDT/Rotor) is used in cases with local bases associated with
each superelement. In this case, data.cGL is a cell array used to define a
local rotation associated with each superelement. Typically, this is equal to
data.cGL{jEt}=reshape(mdl.bas(j1,7:15),3,3);.

• -RotDof (used in SDT/Rotor) large angle DOF

The following example is based on a gimbal model reduced in three superelements:
base, gimbal and tele. A partial restitution is proposed.

model=demosdt(’demogimbal-reduce’)

cf=feplot(model)

def=fe_eig(model,[5 10 1e3 0 1e-5]);

Sel={’gimbal’ ’groupall’;

’tele’ ’InNode{z>=0}’;
’base’ ’’ }; % base not displayed

fesuper(’SEBuildSel’,cf,Sel);

cf.def=def;

% Second selection example

Sel={’gimbal’ ’groupall’;

’tele’ ’’;

’base’ ’groupall’

’’, ’InNode{z>=0}’}; % global selection

fesuper(’SEBuildSel’,cf,Sel);

If you have previously initialized a full restitution with fesuper(’SeDefInit’,cf),
data to optimize partial restitution will be initialized. To obtain a partial restitution
of a set of vectors, use data=cf.sel.cna1;dfull=fesuper(’sedef’,data,dred).
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SE ...

SEDof is an internal command used to implement proper responses to feutil GetDof

commands. It is assumed that the superelement .DOF field is defined prior to setting
the information in the model.Stack.

SEMPC is an internal command that need to be documented.

SECon may also need some documentation.

SEAdd ...

SEAdd SEName commands are used to append superelements to a model. With
no command option fesuper(’SEAdd name’,model,SE,[matId proId]) appends
a new superelement to the model.Elt field (creates a group SE if necessary) and saves
the provided SE as a stack entry. [matId proId] can be given as a last argument
to define properties associated to added superelement.

SE is usually a standard SDT model, with fields .Node, .Elt, .Stack... But this
command accepts models defined only from element matrices (needs .K, .Opt and
.DOF fields). It can be useful to cleanly import element matrices from other codes
for example (see section 4.3.3 ).

SEAdd -unique NodeId0 EltId0 SEName is used to add a single superelement and
to give its ranges of implicit nodes and elements. NodeId0 is the lower bound of the
range of the superelement implicit nodes (use 1 for no shift). NodeIdEnd is given by
NodeIdEnd-NodeId0=max(SE.Node(:,1)). EltId0 is the lower bound of the range
of the superelement elements. The EltId range width is equal to the maximum EltId
of the superelement.

SEAdd -trans nrep tx ty tz NodeId0 EltId0 SEName is used to repeat the model
nrep times with a translation step (tx ty tz). NodeId0 is the lower bound of the
range of the first superelement implicit nodes. The range width is equal to the
maximum NodeId of the superelement. The ranges of implicit nodes for repeated
superelements are translated so that there is no overlap. To obtain overlap, you
must specify NodeShift NodeId0 EltId0, then there is a NodeId range overlap of
NodeShift nodes. This is used to obtain superelement intersections that are not
void and NodeShift is the number of intersection nodes between 2 superelements.
EltId0 is the lower bound of the EltId range of elements of the first superelement.
There is no EltId range overlap. Option -basval can be used as a starting value for
the BasId of superelements.
For example
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model=femesh(’testhexa8’);

model=feutil(’renumber’,model,model.Node(:,1)*10);

mo1=fesuper(’SEAdd -trans 5 0 0 1 10000 10000 cube’,[],model)

feplot(mo1)

SEAdd -disk nodeId0 eltId0 SEName is used to repeat a sector model in cyclic
symmetry. It is assumed that the symmetry case entry exists in the model (see
fe cyclic Build).

In all these cases, matrix of nodes of the superelement is sorted by NodeId before it
is added to the stack of the model (so that SE.Node(end,1)==max(SE.Node(:,1)).

Command option -initcoef can be used in the case where the superelement is
already assembled (reduced part, coupling superelement, ...). This allows the def-
inition of a p superentry of type 2, defining tunable matrix types and coefficients
for parametric studies.

SEAssemble ...

The command fesuper(’SEAssemble’,model) is used to assemble matrices of su-
perelements that are used in model. A basis reduction from superelement Case.T

(Interface DofSet is ignored) is performed.

SEDispatch ...

The command fesuper(’SEDispatch’,model) is used to dispatch constraints (mpc,
rbe3, rigid elements, ...) of the global model in the related superelements, and
create DofSet on the interface DOFs.

Rigid elements in model.Elt are distributed to the superelements (may be dupli-
cated) that contain the slave node. The master node of the rigid element must
be present in the superelement node matrix, even if it is unused by its elements
(SESelAsSE called with selections automatically adds those nodes to the superele-
ments).

Other constraints (mpc, rbe3, FixDof) are moved to superelement if all constraint
DOFs are within the superelement. Constraints that span multiple superelements
are not dispatched.

A unit DofSet (identity def matrix, same DOFs) is defined in superelements that
contain all DOFs of the global model DofSet.

Finally a DofSet (identity def matrix) is defined on superelement DOFs that are
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active in the global model and shared by another superelement. Those DofSet are
stored in the ’Interface’ entry of each superelement stack.

SEIntNode ...

The command fesuper(’SEIntNode’,model) can be used to define explicitly su-
perelement interface nodes, taking into account local basis.

SESelAsSE ...

Selection as superelement. The command fesuper(’SESelAsSE’, model, Sel) is
used to split a model in some superelement models, or to build a model from sub
models taken as superelements.
Sel can be a FindElt string selector, or a model data structure.
If Sel is a FindElt string selector, the elements corresponding to the selection are
removed from model, and then added as a superelement model. The implicit NodeId
of the superelement are the same as the former NodeId in model. Warning: the
selection by element group is not available due to internal renumbering operations
performed in this task.
If Sel is a model, it is simply added to model as a superelement.
Sel can also be a cell array of mixed types (FindElt string selector or model data
structure): it is the same as calling sequentially a SESelAsSE command for each
element of the cell array (so avoid using group based selection for example, because
after the first selection model.Elt may change).
You can give a name to each superelement in the second column of Sel
{Selection or model,SEname; ...}. If name is not given (only one column in
Sel), default seID is used.
By default, superelements Mat/ProId are generated and incremented from 1001. It
is possible to specify the MatId and/or ProId of the superelements created by adding
a third column to Sel, with either a scalar value to apply to MatId and ProId or a
line vector under the format [MatId ProId]. E.g. Sel={Selection,SEname,[1001
1001];...}. When the third column is left empty for certain lines, the default
behavior is applied for these lines only.
Master nodes of the global model rigid elements are added to the superelements that
contain corresponding slave nodes. By default, model properties are forwarded to
the superelement fields, that is to say il, pl, stack entry types pro, mat, bas, set,
and possible stack entries info,Rayleigh and info,Omega.

Following example divides the d cms model into 2 sub superelement models.
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mdl=demosdt(’demo cms’);

model=fesuper(’SESelAsSE’,mdl, ...

{’WithNode{x>0|z>0}’;’WithNode{x<0|z<0}’});

• The command option -dispatch can be used to dispatch constraints (rigid
elements, mpc, rbe3 ...) of the global model in the related superelements and
create DofSet on the interface DOFs. It is the same as calling the fesuper

SEDispatch command after SESelAsSE without command option.

• Command option -noPropFwd can be used not to forward some model data
to the superelement stack (older version compatibility). If used, stack en-
tries of type, pro, mat, bas, set, and possible stack entries info,Rayleigh,
info,Omega will not be forwarded to the superelement model.

SERemove

model=fesuper(’SERemove’,model,’name’) searches superelement name in the model
and removes it from Stack and element matrix.

SERenumber

SE=fesuper(’renumber’,model,’name’) searches superelement name in the model
stack and renumbers based on the entry in the SE element group. If name refers to
multiple superelements, you should provide the row number in model.Elt.

s

Superelement name coding operations. num=fesuper(’s name’) returns the num-
ber coding the superelement name. name=fesuper(’s ’,num) decodes the number.
elt=fesuper(’s name’,model) extracts elements associated with a given superele-
ment.

See also fe super, upcom, section 4.3.3 , section 6.3
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Purpose DOF selection and input/output shape matrix construction.

Syntax c = fe_c(mdof,adof)

c = fe_c(mdof,adof,cr,ty)

b = fe_c(mdof,adof,cr)’

[adof,ind,c] = fe_c(mdof,adof,cr,ty)

ind = fe_c(mdof,adof,’ind’,ty)

adof = fe_c(mdof,adof,’dof’,ty)

labels = fe_c(mdof,adof,’dofs’,ty)

Description This function is quite central to the flexibility of DOF numbering in the Toolbox.
FE model matrices are associated to DOF definition vectors which allow arbitrary
DOF numbering (see section 7.5 ). fe c provides simplified ways to extract the
indices of particular DOFs (see also section 7.10 ) and to construct input/output
matrices. The input arguments for fe c are

mdof DOF definition vector for the matrices of interest (be careful not to mix
DOF definition vectors of different models)

adof active DOF definition vector.
cr output matrix associated to the active DOFs. The default for this

argument is the identity matrix. cr can be replaced by a string ’ind’

or ’dof’ specifying the unique output argument desired then.
ty active/fixed option tells fe c whether the DOFs in adof should be kept

(ty=1 which is the default) or on the contrary deleted (ty=2).

The input adof can be a standard DOF definition vector but can also contain wild
cards as follows

NodeID.0 means all the DOFs associated to node NodeID

0.DofID means DofID for all nodes having such a DOF
-EltID.0 means all the DOFs associated to element EltID

The convention that DOFs .07 to .12 are the opposite of DOFs .01 to .06 is sup-
ported by fe c, but this should really only be used for combining experimental and
analytical results where some sensors have been positioned in the negative directions.

The output argument adof is the actual list of DOFs selected with the input ar-
gument. fe c seeks to preserve the order of DOFs specified in the input adof. In
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particular for models with nodal DOFs only and

• adof contains no wild cards: no reordering is performed.

• adof contains node numbers: the expanded adof shows all DOFs of the different
nodes in the order given by the wild cards.

The first use of fe c is the extraction of particular DOFs from a DOF definition
vector (see b,c page 249). One may for example want to restrict a model to 2-D
motion in the xy plane (impose a fixed boundary condition). This is achieved as
follows

% finding DOF indices by extension in a DOF vector

[adof,ind] = fe_c(mdof,[0.01;0.02;0.06]);

mr = m(ind,ind); kr = k(ind,ind);

Note adof=mdof(ind). The vector adof is the DOF definition vector linked to the
new matrices kr and mr.

Another usual example is to fix the DOFs associated to particular nodes (to achieve
a clamped boundary condition). One can for example fix nodes 1 and 2 as follows

% finding DOF indices by NodeId in a DOF vector

ind = fe_c(mdof,[1 2],’ind’,2);

mr = m(ind,ind); kr = k(ind,ind);

Displacements that do not correspond to DOFs can be fixed using fe coor.

The second use of fe c is the creation of input/output shape matrices (see b,c

page 158). These matrices contain the position, direction, and scaling information
that describe the linear relation between particular applied forces (displacements)
and model coordinates. fe c allows their construction without knowledge of the
particular order of DOFs used in any model (this information is contained in the
DOF definition vector mdof). For example the output shape matrix linked to the
relative x translation of nodes 2 and 3 is simply constructed using

% Generation of observation matrices

c=fe_c(mdof,[2.01;3.01],[1 -1])

For reciprocal systems, input shape matrices are just the transpose of the collocated
output shape matrices so that the same function can be used to build point load
patterns.
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Example

Others examples may be found in adof section.

See also fe mk, feplot, fe coor, fe load, adof, nor2ss
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Purpose UI function to handle FEM computation cases

Syntax Case = fe_case(Case,’EntryType’,’Entry Name’,Data)

fe_case(model,’command’ ...)

Description FEM computation cases contains information other than nodes and elements used
to describe a FEM computation. Currently supported entries in the case stack are

cyclic (SDT) used to support cyclic symmetry conditions
DofLoad loads defined on DOFs (handled by fe load)
DofSet (SDT) imposed displacements on DOFs
FixDof used to eliminated DOFs specified by the stack data
FSurf surface load defined on element faces (handled by fe load). This will

be phased out since surface load elements associated with volume loads
entries are more general.

FVol volume loads defined on elements (handled by fe load)
info used to stored non standard entries
KeepDof (obsolete) used to eliminated DOFs not specified by the stack data.

These entries are less general than FixDof and should be avoided.
map field of normals at nodes
mpc multiple point constraints
rbe3 a flavor of MPC that enforce motion of a node a weighted average
par are used to define physical parameters (see upcom Par commands)
rigid linear constraints associated with rigid links
SensDof (SDT) Sensor definitions

fe case is called by the user to initialize (when Case is not provided as first argu-
ment) or modify cases (Case is provided).

Accepted commands are

Get, Set, Remove, Reset ...

• [Case,CaseName]=fe case(model,’GetCase’) returns the current case.
GetCasei returns case number i (order in the model stack). GetCaseName

returns a case with name Name and creates it if it does not exist. Note that
the Case name cannot start with Case.
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• data=fe case(model,’GetData EntryName’) returns data associated with
the case entry EntryName.

• model=fe case(model,’SetData EntryName’,data) sets data associated with
the case entry EntryName.

• [Case,NNode,ModelDOF]=fe case(model,’GetT’); returns a congruent trans-
formation matrix which verifies constraints. Details are given in sermpc.
CaseDof=fe case(model,’GetTDOF’) returns the case DOF (for model DOF
use feutil(’getdof’,model)).

• model=fe case(model,’Remove’,’EntryName’) removes the entry with name
EntryName.

• Reset empties all information in the case stored in a model structure model

= fe case(model,’reset’)

• fe case SetCurve has a load reference a curve in model Stack. For example
model=fe case(model,’SetCurve’,’Point load 1’,’input’); associates Point
load 1 to curve input. See section 7.9 for more details on curves format and
fe case SetCurve for details on the input syntax.

• stack get applies the command to the case rather than the model. For ex-
ample des = fe case(model,’stack get’,’par’)

• stack set applies the command to the case rather than the model. For ex-
ample model = fe case(model,’stack set’,’info’,’Value’,1)

• stack rm applies the command to the case rather than the model. For example
model = fe case(model,’stack rm’,’par’)

Commands for advanced constraint generation

AutoSPC

Analyses the rank of the stiffness matrix at each node and generates a fixdof case
entry for DOFs found to be singular:

model = fe_case(model,’autospc’)

Assemble

Calls used to assemble the matrices of a model. See fe mknl Assemble and section
4.8.8 for optimized assembly strategies.
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Build Sec epsl d

model = fe cyclic(’build (N) epsl (d)’,model,LeftNodeSelect) is used to
append a cyclic constraint entry in the current case.

ConnectionEqualDOF

fe caseg(’Connection EqualDOF’,model,’name’,DOF1,DOF2) generates a set of
MPC connecting each DOF of the vector DOF1 (slaves) to corresponding DOF in DOF2

(masters). DOF1 and DOF2 can be a list of NodeId, in that case all corresponding
DOF are connected, or only DOF given as a -dof DOFs command option.

Following example defines 2 disjointed cubes and connects them with a set of MPC
between DOFs along x and y of the given nodes,

% Build a Multiple Point Constraint (MPC) with DOF equalization

% Generate a cube model

cf=feplot; cf.model=femesh(’testhexa8’);

% duplicate the cube and translate

cf.mdl=feutil(’repeatsel 2 0.0 0.0 1.5’,cf.mdl);

% build the connection

cf.mdl=fe_caseg(’Connection EqualDOF -id7 -dof 1 2’,cf.mdl, ...

’link1’,[5:8]’,[9:12]’);

% display the result in feplot

cf.sel=’reset’; % reset feplot display

% open feplot pro and view the built connection

fecom(cf,’promodelviewon’);fecom(cf,’curtab Cases’,’link1’);

The option -id i can be added to the command to specify a MPC ID i for export
to other software. Silent mode is obtained by adding ; at the end of the command.

ConnectionPivot

This command generates a set of MPC defining a pivot connection between two sets of
nodes. It is meant for use with volume or shell models with no common nodes. For
beams the pin flags (columns 9:10 of the element row) are typically more appropriate,
see beam1for more details.

The command specifies the DOFs constraint at the pivot (in the example DOF 6 is
free), the local z direction and the location of the pivot node. One then gives the
model, the connection name, and node selections for the two sets of nodes.
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% Build a pivot connection between plates

model=demosdt(’demoTwoPlate’);

model=fe_caseg(’Connection Pivot 12345 0 0 1 .5 .5 -3 -id 1111’, ...

model,’pivot’,’group1’,’group2’);

def=fe_eig(model);feplot(model,def)

The option -id i can be added to the command to specify a MPC ID i for export
to other software. Silent mode is obtained by adding ; at the end of the command.

ConnectionSurface

This command implements node to surface connections trough constraints or penalty.
fe caseg(’ConnectionSurface DOFs’,model,’name’,NodeSel1,Eltsel2) gener-
ates a set of MPC connecting of DOFs of a set of nodes selected by NodeSel1 (this is a
node selection string) to a surface selected by EltSel2 (this is an element selection
string). The following example links x and z translations of two plates

% Build a surface connection between two plates

model=demosdt(’demoTwoPlate’);

model=fe_caseg(’Connection surface 13 -MaxDist0.1’,model,’surface’, ...

’z==0’, ... % Selection of nodes to connect

’withnode {z==.1 & y<0.5 & x<0.5}’); % Selection of elements for matching

def=fe_eig(model);feplot(model,def)

Accepted command options are

• -id i can be added to the command to specify a MPC ID i for export to
other software.

• -Radiusval can be used to increase the search radius for the feutilb Match

operation.

• -MaxDistval eliminates matched node with distance to the matched point
within the element higher than val. This is typically useful for matches on
surfaces where the node can often be external. Using a -MaxDist is required
for -Dof

• -kpval is used to give the stiffness for a penalty based implementation of the
constraint. The stiffness matrix of the penalized bilateral connection is stored
in a superelement with the constraint name.

• -Dofval can be used to build surface connections of non structural DOFs
(thermal fields, ...).
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• -MatchS uses a surface based matching strategy that may be significantly
faster.

• Silent mode is obtained by adding ; at the end of the command.

It is also possible to define the ConnectionSurface implicitly, to let the con-
straint resolution be performed after full model assembly. The ConnectionSurface

is then defined as an MPC, which data structure features fields .type equal to
ConnectionSurface with possible command options, and field .sel giving in a cell
array a sequence {NodeSel1, EltSel2}, as defined in the explicit definition. The
following example presents the implicit ConnectionSurface definition equivalent to
the above explicit one.

% Build a surface connection between two plates

% using implicit selections

model=demosdt(’demoTwoPlate’);

model=fe_case(model,’mpc’,’surface’,...

struct(’type’,’Connection surface 13 -MaxDist0.1’,...

’sel’,{{’z==0’,’withnode {z==.1 & y<0.5 & x<0.5}’}}));
def=fe_eig(model);feplot(model,def)

Warning volume matching requires that nodes are within the element. To allow
exterior nodes, you should add a & selface at the end of the element selection
string for matching.

ConnectionScrew

fe caseg(’Connection Screw’,model,’name’,data)

This command generates a set of RBE3 defining a screw connection. Nodes to be
connected are defined in planes from their distance to the axis of the screw. The
connected nodes define a master set enforcing the motion of a node taken on the
axis of the screw with a set of RBE3 (plane type 1) or rigid links (plane type 0) ring
for each plane.

In the case where rigid links are defined, the command appends a group of rigid
elements to the model case.

Real screws can be represented by beams connecting all the axis slave nodes, this
option is activated by adding the field MatProId in the data structure.

data defining the screw is a data structure with following fields:

502



Origin a vector [x0 y0 z0] defining the origin of the screw.
axis a vector [nx ny nz] defining the direction of the screw axis.
radius defines the radius of the screw.
planes a matrix with as many lines as link rings. Each row is of the form

[z0 type ProId zTol rTol] where z0 is the distance to the origin
along the axis of the screw, type is the type of the link (0 for rigid
and 1 for rbe3), ProId is the ProId of the elements containing
nodes to connect, and zTol and rTol are tolerance of the positions
of these nodes respectively for distance along the axis and distance
to the axis.

MatProId Optional. If present beams are added to connect slave nodes at the
center of each link ring. It is a vector [MatId ProId] defining the
MatId and the ProId of the beams.

MasterCelas Optional. It defines the celas element which is added if this field
is present. It is of the form [0 0 -DofID1 DofID2 ProID EltID

Kv Mv Cv Bv]. The first node of the celas is the slave node of the
rbe3 ring and the second is added at the same location. This can
be useful to reduce a superelement keeping the center of the rings
in the interface.

NewNode Optional. If it is omitted or equal to 1 then a new slave node is
added to the model at the centers of the link rings. If it equals to
0, existent model node can be kept.

Nnode Optional. Gives the number of points to retain in each plane.

Data field planes provide the selection parameters that are used to detect nodes in
a plane. The selection combined three FindNode commands in the order detailed
below

• nodes are searched in a cylinder using the axis and origin provided, using the
radius rTol

• remaining nodes are limited as being over a plane with normal the axis pro-
vided, and over position z0 - zTol.

• remaining nodes are limited as begin under a plane with normal the axis
provided and under position z0 + zTol.

The found nodes, in a cylinder between two planes of same normal, are then con-
nected to the center node, strictly defined at height z0 on the axis provided. The
heights provided as z0 and zTol must be understood along the axis provided and
not as function of the main frame coordinates.

503



fe case

One can also define more generally planes as a cell array whose each row defines
a plane and is of the form {z0 type st} where z0 and type are defined above
and st is a FindNode string. st can contain $FieldName tokens that will be re-
placed by corresponding data.FieldName value (for example ’cyl<= $radius o

$Origin $axis & inElt{ProId $ProId}’ will select nodes in cylinder of radius
data.radius, origin data.Origin and axis data.axis, and in elements of ProId
data.ProId).

Silent mode is obtained by adding ; at the end of the command.

Following example creates a test model, and adds 2 rbe3 rings in 2 planes.

% Sample connection builds commands for screws using rigid or RBE3

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 1 111 1 3.1;

5.0 1 112 1 4;], ...

’MasterCelas’,[0 0 -123456 123456 10 0 1e14], ...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

cf=feplot(model); % show model

fecom(’promodelviewon’);fecom(’curtab Cases’,’screw1’);

% alternative definintion using a beam

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

r1=struct(’Origin’,[20 10 0],’axis’,[0 0 1],’radius’,3, ...

’planes’,[1.5 1 111 1 3.1;

5.0 1 112 1 4;], ...

’MasterCelas’,[0 0 -123456 123456 10 0 1e14], ...

’MatProId’,[110 1001],...

’NewNode’,0);

model=fe_caseg(’ConnectionScrew’,model,’screw1’,r1);

cf=feplot(model); % show model

fecom(’promodelviewon’);fecom(’curtab Cases’,’screw1’);

% alternative definition with a load, two beam elements are created

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

model=fe_caseg(’ConnectionScrew -load1e5;’,model,’screw1’,r1);

def=fe_eig(model,[5 15 1e3]);

% alternative definition with a load, two beam elements are created
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% and a pin flag is added to release the beam compression

model=demosdt(’demoscrew layer 0 40 20 3 3 layer 0 40 20 4’); % create model

model=fe_caseg(’ConnectionScrew -load1e5 -pin1;’,model,’screw1’,r1);

def1=fe_eig(model,[5 15 1e3]);

% a new rigid body mode has been added due to the pin flag addition

[def.data(7) def1.data(7)]

Command option -loadval allows defining a loading force of amplitude val to the
screw in the case where a beam is added to model the screw (through the MatId

optional field). To this mean the last beam element (in the order defined by the
planes entry) is split in two at a tenth of its length and a compression force is added
to the larger element that is exclusively inside the beam. In complement, command
option -pinpdof allows defining pin flags with identifiers pdof to the compressed
beam1element.

Entries The following paragraphs list available entries not handled by fe load or upcom.

cyclic (SDT)

cyclic entries are used to define sector edges for cyclic symmetry computations.
They are generated using the fe cyclic Build command.

FixDof

FixDof entries correspond to rows of the Case.Stack cell array giving {’FixDof’,
Name, Data}. Name is a string identifying the entry. data is a column DOF definition
vector (see section 7.10 ) or a string defining a node selection command. You can
also use
data=struct(’data’,DataStringOrDof,’ID’,ID) to specify a identifier.

You can now add DOF and ID specifications to the findnode command. For example
’x==0 -dof 1 2 -ID 101’ fixes DOFs x and y on the x==0 plane and generates an
data.ID field equal to 101 (for use in other software).

The following command gives syntax examples. An example is given at the end of
the fe case documentation.

% Declare a clamping constraint with fixdof

model = fe_case(model,’FixDof’,’clamped dofs’,’z==0’, ...
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’FixDof’,’SimpleSupport’,’x==1 & y==1 -DOF 3’, ...

’FixDof’,’DofList’,[1.01;2.01;2.02], ...

’FixDof’,’AllDofAtNode’,[5;6], ...

’FixDof’,’DofAtAllNode’,[.05]);

map

map entries are used to define maps for normals at nodes. These entries are typically
used by shell elements or by meshing tools. Data is a structure with fields

• .normal a N by 3 matrix giving the normal at each node or element

• .ID a N by 1 vector giving identifiers. For normals at integration points,
element coordinates can be given as two or three additional columns.

• .opt an option vector. opt(1) gives the type of map (1 for normals at element
centers, 2 for normals at nodes, 3 normals at integration points specified as
additional columns of Data.ID).

• .vertex an optional N by 3 matrix giving the location of each vector specified
in .normal. This can be used for plotting.

MPC

MPC (multiple point constraint) entries are rows of the Case.Stack cell array giving
{’MPC’, Name, Data}. Name is a string identifying the entry. Data is a structure
with fields Data.ID positive integer for identification. Data.c is a sparse matrix
whose columns correspond to DOFs in Data.DOF. c is the constraint matrix such
that [c] {q} = {0} for q defined on DOF.

Data.slave is an optional vector of slave DOFs in Data.DOF. If the vector does not
exist, it is filled by feutil FixMpcMaster.

Note that the current implementation has no provision for using local coordinates
in the definition of MPC (they are assumed to be defined using global coordinates).

par (SDT)

par entries are used to define variable coefficients in element selections. It is nomi-
nally used through upcom Par commands but other routines may also use it [31].
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RBE3 (SDT)

rbe3 constraints enforce the motion of a slave node as a weighted average of master
nodes. Two definition strategies are supported in SDT, either direct or implicit.
There are known robustness problems with the current implementation of this con-
straint.

The direct definition explicitely declares each node with coupled DOFs and weighting
in a data field. Several rbe3 constrains can be declared in data.data. Each row of
data.data codes a set of constraints following the format

Rbe3ID NodeIdSlave DofSlave Weight1 DofMaster1 NodeId1 Weight2 ...

DofMaster and DofSlave code which DOFs are used (123 for translations, 123456
for both translations and rotations). You can obtain the expression of the RBE3 as
a MPC constraint using data=fe mpc(’rbe3c’,model,’CaseEntryName’).

When reading NASTRAN models an alternate definition

Rbe3ID NodeIdSlave DofSlave Weight DofMaster NodeId1 NodeId2 ... may
exist. If the automated attempt to detect this format fails you can fix the entry
using model=fe mpc(’FixRbe3 Alt’,model).

The implicit definition handles Node Selectors described in section 7.11 to define
the rbe3. The input is then a structure:

% Define a RBE3 constraint

data=struct(’SlaveSel’,’NodeSel’,...

’MasterSel’,’NodeSel’,...

’DOF’, DofSlave,...

’MasterDOF’, DofMaster);

SlaveSel is the slave node selection (typically a single node), MasterSel is the
master node selection, DOF is the declaration of the slave node coupling, MasterDOF
is the declaration of the master nodes coupling (same for all master nodes).

Grounding or coupling the slave node movement is possible through the use of a celas,
as shown in the example below featuring an implicit rbe3 definition. In a practical
approach, the slave node is duplicated and a celas element is generated between
the two, which allows the definition of global movement stiffnesses. Constraining the
rotation of a drilled block around its bore axis is considered using a global rotation
stiffness.

% Integrated generation of an RBE3 constraint in a model

% Definition of a drilled block around y
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fe case

model=feutil(’ObjectHoleInBlock 0 0 0 1 0 0 0 1 0 2 2 2 .5 4 4 4’);

model=fe_mat(’DefaultIl’,model); % default material properties

model=fe_mat(’defaultPl’,model); % default element integration properties

% Generation of the bore surface node set

[i1,r1]=feutil(’Findnode cyl ==0.5 o 0 0 0 0 1 0’,model);

model=feutil(’AddsetNodeId’,model,’bolt’,r1(:,1));

% Generation of the slave node driving the global bore movement

model.Node(end+[1:2],1:7)=[242 0 0 0 0 0 0;244 0 0 0 0 0 0];

% Addition of the celas element between the slave node and its duplicate

model.Elt(end+[1:2],1:7)=[inf abs(’celas’) 0;242 244 123456 0 0 0 1e11];

model=feutil(’AddSetNodeId’,model,’ref_rot’,244);

% Definition of the RBE3 constraint

data=struct(’SlaveSel’,’setname ref_rot’,...

’MasterSel’,’setname bolt’,...

’DOF’,123456,... % Slave node constrained on 6 DOF

’MasterDOF’,123); % Master only use translation

model=fe_case(model,’rbe3’,’block_mov’,data);

% Grounding the global y rotation (leaving the celas stiffness work)

model=fe_case(model,’fixdof’,’ClampBlockRot’,242.05);

% 5 rigid body modes model obtained

def=fe_eig(model,[5 20 1e3]);

cf=feplot(model,def);fecom(’curtabCases’,’rbe3’);fecom(’ProViewOn’);

rigid

See details under rigid which also illustrates the RigidAppend command.

Sens ... (SDT)

SensDof entries are detailed in section 4.6 . They are stored as rows of the
Case.Stack cell array giving {’SensDof’, Name, data}. SensStrain entries have
been replaced with strain sensors in SensDof.

R1=fe case(’sensobserve’,model,’SensEntryName’,def); iiplot(R1) can be
used to extract observations at sensors associated with a given response. The
SensEntryName can be omitted.

un=0
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model=fe case(model,’un=0’,’Normal motion’,map); where map gives normals
at nodes generates an mpc case entry that enforces the condition {u}T {n} = 0 at
each node of the map.

SetCurve

To associate a time variation to a compatible case entry, one adds a field curve to
the case entry structure. This field is a cell array that is of the same length as the
number of solicitation contained in the case entry.

Each curve definition in the cell array can be defined as either

• a string referring to the name of a curve stacked in the model (recommended)

• a curve structure

• a string that will be interpreted on the fly by fe curvewhen the load is as-
sembled, see fe curve(’TestList’) to get the corresponding strings

The assignation is performed using

model = fe case(model,’SetCurve’,EntryName,CurveName,Curve,ind);

with

• EntryName the case entry to which the curve will be assigned

• CurveName a string or a cell array of string with the name of the curves to
assign

• Curve (optional) a curve or a cell array of curves that will be assigned (if not
in model stack), they will be set in the model stack and only their names will
be mentioned in the case entry

• ind (optional) the index of the curves to assign in the curve field, if several
solicitation are present in the case entry considered. If ind is omitted the
whole field curve of the case entry will be replaced by CurveName.

In practice, a variant call is supported for retro-compatibility but is not recom-
mended for use,

model = fe case(model,’SetCurve’,EntryName,Curve,ind);
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allows a direct assignation of non stacked curves to the case entry with the same
behavior than for the classical way.

Multiple curve assignation at once to a specific EntryName is supported with the
following rules

• CurveName, Curve (optional) and ind (mandatory) have the same sizes. In this
case, all given curves will be assigned to the case entry with their provided
index

• A singleCurveName and Curve is provided with a vector of indices. In this
case, all indexed curves will be assigned to the new provided one

To remove a curve assignation to a case entry. Command

model = fe case(model,’SetCurve’,EntryName,’remove’);

will remove the field curve from case entry EntryName.

The flexibility of the command imposes some restriction to the curve names. Name
remove and TestVal with Val begin a keyword used by fe curve Test cannot be
used.

The following example illustrate the use of SetCurve to assign curves to case entries

% Sample calls to assign curves to load cases

% generate a sample cube model

model=femesh(’testhexa8’);

% clamp the cube bottom

model=fe_case(model,’FixDof’,’clamped dofs’,’z==0’);

% load a DOF of the cube base

model=fe_case(model,’DofLoad’,’in’,struct(’def’,1,’DOF’,5.02));

% generate a curve loading transient pattern

R1=fe_curve(’testramp t1.005 yf1’);

% assign the curve to the load case

model=fe_case(model,’SetCurve’,’in’,’tramp’,R1);

% add a new load case with two sollicitations

model=fe_case(model,’DofLoad’,’in2’,...

struct(’def’,[1 0;0 1],’DOF’,[6.02;6.03]));

% assign a new transient variation to both directions
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model=fe_case(model,’SetCurve’,’in2’,’tramp1’,...

fe_curve(’testramp t0.5 yf1’),1:2);

% modify the first direction only to tramp instead of tramp1

model=fe_case(model,’SetCurve’,’in2’,’tramp’,1);

% remove the curve assigned to input in

model=fe_case(model,’SetCurve’,’in’,’remove’)

Examples

Here is an example combining various fe case commands

% Sample fe_case commands for boundary conditions, connections, and loads

femesh(’reset’);

model = femesh(’test ubeam plot’);

% specifying clamped dofs (FixDof)

model = fe_case(model,’FixDof’,’clamped dofs’,’z==0’);

% creating a volume load

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volumic load’,data);

% assemble active DOFs and matrices

model=fe_mknl(model);

% assemble RHS (volumic load)

Load = fe_load(model,’Case1’);

% compute static response

kd=ofact(model.K{2});def.def= kd\Load.def; ofact(’clear’,kd)

Case=fe_case(model,’gett’); def.DOF=Case.DOF;

% plot displacements

feplot(’initdef’,def);

fecom(’;undef;triax;showpatch;promodelinit’);

See also fe mk, fe case
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fe ceig

Purpose Computation and normalization of complex modes associated to a second order
viscously damped model.

Syntax
[psi,lambda] = fe_ceig( ... )

lambda = fe_ceig(m,c,k)

def = fe_ceig( ... )

... = fe_ceig(m,c,k)

... = fe_ceig({m,c,k,mdof},ceigopt)

... = fe_ceig({m,c,k,T,mdof},ceigopt)

... = fe_ceig(model,ceigopt)

Description Complex modes are solution of the second order eigenvalue problem (see section 5.5
for details)

[M ]N×N {ψj}N×1 λ
2
j + [C] {ψj}λj + [K] {ψj} = 0

where modeshapes psi=ψ and poles Λ =
[
\λj\

]
are also solution of the first order

eigenvalue problem (used in fe ceig)[
C M
M 0

]
2N×2N

[
ψ
ψΛ

]
2N×2N

[Λ]2N×2N +

[
K 0
0 −M

] [
ψ
ψΛ

]
= [0]2N×2N

and verify the two orthogonality conditions

ψTCψ + ΛψTMψ + ψTMψΛ = I and ψTKψ − ΛψTMψΛ = −Λ

[psi,lambda] = fe ceig(m,c,k) is the old low level call to compute all complex
modes. For partial solution you should use def = fe ceig(model,ceigopt) where
model can be replaced by a cell array with {m,c,k,mdof} or {m,c,k,T,mdof} (see
the example below). Using the projection matrix T generated with fe case(’gett’)

is the proper method to handle boundary conditions.

Options give [CeigMethod EigOpt] where EigOpt are standard fe eig options and
CeigMethod can be

• 0 (full matrices)

• 1 real modes then complex ones on the same basis (equivalent to NASTRAN
SOL 110)

512



• 2 real modes and first order correction for viscous and hysteretic damping part.

• 3 is a refined solvers available with the VISCO extension.

Here is a simple example of fe ceig calls.

model=demosdt(’demoubeam’); cf=feplot;

[Case,model.DOF]=fe_mknl(’init’,model);

m=fe_mknl(’assemble not’,model,Case,2);

k=fe_mknl(’assemble not’,model,Case,1);

kc=k*(1+i*.002); % with hysteretic damping

def1=fe_ceig({m,[],kc,model.DOF},[1 6 10 1e3]); % free modes

def2=fe_ceig({m,[],kc,Case.T,model.DOF},[1 6 10 1e3]); % fixed modes

cf.def=def1; % show def1 in feplot figure

See also fe eig, fe mk, nor2ss, nor2xf, section 5.3
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fe coor

Purpose Coordinate transformation matrices for Component Mode Synthesis problems.

Syntax [t] = fe_coor(cp)

[t,nc] = fe_coor(cp,opt)

Description The different uses of fe coor are selected by the use of options given in the argument
opt which contains [type method] (with the default values [1 3]).

type=1 (default) the output t is a basis for the kernel of the constraints cp

range([T ]N×(N−NC)) = ker([c]NS×N )

NC ≤ NS is the number of independent constraints.

type=2 the output argument t gives a basis of vectors linked to unit outputs followed
by a basis for the kernel

T =
[
[TU ]N×NS [TK ]N×(N−NS)

]
with [c]NS×N [T ] =

[[
\I\
]

[0]NS×(N−NS)

]
If NC < NS such a matrix cannot be constructed and an error occurs.

method the kernel can be computed using: 1 a singular value decomposition svd

(default) or 3 a lu decomposition. The lu has lowest computational cost.
The svd is most robust to numerical conditioning problems.

Usage fe coor is used to solve problems of the general form[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)} with [cint] {q(s)} = 0

which are often found in CMS problems (see section 6.2.6 and [40]).

To eliminate the constraint, one determines a basis T for the kernel of [cint] and
projects the model[

T TMTs2 + T TCTs+ T TKT
]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT ] {qR(s)}

See also Section 7.14, fe c, the d cms demo
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fe curve

Purpose Generic handling of curves and signal processing utilities

Syntax out=fe_curve(’command’,MODEL,’Name’,...);

Commands

fe curve is used to handle curves and do some basic signal processing. The format
for curves is described in section 7.9 . The iiplot interface may be used to plot
curves and a basic call would be iiplot(Curve) to plot curve data structure Curve.

Accepted commands are

bandpass Unit f min f max

out=fe curve(’BandPass Unit f min f max’,signals);

realizes a true bandpass filtering (i.e. using fft() and ifft()) of time signals
contained in curves signals. f min and f max are given in units Unit, whether
Hertz(Hz) or Radian(Rd). With no Unit, f min and f max are assumed to be in
Hertz.

% apply a true bandpasss filter to a signal

out=fe_curve(’TestFrame’);% 3 DOF oscillator response to noisy input

fe_curve(’Plot’,out{2}); % "unfiltered" response

filt_disp=fe_curve(’BandPass Hz 70 90’,out{2}); % filtering

fe_curve(’Plot’,filt_disp); title(’filtered displacement’);

datatype [,cell]

out=fe curve(’DataType’,DesiredType);

returns a data structure describing the data type, useful to fill .xunit and .yunit

fields for curves definition. DesiredType could be a string or a number corresponding
to the desired type. With no DesiredType, the current list of available types is dis-
played. One can specify the unit with out=fe curve(’DataType’,DesiredType,’unit’);.

DataTypeCell returns a cell array rather than data structure to follow the specifi-
cation for curve data structures.
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fe curve

getcurve

curve=fe curve(’getcurve’,model,’curve name’);

extracts curve curve name from model.Stack or the possible curves attached to a
load case. If the user does not specify any name, all the curves are returned in a cell
array.

h1h2 input channels

FRF=fe curve(’H1H2 input channels’,frames,’window’);

computes H1 and H2 FRF estimators along with the coherence from time signals
contained in cell array frames using window window. The time vector is given in
frames1.X while input channels tells which columns of in frames1.Y are inputs.
If more than one input channel is specified, true MIMO FRF estimation is done,
and Hν is used instead of H2. When multiple frames are given, a mean estimation
of FRF is computed.

Note: To ensure the proper assembly of H1 and Hν in MIMO FRF estimation case,
a weighing based on maximum time signals amplitude is used. To use your own, use
FRF=fe curve(’H1H2 input channels’,frames,window,weighing);

where weighing is a vector containing weighing factors for each channel. To avoid
weighing, use
FRF=fe curve(’H1H2 input channels’,frames,window,0);

noise

OBSOLETE : use fe curve TestNoise instead

noise=fe curve(’Noise’,Nw pt,fs,f max);

computes a Nw pt points long time signal corresponding to a “white noise”, with
sample frequency fs and a unitary power spectrum density until f max. fs/2 is
taken as f max when not specified. The general shape of noise power spectrum
density, extending from 0 to fs/2, can be specified instead of f max.

% computes a 2 seconds long white noise, 1024 Hz of sampling freq.

% with "rounded" shape PSD

fs=1024; sample_length=2;

Shape=exp(fe_curve(’window 1024 hanning’))-1;

noise_h=fe_curve(’noise’,fs*sample_length,fs,Shape);

noise_f=fe_curve(’fft’,noise_h);

figure(1);
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subplot(211);fe_curve(’plot -gca’,noise_h);axis tight;

subplot(212);fe_curve(’plot -gca’,noise_f);axis tight;

plot

fe curve(’plot’,curve); plots the curve curve.
fe curve(’plot’,fig handle,curve); plots curve in the figure with handle fig handle.
fe curve(’plot’,model,’curve name’); plots the curve of model.Stack named
curve name.
fe curve(’plot’,fig handle,model,curve name); plots curve named curve name

stacked in .Stack field of model model.

% Plot a fe_curve signal

% computes a 2 seconds long white noise, 1024 Hz of sampling freq.

fs=1024; sample_length=2;

noise=fe_curve(’noise’,fs*sample_length,fs);

noise.xunit=fe_curve(’DataType’,’Time’);

noise.yunit=fe_curve(’DataType’,’Excit. force’);

noise.name=’Input force’;

fe_curve(’Plot’,noise);

resspectrum [True, Pseudo] [Abs., Rel.] [Disp., Vel., Acc.]

out=fe curve(’ResSpectrum’,signal,freq,damp);

computes the response spectrum associated to the time signal given in signal. Time
derivatives can be obtained with option -v or -a. Time integration with option +v

or +a. Pseudo derivatives with option PseudoA or PseudoV. freq and damp are
frequencies (in Hz) and damping ratios vectors of interest for the response spectra.
For example

wd=fileparts(which(’d_ubeam’));

% read the acceleration time signal

bagnol_ns=fe_curve([’read’ fullfile(wd,’bagnol_ns.cyt’)]);

% read reference spectrum

bagnol_ns_rspec_pa= fe_curve([’read’ fullfile(wd,’bagnol_ns_rspec_pa.cyt’)]);

% compute response spectrum with reference spectrum frequencies

% vector and 5% damping

517



fe curve

RespSpec=fe_curve(’ResSpectrum PseudoA’,...

bagnol_ns,bagnol_ns_rspec_pa.X/2/pi,.05);

fe_curve(’plot’,RespSpec); hold on;

plot(RespSpec.X,bagnol_ns_rspec_pa.Y,’r’);

legend(’fe\_curve’,’cyberquake’);

returny

If curve has a .Interp field, this interpolation is taken in account. If .Interp field
is not present or empty, it uses a degree 2 interpolation by default.

To force a specific interpolation (over passing .interp field, one may insert the
-linear, -log or -stair option string in the command.

To extract a curve curve name and return the values Y corresponding to the input
X, the syntax is

y = fe curve(’returny’,model,curve name,X);

Given a curve data structure, to return the values Y corresponding to the input X,
the syntax is

y = fe curve(’returny’,curve,X);

set

This command sets a curve in the model. 3 types of input are allowed:

• A data structure, model=fe curve(model,’set’,curve name,data structure)

• A string to interprete, model=fe curve(model,’set’,curve name,string)

• A name referring to an existing curve (for load case only), model=fe curve(

model, ’set LoadCurve’,load case,chanel,curve name). This last be-
havior is obsolete and should be replaced in your code by a more general
call to fe case SetCurve.

When you want to associate a curve to a load for time integration it is preferable to
use a formal definition of the time dependence (if not curve can be interpolated or
extrapolated).
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The following example illustrates the different calls.

% Sample curve assignment to modal loads in a model

model=fe_time(’demo bar’); q0=[];

% curve defined by a by-hand data structure:

c1=struct(’ID’,1,’X’,linspace(0,1e-3,100), ...

’Y’,linspace(0,1e-3,100),’data’,[],...

’xunit’,[],’yunit’,[],’unit’,[],’name’,’curve 1’);

model=fe_curve(model,’set’,’curve 1’,c1);

% curve defined by a string to evaluate (generally test fcn):

model=fe_curve(model,’set’,’step 1’,’TestStep t1=1e-3’);

% curve defined by a reference curve:

c2=fe_curve(’test -ID 100 ricker dt=1e-3 A=1’);

model=fe_curve(model,’set’,’ricker 1’,c2);

c3=fe_curve(’test eval sin(2*pi*1000*t)’); % 1000 Hz sinus

model=fe_curve(model,’set’,’sin 1’,c3);

% define Load with curve definition

LoadCase=struct(’DOF’,[1.01;2.01],’def’,1e6*eye(2),...

’curve’,{{fe_curve(’test ricker dt=2e-3 A=1’),...

’ricker 1’}});
model = fe_case(model,’DOFLoad’,’Point load 1’,LoadCase);

% modify a curve in the load case

model=fe_case(model,’SetCurve’,’Point load 1’,’TestStep t1=1e-3’,2);

% the obsolete but supported call was

model=fe_curve(model,’set LoadCurve’,’Point load 1’,2,’TestStep t1=1e-3’);

% one would prefer providing a name to the curve,

% that will be stacked in the model

model=fe_case(model,’SetCurve’,’Point load 1’,...

’my\_load’,’TestStep t1=1e-3’,2);

Test ...

The test command handles a large array of analytic and tabular curves. In Open-
FEM all parameters of each curve must be given in the proper order. In SDT you
can specify only the ones that are not the default using their name.
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fe curve

When the abscissa vector (time, frequency, ...) is given as shown in the example, a
tabular result is returned.

Without output argument the curve is simply plotted.

% Standard generation of parametered curves

fe_curve(’test’) % lists curently implemented curves

t=linspace(0,3,1024); % Define abscissa vector

% OpenFEM format with all parameters (should be avoid):

C1=fe_curve(’test ramp 0.6 2.5 2.3’,t);

C2=fe_curve(’TestRicker 2 2’,t);

% SDT format non default parameters given with their name

% definition is implicit and will be applied to time vector

% during the time integration:

C3=fe_curve(’Test CosHan f0=5 n0=3 A=3’);

C4=fe_curve(’testEval 3*cos(2*pi*5*t)’);

% Now display result on time vector t:

C3=fe_curve(C3,t);C4=fe_curve(C4,t)

figure(1);plot(t,[C1.Y C2.Y C4.Y C3.Y]);

legend(C1.name,C2.name,C4.name,C3.name)

A partial list of accepted test curves follows

• Testsin, Testcos, TestTan, TestExp, accept parameters T period and A am-
plitude. -stoptime Tf will truncate the signal.

• TestRamp t0=t0 t1=t1 Yf=Yf has a ramp starting at zero until t0 and going
up to Yf at t1. The number of intermediate value can be controlled with the
abscissa vector.
To define a gradual load, for non linear static for example, a specific call
with a Nstep parameter can be performed : TestRamp NStep=NStep Yf=Yf.
For example, to define a 20 gradual steps to 1e-6 :R1=fe curve(’TestRamp

NStep=20 Yf=1e-6’);

• TestRicker dt=dt A=A t0=t0 generates a Ricker function typically used to
represent impacts of duration dt and amplitude A, starting from time t0.

• TestSweep fmin=fmin fmax=fmax t0=t0 t1=t1 generates a sweep cosine from
t0 to t1, with linear frequency sweeping from f0 to f1.
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Y = cos(2 ∗ pi ∗
(
fmin+ (fmax− fmin) ∗ t−t0

t1−t0) ∗ (t− t0)
)

for t0 < t < t1,

Y = 0 elsewhere.

• TestStep t1=t1 generates a step which value is one from time 0 to time t1.

• TestNoise -window"window" computes a time signal corresponding to a white
noise, with the power spectrum density specified as the window parameter.
For example TestNoise "Box A=1 min=0 max=200" defines a unitary power
spectrum density from 0 Hz to 200 Hz.

• TestBox A=A min=min max=max generates a sample box signal from min to
max abscissa, with an amplitude A.

• TestEval str generates the signal obtained by evaluating the string str func-
tion of t. For example R1=fe curve(’Test eval sin(2*pi*1000*t)’,linspace(0,0.005,501));

iiplot(R1)

One can use fe curve(’TestList’) to obtain a cell array of the test keywords
recognized.

testframe

out=fe curve(’TestFrame’); computes the time response of a 3 DOF oscillator to
a white noise and fills the cell array out with noise signal in cell 1 and time response
in cell 2. See sdtweb fe curve(’TestFrame’) to open the function at this example.

timefreq

out=fe curve(’TimeFreq’,Input,xf);

computes response of a system with given transfer functions FRF to time input
Input. Sampling frequency and length of time signal Input must be coherent with
frequency step and length of given transfer FRF.

% Plot time frequency diagrams of signals

fs=1024; sample_length=2; % 2 sec. long white noise

noise=fe_curve(’noise’,fs*sample_length,fs);% 1024 Hz of sampling freq.

[t,f,N]=fe_curve(’getXTime’,noise);

% FRF with resonant freq. 50 100 200 Hz, unit amplitude, 2% damping

xf=nor2xf(2*pi*[50 100 200].’,.02,[1 ; 1 ; 1],[1 1 1],2*pi*f);
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Resp=fe_curve(’TimeFreq’,noise,xf); % Response to noisy input

fe_curve(’Plot’,Resp); title(’Time response’);

Window ...

Use fe curve window to list implemented windows. The general calling format
is win=fe curve(’Window Nb pts Type Arg’); which computes a Nb pts points
window. The default is a symmetric window (last point at zero), the command
option -per clips the last point of a N + 1 long symmetric window.

For the exponential window the arguments are three doubles. win = fe curve(’Window

1024 Exponential 10 20 10’); returns an exponential window with 10 zero points,
a 20 point flat top, and a decaying exponential over the 1004 remaining points with
a last point at exp(-10).

win = fe curve(’Window 1024 Hanning’); returns a 1024 point long hanning
window.

See also fe load, fe case
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fe cyclic

Purpose Support for cyclic symmetry computations.

Syntax
model=fe_cyclic(’build NSEC’,model,LeftNodeSelect)

def=fe_cyclic(’eig NDIAM’,model,EigOpt)

Description fe cyclic groups all commands needed to compute responses assuming cyclic sym-
metry. For more details on the associated theory you can refer to [47].

Assemble [,-struct]

This command supports the computations linked to the assembly of gyroscopic cou-
pling, gyroscopic stiffness and tangent stiffness in geometrically non-linear elasticity.
The input arguments are the model and the rotation vector (in rad/s)

model=demosdt(’demo sector all’);

[K,model,Case]=fe_case(’assemble -matdes 2 1 NoT -cell’,model);

SE=fe_cyclic(’assemble -struct’,model,[0 0 1000]); %

def=fe_eig({K{1:2},Case.T,model.DOF},[6 20 0]);% Non rotating modes

def2=fe_eig({K{1},SE.K{4},Case.T,model.DOF},[6 20 0]); % Rotating mode shapes

[def.data def2.data]

Note that the rotation speed can also be specified using a stack entry model=stack set(model,

’info’, ’Omega’,[0 0 1000]).

Build ...

model=fe cyclic(’build nsec epsl len’,model,’LeftNodeSelect’) adds a cyclic
symmetry entry in the model case. It automatically rotates the nodes selected with
LeftNodeSelect by 2π/nsec and finds the corresponding nodes on the other sector
face. The default for LeftNodeSelect is ’GroupAll’ which selects all nodes.

The alternate command model=fe cyclic(’build nsec epsl len -intersect’,model,’LeftNodeSelect’)

is much faster but does not implement strict node tolerancing and may thus need
an adjustement of epsl to higher values.

Command options are
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• nsec is the optional number of sectors. An automatic determination of the
number of angular sectors is implemented from the angle between the left and
right interface nodes with the minimum radius. This guess may fail in some
situtations so that the argument may be necessary.

• nsec=-1 is used for periodic structures and you should then provide the trans-
lation step. For periodic solutions, model=fe cyclic(’build -1 tx ty tz

epsl len -intersect’,model,’LeftNodeSelect’) specifies 3 components
for the spatial periodicity.

• Fix will adjust node positions to make the left and right nodes sets match
exactly.

• epsllen gives the tolerance for edge node matching.

• -equal can be used to build a simple periodicity condition for use outside of
fe cyclic. This option is not relevant for cyclic symmetry.

• -ByMat is used to allow matching by MatId which allows for proper matching
of coincident nodes.

model=demosdt(’demo sector 5’);

cf.model=fe_cyclic(’build epsl 1e-6’,model);

LoadCentrifugal

The command is used to build centrifugal loads based on an info,Omega stack entry
in the form

data=struct(’data’,[0 0 1000],’unit’,’RPM’);

model=stack_set(model,’info’,’Omega’,data);

model=fe_cyclic(’LoadCentrifugal’,model);

Eig

def=fe cyclic(’eig ndiam’,model,EigOpt) computes ndiam diameter modes us-
ing the cyclic symmetry assumption. For ndiam¿0 these modes are complex to
account for the inter-sector phase shifts. EigOpt are standard options passed to
fe eig.

This example computes the two diameter modes of a three bladed disk also used in
the d cms2 demo.
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model=demosdt(’demo sector’);

model=fe_cyclic(’build 3’,model,’groupall’);

fe_case(model,’info’)

def=fe_cyclic(’eig 2’,model,[6 20 0 11]);

fe_cyclic(’display 3’,model,def)

The basic functionality of this command is significantly extended in fe cyclicb

ShaftEig that is part of the SDT/Rotor toolbox.

See also Section 7.14
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Purpose Utilities for FEM related data structures.

Syntax
... = fe_def(def,’command’, ... )

... = fe_def(’command’, ... )

Description Accepted commands are

SubDef, SubDof, SubCh

def=fe def(’SubDef’,def,ind); keeps deformations associated with ind, which a
vector of indices or a logical vector (for example ind=def.data(:,1)<500 can be
used to select frequencies below 500). Other fields of the def structure are truncated
consistently.

def=fe def(’SubDof’,def,DOF) is extracts a subset of DOFs based on defined
DOF or with def=fe def(’subdofind’,def,ind) indices (again either values or
logicals). This command is partially redundant with feutilb PlaceInDof called
with def2 = feutilb(’PlaceInDof’,DOF,def). The main difference is the ability
to add zeros (use DOF larger than def.DOF) and support sens structures.

fe def(’SubDofInd-Cell’,def,ind dof,ind def) returns a clean cell array listing
selected DOFs and responses. This is typically used to generate clean tables.

fe def(’SubCh’,def,ind) is similar to SubDof but allows but supports more ad-
vanced selection for multi-dimensional curves. This command is not fully docu-
mented.

DefFreq

w=fe def(’DefFreq’,DISK) returns frequencies defined in the info,Freq entries
using Hz units.
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Purpose Computation of normal modes associated to a second order undamped model.

Syntax def = fe_eig(model,EigOpt)

def = fe_eig({m,k,mdof},EigOpt)
def = fe_eig({m,k,T,mdof},EigOpt)
[phi, wj] = fe_eig(m,k)

[phi, wj, kd] = fe_eig(m,k,EigOpt,imode)

Description The normal modeshapes phi=φ and frequencies wj=sqrt(diag(Ω2)) are solution
of the undamped eigenvalue problem (see section 5.2 )

− [M ] {φj}ω2
j + [K] {φj} = {0}

and verify the two orthogonality conditions

[φ]T [M ]N×N [φ]N×N = [I]N×N and [φ]T [K] [φ] =
[
\Ω2

j \

]
The outputs are the data structure def (which is more appropriate for use with
high level functions feplot, nor2ss, ... since it keeps track of the signification of
its content, frequencies in def.data are then in Hz) or the modeshapes (columns
of phi) and frequencies wj in rad/s. Note how you provide {m,k,mdof} in a cell
array to obtain a def structure without having a model.

The optional output kd corresponds to the factored stiffness matrix. It should be
used with methods that do not renumber DOFs.

fe eig implements various algorithms to solve this problem for modes and frequen-
cies. Many options are available and it is important that you read the notes below
to understand how to properly use them. The option vector EigOpt can be supplied
explicitely or set using model=stack set(model, ’info’,’EigOpt’,EigOpt). Its
format is

[method nm Shift Print Thres] (default values are [2 0 0 0 1e-5])

• method

– 2 default full matrix solution. Cannot be used for large models.

– 6 IRA/Sorensen solver. Faster than 5 but less robust.
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– 5 Lanczos solver allows specification of frequency band rather than num-
ber of modes. To turn off convergence check add 2000 to the option
(2105, 2005, ...).

– 50 Callback to let the user specify an external solver method using
setpref(’SDT’,’ExternalEig’).

– 106, 104 same as 6,4 methods but no initial DOF renumbering. This
is useless with the default ofact(’methodspfmex’) which renumbers at
factorization time.

– 0 SVD based full matrix solution

– 1 subspace iteration which allows to compute the lowest modes of a large
problem where sparse mass and stiffness matrices are used.

– 3 Same as 5 but using ofact(’methodlu’).

– 4 Same as 5 but using ofact(’methodchol’).

• nm number of modes to be returned. A non-integer or negative nm, is used as
the desired fmax in Hz for iterative solvers (method 5 only).

• shift value of mass shift (should be non-zero for systems with rigid body
modes, see notes below). The subspace iteration method supports iterations
without mass shift for structures with rigid body modes. This method is used
by setting the shift value to Inf.

• print level of printout (0 none, 11 maximum)

• thres threshold for convergence of modes (default 1e-5 for the subspace iter-
ation and Lanczos methods)

Finally, a set of vectors imode can be used as an initial guess for the subspace
iteration method (method 1).

Notes • The default full matrix algorithm (method=2) cleans results of the Matlab eig

function. Computed modes are mass normalized and complex parts, which are
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known to be spurious for symmetric eigenvalue problems considered here, are
eliminated. The alternate algorithm for full matrices (method=0) uses a singular
value decomposition to make sure that all frequencies are real. The results are
thus wrong, if the matrices are not symmetric and positive definite (semi-positive
definite for the stiffness matrix).

• The preferred partial solver is method 6 which calls eigs (ARPACK) properly and
cleans up results. This solver sometimes fails to reach convergence, use method 5

then.

• The subspace iteration and Lanczos algorithms are rather free interpretation of
the standard algorithms (see Ref. [37] for example).

• The Lanczos algorithm (methods 3,4,5) is much faster than the subspace it-
eration algorithm (method 1). A double Orthogonalization scheme and double
restart usually detects multiple modes.

• For systems with rigid body modes, you must specify a mass-shift. A good value is
about one tenth of the first flexible frequency squared, but the Lanczos algorithm
tends to be sensitive to this value (you may occasionally need to play around a
little). If you do not find the expected number of rigid body modes, this is can
be reason.

• DOFs with zero values on the stiffness diagonal are eliminated by default. You can
bypass this behavior by giving a shift with unit imaginary value (eigopt(3)=1e3+1i
for example).

Example

Here is an example containing a high level call

model =demosdt(’demo gartfe’);

cf=feplot;cf.model=model;

cf.def=fe_eig(model,[6 20 1e3 11]);

fecom chc10

and the same example with low level commands

model =demosdt(’demo gartfe’);

[m,k,mdof] = fe_mknl(model);

cf=feplot;cf.model=model;

cf.def=fe_eig({m,k,mdof},[5 20 1e3]);fecom chc10

See also fe ceig, fe mk, nor2ss, nor2xf
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Purpose Expansion of experimental modeshapes.

Syntax dExp = fe_exp(’method’,ID,Sens,FEM);

dExp = fe_exp(’method’,ID,SE);

Description A unified perspective on interpolation and the more advanced finite element based
expansion methods are discussed in the tutorial 3.3. An example is treated in detail
in the gartco demonstration. This section gives a list of available methods with a
short discussion of associated trade-offs.

Subspace, Modal, Serep

Subspace expansion solves a problem of the form

{qexp} = [T ] {qr} with {qr} = argmin ‖ytest − [cT ] {qr}‖2 (9.4)

Modal or SEREP expansion is a subspace based expansion using the subspace
spanned by low frequency target modes (stored in TR in the def format). With a
sensor configuration defined (sens defined using fe sens), a typical call would be

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

TR=fe_def(’subdef’,FEM,1:20); % Subspace containing 20 modes

dex1 = fe_exp(’Subspace’,ID,Sens,TR);

cf=feplot(model);

cf.def(1)=fe_def(’subdef’,FEM,7:20); % Rigid not in FEM

cf.def(2)=dex1; fecom(’show2def’);

This method is very easy to implement. Target modes can be imported from an
external code. A major limitation is the fact that results tend to be sensitive to
target mode selection.

Another traditional approach to build subspaces is to generate the solutions by
mathematical interpolation. fe sens WireExp provides such a strategy. For
a basic example of needed data structures, one considers the following case of a
structure with 3 nodes. Node 2 is placed at a quarter of the distance between nodes
1 and 3 whose motion is observed. A linear interpolation for translations in the x
direction is built using
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TR=struct(’DOF’,[1.01;2.01;3.01], ... % DOFs where subspace is defined

’def’,[1 0;3/4 1/4;0 1]); % Each .def column associated with a vector

% sdtweb sens#sensstruct % manual definition of a sens structure

sens=struct(’cta’,[1 0 0;0 0 1],’DOF’,[1.01;2.01;3.01])

% Sample test shapes

ID=struct(’def’,eye(2),’DOF’,[1.01;3.01]);

dexp = fe_exp(’Subspace’,ID,sens,TR) % Expansion

For expansion of this form, T (stored in TR.def) must contain at most as many
vectors as there are sensors. In other cases, a solution is still returned but its
physical significance is dubious.

Subspace-Orth can be used to impose that an orthogonal linear combination of
the modes is used for the expansion. This is motivated for cases where both test
and analysis modeshapes are mass normalized and will provide mass orthonormal
expanded modeshapes [48]. In practice it is rare that test results are accurately
mass normalized and the approach is only implemented for completeness.

Static

Static expansion is a subspace method where the subspace is associated with the
static response to enforced motion or load at sensors. While you can use fe reduc

Static to build the subspace (or import a reduced subspace from an external code),
a direct implementation for general definition of sensors is provided in fe exp.

The main limitation with static expansion is the existence of a frequency limit (first
frequency found when all sensors are fixed). These modes can be returned as a
second argument to the Static command as illustrated below. If the first frequency
is close to your test bandwidth, you should consider using dynamic expansion or
possibly add sensors, see [49].

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

[TR,dfix]=fe_exp(’static’,model,Sens); % Build static subpace

dex1 = fe_exp(’Subspace’,ID,Sens,TR);

cf=feplot(model,dex1); % Expanded mode

cf=feplot(model,dfix); % Fixed interface mode

In the present case, the fixed sensor mode at 44 Hz indicates that above that fre-
quency, additional sensors should be added in the y direction for proper static ex-
pansion.
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Dynamic, RBDE

Dynamic expansion is supported at the frequency of each deformation to be ex-
panded using either full or reduced computations.

% Further illustrations in gartco demo

[model,Sens,ID,FEM]=demosdt(’demopairmac’); %sdtweb demosdt(’demopairmac’)

dex1 = fe_exp(’Dynamic’,ID,Sens,model); % Dynamic full model

SE=fe_exp(’mode+sens’,model,Sens); % Generate reduced model with modes & static

dex3 = fe_exp(’dynamic’,ID,SE); % Dynamic expansion on reduced model

dex4 = fe_exp(’mdre’,ID,SE); % MDRE

RO=struct(’type’,’mdrewe’,’gamma’,1,’MeasErr’,.1);

[dex5,RO] = fe_exp(’mdre’,ID,SE,RO); % MDRE-WE

The preferred strategy is to build a reduced model SE containing normal and at-
tachment modes.

MDRE, MDRE-WE

Minimum dynamic residual expansion (MDRE) is currently only implemented for
normal modeshape expansion. Furthermore, computational times are generally only
acceptable for the reduced basis form of the algorithm as illustrated above.

MDRE-WE (Minimum dynamic residual expansion with measurement error) itera-
tively adjusts the relative weighting γj between model and test error in (3.9). Input
arguments specify a starting value for γj and a relative error bound. The initial
value for γj is increased (multiplied by 2) until εj/ ‖{yjTest}‖ is below the given
bound. A typical call was illustrated above, where the opt in the output gives the
adjusted values of γj , mdexr is the expanded vector expressed in the generalized
coordinates associated with T, and err gives the objective function value (first row)
and relative error (second row).

See also fe sens, fe reduc, section 3.3 , gartco demo.
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Purpose GMSH interface. You can download GMSH at http://www.geuz.org/gmsh/ and
tell where to find GMSH using

Syntax setpref(’OpenFEM’,’gmsh’,’/path_to_binary/gmsh.exe’) % Config

model=fe_gmsh(command,model,...)

model=fe_gmsh(’write -run’,’FileName.stl’)

Description The main operation is the automatic meshing of surfaces.

Example

This example illustrates the automatic meshing of a plate

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];

femesh(’objectholeinplate 1 2 3 .5 .5 3 4 4’);

model=femesh(’model0’);

model.Elt=feutil(’selelt seledge ’,model);

model.Node=feutil(’getnode groupall’,model);

model=fe_gmsh(’addline’,model,’groupall’);

model.Node(:,4)=0; % reset default length

mo1=fe_gmsh(’write del.geo -lc .3 -run -2 -v 0’,model);

delete(’temp.msh’);delete(’temp.geo’);feplot(mo1)

This other example makes a circular hole in a plate

% Hole in plate :

model=feutil(’Objectquad 1 1’,[0 0 0; 1 0 0;1 1 0;0 1 0],1,1); %

model=fe_gmsh(’addline -loop1’,model,[1 2; 2 4]);

model=fe_gmsh(’addline -loop1’,model,[4 3; 3 1]);

model=fe_gmsh(’AddFullCircle -loop2’,model,[.5 .5 0; .4 .5 0; 0 0 1]);

model.Stack{end}.PlaneSurface=[1 2];

mo1=fe_gmsh(’write tmp.geo -lc .02 -run -2 -v 0’,model)

delete(’temp.msh’);delete(’temp.geo’);feplot(mo1)

To allow automated running of GMSH from MATLAB, this function uses a info,GMSH
stack entry with the following fields
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.Line one line per row referencing NodeId. Can be defined using addline

commands.
.Circle define properties of circles.
.LineLoop rows define a closed line as combination of elementary lines. Values

are row indices in the .Line field. One can also define LineLoop

from circle arcs (or mixed arcs and lines) using a cell array whose
each row describes a lineloop as {’LineType’,LineInd,...} where
LineType can be Circle or Line and LineInd row indices in cor-
responding .Line or .Circle field.

.TransfiniteLinesDefines lines which seeding is controlled.

.PlaneSurface rows define surfaces as a combination of line loops, values are row
indices in the .LineLoop field. Negative values are used to reverse
the line orientation. 1st column describes the exterior contour, and
followings the interiors to be removed. As .PlaneSurface is a
matrix, extra columns can be filled by zeros.

.EmbeddedLinesdefine line indices which do not define mesh contours but add addi-
tional constrains to the final mesh (see Line In Surface in the gmsh

documentation.
.SurfaceLoop rows define a closed surface as combination of elementary surfaces.

Values are row indices in the .PlaneSurface field.

The local mesh size is defined at nodes by GMSH. This is stored in column 4 of the
model.Node. Command option -lcval in the command resets the value val for all
nodes that do not have a prior value.

Add...

Typical calls are of the form [mdl,RO]=fe gmsh(’Add Cmd’,mdl,data). The op-
tional second output argument can be used to obtain additional information like the
LoopInfo. Accepted command options are

• -loop i is used to add the given geometries and append the associated indices
into the LineLoop(i).

• FullCircle defines a circle defined using data with rows giving center coordi-
nates, an edge node coordinates and the normal in the last row. 4 arcs of circle
are added. In the LineLoop field the entry has the form {’Circle’,[ind1
ind2 ind3 ind4]} where indi are the row indices of the 4 arcs of circle cre-
ated in .Circle field.
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• CircleArc defines a circle arc using data with rows giving center coordinates,
second and third rows are respectively the first and second edges defined by
node coordinates. One can also give 3 NodeId as a column instead of x y z.

• Disk ...

• Line accepts multiple formats. data can be a 2 column matrix which each
row defines a couple of points from their NodeId.

data can also be a 2 by 3 matrix defining the coordinates of the 2 extremities.

data can also be a string defining a line selection.

– It is possible to specify a seeding on the line for further meshing operation
using additional arguments seed and the number of nodes to seed on
the line. E.g.: mdl=fe gmsh(’AddLine’,mdl,data,’seed’,5); will ask
gmsh to place 5 nodes on each line declared in data.

– It is possible to define line constrains in mesh interiors using embedded
lines (depending on the gmsh version). mdl=fe gmsh(’AddLine’,mdl,data,’embed’,1);

will thus declare the edges found in data not as line loops defining sur-
faces, but as interior mesh constrains. This feature is only supported for
lines specified as selections.

• AddLine3 can be used to declare splines instead of lines in the geometry. For
this command to work, beam3 elements must be used, so that a middle node
exists to be declared as the spline control point. For this command, data can
only be an element string selection.

config

The fe gmsh function uses the OpenFEM preference to launch the GMSH mesher.

setpref(’OpenFEM’,’gmsh’,’$HOME_GMSH/gmsh.exe’)

Ver

Command Ver returns the version of gmsh, the version is transformed into a double
to simplify hierarchy handling (e.g. version 2.5.1 is transformed into 251). This
command also provides a good test to check your gmsh setup as the output will be
empty if gmsh could not be found.
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Read

fe gmsh(’read FileName.msh’) reads a mesh from the GMSH output format.

Write

fe gmsh(’write FileName.geo’,model); writes a model (.Node, .Elt) and ge-
ometry data in model.Stack’info’,’GMSH’ into a .geo file which root name is
specified as FileName (if you use del.geo the file is deleted on exit).

• Command option -lc allows specifying a characteristic length.

• Command option -multiple can be used for automated meshing of several
closed contours. The default behavior will define a single Plane Surface com-
bining all contours, while -multiple variant will declare each contour as a
single Plane Surface.

• Command option -keepContour can be used to force gmsh not to add nodes
in declared line objects (Transfinite Line feature).

• Command option -spline can be used (when lines have been declared using
command AddLine3 from beam3 elements) to write spline objects instead of
line objects in the .geo file

• .stl writing format is also supported, by using extension .stl instead of .geo
in the command line.

• Command option -run allows to run gmsh on the written file for meshing.
All characters in the command after -run will be passed to the gmsh batch
call performed. fe gmsh then outputs the model processed by gmsh, which is
usually written in .msh file format.

All text after the -run is propagated to GMSH, see sample options below.
It also possible to add a different output file name NewFile.msh, using model=fe gmsh(’write

NewFile.msh -run’,’FileName.stl’).

• Conversion of files through fe gmsh into .msh, or SDT/OpenFEM format is
possible, for all input files readable by gmsh. Use command option -run and
specify in second argument the file name.
For example: model=fe gmsh(’write -run’,’FileName.stl’) convert .stl
to .mesh then open into SDT/OpenFem. Some warning can occur if no
FileName.mesh is given, but without effect on the result.
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Known options for the run are

• -1 or -2 or -3) specifies the meshing dimension.

• -order 2 uses quadratic elements.

• -v 0 makes a silent run.

• -clmax float sets maximum mesh size, -clmin float for minimum.

See also missread
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Purpose Interface for the assembly of distributed and multiple load patterns

Syntax
Load = fe_load(model)

Load = fe_load(model,Case)

Load = fe_load(model,’NoT’)

Load = fe_load(model,Case,’NoT’)

Description fe load is used to assemble loads (left hand side vectors to FEM problems). Loads
are associated with case structures with at least a Case.Stack field giving all the
case entries. Addition of entries to the cases, it typically done using fe case.

To compute the load, the model (a structure with fields .Node, .Elt, .pl, .il) must
generally be provided with the syntax Load=fe load(model). In general simultane-
ous assembly of matrices and loads detailed in section 4.8.8 is preferable.

The option NoT argument is used to require loads defined on the full list of DOFs
rather than after constraint eliminations computed using Case.T’*Load.def.

The rest of this manual section describes supported load types and the associated
type specific data.

curve

The frequency or time dependence of a load can be specified as a data.curve field
in the load case entry. This field is a cell array specifying the dependence for each
column of the applied loads.

Each entry can be a curve data structure, or a string referring to an existing curve
(stored in the model.Stack), to describe frequency or time dependence of loads.

Units for the load are defined through the .lab field (in {F} = [B] {u} one assumes
u to be unitless thus F and B have the same unit systems).

DofLoad, DofSet

Loads at DOFs DofLoad and prescribed displacements DofSet entries are described
by the following data structure
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data.DOF column vector containing a DOF selection
data.def matrix of load/set for each DOF (each column is a load/set case and

the rows are indexed by Case.DOF ). With two DOFs, def=[1;1] is a
single input at two DOFs, while def=eye(2) corresponds to two inputs.

data.name optional name of the case
data.lab optional cell array giving label, unit label , and unit info (see fe curve

DataType) for each load (column of data.def)
data.curve see fe load curve

Typical initialization is illustrated below

% Applying a load case in a model

model = femesh(’testubeam plot’);

% Simplified format to declare unit inputs

model=fe_case(model,’DofLoad’,’ShortTwoInputs’,[362.01;258.02]);

% General format with amplitudes at multiple DOF

% At node 365, 1 N in x and 1.1 N in z

data=struct(’DOF’,[365.01;365.03],’def’,[1;1.1]);

data.lab=fe_curve(’datatype’,13);

model=fe_case(model,’DofLoad’,’PointLoad’,data);

Load = fe_load(model);

feplot(model,Load); fecom(’;scaleone;undefline;ch1 2’) % display

When sensors are defined in SDT, loads collocated with sensors can be defined using
sensor DofLoadSensDof.

FVol

FVol entries use data is a structure with fields

data.sel an element selection (or amodel description matrix but this is not ac-
ceptable for non-linear applications).

data.dir a 3 by 1 cell array specifying the value in each global direction x, y,
z. Alternatives for this specification are detailed below . The field can
also be specified using .def and .DOF fields.

data.lab cell array giving label, unit label , and unit info (see fe curve DataType)
for each load (column of data.def)

data.curve see fe load curve

Each cell of Case.dir can give a constant value, a position dependent value defined
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by a string FcnName that is evaluated using
fv(:,jDir)=eval(FcnName) or fv(:,jDir)=feval(FcnName,node) if the first fails.
Note that node corresponds to nodes of the model in the global coordinate system
and you can use the coordinates x,y,z for your evaluation. The transformation to a
vector defined at model.DOF is done using vect=elem0(’VectFromDir’,model,r1,model.DOF),
you can look the source code for more details.

For example

% Applying a volumic load in a model

model = femesh(’testubeam’);

data=struct(’sel’,’groupall’,’dir’,[0 32 0]);

data2=struct(’sel’,’groupall’,’dir’,{{0,0,’(z-1).^3.*x’}});
model=fe_case(model,’FVol’,’Constant’,data, ...

’FVol’,’Variable’,data2);

Load = fe_load(model);

feplot(model,Load);fecom(’;colordataz;ch2’); % display

Volume loads are implemented for all elements, you can always get an example using
the elements self tests, for example [model,Load]=beam1(’testload’).

Gravity loads are not explicitly implemented (care must be taken considering masses
in this case and not volume). You should use the product of the mass matrix with
the rigid body mode corresponding to a uniform acceleration.
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FSurf entries use data a structure with fields

data.sel a vector of NodeId in which the faces are contained (all the nodes
in a loaded face/edge must be contained in the list). data.sel

can also contain any valid node selection (using string or cell array
format).
the optional data.eltsel field can be used for an optional el-
ement selection to be performed before selection of faces with
feutil(’selelt innode’,model,data.sel). The surface is ob-
tained using

% Surface selection mechanism performed for a FSurf input

if isfield(data,’eltsel’);

mo1.Elt=feutil(’selelt’,mo1,data.eltsel);

end

elt=feutil(’seleltinnode’,mo1, ...

feutil(’findnode’,mo1,r1.sel));

data.set Alternative specification of the loaded face by specifying a face set

name to be found in model.Stack

data.def a vector with as many rows as data.DOF specifying a value for each
DOF.

data.DOF DOF definition vector specifying what DOFs are loaded. Note that
pressure is DOF .19. Uniform pressure can be defined using wild
cards as show in the example below.

data.lab cell array giving label, unit label ,and unit info (see fe curve

DataType) for each load (column of data.def)
data.curve see fe load curve

data.type string giving ’surface’ (default) or ’edge’ (used in the case of
2D models where external surfaces are edges)

Surface loads are defined by surface selection and a field defined at nodes. The
surface can be defined by a set of nodes (data.sel and possibly data.eltsel fields.
One then retains faces or edges that are fully contained in the specified set of nodes.
For example

% Applying a surfacing load case in a model using selectors

model = femesh(’testubeam plot’);

data=struct(’sel’,’x==-.5’, ...
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’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);

Or an alternative call with the cell array format for data.sel

% Applying a surfacing load case in a model using node lists

data=struct(’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
NodeList=feutil(’findnode x==-.5’,model);

data.sel={’’,’NodeId’,’==’,NodeList};
model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load);

Alternatively, one can specify the surface by referring to a set entry in model.Stack,
as shown in the following example

% Applying a surfacing load case in a model using sets

model = femesh(’testubeam plot’);

% Define a face set

[eltid,model.Elt]=feutil(’eltidfix’,model);

i1=feutil(’findelt withnode {x==-.5 & y<0}’,model);i1=eltid(i1);
i1(:,2)=2; % fourth face is loaded

data=struct(’ID’,1,’data’,i1);

model=stack_set(model,’set’,’Face 1’,data);

% define a load on face 1

data=struct(’set’,’Face 1’,’def’,1,’DOF’,.19);

model=fe_case(model,’Fsurf’,’Surface load’,data);

Load = fe_load(model); feplot(model,Load)

The current trend of development is to consider surface loads as surface elements
and transform the case entry to a volume load on a surface.

See also fe c, fe case, fe mk
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fe mat

Purpose Material / element property handling utilities.

Syntax out = fe_mat(’convert si ba’,pl);

typ=fe_mat(’m_function’,UnitCode,SubType)

[m_function’,UnitCode,SubType]=fe_mat(’type’,typ)

out = fe_mat(’unit’)

out = fe_mat(’unitlabel’,UnitSystemCode)

[o1,o2,o3]=fe_mat(ElemP,ID,pl,il)

Description Material definitions can be handled graphically using the Material tab in the model
editor (see section 4.5.1 ). For general information about material properties, you
should refer to section 7.3 . For information about element properties, you should
refer to section 7.4 .

The main user accessible commands in fe mat are listed below

Convert,Unit

The convert command supports conversions from unit1 to unit2 with the general
syntax pl converted = fe mat(’convert unit1 unit2’,pl);.

For example convert from SI to BA and back

% Sample unit convertion calls

mat = m_elastic(’default’); % Default is in SI

% convert mat.pl from SI unit to BA unit

pl=fe_mat(’convert SIBA’,mat.pl)

% for section properties IL, you need to specify -il

fe_mat(’convert -il MM’,p_beam(’dbval 1 circle .01’))

% For every system but US you don’t need to specify the from

pl=fe_mat(’convert BA’,mat.pl)

% check that conversion is OK

pl2=fe_mat(’convert BASI’,pl);

fprintf(’Conversion roundoff error : %g\n’,norm(mat.pl-pl2(1:6))/norm(pl))

fe_mat(’convertSIMM’) % Lists defined units and coefficients

coef=fe_mat(’convertSIMM’,2.012) % conversion coefficient for force/m^2

Supported units are either those listed with fe mat(’convertSIMM’) which shows
the index of each unit in the first column or ratios of any of these units. Thus, 2.012
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means the unit 2 (force) divided by unit 12 (surface), which in this case is equivalent
to unit 1 pressure.

out=fe mat(’unitsystem’) returns a struct containing the information charac-
terizing standardized unit systems supported in the universal file format.

ID Length and Force ID
1 SI Meter, Newton 7 IN Inch, Pound force
2 BG Foot, Pound f 8 GM Millimeter, kilogram force
3 MG Meter, kilogram f 9 TM Millimeter, Newton
4 BA Foot, poundal 9 US User defined
5 MM Millimeter, milli-newton
6 CM Centimeter, centi-newton
Unit codes 1-8 are defined in the universal file format specification and thus coded in
the material/element property type (column 2). Other unit systems are considered
user types and are associated with unit code 9. With a unit code 9, fe mat convert

commands must give both the initial and final unit systems.

out=fe mat(’unitlabel’,UnitSystemCode) returns a standardized list of unit la-
bels corresponding in the unit system selected by the UnitSystemCode shown in the
table above.

When defining your own properties material properties, automated unit conversion is
implemented automatically through tables defined in the p fun PropertyUnitType

command.

GetPlGetIl

pl = fe mat(’getpl’,model) is used to robustly return the material property ma-
trix pl (see section 7.3 ) independently of the material input format.

Similarly il = fe mat(’getil’,model) returns the element property matrix il.

Get[Mat,Pro]

r1 = fe mat(’GetMat Param’,model) This command can be used to extract given
parameter Param value in the model properties. For example one can retrieve den-
sity of matid 111 as following
rho=fe mat(’GetMat 111 rho’,model);
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Set[Mat,Pro]

r1 = fe mat(’SetMat MatId Param=value’,model)

r1 = fe mat(’SetPro ProId Param=value’,model)

This command can be used to set given parameter Param at the value value in the
model properties. For example one can set density of matid 111 at 5000 as following
rho=fe mat(’SetMat 111 rho=5000’,model);

Type

The type of a material or element declaration defines the function used to handle it.

typ=fe mat(’m function’,UnitCode,SubType) returns a real number which codes
the material function, unit and sub-type. Material functions are .m or .mex files
whose name starts with m and provide a number of standardized services as de-
scribed in the m elastic reference.

The UnitCode is a number between 1 and 9 giving the unit selected. The SubType

is a also a number between 1 and 9 allowing selection of material subtypes within
the same material function (for example, m elastic supports subtypes : 1 isotropic
solid, 2 fluid, 3 anisotropic solid).

Note : the code type typ should be stored in column 2 of material property rows
(see section 7.3 ).

[m function,UnitCode,SubType]=fe mat(’typem’,typ)

Similarly, element properties are handled by p functions which also use fe mat to
code the type (see p beam, p shell and p solid).

ElemP

Calls of the form [o1,o2,o3]=fe mat(ElemP,ID,pl,il) are used by element func-
tions to request constitutive matrices. This call is really for developers only and you
should look at the source code of each element.

See also m elastic, p shell, element functions in chapter 8
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Purpose Assembly of finite element model matrices.

Syntax [m,k,mdof] = fe_mknl(model);

[Case,model.DOF]=fe_mknl(’init’,model);

mat=fe_mknl(’assemble’,model,Case,def,MatType);

Description The exact procedure used for assembly often needs to be optimized in
detail to avoid repetition of unnecessary steps. SDT typically calls an in-
ternal procedure implemented in fe caseg Assemble and detailed in section 4.8.8
. This documentation is meant for low level calls.

fe mknl (and the obsolete fe mk) take models and return assembled matrices and/or
right hand side vectors.

Input arguments are

• model a model data structure describing nodes, elements, material properties,
element properties, and possibly a case.

• case data structure describing loads, boundary conditions, etc. This may be
stored in the model and be retrieved automatically using fe case(model,’GetCase’).

• def a data structure describing the current state of the model for model/residual
assembly using fe mknl. def is expected to use model DOFs. If Case DOFs are
used, they are reexpanded to model DOFs using def=struct(’def’,Case.T*def.def,’DOF’,model.DOF).
This is currently used for geometrically non-linear matrices.

• MatType or Opt describing the desired output, appropriate handling of linear
constraints, etc.

Output formats are

• model with the additional field model.K containing the matrices. The corre-
sponding types are stored in model.Opt(2,:). The model.DOF field is properly
filled.

• [m,k,mdof] returning both mass and stiffness when Opt(1)==0
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• [Mat,mdof] returning a matrix with type specified in Opt(1), see MatType

below.

mdof is the DOF definition vector describing the DOFs of output matrices.

When fixed boundary conditions or linear constraints are considered, mdof is equal
to the set of master or independent degrees of freedom Case.DOF which can also
be obtained with fe case(model,’gettdof’). Additional unused DOFs can then
be eliminated unless Opt(2) is set to 1 to prevent that elimination. To prevent
constraint elimination in fe mknl use Assemble NoT.

In some cases, you may want to assemble the matrices but not go through the
constraint elimination phase. This is done by setting Opt(2) to 2. mdof is then
equal to model.DOF.

This is illustrated in the example below

% Low level assembly call with or without constraint resolution

model =femesh(’testubeam’);

model.DOF=[];% an non empty model.DOF would eliminate all other DOFs

model =fe_case(model,’fixdof’,’Base’,’z==0’);

model = fe_mk(model,’Options’,[0 2]);

[k,mdof] = fe_mk(model,’options’,[0 0]);

fprintf(’With constraints %i DOFs\n’,size(k,1));

fprintf(’Without %i DOFs’,size(model.K{1},1));
Case=fe_case(model,’gett’);

isequal(Case.DOF,mdof) % mdof is the same as Case.DOF

For other information on constraint handling see section 7.14 .

Assembly is decomposed in two phases. The initialization prepares everything that
will stay constant during a non-linear run. The assembly call performs other oper-
ations.

Init

The fe mknl Init phase initializes the Case.T (basis of vectors verifying linear con-
straints see section 7.14 ), Case.GroupInfo fields (detailed below) and Case.MatGraph

(preallocated sparse matrix associated with the model topology for optimized (re)assembly).
Case.GroupInfo is a cell array with rows giving information about each element
group in the model (see section 7.15.3 for details).

Command options are the following
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• NoCon Case = fe mknl(’initNoCon’, model) can be used to initialize the
case structure without building the matrix connectivity (sparse matrix with
preallocation of all possible non zero values).

• Keep can be used to prevent changing the model.DOF DOF list. This is typi-
cally used for submodel assembly.

• -NodePos saves the NodePos node position index matrix for a given group in
its EltConst entry.

• -gstate is used force initialization of group stress entries.

The initialization phase is decomposed into the following steps

1. Generation of a complete list of DOFs using the feutil(’getdof’,model)

call.

2. get the material and element property tables in a robust manner (since some
data can be replicated between the pl,il fields and the mat,pro stack entries.
Generate node positions in a global reference frame.

3. For each element group, build the GroupInfo data (DOF positions).

4. For each element group, determine the unique pairs of [MatId ProId] values
in the current group of elements and build a separate integ and constit for
each pair. One then has the constitutive parameters for each type of element
in the current group. pointers rows 6 and 7 give for each element the location
of relevant information in the integ and constit tables.

This is typically done using an [integ,constit,ElMap]=ElemF(’integinfo’)

command, which in most cases is really being passed directly to a p fun(’BuildConstit’)

command.

ElMap can be a structure with fields beginning by RunOpt , Case and eval

which allows execution of specific callbacks at this stage.

5. For each element group, perform other initializations as defined by evaluating
the callback string obtained using elem(’GroupInit’). For example, initialize
integration rule data structures EltConst, define local bases or normal maps
in InfoAtNode, allocate memory for internal state variables in gstate, ...

6. If requested (call without NoCon), preallocate a sparse matrix to store the
assembled model. This topology assumes non zero values at all components of
element matrices so that it is identical for all possible matrices and constant
during non-linear iterations.
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Assemble [ , NoT]

The second phase, assembly, is optimized for speed and multiple runs (in non-linear
sequences it is repeated as long as the element connectivity information does not
change). In fe mk the second phase is optimized for robustness. The following
example illustrates the interest of multiple phase assembly

% Low level assembly calls

model =femesh(’test hexa8 divide 100 10 10’);

% traditional FE_MK assembly

tic;[m1,k1,mdof] = fe_mk(model);toc

% Multi-step approach for NL operation

tic;[Case,model.DOF]=fe_mknl(’init’,model);toc

tic;

m=fe_mknl(’assemble’,model,Case,2);

k=fe_mknl(’assemble’,model,Case,1);

toc

MatType: matrix identifiers

Matrix types are numeric indications of what needs to be computed during assembly.
Currently defined types for OpenFEM are

• 0 mass and stiffness assembly. 1 stiffness, 2 mass, 3 viscous damping, 4 hys-
teretic damping, 5 tangent stiffness in geometric non-linear mechanics.

• 3 viscous damping. Uses info,Rayleigh case entries if defined, see example
in section 5.3.2 .

• 4 hysteretic damping. Weighs the stiffness matrices associated with each ma-
terial with the associated loss factors. These are identified by the key word
Eta in PropertyUnitType commands.

• 7 gyroscopic coupling in the body fixed frame, 70 gyroscopic coupling in the
global frame. 8 centrifugal softening.

• 9 is reserved for non-symmetric stiffness coupling (fluid structure, contact/friction,
...);

• 20 to assemble a lumped mass instead of a consistent mass although using
common integration rules at Gauss points.
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• 100 volume load, 101 pressure load, 102 inertia load, 103 initial stress load.
Note that some load types are only supported with the mat og element family;

• 200 stress at node, 201 stress at element center, 202 stress at gauss point

• 251 energy associated with matrix type 1 (stiffness), 252 energy associated
with matrix type 2 (mass), ...

• 300 compute initial stress field associated with an initial deformation. This
value is set in Case.GroupInfo{jGroup,5} directly (be careful with the fact
that such direct modification INPUTS is not a MATLAB standard feature).
301 compute the stresses induced by a thermal field. For pre-stressed beams,
300 modifies InfoAtNode=Case.GroupInfo{jGroup,7}.

• -1, -1.1 submodel selected by parameter, see section 4.8.8 .

• -2 assembly of superelements, see section 4.8.8 .

NodePos

NodePos=fe mknl(’NodePos’,NNode,elt,cEGI,ElemF) is used to build the node
position index matrix for a given group. ElemF can be omitted. NNode can be
replaced by node.

nd

nd=fe mknl(’nd’,DOF); is used to build and optimized object to get indices of DOF
in a DOF list.

OrientMap

This command is used to build the InfoAtNode entry. The RunOpt.EltOrient field
is a possibly empty stack containing appropriate information before step 5 of the
init command.

A first mechanism to fill in the orientation information is to define MAP,Groupi stack
entries in the model. This can lead to errors if element groups are modified.

of mk
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of mk is the mex file supporting assembly operations. You can set the number of
threads used with of mk(’setomppro’,8).

obsolete

Syntax model = fe_mk(model,’Options’,Opt)

[m,k,mdof] = fe_mk( ... ,[0 OtherOptions])

[mat,mdof] = fe_mk( ... ,[MatType OtherOptions])

fe mk options are given by calls of the form fe mk(model,’Options’,Opt) or the
obsolete fe mk(node,elt,pl,il,[],adof,opt).

opt(1) MatType see above
opt(2) if active DOFs are specified using model.DOF (or the obsolete call with

adof), DOFs in model.DOF but not used by the model (either linked to
no element or with a zero on the matrix or both the mass and stiffness
diagonals) are eliminated unless opt(2) is set to 1 (but case constraints
are then still considered) or 2 (all constraints are ignored).

opt(3) Assembly method (0 default, 1 symmetric mass and stiffness (OBSO-
LETE), 2 disk (to be preferred for large problems)). The disk assembly
method creates temporary files using the sdtdef tempname command.
This minimizes memory usage so that it should be preferred for very
large models.

opt(4) 0 (default) nothing done for less than 1000 DOF method 1 otherwise. 1
DOF numbering optimized using current ofact SymRenumber method.
Since new solvers renumber at factorization time this option is no longer
interesting.

[m,k,mdof]=fe mk(node,elt,pl,il) returns mass and stiffness matrices when given
nodes, elements, material properties, element properties rather than the correspond-
ing model data structure.

[mat,mdof]=fe mk(node,elt,pl,il,[],adof,opt) lets you specify DOFs to be
retained with adof (same as defining a case entry with {’KeepDof’, ’Retained’,

adof}).

These formats are kept for backward compatibility but they do not allow support
of local coordinate systems, handling of boundary conditions through cases, ...

Notes fe mk no longer supports complex matrix assembly in order to allow a number of
speed optimization steps. You are thus expected to assemble the real and imaginary
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parts successively.

See also Element functions in chapter 8, fe c, feplot, fe eig, upcom, fe mat, femesh, etc.
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fe norm

Purpose Mass-normalization and stiffness orthonormalization of a set of vectors.

Syntax To = fe_norm(T,m)

[rmode,wr] = fe_norm(T,m,k,NoCommentFlag)

[rmode,wr] = fe_norm(T,m,k,tol)

Description With just the mass m (k not given or empty), fe norm orthonormalizes the T matrix
with respect to the mass m using a preconditioned Cholesky decomposition. The
result To spans the same vector space than T but verifies the orthonormal condition

[To]T [M ]N×N [To]N×NM = [I]NM×NM

If some vectors of the basis T are collinear, these are eliminated. This elimination is
a helpful feature of fe norm.

When both the mass and stiffness matrices are specified a reanalysis of the reduced
problem is performed (eigenvalue structure of model projected on the basis T). The
resulting reduced modes rmode not only verify the mass orthogonality condition,

but also the stiffness orthogonality condition (where
[
\Ω2

j \

]
=diag(wr.^2))

[φ]T [K] [φ] =
[
\Ω2

j \

]
NM×NM

The verification of the two orthogonality conditions is not a sufficient condition for
the vectors rmode to be the modes of the model. Only if NM = N is this guaranteed.
In other cases, rmode are just the best approximations of modes in the range of T .

When the fourth argument NoCommentFlag is a string, no warning is given if some
modes are eliminated.

When a tolerance is given, frequencies below the tolerance are truncated. The default
tolerance (value given when tol=0) is product of eps by the number of modes by the
smallest of 1e3 and the mean of the first seven frequencies (in order to incorporate at
least one flexible frequency in cases with rigid body modes). This truncation helps
prevent poor numerical conditioning from reduced models with a dynamic range
superior to numerical precision.

See also fe reduc, fe eig
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Purpose Mesh quality measurement tools

Description This function provides mesh quality measurement, visualization and report tools.
Badly shaped elements are known to cause computation error and imprecision, and
basic geometric tests can help to acknowledge such property. Every element cannot
be tested the same way therefore the lab command presents the tests available for
each kind. The geometric measurements performed are described in the following
section.

An integrated call is provided for feplot,

fe_quality(cf.mdl);

This call performs all test available and opens a GUI allowing the user to customize
the views.

Available tests

Degenerate

Degenerated elements have overlaying nodes which is generally unwanted. The set
is automatically generated when such elements are detected.

Jacobian

This test computes the minimum Jacobian for each element and detects negative
values. It is directly related to the element volume so that a wrapped element would
show such pattern. The set is generated only if elements with negative Jacobian are
detected.

AspectRatio

This test can be applied to any kind of element. It computes the ratio of the longest
edge length to the shortest one. Thus a good element will have an aspect ratio close
to one while a badly shaped element will have a greater aspect ratio. The Default
tolerance for visualization is set to 2.
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MaxIntAng

This test can be applied to triangle and quadrangle elements (tria3, tria6, quad4,

quad8, quadb). It measures the greatest angle in an element which is an indication
of element distortion. The default tolerance is set to 110 degrees.

GammaK

This test is applied to triangle elements (tria3, tria6). It computes the ratio
between the radius of the inscribed circle and the circumcircle. This indicator is
named γK and is bounded between 0 and 1. Well shaped elements will have a γK
coefficient close to one. Degenerated triangles show γK = 0. The default tolerance
is set to 0.5.

MidNodeEgde

This test is applied to quadratic triangles (tria6). It measures the distance of the
middle nodes to the edge nodes. The ratio between the distance from the middle
node to the first edge node (l1) and the distance from the middle node to the second

edge node (l2) is computed for each element as MNE = maxi=1...3(max(l1i/l2i,l2i/l1i)
min(l1i/l2i,l2i/l1i)

)
The default tolerance is set to 1.5.

MaxAngleMid2Edge

This test is applied to quadratic triangles (tria6). It measures the distortion of the
edges by computing the maximum angle between the straight edge (between both
edge extreme nodes) and the actual edges through the middle node. The maximum
over the whole triangle is output, the default tolerance is set to 30 degrees.

Taper

This test is applied to 2D quadrangle elements (quadb). It compares the areas of the
4 triangles formed by the diagonals and each edge to the area of the full quadrangle.
The exact computation is max(2Ai

AK ). Thus a well shaped element will show a taper
ratio close to 0.5, while a badly shaped element can have taper ratios over 1. The
default tolerance is set to 0.8.
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Skew

This test is applied to quadrangle elements (quad4, quad8, quadb). It evaluates
the element distortion by measuring the angle formed by the diagonals (the maxi-
mum angle is taken). A square will then show a skew angle of 90 degrees, while a
distorted element will show angles over 150 degrees. The default tolerance is set to
110 degrees.

Wrap

This test is applied to quadrangle elements (quad4, quad8, quadb). It measures
the coplanarity of the 4 vertices by comparing the height of the 4th point to the
plan generated by the first three points (H), relatively to the element dimension.
The exact formulation is W = H

l(D1)+l(D2) . Perfectly planar elements will have a null

wrap coefficient. The default tolerance is set to 10−2

RadiusEdge

This test is applied to tetrahedron elements (tetra4, tetra10). It measures the
ratio between the radius of the circumsphere to the minimum edge length of a
tetrahedron. Well shaped elements will show a small value while badly shaped
elements will show far greater values. The radius edge coefficient is lower bounded

by the radius edge ratio of the regular tetrahedron: RE ≥
√

6
4 . The default maximum

value is set to 2, which usually is sufficient to have a quality mesh. Sliver elements
may not be detected by this measure.

Sliver

This test is applied to tetrahedron elements (tetra4, tetra10). A sliver element
is a nearly flat tetrahedron, such pathology can lead to bad conditioning due to
the very small volumes that can be engendered by these particular elements. This
is well detected by computing the ratio between the maximum edge length to the
minimum altitude (from a vertice to the opposed face). Sliver elements will have
large values and possibly infinite if degenerated. The degenerated elements are set
to a value of 105 for visualization, the default tolerance is set to 10.
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FaceAspect

This can be applied to hexahedron and pentahedron elements (hexa8, hexa20,

penta6, penta15). It measures the aspect ratio of each face of the elements. The
default tolerance is set to 2.

Unstraight

This can be applied to any element with middle nodes. It measures the Euclidean
distance between the edge middle (if the edge were straight) and the actual position
of the middle edge node. Tolerance is set at 0.1.

RadiusCircum

This measure can only be accessed separately, with an explicity specification in
the meas command. It measures the circum radiuses of triangle elements. This is
applicable to tria3 and tria6 elements.

Commands

lab[...]

Outputs or prints the tests available and their default tolerance. If no output is asked
this is printed to the prompt. fe quality(’lab’) outputs the list of element tested
with the command for detailed information. fe quality(’lab EltName’ prints the
tests available for the element EltName and the default tolerances associated.

meas[...]

Computes the mesh quality measurements. For a feplotmodel, the results are
stored in the stack under the entry ’info’,’MeshQual’. The results are given
by element groups unless a specific element selection is given as a third argument.
Accepted calls are MQ = fe quality(’meas’,model); Computes all available tests
per element group.

MQ = fe quality(’meas -view MName’,model); Computes the MName test and vi-
sualize it.

MQ = fe quality(’meas’,model,’EltSel’) Computes all measurement tests for
the specified EltSel element selection.
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MQ is the mesh quality output. It is a structure of fields eltid, data and lab. All
fields are cell arrays of the same size related to the measures described in the lab
entry as MName ElemF EGID for which corresponding EltId and measurement values
(data) are given. Direct visualization of the results can be obtained with the -view

option.

view[...]

Performs a visualization of the quality measurements of a feplotmodel. The stack
entry ’info’,’MeshQual’ must exist (created by meas). Two feplotselections
are generated. First the elements are face colored in transparency with a colored
ranking. Second, the elements outside the measurement tolerance are plotted in
white patches of full opacity. Both plots generate an EltSet, the elements plotted
are stored in ’set’,’MeshQual eltsel’, the elements outside tolerance are stored
in ’set’, ’MeshQual MName tol val’ with MName the test considered and val the
tolerance value.

The tolerance can be defined using the command option -tol val. A positive (resp.
negative) tolerance val defines pathologic elements over (resp. under) the threshold.

Command option -noGlobalMesh customizes the selection so that the global mesh
in transparency is not displayed.

It is possible to plot a sub selection of the elements measured by specifying an
EltSel as third argument. The curve colordataelt plot can also be output.

fe quality(’view’); Default visualization, AspectRatio is plotted as it is avail-
able for every element.

fe quality(’view MName -tol val’,cf); feplotpointer, MName and tolerance val
test are specified.

fe quality(’view’,cf,EltSel); An additional element selection EltSel to re-
strict the mesh quality measurement plot.

MeshDim

fe quality(’MeshDim’,model) returns a line vector [weight average min max]

giving an indication on the mesh dimensions. The mesh edge lengths of all elements
are computed, and the average, min and max data are output.

Command option -print allows printing this data in a human readable format to
the output display.
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print

Prints out the mesh quality report sorted in ’info’, ’MeshQual’ of a model or a
feplotfigure. By default the results are printed to the prompt, a specific file can be
given in the print command. E.g.

fe quality(’print myMeshQualityReport’,model);

clear[...]

This command clears the element quality visualization and can also clean up the
stack of any element sets created during the view procedures. All entries created
by fe quality in the model Stack are of the ’info’ or ’set’ type with a name
starting by MeshQual.

fe quality(’clear’) clears the feplotselection and visualization.

fe quality(’clearall’) clears the visualization and removes every stack entry
concerning mesh quality.

fe quality(’clear MName’) removes from the stack a specified MName measure-
ment visualization.

559



fe range

Purpose fe range commands are used to manipulate experiment (series of design points)
specifications.

Description A range is the description of a set of experiments through a data structure with
fields

• .val numeric array containing one design point per row and one design pa-
rameter per column.

• .lab cell array of strings giving a parameter label for each column. These
labels should be acceptable fieldnames (no spaces, braces, ...)

• .param optional structure with fields associated with parameter labels used
for formatting and analysis. Accepted values are detailed below. It is not
necessary to define a .param field for each design parameter.

• .edge optional connectivity matrix used to define lines connecting different
design points of the experiment

.param fields must match string values in .lab. Each field is a struct with possible
fields

• .type a string. Typically double or pop.

• .choices, for .type=’pop’, contains a cell array of strings. The parameter
value then gives the index within .choices.

• .data possible cell array containing data associated with the .choices field.

• .LabFcn a command to be evaluated with st1=eval(r2.LabFcn) to gen-
erate the proper label. For example ’sprintf(’’%.1f ms’’,val/1000)’

is used to generate a label in a different unit. For choices, the default is
r2.choices{val};.

• .Xlab long name to be used to fill Xlab when generating curve data structures.

• .level is an integer specifying the computational step at which a given pa-
rameter can be modified. This is used to generate experiment trees.
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• .uProp is a cell array giving a coefficient to go from value to engineering unit
and an string for the unit.

Commands

curveGrid

display

fromRO

Grid

Range=fe range(’Grid’,par);

Range is defined by a grid of all the parameter values defined in par.

par is expected to be a cell array with as many elements as parameters. Each cell
can be

• a string ’lab "label" min min max max cur cur scale "scale" NPoints

NPoints’. "label" is the parameter name. Then the minimum, maximum
and nominal values are defined. Scale can be ”lin” for linear scale or ”log”
for logarithmic scale. NPoints defines the number of point for the parameter
vector.

• a range data structure

• a numeric vector in the old upcom format [type cur min max scale] with
type defining the matrix type (unused here), scale==2 indicates a logarithmic
variation.

par can also be a matrix following the model of the visco tools parameters definition
(see fevisco Range for more details).

As an illustration, following example defines a grid 6x7 of 2 parameters named length
and thickness:

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’Grid’,par);
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GridFace

lab[,def]

labFcn

Loop

Res

R1=fe range(’Res’,R1,Range);

This command reshapes the last dimension of the result curve R1 according to the
Range. For a grid DOE last dimension is split in as many dimensions as parameters.
For a vector DOE, last dimension is only redefined by a cell array of labels defining
each design point.

Sel

This command allows selection of design points in a DOE. Provided a Range DOE
structure, it will return the indices in the val field corresponding to the sequential
application of selection rules.

The selection rules a provided in a cell array of three columns and as many lines as
rules to apply under the format
{param name,’rule’,’crit’;...}.
The following types of rules are supported, defined by a string,

• ismember applies selection by only taking the values specified using MATLAB
ismember command. crit is then either a list of values (then corresponding to
values appearing in the DOE table), or a cell array of values (then correspond-
ing to the values in the DOE table where string values are used for pop style
parameters. Regular expressions are supported for the pop entries, in which
case the string must start by # followed by the regular expression to apply.

• <,>,<=,>=,== applies sampling by using the logical operator specified on the
parameter values. crit is then a numerical value corresponding to the values
appearing in the DOE table for all parameters.

• sort applies a sorting algorithm for a given parameter. crit is then either
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– a string specifying an argument to the sort command of MATLAB, ei-
ther ascend or descend. Support for pop types is provided based on
alphabetical sorting.

– a function handle to a sorting function that will be called with the val

or choices field of the parameter and that will rethrow the sorted values
and the corresponding index to the unsorted values.

– a cell array callback with first field a function handle that will be called,
the second entry will be replaced by the val or choices field of the
parameter, and any further entries provided.

• sortrows will perform a post-treatment of the sampled Range to the selection
applied and output a java compatible table.

Excepted for sortrows, other rules are sequentially applied to the current sampled
Range. Sorting is thus only fully effective if last performed.

Simple

Generates a DOE model with sequential variation of each parameter, the other ones
being fixed to their nominal value. par has the same format than for the fe range

Grid input. They may feature a field nom providing a nominal value to each param-
eter, if this field is omitted the nominal value is considered to be the starting value
of the parameter. In the case where par has been defined as a string input, field
nom is taken to be the cur input value.

par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 6’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’Simple’,par);

Tree

Vect

Range=fe range(’Vect’,par);

Simply concatenate all parameter ranges (they must have the same length) into a
functional Range. par has the same format than for the fe range Grid input. In
addition, all par entries provided should have the same number of points.

Vect command is used to generate single par structures to feed Range.param entries.
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par={’lab "length" min 10 max 20 cur 10 scale "lin" NPoints 7’,...

’lab "thickness" min 1e-3 max 2e-3 cur 0 scale "log" NPoints 7’};
Range=fe_range(’Vect’,par);

See also rangemodel
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Purpose Utilities for finite element model reduction.

Syntax SE = fe_reduc(’command options’,model)

TR = fe_reduc(’command options’,model)

Description fe reduc provides standard ways of creating and handling bases (rectangular matrix
T) of real vectors used for model reduction (see details in section 6.2 ). Input
arguments are a command detailed later and a model (see section 7.6 ). Obsolete low
level calls are detailed at the end of this section. Generic options for the command
are

• -matdes can be used to specify a list of desired matrices. Default values are
-matdes 2 1 for mass and stiffness, see details in section 4.8.8 .

• -SE is used to obtain the output (reduced model) as a superelement SE. Details
about the fields of superelement data-structures are given section section 6.3.2
.

• model.Dbfile can be used to specify a -v7.3 .mat file to be used as database
for out of core operations.

• -hdf is used to request the use of out of core operations.

Accepted fe reduc commands are

Static, CraigBampton

Static computes static or Guyan condensation. CraigBampton appends fixed inter-
face modes to the static condensation.

Given a set of interface DOFs, indexed as I, and other DOFs C, the static responses
to unit displacements are given by

[T ] =

[
TI
TC

]
=

[
I

−K−1
CCKCI

]
which is the static basis (also called constraint modes in the Component Mode
Synthesis literature). For Craig-Bampton (6.94), one appends fixed interface modes
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(with qI = 0). Note that you may get an error if the interface DOFs do not constrain
rigid body motion so that KCC is singular.

The interface DOFs should be specified using a DofSet case entry. The interface
DOFs are defined as those used in the DofSet. The complementary DOF are deter-
mined by exclusion of the interface DOF from the remaining active DOFs.

model=demosdt(’volbeam’);

% Define interface to be xyz DOF at nodes 2,3

model=fe_case(model,’DofSet’,’IN’, ...

feutil(’getdof’,[2;3],[.01;.02;.03]));

% statically reduced model

ST=fe_reduc(’Static’,model);

% For Craig Bampton specify eigenvalue options

model=stack_set(model,’info’,’EigOpt’,[5 10 0]);

CB=fe_reduc(’CraigBampton’,model);

Available command options are

• NM is the number of desired modes, which should be specified in an info,EigOpt

stack entry which allow selection of the eigenvalue solver (default is 5, Lanczos).
Note that using NM=0 corresponds to static or Guyan condensation.

• -SE is used to obtain the output as a superelement SE. Without this argument,
outputs are the rather obsolete list [T,sdof,f,mr,kr] where f is the frequency
of fixed interface modes.

• -shift allows the use of a non-zero shift in the eigenvalue solution for the
fixed interface modes. The interior matrix Kcc is only factored once, so using
a shifted matrix may result in poor estimates of rigid body modes.

• -useDOF recombines the fixed interface modes to associate shape with a specific
interior DOF. This can ease the manipulation of the resulting model as a
superelement.

• -drill. Shell elements may not always use drilling stiffness (5 DOF rather
than 6), which tends to cause problems when using 6 DOF interfaces. The
option calls model.il=p shell(’SetDrill 0’,model.il) to force the default
6 DOF formulations.

• -Load appends static correction for defined loads to the model.
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mdl=fesuper(mdl,’setTR’,name,’fe reduc command’) calls fe reduc to assem-
ble and reduce the superelement. For example
mdl=fesuper(mdl,’SetTR’,’SE1’,’CraigBampton -UseDof -drill’);

Free ...

The standard basis for modal truncation with static correction discussed in sec-
tion 6.2.3 (also known as McNeal reduction). Static correction is computed for the
loads defined in the model case (see fe case). Accepted command options are

• EigOpt should be specified in an info,EigOpt stack entry. For backward com-
patibility these fe eig options can be given in the command and are used
to compute the modeshapes. In the presence of rigid body modes you must
provide a mass shift.

• Float is used to obtain the standard attachment modes (6.90) in the presence
of rigid body modes. Without this option, fe reduc uses shifted attachment
modes (6.91), when a non zero shift is given in EigOpt. This default is typically
much faster since the shifted matrix need not be refactored, but may cause
problem for relatively large negative shifts.

• -SE is used to obtain the output as a superelement SE.

• -bset returns information about loads to be applied in a system where enforced
motion (fe load DofSet) entries are defined.

• -FirstCB implements first order correction for damping terms associated with
viscous or hysteretic damping.

dynamic w

[T,rbdof,rb]=fe reduc(’dynamic freq’, ...) computes the dynamic response
at frequency w to loads b. This is really the same as doing (-w^2*m+k)\b but can
be significantly faster and is more robust.

flex [,nr]

[T,rbdof,rb]=fe reduc(’flex’, ...) computes the static response of flexible
modes to load b (which can be given as bdof)
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[
K−1
Flex

]
[b] =

N∑
j=NR+1

{φj} {φj}T

ω2
j

where NR is the number of rigid body modes. These responses are also called static
flexible responses or attachment modes (when forces are applied at interface DOFs
in CMS problems).

The flexible response is computed in three steps:

• Determine the flexible load associated to b that does not excite the rigid body

modes bFlex = ([I]− [MφR]
[
φTRMφR

]−1
[φR]T ) [b]

• Compute the static response of an isostatically constrained model to this load

[qIso] =

[
0 0

0 K−1
Iso

]
[bFlex]

• Orthogonalize the result with respect to rigid body modes

qFlex = ([I]− [φR]
[
φTRMφR

]−1 [
φTRM

]
) [qIso]

where it clearly appears that the knowledge of rigid body modes and of an isostatic
constraint is required, while the knowledge of all flexible modes is not (see [37] for
more details).

By definition, the set of degrees of freedom R (with other DOFs noted Iso) forms
an isostatic constraint if the vectors found by

[φR] =

[
φRR
φIsoR

]
=

[
I

−K−1
IsoKIsoR

]
span the full range of rigid body modes (kernel of the stiffness matrix). In other
words, displacements imposed on the DOFs of an isostatic constraint lead to a unique
response with no strain energy (the imposed displacement can be accommodated
with a unique rigid body motion).

If no isostatic constraint DOFs rdof are given as an input argument, a lu decompo-
sition of k is used to find them. rdof and rigid body modes rb are always returned
as additional output arguments.

The command flexnr can be used for faster computations in cases with no rigid
body modes. The static flexible response is then equal to the static response and
fe reduc provides an optimized equivalent to the Matlab command k\b.

568



rb

[rb,rbdof]=fe reduc(’rb’,m,k,mdof,rbdof) determines rigid body modes (rigid
body modes span the null space of the stiffness matrix). The DOFs rbdof should
form an isostatic constraint (see the flex command above). If rbdof is not given
as an input, an LU decomposition of k is used to determine a proper choice.

If a mass is given (otherwise use an empty [ ] mass argument), computed rigid
body modes are mass orthonormalized (φTRMφR = I). Rigid body modes with no
mass are then assumed to be computational modes and are removed.

obsoletem,k,mdof (obsolete format)

Low level calling formats where matrices are provided are still supported but should
be phased out since they do not allow memory optimization needed for larger models.

m mass matrix (can be empty for commands that do not use mass)
k stiffness matrix and
mdof associated DOF definition vector describing DOFs in m and k. When using

a model with constraints, you can use mdof=fe case(model,’gettdof’).
b input shape matrix describing unit loads of interest. Must be coherent with

mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have

different length)
rdof contains definitions for a set of DOFs forming an iso-static constraint (see

details below). When rdof is not given, it is determined through an LU
decomposition done before the usual factorization of the stiffness. This
operation takes time but may be useful with certain elements for which
geometric and numeric rigid body modes don’t coincide.

For CraigBampton, the calling format was fe reduc(’CraigBampton NM Shift Options’,m,k,mdof,idof);.

See also fe2ss, fe eig, section 6.2
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Purpose Utilities for sensor/shaker placement and sensor/DOF correlation.

Syntax Command dependent syntax. See sections on placement and correlation below.

Placement In cases where an analytical model of the structure is available before a modal test,
you can use it for test preparation, see section 3.1.3 and the associated gartsens

demo. fe sens provides sensor/shaker placement methods.

indep

sdof=fe sens(’indep’,DEF) uses the effective independence algorithm [14] to sort
the selected sensors in terms of their ability to distinguish the shapes of the consid-
ered modes. The output sdof is the DOF definition vector cdof sorted according
to this algorithm (the first elements give the best locations).

See example in the gartsens demo. The mseq algorithm is much faster and typically
gives better results.

mseq

sdof = fe sens(’mseq Nsens target’,DEF,sdof0) places Nsens sensors, with an
optional initial set sdof0. The maximum response sequence algorithm [49] used here
can only place meaningfully NM (number of modes in DEF) sensors, for additional
sensors, the algorithm tries to minimize the off-diagonal auto-MAC terms in modes
in DEF.def whose indices are selected by target.

[FEM,def]=demosdt(’demo gartfe’);

def=fe_def(’subdef’,def,6:15); % Keep ten modes

d1=fe_def(’subdof’,def,[.01;.02;.03]) % Keep translations

% Select subpart as target location

d1=fe_def(’subdof’,d1,feutil(’findnode group 4:6’,FEM));

sdof= fe_sens(’mseq 10’,def);

FEM=fe_case(FEM,’sensdof’,’Test’,sdof);

feplot(FEM);fecom(’curtabCase:Test’);fecom(’proviewOn’);

% see also garsens demo
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ma[,mmif]

[sdof,load] = fe sens(’ma val’,po,cphi,IndB,IndPo,Ind0)

Shaker placement based on most important components for force appropriation of a
mode. The input arguments are poles po, modal output shape matrix cphi, indices
IndB of sensor positions where a collocated force could be applied, IndPo tells which
mode is to be appropriated with the selected force pattern. Ind0 can optionally be
used to specify shakers that must be included.

sdof(:,1) sorts the indices IndB of positions where a force can be applied by order
of importance. sdof(:,2) gives the associated MMIF. load gives the positions and
forces needed to have a MMIF below the value val (default 0.01). The value is used
as a threshold to stop the algorithm early.

ma uses a sequential building algorithm (add one position a time) while mmif uses a
decimation strategy (remove one position at a time).

Correlation fe sens provides a user interface that helps obtaining test/analysis correlation for
industrial models. To get started you can refer to the following sections

• defining a wire-frame with translation sensors in section 2.2.1 and section 2.2.2

• adding sensors to a FEM as a SensDof entry is illustrated in the topology
correlation tutorial section 3.1 .

Commands supported by fe sens are

basis

These commands are used to handle cases where the test geometry is defined in a
different frame than the FEM. An example is detailed in section 3.1.2 .

BasisEstimate guesses a local coordinate system for test nodes that matches the
FEM model reasonably and displays the result in a fashion that lets you edit the
estimated basis. Arguments are the model, and the name of the SensDof entry
containing a test frame.

model = fe_sens(’basisEstimate’,model,’Test’);

A list of node pairs in the FEM and test frames can be provided as an additional
argument to improve results. The list is a two columns matrix containing FEM
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(resp. test) NodeId in the first (resp. second) column. If four nodes are provided,
the estimation is an exact triplet positioning, the first node being the origin and the
3 other being directions (must be non collinear). For shorter or longer node lists,
the positioning is based on global distance minimization between paired nodes.

Basis is used to set the local test basis in a script (see example in section 3.1.2
). Once the script is set, command option -noShow allows not printing the setting
script to the screen.

BasisToFEM is used to transform the SensDof entry to FEM coordinates. This
transformation is done after basis adjustment and makes verification easier by clar-
ifying the fact that the sens.tdof uses the 5 column format with measurement
directions given in the FEM format. The only reference to test is the identifier in
sens.tdof(:,1) which is kept unchanged and thus where a 1.01 will refer to test
direction x which may be another direction in the FEM.

SensMatch, sens, ...

For the basic definition of translation sensors is associated with cell arrays giving
{’SensId’,’x’,’y’,’z’,’DirSpec’}, as detailed in section 4.6.2 .

The building of observation matrices for SensDof entries is now described under
sensor SensMatch (building topology correlation to locate test nodes in the FEM
model) and sensor Sens (building of the observation matrix after matching). Please
read section 4.6.4 for more details.

The obsolete near,rigid,arigid commands are supported through SensMatch

calls.

tdof, ...

tdof = fe sens(’tdof’,sens.tdof) returns the 5 column form of tdof if sens.tdof
is defined as a DOF definition vector. For more details see sens.tdof and section 4.6
for general sensor definitions.

sens=fe sens(’tdoftable’,tcell); is used to generate a group of sensors from a
table. See details in section 4.6.2 .

cell=fe sens(’tdoftable’,model,’SensDofEntry’); is used to generate the ta-
ble description of the given group of sensors.
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links

fecom(’ShowLinks Sensors’) generates a plot with the mode wire-mesh associated
with the SensDof entry Sensors.

For older models where the wire frame is included in the model with a negative
EGID, fecom(’ShowLinks’) still generates a standard plot showing the FEM as a
gray mesh, the test wire-frame as a red mesh, test/FEM node links as green lines
with end circles, and rotation interpolation links as blue lines with cross markers.

stick

The stick command can be used to find an orthonormal projection of the test nodes
onto the nearest FEM surface. The projected nodes are found in the match.StickNode
field.

[sens,def]=demosdt(’demo gartte cor’);

match=fe_sens(’stick sensors’,sens,’selface’);

WireExp

def = fe sens(’wireexp’,sens) uses the wire-frame topology define in sens to
create an interpolation for un-measured directions. For a tutorial on this issue
see section 3.3.2 .

The following example applies this method for the GARTEUR example. You can
note that the in-plane bending mode (mode 8) is clearly interpolated with this
approach (the drums of the green deformation have global motion rather than just
one point moving horizontally).

[TEST,test_mode]=demosdt(’demo gartte wire’);

TR=fe_sens(’wireexp’,TEST);

cf=feplot;cf.model=TEST;fe_sens(’WireExpShow’,cf,TR)

pause %Use +/- to scan trough deformations as a verification

cf.def(1)=test_mode;

cf.def(2)={test_mode,TR};
fecom(’;show2def;ScaleEqual;ch8;view2’);

legend(cf.o(1:2),’Nominal’,’Wire-exp’)

The command builds default properties associated with the wire frame (beams prop-
erties for segments, shells properties for surfaces, elastic properties for volumes). In
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some cases you may get better properties by defining properties yourself (see sec-
tion 7.4 and section 7.3 ).

Section 4.6, femesh, fe exp, fe c,ii mac, ii comac
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Purpose High level access to standard solvers.

Syntax [Result,model] = fe_simul(’Command’,MODEL,OPT)

Description fe simul is the generic function to compute various types of response. It allows
an easy access to specialized functions to compute static, modal (see fe eig) and
transient (see fe time) response. A tutorial may be found in section 4.8 .

Once you have defined a FEM model (section 4.5 ), material and elements properties
(section 4.5.1 ), loads and boundary conditions (see fe case), calling fe simul

assembles the model (if necessary) and computes the response using the dedicated
algorithm.

Note that you may access to the fe simul commands graphically with the simulate
tab of the feplot GUI. See tutorial (section 4.8 ) on how to compute a response.

Input arguments are :

• MODEL a standard FEM model data structure with loads, boundary conditions,
... defined in the case. See section 4.5 (tutorial), fe case for boundary
conditions, fe load for loads, ...

• OPT is an option vector or data structure used for some solutions. These may
also be stored as model.Stack entries.

Accepted commands are

• Static: computes the static response to loads defined in the Case. no options
are available for this command

model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;

data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);

model = fe_case(model,’FVol’,’Volume load’,data);

[cf.def,model]=fe_simul(’static’,model);

• Mode : computes normal modes, fe eig options can be given in the command
string or as an additional argument. For modal computations, opt=[method
nm Shift Print Thres] (it is the same vector option as for fe eig). This an
example to compute the first 10 modes of a 3D beam :
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model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;

model=stack_set(model,’info’,’EigOpt’,[6 10 0 11]);

[cf.def,model]=fe_simul(’mode’,model);

• DFRF: computes the direct response to a set of input/output at the frequencies
defines in Stack.

femesh(’reset’); model = femesh(’testubeamt’);

model=fe_case(model,’FixDof’,’Clamped end’,’z==0’);

r1=struct(’DOF’,365.03,’def’,1.1); % 1.1 N at node 365 direction z

model=fe_case(model,’DofLoad’,’PointLoad’,r1);

model= stack_set(model,’info’,’Freq’,1:10);

def=fe_simul(’DFRF’,model);

One can define a frequency dependence of the load using a curve (see section 7.9
for more detail). For example:

model=fe_curve(model,’set’,’input’,’Testeval (2*pi*t).^2’);

model=fe_case(model,’setcurve’,’PointLoad’,’input’);

• Time : computes the time response. You must specify which algorithm is
used (Newmark, Discontinuous Galerkin dg, Newton, Theta, or NLNewmark).
For transient computations, opt= [beta alpha t0 deltaT Nstep] (it is the
same vector option as for fe time). Calling time response with fe simul does
not allow initial condition. This is an example of a 1D bar submitted to a step
input :

model=demosdt(’demo bar’);

[def,model]=fe_simul(’time newmark’,model,[.25 .5 0 1e-4 50]);

def.DOF=def.DOF+.02;

cf=feplot;cf.model=model;cf.def=def;

fecom(’;view1;animtime;ch20’);

See also fe eig, fe time, fe mk
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Purpose Computation of stresses and energies for given deformations.

Syntax Result = fe_stress(’Command’,MODEL,DEF)

... = fe_stress(’Command’,node,elt,pl,il, ...)

... = fe_stress( ... ,mode,mdof)

Description You can display stresses and energies directly using fecom ColorDataEner com-
mands and use fe stress to analyze results numerically. MODEL can be specified by
four input arguments node, elt, pl and il (those used by fe mk, see also section 7.1
and following), a data structure with fields .Node, .Elt, .pl, .il, or a database
wrapper with those fields.

The deformations DEF can be specified using two arguments: mode and associated
DOF definition vector mdof or a structure array with fields .def and .DOF.

Ener [m,k]ElementSelection

Element energy computation. For a given shape, the levels of strain and kinetic
energy in different elements give an indication of how much influence the modification
of the element properties may have on the global system response. This knowledge
is a useful analysis tool to determine regions that may need to be updated in a FE
model. Accepted command options are

• -MatDesval is used to specify the matrix type (see MatType). -MatDes 5 now
correctly computes energies in pre-stressed configurations.

• -curve should be used to obtain energies in the newer curve format. Ek.X{1}
gives as columns EltId,vol,MatId,ProId,GroupId so that passage between
energy and energy density can be done dynamically.

• ElementSelection (see the element selection commands) used to compute
energies in part of the model only. The default is to compute energies in all
elements. A typical call to get the strain energy in a material of ID 1 would
then be R1=fe stress(’Ener -MatDes1 -curve matid1’,model,def);

Obsolete options are
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• m, k specify computation of kinetic or strain energies. For backward compat-
ibility, fe stress returns [StrainE,KinE] as two arguments if no element
selection is given.

• dens changes from the default where the element energy and not energy den-
sity is computed. This may be more appropriate when displaying energy levels
for structures with uneven meshes.

• Element energies are computed for deformations in DEF and the result is re-
turned in the data structure RESULT with fields .data and .EltId which spec-
ifies which elements were selected. A .vol field gives the volume or mass of
each element to allow switching between energy and energy density.

The strain and kinetic energies of an element are defined by

Eestrain =
1

2
φTKelementφ and Eekinetic =

1

2
φTMelementφ

For complex frequency responses, one integrates the response over one cycle, which
corresponds to summing the energies of the real and imaginary parts and using a
factor 1/4 rather than 1/2.

feplot

feplot allows the visualization of these energies using a color coding. You should
compute energies once, then select how it is displayed. Energy computation clearly
require material and element properties to be defined in InitModel.

The earlier high level commands fecom ColorDataK or ColorDataM don’t store the
result and thus tend to lead to the need to recompute energies multiple times. The
preferred strategy is illustrated below.

% Computing, storing and displaying energy data

demosdt(’LoadGartFe’); % load model,def

cf=feplot(model,def);cf.sel=’eltname quad4’;fecom ch7

% Compute energy and store in Stack

Ek=fe_stress(’ener -MatDes 1 -curve’,model,def)

cf.Stack{’info’,’Ek’}=Ek;
% Color is energy density by element

feplot(’ColorDataElt -dens -ColorBarTitle "Ener Dens"’,Ek);

% Color by group of elements

cf.sel={’eltname quad4’, ... % Just the plates
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’ColorDataElt -ColorBarTitle "ener" -bygroup -edgealpha .1’, ...

Ek}; % Data with no need to recompute

fecom(cf,’ColorScale One Off Tight’) % Default color scaling for energies

Accepted ColorDataElt options are

• -dens divides by element volume. Note that this can be problematic for mixed
element types (in the example above, the volume of celas springs is defined
as its length, which is inappropriate here).

• -frac divides the result by the total energy (equal to the square of the modal
frequency for normal modes).

• -byGroup sums energies within the same element group. Similarly -byProId

and -byMatId group by property identifier. When results are grouped, the
fecom(’InfoMass’) command gives a summary of results.

The color animation mode is set to ScaleColorOne.

Stress

out=fe stres(’stress CritFcn Options’,MODEL,DEF,EltSel) returns the stresses
evaluated at elements of Model selected by EltSel.

The CritFcn part of the command string is used to select a criterion. Currently
supported criteria are

sI, sII,

sIII

principal stresses from max to min. sI is the default.

mises Returns the von Mises stress (note that the plane strain case is not
currently handled consistently).

-comp i Returns the stress components of index i. This component index is
giving in the engineering rather than tensor notation (before applying
the TensorTopology transformation).

Supported command Options (to select a restitution method, ...) are

• AtNode average stress at each node (default). Note this is not currently
weighted by element volume and thus quite approximate. Result is a structure
with fields .DOF and .data.
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• AtCenter stress at center or mean stress at element stress restitution points.
Result is a structure with fields .EltId and .data.

• AtInteg stress at integration points (*b family of elements).

• Gstate returns a case with Case.GroupInfo{jGroup,5} containing the group
gstate. This will be typically used to initialize stress states for non-linear
computations. For multiple deformations, gstate the first nElt columns cor-
respond to the first deformation.

• -curve returns the output using the curve format.

The fecom ColorDataStress directly calls fe stress and displays the result. For
example, run the basic element test q4p testsurstress, then display various stresses
using

% Using stress display commands

q4p(’testsurstress’)

fecom(’ColorDataStress atcenter’)

fecom(’ColorDataStress mises’)

fecom(’ColorDataStress sII atcenter’)

To obtain strain computations, use the strain material as shown below.

% Accessing stress computation data (older calls)

[model,def]=hexa8(’testload stress’);

model.pl=m_elastic(’dbval 100 strain’,’dbval 112 strain’);

model.il=p_solid(’dbval 111 d3 -3’);

data=fe_stress(’stress atcenter’,model,def)

CritFcn

For stress processing, one must often distinguish the raw stress components asso-
ciated with the element formulation and the desired output. CritFcn are callback
functions that take a local variable r1 of dimensions (stress components × nodes ×
deformations) and to replace this variable with the desired stress quantity(ies). For
example

% Sample declaration of a user defined stress criterium computation

function out=first_comp(r1)

out=squeeze(r1(1,:,:,:));
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would be a function taking the first component of a computed stress. sdtweb

fe stress(’’Principal’’) provides stress evaluations classical for mechanics.

Redefining the CritFcn callback is in particular used in the StressCut functionality,
see section 4.7 .

See also fe mk, feplot, fecom
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Purpose Computation of time and non linear responses.

Syntax def=fe_time(model)

def=fe_time(TimeOpt,model)

[def,model,opt]=fe_time(TimeOpt,model)

model=fe_time(’TimeOpt...’,model)

TimeOpt=fe_time(’TimeOpt...’)

Description fe time groups static non-linear and transient solvers to compute the response of
a FE model given initial conditions, boundary conditions, load case and time pa-
rameters. Note that you may access to the fe time commands graphically with
the simulate tab of the feplot GUI. See tutorial (section 4.8 ) on how to compute a
response.

Solvers and options

Three types of time integration algorithm are possible: the Newmark schemes, the
Theta-method, and the time Discontinuous Galerkin method. Implicit and explicit
methods are implemented for the Newmark scheme, depending on the Newmark
coefficients β and γ, and non linear problems are supported.

The parameters of a simulation are stored in a time option data structure TimeOpt

given as input argument or in a model.Stack entry info,TimeOpt. Initial conditions
are stored as a curve,q0 entry.

The solvers selected by the string TimeOpt.Method are

• newmark linear Newmark

• NLNewmark non linear Newmark (with Newton iterations)

• staticNewton static Newton

• Theta Theta-Method (linear)

• Euler method for first order time integration.

• dg Discontinuous Galerkin
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• back perform assembly and return model,Case,opt.

Here is a simple example to illustrate the common use of this function.

model=fe_time(’demo bar’); % build the model

% set the time options in model.Stack

model=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’,model);

def=fe_time(model); % compute the response

fe time can also be called with TimeOpt as the first argument. This is often more
convenient when the user modifies options fields by hand

def=fe_time(TimeOpt,model);

TimeOpt

The TimeOpt data structure has fields to control the solver

• Method selection of the solver

• Opt numeric parameters of solver if any. For example for Newmark [beta

gamma t0 deltaT Nstep]

• MaxIter maximum number of iterations.

• nf optional value of the first residual norm.

• IterInit,IterEnd callbacks executed in non linear solver iterations. This is
evaluated when entering and exiting the Newton solver. Can be used to save
specific data, implement modified solvers, ...

• Jacobian string to be evaluated to generate a factored jacobian matrix in
matrix or ofact object ki. Defaults are detailed for each solver, see also
NLJacobianUpdate if you have the non-linear vibration tools.

• JacobianUpdate controls the update of Jacobian in Newton and quasi-Newton
loops. Use 1 for updates and 0 for a fixed Jacobian (default).

• Residual Callback evaluated for residual. The default residual is method
dependent.
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• InitAcceleration optional field to be evaluated to initialize the acceleration
field.

• IterFcn string or function handle iteration (inner loop) function. When per-
forming the time simulation initialization, the string will be replaced by the
function handle (e.g. @iterNewton). Iteration algorithms available in fe time

are iterNewton (default for basic Newton and Newmark) and iterNewton Sec

which implements the Newton increment control algorithm.

• RelTol threshold for convergence tests. The default is the OpenFEM prefer-
ence

getpref(’OpenFEM’,’THRESHOLD’,1e-6);

• TimeVector optional value of computed time steps, if exists TimeVector is
used instead of deltaT,Nstep.

• AssembleCall optional callback for assembly, see nl spring(’AssembleCall’).
When model and Case are provided as fully assembled, one can define the
AssembleCall field as empty to tell fe timenot to perform any assembly.

to control the output

OutInd DOF output indices (see 2D example). This selection
is based on the state DOFs which can be found using
fe case(model,’GettDof’).

OutputFcn string to be evaluated for post-processing or time vector con-
taining the output time steps

FinalCleanupFcn string to be evaluated for final post-processing of the simulation
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c u, c v, c a optional observation matrices for displacement, velocity and
acceleration outputs.

lab u, lab v,

lab a

optional cell array containing labels describing each output
(lines of observation matrices)

NeedUVA [NeedU NeedV NeedA], if NeedU is equal to 1, output displace-
ment, etc.

OutputInit optional string to be evaluated to initialize the output (before
the time loop)

SaveTimes optional time vector, saves time steps on disk
Follow implements a timer allowing during simulation display

of results. A basic follow mechanism is implemented
(opt.Follow=1; to activate, seel NLNewmark example be-
low)). More elaborate monitoring are available within the SDT
optional function nl spring (see nl spring Follow).

Input and output options

This section details the applicable input and the output options.

Initial conditions may be provided in a model.Stack entry of type info named q0

or in an input argument q0. q0 is a data structure containing def and DOF fields as
in a FEM result data structure (section 4.8 ). If any, the second column gives the
initial velocity. If q0 is empty, zero initial conditions are taken. In this example, a
first simulation is used to determine the initial conditions of the final simulation.

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

% first computation to determine initital conditions

def=fe_time(TimeOpt,model);

% no input force

model=fe_case(model,’remove’,’Point load 1’);

% Setting initial conditions

q0=struct(’def’,[def.def(:,end) def.v(:,end)],’DOF’,def.DOF);

model=stack_set(model,’curve’,’q0’,q0);

def=fe_time(TimeOpt,model);

An alternative call is possible using input arguments
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def=fe_time(TimeOpt,model,Case,q0)

In this case, it is the input argument q0 which is used instead of an eventual stack
entry.

You may define the time dependence of a load using curves as illustrated in sec-
tion 7.9 .

You may specify the time steps by giving the ’TimeVector’

TimeOpt=struct(’Method’,’Newmark’,’Opt’,[.25 .5 ],...

’TimeVector’,linspace(0,100e-4,101));

This is useful if you want to use non constant time steps. There is no current
implementation for self adaptive time steps.

To illustrate the output options, we use the example of a 2D propagation. Note
that this example also features a time dependent DofLoad excitation (see fe case)
defined by a curve, (see fe curve), here named Point load 1.

model=fe_time(’demo 2d’);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 50’);

You may specify specific output by selecting DOF indices as below

i1=fe_case(model,’GettDof’); i2=feutil(’findnode y==0’,model)+.02;

TimeOpt.OutInd=fe_c(i1,i2,’ind’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % Don’t animate this (only bottom line)

You may select specific output time step using TimeOpt.OutputFcn as a vector

TimeOpt.OutputFcn=[11e-4 12e-4];

TimeOpt=feutil(’rmfield’,TimeOpt’,’OutInd’);

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % only two time steps saved

or as a string to evaluate. The output is the out local variable in the fe time

function and the current step is j1+1. In this example the default output function
(for TimeOpt.NeedUVA=[1 1 1]) is used but specified for illustration

TimeOpt.OutputFcn=[’out.def(:,j1+1)=u;’ ...

’out.v(:,j1+1)=v;out.a(:,j1+1)=a;’];

model=stack_set(model,’info’,’TimeOpt’,TimeOpt);

def=fe_time(model); % full deformation saved

This example illustrates how to display the result (see feplot) and make a movie
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cf=feplot(model,def);

fecom(’ColorDataEvalA’);

fecom(cf,’SetProp sel(1).fsProp’,’FaceAlpha’,1,’EdgeAlpha’,0.1);

cf.ua.clim=[0 2e-6];fecom(’;view2;AnimTime;ch20;scd1e-2;’);

st=fullfile(getpref(’SDT’,’tempdir’),’test.avi’);

fecom([’animavi ’ st]);fprintf(’\nGenerated movie %s\n’,st);

Note that you must choose the Anim:Time option in the feplot GUI.

You may want to select outputs using observations matrix

model=fe_time(’demo bar’); Case=fe_case(’gett’,model);

i1=feutil(’findnode x>30’,model);

TimeOpt=fe_time(’TimeOpt Newmark .25 .5 0 1e-4 100’);

TimeOpt.c_u=fe_c(Case.DOF,i1+.01); % observation matrix

TimeOpt.lab_u=fe_c(Case.DOF,i1+.01,’dofs’); % labels

def=fe_time(TimeOpt,model);

If you want to specialize the output time and function you can specify the SaveTimes
as a time vector indicating at which time the SaveFcn string will be evaluated. A
typical TimeOpt would contain

TimeOpt.SaveTimes=[0:Ts:TotalTime];

TimeOpt.SaveFcn=’My_function(’’Output’’,u,v,a,opt,out,j1,t);’;

Cleanup

The field FinalCleanupFcn of the TimeOpt can be used to specify what is done just
after the time integration.
fe simul provides a generic clean up function which can be called using
opt.FinalCleanupFcn=’fe simul(’’fe timeCleanup’’,model)’;

If the output has been directly saved or from iiplot it is possible to load the results
with the same display options than for the fe timeCleanup using fe simul(’fe timeLoad’,fname)’;

Some command options can be used:

• -cf i stores the result of time integration in the stack of iiplot or feplot

figure number i. i=-1 can be specified to use current iiplot figure and i=-2

for current feplot figure. Displacements are stored in curve,disp entry of

587



fe time

the stack. Velocities and accelerations (if any) are respectively stored in the
curve,vel and curve,acc stack entries. If command option -reset is present,
existent stack entries (disp, vel, acc, etc. ...) are lost whereas if not stack
entries name are incremented (disp(1), disp(2), etc. ...).

• ’-ExitFcn"AnotherCleanUpFcn"’ can be used to call an other clean up func-
tion just after fe simul(’fe timeCleanUp’) is performed.

• -fullDOF performs a restitution of the output on the unconstrained DOF of
the model used by fe time.

-restitFeplot adds a .TR field to the output to allow deformation on the fly
restitution in feplot. These two options cannot be specified simultaneously.

• Command option -rethrow allows outputting the cross reference output data
from iiplotor feplotif the option -cf-1 or -cf-2 is used.

newmark

For the Newmark scheme, TimeOpt has the form

TimeOpt=struct(’Method’,’Newmark’,’Opt’,Opt)

where TimeOpt.Opt is defined by

[beta gamma t0 deltaT Nstep]

beta and gamma are the standard Newmark parameters [37] ([0 0.5] for explicit and
default at [.25 .5] for implicit), t0 the initial time, deltaT the fixed time step, Nstep
the number of steps.

The default residual is r = (ft(j1,:)*fc’-v’*c-u’*k)’; (notice the sign change
when compared to NLNewmark).

This is a simple 1D example plotting the propagation of the velocity field using a
Newmark implicit algorithm. Rayleigh damping is declared using the info,Rayleigh
case entry.

model=fe_time(’demo bar’);

data=struct(’DOF’,2.01,’def’,1e6,...

’curve’,fe_curve(’test ricker dt=1e-3 A=1’));

model = fe_case(model,’DOFLoad’,’Point load 1’,data);

TimeOpt=struct(’Method’,’Newmark’,’Opt’,[.25 .5 3e-4 1e-4 100],...
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’NeedUVA’,[1 1 0]);

def=fe_time(TimeOpt,model);

% plotting velocity (propagation of the signal)

def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;

feplot(model,def_v);

if sp_util(’issdt’); fecom(’;view2;animtime;ch30;scd3’);

else; fecom(’;view2;scaledef3’); end

dg

The time discontinuous Galerkin is a very accurate time solver [50] [51] but it is
much more time consuming than the Newmark schemes. No damping and no non
linearities are supported for Discontinuous Galerkin method.

The options are [unused unused t0 deltaT Nstep Nf], deltaT is the fixed time
step, Nstep the number of steps and Nf the optional number of time step of the
input force.

This is the same 1D example but using the Discontinuous Galerkin method:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt DG Inf Inf 0. 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

def=fe_time(TimeOpt,model);

def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;

feplot(model,def_v);

if sp_util(’issdt’); fecom(’;view2;animtime;ch30;scd3’); ...

else; fecom(’;view2;scaledef3’); end

NLNewmark

For the non linear Newmark scheme, TimeOpt has the same form as for the linear
scheme (method Newmark). Additional fields can be specified in the TimeOpt data
structure
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Jacobian string to be evaluated to generate a factored jacobian matrix
in matrix or ofact object ki. The default jacobian matrix is
’ki=ofact(model.K{3}+2/dt*model.K{2}’
+4/(dt*dt)*model.K{1});’

Residual Defines the residual used for the Newton iterations of each type
step. It is typically a call to an external function. The default
residual is
’r = model.K{1}*a+model.K{2}*v+model.K{3}*u-fc;’
where fc is the current external load, obtained using
(ft(j1,:)*fc’)’ at each time step.

IterInit evaluated when entering the correction iterations. This can be
used to initialize tolerances, change mode in a co-simulation
scheme, etc.

IterEnd evaluated when exiting the correction iterations. This can be
used to save specific data, ...

IterFcn Correction iteration algorithm function, available are
iterNewton (default when omitted) or iterNewton Sec.
Details of the implementation are given in the staticNewton

below.
MaxIterSec for iterNewton Sec applications (see staticNewton).
ResSec for iterNewton Sec applications (see staticNewton).

Following example is a simple beam, clamped at one end, connected by a linear
spring at other end and also by a non linear cubic spring. The NL cubic spring is
modeled by a load added in the residual expression.

% Get simple test case for NL simulation in sdtweb demosdt(’BeamEndSpring’)

model=demosdt(’BeamEndSpring’); % simple example building

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

disp(opt.Residual)

opt.Follow=1; % activate simple monitoring of the

% number of Newton iterations at each time step

def=fe_time(opt,model);

staticNewton

For non linear static problems, the Newton solver iterNewton is used. TimeOpt has
a similar form as with the NLNewmark method but no parameter Opt is used.

An increment control algorithm iterNewton Sec can be used when convergence is
difficult or slow (as it happens for systems showing high stiffness variations). The
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Newton increment ∆q is then the first step of a line search algorithm to optimize
the corrective displacement increment ρ∆q, ρ ∈ R in the iteration. This optimum
is found using the secant iteration method. Only a few optimization iterations are
needed since this does not control the mechanical equilibrium but only the relevance
of the Newton increment. Each secant iteration requires two residual computations,
which can be costly, but more efficient when a large number of standard iterations
(matrix inversion) is required to obtain convergence.

Fields can be specified in the TimeOpt data structure

Jacobian defaults to ’ki=ofact(model.K{3});’
Residual defaults to ’r = model.K{3}*u-fc;’
IterInit and IterEnd are supported see fe time TimeOpt

IterEnd

MaxIterSec Maximum secant iterations for the iterNewton Sec iteration
algorithm. The default is 3 when omitted.

ResSec Residual evaluation for the secant iterations of the
iterNewton Sec iteration algorithm. When omitted,
fe timetries to interpret the Residual field. The func-
tion must fill in the secant residual evaluation r1 which two
columns will contain the residual for solution rho(1)*dq

and rho(2)*dq. The default ResSec field will be then
’r1(:,1) = model.K{3}*(u-rho(1)*dq)-fc; r1(:,2) =

model.K{3}*(u-rho(2)*dq)-fc;’.

Below is a demonstration non-linear large transform statics.

% Sample mesh, see script with sdtweb demosdt(’LargeTransform’)

model=demosdt(’largeTransform’); %

% Now perform the Newton loop

model=stack_set(model,’info’,’TimeOpt’, ...

struct(’Opt’,[],’Method’,’StaticNewton’,...

’Jacobian’,’ki=basic_jacobian(model,ki,0.,0.,opt.Opt);’,...

’NoT’,1, ... % Don’t eliminate constraints in model.K

’AssembleCall’,’assemble -fetimeNoT -cfield1’, ...

’IterInit’,’opt=fe_simul(’’IterInitNLStatic’’,model,Case,opt);’));

model=fe_case(model,’setcurve’,’PointLoad’, ...

fe_curve(’testramp NStep=20 Yf=1e-6’)); % 20 steps gradual load

def=fe_time(model);

cf=feplot(model,def); fecom(’;ch20;scc1;colordataEvalZ’); % View shape
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ci=iiplot(def);iicom(’ch’,{’DOF’,288.03}) % View response

numerical damping for Newmark, HHT-alpha schemes

You may want to use numerical damping in a time integration scheme, the first
possibility is to tune the Newmark parameters using a coefficient α such that β =
(1+α)2

4 and γ = 1
2 + α. This is known to implement too much damping at low

frequencies and is very depending on the time step [37].

A better way to implement numerical damping is to use the HHT-α method which
applies the Newmark time integration scheme to a modified residual balancing the
forces with the previous time step.

For the HHT-α scheme, TimeOpt has the form

TimeOpt=struct(’Method’,’nlnewmark’,’Opt’,Opt,...

’HHTalpha’,alpha)

where TimeOpt.Opt is defined by

[beta gamma t0 deltaT Nstep]

beta and gamma are the standard Newmark parameters [37] with numerical damp-
ing, t0 the initial time, deltaT the fixed time step, Nstep the number of steps.

The automatic TimeOpt generation call takes the form [alpha unused t0 deltaT

Nstep] and will compute the corresponding β, γ parameters.

This is a simple 1D example plotting the propagation of the velocity field using the
HHT-α implicit algorithm:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt hht .05 Inf 3e-4 1e-4 100’);

TimeOpt.NeedUVA=[1 1 0];

def=fe_time(TimeOpt,model);

The call

TimeOpt=fe_time(’TimeOpt hht .05 Inf 3e-4 1e-4 100’);

is strictly equivalent to

TimeOpt=struct(’Method’,’nlnewmark’,...

’Opt’,[.275625 .55 3e-4 1e-4 100],...

’HHTalpha’,.05);
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Theta

The θ-method is a velocity based solver, whose formulation is given for example
in [52, 53]. It considers the acceleration as a distribution, thus relaxing discontinuity
problems in non-smooth dynamics. Only a linear implementation is provided in
fe time. The user is nevertheless free to implement a non-linear iteration, through
his own IterFcn.

This method takes only one integration parameter for its scheme, θ set by default
at 0.5. Any values between 0.5 and 1 can be used, but numerical damping occurs
for θ > 0.5.

The TimeOpt.Opt takes the form [theta unused t0 deltaT Nstep].

This is a simple 1D example plotting the propagation of the velocity field using the
θ-Method:

model=fe_time(’demo bar’);

TimeOpt=fe_time(’TimeOpt theta .5 0 3e-4 100’);

def=fe_time(TimeOpt,model);

Euler

This method can be used to integrate first order problem of the form Mq̇+Kq = F .
One can use it to solve transient heat diffusion equation (see p heat).

Integration scheme is of the form qn+1 = qn + (1− θ)hq̇n + θhq̇n+1

θ can be define in opt.Opt(1). Explicit Euler (θ = 0) is not implemented at this
time. Best accuracy is obtained with θ = 1

2 (Crank-Nicolson).

See also fe mk, fe load, fe case
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Purpose The of time function is a low level function dealing with CPU and/or memory
consuming steps of a time integration.

The case sensitive commands are

lininterp linear interpolation.
storelaststep pre-allocated saving of a time step in a structure with fields ini-

tially built with struct(’uva’,[u,v,a],’FNL’,model.FNL)

interp Time scheme interpolations (low level call).
-1 In place memory assignment.

lininterp

The lininterp command which syntax is

out = of time (’lininterp’,table,val,last) ,

computes val containing the interpolated values given an input table which first
column contains the abscissa and the following the values of each function. Due to
performance requirements, the abscissa must be in ascending order. The variable
last contains [i1 xi si], the starting index (beginning at 0), the first abscissa and
coordinate. The following example shows the example of 2 curves to interpolate:

out=of_time(’lininterp’,[0 0 1;1 1 2;2 2 4],linspace(0,2,10)’,zeros(1,3))

Warning : this command modifies the variable last within a given func-
tion this may modify other identical constants in the same m-file. To avoid
any problems, this variable should be generated using zeros (the Matlab function)
to assure its memory allocation independence.

The storelaststep command makes a deep copy of the displacement, velocity and
acceleration fields (stored in each column of the variable uva.uva in the preallocated
variables u, v and a following the syntax:

of time(’storelaststep’,uva,u,v,a);

interp

This command performs transient numerical scheme response interpolations. It
is used by fe time when the user gives a TimeVector in the command. In such
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case the output instants do not correspond to the solver computation instants, the
approached output instants must thus be interpolated from the solver instants using
the numerical scheme quadrature rules.

This command uses current solver instant t1 and the last instant step t0 of the solver
uva. The uva matrix is stored in Case and contains in each column, displacement,
velocity and acceleration at t0. The interpolation strategy that is different for each
numerical scheme depends on the arguments given to of time.

Warning : this command modifies out.def at very low level, out.def thus
cannot be initialized by simple numerical values, but by a non trivial
command (use zeros(1) instead of 0 for example) to ensure the unicity
of this data in memory.

For a Newmark or HHT-alpha scheme, the low level call command is

of_time (’interp’, out, beta,gamma,uva,a, t0,t1,model.FNL);

where beta and gamma are the coefficients of the Newmark scheme, first two values
of opt.Opt.

Thus the displacement (u1) and velocity (v1) at time t1 will be computed from the
displacement (u0), velocity (v0), acceleration (a0) stored in uva, the new acceleration
a (a1), and the time step (h = t1− t0) as

{
v1 = v0 + h(1− γ)a0 + hγa1

u1 = u0 + hv0 + h2(1
2 − β)a0 + h2βa1

(9.5)

NL force (model.FNL) is linearly interpolated.

For the Theta-Method scheme, the low level command is

of_time (’interp’, out, opt.Opt(1),[],uva,v, t0,t1,model.FNL);

Thus the displacement (u1) at time t1 will be computed from the displacement (u0),
velocity (v0), stored in uva, the new velocity v (v1), and the time step (h = t1− t0)
as

u1 = u0 + h(1− θ)v0 + hθv1 (9.6)

For the staticnewton method, it is possible to use the same storage strategy (since
it is optimized for performance), using
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of_time (’interp’, out, [],[], [],u, t0,t1,model.FNL);

In this case no interpolation is performed.

Please note that this low-level call uses the internal variables of fe time at the state
where is is evaluated. It is then useful to know that inside fe time:

• current instant computed is time tc=t(j1+1) using time step dt, values are
t0=tc-dt and t1=tc.

• uva is generally stored in Case.uva.

• the current acceleration, velocity or displacement values when interpolation is
performed are always a, v, and u.

• The out data structure must be preallocated and is modified by low level C
calls. Expected fields are

def displacement output, must be preallocated with size
length(OutInd) x length(data)

v velocity output, must be preallocated with size
length(OutInd) x length(data)

a acceleration output (when computed) must be preallocated
with size length(OutInd) x length(data)

data column vector of output times
OutInd

int32 vector of output indices, must be given
cur [Step dt], must be given
FNL possibly preallocated data structure to store non-linear loads.

FNL.def must be length(model.FNL) by size(out.data,1)

(or possibly size(out.FNL.data,1), in this case fieldnames
must be def,DOF,data,cur)

• non linear loads in model.FNL are never interpolated.

-1

This command performs in place memory assignment of data. It is used to avoid
memory duplication between several layers of code when computation data is stored
at high level. One can thus propagate data values at low level in variables shared
by several layers of code without handling output and updates at each level.
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The basic syntax to fill-in preallocated variable r1 with the content of r2 is i0 =

of time(-1,r1,r2);. The output i0 is the current position in r1 after filling with
r2.

It is possible to use a fill-in offset i1 to start filling r1 with r2 from index position
i1 : i0 = of time([-1 i1],r1,r2);.

To avoid errors, one must ensure that the assigned variable is larger than the variable
to transmit. The following example illustrates the use of this command.

% In place memory assignment in vectors with of_time -1

r1=zeros(10,1); % sample shared variable

r2=rand(3,1); % sample data

% fill in start of r1 with r2 data

of_time(-1,r1,r2);

% fill in start of r1 with r2 data and

% get current position in r1

i0=of_time(-1,r1,r2);

% i0 is current pos

% fill in r1 with r2+1

% with a position offset

i0=of_time([-1 i0],r1,r2+1);

See also fe time
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idcom

Purpose UI command functions for standard operations in identification.

Syntax idcom(’CommandString’);

Description idcom provides a simple access to standard operations in identification. The way
they should be sequenced is detailed in section 2.3 which also illustrates the use of
the associated GUI.

idcom is always associated with an iiplot figure. Information on how to modify
standard plots is given under iicom. The datasets used by idcom are described
in section 2.3 . Methods to access the data from the command line are described
in section 2.1.2 . Identification options stored in the figure are detailed under the
idopt function.

idcom(ci) turns the environment on, idcom(ci,’Off’) removes options but not
datasets.

The information given below details each command (see the commode help for hints
on how to build commands and understand the variants discussed in this help).
Without arguments idcom opens or refreshes the current idcom figure.

Commands

e [ ,i w]

Single pole narrow-band model identification. e calls ii poest to determine a single
pole narrow band identification for the data set ci.Stack{’test’}.

A bandwidth of two percent of w is used by default (when i is not given). For i<1,
the i specifies the half bandwidth as a fraction of the central frequency w. For i an
integer greater than 5, the bandwidth is specified as a number of retained frequency
points.

The selected frequency band is centered around the frequency w. If w is not given,
ii poest will wait for you to pick the frequency with your mouse.

If the local fit does not seem very good, you should try different bandwidths (values
of i).

The results are stored in ci.Stack{’IdAlt’} with a pole .po and residue .res field.
FRFs are resynthesized into ci.Stack{’IdFrf’} (which is overlaid to ci.Stack{’Test’}
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in iiplot). If, based on the plot(s), the estimate seems good it should be added to
the current pole set ci.Stack{’IdMain’} using ea.

ea

Add alternate poles to the main set. If appropriate modes are present in ci.Stack{’IdAlt’}
(after using the e or f commands for example), they should be added to the main
pole set ci.Stack{’IdMain’} using the ea command. These poles can then be
used to identify a multiple pole broadband model with idcom est and idcom eup

commands.

If all poles in ci.Stack{’IdAlt’} are already in ci.Stack{’IdMain’}, the two are
only combined when using the eaf command (this special format is used to prevent
accidental duplication of the nodes).

er [num i, f w]

Remove poles from ci.Stack{’IdMain’}. The poles to be removed can be in-
dicated by number using ’er num i’ or by frequency using ’er f w’ (the pole
with imaginary part closest to w is removed). The removed pole is placed in
ci.Stack{’IdAlt’} so that an ea command will undo the removal.

est[ ,local,localpole]

Broadband multiple pole identification without pole update. est uses id rc to iden-
tify a model based on the complete frequency range. This estimate uses the current
pole set ci.Stack{’IdMain’} but does not update it. The results are a residue ma-
trix ci.Stack{’IdMain’}.res, and corresponding FRF ci.Stack{’IdFrf’} (which
is overlaid to ci.Stack{’Test’} in iiplot). In most cases the estimate can be im-
proved by optimizing the poles using the eup or eopt commands.

estLocal only estimates residues of poles in the range selected by ci.IDopt. You
perform a series of local estimates over selected bands by providing these bands or
using narrow band around each pole with estLocalPole.

gartid

idcom(’w0’);idcom est

def_global=ci.Stack{’IdMain’}; % broadband estimate
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idcom

idcom(’estlocal’,{[6 7],[15 17],[31 38],[48 65]});
def_local=ci.Stack{’IdMain’}; % estimate by multiple local bands

eup dstep fstep [local, num i , iter j ]

Update of poles. eup uses id rc to update the poles of a multiple pole model based
data within ci.IDopt.SelectedRange. This update is done through a non-linear
optimization of the pole locations detailed in section 2.3.3 . The results are updated
modes ci.Stack{’IdMain’} (the initial ones are stored in ci.Stack{’IdAlt’}),
and corresponding FRF ci.Stack{’IdFrf’} (which is overlaid in iiplot).

In most cases, eup provides significant improvements over the initial pole estimates
provided by the e command. In fact the only cases where you should not use eup is
when you have a clearly incomplete set of poles or have reasons to suspect that the
model form used by id rc will not provide an accurate broadband model of your
response.

Default values for damping and frequency steps are 0.05 and 0.002. You may
specify other values. For example the command ’eup 0.05 0.0’ will only update
damping values.

It is often faster to start by optimizing over small frequency bands while keeping all
the poles. Since some poles are not within the selected frequency range they should
not be optimized. The option local placed after values of dstep and fstep (if any)
leads to an update of poles whose imaginary part are within the retained frequency
band.

When using local update, you may get warning messages about conditioning. These
just tell you that residues of modes outside the band are poorly estimated, so that the
message can be ignored. While algorithms that by-pass the numerical conditioning
warning exist, they are slower and don’t change results so that the warning was left.

In some cases you may want to update specific poles. The option num i where i

gives the indices in IdMain of the poles you want to update. For example ’eup 0.0

0.02 num 12’ will update the frequency of pole 12 with a step of 2%.

• The poles in ci.Stack{’IdMain’}.po are all the information needed to obtain
the full model estimate. You should save this information in a text file (use
idcom(’TableIdMain’) to generate a clean output) to be able to restart/refine
your identification.

• You can get a feel for the need to further update your poles by showing the error
and quality plots (see iiplot and section 2.3.2 ).
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eopt [local, num i ]

Update of poles. eopt is similar to eup but uses id rcopt to optimize poles. eopt

is often more efficient when updating one or two poles (in particular with the eopt

local command after selecting a narrow frequency band). eopt is guaranteed to
improve the quadratic cost (3.3) so that using it rarely hurts.

find

Find a pole. This command detects minima of the MMIF that are away from poles of
the current model ci.Stack{’IdMain’}.po and calls ii poest to obtain a narrow
band single pole estimate in the surrounding area. This command can be used as
an alternative to indicating pole frequencies with the mouse (e command). More
complex automated model initialization will be introduced in the future.

f i

Graphical input of frequencies. f i prompts the user for mouse input of i frequencies
(the abscissa associated with each click is taken to be a frequency). The result
is stored in the pole matrix ci.Stack{’IdAlt’}.po assuming that the indicated
frequencies correspond to poles with 1% damping. This command can be used to
create initial pole estimates but the command e should be used in general.

dspi nm

Direct system parameter identification. dspi uses id dspi to create a nm pole state
space model of Test. nm must be less than the number of sensors. The results
are transformed to the residue form which gives poles and residues in IdMain, and
corresponding FRF IdFrf (which is overlaid to Test in iiplot.

mass i

Computes the generalized mass at address i. If the identified model contains com-
plex residues (ci.IDopt.Fit=’Pos’ or ’Complex’), res2nor is used to find a real
residue approximation. For real residues, the mass normalization of the mode is
given by the fact that for collocated residues reciprocity implies

cColφj = φTj bCol =
√
RjCol = (mjCol)

−1/2

601



idcom

The mass at a given sensor i is then related to the modal output clφj of the mass
normalized mode by mlj = (clφj)

−2. This command can only be used when col-
located transfer functions are specified and the system is assumed to be reciprocal
(see idopt).

poly nn nd

Orthogonal polynomial identification. poly uses id poly to create a polynomial
model of Test with numerators of degree nn and denominators of degree nd. The
corresponding FRFs are stored in IdFrf (which is overlaid to Test in iiplot).

Table,Tex] IIpo

Formatted printout of pole variables IIpo or IIpo1. With the Tex command the
printout is suitable for inclusion in LATEX.

This command is also accessible from the idcom figure context menu.

See also idcom, iicom, iiplot, id rc, section 2.3
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idopt

Purpose handling of options used by the identification related routines.

Description idopt is the function handling identification options. Identification options associ-
ated with idcom figures are used when generating new identifications. They should
be modified using the ci.IDopt pointer or the IDopt tab in the figure. In the text
output below

>> ci=idcom; ci.IDopt

(ID options in figure(2)) =

ResidualTerms : [ 0 | 1 (1) | 2 (s^-2) | {3 (1 s^-2)} | 10 (1 s)]

DataType : [ {disp./force} | vel./force | acc./force ]

AbscissaUnits : [ {Hz} | rd/s | s ]

PoleUnits : [ {Hz} | rd/s ]

SelectedRange : [ 1-3124 (4.0039-64.9998) ]

FittingModel : [ Posit. cpx | {Complex modes} | Normal Modes]

NSNA : [ 0 sensor(s) 0 actuator(s) ]

Reciprocity : [ {Not used} | 1 FRF | MIMO ]

Collocated : [ none declared ]

currently selected value are shown between braces { } and alternatives are shown.

After performing an identification, the options used at the time are copied to the
result. Thus the ci.Stack{’IdMain’}.idopt is a copy of the figure options when the
identification was performed. Some manipulations possible with the res2nor,res2ss,id nor,

... functions may require modifications of these options (which are different from
the idcom figure options.

The SDT handle object used to store options is very permissive in the way to
change values from the command line (for GUI operation use the IDopt tab).
ci.IDopt.OptName=OptValue sets the option. OptName need only specify enough
characters to allow a unique option match. Thus ci.IDopt.res and ci.IDopt.ResidualTerms

are equivalent. Here are a few examples

demosdt(’demoGartIdEst’);ci=idcom;

ci.IDopt.Residual=0; % modify estimation default

ci.IDopt.Selected=[100 2000];

ci.IDopt.Po=’Hz’;

ci.IDopt % changed

ci.Stack{’IdMain’}.idopt % not changed until new identification
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The following is a list of possible options with indications as to where they are stored.
Thus ci.IDopt.res=2 is simply a user friendly form for the old call ci.IDopt(6)=2
which you can still use.

Res Residual terms selection (stored in ci.IDopt(1)) and corresponding to
(5.22)

0 none
1 Static correction (high frequency mode correction)
2 Roll-off (s−2, low frequency mode correction).
3 Static correction and roll-off (default)
10 1 and s, this correction is only supported by id rc and should be used

for identification in narrow bandwidth (see ii poest for example)
-i An alternate format uses negative numbers with decades indicating

powers (starting at s−2). Thus Ass=-1101 means an asymptotic cor-
rection with terms in s−2, 1, s

Data type (stored in ci.IDopt(2))
0 displacement/force (default)
1 velocity/force
2 acceleration/force

Abscissa units for vector w can be Hz, rad/s or seconds
Pole units can be Hz or rad/s

units are actually stored in ci.IDopt(3) with units giving abscissa
units (01 w in Hertz, 02 w in rad/s, 03 w time seconds) and tens pole
units (10 po in Hertz, 20 po in rad/s). Thus ci.IDopt(3)=12 gives w

in rad/sec and po in Hz.
Selected frequency range indices of first and last frequencies to be used for iden-

tification or display (stored in ci.IDopt(4:5))
Fitting model (see res page 171, stored in ci.IDopt(6))

0 positive-imaginary poles only, complex mode residue
1 complex mode residue, pairs of complex-conjugate poles (default)
2 normal mode residue

ns,na number of sensors/actuators (outputs/inputs) stored in
ci.IDopt(7:8))
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Recip method selection for the treatment of reciprocity (stored in
ci.IDopt(12))

1 means that only iC1 (ci.IDopt(13)) is declared as being collocated.
id rm assumes that only this transfer is reciprocal even if the system
has more collocated FRFs

na (number of actuators) is used to create fully reciprocal (and minimal
of course) MIMO models using id rm. na must match non-zero values
declared in iCi.

-nc (with nc the number of collocated FRFs) is used to declare collocated
FRFs while not enforcing reciprocity when using id rm.

iC1

...

indices of collocated transfer functions in the data matrix (see the xf

format page 173)

To make a copy of the data, and no longer point to the figure, use ci.IDopt.GetData.
iop2 = idopt returns a SDT handle to a set options that may differ from those of
used by idcom.

See also xfopt, idcom, iiplot
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id dspi

Purpose Direct structural system parameter identification.

Syntax [a,b,c,d] = id_dspi(y,u,w,idopt,np)

Description The direct structural system parameter identification algorithm [54] considered here,
uses the displacement frequency responses y(s) at the different sensors correspond-
ing to the frequency domain input forces u(s) (both given in the xf format). For
example in a SIMO system with a white noise input, the input is a column of ones
u=ones(size(w)) and the output is equal to the transfer functions y=xf. The results
of this identification algorithm are given as a state-space model of the form{

ṗ
p̈

}
=

[
0 I
−KT −CT

]{
p
ṗ

}
+

[
0
bT

]
{u} and {y} =

[
cT 0

]{ p
ṗ

}
where the pseudo-stiffness KT and damping CT matrices are of dimensions np by np

(number of normal modes). The algorithm, only works for cases where np is smaller
than the number of sensors (ci.IDopt.ns).

ci=iicom(’curveload sdt_id’);

R1=ci.Stack{’Test’};
[a,b,c,d] = id_dspi(R1.xf,ones(size(R1.w)),R1.w,R1.idopt,4);

For SIMO tests, normal mode shapes can then be obtained using [mode,freq] =

eig(-a(np+[1:np],1:np)) where it must be noted that the modes are not mass
normalized as assumed in the rest of the Toolbox and thus cannot be used directly for
predictions (with nor2xf for example). Proper solutions to this and other difficulties
linked to the use of this algorithm (which is provided here mostly for reference) are
not addressed, as the main methodology of this Toolbox (id rc, id rm, and id nor)
was found to be more accurate.

For MIMO tests, id dspi calls id rm to build a MIMO model.

The identification is performed using data within ci.IDopt.SelectedRange. y is
supposed to be a displacement. If ci.IDopt.DataType gives y as a velocity or
acceleration, the response is integrated to displacement as a first step.

See also idopt, id rc, id rm, psi2nor, res2nor
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id nor

Purpose Identification of normal mode model, with optimization of the complex mode output
shape matrix.

NOR = id_nor(ci.Stack{’IdMain’})
NOR = id_nor( ... )

[om,ga,phib,cphi] = id_nor( ... )

[new_res,new_po] = id_nor( ... )

[ ... ] = id_nor(IdResult,ind,opt,res_now)

Description id nor is meant to provide an optimal transformation (see details in [12] or sec-
tion 2.4.3 ) between the residue (result of id rc) and non-proportionally damped
normal mode forms

{y(s)} =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

{u} and

[
Is2 + Γs+ Ω2

]
{p} =

[
φT b

]
{u}

{y} = [cφ] {p}

The output arguments are either

• the standard normal mode model freq,ga,phib,cphi (see nor) when returning
4 outputs.

• the associated normal model data structure NOR when returning one output.

• or the residues of the associated model new res and poles po (see res page 171)
when returning 2 outputs. With this output format, the residual terms of the
initial model are retained.

The algorithm combines id rm (which extracts complex mode output shape matrices
cψ from the residues res and scales them assuming the system reciprocal) and
psi2nor (which provides an optimal second order approximation to the set of poles
po and output shape matrices cψ).

Since the results of psi2nor can quite sensitive to small errors in the scaling of
the complex mode outputs cψ, an optimization of all or part (using the optional
argument ind to indicate the residues of which poles are to be updated) collocated
residues can be performed. The relative norm between the identified residues res

and those of the normal mode model is used as a criterion for this optimization.

Three optimization algorithms can be selected using opt (1: id min of the Structural
Dynamics Toolbox, 2: fmins of Matlab, 3: fminu of the Optimization Toolbox).
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You can also restart the optimization using the residues old res while still compar-
ing the result with the nominal res using the call

[new_res,po] = id_nor(res,po,idopt,ind,opt,old_res)
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Notes id nor is only defined if IDopt.Reciprocity is 1 FRF or MIMO (12) and for cases
with more sensors than modes (check IDopt.NSNA). id nor may not work for iden-
tifications that are not accurate enough to allow a proper determination of normal
mode properties.

In cases where id nor is not applicable, normal mode residues can be identified
directly using id rc with IDoptFit=’Normal’ or an approximate transformation
based on the assumption of proportional damping can be obtained with res2nor.

id nor does not handle cases with more poles than sensors. In such cases res2nor

can be used for simple approximations, or id nor can be used for groups of modes
that are close in frequency.

�

Residual terms can be essential in rebuilding FRFs (see figure above taken from
demo id) but are not included in the normal mode model (freq, ga, phib, cphi).
To include these terms you can use either the residues new res found by id nor

xf = res2xf(new_res,po,w,idopt)

or combine calls to nor2xf and res2xf

xf = nor2xf(om,ga,phib,cphi,w) + ...

res2xf(res,po,w,idopt,size(po,1)+1:size(res,1))

Example ci=demosdt(’demo gartidest’)

if ci.Stack{’Test’}.dof(4,2)~=1012.03;% Needed to have positive driving point FRFs

ci.Stack{’Test’}.xf=-ci.Stack{’Test’}.xf;
ci.Stack{’Test’}.dof(:,2)=1012.03; idcom(’est’);

end

nor = id_nor(ci.Stack{’IdMain’});
ci.Stack{’curve’,’IIxh’}=nor2xf(nor,ci.Stack{’Test’}.w,’hz struct acc’);

iicom(’iixhon’)
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See also id rc, res2nor, id rm, psi2nor, demo id
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id poly

Purpose Parametric identification using xf-orthogonal polynomials.

Syntax [num,den] = id_poly(xf,w,nn,nd)

[num,den] = id_poly(xf,w,nn,nd,idopt)

Description A fit of the provided frequency response function xf at the frequency points w is
done using a rational fraction of the form H(s) = num(s)/den(s) where num is a
polynomial of order nn and den a polynomial of order nd. The numerically well
conditioned algorithm proposed in Ref. [11] is used for this fit.

If more than one frequency response function is provided in xf, the numerator
and denominator polynomials are stacked as rows of num and den. The frequency
responses corresponding to the identified model can be easily evaluated using the
command qbode(num,den,w).

The identification is performed using data within IDopt.SelectedRange. The idcom
poly command gives easy access to this function.

See also id rc, invfreqs of the Signal Processing Toolbox.
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Purpose Broadband pole/residue model identification with the possibility to update an initial
set of poles.

[res,po,xe] = id_rc (xf,po,w,idopt)

[res,new_po,xe] = id_rc (xf,po,w,idopt,dst,fst)

[res,new_po,xe] = id_rcopt(xf,po,w,idopt,step,indpo)

Description This function is typically accessed using the idcom GUI figure as illustrated in
section 2.3 .

For a given set of poles, idrc(xf,po,w,idopt) identifies the residues of a broad-
band model, with poles po, that matches the FRFs xf at the frequency points w.
This is implemented as the idcom est command and corresponds to the theory
in section 2.3.3 .

As detailed in section 2.3 , the poles can (and should) be tuned [8] using either
id rc (ad-hoc dichotomy algorithm, accessible through the idcom eup command)
or id rcopt (gradient or conjugate gradient minimization, accessible through the
idcom eopt command). id rc performs the optimization when initial step sizes are
given (see details below).

After the identification of a model in the residue form with id rc, other model forms
can be obtained using id rm (minimal/reciprocal residue model), res2ss (state-
space), res2xf (FRF) and res2tf (polynomial), id nor (normal mode model).

The different input and output arguments of id rc and id rcopt are

xf

Measured data stored in the xf format where each row corresponds to a frequency
point and each column to a channel (actuator/sensor pair).

Although it may work for other types of data, id rc was developed to identify model
properties based on transfer functions from force actuators to displacement sensors.
IDopt(2) lets you specify that the data corresponds to velocity or acceleration (over
force always). An integration (division by s = jω) is then performed to obtain
displacement data and a derivation is performed to output estimated FRFs coherent
with the input data (the residue model always corresponds to force to displacement
transfer functions).
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The phase of your data should loose 180o phase after an isolated lightly damped
but stable pole. If phase is gained after the pole, you probably have the complex
conjugate of the expected data.

If the experimental set-up includes time-delays, these are not considered to be part
of the mechanical system. They should be removed from the data set xf and added
to the final model as sensor dynamics or actuator dynamics . You can also try to
fit a model with a real poles for Pade approximations of the delays but the relation
between residues and mechanical modeshapes will no longer be direct.

w

Measurement frequencies are stored as a column vector which indicates the frequen-
cies of the different rows of xf. IDopt(3) is used to specify the frequency unit.
By default it is set to 11 (FRF and pole frequencies in Hz) which differs from the
SDT default of rad/s used in functions with no frequency unit option. It is assumed
that frequencies are sorted (you can use the Matlab function sort to order your
frequencies).

po, new po

Initial and updated pole sets. id rc estimates residues based on a set of poles po

which can be updated (leading to new po, see ii pof for the format). Different
approaches can be used to find an initial pole set:

• create narrow-band single pole models (ii poest available as the idcom e com-
mand).

• pick the pole frequencies on plots of the FRF or MMIF and use arbitrary but
realistic values (e.g. 1%) for damping ratios (ii fin available as the idcom f

command).

• use pole sets generated by any other identification algorithm (id poly and id dspi

for example).

Poles can be stored using different formats (see ii pof) and can include both con-
jugate pairs of complex poles and real poles. (id rc uses the frequency/damping
ratio format).

The id rc algorithms are meant for iterations between narrow-band estimates,
used to find initial estimates of poles, and broadband model tuning using id rc

or id rcopt. To save the poles to a text file, use idcom Table. If these are your

613



id rc, id rcopt

best poles, id rc will directly provide the optimal residue model. If you are still
iterating you may replace these poles by the updated ones or add a pole that you
might have omitted initially.

IDopt

Identification options (see idopt for details). Options used by id rc are Residual,
DataType, AbscissaUnits, PoleUnits, SelectedRange and FittingModel.

The definition of channels in terms of actuator/sensor pairs is only considered by
id rm which should be used as a post-treatment of models identified with id rc.

dstep, fstep (for id rc)

Damping and frequency steps. To update pole locations, the user must specify
initial step sizes on the frequency and damping ratio (as fractions of the initial
values). id rc then uses the gradient of the quadratic FRF cost to determine in
which direction to step and divides the step size by two every time the sign changes.
This approach allows the simultaneous update of all poles and has proved over the
years to be extremely efficient.

For lightly damped structures, typical step values (used by the idcom command eup)
are 10% on all damping ratios (dstep = 0.1) and 0.2% on all frequencies (fstep =

0.002). If you only want to update a few poles fstep and dstep can be given as
vectors of length the number of poles in po and different step values for each pole.

idcom(’eup 0.05 0.002 local’) can be used to specify dstep and fstep. The
optional local at the end of the command specifies that zero steps should be used
for poles whose resonance is outside the selected frequency band.

step, indpo (for id rcopt)

Methods and selected poles. step specifies the method used for step length, direction
determination method, line search method, reference cost and pole variations. You
should use the default values (empty step matrix). indpo gives the indices of poles
to be updated (po(indpo,:) for poles in format 2 are the poles to be updated, by
default all poles are updated).

The idcom eopt command can be used to access id rcopt. eoptlocal calls id rcopt

with indpo set to only update poles whose resonance is within the selected frequency
band.
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res

Residues are stored in the res format (see section 5.6 ). If the options IDopt are
properly specified this model corresponds to force to displacement transfer functions
(even if the data is acceleration or velocity over force). Experts may want to mislead
id rc on the type of data used but this may limit the achievable accuracy.

xe

Estimated FRFs correspond to the identified model with appropriate derivation if
data is acceleration or velocity over force.

See also idcom, id rm, res2xf, res2ss
Tutorial section section 2.3
gartid and demo id demonstrations
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id rm

Purpose Create minimal models of MIMO systems and apply reciprocity constraints to obtain
scaled modal inputs and outputs.

OUT = id_rm(IN,multi)

[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt)

[phib,cphi,new_res,new_po] = id_rm(Rres,po,ci.IDopt)

[psib,cpsi,new_res,new_po] = id_rm(res ,po,ci.IDopt,multi)

Description id rm is more easily called using the idcom GUI figure Postprocessing tab, see
section 2.4 .

IN is a data structure (see Shapes at DOFs). Required fields are IN.res residues,
IN.po poles, and IN.idopt identification options. Options used by id rm are .FittingModel
(Posit, Complex or Normal modes), .NSNA (number of sensors/actuators), .Reciprocity
(not used, 1 FRF or true MIMO), .Collocated (indices of colloc. FRF when us-
ing reciprocity).

multi is an optional vector giving the multiplicity for each pole in IN.po.

OUT is a structure with fields (this format is likely to change in the future)

.po poles with appropriate multiplicity

.def output shape matrix (CPSI)

.DOF Sensor DOFs at which .DEF is defined

.psib input shape matrix (PSIB)

.CDOF indices of collocated FRFs

.header header (5 text lines with a maximum of 72 characters)

The low level calls giving res, po and ci.IDopt as arguments are obsolete and only
maintained for backward compatibility reasons.

As shown in more detail in section 2.4 , the residue matrix Rj of a single mode is
the product of the modal output by the modal input. For a model in the residue
form (residue res, poles po and options IDopt identified using id rc for example),
id rm determines the modal input psib and output cpsi matrices such that

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

≈
2N∑
j=1

[Rj ]

s− λj
(9.7)
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The residues can be either complex mode residues or normal mode residues. In that
case the normal mode input phib and output cphi matrices are real.

The new res matrix is the minimal approximation of res corresponding to the
computed input and output matrices. id rm uses the number of sensors IDopt(7)

and actuators IDopt(8).

For MIMO systems (with the both the number of sensors IDopt(7) and actuators
IDopt(8) larger than 1), a single mode has only a single modal output and in-
put which implies that the residue matrix should be of rank 1 (see section 2.4.1 ).
Residue matrices identified with id rc do not verify this rank constraint. A minimal
realization is found by singular value decomposition of the identified residue matri-
ces. The deviation from the initial model (introduced by the use of a minimal model
with isolated poles) is measured by the ratio of the singular value of the first deleted
dyad to the singular value of the dyad kept. For example the following output of
id rm

Po # freq mul Ratio of singular values to maximum

1 7.10e+02 2 : 0.3000 k 0.0029

indicates that the ratio of the second singular value to the first is significant (0.3)
and is kept, while the second dyad can be neglected (0.0029).

For a good identification, the ratios should be small (typically below 0.1). Large
ratios usually indicate poor identification and you should update the poles using
id rc in a broad or narrow band update. Occasionally the poles may be sufficiently
close to be considered as multiple and you should keep as many dyads as the modal
multiplicity using the input argument multi which gives the multiplicity for each
pole (thus the output shown above corresponds to a multiplicity of 2).

id rm also enforces reciprocity conditions in two cases

• IDopt(12)=1. One transfer function is declared as being collocated. Reciprocity
is only applied on the input and output coefficients linked to the corresponding
input/output pair.

• IDopt(12)=na. As many collocated transfer functions as actuators are declared.
The model found by id rm is fully reciprocal (and minimal of course).

• in other cases IDopt(12) should be either 0 (no collocated transfer) or equal to
-nc (nc collocated transfers but reciprocal scaling is not desired).

It is reminded that for a reciprocal system, input and output shape matrices linked
to collocated inputs/outputs are the transpose of each other (b = cT ). Reciprocal
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scaling is a requirement for the determination of non-proportionally damped normal
mode models using id nor.

In MIMO cases with reciprocal scaling, the quality indication given by id rm is

Po# freq mul sym. rel.e.

1 7.10e+02 2 : 0.0038 0.0057

which shows that the identified residue was almost symmetric (relative norm of the
anti-symmetric part is 0.0038), and that the final relative error on the residue cor-
responding to the minimal and reciprocal MIMO model is also quite small (0.0057).

Warnings • id rm is used by the functions: id nor, res2nor, res2ss

• Collocated force to displacement transfer functions have phase between 0 and -180
degrees, if this is not true you cannot expect the reciprocal scaling of id rm to be
appropriate and should not use id nor.

• id rm only handles complete MIMO systems with NS sensors and NA actuators.

See also idcom, id rc, id nor, the demo id demonstration
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Purpose UI command function for FRF data visualization.

Syntax
iicom CommandString

iicom(ci,’CommandString’) % specify target figure with pointer

out = iicom(’CommandString’)

Description iicom is a standard UI command function which performs operations linked to the
data visualization within the iiplot interface. A tutorial can be found in section 2.1
.

Commands are text strings telling iicom what to do. If many iiplot figures are
open, one can define the target giving an iiplot figure handle ci as a first argument.

iicom uses data stored in a stack (see section 2.1.2 ). iicom does not modify data. A
list of commands available through iicom is given below. These commands provide
significant extensions to capabilities given by the menus and buttons of the iiplot

command figure.

Commands

command;

The commode help details generic command building mechanisms. Commands with
no input (other than the command) or output argument, can be chained using a call
of the form iicom(’;Com1;Com2’). commode is then used for command parsing.

cax i, ca+

Change current axes. cax i makes the axis i (an integer number) current. ca+

makes the next axis current. For example, iicom(’;cax1;show rea;ca+;show

ima’) displays the real part of the current FRFs in the first axis and their imaginary
part in the second. (See also the iicom Sub command). The button indicates the
number of the current axis. Pressing the button executes the ca+ command.

ch+, ch-, ch[+,-]i : next/previous

Next/Previous . These commands/buttons are used to scan through plots
of the same kind. For iiplot axes, this is applied to the current data sets. For
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feplot axes, the current deformation is changed. You can also increment/decrement
channels using the + and - keys when the current axis is a plot axis or increment by
more than 1 using iicom(’ch+i’).

ch i, chc i, chall, ... select channel

Display channels/poles/deformations i. Channels refer to columns of datasets, poles
or deformations. ch / chc respectively define the indices of the channels to be
displayed in all /the current drawing axes. The vector of indices is defined by
evaluating the string i. For example iicom ch[1:3], displays channels 1 to 3 in all
axes.

For format Multi-dim curve with dimension labels in the .Xlab field,ChAllMyLabel
selects all channels associated with dimension MyLabel. This can be used to show
responses at multiple operating conditions (typically stored as third or fourth di-
mension of curve.Y).

For multi-channel curves one can define the dimension name referring to the Xlab

field in a cell array iicom(ci,’ch’,’Xlabname’,i). For this to work properly note
that all Xlabname entries must be different (e.g. several Unknown entries must thus
be avoided).

% Build a multi-dim curve, see sdtweb(’demosdt.m#DemoGartteCurve’)

r1=demosdt(’demoGartteCurve’)

ci=iiplot;ci.Stack={};ci=iiplot(r1);
iicom(’ChAllzeta’) % All channels that correspond to ’zeta’ r1.Xlab{4}
% Cell selection with Xlab string and indices

iicom(’ch’,{’Input DOFs’,[1,2]}) % Accessible with ’pick’ button

iicom(’curtabChannel’)

Cursor, ods

The cursor is usually started with the axes context menu (right click on a given
axis).

iicom CursorOnFeplotshows a cursor on the iiplot curve that let you show cor-
responding time deformation in feplot.

fecom CursorNodeIiplot gives more details.

iicom(’ods’) provides an operational deflection shape cursor.
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Curve [Init,Load,Save,Reset, ...]

These commands are used to manipulate datasets.
Most of them are of the form iicom(’Curve...’,CurveNames). Then CurveNames

can be a string with a curve name, a cell array of string with curve names or a regular
expression (beginning by #) to select some curve names. If CurveNames is omitted,
a curve a dialog box is opened to select targeted curves. Otherwise these commands
can be accessed through the GUI, in the Stack tab of the iiplot properties figure.

• CurveInit is used to initialize a display with a new dataset. iicom(’CurveInit’,’Name’,C1)
adds a ’curve’,’Name’ entry and displays this set in a new tab. To add multi-
ple curves use iicom(’CurveInit’, {’curve’,’N1’,C1; ’curve’,’N2’,C2}).
Use the curve PlotInfo to control how this initial display is performed.

• CurveLoad lets you load datasets.
iicom(’CurveLoad FileName’) loads curves stored in Filename.
iicom(’CurveLoad’) opens a dialog box to choose the file containing curves
to load. If the file contains multiple curves, one can select the curves to be
loaded in a cell array given as a second argument. For example,

ci=iicom(’CurveLoad’,’gartid.mat’)

loads the gartid data in an iiplot figure. Command option -append (iicom(ci,’CurveLoad
-append MyFile’)) lets you append loaded curves to existing curves in the
stack (by default existing curves are replaced). Command option -hdf (iicom(ci,’CurveLoad
-hdf MyFile’)) lets you load curves under the sdthdfformat. Only pointers
to the data stacked in iiplotare thus loaded. Visualizations and data trans-
formation can be performed afterwards. Command option -back does not
generate any visualization in iiplot. This can be useful in combination to
-hdf, as the user can then fully control the data loaded in RAM.

• CurveSave lets you save iiplot stack data.
iicom(’CurveSave FileName’,CurveNames) saves the curves CurveNames in
the .mat file given by FileName. If FileName is omitted a GUI is opened. To
save more than 2 GB of data, or to save in the new MATLAB file formats
(-v7.3), use the SDT V6Flag: setpref(’SDT’,’V6Flag’,’-v7.3’).

fname=fullfile(sdtdef(’tempdir’),’IicomSaveTestmat’)

iicom([’CurveSave’ fname],{’IIxi’;’IdMain’})
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• CurveNewId CurveName opens new iiplot figure for identification of the curve
CurveName of the ci stack with idcom.
iicom(’CurveLoadId’,FileName) loads from FileName into for identifica-
tion.

• CurveRemove removes the curves from the stack of the iiplot figure.
iicom(’CurveRemove’,CurveNames);

• CurveReset defines an empty curve stack to renew your work.

• CurveJoin combines datasets that have comparable dimensions. In partic-
ular first dimension (time, frequencies ...) must be the same. For exam-
ple it is useful to combine dataset from parameter studies (same dimension).
iicom(’CurveJoin’,CurveNames);

Curves targeted by CurveNames (or selected curves in iiplot) are joined and
replace the first curve in the iiplot stack.

• CurveCat concatenates dataset that have the same dimensions. For example
it is useful to combine dataset from successive time simulation. Syntax is the
same as for iicom CurveJoin command. One can use following command
options:

-follow to remove last value of first abscissa before concatenate.

-shift to shift abscissa of second dataset of the last value of first dataset abscissa.

ga i

Get handle to a particular axis. This is used to easily modify handle graphics
properties of iiplot axes accessed by their number. For example, you could use
set(iicom(’ga1:2’),’xgrid’,’on’) to modify the grid property of iiplot axes
1 and 2.

If you use more than one feplot or iiplot figure, you will prefer the calling format
cf=iiplot; set(cf.ga(1:2),’xgrid’,’on’).

head [Main,Text,Clear]

Note : the preferred approach is now to define fixed displays using comgui objSet

commands stored in the curve PlotInfo ua.axProp entry. For example
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C1=fe_curve(’testSin T 0.2’,linspace(0,10,100e3));

r1={’@title’,{’String’,’Main Title’,’FontSize’,16}};
C1=sdsetprop(C1,’PlotInfo.ua.axProp’,r1{:});
iicom(’curveinit’,’SineWithFixedTitle’,C1);

For backward compatibility, header axes are still supported (the change is to objSet

allows better tab switching). Header axes are common to all plot functions and span
the full figure area (normalized position [0 0 1 1]). You can get a pointer to this
axis with cf.head and add any relevant object there.

ci=iicom(’curveload’,’gartid’) % Load a test case

h=text(0,0,’Main Title’, ...

’parent’,ci.head,’unit’,’normalized’,’position’,[.05 .95], ...

’fontsize’,20,’fontname’,’Times’, ...

’tag’,’iimain’)

iimouse(’textmenu’,h); % Allow Editing

iicom(’HeadClear’) deletes all objects from the header axis of the current figure.

IIxData set selection iicomIIx:name [On,Off,Only], cIIx ...

Curve set selection for display in the current axis.

IIxf:TestOnly displays the ci.Stack{’Test’} data set only in all axes (on and
off turn the display on or off respectively). By adding a c in front of the command
(cIIx:Test for example), the choice is only applied to the current axis. You can
also toggle which of the data sets are shown using the Variables menu (applies to
all axes) or axis context menu applies to (current axis).

The alternate calling format iicom(’iix’,{’Test’,’IdFrf’}) can be used to spec-
ify multiple sets to display. iicom(’iixOnly’,{’Test’,’IdFrf’}) will display
those two sets only.

IIxf, IIxe, IIxh, IIxi [0n,Off] are still supported for backward compatibility.

Polar

Polar plots are used for cases where the abscissa is not the standard value. Accepted
values (use a command of the form Polar val) are

• -1 abscissa is the channel before the one displayed. In a curve with channels
[X Y] display Y, channel 2, and use X,channel 1, as abscissa.
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• xi uses ith column of def.data when displaying FEM time signals. This is
typically used when this second column is an other form of abscissa (angle for
rotating machines, ...)

• i with i¿0 uses the specified channel as abscissa.

• Off or 0 turns off polar plots.

PoleLine [ ,c] [ ,3], IIpo, ...

Pole line display. are dotted vertical lines placed at relevant abscissa values. These
lines can come from

• standard curves with an curve.ID field, see ii plp Call from iiplot.

• frequencies of poles in ci.Stack{’IdMain’} in black and ci.Stack{’IdAlt’}
in red.

By itself, PoleLine toggles the state of pole line display. The c option applies the
command to the current axis only. PoleLine3 places the lines on the pole norm
rather than imaginary part used by default (this corresponds to the ii plp formats
2 and 3).

The state of the current axis (if it is an iiplot axis) can also be changed using the
IIplot:PoleLine menu (PoleLineTog command).

Low level commands IIpo and IIpo1 are low level commands force/disable display
of pole lines in the main identified model
ci.Stack{’IdMain’}.po or the alternate set ci.Stack{’IdAlt’}.po. With cIIpo

the choice is only applied to the current axis. These options are usually accessed
through menus.

ImWrite, ...

comgui ImWrite is the generic command used to generate a clean printout of fig-
ures. It supports many basic capabilities, filename generation, cropping, ... When
using iiplot and feplot, it may often be interesting to generate multiple im-
ages by scanning through a selected range of channels. A command of the form
iicom(cf,’ImWrite’,RO) is then used with RO a structure containing generic im-
age capture fields (see comgui ImWrite) and fields specific to multi-image capture
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• .ShowFcn the callback that is executed for each image to be generated. The
default is fecom(cf,sprintf(’ch %i’,ch)); for feplot.

• .ch a vector of channel indices that will give an index for each image. With
the string all, all the channels are used.

• .ImWrite is the command used to call comgui with the default ’imwrite

-ftitle’.

• .FileName if present replaces any other file name generation mechanism. Your
ShowFcn callback can thus implement your own file name generation mecha-
nism.

• .HtmWidth can specify an HTML view size which differs from the image size.
The input is either a string in the format width=val height=val1, or a line
with 4 columns in the format [Width Height MaxWidth MaxHeight], it is
possible to let free a value by provided Inf instead of a numerical value. At
least Height or Width must be defined. Depending on the input, the behavior
is

– if a scalar is given or if the Height is set to Inf,the width is fixed and
the height is set to keep the image ratio. If a MaxHeight is provided and
the resulting height overcomes it, the width is adapted to maximize the
possible size.

– if Width is set to Inf, the height must be defined and the width is set to
keep the image ratio. If a MaxWidth is provided and the resulting width
overcomes it, the the height is adapted to maximize the possible size.

– is both Width and Height are provided, the values are fixed and non
further control is performed.

• .RestoreFig=1 can be used to restore the figure and display after image gen-
eration.

• .RelPath optional integer giving the level of relative path to be retained (1
keeps just the file name, 2 the directory containing the images, ...). This is
useful to create HTML report files that can be moved.

To automate figure generation, it is typically desirable to store image capture infor-
mation in the set of deformations or the curve. A curve.ImWrite field in iiplot

can be used to predefine the option structure, for user defined dynamic change of
settings, defining a ua.PostFcn callback (see iiplot PlotInfo) is typically the ap-
propriate approach. For feplot, def.ImWrite is used for multi-image capture but
more evolved file name generation is found using comgui def.Legend.
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% Example of 4 views in feplot

cf=demosdt(’DemoGartFEplot’)

cf.def=sdsetprop(cf.def,’Legend’, ...

’string’,{’Garteur FE’;’$Title’}, ... % Define a two line title

’ImWrite’, ... % Name generation, see sdtweb(’comgui#def.Legend’)

{sdtdef(’tempdir’),’Root’,’@ii_legend(1:2)’,’$v.png’});
RO=comgui(’imfeplot4view’); % Predefined strategy to generate 4 views

cf.def.ImWrite=RO; %

fecom(cf,’ImWrite’)

% Example of two channels in iiplot, with finish on same view

ci=iicom(’curveload’,’gartid’);iicom(’ch20’)

ci.Stack{’Test’}.ImWrite=struct(’ch’,1:2, ...

’FileName’,fullfile(sdtdef(’tempdir’),’Test$ch1.png’), ...

’RestoreFig’,1, ... % reset at the end

’ImWrite’,’ImWrite’); % Avoid the -ftitle

iicom(ci,’ImWrite’)

comgui(’ImFeplot’) returns a list of standard calls to options for image generation.

Pro

iicom(’ProFig’) shows or hides the properties figure.
iicom(ci,’ProRefreshIfVisible’) refreshes the property figure when it is visible.
iicom(ci,’ProInit’) reinits the property figure.

Show plot type

Specify the current axis type. The iiplot plot functions support a number of plot
types which can be selected using the Show menu/command. From command line,
you can specify the target axis with a-cax i option.

The main plot types are

• 2D (f(x)) plots are associated with the following buttons Abs (absolute

value), Pha phase, Phu unwrapped phase, Rea real part, Ima

imaginary part, R&I real and imaginary, Nyq Nyquist.

• 3D (f(x, y)) plots are image, mesh, contour and surface. Show3D gives time-
frequency representation of the log of the abs of the signal displayed as and
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image. The ua.yFcn callback operates on the variable called r3 and can be
used for transformations (absolute value, phase, ...). Note that you may then
want to define a colorbar see iiplot PlotInfo.

R1=d_signal(’Resp2d’); % load 2d map

R1.PlotInfo= ii_plp(’plotinfoTimeFreq -yfcn="r3=r3" type "contour"’);

ci=iicom(’curveinit’,’2DMap’,R1);

% or

R1.PlotInfo={}; ci=iicom(’curveinit’,’2DMap’,R1);

ci=iicom(’curveinit’,’2DMap’,R1);

iicom(’show3D -yfcn="r3=log10(abs(r3))" type "contour"’)

• idcom specialized plots see iiplot TypeIDcom : mmi MMIF of Test, fmi forces
of MMIF of Test, ami alternate mode indicator of Test, SUM of Test, CMIF
of Test, sumi sum imaginary part of Test, pol poles in IdMain, fre freq.
vs. damping in IdMain, rre real residue in IdMain , cre complex residue of
IdMain, lny local Nyquist of Test (superposition around current pole), err
Nyquist Error for current pole, Quality for all poles

• feplot plots.

SubSave, SubSet

SubSavei saves the current configuration of the interface in a stack entry TabInfo.
This configuration can then be recalled with SubSeti. The TabInfo entry is also
augmented when new curves are shown so that you can come back to earlier displays.
SubSetIi selects an index in the TabInfo stack.

SubToFig

SubToFig copies the iiplot figure visualization to a standard matlab figure, thus al-
lowing an easier handling to produce customized snapshots (see also iicom ImWrite).
Reformatting is then typically performed with comgui objSet.

Command option -cfi forces the visualization output to figure i.

Command option legi allows iiplot legend handling in the visualization. leg0

removes the legend, leg1 keeps it as in iiplot, leg2 transforms the iiplot legend
in a standard matlab legend. The legend is removed by default.
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Sub plot init

This command is the entry point to generate multiple drawing axes within the same
figure.

iicom Sub by itself checks all current axes and fixes anything that is not correctly
defined.

Accepted command options are

• MagPha gives a standard subdivision showing a large amplitude plot and a
small wrapped phase plot below.

• Iso gives a standard 2 by 2 subdivision showing four standard 2-D projections
of a 3-D structure (this is really used by feplot).

• i j k divides the figure in the same manner as the Matlab subplot com-
mand. If k is set to zero all the i times j axes of the subplot division are
created. Thus the default call to the Sub command is Sub 2 1 which creates
two axes in the current figure. If k is non zero only one of these axes is created
as when calling subplot(i,j,k).

As the subplot function, the Sub command deletes any axis overlapping with
the new axis. You can prevent this with command option nd.

Standard subdivisions are accessible by the IIplot:Sub commands menu.

Note that set(cf.ga(i),’position’,Rect) will modify the position of iiplot
axis i. This axis will remain in the new position for subsequent refreshing with
iiplot.

• step increments the deformation shown in each subplot. This is generally used
to show various modeshapes in the same figure.

• Reset forces a reinit of all properties. For example SubMapha Reset.

TitOpt [ ,c]i, title and label options

Automated title/label generation options. TitOpti sets title options for all axes to
the value i. i is a 5 digit number with

• units corresponding to title. For modes [None,ModeNumber,Name].

• decades to xlabel 0 none, 1 label and units, 2 label.
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• hundreds to ylabel 0 none, 1 label and units, 2 label.

• thousands to zlabel 0 none, 1 label and units, 2 label.

• 1e4 to legend/title switching.

The actual meaning of options depends on the plot function (see iiplot for details).
By adding a c after the command (titoptc 111 for example), the choice is only
applied to the current axis.

When checking the axes data (using iicom Sub command), one rebuilds the list of
labels for each dataset using iicom(’chlab’). This cell array of labels, stored in
ci.ua.chlab, gives title strings for each channel (in rows) of datasets (in columns)
with names given in ci.ua.sList. The label should start with a space and end
with a comma. The dataset name is added if multiple datasets are shown. Not to
display the curve name in the legend you can define and set ci.ua.LegName = 0,
going back to default behavior is obtained by ci.ua.LegName = 1.

Modifying the ci.IDopt.unit value changes the unit assumed for identification but
not the dataset units.

Titles and labels are not regenerated when using ch commands. If something is not
up to date, use iicom Sub which rechecks everything.

Scale : xlin,xlog ...

Default values for xscale and yscale. xlin, xlog, ylin, ylog, set values. xy+1,
xy+2 are used to toggle the xscale and yscale respectively (you can also use the
IIplot:xlin and IIplot:ylin menus). Other commands are xy1 for x-lin/y-lin, xy2
for x-log/y-lin, xy3 for x-lin/y-log, xy4 for x-log/y-log.

You can all use the all option to change all axes: iicom(’xlog all’).

ytight[on,off,] can be used to obtain tight scales on the y axis. The x axis is
typically always tight. Automated ztight is not yet supported.

Limits : wmin, xlim, xmin, xmax, wmo, w0, ...

Min/max abscissa selection is handled using the fixed zoom (graphically use
button). Accepted commands are
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• xlim min max (or the legacy wmin f1 f2). For 2D plots, use xlim xmin xmax

ymin ymax to allow selection of a 2D area.

• xmin min (or the legacy wmin f1)

• xmax max (or the legacy wmax f1)

• wmo allows a mouse selection of the minimum and maximum value (same as

button).

• w0 resets values (same as double click after hitting the button)

When performing identification with idcom the fixed zoom corresponds to the work-
ing frequency range and corresponds to indices in ci.IDopt(4:5) (see IDopt, turn
off with idcom(’Off’)). The index of the frequency closest to the specified min/max
is used. When viewing general responses, the information for the abscissa limits is
stored in the axis and is thus lost if that axis is cleared.

See also iiplot, section 2.1 , idcom
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Purpose Mouse related callbacks for GUI figures.

Syntax
iimouse

iimouse(’ModeName’)

iimouse(’ModeName’,Handle)

Description iimouse is the general function used by feplot and iiplot to handle graphical
inputs. While it is designed for SDT generated figures, iimouse can be used with
any figure (make the figure active and type iimouse).

The main mouse mode is linked supports zooming and axis/object selection (see
zoom). Context menus are associated to many objects and allow typical modifica-
tions of each object. When an axis is selected (when you pressed a button while
your mouse was over it), iimouse reacts to a number of keys (see key). An active
cursor mode (see Cursor) has replaced the information part of previous versions of
iimouse. 3-D orientation is handled by view commands.

On,Off

iimouse with no argument (which is the same as iimouse(’on’)) turn zoom, key
and context menu on.

In detail, the figure is made Interruptible, WindowButtonDownFcn is set to
iimouse(’zoom’) and KeyPressFcn to iimouse(’key’)).

Plot functions (iiplot, feplot) start iimouse automatically.

iimouse off turns all iimouse callbacks off.

clip [Start,Undo]

This command is used to eliminate faces not contained within the area that the user
selects with a dragging box. ClipUndo clears the current axis and calls feplot to
reinitialize the plot.

zoom

This is basic mode of iimouse, it supports
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• click and drag zoom into an area for both 2-D and 3-D plots (even when using
perspective).

• zoom out to initial limits is obtained with a double click or the i key (on some
systems the double click can be hard to control).

• active axis selection. iimouse makes the axis on which you clicked or the closest
to where you clicked active (it becomes the current axis for feplot and iiplot

figures).

• colorbar and triax axes automatically enter the move mode when made active

• legend axes are left alone but kept on top of other axes.

Context menus are described in section 2.1.1 and section 4.4.1 .

Cursor

When you start the cursor mode (using the context menu opened with the right
mouse button or by typing the c key), you obtain a red pointer that follows your
mouse while displaying information about the object that you are pointing at. You
can stop the cursor mode by clicking in the figure with your right mouse button or
the c key. The object information area can be hidden by clicking on it with the
right mouse button.

For feplot figures, additional information about the elements linked to the current
point can be obtained in the Matlab command window by clicking in the figure
with the left button. By default, the cursor follows nodes of the first object in the
feplot drawing axis. If you click on another object, the cursor starts pointing at
it. In the wire-frame representation, particularly when using OpenGL rendering, it
may be difficult to change object, the n key thus forces the cursor to point to the
next object.

For iiplot axes, the cursor is a vertical line with circles on each data set and the
information shows the associated data sets and values currently pointed at.

For ii mac axes the current value of the MAC is shown.

key

Keyboard short-cuts. Some commands are directly available by pressing specific
keys when a plot axis is active (to make it active just click on it with your mouse).
The short cuts are activated by setting the KeyPressFcn to iimouse(’key’) (this
is done by iimouse on). Short cuts are:
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a,A all axis shrink/expand u,U 10o horizontal rotation
c start iimouse cursor v,V 10o vertical rotation
i return to initial axis limits w,W 10o line of sight 10o rotation
l,L smaller/larger fecom scaledef x,X x/horizontal translation
n cursor on next fecom object y,Y y/vertical translation

z,Z
z/line of sight translation

-, previous (iicom ch-) +,= next (iicom ch+)
1,2,3,4 see view commands ? list keyboard shortcuts

The list of the associated call is accessible using the call
sdt table generation(’KeyPressTable.feplot’) or
sdt table generation(’KeyPressTable.iiplot’).

For feplot axes the translations are based on camera movements and correspond
to the horizontal, vertical and line of sight for the current view. Translating along
the line of sight has no effect without perspective and is similar to zooming with it.
For other axes, the xyz keys translate along the data xyz directions.

move

The object that you decided to move (axes and text objects) follows your mouse
until you click on a final desired position. This mode is used for triax (created by
feplot) and colorbar axes, as well as text objects when you start move using the
context menu (right button click to open this menu).

The moveaxis used for legend as a slightly different behavior. It typically moves
the axis while you keep the button pressed.

You can call move yourself with iimouse(’move’,Handle) where Handle must be
a valid axes or text object handle.

text

This series of commands supports the creation of a context menu for text objects
which allows modification of font properties (it calls uisetfont), editing of the text
string (it calls edtext), mouse change of the position (it calls iimouse), and deletion
of the text object.

You can make your own text objects active by using iimouse(’textmenu’,Handle)

where Handle must contain valid text object handle(s).
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view,cv

iimouse supports interactive changes in the 3-D perspective of axes. Object views
are controlled using azimuth and elevation (which control the orientation vector
linking the CameraTarget and the CameraPosition) and self rotation (which control
the CameraUpVector). You can directly modify the view of the current axis using the
Matlab view and cameramenu functions but additional capabilities and automated
orientation of triax axes are supported by iimouse.

1 first standard view. Default n+y. Changed using the View

default context menu.
2 standard xy view (n+z). Similar to Matlab view(2) with

resetting of CameraUpVector. Changed using the View

default context menu.
3 standard view. Default to Matlab view(3).
4 standard view. Default n+x.
n[+,-][x,y,z] 2-D views defined by the direction of the camera from tar-

get.
n[+,-][+,-][+,-] 3-D views defined by the signs projection of line of sight

vector along the xyz axes.
dn ... dn commands allow setting of default 1234 views. Thus

viewdn-x will set the 4 view to a normal along negative x

az el sr specify azimuth, elevation and rotation around line of sight
g rz ry rz specify rotations around global xyz axes
[x,y,z][+,-] ang rotation increments around global xyz axes
[h,v,s][+,-] ang current horizontal, vertical and line of sight axes

All angles should be specified in degrees.

iimouse key supports rotations by +/- 10 degrees around the current horizontal,
vertical and line of sight axes when any of the u, U, v, V, w, W keys are pressed (same
as fecom(’viewh-10’) ...). 1, 2, 3, 4 return to basic 2-D and 3-D views.

iimouse(’cv’) returns current view information you can then set other axes with
iimouse(’view’,AxesHandles,cv).

See also iicom, fecom, iiplot
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Purpose Refresh all the drawing axes of the iiplot interface.

Syntax
iiplot

Description iiplot is used to scan through multiple sets of 1D (function of time or frequency)
and 2D responses (functions of two variables) as discussed in Type. Section 2.1 gives
an introduction to the use of iiplot and the companion function iicom.

• The data is stored in a Stack using one of the accepted curve formats.
iicom CurveInit is the base command to add curves in the stack. You can
also create a new iiplot axis using a curve data structure Curve (generated
by fe curve for example), simply calling iiplot(Curve).

• Each iiplot axis (see iicom Sub, ) can display some or all data sets in
their stack. The selection of what is displayed is obtained using the iicom

IIx commands or the Variables menu.

• iiplot with no arguments refreshes all the drawing axes.

• Plot Type supported by iiplot are described below. The plot type can be
selected using the PlotType menu of the toolbar or through iicom Show com-
mands.

• Selected channels (columns of the data sets) are shown for all plots. The iicom
commands +, -, ch and the associated keys and toolbar buttons can be used
to change selected channels.

• Pole lines for the indication of pole frequencies, or other lines to be shown
(harmonics, thresholds, ...), are available for many plots. In general the infor-
mation for these lines is stored as a Curve.ID field. The IIplot:PoleLine

menu can be used to change how these lines appear.
For identification (see idcom) ci.Stack{’IdMain’} pole lines are shown in
white/black.
ci.Stack{’IdAlt’} pole lines in red.

ci : handle
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ci=iiplot returns a SDT handle to the current iiplot figure (2nd optional output
argument is XF, a pointer to the curve stack, see section 2.1.2 ). You can create
more than one iiplot figure with ci=iiplot(FigHandle).

PlotInfo

Curves to be display can contain a C1.PlotInfo cell array where the first column
gives the type as detailed below and the second the associated data.

• LineProp specifies properties to be used as properties for lines. For exam-
ple C1=sdsetprop(C1,’PlotInfo’,’LineProp’,{’LineWidth’,2}). This is
checked at each display.

• sub, show, scale commands to be executed when initializing a display tab
with iicom Sub.

• ua.PostFcn commands executed at the end of a refresh. This gives the user a
chance to introduce modifications to the result of iiplot.

• ua.TickFcn commands executed whenever a mouse zoom is done, see TickFcn.

• ua.axProp is a cell array containing properties to be applied with an comgui

objSet command.

• ColorBar is a cell array containing properties to be used to generate a colorbar.
See fecom ColorBar for more details. For example

C1=d_signal(’Resp2D’);

C1=sdsetprop(C1,’PlotInfo’,’ColorBar’,{’YAxisLocation’,’left’});
iicom(’curveinit’,’2D’,C1);

• LDimPos specifies the dimension used to generate the label on the response
axis (y for f(x), z for f(x, y)).

The ii plp(’PlotInfo’,C1) command provides default values for classical config-
urations.

Type

• 2D (f(x)) plots are associated with the following buttons and iicom Show com-

mands Abs (absolute value), Pha phase, Phu unwrapped phase,

636



Rea real part, Ima imaginary part, R&I real and imaginary, Nyq

Nyquist.

• 3D (f(x, y)) plots are image, mesh, contour and surface. For this plots
ua.XDimPos should give the positions of dimensions associated with the x and
y variations. Proper .PlotInfo can be generated with ii plp(’PlotInfo2D

-type "contour"’,C1).

DimPos and channel

When displaying multi-dimensional curves as 2D plots f(x), the abscissa x is taken
to be the first dimension declared in the C1.DimPos field (with a default at 1).

When displaying as 3D (f(x, y)) plots, the x, y are taken to be the first two dimen-
sions declared in the C1.DimPos field (with a default at 1,2). You can then flip the
positions in the plot axis by setting ci.ua.XDimPos=[2 1].

Channels are indices for remaining dimensions.

The y (z for 3D) axis label is built using the C1.DimPos(2) dimension unless the
curve contains a LDimPos entry.

TypeIDcom

Specialized plots for idcom are

• Local Nyquist plots (initialized by show lny) show a comparison of Test (mea-
sured FRFs) and IdFrf (identified model) in a reduced frequency band[

ωj(1− ζj) ωj(1 + ζj)
]

near the currently selected pole (the current pole is selected by clicking on a
pole line in another plot axis). Local Nyquist plots allow a local evaluation of
the quality of the fit. The error and quality plots give a summary of the
same information for all the frequency response functions and all poles.

• Multivariate Mode Indicator Function (initialized by show mmi), forces asso-
ciated to the MMIF (initialized by show fmi), Alternate Mode Indicator

Function (show ami), and Channel Sum (show sum) are four ways to com-
bine all the FRFs or a set to get an indication of where its poles are located.

These indicators are discussed in the ii mmif Reference section. They are
automatically computed by iiplot based on data in the ’Test’ set.
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• Pole locations in the complex plane (initialized by show pol).

• Poles shown as damping vs. frequency are initialized by show fre.

• Position of residues in the complex plane are initialized by show cre. This
plot can be used to visualize the phase scatter of identified residues.

• Value of real residue for each measured channel are initialized by show rre.

• Error Local Nyquist error (initialized by show err). For the current pole, er-
ror plots select frequency points in the range [ωj(1− ζj) ωj(1 + ζj)]. For each
channel (FRF column), the normalized error (RMS response of ci.Stack{’Test’}.xf
- ci.Stack{’IdMain’}.xf divided by RMS response of ci.Stack{’Test’})
is shown as a dashed line with + markers and a normalized response level (RMS
response of ci.Stack{’Test’}) as a dashed line with x markers.

Normalized errors should be below 0.1 unless the response is small. You can
display the error using the nominal sensor sort with ci.Stack{’IdError’}.sort=0
and with increasing error using sort=1.

• Quality Mode quality plot (initialized by show qua), gives a mean of the
local Nyquist plot. The dashed lines with + and x markers give a standard
and amplitude weighted mean of the normalized error. The dotted line gives
an indication of the mean response level (to see if a mode is well excited in the
FRFs). Normalized errors should be below 0.1 unless the response is small.

See also iicom, iiplot, setlines, xfopt
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Purpose Compute the quadratic and log-least-squares cost functions comparing two sets of
frequency response functions.

Syntax
[cst] = ii_cost(xf,xe)

Description For two sets of FRFs H and Ĥ, the quadratic cost function is given by

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2

and the log-least-square cost function by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)

Hij(sk)

∣∣∣∣∣ |2
For sets xf and xe stored using the xf format (see page 173), ii cost computes
both those costs which are used in identification and model update algorithms (see
section 3.2.3 ).

See also id rc, up ixf
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Purpose User interface function for MAC and other vector correlation criteria.

Syntax
ii_mac(cpa,cpb)

VC = ii_mac(cpa,cpb,’PropertyName’,PropertyValue, ...)

[VC,ReS] = ii_mac(’PropertyName’,PropertyValue, ... ,’Command’)

ii_mac(Fig,’PropertyName’,PropertyValue, ... ,’Command’)

Result = ii_mac(Fig ,’Command’)

VC.PropertyName = PropertyValue

Description The ii mac function gives access to vector correlation tools provided by the SDT
starting with the Modal Assurance Criterion (MAC) but including many others. A
summary of typical applications is given in section 3.2 and examples in the gartco

demo.

Vector correlations are SDT objects which contain deformations, see va, typically
given at test sensors. For criteria using model mass or stiffness matrices see m. Other
details about possible fields of VC objects are given after the listing of supported
commands below.

GUI If you use ii mac without requesting graphical output, the vector correlation object
is deleted upon exit from ii mac. In other cases, the object is saved in the figure so
that you can reuse it.

You can add data to other fields or call new commands from the command line by
starting the ii mac call with a pointer to the figure where the vector correlation is
stored (ii mac(fig,’Command’), ...). An alternate calling form is to set a field of
the vector correlation object.

The following commands

[cf,def_fem,res_test]=demosdt(’demo gartte cor plot’);

[m,k,mdof] = fe_mknl(cf.mdl);

Sens=fe_case(cf.mdl,’sens’);

figure(1); subplot(221); % Make figure(1) current so that ii_mac uses it

VC=ii_mac(res_test,def_fem,’labela’,’Test’,’labelb’,’FEM’, ...

’sens’,Sens,’Mac Pair Plot’);

subplot(212);ii_mac(1,’comac’); % set new axis and display other criterion

VC.m = m; VC.kd = ofact(k+1e1*m);

subplot(222); VC.MacMPairPlot;
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illustrate a fairly complex case where one shows the MAC in subplot(221), all
three COMAC indicators in subplot(212), then provide mass and a mass-shifted
stiffness to allow computation of the mass condensed on sensors and finally show
the reduced mass weighted MAC in subplot(222).

The II MAC menu lets you choose from commands that can be computed based on
the data that you have already provided. The context menu associated with plots
generated by ii mac lets you start the cursor, display tabular output, ...

You can link deformations shown in a feplot figure to a MAC plot using

[model,sens,ID,FEM]=demosdt(’demopairmac’);

cf=feplot(model);

cf.def(1)=ID; % display test as first def set

cf.def(2)=FEM; % display FEM as second def set

% overlay & show interactive MAC in fig 1:

figure(1);clf;fecom(’show2def-mac1’)

ii_mac(1,’mac table’);

Main commands

Options ... [Plot,Table,Tex,Thtml]

By default, the commands plot the result in a figure. Options valid for all commands
are

• plot generates figure in the current axis. You can use figure and subplot

to set the current axis.

• Table generates a text output

• Tex generates a format suitable for direct inclusion in LaTeX

• Thtml creates and open an html file in the Matlab browser.

Data fields

Data fields are defined using name, value pairs.

• ’cpa’,dataAsCols sets shapes . But calls with data structures are preferable,
see va.

• ’sens’,sens sets sensor observation matrix, see sens.
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• ’labela’,’name’ sets the name of data set A. Typical values are Test, FEM,
...

• ’inda’,ind selects vectors given by ind when computing a criterion. For ex-
ample, rigid body modes are often not included in correlation. Thus ’indb’,7:20
would skip the first 6 modes.

• ’SubDofInd’,ind allows the selection a subset of sensors when computing
correlation criteria.

MAC [,M] [ ,PairA,PairB,AutoA, ...] ...

The Modal Assurance Criterion (MAC) [4] is the most widely used criterion for
vector correlation (mainly because of its simplicity).

The MAC is the correlation coefficient of vector pairs in two vector sets cpa and
cpb defined at the same DOFs (see ii mac va for more details). In general cpa
corresponds to measured modeshapes at a number of sensors {cφidj} while cpb

corresponds to the observation of analytical modeshapes [c] {φk}. The MAC is given
by

MACjk =
| {cφidj}H {cφk} |2

| {cφidj}H {cφidj} || {cφk}H {cφk} |
(9.8)

For two vectors that are proportional the MAC equals 1 (perfect correlation). Values
above 0.9 are generally considered as well correlated. Values below 0.6 should be
considered with much caution (they may or may not indicate correlation).

The commands and figure below shows the standard 2-D (obtained using the context
menu or view(2)) and 3-D (obtained using the context menu or view(-130,20))
representations of the MAC supported by ii mac. The color and dimensions of the
patches associated to each vector pair are proportional to the MAC value.
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[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;

ii_mac(ID,FEM,’sens’,sens,’mac paira plot’)

ii_mac(1,’mac paira table’);

The basic MAC shows vector pairs for all vectors in the two sets. Specific command
options are

• MacM should be used when a mass is provided, see MacM

• MacPairA command seeks for each vector in cpa (cpb with PairB) the vector
in cpb (cpa) that is best correlated. MacPairB pairs against cpb vectors.

• MacAutoA Since the objective of the MAC is to estimate the correlation between
various vectors, it is poor practice to have vectors known to be different be
strongly correlated.

Strong correlation of physically different vectors is an indication of poor test
design or poor choice of weighting. MacAutoA (B) compute the correlation of
cpa (cpb) with itself. Off diagonal terms should be small (smaller than 0.1 is
generally accepted as good practice).

• -combineval allows orthogonal linear combinations of vectors whose frequen-
cies are closer than val relatively. This is meant for cases with very closely
spaced modes where subspaces rather than individual vectors should be com-
pared.

• Error computes the MAC (or MAC-M), does pairing and plots a summary
combining the MAC value found for paired modes and the associated error on
frequencies ((fb-fa)./fa). Typical calls can be found in gartco example.
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By default this command displays a plot similar to the one shown below where
the diagonal of the paired MAC and the corresponding relative error on fre-
quencies are shown. For text output see general command options.

This is an example of how to use of the MACError command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

ii_mac(ID,FEM,’sens’,sens,’macerror plot’);

ii_mac(ID,FEM,’sens’,sens,’macerror table’);

A few things you should know ...

• The MAC measures the shape correlation without any reference to scaling of
each vector (because of the denominator in (9.8)). This makes the MAC easy
to use but also limits its applicability (since the modeshape scaling governs the
influence of a given mode on the overall system response, a proper scaling is
necessary when comparing the relative influence of different modes). In other
terms, the MAC is not a norm (two vectors can be very correlated and yet
different), so care must be taken in interpreting results.

• As the MAC is insensitive to mode scaling, it can be used with identified normal
mode residues. You do not have to determine modal masses (see id rm) to
compute a MAC.

• The main weakness of the MAC is linked to scaling of individual components
in the correlation. A change in sensor calibration can significantly modify the
MAC. If the natures of various sensors are different (velocity, acceleration,
deformation, different calibration...) this can induce significant problems in
interpretation.
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• The reference weighting in mechanics is energy. For vectors defined at all
DOFs, the MAC is a poor criterion and you should really use its mass weighted
counter part. For incomplete measurements, kinetic energy can be approxi-
mated using a static condensation of the mass on the chosen sensors which can
be computed using the MacM command.

• In certain systems where the density of sensors is low on certain parts, cross-
correlation levels with the mass weighted MAC can be much lower than for the
non weighted MAC. In such cases, you should really prefer the mass weighted
MAC for correlation.

MACCo [ ,M] [,ns]

The MACCo criterion is a what if analysis. It takes modes in cpa, cpb and computes
the paired MAC or MAC-M with one sensor removed. The sensor removal leading
to the best mean MAC for the paired modes is a direct indication of where the
poorest correlation is found. The algorithm removes this first sensor then iteratively
proceeds to remove ns other sensors (the default is 3). The MACCo command used
with command option text prints an output of the form

Test 1 2 3 4 5 6 7 8

FEM 7 8 11 10 11 12 13 14

Sensor Mean

All 87 100 99 60 86 53 100 98 100

1112z 88 100 99 59 90 62 100 98 100

1301z 89 100 99 62 90 64 100 98 100

1303z 90 100 98 66 90 66 100 98 100

where the indices for the vectors used in the pairing are shown first, then followed by
the initial mean MAC and MAC associated to each pair. The following lines show
the evolution of these quantities when sensors are removed. Here sensor 1112z has
a strong negative impact on the MAC of test mode 5.

The sensor labels are replaced by sensor numbers if the sensor configuration sens is
not declared.

By default the MACCO command outputs a structure in which field .data contains
in its first column the sensor or index removed and the resulting MAC evolution of
paired modes in the following columns. The field .xlabel contains the sensor labels
or indices.

Command option plot will plot in the ii mac figure the MAC evolutions as function
of the sensors removed. Command option text will output the result as text.
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This is an example of how to use of the MACCO command

% To see the result

[model,sens,ID,FEM]=demosdt(’demopairmac’);

ii_mac(ID,FEM,’sens’,sens, ...

’inda’,[1:8], ... % Select test modes to pair

’macco text’)

% To get sensor indices

data=ii_mac(ID,FEM,’sens’,sens, ...

’inda’,[1:8], ... % Select test modes to pair

’macco’);

i1=data.data(2:end,1) % indice of the sensors removed during the MACCO

MacM ...

When cpa and cpb are defined at finite element DOFs, it is much more appropriate
to use a mass weighted form of the MAC defined as

MAC-Mjk =
| {φjA}T [M ] {φkB} |2

| {φjA}T [M ] {φjA} || {φkB}T [M ] {φkB} |
(9.9)

called with ii mac( ... ’m’,m,’MacM Plot’). If vectors are defined as sensors,
the problem is to define what the mass should be. The standard approach is to
use the static condensation of the full order model mass on the sensor set. When
importing an external reduced mass matrix, just define the mass as shown above,
when using SDT, see the ii mac mc section below.

If cpa is defined at sensors and cpb at DOFs, ii mac uses the sensor configuration
sens to observe the motion of cpb at sensors. If cpa is defined at DOFs and cpb at
sensors, ii mac calls fe exp to expand cpb on all DOFs.

The MAC-M can be seen as a scale insensitive version of the Pseudo-Orthogonality
check (also called Cross Generalized Mass criterion) described below.

COMAC [ ,M][,A,B][,N][,S][,E] [,sort]

The COMAC command supports three correlation criteria (N nominal, S scaled and E

enhanced) whose objective is to detect sensors that lead to poor correlation. You
can compute all or some of these criteria using the n, s, or e options (with no option
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the command computes all three). Sensors are given in the nominal order or sorted
by decreasing COMAC value (sort command option).

These criteria assume the availability of paired sets of sensors. The COMAC commands
thus start by using MacPair (MacMPair with the M command option) to pair vectors
in cpb to vectors in cpa. The B command option can be used to force pairing against
vectors in set B (rather than A which is the default value).

The nominal Coordinate Modal Assurance Criterion (COMAC) measures the corre-
lation of two sets of similarly scaled modeshapes at the same sensors. The definition
used for the SDT is

COMACl = 1−

{∑NM
j |clφjAclφjB|

}2

∑NM
j |clφjA|2

∑NM
j |clφjB|2

(9.10)

which is 1 minus the definition found in [55] in order to have good correlation
correspond to low COMAC values.

The assumption that modes a similarly scaled is sometimes difficult to ensure, so
that the scaled COMAC is computed with shapes in set B scaled using the Modal
Scale Factor (MSF)

{
ĉφjB

}
= {cφjB}MSFj = {cφjB}

{cφjB}T {cφjA}
{cφjB}T {cφjB}

(9.11)

which sets the scaling of vectors in set B to minimize the quadratic norm of the

difference between {cφjA} and
{
ĉφjB

}
.

The enhanced COMAC (eCOMAC), introduced in [56], is given by

eCOMACl =

∑NM
j

∥∥∥{ ˜clφjA}− {ĉφjB}∥∥∥
2NM

(9.12)

where the comparison is done using modeshapes that are vector normalized to 1{ ˜clφjA} = {cφjA} / ‖cφjA‖

This is an example of how to use of the COMAC command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;
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ii_mac(ID,FEM,’sens’,sens,’comac plot’)

ii_mac(1,’comac table’);

POC [,Pair[A,B]] ...

The orthogonality conditions (6.85) lead to a number of standard vector correlation
criteria. The pseudo-orthogonality check (POC) (also called Cross General-
ized Mass (CGM)) and the less commonly used cross generalized stiffness (CGK)
are computed using

µjk = {φjA}T [M ] {φkB} κjk = {φjA}T [K] {φkB} (9.13)

where for mass normalized test and analysis modes one expects to have µjk ≈ δjk
and κjk ≈ ω2

j δjk.

For matched modes, POC values differing significantly from 1 indicate either poor
scaling or poor correlation. To distinguish between the two effects, you can use a
MAC-M which corresponds to the square of a POC where each vector would be
normalized first (see the MacM command).

Between unmatched modes, POC values should be close to zero. In some industries,
off-diagonal cross POC values below 0.1 are required for the test verification of a
model.

The PairA, PairB, Plot, Table options are available for POC just as for the MAC.

Rel [,scaled][,m]

For scaled matched modeshapes, the relative error

ej =
‖ {cφjA} − {cφjB} ‖
‖ {cφjA} ‖+ ‖ {cφjB} ‖

(9.14)

is one of the most accurate criteria. In particular, it is only zero if the modeshapes
are exactly identical and values below 0.1 denote very good agreement.

The rel command calls MacPair to obtain shape pairs and plots the result of (9.14).

For uncalled matched modeshapes, you may want to seek for each vector in set B
a scaling coefficient that will minimize the relative error norm. This coefficient is
known as the modal scale factor and defined by
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MSFj =
{cφjA}T {cφjB}
{cφjB}T {cφjB}

(9.15)

The RelScale command calls MacPair to obtain shape pairs, multiplies shapes in
set B by the modal scale factor and plots the result of (9.14).

With the M option, the MacPairM is used to obtain shape pairs, kinetic energy norms
are used in equations (9.14)-(9.15).

This is an example of how to use the Rel command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

ii_mac(ID,FEM,’sens’,sens,’rel’);

VC

The following sections describe standard fields of VC vector correlation objects and
how they can be set.

VC.va vector set A detailed below
VC.vb vector set B detailed below.
VC.sens sensor description array describing the relation between the DOFs of

cpb and the sensors on which cpa is defined.
VC.m full order mass matrix
VC.mc reduced mass matrix defined at sensors (see definition below)
VC.qi sensor confidence weighting
VC.k full order stiffness matrix
VC.kd factored stiffness or mass shifted stiffness matrix
VC.T reduced basis used for dynamic expansion

va,vb,sens

ii mac uses two data sets referenced in VC.va and VC.vb and extracts shapes at
sensors using the get da db command shown below. All standard input formats for
shape definition are accepted

• FEM result with .def and .DOF fields, see section 7.8 .

• Shapes at DOFs or pole residue with .res and .po fields (see section 5.6 )

• Response data with .w and .xf fields (see section 5.8 )
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• simple matrix with rows giving DOFs and columns shapes. These will be
stored in the va.def field, called cpa which stands for [c] {φa} since these
vectors typically represent the observation of modeshapes at test sensors, see
section 5.1 . A typical call would thus take the form

FigHandle=figure(1);

ii_mac(FigHandle,’cpa’,shapes_as_col,’labela’,’Test’, ...

’cpb’,shape2, ... % Define vb

’mac’); % define command

sens, when defined (see section 4.6 for the generation of sensor configurations), does
not use the results defined in VC.va but their observation given by VC.sens.cta*VC.va.def

(same for VC.vb).

The illustration below uses a typical identification result ID, a FEM result FEM and
observes on sensors.

[model,sens,ID,FEM]=demosdt(’demopairmac -open’)

figure(1);[r1,VC]=ii_mac(ID,FEM,’sens’,sens, ...

’indb’,7:20,’mac plot’);

[da,db]=ii_mac(VC,’get_da_db’)

The da.def and db.def fields are always assumed to be observed at the same sensors
(correspond to the cpa, cpb fields if these are defined).

To support expansion, cpa is defined at DOFs and cpb at sensors, ii mac calls
fe exp to expand cpb on all DOFs.

m,k,kd

For criteria that use vectors defined at DOFs, you may need to declare the mass
and stiffness matrices. For large models, the factorization of the stiffness matrix is
particularly time consuming. If you have already factored the matrix (when calling
fe eig for example), you should retain the result and declare it in the kd field.

The default value for this field is kd=ofact(k,’de’) which is not appropriate for
structures with rigid body modes. You should then use a mass-shift (kd = ofact(

k + alpha*m,’de’), see section 6.2.4 ).

mc

The SDT supports an original method for reducing the mass on the sensor set. Since
general test setups can be represented by an observation equation (4.1), the principle
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of reciprocity tells that [c]T corresponds to a set of loads at the location and in the
direction of the considered sensors. To obtain a static reduction of the model on the
sensors, one projects the mass (computes T TMT ) on the subspace

[T ] =
[
T̃
] [
cT̃
]−1

with [K]
[
T̃
]

= [c]T (9.16)

In cases where the model is fixed [K] is non-singular and this definition is strictly
equivalent to static/Guyan condensation of the mass [16]. When the structure is
free, [K] should be replaced by a mass shifted [K] as discussed under the kd field
above.

T

Reduced basis expansion methods were introduced in [16]. Static expansion can be
obtained by using T defined by (9.16).

To work with dynamic or minimum residual expansion methods, T should combine
static shapes, low frequency modes of the model, the associated modeshape sensi-
tivities when performing model updating.

Modeshape expansion is used by ii mac when cpa is full order and cpb is reduced.
This capability is not currently finalized and will require user setting of options.
Look at the HTML or PDF help for the latest information.

See also ii comac, fe exp, the gartco demonstration, section 3.2
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Purpose Mode indicator functions and signal processing.

Syntax
OUT = ii_mmif(’command’,IN,’waitbar’)

ci=iiplot; ii_mmif(’command’,ci,’CurveName’)

Description This function supports all standard transformations of response datasets in partic-
ular mode indicator functions and signal processing.

With data stored in a iiplot figure, from the GUI, open the Stack tab of the

property figure (accessible through iicom(’CurtabStack’) or by clicking on )
then select Compute ... in the context menu to transform a given dataset. This
has the advantage of allowing interactive changes to signal processing results, see
section 2.1.7 .

From the command line, use ii mmif(’command’,ci,Curve) (where ci is a
handle referring to iiplot figure). Curve can be a string defining a curve name or a
regular expression (beginning by #) defining a set of curves. One can also give some
curve names as strings in a cell array. Without output argument, computed mmif

is stored in the stack with name mmif(CurveName). Use command option -reset

to compute a mmif which has already been computed before (otherwise old result is
returned).

ci=iicom(’curveload’,’gartid’); % load curve gartid example

ii_mmif(’mmif’,ci,’Test’); % compute mmif of set named Test

iicom(’iixonly’,{’mmif(Test)’});% display result

When used with idcom, the Show ... context menu supports the automated compu-
tation of a number of transformations of ci.Stack{’Test’}. These mode indicator
functions combine data from several input/output pairs of a MIMO transfer function
in a single response that gives the user a visual indication of pole locations. You can
then use the idcom e command to get a pole estimate.

With data structures not in iiplot use mmif=ii mmif(command,Curve). Use
command option -struct to obtain output as curve data structure.

ci=iicom(’curveload’,’gartid’); % load curve gartid example

R1=ci.Stack{’Test’}; % get Test dataset in variable R1

R2=ii_mmif(’mmif-struct’,R1); % compute mmif
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MMIF

The Multivariate Mode Indicator Function (MMIF) (can also be called using iicom

Show mmi) was introduced in [57]. Its introduction is motivated by the fact that, for
a single mode mechanical model, the phase at resonance is close to -90o. For a set
of transfer functions such that {y(s)} = [H(s)] {u(s)}, one thus considers the ratio
of real part of the response to total response

q(s, {u}) =
{u}T

[
Re(H)TRe(H)

]
{u}

{u}T Re([HHH]) {u}
=
{u}T [B] {u}
{u}T [A] {u}

(9.17)

For structures that are mostly elastic (with low damping), resonances are sharp and
have properties similar to those of isolated modes. The MMIF (q) thus drops to
zero.

Note that the real part is considered for force to displacement or acceleration, while
for force to velocity the numerator is replaced by the norm of the imaginary part
in order to maintain the property that resonances are associated to minima of the
MMIF. A MMIF showing maxima indicates improper setting of idopt.DataType.

For system with more than one input (u is a vector rather than a scalar), one uses
the extreme of q for all possible real valued u which are given by the solutions of
the eigenvalue problem [A] {u} q + [B] {u} = 0.

The figure below shows a particular set for MMIF. The system has 3 inputs, so that
there are 3 indicator functions. The resonances are clearly indicated by minima that
are close to zero.

The second indicator function is particularly interesting to verify pole multiplicity.
It presents a minimum when the system presents two closely spaced modes that are
excited differently by the two inputs (this is the case near 1850 Hz in the figure). In
this particular case, the two poles are sufficiently close to allow identification with a
single pole with a modeshape multiplicity of 2 (see id rm) or two close modes. More
details about this example are given in [8].
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This particular structure is not simply elastic (the FRFs combine elastic properties
and sensor/actuator dynamics linked to piezoelectric patches used for the measure-
ment). This is clearly visible by the fact that the first MIF does not go up to 1
between resonances (which does not happen for elastic structures).

At minima, the forces associated to the MMIF (eigenvector of [A] {u} q+[B] {u} = 0)
tend to excite a single mode and are thus good candidates for force appropriation
of this mode [58]. These forces are the second optional output argument ua.

CMIF

The Complex Mode Indicator Function (CMIF) (can also be called using iicom Show

cmmi, see [59] for a thorough discussion of CMIF uses), uses the fact that resonances
of lightly damped systems mostly depend on a single pole. By computing, at each
frequency point, the singular value decomposition of the response

[H(s)]NS×NA = [U ]NS×NS [Σ]NS×NA

[
V H

]
NA×NA

(9.18)

one can pick the resonances of Σ and use U1,V1 as estimates of modal observability /
controllability (modeshape / participation factor). The optional u, v outputs store
the left/right singular vectors associated to each frequency point.

AMIF

ii mmif provides an alternate mode indicator function defined by
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q(s) = 1− |Im(H(s))||H(s)|T

|H(s)||H(s)|T
(9.19)

which has been historically used in force appropriation studies [58]. Its properties
are similar to those of the MMIF except for the fact that it is not formulated for
multiple inputs.

This criterion is supported by iiplot (use iicom Show amif).

SUM, SUMI, SUMA

Those functions are based upon the sum of data from amplitude of sensors for a
given input. One can specify dimensions affected by the sum using command option
-dim i (i is one ore more integers).

SUM,

S(s, k) =
∑
j

‖Hj,k(s)‖2

is the sum of the square of all sensor amplitude for each input.

SUMI,

S(s, k) =
∑
j

Im(Hj,k(s))
2

is the sum of the square of the imaginary part of all sensors for each input.

SUMA,

S(s, k) =
∑
j

‖Hj,k(s)‖

is the sum of the amplitude of all sensors for each input.

Those functions are sometimes used as mode indicator functions and are thus sup-
ported by ii mmif (you can also call them using iicom Show sumi for example).

NODEMIF

Undocumented.
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Signal processing

Following commands are related to signal processing. Section section 2.1.7 illus-
trates the use of those functions through iiplot.

Integrate, DoubleInt, Vel, Acc

• Integrate integrates the frequency dependent signal

Ij,k(s) =
Hj,k(0)

s2
+
Hj,k(s)

s
.

• DoubleInt integrates twice the frequency dependent signal

I2j,k(s) =
Hj,k(0)

s3
+
Hj,k(s)

s2
.

• Vel computes the velocity (first derivative) of the signal. For a frequency
dependent signal

Vj,k(s) = s ·Hj,k(s).

For a time dependent signal, finite differences are used

Vj,k(tn) =
Hj,k(tn+1)−Hj,k(tn)

tn+1 − tn
.

Vj,k(tend) is linearly interpolated in order to obtain a signal of the same length.

• Acc computes the acceleration (second derivative) of the signal. For a fre-
quency dependent signal

Aj,k(s) = s2 ·Hj,k(s).

For a time dependent signal, finite differences are used

Aj,k(tn) =
hn · (Hj,k(tn+1)−Hj,k(tn))− hn+1 · (Hj,k(tn)−Hj,k(tn−1))

hn+ 1
2
· hn · hn+1

,

with hn+1 = tn+1 − tn and hn+ 1
2

= hn+hn+1

2 .

Aj,k(tend) and Aj,k(t1) are linearly interpolated in order to obtain a signal of
the same length.
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FFT,FFTShock, IFFT,IFFTShock

Computes the Discrete Fourier Transform of a time signal. FFT normalizes according
to the sampling period whereas FFTShock normalizes according to the length of the
signal (so that it is useful for shock signal analysis).

IFFT and IFFTShock are respectively the inverse transform.

Accepted command options are

• -nostat to remove static component (f=0) from fft response.

• -newmark to shift frequencies of computed time integration with a mean accel-
eration Newmark scheme (γ = 0.5, β = 0.25) in order to correct the periodicity

error ∆T
T = ω2h2

12 . This correction is especially true for low frequencies. Com-
mand option -newmark-betaval allows specifying another value of β, using
the general shift value ∆T

T = 1
2(β − 1

12)ω2h2.

• tmin value, tmax value, fmin value, fmax value to use parts of the time
trace or spectrum.

• zp value is used to apply a factor value on the length of the signal and
zero-pad it.

• -window name is used to apply a window on the time signal. Use fe curve(’window’)

to get a list of implemented windows. For windows with parameters, use dou-
ble quotes. For example
R1 FFT=ii mmif(’FFTShock -struct -window "Exponential 10 20 100"’,R1).

• -display force display in iiplot after computing

[model,def]=fe_time(’demobar10-run’);

R1=ii_mmif(’FFT-struct -window "hanning" wmax 400’,def);

% To allow interaction

ci=iiplot;ci.Stack{’curve’,’def’}=def;
ii_mmif(’FFT-struct -window "hanning" fmax 400 -display’,ci,’def’);

iicom(’CurtabStack’) % Show the property figure

BandPass

ii mmif(’BandPass fmin fmin fmax fmax’) Performs a true band pass filtering
(i.e. using fft, truncating frequencies and go back to time domain with ifft)
between fmin and fmax frequencies.
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OctGen, Octave

filt=ii mmif(’OctGen nth’,f) computes filters to perform a 1
nth -octave analysis.

As many filters as frequencies at the 1
nth -octave of 1000 Hz in the range of f (vector

of frequencies) are computed. Each band pass filter is associated to a frequency f0

and a bandwidth Bw depending on f0. Filters are computed so that their sum is
almost equal to 1. Filter computed are, for each f0 :

H(f, f0) =
1

1 + ( 1
Bw(f0) .

f2−f20
f )6

With command option plot, filters are plotted.

ii mmif(’Octave nth’,ci) performs the 1
nth octave analysis of active curve dis-

played in iiplot figure.

The 1
nth octave analysis consists in applying each filter on the dataset. Energy in

each filtered signal is computed with 10log(S) (where S is the trapezium sum of the
filtered signal, or of the square of the filtered signal if it contains complex or negative
values) and associated to the center frequency of corresponding filter.

See also iiplot, iicom, idopt, fe sens
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Purpose Pole line plots and other plot enhancement utilities.

Syntax
ii_plp(po)

ii_plp(po,color,Opt)

Description

plp

Generation of zoomable vertical lines with clickable information.

ii plp(po) will plot vertical dotted lines indicating the pole frequencies of complex
poles in po and dashed lines at the frequencies of real poles. The poles po can be
specified in any of the 3 accepted formats (see ii pof).

When you click on these lines, a text object indicating the properties of the current
pole is created. You can delete this object by clicking on it. When the lines are part
of iiplot axes, clicking on a pole line changes the current pole and updates any
axis that is associated to a pole number (local Nyquist, residue and error plots, see
iiplot).

.ID PoleLine Call from iiplot

When displaying a curve in iiplot, one can generate automatic calls to ii plp.
Curve.ID field can be used to generate automatically vertical lines in iiplot. It is a
cell array with as many cell as line sets. Each cell is a data structure defining the
line set. Following fields can be defined:

• .po can be a column vector defining abscissa of vertical lines. It can also
be a string, possibly depending on the displayed curve XF1 and the channel
through variable ch to be evaluated to define the ro.po vector, for example
’r1.po=XF1.Y2(:,ch);’.

• .LineProp is optional. One can specify some MATLAB line properties in
this field as a cell array {’prop1’, value1, ’prop2’, value2, ...}, for
example {’LineStyle’,’:’,’color’,’r’}.
When using line sequencing, it is preferable to set the property using the line
object tag now. Thus
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R1=sdsetprop(R1,’PlotInfo.ua.axProp’, ...

’@now’,{’LineStyle’,’--’,’color’,’k’,’marker’,’none’});

• .name is used to generate a text info displayed when the user clicks on the
line.

• .unit(obsolete) is used for Hz vs. rad/s unit conversion. With tens set to 1

(11 or 12) is used for poles in Hz, while those with tens set to 2 correspond to
Rad/s. This value is typically obtained from IDopt(3).

• .format an integer that specifies whether the imaginary part Im(λ) (Format=2
which is the default) or the amplitude |λ| (using Format=3 corresponding to
format 3 of ii pof) should be used as the “frequency” value for complex poles.

Legend

Dynamic multi-line legend generation used by iiplot and feplot

ii plp(’legend’,ga,prop) with properties a cell array detailed with in comgui

def.Legend (typical legend generation associated with FEM solutions).

• ’set’,’cornerx y’ gives the position of the legend corner with respect to the
current axis. -reset option deletes any legend existing in the current axis.

•

• ’set’,StringCell cell array of strings with one per line of legend. Text
properties can be given in second column of StringCell.

• ’PropertyName’,PropertyValue additional properties to be set on the cre-
ated text.

ii plp(’legend -corner .01 .01 -reset ’,ga,ua,StringCell,legProp) is an
older format found in some calls, with ga handle to the axis where the axes is to be
placed, see gca. ua if not empty provides additional properties .legProp, .Corner.

PlotSubMark

Generate subsampled markers.
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spy

figure(1); ii plp(’spy’,k)’ Generates a spy plot with color coding associated
with the non-zero element values of matrix k.

• unsymm is used to force non symmetric plots.

• threshold is used force small terms to zero.

• msizeval allows specifying the plot MarkerSize to val

• -nopbar avoids customizing the figure PlotBoxAspectRatio to respect the
matrix one.

To perform block-wise spy plots of a single matrix, it is possible to provide matrix
k as a structure with fields

• K the matrix to spy

• ind a cell array of disjoint sets of indices standing for a sequenced block-wise
reodering of matrix K.

• indC (optional) to provide a different ordering for columns than for lines (fol-
lowing ind), activated for the unsymm case. It can be useful to display rectan-
gular matrices.

TickFcn

SDT implements a general mechanism for enhancing the basic dynamic tick label
generation of MATLAB. This allows placement of strings are proper locations on an
axis. ii plp(’TickFcn’) list predefined ticks.

This functionality is not fully documented and you are encouraged to look-up the
source code. SDT generated plots expect the following fields in the axis userdata
ua.TickInfo for data and ua.TickFcn for the callback. A sample usage would be

C1=struct(’X’,{{num2cell(2:4)’ 2}},’Xlab’,{{’x’,’y’}}, ...

’Y’,(1:3)’)

figure(1);plot(1:3,C1.Y);ii_plp(’tickXCell’,C1,gca);

C1=ii_plp(’tickXCell’,C1); %Defines the PlotInfo

iiplot(C1);
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ColorMap

FEM oriented color maps. fecom(’colormapjet(5)’) generates a map with 5 colors
and grey level bands. This is called using

figure(1);h=mesh(peaks(300));

set(h,’edgecolor’,’none’,’facecolor’,’interp’);

ii_plp(’ColormapBandjet(5)’)

ii_plp(’ColormapFireIce 20’)

ii_plp(’ColormapSamcef’)

ii plp(’ColorMap’) with no argument opens the tag list for colormap thus showing
the currently available maps.

• ii plp(’ColorMapWCenter Thres.1’,jet(20)) uses the map given as sec-
ond argument with a symmetric clim and a white band for values below the
specified Thres.

See also ii pof, idopt, iiplot, iicom
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Purpose Identification of a narrow-band single pole model.

Syntax
idcom(’e’)

[res,po]= ii_poest(ci.Stack{’Test’},opt)

Description ii poest (idcom e command and associated button in the idcom GUI figure, see
section 2.4 ) provides local curve fitting capabilities to find initial estimates of poles
by simply giving an indication of their frequency.

The central frequency for the local fit is given as opt(2) or, if opt(2)==0, by clicking
on a plot whose abscissas are frequencies (typically FRF of MMIF plots generated
by iiplot).

The width of the selected frequency band can be given in number of points (opt(1)
larger than 1) or as a fraction of the central frequency (points selected are in
the interval opt(2)*(1+[-opt(1) opt(1)]) for opt(1)<1). The default value is
opt(1)=0.01.

�

A single pole fit of the FRFs in xf is determined using a polynomial fit followed
by an optimization using a special version of the id rc algorithm. The accuracy
of the results can be judged graphically (when using the idcom e command, Test
and IdFrf are automatically overlaid as shown in the plot above) and based on the
message passed

>> ci=idcom;iicom(ci,’CurveLoad’,’gartid’);

>> idcom(’e .01 16.5’);

>> disp(ci.Stack{’IdAlt’}.po)
1.6427e+001 1.3108e-002
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LinLS: 5.337e-001, LogLS 5.480e-001, nw 18

mean(relE) 0.00, scatter 0.47 : acceptable

Found pole at 1.6427e+001 1.3108e-002

% manual call would be [res,po]=ii_poest(ci.Stack{’Test’},[.01 16.5]);

which indicates the linear and quadratic costs (see ii cost) in the narrow frequency
band used to find the pole, the number of points in the band, the mean relative error
(norm of difference between test and model over norm of response, see iiplot error)
which should be below 0.1, and the level of scatter (norm of real part over norm
of residues, which should be small if the structure is close to having proportional
damping).

If you have a good fit and the pole differs from poles already in your current model,
you can add the estimated pole (add IdAlt to IdMain) using the idcom ea command.

The choice of the bandwidth can have a significant influence on the quality of the
identification. As a rule the bandwidth of your narrow-band identification should
be larger than the pole damping ratio (opt(1)=0.01 for a damping of 1% is usually
efficient). If, given the frequency resolution and the damping of the considered pole,
the default does not correspond to a frequency band close to 2ζjωj , you should
change the selected bandwidth (for example impose the use of a larger band with
opt(1)=.02 which you can obtain simply using idcom (’e.02’)).

This routine should be used to obtain an initial estimate of the pole set, but the
quality of its results should not lead you to skip the pole tuning phase (idcom eup

or eopt commands) which is essential particularly if you have closely spaced modes.

See also idcom, id rc, iiplot

664



ii pof

Purpose Transformations between the three accepted pole formats.

Syntax
[pob] = ii_pof(poa,DesiredFormatNumber)

[pob] = ii_pof(poa,DesiredFormatNumber,SortFlag)

Description The Structural Dynamics Toolbox deals with real models so that poles are either
real or come in conjugate pairs

{λ, λ̄} = {a± ib} = {−ζω ± ω
√

1− ζ2}

Poles can be stored in three accepted formats which are automatically recognized
by ii pof(see warnings below for exceptions).

Format 1: a column vector of complex poles. ii pof puts
the pairs of complex conjugate poles λ, λ̄ first and real poles
at the end

po =



λ1

λ̄1
...
λRe

...


for example

po=[-0.0200 + 1.9999i
-0.0200 - 1.9999i
-1.0000]

Because non-real poles come in conjugate pairs with conjugate eigenvectors, it is
generally easier to only view the positive-imaginary and real poles, as done in the
two other formats.

Format 2: real and imaginary part

po =

[
a b
...

...

]
for example

po=[-0.0200 1.9999

-1.0000 0.0000]

Format 3: frequency ω and damping ratio ζ
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po =

[
ω1 ζ1
...

...

]
for example

po=[ 2.0000 0.0100
-1.0000 1.0000]

To sort the poles while changing format use an arbitrary third argument SortFlag.

Warnings The input format is recognized automatically. An error is however found for poles
in input format 2 (real and imaginary) with all imaginary below 1 and all real parts
positive (unstable poles). In this rare case you should change your frequency unit
so that some of the imaginary parts are above 1.

Real poles are always put at the end. If you create your own residue matrices, make
sure that there is no mismatch between the pole and residue order (the format for
storing residues is described in section 5.6 ).

See also idcom, id rc, ii plp
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nasread

Purpose Read results from outputs of the MSC/NASTRAN finite element code. This function
is part of FEMLink.

Syntax
out = nasread(’FileName’,’Command’)

Description nasread reads bulk data deck (NASTRAN input), direct reading of model and
result information in OUTPUT2 and OUTPUT4 files generated using NASTRAN
PARAM,POST,-i cards. This is the most efficient and accurate method to import
NASTRAN results for post-processing (visualization with feplot, normal model
handling with nor2ss, ...) or parameterized model handling with upcom. Results in
the .f06 text file (no longer supported).

Available commands are

Bulk file

model=nasread(’FileName’,’bulk’) reads NASTRAN bulk files for nodes (grid
points), element description matrix, material and element properties, and coordinate
transformations, MPC, SPC, DMIG, SETS, ...

Use ’BulkNo’ for a file with no BEGIN BULK card. Unsupported cards are displayed
to let you know what was not read. You can omit the ’bulk’ command when the
file name has the .dat or .bdf extension.

Each row of the bas.bas output argument contains the description of a coordinate
system.

The following table gives a partial conversion list. For an up to date table use
nas2up(’convlist’)
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NASTRAN SDT
CELAS1, CELAS2, RBAR

celas

RBE2
rigid

RBE3
rbe3 in Case

CONROD
bar1

CBAR, CBEAM, CROD
beam1

CBUSH
cbush

CSHEAR
quad4

CONM1, CONM2
mass2

CHEXA
hexa8, hexa20

CPENTA
penta6, penta15

CTETRA
tetra4, tetra10

CTRIA3, CTRIAR
tria3

CTRIA6
tria6

CQUAD4, CQUADR
quad4

CQUAD8
quadb

Details on properties are given under naswrite WritePLIL. NASTRAN Scalar points
are treated as standard SDT nodes with the scalar DOF being set to DOF .01 (this
has been tested for nodes, DMIG and MPC).

OUTPUT2 binary

model=nasread(’FileName’,’output2’) reads output2 binary output format for
tables, matrices and labels. You can omit the output2 command if the file names
end with 2. The output model is a model data structure described in section 7.6 .
If deformations are present in the binary file, the are saved OUG(i) entries in the
stack (see section 7.8 ). With no output argument, the result is shown in feplot.

Warning: do not use the FORM = FORMATTED in the eventual ASSIGN OUTPUT2 state-
ment.

The optional out argument is a cell array with fields the following fields
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.name Header data block name (table, matrix) or label (label)

.dname
Data block name (table, matrix) or NASTRAN header (label)

.data
cell array with logical records (tables), matrix (matrix), empty (label)

.trl
Trailer (7 integers) followed by record 3 data if any (for table and ma-
trix), date (for label)

Translation is provided for the following tables

GEOM1 nodes with support for local coordinates and output of nodes in global
coordinates

GEOM2 elements with translation to SDT model description matrix (see bulk

command).
GEOM4 translates constraints (MPC, OMIT, SPC) and rigid links (RBAR, RBE1,

RBE2, RBE3, RROD, ...) to SDT model description matrix
GPDT with use of GPL and CSTM to obtain nodes in global coordinates
KDICT reading of element mass (MDICT, MELM) and stiffness (KDICT,

KELM) matrix dictionaries and transformation of a type 3 su-
perelement handled by upcom. This is typically obtained from
NASTRAN with PARAM,POST,-4. To choose the file name use
Up.file=’FileName’;Up=nasread(Up,’Output2.op2’);

MPT material property tables
OUG transformation of shapes (modes, time response, static response, ...)

as curve entries in the stack (possibly multiple if various outputs are
requested).
Note : by default deformations are in the SDT global coordinate system
(basic in NASTRAN terminology). You may switch to output in the
local (global in NASTRAN terminology) using PARAM,OUGCORD,GLOBAL.
To avoid Out of Memory errors when reading deformations, you can
set use a smaller buffer sdtdef(’OutOfCoreBufferSize’,10) (in MB).
When too large, def.def is left in the file and read as a v handle object
that lets you access deformations with standard indexing commands.
Use def.def=def.def(:,:) to load all.
To get the deformation in the stack use calls of the form
def=stack get(model,’curve’,’OUG(1)’,’get’)

OEE tables of element energy
OES tables of element stresses or strains.

This translation allows direct reading/translation of output generated with NAS-
TRAN PARAM,POST commands simply using out=nasread(’FileName.op2’). For
model and modeshapes, use PARAM,POST,-1. For model and element matrices use
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PARAM,POST,-4 or PARAM,POST,-5 (see BuildUp command below).

BuildUp,BuildOrLoad

A standard use of FEMLink is to import a model including element matrices to be
used later with upcom. You must first run NASTRAN SOL103 with PARAM,POST,-4

to generate the appropriate .op2 file (note that you must include the geometry in
the file, that is not use PARAM,OGEOM,NO). Assuming that you have saved the bulk file
and the .op2 result in the same directory with the same name (different extension),
then

Up=nasread(’FileName.blk’,’buildup’)

reads the bulk and .op2 file to generate a superelement saved in FileName.mat.

It is necessary to read the bulk because linear constraints are not saved in the .op2

file during the NASTRAN run. If you have no such constraints, you can read the
.op2 only with Up=upcom(’load FileName);Up=nasread(Up,’FileName.op2’).

The BuildOrLoad command is used to generate the upcom file on the first run and
simply load it if it already exists.

nasread(’FileName.blk’,’BuildOrLoad’) % result in global variable Up

OUTPUT4 binary

out=nasread(’FileName’,’output4’) reads output4 binary output format for ma-
trices. The result out is a cell array containing matrix names and values stored as
Matlab sparse matrices.

All double precision matrix types are now supported. If you encounter any problem,
ask for a patch which will be provided promptly.

Output4 text files are also supported with less performance and no support for non
sequential access to data with the SDT v handle object.

Supported options

-full : assumes that the matrix to be read should be stored as full (default sparse).

-transpose : transpose data while reading.
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-hdf : save data in a hdf file. Reading is performed using buffer (sdtdef(’OutOfCoreBufferSize’,100)
for a 100MB buffer). It is useful to overcome the 2GB limit on 32 bit Matlab:
see sdthdffor details about how to build v handle on hdf file.

.f06 output (obsolete)

ASCII reading in .f06 files is slow and often generates round-off errors. You should
thus consider reading binary OUTPUT2 and OUTPUT4 files, which is now the only
supported format. You may try reading matrices with nasread(’FileName’,’matprt’),
tables with nasread(’F’,’tabpt’) and real modes with

[vector,mdof]=nasread(’filename’,’vectortype’)

Supported vectors are displacement (displacement), applied load vector (oload)
and grid point stress (gpstress).

See also naswrite, FEMLink
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Purpose Formatted ASCII output to MSC/NASTRAN bulk data deck. This function is part
of FEMLink.

Syntax
naswrite(’FileName’,node,elt,pl,il)

naswrite(’FileName’,’command’, ...)

naswrite(’-newFileName’,’command’, ...)

naswrite(fid,’command’, ...)

Description naswrite appends its output to the file FileName or creates it, if it does not exist.
Use option -newFileName to force deletion of an existing file. You can also provide
a handle fid to a file that you opened with fopen. fid=1 can be used to have a
screen output.

EditBulk

Supports bulk file editing. Calls take the form
nas2up(’EditBulk’,InFile,edits,Outfile), where InFile and OutFile are file
names and edits is a cell array with four columns giving command, BeginTag,
EndTag, and data. Accepted commands are

Before inserts data before the BeginTag.
Insert inserts data after the EndTag.
Remove removes a given card. Warning this does not yet handle multiple

line cards.
Set used to set parameter and assign values. For example

edits={’Set’,’PARAM’,’POST’,’-2’};
rootname=’my_job’;

f0={’OUTPUT4’,sprintf(’%s_mkekvr.op4’,rootname),’NEW’,40,’DELETE’,
’OUTPUT4’,sprintf(’%s_TR.op4’,rootname),’NEW’,41,’DELETE’};

edits(end+1,1:4)={’set’,’ASSIGN’,’’,f0}

When writing automated solutions, the edits should be stored in a stack entry
info,EditBulk.

model
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naswrite(’FileName’,model) the nominal call, it writes everything possible : nodes,
elements, material properties, case information (boundary conditions, loads, etc.).
For example naswrite(1,femesh(’testquad4’)).

The following information present in model stack is supported

• curves as TABLED1 cards if some curves are declared in the model.Stack see
fe curve for the format).

• Fixed DOFs as SPC1 cards if the model case contains FixDof and/or KeepDof
entries. FixDof,AutoSPC is ignored if it exists.

• Multiple point constraints as MPC cards if the model case contains MPC entries.

• coordinate systems as CORDi cards if model.bas is defined (see basis for the
format).

The obsolete call naswrite(’FileName’,node,elt,pl,il) is still supported.

node,elt

You can also write nodes and elements using the low level calls but this will not
allow fixes in material/element property numbers or writing of case information.

femesh(’reset’);

femesh(’testquad4’)

fid=1 % fid=fopen(’FileName’);

naswrite(fid,’node’,FEnode)

naswrite(fid,’node’,FEnode)

%fclose(fid)

Note that node(:,4) which is a group identifier in SDT, is written as the SEID in
NASTRAN. This may cause problems when writing models from translated from
other FEM codes. Just use model.Node(:,4)=0 in such cases.

dmig

DMIG writing is supported through calls of the form naswrite(fid,’dmigwrite

NAME’,mat,mdof). For example

naswrite(1,’dmigwrite KAAT’,rand(3),[1:3]’+.01)
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A nastran,dmig entry in model.Stack, where the data is a cell array where each
row gives name, DOF and matrix, will also be written. You can then add these
matrices to your model by adding cards of the form K2GG=KAAT to you NASTRAN
case.

job

NASTRAN job handling on a remote server from the Matlab command line is
partially supported. You are expected to have ssh and scp installed on your com-
puter. On windows, it is assumed that you have access to these commands using
CYGWIN. You first need to define your preferences

setpref(’FEMLink’,’CopyFcn’,’scp’);

setpref(’FEMLink’,’RunNastran’,’nastran’);

setpref(’FEMLink’,’RemoteShell’,’ssh’);

setpref(’FEMLink’,’RemoteDir’,’/tmp2/nastran’);

setpref(’FEMLink’,’RemoteUserHost’,’user@myhost.com’)

setpref(’FEMLink’,’DmapDir’,fullfile(fileparts(which(’nasread’)),’dmap’))

You can define a job handler customized to your needs and still use the nas2up calls
for portability by defining setpref(’FEMLink’,’NASTRANJobHandler’, ’FunctionName’).

You can then run a job using nas2up(’joball’,’BulkFileName.dat’). Additional
arguments can be passed to the RunNastran command by simply adding them to
the joball command. For example
nas2up(’joball’,’BulkFileName.dat’,struct(’RunOptions’,’memory=1GB’)).

It is possible provide specific options to your job handler by storing them as a
info,NasJobOptentry in your model.Stack. nas2up(’JobOptReset’) resets the
default. The calling format in various functions that use the job handling facility is
then

model=stack_set(’info’,’NasJobOpt’,nas2up(’jobopt’));

nas2up(’joball’,’step12.dat’,model);

RunOpt.RunOptions stores text options to be added to the nastran command.
RunOpt.BackWd can be used to specify an additional relative directory for the JobCpFrom
command. RunOpt.RemoteRelDir can be used to specify the associated input for
the JobCpTo command.

nas2up(’JobCpTo’, ’LocalFileName’, ’RemoteRelDir’) puts (copies) files to the
remote directory or to fullfile(RemoteDir,RemoteRelativeDir) if specified.
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nas2up(’JobCpFrom’, ’RemoteFileName’) fetches files. The full remote file name
is given by fullfile(RemoteDir,RemoteFileName). Any relative directory is ig-
nored for the local directory.

Here is a simple script that generates a model, runs NASTRAN and reads the result

wd=sdtdef(’tempdir’);

model=demosdt(’demoubeam-2mat’); cf=feplot;

model=fe_case(model,’dofload’,’Input’, ...

struct(’DOF’,[349.01;360.01;241.01;365.03],’def’,[1;-1;1;1],’ID’,100));

model=nas2up(’JobOpt’,model);

model=stack_set(model,’info’,’Freq’,[20:2:150]);

% write bulk but do not include eigenvalue options

naswrite([’-new’ fullfile(wd,’ubeam.bdf’)],stack_rm(model,’info’,’EigOpt’))

% generate a job by editing the reference mode.dat file

fname=’ubeam.dat’;

edits={’Set’,’PARAM’,’POST’,’-2’;
’replace’,’include ’’model.bdf’’’,’’,’include ’’ubeam.bdf’’’;

’replace’,’EIGRL’,’’,nas2up(’writecard’,-1,[1 0 0 30],’ijji’,’EIGRL’)};
nas2up(’editbulk’,’mode.dat’,edits,fullfile(wd,fname));

cd(wd);type(fname)

nas2up(’joball’,fname,model)

cg=feplot(4);mo1=nasread(’ubeam.op2’);

Wop4

Matrix writing to OUTPUT4 format. You provide a cell array with one matrix per row,
names in first column and matrix in second column. The optional byte swapping
argument can be used to write matrices for use on a computer with another binary
format.

kv=speye(20);

ByteSwap=0; % No Byte Swapping needed

nas2up(’wop4’,’File.op4’,{’kv’,kv},ByteSwap);

For ByteSwap you can also specify ieee-le for little endian (Intel PC) or ieee-be

depending on the architecture NASTRAN will be running on. You can omit speci-
fying ByteSwap at every run by setting
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setpref(’FEMLink’,’OutputBinaryType’,’ieee-le’)

WriteFreqLoad

edits=naswrite(’Target.bdf’,’WriteFreqLoad’,model) (or the equivalent nas2up
call when the file is already open as show below) writes loads defined in model (and
generated with Load=fe load(model)) as a series of cards. FREQ1 for load frequen-
cies, TABLED1 for the associated curve, RLOAD1 to define the loaded DOFs and DAREA

for the spatial information about the load. The return edits argument is the entry
that can be used to insert the associated subcase information in a nominal bulk.

The identifiers for the loads are supposed to be defined as Case.Stack{j1,end}.ID
fields.

% Generate a model with sets of point loads

model=demosdt(’Demo ubeam dofload noplot’)

% Define the desired frequencies for output

model=stack_set(model,’info’,’Freq’, ...

struct(’ID’,101,’data’,linspace(0,10,12)));

fid=1 % fid=fopen(’FileName’);

edits=nas2up(’writefreqload’,fid,model);

fprintf(’%s\n’,edits{end}{:}); % Main bulk to be modified with EditBulk

%fclose(fid)

Write[Curve,Set,SetC,Uset]

Write commands are used to WriteCurve lets you easily generate NASTRAN curve
tables.

WriteSet lets you easily generate NASTRAN node and elements sets associated
with node and element selection commands.

WriteSetC formats the sets for use in the case control section rather than the bulk.

WriteUset generates DOFs sets.

model=demosdt(’demogartfe’);

fid=1; % display on screen (otherwise use FOPEN to open file)

nas2up(’WriteSet’,fid,3000,model,’findnode x>.8’);

selections={’zone_1’,’group 1’;’zone_2’,’group 2:3’};
nas2up(’WriteSet’,fid,2000,model,selections);

st=nas2up(’WriteSet’,-1,2000,model,selections);
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curves={’curve’,’Sine’,fe_curve(’testEval -id1 sin(t)’,linspace(0,pi,10)) ; ...

’curve’,’Exp.’,fe_curve(’testEval -id100 exp(-2*t)’,linspace(0,1,30))};
nas2up(’WriteCurve’,fid,curves)

DOF=feutil(’getdof’,model);

nas2up(’WriteUset U4’,fid,DOF(1:20))

WritePLIL

The WritePLIL is used to resolve identifier issues in MatId and ProId (elements
in SDT have both a MatId and an ProID while in NASTRAN they only have a
ProId with the element property information pointing to material entries). While
this command is typically used indirectly while writing a full model, you may want
to access it directly. For example

model=demosdt(’demogartfe’);

nas2up(’Writeplil’,1,model);

• p solid properties are implemented somewhat differently in NASTRAN and
SDT, thus for a il row giving [ProID type Coordm In Stress Isop Fctn]

In NASTRAN In is either a string or an integer. If it is an integer, this
property is the same in il. If it is a string equal to resp. TWO or THREE, this
property is equal to resp. 2 or 3 in il.

In NASTRAN Stress is either a string or an integer. If it is an integer, this
property is the same in il. If it is a string equal GAUSS, this property is equal
to 1 in il.

In NASTRAN, Isop is either a string or an integer. If it is an integer, this
property is the same in il. If it is a string equal FULL, this property is equal
to 1 in il.

If Fctn is equal to FLUID in the NASTRAN Bulk file, it is equal to 1 in il and
elements are read as flui* elements.

• MAT9 and m elastic 3 differ by the order of shear stresses yz, zx,Gxy in SDT
and xy, yz, zx in NASTRAN. The order of constitutive values is thus different,
which is properly corrected in SDT 6.5.

See also nasread, ufread, ufwrite
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nor2res, nor2ss, nor2xf

Purpose Transformations from normal mode models to other model formats.

Syntax [res,po,psib,cpsi] = nor2res( ... ) % sdtweb(’res’) for format

RES = nor2res( ... )

[a,b,c,d] = nor2ss ( ... ) % sdtweb(’ss’) for format

SYS = nor2ss ( ... )

xf = nor2xf ( ... ) % sdtweb(’xf’) for format

... = nor2.. (DEF,MODEL, ... ) % high level input

... = nor2.. (DEF,ga,MODEL, ... )

... = nor2.. (ga,om,pb,cp, ... ) % low level input

... = nor2ss ( ... , ind,fc,OutputCmd) % frequency,truncation...

... = nor2xf ( ... , w,ind,fc,OutputCmd)

Description These functions provide detailed access, for simple high level calls see fe2ss. Normal
mode models are second order models detailed in the Theory section below. nor2res,
nor2ss, and nor2xf provide a number of transformations from the normal mode
form to residue, state-space, and transfer function formats.

The normal mode model is specified using either high level structure arguments
DEF,MODEL (where the model is assumed to contain load and sensor case entries) or
low level numeric arguments om,ga,pb,cp. Additional arguments w,ind,fc,OutputCmd
can or must be specified depending on the desired output. These arguments are listed
below.

DEF,MODEL

The normal mode shapes are given in a DEF structure with fields .def, .DOF, .data
(see section 7.8 ).

These mode shapes are assumed mass normalized and the first column of the .data

field is assumed to give modal frequencies in Hz. They can be computed with
fe eig or imported from an external FEM code (see FEMLink). See also fe2ss.

Damping can be declared in different ways

• modal damping ratio can be given in DEF.data(:,2). When this column exists
other damping input is ignored. This is illustrated as variable damping below.
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• damp a vector of modal damping ratio can be given as the second argument
nor2ss(DEF,damp,MODEL), or as an info,DefaultZeta entry as shown in the
example below.

• a modal damping matrix ga can be given as the second argument. Note that
this modal damping matrix is assumed to use frequency units consistent with
the specified frequencies. Thus a physical viscous damping matrix will need
to be divided by 2*pi (see demo fe).

• hysteretic modal damping is not systematically supported since it leads to
complex valued state-space models. You can compute FRFs with an hysteretic
modal damping model using

def.data=sqrt(real(def.data.^2)).*sqrt(1+i*damp*2);

IIxh=nor2xf(def,[],model,w,’hz’);

as illustrated in section 5.3.2 .

Inputs and outputs are described by a model containing a Case (see section 4.5 ).
Giving the model is needed when inputs correspond to distributed loads (FVol or
FSurf case entries detailed under fe load). SensDof are the only output entries
currently supported (see fe case).

Note that DofSet entries are handled as acceleration inputs. The basis described
by DEF must allow a correct representation of these inputs. This can be achieved
by using a basis containing static corrections for unit displacements or loads on the
interface (see fe2ss CraigBampton or Free commands). A proper basis can also
be generated using acceleration inputs at single nodes where a large seismic mass is
added to the model. This solution is easier to implement when dealing with external
FEM codes.

Examples

Here is a sample call that compares responses for two damping levels

[model,def]=demosdt(’demogartfe’);

InDof=[4.03;55.03;2.03]; OutDof=[4 55 30]’+.03;

freq=linspace(5,70,500)’;

model=fe_case(model, ...

’DofLoad’,’Force’,InDof, ...

’SensDof’,’Sensors’,OutDof);
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model=stack_set(model,’info’,’Freq’,freq, ...

’info’,’DefaultZeta’,.01); % Ignored when def.data(:,2) exists

nor2xf(def,model,’acc iiplot "Test" -po -reset’);

% Another variation

% define variable damping in def.data(:,2)

def.data(def.data(:,1)<30,2)=.005; % 0.5% damping below 30 Hz

def.data(def.data(:,1)>30,2)=.02; % 2% damping above 30 Hz

% Truncate to first 10 modes (static correction is lost)

d1=fe_def(’subdef’,def,1:12);

% Define inputs and ouputs using DOFs (less general than fe_case)

nor2xf(d1,InDof,OutDof,freq,’acc iiplot "Variable damping"’);

iicom(’ch2’);ci=iiplot;ci.Stack

When using distributed loads (pressure, etc.), the model elements are needed to
define the load so that the model rather than a Case must be given as in the following
example

model = demosdt(’demo ubeam’);

def=fe_eig(model,[106 20 10000 11 1e-5]);

%Pressure load

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data)

%Sensors

model=fe_case(model,’sensdof’,’Sensors’,[50:54]’+.03);

fe_case(model,’info’)

model=stack_set(model,’info’,’Freq’,linspace(10,240,460));

nor2xf(def,0.01,model,’iiplot "Test" -po -reset’);

Example of transmissibility prediction using the large mass method where one defines
a rigid base and a large mass such that one has 6 rigid body modes and fixed interface
modes

model = demosdt(’demo ubeam’);

% define rigid base

i1=feutil(’findnode z==0’,model);

model = fe_case(model,’reset’, ...
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’rigid append’,’Base’,[i1(1);123456;i1(2:end)]);

% Add large mass on the base

model.Elt(end+[1:2],1:7)=[Inf abs(’mass1’) 0;

i1(1) [1 1 1 1 1 1]*1e6];

def=fe_eig(model,[5 20 1e3]); % This can be computed elsewhere

% Transmissibility for unit acceleration along x

model=fe_case(model,’DofSet’,’IN’, ...

struct(’def’,[1;0;0;0;0;0],’DOF’,i1(1)+[1:6]’/100), ...

’SensDof’,’OUT’,[1.01;314.01]);

f=linspace(50,500,1024)’;

nor2xf(def,.01,model,f,’acc iiplot "Trans-Large" -reset’);

% Clean approach without the large mass

mo2=stack_set(model,’info’,’EigOpt’,[5 14 1e3]);

mo2=fe_case(mo2,’DofSet’,’IN’,i1(1));

SE=fe_reduc(’CraigBampton -se’,model); % craig-bampton reduction

% Free modes of Craig-Bampton basis

TR=fe_eig({SE.K{:} SE.DOF});TR.DOF=SE.TR.DOF;TR.def=SE.TR.def*TR.def;

nor2xf(TR,.01,model,f,’acc iiplot "Trans-Craig"’);

iicom(’ch2’);

om,ga,pb,cp

Standard low level arguments om (modal stiffness matrix), ga (modal viscous damp-
ing matrix), pb (modal controllability) and cp (modal observability) used to describe
normal mode models are detailed in section section 5.2 . A typical call using this
format would be

[model,def]=demosdt(’demogartfe’);

b = fe_c(def.DOF,[4.03;55.03])’; c = fe_c(def.DOF,[1 30 40]’+.03);

IIw=linspace(5,70,500)’;

nor2xf(def.data,0.01,def.def’*b,c*def.def,IIw*2*pi, ...

’Hz iiplot "Simul" -po -reset’);

w,ind,fc,OutputCmd

Other arguments are
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w frequencies (in rad/s unless Hz is specified in OutputCmd) where the FRF
should be computed (for nor2xf). Can also be given as a model.Stack{’info’,’Freq’}
entry.

ind (optional) gives the indices of modes to be retained (truncated modes are then
added to the static correction).

fc (optional) roll-off frequency : that is frequency assigned to the static correction
poles. Since static correction is meant for low frequency behavior, its dynamics
must be above the bandwidth of interest but where exactly can be tuned. This
applies only to load input cases and a static correction must exist.

OutputCmd (optional) is a string that can contain. ’Hz’ to specify that w and wj are
given in Hz. Non diagonal om or ga are always given in rad/s. ’dis’, ’vel’,
or ’acc’ are used to obtain displacement (default), velocity or acceleration
output. ’struct’ is used to obtain a curve structure.
’iiplot "StackName" -po -reset’ can be used to display results in iiplot(see
section 2.1.2 ). The optional -po is used to save poles in ci.Stack’IdMain’

so that they can be displayed. -reset reinitializes the curve stack.
-zoh Ts or -foh Ts can be used to obtained a discrete state-space model
based on zero or first order hold approximations with the specified time step.

res

nor2res returns a complex mode model in the residue form

[α(s)] =
2N∑
j=1

{cψj}
{
ψTj b

}
s− λj

=
2N∑
j=1

[Rj ]

s− λj

This routine is particularly useful to recreate results in the identified residue form
res for comparison with direct identification results from id rc.

Pole residue models are always assumed to correspond to force to displacement
transfer functions. Acceleration input or velocity, acceleration output specifications
are thus ignored.

ss

nor2ss returns state-space models (see the theory section below).
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When no roll-off frequency is specified, nor2ss introduces a correction, for dis-
placement only, in the state-space models through the use of a non-zero d term.
If a roll-off frequency fc is given, the static correction is introduced in the state-space
model through the use of additional high frequency modes. Unlike the non-zero D
term which it replaces, this correction also allows to correct for velocity contributions
of truncated modes.

You can also specify fc as a series of poles (as many as inputs) given in the fre-
quency/damping format (see ii pof).

You force use of SDT structure and rather than Control Toolbox LTI object using
setpref(’SDT’,’UseControlToolbox’,0). You can convert between formats using
ss lti=nor2ss(’ss2struct’,ss sdt) or ss sdt=nor2ss(’ss2struct’,ss lti).

xf

nor2xf computes FRF (from u to y) associated to the normal mode model. When
used with modal frequencies freq and a subset of the modes (specified by a non
empty ind), nor2xf introduces static corrections for the truncated modes.

lab in,lab out

SDT uses fields lab in and lab out, while the control toolbox objects use InputName
and OutputName. The commands lab in are used to robust handling based on the
object type.

lab_in =nor2ss(’lab_in’, sys) % Get in

lab_out=nor2ss(’lab_out’,sys) % Get out

sys=nor2ss(’lab_in’ ,sys,lab_in) % Set in

sys=nor2ss(’lab_out’,sys,lab_out) % Set out

Theory

The basic normal mode form associated with load inputs [b] {u} is (see section 5.2 )[
[I] s2 + [Γ] s+

[
Ω2
]]
NP×NP {(s)} =

[
φT b

]
NP×NA

{u(s)}NA×1

{y(s)} = [cφ]NS×NP {p(s)}NP×1

where the coordinates p are such that the mass is the identity matrix and the stiffness
is the diagonal matrix of frequencies squared.
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The associated state-space model has the form{
ṗ (t)
p̈ (t)

}
=

[
[0] [I]

−
[
\Ω2

\
]
− [Γ]

]{
p (t)
ṗ (t)

}
+

[
0
φT b

]
{u(t)}

{y} = [cφ 0]

{
p (t)
ṗ (t)

}
+ [0] {u(t)}

When used with modal frequencies wj and a subset of the modes (specified by
ind), nor2ss introduces static corrections for the truncated modes. When request-
ing velocity or acceleration output, static correction can only be included by using
additional modes.

In cases with displacement output only, the static corrections are ranked by decreas-
ing contribution (using a SVD of the d term). You can thus look at the input shape
matrix b to see whether all corrections are needed.

nor2ss (and nor2xf by calling nor2ss) supports the creation of state-space models
of transmissibilities (transfer functions from acceleration input to displacement, ve-
locity or acceleration. For such models, one builds a transformation such that the
inputs ua associated with imposed accelerations correspond to states{

ua
qc

}
= [TI TC ] {p}

and solves the fixed interface eigenvalue problem[
T TCΩTC − ω2

jCT
T
C ITC

]
{φjC} = {0}

leading to basis
[
TI T̂C

]
= [TI TC [φjC ]] which is used to build the state space

model 
u̇
q̇C
ü
q̈C

 =

 [0] [I][
0

−T̂ TCΩ
[
TI T̂C

] ] [
0

−T̂ TC Γ
[
TI T̂C

] ]



u
qC
u̇
q̇C

+


0 0
0 0
0 I

T̂ TC b T̂ TC TI


{
uF
üa

}

{y} =
[
cTI cT̂C 0 0

]
ua
qC
u̇a
q̇C

+ [0]

{
uF
üa

}
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Simple adjustments lead to velocity and acceleration outputs.

When using acceleration input, care must be taken that the initial shapes of the
normal mode model form an appropriate basis. This can be achieved by using a
basis containing static corrections for unit displacements or loads on the interface
(see fe2ss CraigBampton or Free commands) or a seismic mass technique.

See also res2nor, id nor, fe c, psi2nor

demo fe
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of2vtk

Purpose Export model and deformations to VTK format for visualization purposes.

Syntax opfem2VTK(FileName,model)

opfem2VTK(FileName,model,val1,...,valn)

Description Simple function to write the mesh corresponding to the structure model and associ-
ated data currently in the “Legacy VTK file format” for visualization.

To visualize the mesh using VTK files you may use ParaView which is freely available
at http://www.paraview.org or any other visualization software supporting VTK file
formats.

try;tname=nas2up(’tempname.vtk’);catch;tname=[tempname ’.vtk’];end

model=femesh(’testquad4’);

NodeData1.Name=’NodeData1’;NodeData1.Data=[1 ; 2 ; 3 ; 4];

NodeData2.Name=’NodeData2’;NodeData2.Data=[0 0 1;0 0 2;0 0 3;0 0 4];

of2vtk(’fic1’,model,NodeData1,NodeData2);

EltData1.Name =’EltData1’ ;EltData1.Data =[ 1 ];

EltData2.Name =’EltData2’ ;EltData2.Data =[ 1 2 3];

of2vtk(’fic2’,model,EltData1,EltData2);

def.def = [0 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 ]’*[1 2];

def.DOF=reshape(repmat((1:4),6,1)+repmat((1:6)’/100,1,4),[],1)

def.lab={’NodeData3’,’NodeData4’};
of2vtk(’fic3’,model,def);

EltData3.EltId=[1];EltData3.data=[1];EltData3.lab={’EltData3’};
EltData4.EltId=[2];EltData4.data=[2];EltData4.lab={’EltData4’};
of2vtk(’fic4’,model,EltData3,EltData4);

The default extention .vtk is added if no extention is given.

Input arguments are the following:
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FileName

file name for the VTK output, no extension must be given in FileName, “File-
Name.vtk” is automatically created.

model

a structure defining the model. It must contain at least fields .Node and .Elt.
FileName and model fields are mandatory.

vali

To create a VTK file defining the mesh and some data at nodes/elements (scalars,
vectors) you want to visualize, you must specify as many inputs vali as needed. vali is
a structure defining the data: vali = struct(′Name′, V alueName, ′Data′, V alues).
Values can be either a table of scalars (Nnode×1 or Nelt×1) or vectors (Nnode×3
or Nelt × 3) at nodes/elements. Note that a deformed model can be visualized by
providing nodal displacements as data (e.g. in ParaView using the “warp” function).
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ofact

Purpose Factored matrix object.

Syntax ofact

ofact(’method MethodName’);

kd=ofact(k); q = kd\b; ofact(’clear’,kd);

kd=ofact(k,’MethodName’)

Description The factored matrix object ofact is designed to let users write code that is inde-
pendent of the library used to solve static problems of the form [K] {q} = {F}. For
FEM applications, choosing the appropriate library for that purpose is crucial. De-
pending on the case you may want to use full, skyline, or sparse solvers. Then within
each library you may want to specify options (direct, iterative, in-core, out-of-core,
parallel, ... ).

Using the ofact object in your code, lets you specify method at run time rather
than when writing the code. Typical steps are

ofact(’method spfmex’); % choose method

kd = ofact(k); % create object and factor

static = kd\b % solve

ofact(’clear’,kd) % clear factor when done

For single solves static=ofact(k,b) performs the three steps (factor, solve clear)
in a single pass.

The first step of method selection provides an open architecture that lets users
introduce new solvers with no need to rewrite functions that use ofact objects.
Currently available methods are listed simply by typing

>> ofact

Available factorization methods for OFACT object

-> spfmex : SDT sparse LDLt solver

sp_util : SDT skyline solver

lu : MATLAB sparse LU solver

mtaucs : TAUCS sparse solver

pardiso : PARDISO sparse solver

chol : MATLAB sparse Cholesky solver

*psldlt : SGI sparse solver (NOT AVAILABLE ON THIS MACHINE)
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and the method used can be selected with ofact(’method MethodName’). SDTools
maintains pointers to pre-compiled solvers at http://www.sdtools.com/faq/FE_

ofact.html.

The factorization kd = ofact(k); and resolution steps static = kd\b can be sep-
arated to allow multiple solves with a single factor. Multiple solves are essential
for eigenvalue and quasi-newton solvers. static = ofact(k)\b is of course also
correct.

The clearing step is needed when the factors are not stored as Matlab variables.
They can be stored in another memory pile, in an out-of-core file, or on another
computer/processor. Since for large problems, factors require a lot of memory.
Clearing them is an important step.

Historically the object was called skyline. For backward compatibility reasons, a
skyline function is provided.

umfpack

To use UMFPACK as a ofact solver you need to install it on your machine. This
code is available at www.cise.ufl.edu/research/sparse/umfpack.

pardiso

Based on the Intel MKL (Math Kernel Library), you should use version 8 and after.

By default the pardiso call used in the ofact object is set for symmetric matrices.
For non-symmetric matrices, you have to complement the ofact standard command
for factorization with the character string ’nonsym’. Moreover, when you pass a
matrix from Matlab to PARDISO, you must transpose it in order to respect the
PARDISO sparse matrix format.
Assuming that k is a real non-symmetric matrix and b a real vector, the solution q
of the system k.q = b is computed by the following sequence of commands:

ofact pardiso % select PARDISO solver

kd = ofact(’fact nonsym’,k’); % factorization

q=kd\b; % solve

ofact(’clear’,kd); % clear ofact object

The factorization is composed of two steps: symbolic and numerical factorization.
For the first step the solver needs only the sparse matrix structure (i.e. non-zeros
location), whereas the actual data stored in the matrix are required in the second
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ofact

step only. Consequently, for a problem with a unique factorization, you can group
the steps. This is done with the standard command ofact(’fact’,...).
In case of multiple factorizations with a set of matrices having the same sparse
structure, only the second step should be executed for each factorization, the first
one is called just for the first factorization. This is possible using the commands
’symbfact’ and ’numfact’ instead of ’fact’ as follows:

kd = ofact(’symbfact’,k); % just one call at the beginning

...

kd = ofact(’numfact’,k,kd); % at each factorization

q=kd\b; %

...

ofact(’clear’,kd); % just one call at the end

You can extend this to non-symmetric systems as described above.

spfmex

spfmex is a sparse multi-frontal solver based on spooles a compiled version is pro-
vided with SDT distributions.

sp util

The skyline matrix storage is a traditional form to store the sparse symmetric ma-
trices corresponding to FE models. For a full symmetric matrix kfull

kfull=[1 2

10 5 8 14

6 0 1

9 7

sym. 11 19

20]

The non-zero elements of each column that are above the diagonal are stored se-
quentially in the data field k.data from the diagonal up (this is known as the reverse
Jenning’s representation) and the indices of the elements of k corresponding to di-
agonal elements of the full matrix are stored in an index field k.ind. Here

k.data = [1; 10; 2; 6; 5; 9; 0; 8; 11; 7; 1; 14; 20; 19; 0]

k.ind = [1; 2; 4; 6; 9; 13; 15];
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For easier manipulations and as shown above, it is assumed that the index field
k.ind has one more element than the number of columns of kfull whose value is
the index of a zero which is added at the end of the data field k.data.

If you have imported the ind and data fields from an external code, ks = ofact

(data, ind) will create the ofact object. You can then go back to the Matlab
sparse format using sparse(ks) (but this needs to be done before the matrix is
factored when solving a static problem).

Your solver To add your own solver, simply add a file called MySolver utils.m in the @ofact

directory. This function must accept the commands detailed below.

Your object can use the fields .ty used to monitor what is stored in the object (0
unfactored ofact, 1 factored ofact, 2 LU, 3 Cholesky, 5 other), .ind, .data used to
store the matrix or factor in true ofact format, .dinv inverse of diagonal (currently
unused), .l L factor in lu decomposition or transpose of Cholesky factor, .u U factor
in lu decomposition or Cholesky factor, .method other free format information used
by the object method.

method

Is used to define defaults for what the solver does.

fact

This is the callback that is evaluated when ofact initializes a new matrix.

solve

This is the callback that is evaluated when ofact overloads the matrix left division
(\)

clear

clear is used to provide a clean up method when factor information is not stored
within the ofact object itself. For example, in persistent memory, in another process
or on another computer on the network.

See also fe eig, fe reduc
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perm2sdt

Purpose Read results from outputs of the PERMAS (V7.0) finite element code.

Syntax out = perm2sdt(’Read Model_FileName’)

out = perm2sdt(’Read Result_FileName’)

out = perm2sdt(’merge’,model)

out = perm2sdt(’binary.mtl Matrix_FileName’)

out = perm2sdt(’ascii.mtl Matrix_FileName’)

Description The perm2sdtfunction reads PERMAS model, result and matrices files. Binary and
ASCII files are supported.

filesModel files

To read a FE model, use the following syntax: model = perm2sdt(’Read FileName’)

To deal with sub-components, you may use the merge command.

The current element equivalence table is

SDT PERMAS
mass2 MASS3, MASS6, X1GEN6
bar1 FLA2
beam1 PLOTL2, BECOC, BECOS, BECOP, BETOP, BETAC, FD-

PIPE2, X2GEN6
celas SPRING3, SPRING6, SPRING1, X2STIFF3
t3p TRIM3
tria3 TRIA3, TRIA3K, TRIA3S, FSINTA3
quad4 QUAD4, FSINTA4, QUAD4S, PLOTA4, SHELL4
flui4 FLTET4
tetra4 TET4
tetra10 TET10
penta6 PENTA6, FLPENT6
hexa8 HEXE8, FLHEX8
pyra5 PYRA5, FLPYR5
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Merging model

The merge command integrates subcomponents into the main model.

Result files

The syntax is

perm2sdt(’read result file’)

Matrix files

perm2sdtreads binary and ASCII .mtl file format. The syntax is

perm2sdt(’binary.mtl File.mtl’) for binary files and perm2sdt(’ascii.mtl File.mtl’)

for ASCII files.

See also FEMLink
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psi2nor

Purpose Estimation of normal modes from a set of scaled complex modes.

Syntax [wj,ga,cps,pbs] = psi2nor(po,cp)

[wj,ga,cps,pbs] = psi2nor(po,cp,ncol,NoCommentFlag)

Description psi2nor should generally be used through id nor. For cases with as many and more
sensors than modes, psi2nor gives, as proposed in Ref. [12], a proper approximation
of the complex mode outputs cp= [c] [ψ] (obtained using id rm), and uses the then
exact transformation from complex to normal modes to define the normal mode
properties (modal frequencies wj, non-proportional damping matrix ga, input pbs=
[φ]T [b] and output cps= [c] [φ] matrices).

The argument ncol allows the user to specify the numbers of a restricted set of
outputs taken to have a collocated input (pbs=cps(ncol,:)’).

If used with less than four arguments (not using the NoCommentFlag input argu-
ment), psi2nor will display two indications of the amount of approximation intro-
duced by using the proper complex modes. For the complex mode matrix ψT (of
dimensions NT by 2NT because of complex conjugate modes), the properness condi-
tion is given by ψTψ

T
T = 0. In general, identified modes do not verify this condition

and the norm ‖ψTψTT ‖ is displayed

The norm of psi*psi’ is 3.416e-03 instead of 0

and for well identified modes this norm should be small (10−3 for example). The
algorithm in psi2nor computes a modification ∆ψ so that ψ̃T = ψT +∆ψ verifies the
properness condition ψ̃T ψ̃

T
T = 0 . The mean and maximal values of abs(dpsi./psi)

are displayed as an indication of how large a modification was introduced

The changes implied by the use of proper cplx modes are 0.502 maximum and 0.122 on average

The modified modes do not necessarily correspond to a positive-definite mass matrix.
If such is not the case, the modal damping matrix cannot be determined and this
results in an error. Quite often, a non-positive-definite mass matrix corresponds to a
scaling error in the complex modeshapes and one should verify that the identification
process (identification of the complex mode residues with id rc and determination
of scaled complex mode outputs with id rm) has been accurately done.

Warnings The complex modal input is assumed to be properly scaled with reciprocity con-
straints (see id rm). After the transformation the normal mode input/output ma-
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trices verify the same reciprocity constraints. This guarantees in particular that
they correspond to mass-normalized analytical normal modes.

For lightly damped structures, the average phase of this complex modal output
should be close to the −45o line (a warning is given if this is not true). In particular
a sign change between collocated inputs and outputs leads to complex modal outputs
on the +45o line.

Collocated force to displacement transfer functions have phase between 0 and −180o,
if this is not verified in the data, one cannot expect the scaling of id rm to be
appropriate and should not use psi2nor.

See also id rm, id nor, id rc, res2nor, nor2xf, nor2ss, the demo id demonstration
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qbode

Purpose Frequency response functions (in the xf format) for linear systems.

Syntax xf = qbode(a,b,c,d,w)

xf = qbode(ss,w)

xf = qbode(num,den,w)

XF = qbode( ... ,’struct’)

qbode( ... ,’iiplot ...’)

Description For state-space models described by matrices a, b, c, d, or the LTI state-space object
sys (see Control System Toolbox), qbode uses an eigenvalue decomposition of a to
compute, in a minimum amount of time, all the FRF xf at the frequency points w

xf = [C] (s
[
\I\
]
− [A])−1 [B] + [D]

The result is stored in the xf format (see details page 173). ’iiplot "Test" -po

-reset’ can be used to display results in iiplot(see section 2.1.2 ). The option -po

is used to save poles in ci.Stack{’IdMain’} so that they can be displayed. -reset
reinitializes the curve stack.

qbode will not work if your model is not diagonalizable. A specific algorithm
was developed to deal with systems with rigid-body modes (double pole at zero as-
sociated to non-diagonalizable matrices). This algorithm will not, however, indicate
the presence of incoherent b and c matrices. In other cases, you should then use
the direct routines res2xf, nor2xf, etc. or the bode function of the Control System
Toolbox.

For the polynomial models num, den (see details page 172), qbode computes the
FRF at the frequency points w

xf =
num(jω)

den(jω)

Warnings • All the SISO FRF of the system are computed simultaneously and the complex
values of the FRF returned. This approach is good for speed but not always
well numerically conditioned when using state space models not generated by the
SDT.

• As for all functions that do not have access to options (IDopt for identifica-
tion and Up.copt for FE model update) frequencies are assumed to be given
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in the mathematical default (rad/s). If your frequencies w are given in Hz, use
qbode(sys,w*2*pi).

• Numerical conditioning problems may appear for systems with several poles at
zero.

See also demo fe, res2xf, nor2xf, and bode of the Control System Toolbox
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res2nor

Purpose Approximate transformation from complex residues to normal mode residue or pro-
portionally damped normal mode forms.

Syntax [Rres,po,Ridopt] = res2nor(Cres,po,Cidopt)

[wj,ga,cp,pb] = res2nor(Cres,po,Cidopt)

Description The contributions of a pair of conjugate complex modes (complex conjugate poles
λ and residues R) can be combined as follows

[R]

s− λ
+

[
R̄
]

s− λ̄
= 2

(sRe(R)) + (ζωRe(R)− ω
√

1− ζ2Im(R))

s2 + 2ζωs+ ω2

Under the assumption of proportional damping, the term sRe(R) should be zero.
res2nor, assuming that this is approximately true, sets to zero the contribution
in s and outputs the normal mode residues Rres and the options Ridopt with
Ridopt.Fit = ’Normal’.

When the four arguments of a normal mode model (see nor page 160) are used as
output arguments, the function id rm is used to extract the input pbs and output
cps shape matrices from the normal mode residues while the frequencies wj and
damping matrix ga are deduced from the poles.

Warning This function assumes that a proportionally damped model will allow an accurate
representation of the response. For more accurate results use the function id nor

or identify using real residues (id rc with idopt.Fit=’Normal’).

See also id rm, id rc, id nor, res2ss, res2xf
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res2ss, ss2res

Purpose Transformations between the residue res and state-space ss forms.

Syntax SYS = res2ss(RES)

SYS = res2ss(RES,’AllIO’)

[a,b,c,d] = res2ss(res,po,idopt)

RES = ss2res(SYS)

[res,po,idopt] = ss2res(a,b,c,d)

Description The functions res2ss and ss2res provide transformations between the complex /
normal mode residue forms res (see section 5.6 ) and the state space forms (see
section 5.4 ). You can use either high level calls with data structures or low level
calls providing each argument

ci=demosdt(’demo gartid est’)

SYS = res2ss(ci.Stack{’IdMain’});
RES = ss2res(SYS);

ID=ci.Stack{’IdMain’};
[a,b,c,d] = res2ss(ID.res,ID.po,ID.idopt);

Important properties and limitations of these transformations are

ss

• The residue model should be minimal (a problem for MIMO systems). The func-
tion id rm is used within res2ss to obtain a minimal model (see section 2.4.1 ).
To obtain models with multiple poles use id rm to generate new res and new po

matrices.

• you can bypass the id rm call by providing complex mode modal controllability
ψTj b in a .psib field and modal observability cψj in a .def field. This is in
particular used by fe2ss with the -cpx command option.

• idopt.Reciprocity=’1 FRF’ or MIMO id rm then also constrains the system to
be reciprocal, this may lead to differences between the residue and state-space
models.

• The constructed state-space model corresponds to a displacement output.

• Low frequency corrections are incorporated in the state-space model by adding a
number (minimum of ns and na) of poles at 0.
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res2ss, ss2res

Asymptotic corrections (see idopt.ResidualTerms) other than the constant and
s−2 are not included.

• See below for the expression of the transformation.

• The ’AllIo’ input can be used to return all input/output pairs when assuming
reciprocity.

res

• Contributions of rigid-body modes are put as a correction (so that the pole at
zero does not appear). A real pole at 0 is not added to account for contributions
in 1/s.

• To the exception of contributions of rigid body modes, the state-space model must
be diagonalizable (a property verified by state-space representations of structural
systems).

Theory For control design or simulation based on identification results, the minimal model
resulting from id rm is usually sufficient (there is no need to refer to the normal
modes). The state-space form is then the reference model form.

As shown in section 2.4.1 , the residue matrix can be decomposed into a dyad
formed of a column vector (the modal output), and a row vector (the modal input).
From these two matrices, one derives the [B] and [C] matrices of a real parameter
state-space description of the system with a bloc diagonal [A] matrix{

ẋ1

ẋ2

}
=

 [0]
[
\I\
]

−
[
\ω2

j \

]
−
[
\2ζjωj\

] { x1

x2

}
+

{
B1

B2

}
{u(t)}

{y(t)} = [C1 C2]

{
x1

x2

}
where the blocks of matrices B1, B2, C1, C2 are given by{

C1j

C2j

}
= [Re (cψj) Im (cψj)]

1

ωj
√

1−ζ2j

[
ωj
√

1− ζ2
j 0

ζjωj 1

]
{
Bj1
Bj2

}
= 2

[
1 0

−ζjωj −ωj
√

1− ζ2
j

] Re
(
ψTj b

)
Im
(
ψTj b

) 
Form the state space model thus obtained, FRFs in the xf format can be readily
obtained using qbode. If the state space model is not needed, it is faster to use
res2xf to generate these FRFs.

See also
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demo fe, res2xf, res2nor, qbode, id rm, id rc
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res2tf, res2xf

Purpose Create the polynomial representation associated to a residue model.
Compute the FRF corresponding to a residue model.

Syntax [num,den] = res2tf(res,po,idopt)

xf = res2xf(res,po,w,idopt)

xf = res2xf(res,po,w,idopt,RetInd)

Description For a set of residues res and poles po (see res page 171), res2tf generates the
corresponding polynomial transfer function representation (see tf page 172)).

For a set of residues res and poles po, res2xf generates the corresponding FRFs
evaluated at the frequency points w. res2xf uses the options idopt.Residual,
.DataType, AbscissaUnits, PoleUnits, FittingModel. (see idopt for details).

The FRF generated correspond to the FRF used for identification with id rc except
for the complex residue model with positive imaginary poles only idopt.Fit=’Posit’

where the contributions of the complex conjugate poles are added.

For MIMO systems, res2tf and res2xf do not restrict the pole multiplicity. These
functions and the res2ss, qbode sequence are thus not perfectly equivalent. A
unit multiplicity residue model for which the two approaches are equivalent can be
obtained using the matrices new res and new po generated by id rm

[psib,cpsi,new_res,new_po]=id_rm(IIres,IIpo,idopt,[1 1 1 1]);

IIxh = res2xf(new_res,new_po,IIw,idopt);

The use of id rm is demonstrated in demo id.

See also res2ss, res2nor, qbode, id rm, id rc
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rms

Purpose Computes the RMS response of the given frequency response function xf or auto-
spectra a to a unity white noise input over the frequency range w.

Syntax rm = feval(id_rc(’@rms’),t,w)

rm = feval(id_rc(’@rms’),a,w,1)

Description The presence of a third input argument indicates that an auto-spectrum a is used
(instead of frequency response function xf).

A trapezoidal integration is used to estimate the root mean squared response

rms =

√
1

2π

∫ ω2

ω1

|t(ω)|2dω =

√
1

2π

∫ ω2

ω1

a(ω)dω

If xf is a matrix containing several column FRF, the output is a row with the RMS
response for each column.

Warning If only positive frequencies are used in w, the results are multiplied by 2 to account
for negative frequencies.

See also ii cost
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samcef

Purpose Interface function with SAMCEF FEM code.

Syntax Up=samcef(’read model.u18’)

Up=samcef(’read model.u18’,’buildup’)

Up=samcef(’read model.bdf’,’buildup’)

a=samcef(’lectmat’,’FileRoot’)

samcef(’write FileName’,model)

Description

read

By itself the read commands imports the model (not the properties since those are
not stored explicitly in the .u18 file. With the ’buildup’ argument, the .u11 and
.u12 files are also read to import element matrices into a superelement. Additional
DOFs linked to reduced shear formulations are properly condensed.

Since the properties are not read, there are some difficulties knowing DOFs actually
used in the model. You should then start by declaring those properties in format
before calling the read command.

model=samcef(’read test_dy.u18’); % read model

% define properties

model.pl=m_elastic(’dbval 1 steel’,’dbval 5 steel’);

model.il=p_shell(’dbval 100 kirchhoff .1 -f5’,’dbval 1 kirchhoff .1 -f5’);

% check that properties are valid

[Case,model.DOF]=fe_mknl(’initnocon’,model);

% Now read the element matrices (from .u11 and .u12 files)

model=samcef(’read test_dy.u18’,model,’buildup’)

When reading .u18 files, modeshapes are stored in the model stack entry curve,record(12) disp.
Other imported results are also stored in the stack.

write

Basic writing is supported with samcef(’write FileName’,model). Please send
requests to extend these capabilities.
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conv

This command lists conversion tables for elements, topologies, facetopologies. You
can redefine (enhance) these tables by setting preferences of the form setpref(

’FEMLink’, ’samcef.list’, value), but please also request enhancements so that
the quality of our translators is improved.

See also FEMLink
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setlines

Purpose Line color and style sequencing utility.

Syntax setlines

setlines(ColorMap,LineSequence)

setlines(ColorMapName,LineSequence,MarkerSequence)

Description The M-by-3 ColorMap or ColorMapName (standard color maps such as jet, hsv,
etc.) is used as color order in place or the ColorMap given in the ColorOrder axis
property (which is used as a default).

The optional LineSequence is a matrix giving the linestyle ordering whose default
is [’- ’;’--’;’-.’;’: ’].

The optional MarkerSequence is a matrix giving the marker ordering. Its default is
empty (marker property is not set).

For all the axes in the current figure, setlines finds solid lines and modifies the
Color, LineStyle and Marker properties according the arguments given or the
defaults. Special care is taken to remain compatible with plots generated by feplot

and iiplot.

setlines is typically used to modify line styles before printing. Examples would be

setlines k

setlines([],’-’,’ox+*s’)

setlines(get(gca,’colororder’),’:’,’o+^>’)
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Purpose Installation handling and troubleshooting.

Description For SDT to run in Matlab the path to SDT functions must be added to the
Matlab search path. Additional libraries are also required that sometimes need an
explicit declaration in Matlab. sdtcheck then packages manual input to alter the
user Matlab settings if needed.

Commands

path

This command properly defines the Matlab search path to run SDT. It has to be
used at startup if the search path was not saved in your Matlab session with SDT
installed.

% Initialization of SDT in MATLAB path

pw0=pwd;

cd(’path_to_my_sdt’)

sdtcheck path

cd(pw0)

patchJavaPath[,set]

SDT GUI utilities are based on Java and require additional Java libraries to be
loaded by Matlab. To ensure proper SDT GUI running the user needs to alter the
default Matlab classpath.txt.

• Command patchJavaPath checks whether the Java classpath contains the
libraries needed by SDT. If not a warning will be issued along with an exe-
cutable link to modify the Java classpath.

• Command patchJavaPathSet generates a custom Java classpath for the user
Matlab configuration to add the libraries required by SDT. Note that you
will need to restart Matlab for the modification to be effective.
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patchMkl[,path, rt]

The new ofact solver based on MKL Pardiso requires additional libraries to run.
patchMkl packages its installation.

• patchMkl downloads and installs the libraries.

• patchMklPath verifies the search path and library path.

• patchMkl rt provides troubleshooting information regarding library installa-
tion.
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Purpose Internal function used to handle default definitions.

Syntax sdtdef(’info’)

sdtdef(’ConstantName’,Value)

sdtdef(’ConstantName’)

Description For an exact list of current defaults use sdtdef(’info’). To reset values to factory
defaults use sdtdef(’factory’).

Values that you are likely to need changing are

avi cell array of default AVI properties, see the Matlab avifile com-
mand.

DefaultFeplot cell array of default feplot figure properties. For Matlab versions
earlier than 6.5, the OpenGL driver is buggy so you will typically
want to set the value with
sdtdef(’DefaultFeplot’,{’Renderer’ ’zbuffer’ ...

’doublebuffer’ ’on’})
epsl tolerance on node coincidence used by femesh, feutil. Defaults to

1e-6 which is generally OK except for MEMS applications, ...

The following Matlab preferences can also be used to customize SDT behavior for
your particular needs

SDT DefaultZeta Default value for the viscous damping ratio. The nominal
value is 1e-2. The value can also be specified in a model
stack and is then handled by fe def defzeta and fe def

defeta commands.
SDT KikeMemSize Memory in megabytes used to switch to an out-of-core sav-

ing of element matrix dictionaries.
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SDT tempdir can be used to specify a directory different than the
tempdir returned by Matlab. This is typically used
to specify a faster local disk.

SDT OutOfCoreBufferSizeMemory in bytes used to decide switching to an out-
of-core procedure. This is currently used by nasread

when reading large OUTPUT2 files.
FEMLink CopyFcn command used to copy file to remote locations. See

naswrite job commands.
FEMLink DmapDir directory where FEMLink is supposed to look for NAS-

TRAN DMAP and standard files.
FEMLink NASTRAN NASTRAN version. This is used to implement version

dependent writing of NASTRAN files.
FEMLink RemoteDir location of remote directory where files can be copied.

See naswrite job commands.
FEMLink SoftwareDocRootdefines the path or URL for a given software. You can

use sdtweb(’$Software/file.html’) commands to access
the proper documentation. For example
setpref(’FEMLink’,’SdtDocRoot’, ...

’http://www.sdtools.com/help/’);

sdtweb(’$sdt/sdt.html’);

FEMLink TextUnix set to 1 if text needs to be converted to UNIX (rather
than DOS) mode before any transfer to another ma-
chine.

Note that these definitions are available for the current session. If you want to use
permanent preferences, you should use the getpref/setpref Matlab functions and
define the SDT preferences.
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Purpose Class constructor for SDT handle objects.

Description The Structural Dynamics Toolbox now supports SDT handles (sdth objects). Cur-
rently implemented types for sdth objects are

SDTRoot global context information used by the toolbox
IDopt identification options (see idopt)
FeplotFig feplot figure handle
IiplotFig iiplot figure handle
VectCor Vector correlation handle (see ii mac)
XF stack pointer (see xfopt)

SDT handles are wrapper objects used to give easier access to user interface func-
tions. Thus idopt displays a detailed information of current identification options
rather than the numeric values really used.

Only advanced programmers should really need access to the internal structure of
SDT handles. The fixed fields of the object are opt, type, data, GHandle (if the
sdth object is stored in a graphical object), and vfields.

Most of the information is stored in the variable field storage field vfields and a
field of vfields is accessible using GetData. To get the model of a cf FeplotFig,
you may use the syntax cf.mdl.GetData.

See also feplot, idopt, iiplot, ii mac, xfopt
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Purpose
Description sdthdf handles MATLAB data/metadata information. Its main purpose if to deal

efficiently with the binary MATLAB file format .mat that is based on the HDF file
format.

The new hdf5 file format, supported by MATLAB since version 7.3, allows very
efficient data access from files. Partial loading is possible, as well as data location
by pointers. sdthdf allows the user to unload RAM by saving specific data to
dedicated files, and to optimize file loading using pointers. To be able to use these
functionalities, the file must have been saved in hdf5 format, which is activated in
MATLAB using the -v7.3 option of the save function.

File handling commands based on HDF5The following commands are supported.

hdfReadRef

This command handles partial data loading, depending on the level specified by the
user.

For unloaded data, a v handle pointer respecting the data structure and names is
generated, so that the access is preserved. Further hdfreadref application to this
specific data can be done later.

By default, the full file is loaded. Command option -level allows specifying the de-
sired loading level. For structured data, layers are organized in which substructures
are leveled. This command allows data loading until a given layer. Most common
levels used are given in the following list

• -level0 Load only the data structure using pointers.

• -level1 Load the data structure and fully load fields not contained in sub-
structures.

• -level2 Load the data structure, and fully load fields including the ones con-
tained in the main data substructures

• -level100 Load the data structure, and fully load all fields (Until level 100,
which is generally sufficient).
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It takes in argument either a file, or a data structure containing hdf5 v handle

pointers. In the case where a file is specified, the user can precise the data to be
loaded, by giving its named preceded by a slash /, substructure names can also be
specified giving the name path to the variable to be loaded with a succession of
slashes.

% To load an hdf5 file

r1=sdthdf(’hdfreadref’,’my_file.mat’);

% To load it using \vhandle pointers

r1=sdthdf(’hdfreadref-level0’,’my_file.mat’);

% To load a specified variable

r2=sdthdf(’hdfreadref-level0’,’my_file.mat’,’/var2’);

% To load a specified sub data

r3=sdthdf(’hdfreadref-level1’,’my_file.mat’,’/var2/subvar1’);

% To load a subdata from a previously loaded pointer

r4=sdthdf(’hdfreadref’,r2.subvar1);

hdfdbsave

This command handles partial data saving to a temporary file. It is designed to un-
load large numerical data, such as sparse matrices, or deformation fields. Command
option -struct however allows to save more complex data structures.

The function takes in argument the data to save and a structure with a field Dbfile

containing the temporary file path (string). The function outputs the v handleto
the saved data. The v handlehas the same data structure than the original. The
v handledata can be recovered by hdfreadref.

opt.Dbfile=nas2up(’tempname_DB.mat’);

r1=sdthdf(’hdfdbsave’,r1,opt);

r2=sdthdf(’hdfdbsave-struct’,r2,opt);

hdfmodelsave

This command handles similar saving strategy than hdfdbsave but is designed to
integrate feplotmodels in hdf5 format. The file linked to the model is not supposed
to be temporary, and data names are linked to an SDT model data structure, which
are typically in the model stack. The variable data names, must be of format
field name to store model.field in hdf5 format.
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For model stack entries, the name must be of the type Stack type name to store
cf.Stack’type’,’name’.

The function takes in argument the data base file, the feplot handle and the data
name, which will be interpreted to be found in the feplotmodel. The data will
be replaced by v handlepointers in the feplotmodel. Data can be reloaded with
command hdfmodel

sdthdf(’hdfmodelsave’,’my_file.mat’,cf,’Stack_type_name’);

hdfmodel

This command loads v handledata pointers in the feplotmodel at locations where
hdf5 data have been saved. This command works from the hdf file side, and loads
all the data contained with standard names in the feplotmodel. See hdfmodelsave

for more information on the standard data names. Commando option -check only
loads the data contained in the hdf file that is already instanced in the feplotmodel.

sdthdf(’hdfmodel’,’my_file.mat’,cf);

hdfclose

Handling hdf5 files in data structures can become very complex when multiple
handles are generated in multiple data. This command thus aims to force a file to
be closed.

sdthdf(’hdfclose’,’my_file.mat’);

A lower level closing call allows clearing the hdf5 libraries, when needed,

sdthdf(’hdfH5close’)

Here is an example of offload to HDF5 based mat files, and how to access the data
afterwards.

fname=fullfile(sdtdef(’tempdir’),’ubeam_Stack_SE.mat’);

fname2=fullfile(sdtdef(’tempdir’),’ubeam_model.mat’);

model=demosdt(’demoubeam’);cf=feplot;

cf.mdl=fe_case(cf.mdl,’assemble -matdes 2 1 NoT -SE’);

cf.Stack{’curve’,’defR’}=fe_eig(cf.mdl,[5 50 1e3]);

% save(off-load) some stack entries to a file
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sdthdf(’hdfmodelsave’,fname,cf,’Stack_curve_defR’)

% save model but not the off-loaded entries

fecom(’save’,fname2);

cf=fecom(’load’,fname2); % reload the model

sdthdf(’hdfmodel’,fname,cf); % reload pointers to the entries

cf.Stack{’defR’}

For MATLAB ¿7.3 HDF based .mat files, you can open a v handle pointer to a
variable in the file using

fname=fullfile(sdtdef(’tempdir’),’ubeam_Stack_SE.mat’);

var=sdthdf(’hdfreadref -level0’,fname,’Stack_curve_defR’)

ioClearCache,ioLoad, ...

io commands are meant to allow I/O operations tailored to memory demanding
operations.

sdthdf(’ioFreeCache’,’fname’) or sdthdf(’ioFreeCache’,’ vhandlename’) free
the cache of a given file or the file associated with a specific v handle.

sdthdf(’ioLoadVarName’,’fname’) loads VarName from file fname and frees the
associated cache. This operation still requires memory to store the variable and the
file cache and may thus fail for large variables.

sdthdf(’ioBufReadVarName’,’fname’) will load VarName from file fname while
controlling the cache used. This is only intended for large data sets written to file
as contiguous uncompressed data.

MATLAB data handling utilities

compare

The compare command checks the data equivalence of two MATLAB variables. This
is an efficient utility to spot local differences in large or complex data.

Any data compound can be input, mixing any native MATLAB classes. The
compare command will then recursively check the equivalence of the data com-
pound structure and content.Its output will be a cell array with as many lines as
differences were found. The cell array output is empty if all fields were found equal.

% Comparing two sets of data compounds
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r1=struct(’data1’,{{speye(15)}},’data2’,rand(15,1));
r2=struct(’data1’,{{speye(14)}},’data2’,rand(15,1),...
’data3’,1);

sdthdf(’compare’,r1,r2)

pointerList[sortm,-mb]

The pointerList command outputs the internal memory address of each variable,
(expanded for structures and cell arrays) specified in input and provides a statistic
on the total amount of data pointed in memory versus the total memory allocated
to the storage. As MATLAB performs lazy variable copy, copied variables share the
same pointed memory data until one of the instances is modified, the traditional
output of the who command may thus be inappropriate to assess memory usage.
The following command options allow output variations

• sortm sorts the output in increasing memory, so that the user sees the largest
memory usage at the bottom of the command window.

• -mb converts the memory sizes outputs from Bytes to Megabytes.

If not output is specified, the statistics are directly printed on screen, else a cell array
with as many lines as found variables is output, and three columns. First column is
the variable name, second is the memory address, third is the memory size.

The input is required to be a structure, cell array, v handle object or a string con-
taining whos. In the latter case, a reformatting of the output of the whos command
is performed.

% Getting information on data sizes in memory

% Generate a sample data structure

r1=struct(’data1’,speye(12),’data2’,rand(15,1));

r1.data3=r1.data1; % lazy copy

% reformat the output of whos

sdthdf(’pointerlistsortm’,’whos’)

% Get memory information on r1

sdthdf(’pointerlistsortm’,r1)

See also SDT handle
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Purpose SDT file navigation function.

Description This function allows opening the SDT documentation, opening classical file types
outside Matlab, and source code navigation.

OpenFileAtTag

When not called by a command starting with , sdtweb opens a file. The main cases
are

sdtweb feutil % Html documentation of feutil

sdtweb feutil#Renumber % at a tag in the HTML file

sdtweb feutil(’renumber’) % open .m file at tag ’renumber’

sdtweb source.c#tag % source.c file at tag

sdtweb file.doc % opens word for a given file.doc

sdtweb(’ path’) lists the help search path. sdtweb(’ pathReset’) redefines pref-
erences.

Utils

sdtweb(’ link’,’callback’,’comment’) creates a clickable link.

sdtweb(’ links’,’callback’,’comment’) creates a clickable link showing just the
comment.

sdtweb(’ wd’,wd0,wd1) recursively searches for a subdirectory of wd0 named wd1.
Command option -reset regenerates the underlying directory scan.

sdtweb(’ fname’,fname,wd0) recursively searches for a file named fname in wd0 or
any of its subdirectories, or the current directory.

sdtweb(’ find’,’base wd’,’filename’) searches for a file within the base work-
ing directory.

sdtweb(’ tracker’,’support’,979) opens a tracker on the support web site.

717



sdtweb

taglist

This commands opens the TagList figure (tree view of your file providing links for
source code navigation)

sdtweb _taglist % Open taglist of current editor file (if not docked)

sdtweb _taglist feutil % Open taglist of feutil

Accepted command options are

• -sortABC will display the navigation tree alphabetically sorted.

• -levelval in combination with sortABC perform the alphabetical sorting up
to level val.

The coding styles convention associated to the TagList parsing are detailed in sec-
tion 7.17 (sdtweb(’syntax’)).
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Purpose Sparse matrix utilities.

Description This function should be used as a mex file. The .m file version does not support all
functionalities, is significantly slower and requires more memory.

The mex code is not Matlab clean, in the sense that it often modifies input
arguments. You are thus not encouraged to call sp util yourself.

The following comments are only provided, so that you can understand the purpose
of various calls to sp util.

• sp util with no argument returns its version number.

• sp util(’ismex’) true if sp util is a mex file on your platform/path.

• ind=sp util(’profile’,k) returns the profile of a sparse matrix (assumed
to be symmetric). This is useful to have an idea of the memory required to
store a Cholesky factor of this matrix.

• ks=sp util(’sp2sky’,sparse(k)) returns the structure array used by the
ofact object.

• ks = sp util(’sky dec’,ks) computes the LDL’ factor of a ofact object and
replaces the object data by the factor. The sky inv command is used for for-
ward/backward substitution (take a look at the @ofact\mldivide.m function).
sky mul provides matrix multiplication for unfactored ofact matrices.

• k = sp util(’nas2sp’,K,RowStart,InColumn,opt) is used by nasread for
fast transformation between NASTRAN binary format and Matlab sparse
matrix storage.

• k = sp util(’spind’,k,ind) renumbering and/or block extraction of a ma-
trix. The input and output arguments k MUST be the same. This is not
typically acceptable behavior for Matlab functions but the speed-up com-
pared with k=k(ind,ind) can be significant.

• k = sp util(’xkx’,x,k) coordinate change for x a 3 by 3 matrix and DOFs
of k stacked by groups of 3 for which the coordinate change must be applied.
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• ener = sp util(’ener’,ki,ke,length(Up.DOF),mind,T) is used by upcom

to compute energy distributions in a list of elements. Note that this function
does not handle numerical round-off problems in the same way as previous
calls.

• k = sp util(’mind’,ki,ke,N,mind) returns the square sparse matrix k as-
sociated to the vector of full matrix indices ki (column-wise position from 1 to
N^2) and associated values ke. This is used for finite element model assembly
by fe mk and upcom. In the later case, the optional argument mind is used to
multiply the blocks of ke by appropriate coefficients. mindsym has the same
objective but assumes that ki,ke only store the upper half of a symmetric
matrix.

• sparse = sp util(’sp2st’,k) returns a structure array with fields corre-
sponding to the Matlab sparse matrix object. This is a debugging tool.

• sp util(’setinput’,mat,vect,start) places vector vect in matrix mat start-
ing at C position start. Be careful to note that start is modified to contain
the end position.
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Purpose Stack handling functions.

Syntax [StackRows,index]=stack_get(model,typ);

[StackRows,index]=stack_get(model,typ,name);

Up=stack_set(model,typ,name,val)

Up=stack_rm(model,typ,name);

Up=stack_rm(model,typ);

Up=stack_rm(model,’’,name);

Description The .Stack field is used to store a variety of information, in a N by 3 cell array
with each row of the form {’type’,’name’,val} (see section 7.6 or section 7.7 for
example). The purpose of this cell array is to deal with an unordered set of data
entries which can be classified by type and name.

Since sorting can be done by name only, names should all be distinct. If the types
are different, this is not an obligation, just good practice. In get and remove calls,
typ and name can start by # to use a regular expression based on matching (use doc

regexp to access detailed documentation on regular expressions).

Syntax Case.Stack={’DofSet’,’Point accel’,[4.03;55.03];

’DofLoad’,’Force’,[2.03];

’SensDof’,’Sensors’,[4 55 30]’+.03};
% Replace first entry

Case=stack_set(Case,’DofSet’,’Point accel’,[4.03;55.03;2.03]);

Case.Stack

% Add new entry

Case=stack_set(Case,’DofSet’,’P2’,[4.03]);

Case.Stack

% Remove entry

Case=stack_rm(Case,’’,’Sensors’);Case.Stack

% Get DofSet entries and access

[Val,ind]=stack_get(Case,’DofSet’)

Case.Stack{ind(1),3} % same as Val{1,3}
% Regular expression match of entries starting with a P

stack_get(Case,’’,’#P*’)

SDT provides simplified access to stacks in feplot (see section 4.4.3 ) and iiplot
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figures (see section 2.1.2 ). cf.Stack{’Name’} can be used for direct access to the
stack, and cf.CStack{’Name’} for access to FEM model case stacks.
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Purpose Read from Universal Files.

Syntax ufread

ufread(’FileNameOrList’)

UFS = ufread(’FileName’)

UFS = ufread(’FileList*.uff’)

Description The Universal File Format is a set of ASCII file formats widely used to exchange
analysis and test data. As detailed below ufread supports test related UFF (15
grid point, UFF55 analysis data at node, UFF58 response data at DOF) and with the
FEMLink extension FEM related datasets.

ufread with no arguments opens a GUI to let you select a file and displays the result
using feplot and/or iiplot. ufread(’FileName’) opens an feplot or iiplot

figure with the contents. UFS=ufread(’FileName’) returns either a FEM model (if
only model information is given) or a curve stack UFS pointing to the universal files
present in FileName grouped by blocks of files read as a single dataset in the SDT
(all FRFs of a given test, all trace lines of a given structure, etc.). You can specify
a file list using the * character in the file name.

You get a summary of the file contents by displaying UFS

>> UFS

UFS = UFF curve stack for file ’example.uff’

{1} [.Node (local) 107x7, .Elt (local) 7x156] : model

2 [.w (UFF) 512x1, .xf (UFF) 512x3] : response data

3 [.po (local) 11x2, .res (local) 11x318] : shape data

which indicates the content of each dataset in the stack, the current data set between
braces { }, the type and size of the main data fields. For response data (UFF type
58), the data is only imported when you refer to it (UFS(i) call) but it is imported
every time you do so unless you force loading into memory using UFS(i)=UFS(i).

The UFS object gives you direct access to the data in each field. In the example
above, you can display the modeshapes using

cf = feplot;
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cf.model = UFS(1);

cf.def = UFS(3);

When loading response data, you may want to transfer all options from the universal
file to an iiplot stack entry using calls of the form ci.Stack{’curve’,’Test’}=UFS(3).If
you need to extract partial sets of DOF, consider fe def SubDof.

15 Grid point

Grid points stored in a node matrix (see node page 231) in a UFS(i).Node field.

The format is a (4I10,1P3E13.5) record for each node with fields
[NodeID PID DID GID x y z]

where NodeID are node numbers (positive integers with no constraint on order or
continuity), PID and DID are coordinate system numbers for position and displace-
ment respectively (this option is not currently used), GID is a node group number
(zero or any positive integer), and x y z are the coordinates.

55 Analysis data at node

UFF55 Analysis data at nodes are characterized by poles .po and residues .res

(corresponding to DOFs .dof) and correspond to shape at DOF datasets (see more
info under the xfopt help).

The information below gives a short description of the universal file format. You
are encouraged to look at comments in the ufread and ufwrite source codes if you
want more details.
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Header1 (80A1). The UFF header lines are stored in the .header field
Header2 (80A1)
Header3 (80A1) DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1)
Header5 (80A1)
Fun (6I10) This is stored in the .fun field
SpeInt (8I10) NumberOfIntegers on this line (3-N are type specific),

NumberOfReals on the next line, SpeInt type specific integers (see table
below for details)

SpeRea Type specific real parameters
NodeID (I10) Node number
Data (6E13.5) Data At This Node : NDV Real Or Complex Values (real

imaginary for data 1, ...)
Records 9 And 10 Are Repeated For Each Node.

Type specific values depend on the Signification value and are stored in the .r55

field.

0 Unknown [ 1 1 ID Number]

[0.0]

1 Static [1 1 LoadCase]

[0.0]

2 Normal model [2 4 LoadCase ModeNumber]

[FreqHz ModalMass DampRatioViscous DampRatioHysteretic]

3 Complex [2 6 LoadCase ModeNumber]

eigenvalue [ReLambda ImLambda ReModalA ImModalA ReModalB ImModalB]

4 Transient [2 1 LoadCase TimeStep]

[TimeSeconds]

5 Frequency [2 1 LoadCase FreqStepNumber]

response [FrequencyHz]

6 Buckling [1 1 LoadCase]

[Eigenvalue]

58 Function at nodal DOF

UFF58 Functions at nodal DOF (see Response data) are characterized by frequen-
cies w, a data set xf, as well as other options. The information below gives a short
description of the universal file format. You are encouraged to look at comments in
the ufread and ufwrite source codes if you want more details. Functions at nodal
DOFs are grouped by type and stored in response data sets of UFS.
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Header1 (80A1) Function description
Header2 (80A1) Run Identification
Header3 (80A1) Time stamp DD-MMM-YY and HH:MM:SS with format

(9A1,1X,8A1)
Header4 (80A1) Load Case Name
Header5 (80A1)
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DOFID This is stored in .dof field (which also has a file number as address in
column 3). Values are

• 2(I5,I10) : FunType (list with xfopt(’ funtype’), stored in
.fun(1)), FunID (ID in .dof(:,5)), VerID version or sequence
number, LoadCase (0 single point)

• (1X,10A1,I10,I4) : ResponseGroup (NONE if unused, ID in
.dof(:,4)), ResponseNodeID, ResponseDofID (1:6 correspond to
SDT DOFs .01 to .06, -1:-6 to SDT DOFs .07 to .12). DOF
coding stored in .dof(:,1)).

• (1X,10A1,I10,I4) : ReferenceGroup (NONE if unused, ID in
.dof(:,4)), ReferenceNodeID, ReferenceDofID. These are only
relevant if LoadCase is zero. DOF coding stored in .dof(:,2)).

DataForm (3I10,3E13.5)

DFormat (2 : real, single precision, 4 : real, double precision,
5 : complex, single precision, 6 : complex, double precision),
NumberOfDataPoints, XSpacing (0 - uneven, 1 - even (no abscissa val-
ues stored)), XMinimum (0.0 if uneven), XStep (0.0 if spacing uneven),
ZAxisValue (0.0 if unused)

XDataForm (I10,3I5,2(1X,20A1)) DataType (list with xfopt(’ datatype’)), lue

length unit exponents, fue force, tue temperature, AxisLabel,
AxisUnits

Note : exponents are used to define dimensions. Thus Energy (Force
* Length) has [fue lue tue]=[1 1 0]. This information is generally
redundant with DataType.

YNDataForm Ordinate (or ordinate numerator) Data Form (same as XDataForm

YDDataForm Ordinate Denominator Data Characteristics
ZDataForm Z-axis Data Characteristics
DataValue a series of x value (if uneven x spacing, always with format E13.5),

real part, imaginary part (if exists) with precision (E13.5 or E20.12)
depending on DFormat.

82, Trace Line

UFF82 Trace Line matrix LDraw where each non-empty row corresponds to a line to
be traced. All trace lines, are stored as element groups of UFS(1).Elt.
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LDraw can be used to create animated deformation plots using feplot.

Opt (3I10) LineNumber, NumberOfNodes, Color
Label (80A1) Identification for the line
Header3 (8I10) node numbers with 0 for discontinuities

( ,1:2) [NumberOfNodes GroupID]

( ,3:82) [LineName] (which should correspond to the group name)
( ,83:end) [NodeNumbers] (NumberOfNodes of them, with zeros to break the line)

151, Header

Header stored as a string matrix header (with 7 rows).

780, 2412, Elements

These universal file formats are supported by the SDT FEMLink extension.

SDT UNV element (UNV Id)
beam1 rod (11), linear beam (21)
tria3 thin shell lin triangle (91), plane stress lin tri (41), plan strain

lin tri (51), flat plate lin triangle (74)
tria6 thin shell para tri (92), plane stress para tri (42), plane strain

para tri (51), flat plate para tri (62), membrane para tri (72)
quad4 thin shell lin quad (94), plane stress lin quad (44), plane strain

lin quad (54), flat plate lin quad (64), membrane lin quad (71)
quadb thin shell para quad (95), plane stress para quad (54), plane

strain para quad(55), flat plate para quad (65), membrane para
quad(75)

tetra4 solid lin tetra (111)
tetra10 solid para tetra (118)
penta6 solid lin wedge (112)
penta15 solid para wedge (113)
hexa8 solid lin brick (115)
hexa20 solid para brick (116)
rigid rigid element (122)
bar1 node-node trans spring (136), node-node rot spring (137)
mass2 lumped mass (161)
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773, 1710 Material Database

These universal file formats are supported by the SDT FEMLink extension.

All materials properties are read, but obviously only those currently supported by the
SDT are translated to the corresponding row format (see m elastic and section 7.4
).

772, 788, 789, 2437, Element Properties

These universal file formats are supported by the SDT FEMLink extension.

All element (physical) properties are read, but obviously only those currently sup-
ported by the SDT are translated to the corresponding row format (see p beam,
p shell, section 7.3 ).

2414, Analysis data

These universal file formats are supported by the SDT FEMLink extension.

Note that the list of FEMLink supported dataset is likely to change between manual
editions. Please get in touch with SDTools if a dataset you want to read is not
supported.

See also nasread, ufwrite, xfopt
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Purpose Write to a Universal File.

Syntax ufwrite(FileName,UFS,i)

ufwrite(FileName,model)

Description You can export to UFF using the feplot and iiplot export menus.
ufwrite(FileName,UFS,i) appends the dataset i from a curve stack UFS to the file
FileName. For details on curve stacks see section 2.1.2 . ufwrite(FileName,model)
can be used to export FEM models.

For datasets representing

• models, ufwrite writes a UFF of type 15 for the nodes and a trace line (UFF 82)
for test wire frames (all EGID negative) or without FEMLink. With FEMLink,
nodes are written in UFF 2411 format and elements in UFF 2412.

• response data, ufwrite writes a response at DOF (UFF 58) for each column of
the response set.

• shape data, ufwrite writes a data at nodal DOF (UFF 55) for each row in the
shape data set.

Starting from scratch, you define an curve stack DB=xfopt(’empty’). You can then
copy data sets from the stack XF (previously initialized by iiplot or xfopt) using
DB(i)=XF(j). You can also build a new data set by giving its fields (see xfopt for
the fields for the three supported dataset types). The following would be a typical
example

UF=xfopt(’empty’)

UF(1)={’node’,FEnode,’elt’,FEelt};
UF(2)={’w’,IIw,’xf’,IIxf};
UF(3)={’po’,IIres,’res’,IIres,’dof’,XFdof};

Once the curve stack built, ufwrite(’NewFile’,UF,1:3) will write the three datasets.

With iiplot, you can use the stack to change properties as needed then write
selected datasets to a file. For example,

tname=nas2up(’tempname .uf’);

ci=iicom(’CurveLoad’,’gartid’);
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ci.Stack{’Test’}.x=’frequency’; % modify properties, see xfopt(’_datatype’)

ci.Stack{’Test’}.yn=’accele’;
iicom(’sub’); % reinitialize plot to check

ufwrite(tname,ci,’Test’);

% write a model

ci.Stack{’SE’,’model’}=demosdt(’demo gartte’);

ufwrite(tname,ci,’model’);

% write a time trace

C1=fe_curve(’TestRicker .6 2’,linspace(0,1.2,120));

C1=ufwrite(’_toxf’,C1); % Transform to xf format

C1.x= xfopt(’_datatype’,’time’);

C1.yn= xfopt(’_datatype’,’Acceleration’);

C1.fun= xfopt(’_funtype’,1);

ufwrite(tname,ci,’Ricker’);

UFS=ufread(tname); % reread the UFF to check result

Note that you can edit these properties graphically in the iiplot properties ...

figure.

See also ufread, iiplot, nasread
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Purpose User interface function for parameterized superelements.

Description The upcom interface supports type 3 superelements which handle parameterization
by storing element matrix dictionaries and thus allowing reassembly of mass and
stiffness matrices computed as weighted sums of element matrices (6.107).

By default, upcom uses a special purpose superelement stored in the global variable
Up. You can however use more than one type 3 superelement by providing the
appropriate variables as input/output arguments. upcom(’info’) applies to Up

whereas upcom(model,’info’) applies to model.

The par commands are used to dynamically relate the element matrix weights to
physical parameters thus allowing fairly complex parametric studies on families of
models. The main objective for upcom is to enable finite element model updating,
but it can also be used for optimization and all problems using with families of
models or hysteretic damping modeling as illustrated in section 5.3.2 .

The following paragraphs detail calling formats for commands supported by upcom

and are followed by an explanation of the signification of the fields of Up (see the
commode help for hints on how to build commands and understand the variants
discussed in this help).

More details on how these commands are typically sequenced are given in the Tu-
torial section 6.4 and section 6.5 .

Commands

Clear, Load File , Save File

upcom(’clear’) clears the global variable Up and the local and base variables Up

if they exist. If these local variables are not cleared then the global variable Up is
reset to that value.

upcom(’load File’) loads the superelement fields from File.mat and creates the
file if it does not currently exist. upcom(’save File’) makes sure that the current
values of the various fields are saved in File.mat. Certain commands automatically
save the superelement but efficiency mandates not to do it all the time. The working
directory field Up.wd lets you work in a directory that differs from the directory where
the file is actually located.
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Assemble [,m,k] [,coef cur],[,delta i][,NoT][,Point]

[m,k] = upcom(’assemble’) returns the mass and stiffness parameters associated
with the parameters by the last parcoef command. You should look up newer
assembly calls in section 4.8.8 .

Assemble Coef cur uses the parameter values cur for the assembly. Assemble

CoefNone does not use any parameter definitions (all the element matrices are used
with a unit weighting coefficient). AssembleMind uses columns 5 and 6 of Up.mind
for element matrix coefficients.

Assemble Delta i assembles the derivative of matrices with respect to parameter
i. To assemble a derivative with non zero components on more than one parameter,
use [dm,dk]=upcom(’assemble delta’,dirp) where dirp (with Npar rows) char-
acterizes the amplitude of the derivative on each parameter for the current change.
dirp can for example be used to describe simultaneous changes in mass and stiffness
parameters.

k=upcom(’assemble k coef 2 3’) only assembles the stiffness with parameter co-
efficients set to 2 and 3. Similarly, dm=upcom(’assemble m delta 2’) will assemble
the mass derivative with respect to parameter 2.

The NoT option can be used to prevent the default projection of the matrices on the
master DOFs defined by the current case.

The Point option can be used return the v handle object pointing to the non assem-
bled matrix. This matrix can then be used in feutilb(’tkt’) and feutilb(’a*b’)

out of core operations.

ComputeMode [ ,full,reduced] [,eig opt]

[mode,freq] = upcom(’ComputeMode’) assembles the model mass and stiffness
based on current model parameters (see the parcoef command) and computes
modes. The optional full or reduced can be used to change the current default (see
the opt command). The optional eig opt can be used to call fe eig with options
other than the current defaults (see the opt command).

upcom(’load GartUp’);

def = upcom(’computemode full 105 10 1e3’);

For reduced model computations, the outputs are [moder,freq,modefull].
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ComputeModal [ ,full,reduced]

Given a parameterized model, the command ComputeModal computes the frequency
response associated to all the inputs and outputs of the model, taken into account
the damping ratio. ComputeModal computes the normal modes and static corrections
for inputs of the full or reduced order models based on the full or reduced model.
nor2xf is then called to build the responses (for sensor load definitions within the
model, see nor2xf).

Up=upcom(’load GartUp’);

Up=fe_case(Up,’SensDof’,’sensors’,[3.03;54.03],’DofLoad’,’input’,3.03);

upcom(Up,’compute modal full acc iiplot "updated" -po -reset’);

You may want to compute the direct frequency response associated the inputs
on all the DOFs structure. It does not compute modes and is thus faster than
ComputeModal for a full order model and a few frequency points. The high level call
uses the fe simul function

cf=fecom(’load’,which(’GartUp.mat’));

cf.mdl=fe_case(cf.mdl,’DofLoad’,’input’,3.03);

cf.mdl=stack_set(cf.mdl,’info’,’Freq’,linspace(0,15,50)’);

cf.def=fe_simul(’DFRF’,cf.mdl);fecom(’ch22’);

Ener [m, k]

ener = upcom(’ener k’,def) computes the strain energy in each element for the
deformations def. ener is a data structure with fields .IndInElt specifying the
element associated with each energy row described in the .data field. You can
display the kinetic energy in an arbitrary element selection of a structure, using a
call of the form

cf.sel={’group6’,’colordata elt’,upcom(’ener m’,’group6’,mode)};

Fix

upcom(’fix0’) eliminates DOFs with no stiffness contribution. upcom(’fix’,adof)
only retains DOFs selected by adof.

This command is rather inefficient and you should eliminate DOFs with FixDOF case
entries (see fe case) or assemble directly with the desired DOFs (specify adof in
the SetNominal command).
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Information about the superelement is stored in fields of the global variable Up. The
easiest way to access those fields is to make the variable local to your workspace (use
global Up) and to access the fields directly. The superelement also has pseudo-
fields mi,me,ki,ke which are always stored in Up.file. Commands of the form
load(Up.file,’ke’) are used to get them.

femesh

upcom femesh copies Up.Elt to FEelt and Up.Node to FEnode so that femesh com-
mands can be applied to the model.

IndInElt

upcom(’IndInElt’) returns a vector giving the row position in Up.Elt of each row
in Up.mind. This is in particular used for color coded energy plots which should
now take the form

feplot(’ColorDataElt’,upcom(’eners’,res),upcom(’indinelt’));

Although it is typically easier to use high level calls of the form

upcom(’load GartUp’);upcom(’plotelt’);

cf=feplot;cf.def=fe_eig(Up,[5 10 1e3]);fecom(’ch7’);

cf.sel={’groupall’,’colordata enerk’};

Info [ ,par,elt]

upcom(’info’) prints information about the current content of Up: size of full and
reduced model, values of parameters currently declared, types, etc.

InfoPar details currently defined parameters. InfoElt details the model.

Opt

upcom(’opt Name ’ ’) sets the option Name to a given Value. Thus upcom (’opt

gPrint 11’) sets the general printout level to 11 (maximum). Accepted names and
values are detailed in the Up.copt field description below.
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Par [add type values,reset]

These commands allow the creation of a parameter definition stack. Each parameter
is given a type (k for stiffness, m for mass, t for thickness) optional current, min and
max values, a name, and an element selection command.

Up=upcom(’load GartUp’); % Load sample model

Up=fe_case(Up,’ParReset’) % Reset parameters

Up=fe_case(Up,’ParAdd k 1.0 0.5 2.0’,’Tail’,’group3’);

Up=fe_case(Up,’ParAdd t 1.0 0.9 1.1’,’Constrained Layer’,’group6’);

Up=fe_case(Up,’parcoef’,[1.2 1.3]);

upcom(Up,’info par’);

Parameters are stored in the case stack and can be selected with

des=fe_case(Up,’stack_get’,’par’)

des is a cell array where each row has the form {’par’,’name’,data} with data

containing fields

.sel string or cell array allowing selection of elements affected by the param-
eter

.coef vector of parameter coefficients (see format description under upcom

ParCoef).
.pdir Boolean vector giving the positions of affected elements in Up.mind (for

upcom models)
.name Parameter name

ParCoef

The value of each physical parameter declared using upcom Par or fe case par

commands is described by a row of coefficients following the format

[type cur min max vtype]

with

• type 1 stiffness proportional to parameter value. This is the case for a variable
Young’s modulus. 2 mass proportional to parameter. This is the case for a
variable mass density.

3 variable thickness (upcom only). Currently only valid for quad4 and quadb

elements. tria3 elements can be handled with degenerate quad4. Element
groups with variable thickness must be declared at assembly during upcom(’SetNominal’).
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• cur for current value

• min for minimum value

• max for maximum value

• vtype deals with the type of variation 1 linear, 2 log (not fully implemented)

upcom(Up,’parcoef’,cur) is used to set current values (cur must be a vector of
length the number of declared parameters), while upcom(Up,’parcoef’,par) also
sets min, max and vtype values. You can also use [cur,par]=upcom(Up,’parcoef’)
or par=upcom(Up,’parcoefpar’) to obtain current values or the parameter value
matrix.

An example of parameter setting is thus

Up=demosdt(’gartup’); % see sdtweb demosdt(’gartup’)

% MatType cur min max vtype

par = [ 1 1.0 0.1 3.0 1 ; ... % Linear

3 0.0 -1 2.0 2 ]; % Log variation

Up=upcom(Up,’parcoef’,par);

upcom(Up,’info par’);

[cur,par]=upcom(Up,’parcoef’)

Note that to prevent user errors, upcom does not allow parameter overlap for the
same type of matrix (modification of the modulus and/or the thickness of the same
element by two distinct parameters).

ParRed

upcom(’par red’,T) projects the current full order model with the currently de-
clared parameters on the basis T. Typical reduction bases are discussed in sec-
tion 6.2.7 and an example is shown in the gartup demo. Matrices to be projected
are selected based on the currently declared variable parameters in such a way that
projected reduced model is able to make predictions for new values of the parame-
ters.

ParTable

tt=upcom(’partable’) returns a cell array of string describing the parameters cur-
rently declared. This cell array is useful to generate formatted outputs for inclusion
in various reports using comstr(tt,-17,’excel’) for example.
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PlotElt

upcom plotelt initializes a feplot figure displaying the model in upcom. If Up has
deformations defined in a .def field, these are shown using cf=feplot;cf.def=Up.

Profile [,fix]

Renumbers DOFs and pseudo-fields mi,me,ki,ke using symrcm to minimize matrix
bandwidth. ProfileFix eliminates DOFs with no stiffness on the diagonal at the
same time. upcom(’ProfileFix’,fdof) profiles and eliminates DOFs in fdof and
DOFs with no stiffness on the diagonal.

Support for case entries (see fe case) makes this command obsolete.

SensMode [,reduced]

[fsen,mdsen,mode,freq] = upcom(’SensMode’,dirp,indm,T) returns frequency
and modeshape sensitivities of modes with indices given in indm for modifications
described by dirp.

For a model with NP parameters (declared with the Par commands), dirp is a
matrix with Npar rows where each column describe a case of parameter changes of
the form par = dirp(:,j). The default for dirp the identity matrix (unit change
in the direction of each parameter).

The optional argument T can be used to give an estimate of modeshapes at the
current design point. If T is given the modes are not computed which saves time but
decreases accuracy if the modes are not exact.

fsen gives, for modes indm, the sensitivities of modal frequencies squared to all
parameters (one column of fsen per parameter). mdsen stores the modeshape sen-
sitivities sequentially (sensitivities of modes in indm to parameter 1, parameter 2,
...).

When modeshape sensitivities are not desired (output is [fsen] or [fsen, mode,

freq]), they are not computed which takes much less computational time.

By default SensMode uses the full order model. The first order correction to the
modal method discussed in Ref. [42] is used. You can access the reduced order
model sensitivities using SensModeReduced but should be aware that accuracy will
then strongly depend on the basis you used for model reduction (ParRed command).
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SetNominal [ , t groups]

To generate a new model, you should first clear any Up variable in the workspace,
specify the file that where you will want the element matrices to be saved, then
perform the assembly. For example

model=demosdt(’demogartfe’);

model.wd=sdtdef(’tempdir’);model.file=’GartUp_demo.mat’;

Up=upcom(model,’setnominal’)

% delete(fullfile(Up.wd,[Up.file,’.mat’])) % to remove the result

Case information (boundary conditions, ... see fe case) in model is saved in Up.Stack

and will be used in assembly unless the NoT option is included in the Assemble com-
mand.

If the parameter that will be declared using the Par commands include thickness
variations of some plate/shell elements, the model will use element sub-matrices.
You thus need to declare which element groups need to have a separation in ele-
ment submatrices (doing this separation takes time and requires more final storage
memory so that it is not performed automatically). This declaration is done with a
command of the form SetNominal T groups which gives a list of the groups that
need separation.

Obsolete calling formats upcom(’setnominal’,FEnode,FEelt,pl,il) and upcom(

’setnominal’,FEnode,FEelt,pl,il,[],adof) ( where the empty argument [] is
used for coherence with calls to fe mk) are still supported but you should switch to
using FEM model structures.

Fields of Up Up is a generic superelement (see description under fe super) with additional fields
described below. The Up.Opt(1,4) value specifies whether the element matrices are
symmetric or not.

Up.copt

The computational options field contains the following information

(1,1:7) = [oMethod gPrint Units Wmin Wmax Model Step]
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oMethod optimization algorithm used for FE updates
1: fmins of Matlab (default)
2: fminu of the Optimization Toolbox
3: up min

gPrint printout level (0 none to 11 maximum)
Units for the frequency/time data vector w and the poles

01: w in Hertz 02: w in rad/s 03: w time seconds
10: po in Hertz 20: po in rad/s
example: Up.copt(1,3) = 12 gives w in rad/sec and po in Hz

Wmin index of the first frequency to be used for update
Wmax index of the last frequency to be used for update
Model flag for model selection (0 full Up, 1 reduced UpR)
Step step size for optimization algorithms (foptions(18))

(2,1:5) = [eMethod nm Shift ePrint Thres MaxIte]

are options used for full order eigenvalue computations (see fe eig for details).

(3,1) = [exMethod ]

exMethod expansion method (0: static, 1: dynamic, 2: reduced basis dynamic, 3:
modal, 4: reduced basis minimum residual)

Up.mind, Up.file, Up.wd, mi, me, ki, ke

Up stores element submatrices in pseudo-fields mi,me,ki,ke which are loaded from
Up.file when needed and cleared immediately afterwards to optimize memory us-
age. The working directory Up.wd field is used to keep tract of the file location even
if the user changes the current directory. The upcom save command saves all Up
fields and pseudo-fields in the file which allows restarts using upcom load.

ki,mi are vectors of indices giving the position of element matrix values stored in
ke,me. The indices use the column oriented numbering from 1 to N2 where N is
the assembled matrix size.

Up.mind is a NElt x6 matrix. The first two columns give element (sub-)matrix start
and end indices for the mass matrix (positions in mi and me). Columns 3:4 give
element (sub-)matrix start and end indices for the stiffness matrix (positions in ki

and ke). Column 5 (6) give the coefficient associated to each element mass (stiffness)
matrix. If columns 5:6 do not exist the coefficients are assumed equal to 1. The
objective of these vectors is to optimize model reassembly with scalar weights on
element matrices.
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Up.Node, Up.Elt, Up.pl, Up.il, Up.DOF, Up.Stack

Model nodes (see section 7.1 ), elements (see section 7.2 ), material (see section 7.3
) and element (see section 7.4 ) property matrices, full order model DOFs. These
values are set during the assembly with the setnominal command.

Up.Stack contains additional information. In particular parameter information (see
upcom par commands) are stored in a case (see section 7.7 ) saved in this field.

Up.sens

Sensor configuration array built using fe sens. This is used for automatic test /
analysis correlation during finite element update phases.

See also fesuper, up freq, up ixf
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up freq, up ifreq

Purpose Sensitivity and iterative updates based on a comparison of modal frequencies.

Syntax [coef,mode,freq]=up_freq(’Method’,fID,modeID,sens);

[coef,mode,freq]=up_ifreq(’Method’,fID,modeID,sens);

Description up freq and up ifreq seek the values coef of the currently declared Up parameters
(see the upcom Par command) such that the difference between the measured fID

and model normal mode frequencies are minimized.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC
(see ii mac) to match test and analysis modes. To allow the MAC comparison
modeshapes. You are expected to provide test modeshapes modeID and a sensor
configuration matrix (initialized with fe sens).

The cost used in both functions is given by

norm(new_freq(fDes(:,1))-fDes(:,2))/ norm(fDes(:,2))

up freq uses frequency sensitivities to determine large steps. As many iterations as
alternate matrices are performed. This acknowledges that the problem is really non-
linear and also allows a treatment of cases with active constraints on the coefficients
(minimum and maximum values for the coefficients are given in the upcom Par

command).

up ifreq uses any available optimization algorithm (see upcom opt) to minimize the
cost. The approach is much slower (in particular it should always be used with a
reduced model). Depending on the algorithm, the optimum found may or may not
be within the constraints set in the range given in the upcom Par command.

These algorithms are very simple and should be taken as examples rather than truly
working solutions. Better solutions are currently only provided through consulting
services (ask for details at info@sdtools.com).

See also up ixf, up ifreq, fe mk, upcom
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up ixf

Purpose Iterative FE model update based on the comparison of measured and predicted
FRFs.

Syntax [jump]=up_ixf(’basic’,b,c,IIw,IIxf,indw)

Description up ixf seeks the values coef of the currently declared Up parameters (see the upcom

Par command) such that the difference Log least-squares difference (3.4) between
the desired and actual FRF is minimized. Input arguments are

method Currently ’basic’ is the only Method implemented.
range a matrix with three columns where each row gives the minimum, max-

imum and initial values associated the corresponding alternate matrix
coefficient

b,c input and output shape matrices characterizing the FRF given using
the full order model DOFs. See section 5.1 .

IIw selected frequency points given using units characterized by
Up.copt(1,3)

IIxf reference transfer function at frequency points IIw

indw indices of frequency points where the comparison is made. If empty all
points are retained.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC
(see ii mac) to match test and analysis modes. To allow the MAC comparison
modeshapes. You are expected to provide test modeshapes modeID and a sensor
configuration matrix (initialized with fe sens).

up ixf uses any available optimization algorithm (see upcom opt) to minimize the
cost. Depending on the algorithm, the optimum found may or may not be within
the constraints set in the range given in the upcom Par command.

This algorithm is very simple and should be taken as an example rather than an truly
working solution. Better solutions are currently only provided through consulting
services (ask for details at info@sdtools.com).

See also up freq, upcom, fe mk
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v handle

Purpose
Description Class constructor for variable handle objects.

v handle The Structural Dynamics Toolbox supports variable handle objects, which act as
pointers to variables that are actually stored as

• uo user data of graphical objects (init with v handle(’uo’,go)). This is
in particular used in feplot to store the model in cf.mdl. For easier access,
the format v handle(’uo’,parent,’tag’,’TipCh’) allows search by tag and
possible creation as a invisible uicontrol.

It is possible to associate a callback executed when the variable is modified
using v handle(’uo’,go,SetFcn)

• so reference to another (stored) object.

• mat data in files. This latter application may become very useful when han-
dling very large models. sdthdf indeed allows RAM unloading by keeping
data on drive while using a pointed to it. A trade-off between data ac-
cess performance (limited to your drive I/O performance) and amount of free
memory will occur. Some supported file formats are MATLAB 6 .mat files
(use v handle(’mat’,’varname’,’filename’)), NASTRAN .op2,op4 (see
nasread), ABAQUS .fil ...

For data in files, methods of interest are extraction def(rows,cols), total
read def.GetData or def(:,:), and matrix multiplication c*def.

• hdf data in MATLAB ¿7.3 HDF based .mat files (see sdthdf hdfReadRef)

• base global variables (init with v handle(’global’,’name’)), use is discon-
tinued

• mkls 32 bit sparse (init with v handle(’mkls’,k)) used for improved time
response

v handle objects essentially behave like global variables with the notable exception
that a clear command only deletes the handle and not the pointed data.

Only advanced programmers should really need access to the internal structure of
v handle.
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Purpose User interface for curve stack pointer objects. Stack, see section 2.1.2 , are now
preferred so this function is documented mostly for compatibility.

Syntax xfopt command

XF(1).FieldName=FieldValue

XF(1).command=’value’

XF.check

r1=XF(1).GetData

curve=XF(1).GetAsCurve

XF.save=’FileName’

Description SDT considers data sets in curve, format Response data or Shapes at DOFs for-
mats. Handling of datasets is described in the iiplot tutorial which illustrates the
use of curve stacks (previously called database wrappers).

ufread and ufwrite also use curve stacks which can be stored as variables. In this
case, FEM models can also be stored in the stack.

The use of a stack pointer (obtained with XF=iicom(ci,’curvexf’);) has side
advantages that further checks on user input are performed.

XF.check verifies the consistency of information contained in all data sets and makes
corrections when needed. This is used to fill in information that may have been left
blank by the user.

disp(XF) gives general information about the datasets. XF(i).info gives detailed
and formatted information about the dataset in XF(i). XF(i) only returns the
actual dataset contents.

Object saving is overloaded so that data is retrieved from a iiplot figure if appro-
priate before saving the data to a mat file.

Object field setting is also overloaded (consistency checks are performed before ac-
tually setting a field) This is illustrated by the following example

[ci,XF]=iiplot

XF(1)

XF(1).x=’time’; XF(1).x

where XF(1) is a Response data set (with abscissa in field .w, responses in field
.xf, ...).
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XF(1).x=’time’ sets the XF(1).x field which contains a structure describing its
type. Notice how you only needed to give the ’time’ argument to fill in all the
information. The list of supported axis types is given using xfopt(’ datatype’)

XF(1).w=[1:10]’ sets the XF(1).w field.

FunType, DataType, FieldType

These commands are used internally by SDT. xfopt FunType returns the current
list of function types (given in the format specification for Universal File 58).
label=xfopt(’ FunType’,type) and type=xfopt(’ FunType’,’label’) are two
other accepted calls.

xfopt DataType returns the current list of data types (given in the format speci-
fication for Universal File 58). xfopt(’ DataType’,type) and
xfopt(’ DataType’,’label’) are two other accepted calls.

For example XF.x.label=’Frequency’ or XF.x=18.

Data types are used to characterize axes (abscissa (x), ordinate numerator (yn),
ordinate denominator (yd) and z-axis data (z)). They are characterized by the
fields

.type four integers describing the axis function type fun (see list with
xfopt(’ datatype’)), length, force and temperature unit exponents

.label a string label for the axis

.unit a string for the unit of the axis

xfopt FieldType returns the current list of field types.

See also idopt, id rm, iiplot, ufread
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.ID, 659

, 410

actuator dynamics, 613
addresses, 247
adof, 249
AMIF, 654
animation, 115, 415
AnimMovie, 120
assembly, 546
asymptotic correction, 604
attachment mode, 202, 568
automated meshing, 104

b, 158, 495, 538
bar element, 310
beam element, 311
boundary condition, 126, 496
BuildConstit, 284

c, 158, 495
Case.GroupInfo, 267
cases, 241, 498
cf, 108, 483, 636, 723
channel, 245
CMIF, 654
collocated, 71, 170, 616
color mode, 418
ColorMap, 421, 662
COMAC, 83, 647
command formatting, 403
command function, 403

complex mode
computation and normalization, 512
definition, 169
identification, 64, 612, 616

Complex Mode Indicator Function, 654
Component Mode Synthesis, 204, 514
connectivity line matrix, 49, 727
coordinate, 231, 392
cost function

logLS, 639
quadratic, 64, 639

cp, 161
Craig Bampton reduction, 204, 565
Cross generalized mass, 648
curve, 243
curve stack, 40, 745
Cyclic symmetry, 523

damping, 162
non-proportional, 74, 163, 607
proportional or modal, 73, 162, 698
Rayleigh, 164
structural, 164, 165, 678
viscoelastic, 164, 165

damping ratio, 241
data structure

case, 241
curve, 243
deformation, 242
element constants, 269
element property, 235
GroupInfo, 267
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material, 234
model, 238
sens, 508

database wrapper, 40, 44, 46, 723, 745
def, 242
DefaultZeta, 709
degree of freedom (DOF), 159

active, 495, 512, 527
definition vector, 236, 247, 249, 495
element, 238
master, 260
nodal, 236
selection, 249, 495

demonstrations, 12
design parameters, 216
DID, 231, 316, 393
dirp, 220
dock, 398
drawing axes, 628

effective mass, 201
EGID, 233, 238, 256
eigenvalue, 148, 512, 527
element

bar, 310
beam, 311
EGID, 233, 238
EltID, 285
fluid, 319, 321
function, 232, 270, 280, 488
group, 232, 429
identification number (EltId), 238
plate, 317, 364, 367, 371
property row, 233, 331, 358, 543
rigid link, 314, 368
selection, 255, 429, 438, 454
solid, 322
user defined, 270

EltId, 234
EltOrient, 258

eta, 165, 241
expansion, 88, 530

family of models, 216
FE model update, 223–225

based on FRFs, 743
based on modal frequencies, 742
command function, 732

FEelt, 103, 434
FEMLINK, 380, 389
FEMLink, 667, 692, 704
FEnode, 103, 434
feplot, 97, 107, 483
frequency

unit, 527
frequency response function (FRF), 173,

612
frequency units, 604, 613, 697, 740
frequency vector w, 173, 613

ga, 161
generalized mass, 149, 200, 601
GID, 231
global variable, 17, 103, 434, 448, 488
Guyan condensation, 203, 565

hexahedron, 329

identification, 56
direct system parameter, 67, 606
minimal model, 69, 71, 616
normal mode model, 607
options, 603
orthogonal polynomials, 68, 611
poles, complex mode residues, 64,

612
poles, normal mode residues, 73,

612
reciprocal model, 616
scaled modeshapes, 74, 616

IDopt, 45, 248, 603, 745
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iiplot, 38, 635
IIxf, 43, 46, 60
il, 235
importing data, 44, 105
ImWrite, 120
input shape matrix b, 158, 495
integinfo, 284
isostatic constraint, 568

LabFcn, 424, 560
load, 158, 538
localization matrix, 159
loss factor, 165, 241

MAC, 83, 640, 642
MACCO, 83, 645
Map, 457
mass

effective, 201
generalized, 200
normalization, 74, 200, 527, 553

material function, 234
material properties, 234, 543
MatID, 419
MatId, 234, 256, 285
matrix

ofact, 688, 719
sparse/full, 688, 719

mdof, 236
meshing, 104
MIMO, 69
minimal model, 69, 616
MMIF, 653
modal

damping, 73
input matrix, 163, 169
mass, 149, 200, 601
output matrix, 163, 169
participation factor, 170
scale factor, 648

stiffness, 200
Modal Scale Factor, 647
mode

acceleration method, 202
attachment, 568
complex, 169, 512
constraint, 565
displacement method, 202
expansion, 88, 530
normal, 199, 527
scaling, 170, 200

model, 238
description matrix, 232
reduction, 411

multiplicity, 69, 617
Multivariate Mode Indicator Function,

653

NASTRAN, 667, 672
node, 98, 231

group, 231
selection, 231, 251, 438, 455

NodeId, 231
nor, 160, 678
normal, 457
normal mode

computation and normalization, 527
definition, 199
format, 160
identification, 74, 607
model, 678
residue, 73

NoT, 260
notations, 18

object
ofact, 688
sdth, 711
v handle, 744

observation, 158
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om, 161
orientation

triax, 433
orthogonality conditions, 200, 512, 527,

553
output shape matrix c, 158, 495

pb, 161
pentahedron, 328
PID, 231, 392
pl, 234
plate element, 317, 364, 367, 371
po, 665
POC, 83, 648
pole, 171, 201

formats, 665
lines, 635, 659
multiplicity, 69, 616

pole residue format, 171
polynomial model format, 172
ProID, 419
ProId, 234, 235, 256, 285
property function, 235

quadrilateral, 326

Rayleigh, 164
reciprocity, 71, 169, 496, 616
reduction basis, 198, 565
renderer, 427
res, 171, 698, 699
residual

dynamic, 84–86
high frequency, 171, 201
low frequency, 171

residue matrix, 69, 73, 162, 169, 172
rigid body modes, 202, 565
rigid link, 314, 368

scalar spring, 314
scaling, 428, 616, 644

scatter, 638
segment, 324
selection

element, 255
node, 251

sensor, 127
dynamics, 613
placement, 81, 570

simulate, 147
solid element, 322
sparse eigensolution, 527
ss, 167, 696
stack, 16, 239
stack entries, 239
state-space models, 167, 696, 699
static correction, 151, 171, 201, 202,

411
static flexible response, 568
structural modification, 91
subplot, 432, 628
superelement

command function, 488

tempdir, 710
test/analysis correlation, 570
tetrahedron, 327
tf, 172, 696, 702
time-delays, 613
triangle, 324
two-bay truss, 97

UFS, 723, 730
Universal File Format, 723

VectMap, 269
vector correlation, 640
view, 632, 634

wire-frame plots, 49, 436, 450, 727

XF, 46, 56, 724, 745
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XFdof, 47

zeta, 162, 241

756


	Preface
	Key areas
	Key notions in SDT architecture
	Typesetting conventions and scientific notations
	Other toolboxes from SDTools
	Release notes for SDT and FEMLink 6.7
	Key features
	Detail by function
	Notes by MATLAB release

	Release notes for SDT and FEMLink 6.6
	Key features
	Detail by function
	Notes by MATLAB release

	Release notes for SDT 6.5 and FEMLink 3.8
	Key features
	Detail by function
	Notes by MATLAB release

	Release notes for SDT 6.4 and FEMLink 3.7
	Key features
	Detail by function
	Notes by MATLAB release


	Modal test tutorial
	iiplot interface tutorial
	The main figure
	The curve stack
	Handling what you display, axes and channel tabs
	Importing FRF data
	 Handling displayed units and labels
	SDT 5 compatibility
	iiplot for signal processing
	iiplot FAQ

	Modal test: geometry declaration and data acquisition/import
	Modal test geometry declaration
	Sensor/shaker configurations
	Data acquisition
	Animating test data, operational deflection shapes

	Identification of modal properties
	The idcom interface
	The blueSDTid_rc procedure step by step
	Background theory
	When blueSDTid_rc fails
	Direct system parameter identification algorithm
	Orthogonal polynomial identification algorithm

	MIMO, Reciprocity, State-space, ...
	Multiplicity (minimal state-space model)
	Reciprocal models of structures
	Normal mode form


	Test/analysis correlation tutorial
	Topology correlation and test preparation
	Defining sensors in the FEM model
	Test and FEM coordinate systems
	Sensor/shaker placement

	Test/analysis correlation
	Shape based criteria
	Energy based criteria
	Correlation of FRFs

	Expansion methods
	Underlying theory for expansion methods
	Basic interpolation methods for unmeasured DOFs
	Subspace based expansion methods
	Model based expansion methods

	Structural dynamic modification

	FEM tutorial
	FE mesh declaration
	Direct declaration of geometry (truss example)

	Building models with feutil
	Building models with femesh
	Automated meshing capabilities
	Importing models from other codes
	Importing model matrices from other codes

	The feplot interface
	The main feplot figure
	Viewing stack entries
	Pointers to the figure and the model
	The property figure
	GUI based mesh editing
	Viewing shapes
	Viewing property colors
	Viewing colors at nodes
	Viewing colors at elements
	feplot FAQ

	Other information needed to specify a problem
	Material and element properties
	Other information stored in the stack
	Cases GUI
	Boundary conditions and constraints
	Loads

	Sensors
	Sensor GUI, a simple example
	Sensor definition from a cell array
	Sensor data structure and init commands
	Topology correlation and observation matrix

	Stress observation
	Building view mesh
	Building and using a selection for stress observation
	Observing resultant fields

	Computing/post-processing the response
	Simulate GUI
	Static responses
	Normal modes (partial eigenvalue solution)
	State space and other modal models
	Viewing shapes, stress, energy, ...
	Time computation
	Manipulating large finite element models
	Optimized assembly strategies


	Structural dynamic concepts
	I/O shape matrices
	Normal mode models
	Damping
	Viscous damping in the normal mode model form
	Viscous damping in finite element models
	Hysteretic damping in finite element models

	State space models
	Complex mode models
	Pole/residue models
	Parametric transfer function
	Non-parametric transfer function

	Advanced FEM tools
	FEM problem formulations
	3D elasticity
	2D elasticity
	Acoustics
	Classical lamination theory
	Piezo-electric volumes
	Piezo-electric shells
	Geometric non-linearity
	Thermal pre-stress
	Hyperelasticity
	Gyroscopic effects
	Centrifugal follower forces
	Poroelastic materials
	Heat equation

	Model reduction theory
	General framework
	Normal mode models
	Static correction to normal mode models
	Static correction with rigid body modes
	Other standard reduction bases
	Substructuring
	Reduction for parameterized problems

	Superelements and CMS
	Superelements in a model
	SE data structure reference
	An example of SE use for CMS
	Obsolete superelement information
	Sensors and superelements

	Model parameterization
	Parametric models, zCoef
	Reduced parametric models
	blueSDTupcom parameterization for full order models
	Getting started with blueSDTupcom
	Reduction for variable models
	Predictions of the response using blueSDTupcom

	Finite element model updating
	Error localization/parameter selection
	Update based on frequencies
	Update based on FRF

	Handling models with piezoelectric materials
	Viscoelastic modeling tools
	SDT Rotor

	Developer information
	Nodes
	Node matrix

	Model description matrices
	Material property matrices and stack entries
	Element property matrices and stack entries
	DOF definition vector
	FEM model structure
	FEM stack and case entries
	FEM result data structure
	Curves and data sets
	DOF selection
	Node selection
	Element selection
	Defining fields trough tables, expressions, ...
	Constraint and fixed boundary condition handling
	Theory and basic example
	Local coordinates
	Enforced displacement
	Resolution as MPC and penalization transformation
	Low level examples

	Internal data structure reference
	Element functions and C functionality
	Standard names in assembly routines
	Case.GroupInfo cell array
	Element constants data structure

	Creating new elements (advanced tutorial)
	Generic compiled linear and non-linear elements
	What is done in the element function
	What is done in the property function
	Compiled element families in of_mk
	Non-linear iterations, what is done in blueSDTof_mk
	Element function command reference

	Variable names and programming rules (syntax)
	Variable naming conventions
	Coding style
	Input parsing conventions
	Commands associated to project application functions

	Legacy information
	Legacy 2D elements
	Rules for elements in blueof_mk_subs


	Element reference
	bar1 
	beam1, beam1t 
	celas,cbush 
	dktp 
	fsc 
	hexa8, penta6, tetra4, and other 3D volumes 
	integrules 
	mass1,mass2 
	m_elastic 
	m_heat 
	m_hyper 
	m_piezo 
	p_beam 
	p_heat 
	p_shell 
	p_solid 
	p_spring 
	p_super 
	p_piezo 
	quad4, quadb, mitc4 
	q4p, q8p, t3p, t6p and other 2D volumes 
	rigid 
	tria3, tria6 

	Function reference
	abaqus 
	ans2sdt 
	basis 
	comgui,cingui 
	commode 
	comstr 
	curvemodel 
	db, phaseb 
	fe2ss 
	fecom 
	femesh 
	feutil 
	feutila 
	feutilb, fe_caseg 
	feplot 
	fesuper 
	fe_c 
	fe_case 
	fe_ceig 
	fe_coor 
	fe_curve 
	fe_cyclic 
	fe_def 
	fe_eig 
	fe_exp 
	fe_gmsh 
	fe_load 
	fe_mat 
	fe_mknl, fe_mk 
	fe_norm 
	fe_quality 
	fe_range 
	fe_reduc 
	fe_sens 
	fe_simul 
	fe_stress 
	fe_time 
	of_time 
	idcom 
	idopt 
	id_dspi 
	id_nor 
	id_poly 
	id_rc, id_rcopt 
	id_rm 
	iicom 
	iimouse 
	iiplot 
	ii_cost 
	ii_mac 
	ii_mmif 
	ii_plp 
	ii_poest 
	ii_pof 
	nasread 
	naswrite 
	nor2res, nor2ss, nor2xf 
	of2vtk 
	ofact 
	perm2sdt 
	psi2nor 
	qbode 
	res2nor 
	res2ss, ss2res 
	res2tf, res2xf 
	rms 
	samcef 
	setlines 
	sdtcheck 
	sdtdef 
	sdth 
	sdthdf 
	sdtweb 
	sp_util 
	stack_get,stack_set,stack_rm 
	ufread 
	ufwrite 
	upcom 
	up_freq, up_ifreq 
	up_ixf 
	v_handle 
	xfopt 

	Bibliography
	Index

