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1.1 Getting started

This section is intended for people who don’t want to read the manual. It summarizes
what you should know before going through the SDT demos to really get started.

You can find a primer for beginners at http://www.sdtools.com/help/primer.
pdfl

Self contained code examples are distributed throughout the manual. Additional
demonstration scripts can be found in the sdt/sdtdemos directory which for a proper
installation should be in your MATLAB path. If not, use sdtcheck(’path’) to fix
your path.

The MATLAB doc command no longer supports non MathWorks toolboxes, docu-
mentation access is thus now obtaind with sdtweb FunctionName.

The SDT provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification
(data acquisition and signal processing, followed parametric identification) with in-
formation about the spatial position of multiple sensors and actuators.

An experimental modal analysis project can be decomposed in following steps

e before the test, preparation and design (see section [2.2)

e acquisition of test data, import into the SDT, direct exploitation of measurements
(visualization, operational deflection shapes, ...) (see section [2.1])

e identification of modal properties from test data (see section [2.3])

e handling of MIMO tests and other model transformations (output of identified
models to state-space, normal mode, ... formats, taking reciprocity into account,

...) (see section

The series of gart.. demos cover a great part of the typical uses of the SDT. These
demos are based on the test article used by the GARTEUR Structures & Materi-
als Action Group 19 which organized a Round Robin exercise where 12 European
laboratories tested a single structure between 1995 and 1997.


http://www.sdtools.com/help/primer.pdf
http://www.sdtools.com/help/primer.pdf

Mode 7 at 6.515 Hz

Figure 1.1: GARTEUR structure.

gartfe builds the finite element model using the pre-processor

gartte shows how to prepare the visualization of test results and perform basic cor-
relation

gartid does the identification on a real data set

gartsens discusses sensor/shaker placement

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation
for modal tests. Chapter [3| addresses topology correlation, test preparation, corre-
lation criteria, modeshape expansion, and structural dynamic modification. Details
on the complete range of sensor definitions supported by SDT can be found in
Indications on how to use SDT for model updating are given in section [6.5

gartco shows how to use [fe_sens| and [fe_exp| to perform modeshape expansion and
more advanced correlation

gartup shows how the interface can be used to further correlate/update the
model

13
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Area 3: Basic finite element analysis

Chapter [4 gives a tutorial on FEM modeling in SDT. Developer information is given
in chapter [7] Available elements are listed in chapter

A good part of the finite element analysis capabilities of the SDT are developed as
part of the OpenFEM project. OpenFEM is typically meant for developers willing
to invest in a stiff learning curve but needing an Open Source environment. SDT
provides an integrated and optimized access to OpenFEM and extends the library
with

e solvers for structural dynamics problems (eigenvalue (fe eig]), component
mode synthesis (section [6.3]), state-space model building (fe2ss|), ... (see
Fosiml));

e solvers capable of handling large problems more efficiently than MATLAB;

e a complete set of tools for graphical pre/post-processing in an object oriented
environment (see section [4.1);

e high level handling of FEM solutions using cases;

e interface with other finite element codes through the FEMLink| extension to
SDT.

Area 4: Advanced FE analysis (model reduction, component mode
synthesis, families of models)

Advanced model reduction methods are one of the key applications of SDT. To
learn more about model reduction in structural dynamics read section Typical
applications are treated in section [6.3

Finally, as shown in section [6.4] the SDT supports many tools necessary for finite
element model updating.

1.2 Understanding the Toolbox architecture


http://www.sdtools.com/openfem
http://www.sdtools.com/femlink.html

1.2.1 Layers of code

The SDT has three layers of code.

e Graphical user interfaces (feplot| [iiplot| [ii_mac]) provide a layer of pre-
defined operations for Frequency Response Function (FRF) visualization and
analysis, identification, 3-D deformation animation, and test/analysis correla-
tion. Graphically supported operations (interactions between the user and plots/
menus/mouse movements/key pressed) form a subset of commands provided by
user interface functions.

The policy of the GUI layer is to let the user free to perform his own operations at
any point. Significant efforts are made to ensure that this does not conflict with
the continued use of GUI functions. But it is accepted that it may exceptionally
do so, since command line and script access is a key to the flexibility of SDT. In
most such cases, clearing the figure (using c1f) or in the worst case closing it (use
close or delete) and replotting will solve the problem.

e User interface (UI) functions provide high level solutions to problems in iden-
tification, finite element mesh handling, model reduction, sensor placement, su-
perelement handling or parameterized models for FE model update. The first
argument to these functions is a string command which is parsed to know what
operations to perform. See for conventions linked to parsed commands.

e Scientific functions implement standard and state of the art methods in exper-
imental modal analysis, Finite Element analysis, and to some extent in structural
design and FE model update. These functions are open and can be easily extended
to suit particular needs using the scientific environment provided by MATLAB.

1.2.2 Infos in Stack

When extensible and possibly large lists of mixed data are needed, SDT uses .Stack
fields which are N by 3 cell arrays with each row of the form {’type’, ’name’,val}.
The purpose of these cell arrays is to deal with unordered sets of data entries which
can be classified by type and name.

stack_set and stack rm commands are low level commands used to
get /set /remove single or multiple entries from stacks. Higher level pointer access

to stacks stored in (curve stacks) and (model and case stacks) are
described in section 2.1.2] and section 4.2.3

15
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1.2.3 Global variables

Pointers to variables stored in graphical objects are now prefered to global vari-
ables. The user interface for data visualization and identification

iiplot|) no longer uses global variables, see section for compatibility informa-
tion. [femesh| and Jupcom| are the only functions that use global variables.

User interfaces require knowledge of the current state of the interface and appropriate
data. The policy of the Toolbox is to let the user free to perform his own operations
at any point. Significant efforts are made to ensure that this does not conflict with
the continued use of GUI functions, but it is accepted that it may exceptionally do
so. This flexibility resulted in the use of both global variables (for information that
the user is likely to modify) and graphical objects (for other information).

Thel[femesh]user interface for finite element mesh handling uses a number of standard
global variables shown below

FEnode main set of nodes (also used by [feplot))

FEnO selected set of nodes

FEn1 alternate set of nodes

FEelt main finite element model description matrix
FEelO selected finite element model description matrix
FEell alternate finite element model description matrix

By default, automatically use base workspace definitions of the standard
global variables: base workspace variables with the correct name are transformed
to global variables even if you did not dot it initially. When using the standard
global variables within functions, you should always declare them as global at the
beginning of your function. If you don’t declare them as global modifications that
you perform will not be taken into account, unless you call ... from your
function which will declare the variables as global there too. The only thing that
you should avoid is to use clear and not clear global within a function and then
reinitialize the variable to something non-zero. In such cases the global variable is
used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual



courier blue monospace font : Matlab function names, variables

feplot light blue monospace font: SDT function names

command pink : strings and SDT commands

var italic pink: part of command strings that have to be replaced by
their value

% comment green: comments in script examples

Italics MATLAB Toolbox names, mathematical notations, and new terms
when they are defined

Bold key names, menu names and items

Small print comments

Conventions used to specify string commands used by user interface functions are

detailed under [commodel

The following conventions are used to indicate elements of a matrix

(1,2) the element of indices 1, 2 of a matrix
(1,:) the first row of a matrix
(1,3: ) elements 3 to whatever is consistent of the first row of a matrix

Usual abbreviations are

CMS Component Mode Synthesis (see section |6.3.3))
COMAC  Coordinate Modal Assurance Criterion (see [ii mac])
DOF,DOFs degree(s) of freedom (see section

FE finite element

MAC Modal Assurance Criterion (see [ii mac])

MMIF Multivariate Mode Indicator Function (see|ii mmif])
POC Pseudo-orthogonality check (see |ii mac])

For mathematical notations, an effort was made to comply with the notations of the
International Modal Analysis Conference (IMAC) which can be found in Ref. [I]. In
particular one has

17
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[c]

[Elnsxna
[F}NSXNA
M,C. K
N.NM
NS, NA

{p}NMxl

{Q}le

matrix, vector

conjugate

input shape matrix for model with N DOFs and N A inputs (see
section . {qﬁ?b} , {ijb} modal input matrix of the j¢* normal
/ complex mode

sensor output shape matrix, model with N DOFs and NS out-
puts (see section . {e$;}, {ct;} modal output matrix of the ;"
normal / complex mode

correction matrix for high frequency modes (see section
correction matrix for low frequency modes (see section |5.6)

mass, damping and stiffness matrices

numbers of degrees of freedom, modes

numbers of sensors, actuators

principal coordinate (degree of freedom of a normal mode model)
(see section

degree of freedom of a finite element model

Laplace variable (s = iw for the Fourier transform)

= {cp;} JTb} residue matrix of the j* complex mode (see sec-
J J

tion

= {co;} {qﬁ?b} residue matrix of the j* normal mode (used for
proportionally damped models) (see section

inputs (coefficients describing the time/frequency content of applied
forces)

outputs (measurements, displacements, strains, stresses, etc.)
dynamic stiffness matrix (equal to [Ms? + Cs + K])

dynamic compliance matrix (force to displacement transfer func-
tion)

design parameters of a FE model (see section

additive modifications of the mass, damping and stiffness matrices
(see section

non-diagonal modal damping matrix (see section

complex pole (see section

real or normal modes of the undamped system(NM < N)

modal stiffness (diagonal matrix of modal frequencies squared) ma-

trices (see section

NM complex modes of a first order symmetric structural model (see

section

N M complex modes of damped structural model (see section



1.4 Other toolboxes from SDTools

SDTools also develops other modules that are distributed under different licensing
schemes. These modules are often much less documented and address specialized
themes, so that only a technical discussion of what you are trying to achieve will let
us answer the question of wheter the module is useful for you.

e Viscoelastic tools : an SDT extension for the analysis and design of viscoelastic
damping. Beta documentation at http://www.sdtools.com/help/visc.pdf.

e Rotor tools : an SDT extension for rotor dynamics and cyclic symmetry. Beta
documentation at http://www.sdtools.com/help/rotor.pdf.

e non linear vibration tools : an SDT extension for non-linear vibration and
in particular time and frequency domain simulation of problems with contact
and friction.

e OSCAR : a module for the study of pantograph/catenary interation devel-
opped with SNCF.

Selected cross references to these other modules are listed here.

e fevisco Range this command is part of the viscoelastic tools.
e fe2xf this function is part of the viscoelastic tools.

e fe cyclicb ShaftEig this command is part of the rotor tools.

19
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1.5 Release notes for SDT 6.5 and FEMLink 3.8

1.5.1 Key features

SDT 6.5 is the first version compatible with MATLAB 8.0 (2012b). Key features of
this release are

e Major update of to support more general plots (contour, surface,

...) and documented control procedures for automated inits, legend, marker lines,
text based tick, ...

e Major revision of Rewrite of the color field handling : support for colored
vector field display, reuse of pre-computed energy at elements data structures, ...
Introduction of a complete [iicom ImWrite| command for generation of image

sequences to be included in automated reports.

e Significant improvement of utilities for piezo modeling : visualization of charges
and electrical fields, ...

e Improved compatibility with MATLAB figure toolbar callbacks and japanese ver-
sion of MATLAB.

Key features of FEMLink 3.8 are

° improved reading of .fil (velocity, acceleration and resultant fields),
read/write .inp (*nset, *spring, *orientation, composite and orthotropic materi-
als, element conversion table, contact)

. improved reading of beam sections, velocity and resultant fields in .rst
files.

. corrected support of MAT9 and MATT entries to reflect improved im-
plementation in SDT. Bugs were corrected with writting of rigid case entries.

e |samcef|improved ul8 reading speed and support for 64 bit format files.

For MATLAB compatibility see section [1.5.3

1.5.2 Detail by function

The following functions have been modified.
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robustness enhancements for compability with [fe caseg StressCut|
enhanced VectFromDir (see section [7.13]
Major rewrite of [comgui ImWrite|and |[iicom ImWrite|for automated
figure generation.

Build-ByMat allows interfaces with coincident nodes.

improved handling of parameters, see jupcom Par|and |[fe def Rangel
Robustness enhancements in Assemble (see section [4.5.8)), major exten-
sion of [StressCut], [ZoomClip|

corrected errors on noise generation for odd numbers of samples.
significant extension of CAD definition commands.

Range| commands for the description of design maps are now docu-
mented. Many detail robustness enhancements.

robustness enhancements for unit conversion (convert command) and
for support of interpolated properties, see section @

model=fe mpc(’Rbe3Id’,model) generated unique identifiers for RBE3
contraints.
improved integration in feplot and robustness.

Free (reduction on free modes) now supports DofSet (enforced displace-
ment) commands. A .UseLoad option has been added to CraigBampton
to allow computation of load residuals for a Craig Bampton reduction.
rewritting of the gartte and gartsens demos associated with robust-
ness enhancements.

output of the Enerprovides newer options and output in the newer [curve
format. now allows dynamic switching between energy value,
density or group value.

improved implementation of Theta method integration.

complete rewrite of for energy computations,
for more accurate display, field display for ‘@

improved support of HDF file delayed reading.

Major extension of the [feutil SetPro| command. Improved handling
of surface sets. GetDof corrections for master DOF's in rigid elements.

Match implements a new node matching strategy as MatchSurf and
has undergone significant speed enhancements. CombineModel supports
extended renumbering.

improved integration of Error computations. GUI robustness improve-
ments.

significant rewrite and documentation of [iiplot PlotInfo| utilities.
Significant extensions of the command. Documentation of the
capabilities.

documentation was revised to include in particular. 21
compatibility with MATLAB figure toolbar callbacks (including
datatip) was improved




1 Preface
1.5.3 Notes by MATLAB release

e MATLAB 7.6 to 8.0 (2012b). SDT 6.5 and FEMLink 3.8 are developed for
these versions of MATLAB and are fully compatible with them.

e MATLAB 7.5 is fully compatible with the exception of the new
object which requires the newer MATLAB object.

e Earlier MATLAB releases are no longer supported.
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1.6 Release notes for SDT 6.4 and FEMLink 3.7

1.6.1 Key features

SDT 6.4 is a relatively minor release due to significant architectural work on GUI
and implicit curve models that is not yet mature enough for general release. Key
features are

e significant enhancement of sensor support in terms of speed and functionality
with the new stress cut (see section . The objective is to allow detailed stress
analysis on arbitrary viewing meshes. This strategy is particularly interesting for
the analysis of stress responses in long transients where the volume of data can
become very large. Detail extensions of stress processing were also introduced
with this functionality.

e proper documentation and introduction of an Euler solver was made for the study
of transient heat equation problems, see section [6.1.13| and [p_heat]|

. handling of field colors has undergone a major revision for more consistent
handling and improved on the fly generation of color maps for the animation of
long transients.

e rewritting of documentation and improvement of correlation criteria.
Key features of FEMLink 3.7 are

o significant robustness enhancements, in particular for parts and motion
commands.

o improved CP reading in multi-physics configurations. Added some el-
ements missing from the supported list. Fixed compatibility issues with newer
ANSYS binaries.

3 introduced partial support for OUTPUT4 in text format. Detail correc-
tions and performance enhancements.

° now supports an imp2 command to build explicit second order models
from implicit ones. A number of detail enhancements are also introduced.

For MATLAB compatibility see section [1.6.3]
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1.6.2 Detail by function

The following functions have been modified.

|f eplot|

euti

feutilb

e_case

T

fe_fmesh

0asl1s

®
=]
[=]

fe mpc
e_reduc

e_time

e_sens

e_slimu

[fecom ColorScale|commands were fully revised for improved stability
and performance. ColorDataEner was fully revised to allow reuse of
existing energy computations. A new InfoMass command is available
to summarize component masses. ColorDataEval was significantly ex-
tended in particular for the support of StressCut selections. A new
-ColorBarTitle option was added. Minor corrections to the AnimAvi
command were introduced.

Major extension of the [feutil SetPro|command. Improved handling
of surface sets.

major improvement in matching speed (used for ConnectionSurface or
StressCut). Robustness enhancement for out-of-core operations.

Minor bug corrections on damping handling.

SensDof entry has been extended for better rotation sensor support.
Incompatible matching speed has been greatly enhanced. The new
StressCut command (see section was introduced to allow stress
processing of long transient simulations.

ConnectionSurface now support multi-physics FEM problems.

stack_get and set commands are now supported.

Enhanced documentation, label generation, curve joining, ...

now packages calls to MATLAB 3D delaunay capabilities.

Fixed minor bugs with the generation of dependent coordinate systems
and improved handling of round-off errors. Port of right hand side
computations to of mk has been extended.

a new FixRbe3A1lt was introduced to ease reformating of RBE3 entries.
the documentation was rewritten. The Craig-Bampton command was
revised to support out-of-core operations with .mat files in the HDF
format.

support for 8-method and Euler solvers has been added. Improvements
of on the fly processing with have been made in of time. Major im-
provements for for non-linear time simulation are being developed and
will be offered as a SDT extension.

ToFEM option was added to the basis command to improve test mesh
orientation procedures.

Static now supports mixed DofSet and DofLoad entries.
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m-file opening with tag searches has been enhanced.

This new object (requires MATLAB >= 7.6) is used for implicit curve
models. This object is the basis for future extensions of signal processing
and FEM restitution capabilities in SDT.

Robustness enhancements and improved support of quality indicator.
Minor revisions for data structure support.

now supports a SubDof option for MAC computation on partial DOF
sets. Documentation was rewritten. Minor bug corrections on COMAC
and MACCO labels.

Extended vertical line generation capabilities.

Extended support of HDF file reading. Significant extensions of polar
and 2D plots. Many minor bug corrections.

was introduced as topology holder for multi-physics 3D line elements.
Enhanced compatibility with and minor bug fixes.
Introduced NSM support for subtype 3 and revised section display ca-
pabilities.

Support and documentation of solvers for transient heat equation has
been extended.

Improved robustness reading headers.

Major documentation rewritting and better integration with
Major revision in preparation for SDT/Java integration and improved
command option handling.

improved robustness and performance.

now properly supports local fiber orientation.

1.6.3 Notes by MATLAB release

e MATLAB 7.6 to 7.13 (2011b). SDT 6.4 and FEMLink 3.7 are developed for
these versions of MATLAB and are fully compatible with them.

e MATLAB 7.5 is fully compatible with the exception of the new

object

which requires the newer MATLAB object.

e MATLABT.1 to 7.4 compatibility is no longer tested. But there are only mi-
nor limitations in HDF support (only affects users interested in large FEM
computations).

e Earlier

MATLAB releases are no longer supported.
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1.7 Release notes for SDT 6.3 and FEMLink 3.6

1.7.1 Key features
Key features of the SDT 6.3 release are

° Was significantly enhanced (multi-dimensional scanning, channel lbel gen-
eration, channel selection, ...). The SubToFig command was introduced to ease
the automated report generation process.

o signal processing and curve generation were extended and integrated
into L1107

e sensor documentation and robustness was significantly revised to improve ease

of use and access for new users (see section and fe_sens commands Basis,
Laser and WireExp).

e Tutorials on wire frame definition (section [3.1) and basic interpolation (sec-
tion and fe _sens(’WireExp’) were revised).

Key features of FEMLink 3.6 are

° was significantly enhanced in its ability to read CDB files (and some
forms of input files). Local coordinates are now supported. Material properties
are read more consistently. Partial support of .sub and . cms files was introduced.

° Was revised for enhanced PBEAML, PBARL read/write, ASET, GENEL
and OEF support, OQG read performance, ...

° has new or improved support of files 776, 791, 1710, 2435, 2467, 2477
OpenFEM

e Significant extensions of the ability to specify fields at nodes, DOFs and integra-
tion points were introduced. See section (sdtweb(’VectFromDir’)). Asso-
ciated fe mknl commands OrientMap and MapMerge were fully revised.

e clem0 command GaussObserve that supports generation of observation informa-
tion at Gauss points was extended.

e fe time underwent many detail improvements. An implementation of the Theta
method was added.



e p beam underwent a major revision to support a wider range of pre-defined sec-

tions.

For MATLAB compatibility see section [1.8.3

1.7.2 Detail by function

The following functions have been modified.
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fesuper

e_cyclic

e_curve

fe_def

fe_eig
fe_gmsh
fe_mpc

ColorBar was fully revised to allow consistent property editing.
Inits for cf.def.LabFcn are more consistent.

ColorData has been extended. Eval options now support radial or
tangential motion colors. -EdgeAlpha can now be specified directly to
obtain transparent edges.

ScaleMatch now works more consistently in mixed FEM /test displays.
the material and property tabs now generate view of all elements with
the associated material (earlier faces internal to the body were not
shown)

AnimAvi for AVI generation was rewritten for more robustness.
improved restitution and minor robustness enhancements

performance and robustness was enhanced for AddNode. ShellMap now
supports material orientation maps. AddTest (model merging) now
supports material and property renumbering. Orientation problems in
the divide command were fixed for surfaces.

MatId, ProId now support easier property renumbering.
AddElt is a new command easing addition of element groups.
FindNode now supports a selection within a cylinder with cyl

SetPro was introduced to associated fields with element properties stack
entries (for example orientation maps)

RotateNode was introduced to allow rotations without node duplica-
tion.
the ConnectionScrew command was significantly extended.

Assemble now supports a -reset option to force reassembly (see
sdtweb(’simul#feass’) ). A number of minor problems were also

fixed.

Solve-FixTan is now supported to fix the global rotation mode in 0
diameter computations. An error was corrected for periodic static and
mode solutions.

Test and window commands for signal generation and windowing were
fully revised.

was significantly extended for GUI handling, deformation structure ma-
nipulation (see section for SubDef, SubDof, Exp), Curve [Join,Cat]
were extended, ...

method 5 was rewritten to optimize accuracy and memory handling
the OpenFEM driver for GMSH was revised

a rbe32c command for RBE3 to MPC transformation was added.



1.7.3 Notes by MATLAB release

e MATLAB 7.4 to 7.11 (2010b). SDT 6.3 and FEMLink 3.6 are developed for
these versions of MATLAB and are fully compatible with them.

e MATLAB7.1 to 7.3 compatibility is tested and there a minor limitations in
HDF support. This limitation really only affects users interested in large FEM
computations.

e MATLAB 6.5 and 7.0 are not compatible with this release of SDT.
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1.8 Release notes for SDT 6.2 and FEMLink 3.5

1.8.1 Key features
Key features of the SDT 6.2 release are

e a major revision of the interface was introduced to improve label han-
dling, support the direct display of time simulation results, integration of signal
processing capabilities of 2D displays associated with time/frequency
plots, ...

e |[fecoml and |iicom| usability is improved with new icons, revised menus,
interaction, interactive mesh editing, default model properties, ...

e improved the readability of the documentation through keyword highlighting in
both the HTML and PDF, see section [L.3

e introduction of a generic file for test setup definitions typically filled with Excel.
This significantly simplified the definition of sensors and triaxes normal to the
supporting surface as well as laser vibrometer measurement specification.

o full rewrite of node matching algorithms which enhances speed for mesh genera-
tion, sensor matching, incompatible mesh handling, ...

Key features of FEMLink 3.5 are

. has been modified to improve robustness to fields containing blanks, en-
hance reading speed and correct problems with local coordinate systems.

. has been extended and optimized.
° import/export capabilities have been extended.
. was revised for a better support of degenerate elements.

. was extended to support variations introduced in NASTRAN 2007.
Stress reading from op2 files was improved.

OpenFEM has undergone many detail improvements and the following revisions

e The support of general fields at nodes has been significantly generalized with
labels identifying the fields for easier generation of families of elements with im-
plementations depending on fields actually present (typical fields are constitutive



properties, material orientations, thickness, temperature, pressure, ...). The first
version of a property interpolation mechanism based on tables is introduced.

e a better mechanism to return to MATLAB after the field extraction and Jacobian
computations of each element is introduced.

e composite shell support has been extended.

For MATLAB compatibility see section 77.

1.8.2 Detail by function

The following functions have been modified.
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has undergone significant extensions for improved dataset support (di-
rect display of FEM responses, selection in multi-dimension datasets,
...), mouse interactivity, improved menus and icons. Many detailed ro-
bustness enhancements.

now support cursor interaction in the identification error plot.
introduced cell array description of complex test setups (see sec-
tion , improved sensor matching robustness

signal processing capabilities have been significantly extented. Process-
ing of FEM time deformations can now be done directly.

now supports parametric models

many detail improvements in superlement building and restitution

improved support for the display of stack entries.

Display of sensor entries has been improved through bug corrections on
the cursor, compatibility with TextDof command.

improved of RBE3 support.

support of periodic rather than cyclic solutions. Major extensions of
the cyclic symmetry capabilities are under way be will be distributed
as a SDT-Rotor module.

Significant efforts where done to clarify debugging information when
improper models are used.

?e,qua 1ty|] This new function supports many estimates of finite element mesh qual-

1ty.

improved face support. Corrected bugs in r based node selection. All
mesh building commands have been ported so that femesh can be by-
passed alltogether. This seems easier to learn for new users.

the function has been renamed (the limitation on 8 char-
acters being very obsolete). Bugs in shell stress processing have been
corrected.

the SDT composite/piezo element has undergone a major revision for
improved orientation handling and stress computations.

1.8.3 Notes by MATLAB release

e MATLAB 7.4 to 7.9 (2009b) SDT 6.2 and FEMLink 3.5 are developed for these
versions of MATLAB and are fully compatible with them.

e MATLAB7.0 to 7.3 compatibility is tested and there a minor limitations in
HDF support. This limitation really only affects users intererested in large



FEM computations.

e MATLAB 6.5 compatibility is no longer tested and major incompatibilities ex-
ists related to graphics, HDF support and possibly BLAS calls. SDT is not
compatible with any earlier version of MATLAB.

e MATLAB > 7.4 (2007a), the doc command no longer searches non MathWorks
help, use sdtweb to open SDT help pages. Help search is however available in
the help browser. You can change the default setpref (’SDT’, ’Browser’,
’~helpbrowser’) to modify the location where sdtweb opens pages.
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2 Modal test tutorial
An experimental modal analysis project can be decomposed in following steps

e before the test, preparation and design (see section [2.2)

e acquisition of test data, import into the SDT, direct exploitation of measurements
(visualization, operational deflection shapes, ...) (see section [2.1))

e identification of modal properties from test data (see section [2.3)

e handling of MIMO tests and other model transformations (output of identified
models to state-space, normal mode, ... formats, taking reciprocity into account,

...) (see section

Further steps (test/analysis correlation, shape expansion, structural dynamics mod-
ification) are discussed in chapter section

2.1 iiplot interface tutorial

is the response viewer used by SDT. It is essential for the identification
procedures but can also be used to visualize FEM simulation results.

As detailed in section[2.3] identification problems should be solved using the standard
commands for identification provided in while running the interface
for data visualization. To perform an identification correctly, you need to have some
familiarity with the interface and in particular with the commands that let
you modify what you display.

2.1.1 The main figure

For simple data viewing you can open anﬁgure using ci=iiplot (or ci=iiplot(2)
to specify a figure number). For identification routines you should use ci=idcom
(standard datasets are then used see section [2.3)).

To familiarize yourself with the interface, run demosdt (’demogartidpro’).
Which opens the iiplot figure and the associated iiplot(2) properties figure
whose tabs are detailed in the following sections.
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Figure 2.1: Display figure of the iiplot interface.
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Toolbar

Toggles the display or not of the property figure.

Previous channel/deformation, see

Next channel/deformation.

Fixed zoom on FRF, see Note that the variable zoom

(drag box) is always active, see

Start cursor, see [iimouse Cursor]

Refresh the displayed axes.

No subplot. See[iicom Sub|[1,1].

2 subplots. See[iicom Sub|[2,1].

Amplitude and phase subplots. See agpha.
switch lin/log scale for x axis. See

switch lin/log scale for y axis. See

switch lin/log scale for z axis. See

Show absolute value. See[iicom Showpbs.

ih Show phase. See|iicom Showpha.

aH Show real part. See|iicom Showrea.

a1 Show imaginary part. See|iicom Showfima.

%3 Show real and imaginary part. See|iicom Showjr&i.

— Show Nyquist diagram. See|iicom Showpyq.
"~ Show unwrapped phase. See hu.

C Snapshot. See[iicom ImWrite

MEINNNOE = =+ 1 [

Y|

)

Mouse operation and keyboard shortcuts

Mouse and keypress operations are handled by [iimouse| within[iiplot] [feplot} and
figures. For a list of active keys press ? in the current figure.

Drag your mouse on the plot to select a region of interest and see how you directly
zoom to this region. Double click on the same plot to go back to the initial zoom.
On some platforms the double click is sensitive to speed and you may need to type
the i key with the axis of interest active. An axis becomes active when you click on
it.



Open the ContextMenu associated with any axis (click anywhere in the axis using
the right mouse button), select Cursor, and see how you have a vertical cursor giving
information about data in the axis. To stop the cursor use a right click or press the
¢ key. Note how the left click gives you detailed information on the current point or
the left click history. In you can for example use that to measure distances.

Click on pole lines (vertical dotted lines) and FRFs and see how additional infor-
mation on what you just clicked on is given. You can hide the info area by clicking

on it.

Context menus

The axes ContextMenu (click on the axis using the right mouse button) lets you
select , set axes title options, set pole line defaults, ...

tracks mouse movements and displays information about pointed ob-
ject. For ODS cursor see

chooses what to display.

Compute... [MMIF,CMIF...] chooses what to compute and display. The
iicom(’show [MMIF,CMIF...]’) command line is similar. Details on what

can be computed are given in

Variables in current axis... chooses which variable to display, see[ficon]

iiplot properties, same as iicom(’pro’), opens the property figure.

Scale...[x lin, x log...] chooses the axis scale as the. See[iicom x1in|

or use iimouse(’axisscale[xlin,xlog...]’) commands.

chooses the title, axis and legend labels-format.

pole line selection.
Views. .. chooses the views, see|iimouse viewy

colorbar shows the colorbar and is equivalent to cingui(’ColorBarMenu’)
command line.

Zoom reset is the same as the iimouse(’resetvie’) command line to reset
the zoom.
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e [setTines] calls the associated function.

The line ContextMenu lets you can set line type, width, color ...
The title/label ContextMenu lets you move, delete, edit ... the text

After running through these steps, you should master the basics of the in-
terface. To learn more, you should take time to see which commands are available
by reading the Reference sections for (general list of commands for plot ma-
nipulations), (mouse and key press support for SDT and non SDT figures),
(standard plots derived from FRFs and test results that are supported).

2.1.2 The curve stack

considers data sets in the following format

e Response datalrelated to [UFF58| format

e |Curves generated by SDT]

e [Shapes at DOFs|related to [UFF55| format

This data is stored in figures as a Stack field (a cell array with the first
column giving ’curve’ type entries, the second giving a name for each dataset and
the last containing the data, see |[stack get|. To allow easier access to the data,

D'I" handle| objects are used. Thus the following calls are equivalent ways to get
access to the data

ci=iicom(’curveload’,’gartid’);
iicom(ci,’pro’);iicom(ci,’CurTab Stack’); % show stack tab

% Normal use : the figure pointer stack

ci.Stack % show content of iiplot stack

ci.Stack{’Test’} % a copy of the same data, selected by name
ci.Stack{1,3} /» the same by index

% Use regular expresion (’II.*’ here) for multiple match
ci=stack_rm(ci,’curve’,’#II.x*’)

% If you really insist on low level calls
ril=get (2, ’userdata’); % object containing the data (same as ci)



s=ci.vfields.Stack.GetData % get a copy of the stack (cell array with
% type,name,data where data is stored)
s{1,3} /i the first data set

% Alternative use (obsolete) : the XF stack pointer
XFil=iicom(ci,’curvexf’);

XF1(’Test’) % still the same dataset, indexed by name
XF2=XF1.GetData; % Copy the data from the figure to variable XF2

The ci.Stack handler allows regular expression based access, as for cf.Stack. The
text then begins by the # character.

1=
File Desktop Window Help ~
EEE
Stack ]Channel] Axes] IDopt] Ident] Post-pro]
a| Compute Select o
FunType general or unknown
Response data 3124x24
W oaxis Fraguency Hz
YN axis Acceleration mis2
yi axis Euxcit. force I -
=

Figure 2.2: Stack tab of the iiplot interface.

The graphical representation of the stack shown in figure lets you do a number
of manipulations witch are available trough the context menu of the list of datasets
in the stack

Compute gives access to data processing commands in You perform the anal-
ysis from the command line with iicom(ci,’sum’,’Test’). The list of avail-
able post processing functions is given by ii_mmif list.

Load lets you load more data with iicom(ci,’curveload-append’,’gartid’), re-
place the current data with iicom(ci,’curveload’,’gartid’)

Display lets you display one or more selected dataset in the iiplot figure (see corre-

sponding command [iicom IIx]).

Save lets you save one or more dataset (see corresponding command|iicom CurveSavel).
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Join combines selected datasets that have comparable dimensions (see correspond-

ing command [iicom CurvelJoin).

Cat concatenates selected datasets along time or frequency dimension (see corre-

sponding command [iicom CurveCat))

Remove removes selected dataset (see corresponding command [iicom CurveRemove)).

NewId opens a new [idcomn| figure with the selected dataset (see corresponding com-

mand [iicom CurveNewId)).

2.1.3 Handling what you display, axes and channel tabs

lets you display multiple axes see Information about each axis

is show in the axes tab.

) iiplot(2) properties o ] |
N

File Desktop Window Help

EENENE

Stack] Channel] Axes ]|D0pt] Ident] Post-pro

FZI Show
| ¥ label

y label
Ity title
1l
Idh zin legend
it Foleline

Het

Refresh |

abs

Label & Unit
Label & Unit
Channel label
in legend
Imag

Figure 2.3: Axes tabs of the iiplot interface.

For example open the interface with the commands below and see a few thing you

can do

ci=idcom;iicom(ci, ’Curveload sdt_id’);
ci.Stack{’IdFrf’}=ci.Stack{’Test’}; % copy dataset
ci.Stack{’IdFrf’}.xf=ci.Stack{’Test’}.xf*2; J, double amplitude

iicom(’CurTab Axes’);



Sub Subplots : Type iicom submagpha to display a standard magnitude/phase
plot. Open the ITIplot:sub commands menu and see that you could have
achieved the same thing using this pull-down menu. Note that using ci=iiplot(2)
iicom(ci,’SubMagPha’) gives you control on which figure the command ap-
plies to.

Show Type iicom(’;caxl;showmmi’); to display the MMIF in the lower plot. Go
back to the phase, by making axis 1 active (click on it) and selecting phase (w)
in the axis type menu (which is located just on the right of the current axis
button).

IIx select sets you want to display using iicom(’;showabs;chl’);iicom(’iix
only’,{’Test’,’IdFrf’}). You could also achieve the same thing using the
IIplot:Variables menu.

e Note that when you print the figure, you may want to use the comgui (’ ImWrite’,’
command or -noui switch so that the GUI is not printed. It is the same com-
mand as for feplot image printing (see [iicom ImWritel).

Once you have selected the datasets to be displayed, you can use the channel tab to
scan trough the data.

) iiplot(2) properties P =

File Desktop Window Help N
[23] AL
Stack | Channel ]Axesw IDopt | Ident | Post-pra]
- Marme NODE DOF
\h Out MOME 1011 3
(L In NOME 12 8
Id 2t =l Header

a | FRF (H1-estimator) for gart:201: 44/ for 112:4Z
B
2012 response { load
1012z £
Lo 95-0ct-12 11:52:48
133;2 Rec 100 of test "hase_80"
E NONE

1106z ;I
jicam ch d

Figure 2.4: Channel tabs of the iiplot interface.

Major commands you might want to know

e use the ™= [# to scan trough different transfer functions. Note that you can
also use the + or - keys when a drawing axis is active.
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e Go the Channel tab of the property figure and select more than one channel in
the list. Note that you can also select channels from the command line using
iicom(’ch 1 57).

2.1.4 Importing FRF data

There are two main mechanisms to import FRF data into SDT. Universal files are
easiest if generated by your acquisition system. Writing of an import script defining
fields used by SDT is also fairly simple and described below (you can then use

to generate universal files for export).

The ufread| and ufwritel functions allow conversions between the xf format and
files in the Universal File Format which is supported by most measurement systems.
A typical call would be

fname=demosdt (’build gartid.unv’); % generate the gartid.unv file
UFS=ufread(fname) ; % read

ci=idcom; % For identification purposes open IDCOM
ci.Stack{’curve’,’Test’}=UFS(1); 7 Define FRFs in set ’Test’

% possibly extract channels 1:4

% ci.Stack{’curve’,’Test’}=fe_def (’SubDofInd’,UFS(1),1:4)

% To only view data in figure(11l) the following would be sufficient
cj=iiplot(11); % open an iiplot in figure 11
iiplot(cj,UFS(1)); 7% show UFS(1) there

where you read the database wrapper UFS (see[xfopt]), initialize the[idcon]figure, as-
sign dataset 3 of UFS to dataset "Test’ 1 of ci (assuming that dataset three represents

frequency response functions of interest).

Note that some acquisition systems write many universal files for a set of measure-
ments (one file per channel). This is supported by with a stared file name

UFS=ufread(’FileRoot*.unv’);

Measured frequency responses are stored in the .xf field (frequencies in .w) and
should comply with the specifications of the xf format (see details under page
. Other fields needed to specify the physical meaning of each FRF are detailed
in the reference section. When importing data from your own format or using
a universal file where some fields are not correct, the SDT will generally function



with default values set by the function, but you should still complete/correct
these variables as detailed below.

For correct display in and title/legend generation, you should set the
ci.Stack{’Test’}.dof field (see section for details on geometry declaration,
and reference). For example one can consider a MIMO test with 2 inputs and
4 outputs stored as columns of field .xf with the rows corresponding to frequencies
stored in field .w. You script will look like

ci=idcom;

[XF1,cf]=demosdt (’demo2bay xf’);’% sample data and feplot pointer
out_dof=[3:6]+.02’; 7 output dofs for 4 sensors in y direction
in_dof=[6.02 3.01]; % input dofs for two shakers at nodes 1 and 10
out_dof=out_dof (:)*ones(1,length(in_dof));
in_dof=ones(length(out_dof),1)*in_dof(:)’;

XFil=struct(Cw’ ,XFl.w, ... % frequencies in Hz
'xf’ ,XF1.xf, ... % responses (size Nw x (40))
’dof’, [out_dof(:) in_dof(:)]1);
ci.Stack{’Test’}=XF1; % sets data and verifies
ci.IDopt.nsna=size(out_dof,1); % define IDCOM prop
ci.IDopt.recip=’mimo’; % define IDCOM prop

iicom(ci,’sub’);

cf.def=ci.Stack{’Test’}; fecom(’ch35’); % frequency of first mode
You can also edit these values using the iiplot properties:channel tab.

For correct identification using you should verify the fields of ci.IDopt.
These correspond to the IDcomGUI:0Options tab (see section|2.3)). You can also edit
these values in a script. For correct identification, you should set

ci=demosdt (’demogartid’);
ci.IDopt.Residual="3";
ci.IDopt.DataType=’Acc’;
ci.IDopt.Absci="Hz’;

ci.IDopt.PoleU="Hz’;

iicom(’wmin 6 40°) % sets ci.IDopt.Selected
ci.IDopt.Fit="Complex’;

ci.IDopt 7% display current options

For correct transformations using [id_rm] you should also verify ci.IDopt.NSNA
(number of sensors/actuators), ci.IDopt.Reciprocity and ci.IDopt.Collocated.
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For correct labels using you should set the abscissa, and ordinate numera-
tor/denominator types in the data base wrapper. You can edit these values using
the iiplot properties:channel tab. A typical script would declare frequencies,
acceleration, and force using (see list with xfopt _datatype)

UFS(2) .x="Freq’;UFS(2) .yn="Acc’;UFS(2) .yd="Load’ ;UFS(2) .info

2.1.5 Handling displayed units and labels

ci=iicom(’curveload gartid’);
ci.Stack{’Test’}.yn.unit="N";
ci.Stack{’Test’}.yd.unit="M";
iicom sub

2.1.6 SDT 5 compatibility

With SDT 6, global variables are no longer used and supports display of
curves in other settings than identification.

If you have saved SDT 5 datasets into a .mat file, iicom(’CurveLoad FileName’)
will place the data into an SDT 6 stack properly. Otherwise for an operation similar
to that of SDT 5, where you use XF (1) . xf rather than the new ci.Stack{’Test’}.xf,
you should start in its identification mode and obtain a pointer XF
object) to the data sets (now stored in the figure itself) as follows

>> ci=iicom(’curveid’) ;XF=iicom(ci,’curveXF’)

XF (curve stack in figure 2) =

XF(1) [.w 0x0, xf 0x0] ’Test’ : response (general or unknown)
XF(2) [.w 0x0, xf 0x0] ’IdFrf’ : response (general or unknown)
XF(3) : [.w 0x0, xf 0x0] ’IIxh’ : response (general or unknown)
XF(4) : [.w 0x0, xf 0x0] ’IIxi’ : response (general or unknown)
XF(5) : [.po 0x0, res 0x0] ’IdMain’ : shape data
XF(6) [.po 0x0, res 0x0] ’IdAlt’ : shape data

The following table lists the global variables that were used in SDT 5 and the new
procedure to access those fields which should be defined directly.



XFdof

IDopt

ITw
IIxf

IIxe
IIxh
IIxi
IIpo

IIres

IIpol
ITresi

XF

2.1.7

described DOF's at which the responses/shapes are defined, see .dof
field for response and shape data in the section, was a global
variable pointed at by the ci.Stack{’name’}.dof fields.

which contains options used by identification routines, see
is now stored in ci.IDopt.

was a global variable pointed at by the ci.Stack{’ name’}.w fields.
(main data set) was a global variable pointed at by the
ci.Stack{’Test’}.xf fields.

(identified model) was a global variable pointed at by the
ci.Stack{’IdFrf’}.xf fields.

(alternate data set) was a global variable pointed at by the
ci.Stack{’IIxh’}.xf fields.

(alternate data set) was a global variable pointed at by the
ci.Stack{’IIxi’}.xf fields.

(main pole set) was a global variable pointed at by the
ci.Stack{’IdMain’}.po fields.

(main residue set) was a global variable pointed at by the
ci.Stack{’IdMain’}.res fields.

(alternate pole set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.po fields.

(alternate residue set) was a global variable pointed at by the
ci.Stack{’IdAlt’}.res fields.

was a global variable pointed holding pointers to data
sets (it was called a database wrapper). The local
pointer variable XF associated with a given figure
can be found wusing CurrentFig=2;ci=iiplot(CurrentFig);
XF=iicom(ci, ’curveXF’).

The normalized datasets for use with are generated using
ci=idcom;XF=iicom(ci,’curvexf’). They contain four response
datasets (XF(’Test’) to XF(’IdFrf’)) and two shape datasets
(XF(’IdMain’) and XF(’IdA1t?)).

iiplot for signal processing

iiplot figure lets you perform standard signal processing operations (FFT, MMIF,

filtering...) directly from the GUI. Opening iiplot properties figure, they are ac-
cessible trough the contextual menu compute (right click on the curve list in the
Stack tab). Once an operation has been performed, its parameters can be edited in
the GUI, and it can be recomputed using the Recompute button.
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Following example illustrates some signal processing commands.

[mdl,def]l=fe_time(’demobarl10-run’); % build mdl and perform time computation
cf=feplot(2); cf.model=mdl; cf.def=def;

ci=iiplot(3);
fecom(cf,’CursorOnIiplot’) % display deformations in iiplot

% all following operations can be performed directly in the GUI:

% see the list of curves contained in iiplot figure, Stack tab:

iicom(ci,’pro’);iicom(ci,’curtab Stack’);

% compute FFT of deformations. Name of entry ’feplot(2)_def (1)’

ename=ci.Stack(:,2); ename=ename{strncmp(ename,’feplot’,5)};

ii_mmif (’FFT’,ci,ename) % compute

fname=sprintf (’f£ft(%s)’,ename);

iicom(ci,’curtab Stack’,fname); J show FFT options that are editable
% edit options & Recompute:

ci.Stack{fname}.Set={’fmax’,50};

iicom(ci,’curtab Stack’,fname,’Recompute’);

% filter and display (the bandpass removes a lot of transient)
ii_mmif (’BandPass -fmin 40 -fmax 50’,ci,ename) % compute
fname=sprintf (’bandpass(%s)’,ename) ;
ci.Stack{fname}.Set={’fmin’,10, fmax’,20};

iicom(ci,’curtab Stack’,fname,’Recompute’);
iicom(ci,’iix’,{ename,fname}) ;

) iiplot(3) properties
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Figure 2.5: GUI for FFT computation
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2.1.8 iiplot FAQ
This section lists various questions that were not answered elsewhere.

e How do I display a channel with an other channel in abscissa?
The low level call ci.ua.ob(1,11)=channel; defines the channel number
channel of the displayed curve as the abscissa of other channels.

ci.ua.ob(1,11)=3; Y define channel 3 as abscissa
iiplot; % display the changes
set(ci.ga,’XLim’, [0 1e-3]); % redefine axis bounds

e Channel selection in multi-dimensional arrays

% sdtweb(’demosdt.m#DemoGartteCurve’) % FRF with 2 damping levels
ci=iiplot(demosdt(’demogarttecurve’))

ci.Stack{’New’}

iicom(ci,’ChAllzeta’)

2.2 Modal test: geometry declaration and data acquisi-
tion/import

Before actually taking measurements, it is good practice to prepare a wire frame-
display (section [2.2.1] and section for other examples) and define the sensor
configuration (section :2.2.2 ).

The information is typically saved in a specific .m file which should look like the
gartte demo without the various plot commands. The d_pre demo also talks about
test preparation.

2.2.1 Modal test geometry declaration

A wire-frame model is composed of node and connectivity declarations.
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- - - test
_ analysis

Figure 2.6: Test analysis : wire-frame model.

Starting from scratch (if you have not imported your geometry from universal files).
You can declare nodes and wire frame lines using the editors. Test wire
frames are simply groups of beam1 elements with an [EGID|set to -1. For example in
the two bay truss (see section [4.1.4))

cf=feplot;cf.model="reset’;
% fecom(’AddNode’) would open a dialog box
fecom(’AddNode’,[0 1 0; O 0 0]); % add nodes giving coordinates
fecom(’AddNode’,[3 1 1 0;4 1 0 0]); % Nodeld and xyz
fecom(’AddNode’, [5 000 20 0;

6 000 210D;
% fecom(’AddLine’) would add cursor to pick line (see below)
fecom(’AddLine’,[1 3 2 4 3]); % continuous line in first group
fecom(’AddLine’,[3 6 0 6 504 5 0 4 6]); % O for discontinuities
fecom(’Curtab:Model’, ’Edit’)
%fecom(’save’) Y will let you save the model to a mat file
feutilb(’write’,cf.mdl) % generates a script

Note that

e fecom(cf,’AddLine’), use after node declaration, starts a cursor letting you
build the wire-frame line graphically. Click on nodes continue the line, while the
context menu allows breaks, last point removal, exit, and display of the commands
in the MATLAB command window. This procedure is particularly useful if you
already have a FEM model of your test article.

e fecom(cf,’AddELt’) accessible in the Model :Edit tab can be used to add surface
or volume elements graphically.
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e the curor:3DLinePick command in the feplot axis context menu is a general
SDT mechanism to pick node numbers.

e other GUI based mesh editing tools are described in section
e [femesh ObjectBeamLine|and related commands are also typically used to define
the experimental mesh (see also .

e If you have a FE mesh, you should define the wireframe as a set of sensors,

see section [3.1.11

The |[feplot| and [fecon| functions provide a number of tools that are designed to
help in visualizing test results. You should take the time to go through the gartid,
gartte and gartco demos to learn more about them.

2.2.2 Sensor/shaker configurations

The geometry declaration defines fields .Node and .E1t. The next step is to declare
sensors. Once a sensor configuration defined and consistent with input/output pair
declarations in measurements (see section , you can directly animate measured
shapes (called Operational Deflection Shapes) as detailed in section m Except
for roving hammer tests, the number of input locations is usually small and only
used for MIMO identification (see section [2.4)).

In the basic configuration with translation sensors, sensor declaration is simply done
with a .tdof field. Acceptable forms are

a DOF definition vector (see allows the description of translation DOFs
in global directions. The convention that DOFs .07 to .09 correspond to
translations in the —x, —y, —z directions is implemented specifically for the
common case where test sensors are oriented this way.

e a5 column format ([SensID NodeID tx ty tz] giving a sensor identifier (in-
teger or real), a node identifier (positive integer), and the measurement direc-
tion in the test mesh axes. This format supports arbitrary orientation.

e a 2 column form DOF where each DOF is associated with a local basis, that
must be defined in TEST.bas.

e the tabular (cell array) definition of sensors and their position, which is more
appropriate for large configurations, and is described in section
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The definition of sensors trough a .tdof field is the simplest configuration. For more
general setups, see section [£.3] for sensor definitions and section [£.3.4] for topology
correlation.

For interpolation of unmeasured DOF's see section [3.3.2

The following illustrates the first two forms

TEST=demosdt (’DemoGartteWire’) ;

% simply give DOFs (as a column vector)

TEST.tdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03
1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 ...
2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 1303.03]’;

% Transfor to 5 column format, which allow arbitrary orientation
TEST.tdof=fe_sens(’tdof’,TEST) ; TEST.tdof

feplot(TEST) 7 With a .tdof field, a SensDof,Test is defined automatically
fecom(’curtab Cases’,’Test’) ;fecom(’ProViewOn’)

% You can now display FRFs or modes using

ci=iicom(’curveload gartid’); % load data

fecom(’ ;ProviewOff ;Showline’)
% Display FRF

cf.def=ci.Stack{’Test’}; ’ automatically uses sensor definition ’Test’
% Identify and display mode

idcom(’e .05 6.5°)

cf.def=ci.Stack{’IdAlt’}; % automatically uses sensor definition ’Test’

This new example, mixes all 3 forms

cf=demosdt (’demogartteplot’) % Load data

% simply give DOFs

cf.mdl=fe_case(cf.mdl,’sensdof’, ’Test’,

[1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03

1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201 0717);

% Give DOF defined in a local basis
cf.mdl=fe_case(cf.mdl, ’sensdof append’,’Test’,



[2201.01 1; 3201.03 0; 1206.03 0; 1205.01 1; 1302.01 11);

% Give identifier, node and measurement direction
cf.mdl=fe_case(cf.mdl, ’sensdof append’,’Test’,

[1 2301 -1 0 0; 2 1301 0 0 1; 3 2303 -1 0 0; 4 1303 0 0 11);
fecom(’curtab Cases’,’Test’) ;fecom(’ProViewOn’)

It is also fairly common to glue sensors normal to a surface. The sensor array table
(see section [4.3.2)) is the easiest approach for this objective since it allows mixing
global, normal, triax, laser, ... sensors. The following example shows how this can
also be done by hand how to obtain normals to a volume and use them to define
Sensors.

% This is an advanced code sample
model=demosdt (’demo ubeam’);

MAP=feutil (’getnormal node MAP’,model.Node,
feutil(’selelt selface’,model)); 7 select outer boundary for normal

il=ismember (MAP.ID, [360 365 327 137]); % nodes where sensors are placed
MAP.ID=MAP.ID(il) ;MAP.normal=MAP.normal (il,:);
model=fe_case(model, ’sensdof’,’test’,

[(1:1ength(MAP.ID))’ MAP.ID MAP.normall]);

% display the mesh and sensors

cf=clean_get_uf (’feplotcf’,model);
cf.sel(1)="groupall’;cf.sel(2)="-test’;
cf.o(1)={’sel2ty7’,’edgecolor’,’r’,’linewidth’,2}

2.2.3 Data acquisition

The SDT does not intend to support the acquisition of test data since tight integra-
tion of acquisition hardware and software is mandatory. A number of signal process-
ing tools are gradually being introduced in [iiplot| (see [ii mmif FFT| or [fe_curve]
. But the current intent is not to use SDT as an acquisition driver. The
following example generates transfers from time domain data

frame=fe_curve(’Testacq’); % 3 DOF system response
% Time vector in .X field, measurements in .Y columns
frf=fe_curve(’h1h2 1’,frame); % compute FRF
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ci=iicom(’Curveid’);ci.Stack{’Test’}.w=frf.X; ci.Stack{’Test’}.xf=frf.H1;
iicom(’Sub’);

You can find theoretical information on data acquisition for modal analysis in
Refs. [2][3][4][5][6].

Import procedures are described in section The following table gives a partial
list of systems with which the SDT has been successfully interfaced.

Vendor Procedure used
Export data from Pulse to the UFF and read into SDT with
Bruel & Kjaer or use the Bridge To Matlab software and [pulse2sdt.

Dactron Export data from RT-Pro software to the UFF. Use the Active-
X API to drive the Photon from MATLAB see [photonl

LMS Export data from LMS CADA-X to UFF.

MathWorks Use Data Acquisition and Signal Processing toolboxes to es-

timate FRFs and create a script to fill in SDT information

(see section .

MTS Export data from IDEAS-Pro software to UFF.

Polytec Export data from PSV software to UFF.

Spectral Dynamics Create a Matlab script to format data from SiglLab to SDT
format.

2.2.4 Animating test data, operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial re-
lation of forced vibration measured at two or more sensors. Time responses of
simultaneously acquired measurements, frequency responses to a possibly unknown
input, transfer functions, transmissibilities, ... are example of ODS.

When the response is known at global DOF's no specific information is needed
to relate node motion and measurements. Thus any deformation with DOF's will be
acceptable. The two basic displays are a wire-frame defined as a FEM model or a
wire-frame defined as a [SensDof| entry.

% A wire frame and Identification results

[TEST,IdMain]=demosdt (’DemoGartteWire’)

cf=feplot(TEST); % wire frame

cf.def=IdMain; % to £fill .dof field see sdtweb(’diiplot#xfread’)
% or the low level call : cf.def={IdMain.res.’,IdMain.dof,IdMain.po}
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% Sensors in a model and identification results
cf=demosdt(’demo gartfeplot’); % load FEM

TEST=demosdt (’demo garttewire’); 7 see sdtweb(’pre#presen’)
cf.mdl=fe_case(cf.mdl, ’sensdof’,’outputs’,TEST)

cf.sel=’-outputs’; 7% Build a selection that displays the wire frame
cf.def=IdMain; % Display motion on sensors

fecom(’curtab Plot’);

When the response is known at sensors that need to be combined (non global

directions, non-orthogonal measurements, ...) a entry must really be de-
fined.

When displaying responses with iiplot and a test geometry with feplot,
supports an ODS cursor. Run demosdt (’DemoGartteOds’) then open the context
menu associated with any axis and select ODS Cursor. The deflection show
in the figure will change as you move the cursor in the window.

More generally, you can use[fecom InitDef|commands to display any shape as soon
as you have a defined geometry and a response at DOFs. The Deformations tab of
the properties figure then lets you select deformations within a set.

[cf,cil=demosdt (’DemoGarttelds’)

cf.def=ci.Stack{’Test’};

% or the low level call

% cf.def={ci.Stack{’Test’}.xf,ci.Stack{’Test’}.dof,ci.Stack{’Test’}.w}
fecom(’CurTab Plot’);

You can also display the actual measurements as arrows using

cf.sens=ci.Stack{’Test’}.dof; fecom ShowArrow; fecom sccl;

For a tutorial on the use of see section
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2.3 Identification of modal properties

Identification is the process of estimating a parametric model (poles and mode-
shapes) that accurately represents measured data. The main algorithm proposed
in the SDT is a frequency domain output error method that builds a model in the
pole residue form (see section through a tuning strategy. Key theoretical no-
tions are [pole/residue models] [residual terms| and the relation between residues and
modeshapes (see [cpx]).

Section [2.3.2] gives a tutorial on the standard procedure. Theoretical details about
the underlying algorithm are given in section Section addresses its typ-
ical shortcomings. Other methods implemented in the SDT but not considered as
efficient are addressed in later sections.

For the handling of MIMO tests, reciprocity,... see section The gartid script
gives real data and an identification result for the GARTEUR example. The demo_id
script analyses a simple identification example.

2.3.1 The idcom interface

For identification, the[fdcominterface uses a standard set of curves and identification
options accessible from the IDopt tab or from the command line trough the pointer
ci.IDopt. idcom(ci) turns the environment on, idcom(ci, ’0ff’) removes options
but not datasets.

ci=iicom(’Curveid’); ci.Stack

’curve’ ’Test’ [1x1 struct]
’curve’ ’IdFrf’ [1x1 struct]
’curve’ ’TdMain’ [1x1 struct]
’curve’ ’TdAlt’ [1x1 structl]

e Test contains measured frequency response functions. See section ways
to initialize this data set.

e IdFrf contains the synthesis of transfers associated with given set of transfers.
e IdMain contains the main set of modes (poles and residues)

e IdAlt contains the alternate set of modes (poles and residues)



2.3.2 The id rc procedure step by step

The identification method is based on an iterative refinement of the poles of
the current model. Illustrated by the diagram below.

The main steps of the methodology are

e finding initial pole estimates (with the narrow band estimator, com-
mand), adding missed poles, removing computational poles (using the arrows
between the main and alternate pole sets, @ and commands)

e estimating residues and residual terms for a given set of poles com-

mand /button or direct call to

e optimizing poles (and residues) of the current model using a broad or narrow
band update (jeup| [eopt] [eoptllocal, ... commands/buttons, with frequency
band selection using the [wmin| wmo, ... commands/buttons)
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Other algorithms

l

’e’ Advanced pole picking

Alternate set of poles
ci.Stack{’IdAlt’}

ler’ removel T ’ea’ add

Main set of poles
ci.Stack{’IdMain’}

NLLS Model tuning

’eup’, ’eopt’ broadband

’wmo’,... band selection
’eoptlocal’ narrowband

Frequency band selection
’wmin’, wmo’, ...

LS estimate of residues
’est’ gives ci.Stack{’IdMain’}

and ci.Stack{’IdFrf’}

T

Needs tuning
Computational mode
Missing mode

Visual inspection using
the iiplot interface
(FRF, MMIF, ...)

Constraints on
ci.Stack{’IdMain’}

See next section

After verification of the Options tab of the idcom GUI figure, the Identification
tab shown below gives you easy access to these steps (to open this figure, just run
from the MATLAB prompt). More details on how to proceed for each step are

given below using data of the demo_id script.
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Figure 2.7: idcom tab in the iiplot property figure

The iteratively refined model is fully characterized by its poles (and the measured
data). It is thus convenient to cut/paste the pole estimates into and out of a text
editor (you can use the context menu of the main pole set to display this in the
MATLAB command window). Saving the current pole set in a text file as the lines

ci.Stack{’IdMain’}.po =[...
1.1298e+02  1.0009e-02
1.6974e+02 1.2615e-02
2.3190e+02  8.9411e-03];

gives you all you need to recreate an identified model (even if you delete the current
one) but also lets you refine the model by adding the line corresponding to a pole that
you might have omitted. The context menu associated with the pole set listboxes
lets you easily generate this list.

1 finding initial pole estimates, adding missed poles, removing computa-
tional poles

Getting an initial estimate of the poles of the model is the first difficulty. Dynamic
responses of structures, typically show lightly damped resonances. The easiest way
to build an initial estimate of the poles is thus to use a sequence of narrow band
single pole estimations near peaks of the response or minima of the Multivariate
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Mode Indicator function (use[iicom Showjimi and see for a full list of mode

indicator functions).

The[idcom e]command (based on a call to the[ii_poest|function) lets you to indicate

a frequency (with the mouse or by giving a frequency value) and seeks a single pole
narrow band model near this frequency (the pole is stored in ci.Stack{’IdAlt’}.

Once the estimate found thedrawing axes are updated to overlay ci.Stack{’Test’}
and ci.Stack{’IdFrf’}.

Channel 1

5
o

—— data
--- Narrowband model

Amplitude (m/N)

L L L L L L L
80 100 120 140 160 180 200 220
Frequency (Hz)

Figure 2.8: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the
information displayed by

LinlS: 1.563e-11, LogLS 8.974e-05, nw 10
mean(relE) 0.00, scatter 0.00
Found pole at 1.1299e+02  9.9994e-03

which indicates the linear and quadratic costs in the narrow frequency band used
to find the pole, the number of points in the band, the mean relative error (norm
of difference between test and model over norm of response which should be below
0.1), and the level of scatter (norm of real part over norm of residues, which should
be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in you current model,
you can add the estimated pole (add poles in ci.Stack{’IdAlt’} to those in
ci.Stack{’IdMain’}) using the command (or the associated button). If
the fit is not appropriate you can change the number of selected points/bandwidth
and/or the central frequency. In rare cases where the local pole estimate does not
give appropriate results you can add a pole by just indicating its frequency (f com-

mand) or you can use the polynomial (id_polyl), direct system parameter (id_dspi),

or any other identification algorithm to find your poles. You can also consider the
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command which uses the MMIF to seek poles that are present in your
data but not in ci.Stack{’IdMain’}.

In cases where you have added too many poles to your current model, the
command then lets you remove certain poles.

This phase of the identification relies heavily on user involvement. You are expected
to visualize the different FRF's (use the +/- buttons/keys), check different frequency
bands (zoom with the mouse and use w commands), use Bode, Nyquist,
MMIF, etc. (see commands). The graphical user interface was

designed to help you in this process and you should learn how to use it (you can get
started in section [2.1]).

2 estimating residues and residual terms

Once a model is created (you have estimated a set of poles), determines
residues and displays the synthesized FRFs stored in ci.Stack{’IdFrf’}. A careful
visualization of the data often leads to the discovery that some poles are missing
from the initial model. The and [ea] commands can again be used to find
initial estimates for the missing poles.

The need to add/remove poles is determined by careful examination of the match
between the test data ci.Stack{’Test’} and identified model ci.Stack{’IdFrf’}.
You should take the time to scan through different sensors, look at amplitude, phase,
Nyquist, ...
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Figure 2.9: Pole estimation.

Quality and error plots are of particular interest. The quality plot (lower right,
obtained with ual) gives an indication of the quality of the fit near
each pole. Here pole 2 does not have a very good fit (relative error close to 0.2)but
the response level (dotted line) is very small. The error plot (lower left, obtained with
rr) shows the same information for the current pole and each transfer
function (you change the current pole by clicking on pole lines in the top plot). Here
it confirms that the relative Nyquist error is close to 0.2 for most channels. This
clearly indicates the need to update this pole as detailed in the next section (in this
example, the relative Nyquist error is close to 0.1 after updating).

3 updating poles of the current model using a broad or narrow frequency
band update

The various procedures used to build the initial pole set (see step 1 above) tend to
give good but not perfect approximations of the pole sets. In particular, they tend
to optimize the model for a cost that differs from the broadband quadratic cost that
is really of interest here and thus result in biased pole estimates.

It is therefore highly desirable to perform non-linear update of the polesin ci.Stack{’IdMain’ }.
This update, which corresponds to a Non-Linear Least-Squares minimization, can
be performed using the commands|idcom eup|(|id _rc|function) and [eopt| (id rcopt]
function). The optimization problem is very non linear and non convex, good results
are thus only found when improving results that are already acceptable (the result
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of phase 2 looks similar to the measured transfer function).

When using the command starts by reminding you of the currently se-
lected options (accessible from the figure pointer ci.IDopt) for the type of residual
corrections, model selected and, when needed, partial frequency range selected

Low and high frequency mode correction
Complex residue symmetric pole pattern

the algorithm then does a first estimation of residues and step directions and outputs

% mode# dstep (%) zeta fstep () freq
1 10.000 1.0001e-02 -0.200 7.1043e+02
2 -10.000 1.0001e-02 0.200 1.0569e+03
3 10.000 1.0001e-02 -0.200 1.2176e+03
4 10.000 1.0001e-02 -0.200 1.4587e+03
Quadratic cost
4.6869e-09
Log-mag least-squares cost
6.5772e+01

how many more iterations? ([cr] for 1, O to exit) 30

which indicates the current pole positions, frequency and damping steps, as well
as quadratic and logLlLS costs for the complete set of FRFs. These indications and
particularly the way they improve after a few iterations should be used to determine
when to stop iterating.

Here is a typical result after about 20 iterations

% mode#  dstep (%) zeta fstep (%) freq
1 -0.001 1.0005e-02 0.000 7.0993e+02
2 -0.156 1.0481e-02 -0.001 1.0624e+03
3 -0.020 9.9943e-03 0.000 1.2140e+03
4 -0.039 1.0058e-02 -0.001 1.4560e+03

Quadratic cost
4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10
Log-mag least-squares cost
6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01
how many more iterations? ([cr] for 1, O to exit) O

Satisfactory convergence can be judged by the convergence of the quadratic and
logLLS cost function values and the diminution of step sizes on the frequencies and
damping ratios. In the example, the damping and frequency step-sizes of all the
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poles have been reduced by a factor higher than 50 to levels that are extremely low.
Furthermore, both the quadratic and logLLS costs have been significantly reduced
(the leftmost value is the initial cost, the right most the current) and are now
decreasing very slowly. These different factors indicate a good convergence and the
model can be accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which
generally corresponds passing over the optimal value). Thus, you need to have all
(or at least most) steps divided by 8 for an acceptable convergence. Upon exit
from [id rc| the [idcom eup| command displays an overlay of the measured data
ci.Stack{’Test’} and the model with updated poles ci.Stack{’IdFrf’}. As
indicated before, you should use the error and quality plots to see if mode tuning is
needed.

The optimization is performed in the selected frequency range wmin and wmax
indices). It is often useful to select a narrow frequency band that contains a few
poles and update these poles. When doing so, model poles whose frequency are not
within the selected band should be kept but not updated (use the euplocal and
eoptlocal commands). You can also update selected poles using the ’eup ’ 4’
command (for example if you just added a pole that was previously missing).

(eup command) uses an ad-hoc optimization algorithm, that is not guaranteed
to improve the result but has been found to be efficient during years of practice.
(eopt command) uses a conjugate gradient algorithm which is guaranteed
to improve the result but tends to get stuck at non optimal locations. You should
use the eopt command when optimizing just one or two poles (for example using
eoptlocal or ’eopt ’ ¢’ to optimize different poles sequentially).

In many practical applications the results obtained after this first set of iterations
are incomplete. Quite often local poles will have been omitted and should now be
appended to the current set of poles (going back to step 1). Furthermore some poles
may be diverging (damping and/or frequency step not converging towards zero).
This divergence will occur if you add too many poles (and these poles should be
deleted) and may occur in cases with very closely spaced or local modes where the
initial step or the errors linked to other poles change the local optimum for the pole
significantly (in this case you should reset the pole to its initial value and restart
the optimization).

Once a good complex residue model obtained, one often seeks models that verify
other properties of minimality, reciprocity or represented in the second order mass,
damping, stiffness form. These approximations are provided using the and



algorithms as detailed in section [2.4

2.3.3 Background theory

The algorithm (see [7][8]) seeks a non linear least squares approximation of

the measured data
NS,NANW

2
Pmodel = arg min Z (ajk(id) (wlvp) — Qjk(test) (wl)) (21)
gk l=1
for models in the nominal pole/residue form (also often called partial fraction ex-
pansion [9])
R; R;
o) = Y (L B B ey e 00)
jidentified \° Aj 5= A

or its variants detailed under page

These models are linear functions of the residues and residual terms [R;, E, F] and
non linear functions of the poles A\;. The algorithm thus works in two stages with
residues found as solution of a linear least-square problem and poles found through
a non linear optimization.

The function (idcom eup| command) uses an ad-hoc optimization where all

poles are optimized simultaneously and steps and directions are found using gradient
information. This algorithm is usually the most efficient when optimizing more than
two poles simultaneously, but is not guaranteed to converge or even to improve the
result.

The id_rcopt function (idcom eopt|command) uses a gradient or conjugate gradient
optimization. It is guaranteed to improve the result but tends to be very slow

when optimizing poles that are not closely spaced (this is due to the fact that
the optimization problem is non convex and poorly conditioned). The standard
procedure for the use of these algorithms is described in section Improved
and more robust optimization strategies are still considered and will eventually find
their way into the SDT.

2.3.4 When id_rc fails

This section gives a few examples of cases where a direct use of id rc gave poor
results. The proposed solutions may give you hints on what to look for if you
encounter a particular problem.
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Figure 2.10: Identification problem with low frequency error found for piezoelectric
accelerometers

In many cases frequencies of estimated FRFs go down to zero. The first few points
in these estimates generally show very large errors which can be attributed to both
signal processing errors and sensor limitations. The figure above, shows a typical
case where the first few points are in error by orders of magnitude. Of two models
with the same poles, the one that keeps the low frequency erroneous points (- — -)
has a very large error while a model truncating the low frequency range (- - -) gives
an extremely accurate fit of the data (—).
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Figure 2.11: Identification problem linked to the proximity of influent out of band
modes

The fact that appropriate residual terms are needed to obtain good results can have
significant effects. The figure above shows a typical problem where the identification
is performed in the band indicated by the two vertical solid lines. When using the 7



poles of the band, two modes above the selected band have a strong contribution so
that the fit (- - -) is poor and shows peaks that are more apparent than needed (in
the 900-1100 Hz range the FRF should look flat). When the two modes just above
the band are introduced, the fit becomes almost perfect (- — -) (only visible near
750 Hz).

Keeping out of band modes when doing narrow band pole updates is thus quite
important. You may also consider identifying groups of modes by doing sequential
identifications for segments of your test frequency band [g].

The example below shows a related effect. A very significant improvement is ob-
tained when doing the estimation while removing the first peak from the band. In
this case the problem is actually linked to measurement noise on this first peak (the
Nyquist plot shown in the lower left corner is far from the theoretical circle).

1206z/12[
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Real Frequency (Hz)

Figure 2.12: Identification problem linked to measurement noise at a major reso-

nance
Other problems are linked to poor test results. Typical sources of difficulties are

e mass loading (resonance shifts from FRF to FRF due to batch acquisition with
displaced sensors between batches),

67



2 Modal test tutorial

68

e leakage in the estimated FRF's,

e significant non-linearities (inducing non-symmetric resonances or resonance
shifts for various excitation positions),

e medium frequency range behavior (the peaks of more than a few modes overlay
significantly it can be very hard to separate the contributions of each mode
even with MIMO excitation).

2.3.5 Direct system parameter identification algorithm

A class of identification algorithms makes a direct use of the second order parame-
terization. Although the general methodology introduced in previous sections was
shown to be more efficient in general, the use of such algorithms may still be inter-
esting for first-cut analyses. A major drawback of second order algorithms is that
they fail to consider residual terms.

The algorithm proposed in is derived from the direct system parameter
identification algorithm introduced in Ref. [I0]. Constraining the model to have the
second-order form

[—w?I 4+ iwCr + K7 {p(w)} = [br] {u(w)}
{y(w)} = [erl {p(w)}
it clearly appears that for known [er], {yr}, {ur} the system matrices [Cr], [K7],
and [br] can be found as solutions of a linear least-squares problem.

(2.3)

For a given output frequency response {yr} =xout and input frequency content
{ur} =xin, determines an optimal output shape matrix [cy] and solves the
least squares problem for [Cr|, [K7], and [br]. The results are given as a state-space
model of the form

qg | _ 0 I q 0
{(j}_[—KT —CTHQ}JF[Z)T]{W)} (2.4)

q
vy =fer o ¢ }
The frequency content of the input {u} has a strong influence on the results obtained
with Quite often it is efficient to use it as a weighting, rather than using
a white input (column of ones) in which case the columns of {y} are the transfer
functions.



As no conditions are imposed on the reciprocity (symmetry) of the system matrices
[Cr] and [Kp] and input/output shape matrices, the results of the algorithm are
not directly related to the normal mode models identified by the general method.
Results obtained by this method are thus not directly applicable to the prediction
problems treated in section [2.4.2

2.3.6 Orthogonal polynomial identification algorithm

Among other parameterizations used for identification purposes, polynomial repre-
sentations of transfer functions have been investigated in more detail. However
for structures with a number of lightly damped poles, numerical conditioning is of-
ten a problem. These problems are less acute when using orthogonal polynomials
as proposed in Ref. [II]. This orthogonal polynomial method is implemented in
which is meant as a flexible tool for initial analyses of frequency response

functions. This function is available as command.
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2.4 MIMO, Reciprocity, State-space, ...

The [pole /residue representation|is often not the desired format. Access to transfor-
mations is provided by the post-processing tab in the properties figure. There
you can select the desired output format and the name of the variable in the base
MATLAB workspace you want the results to be stored in.

<} idcom GUI figure |- (O] x|
Options | Identification | F'DSt-processing]
Desired output State-space ™ Compute

Cutput wariable| sys
IO Info

Figure 2.13: idcom interface

Thealgorithm is used for the creation of minimal and /or reciprocal pole/residue
models (from the command line use sys9id_rm|(ci.Stack{’IdMain’})). For the ex-
tra step of state-space model creation use sys9res2ss|(ci.Stack{’IdMain’}).

norgres2nor|(ci.Stack{’IdMain’}) or norgid nor|(ci.Stack{’IdMain’}) allow

transformations to the normal mode form. Finally direct conversions to other for-
mats are given by

structdres2xf|(ci.Stack{’IdMain’},w) withw=ci.Stack’Test’.w, and [num,den]qres2tf|(

These calls are illustrated in demo_id.

2.4.1 Multiplicity (minimal state-space model)

Theory As mentioned under page the residue matrix of a mode can be written as
the product of the input and output shape matrices, so that the modal contribution
takes the form

Ry fewy {vlb}

S — )\j N S — )\j
For a single mode, the product {ct;} {w;fb} has rank 1. Thus for a truly MIMO test
(with more than one input and output), the residue matrix found by usually

(2.5)
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has full rank and cannot be written as shown in (2.5)). In some cases, two poles of a
structure are so close that they can be considered as a multiple pole A\; = A4, so
that

Ry {evi} {wlv} + {ewi} {vh.0})

s — )\j N S — )\j
In such cases, the residue matrix [R;] has rank two. Minimality (i.e. rank con-
straint on the residue matrix) is achieved by computing, for each mode, the singular

value decomposition of the residue matrix R; = U YVT. By definition of the singular
value decomposition

(2.6)

; T
{R]}NSXNA ={Ui}nsx1 01 Vit nasa (2.7)

is the best rank 1 approximation (in the matrix norm sense) of R;. Furthermore,
the ratio o2/07 is a measure of the relative error made by retaining only the first
dyad. This ratio gives, for MIMO tests, an indication of the coherence of estimated
mode shapes and occasionally an indication of the pole multiplicity if two poles are
sufficiently close to be considered as identical (see the example below).

Minimal pole/residue models are directly linked to a state-space model of the form
— I\ _ |
(s~ [a]) ) = [572] 9 28
{y} = [ev]{n}

which can then be transformed to a real valued state-space model (see or
a second order normal mode model (see section [2.4.3]).

builds a rank constrained approximation of the residue matrix associated to
each pole. When not enforcing reciprocity, the output of the call

ci=demosdt (’Demo demo_id’)

ci.IDopt.nsna=[5 2]; «ci.IDopt.reci=’no’;

RES = id_rm(ci.Stack{’IdMain’},[1 2 1 1]);

% or low level call

[pb,cp,new_res]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po,
ci.IDopt,[1 2 1 1]);

returns an output that has has the form

The system has 5 sensors and 2 actuators
FRF 7 (actuator 2 sensor 2) is collocated

Po # freq mul Ratio of sing. val. to max
1 7.10e+02 2 0.3000 k 0.0029
2 9.10e+02 1 0.1000 0.0002
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3 1.20e+03 1 0.0050 0.0001
4 1.50e+03 1 : 0.0300 0.0000

where the first three columns indicate pole number, frequency and retained multi-
plicity and the following give an indication of the difference between the full rank
residue matrix and the rank constrained one (the singular value ratio should be
much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between
the full order residue matrix and a rank 1 approximation is of the order of 30% while
the difference with a rank 2 approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual
multiplicity but more often indicates poor identification or incoherent data. For
poor identification the associated pole should be updated as shown in section
For incoherent data (for example modes slightly modified due to changing shakers
during sequential SIMO tests), one should perform separate identifications for each
set of coherent measurements. The rank constrained approximation can then be a
way to reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try
to update the identification in the vicinity of the pole: select a narrow frequency
range near this pole, then create and optimize a two or more pole model as shown
section 2.3.2] True modal multiplicity being almost impossible to design into a
physical structure, it is generally possible to resolve such problems. Keeping multiple
poles should thus only remain an intermediate step when not having the time to do
better.

2.4.2 Reciprocal models of structures

In many cases, the structures tested are assumed to be reciprocal (the transfers force
at A /response at B and force at B/response at A are equal) and one wants to build a
reciprocal model. For modal contributions of the form , reciprocity corresponds
to the equality of collocated input and output shape matrices

T T
([ccor] {¥51)" = {5} [beor] (2.9)
For reciprocal structures, the residue matrix associated to collocated FRFs should
be symmetric. thus starts computing the symmetric part of the collocated
residues chol = (Rjcor + R]Tml) /2. This matrix being symmetric, its singular

value decomposition is given by chol = UcolEcochigl which leads to the reciprocal
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input and output shape matrices

T T
{ccole} = {% bcol} = vV 0Olcol {Ulcol} (210)

Typically, there are many more sensors than inputs. The decomposition ([2.10))
is thus only used to determine the collocated input shape matrices and the output
shape matrices at all sensors are found as solution of a least square problem {cy;} =

+
(R;] {@D}bcol} which does require that all inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the
same as that obtained with the analytical scaling condition (5.20)). The interest of
using reciprocal models is to predict non measured transfer functions.

When collocated transfer functions are declared and ci.[[Dopt].Reciprocity=’1
FRF’ or MIMO, seeks a minimal and reciprocal approximation to the model.
For the call

ci=demosdt (’Demo demo_id’)

ci.IDopt.nsna=[5 2]; ci.IDopt.Col=[1 7];

ci.IDopt.reci="mimo’;

RES = id_rm(ci.Stack{’IdMain’},[1 1 1 1]);

ci.Stack{’IIxh’}=res2xf (RES,ci.Stack{’Test’}.w); iicom(’IIxhOn’)

% or low level call

[pb,cp,new_res,new_po]=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.g
ci.IDopt,[1 1 1 11);

ci.Stack{’IIxh’}.xf = res2xf(new_res,new_po,ci.Stack{’Test’}.w,ci.IDopt)

iicom(’IIxhOn’)

[Ld rml shows information of the form
The system has 5 sensors and 2 actuators
FRF 1 (actuator 1 sensor 1) is collocated

FRF 7 (actuator 2 sensor 2) is collocated
Reciprocal MIMO system

Po# freq mul sym. rel.e.
1 1.13e+02 1 : 0.0001  0.0002
2 1.70e+02 1 : 0.0020  0.0040
3 1.93e+02 1 : 0.0003  0.0005
4 2.32e+02 1 : 0.0022  0.0044

where the output indicates the number of sensors and actuators, the collocated
FRFs, the fact the resulting model will enforce MIMO reciprocity, and details the
accuracy achieved for each mode.
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The algorithm first enforces symmetry on the declared collocated transfer functions
the symmetry error sym. shows how asymmetric the original residue matrices where.
If for a given mode this number is not close to zero, the mode is poorly identified or
the data is far from verifying reciprocity and building a reciprocal model makes no
sense.

The algorithm then seeks a rank constrained approximation, the relative error num-
ber rel. e. shows how good an approximation of the initial residue matrix the
final result is. If this number is larger than .1, you should go back to identifying
a minimal but non reciprocal model, determine the actual multiplicity, and update
the pole, if it is not very well identified, or verify that your data is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the
synthesized FRFs (IIxh/ci.Stack{’IIxh’} in the example above). An alternate
FRF generation call would be

[a,b,c,d]=res2ss(res,po,idopt);
IIxh=gbode(a,b,c,d,ITux2*pi);

This more expensive computationally, but state-space models are particularly useful
for coupled system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer
functions. For example the response associated to a shaker placed at the uind
sensor (not a collocated one) can be computed using

ci=demosdt (’Demo demo_id’)

[psib,cpsil=id_rm(ci.Stack{’IdMain’}.res,ci.Stack{’IdMain’}.po,
ci.IDopt,[1 1 1 1]);

uind=3; res_u = (cpsi*diag(cpsi(uind,:))).’;

ci.Stack{’IdFrf’}=ci.Stack{’Test’};

ci.Stack{’IdFrf’}.xf=...

res2xf (res_u,ci.Stack{’IdMain’}.po,ci.Stack{’Test’}.w,ci.IDopt);

iiplot

You should note that the res_u model does not contain any residual terms, since
reciprocity does not give any information on those. Good predictions of unmeasured
transfers are thus limited to cases where residual terms can be neglected (which is
very hard to know a priori).



2.4.3 Normal mode form
Modal damping assumption

While the most accurate viscous damping models are obtained with a full damping
matrix I' (supported by [psi2nor|and [id nor|as detailed in the next section), modal
damping (where I' is assumed diagonal which is valid assumption when is
verified) is used in most industrial applications and is directly supported by
[id_rm| and [res2nor] The use of this functionality is demonstrated in demo_id.

For a modally damped model (diagonal modal damping matrix I'), the normal mode
model (5.4) can be rewritten in a rational fraction form (with truncation and residual
terms)
T
N {eg;} {BT 65

= > ,

s? = 5% + 2¢jw;s + w;
This parameterization, called normal mode residue form, has a symmetric pole pat-
tern and is supported by various functions (id_rc| [id_rm| [res2xf|, ...) through the
use of the option ci.[IDopt|.Fit=’"Normal’. As for the complex residues (/5.26), the
normal mode residue matrix given by and used by other functions is stacked
using one row for each pole or asymptotic correction term and, as the FRFs (see
the xf format), a column for each SISO transfer function (stacking NS columns for
actuator 1, then NS columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue
matrix 7} is directly related to the true normal modes

(73] = {ca;} { o] b} (2.12)
and the dyadic decomposition of the residue matrix can be used as in the complex

mode case (see section and the function to obtain a minimal and/or
reciprocal models (as well as scaled input and output shape matrices).

The scaling implied by equations (2.11)) and (2.12]) and used in the functions of the
Toolbox is consistent with the assumption of unit mass normalization of the normal
modes (see details under page . This remains true even for multiple modes.
A result rarely obtained by other methods.

When a complex mode identification has been performed (ci.[IDopt|.Fit=’Complex’
or ’Posit’), the function also provides a simple approximation of the
complex residue model by a normal mode residue model.
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Non proportional damping assumption

The complex modes of a minimal /reciprocal model are related to the mass / damp-
ing / stiffness matrices by (see Ref. [12])

e —1 - ~ ey —1
M= (¢A¢T) . C=-—MyA2TM, and K = (¢A—1¢T) (2.13)
if and only if the complex modes are also proper. That is, they verify verify
2N o7 B o
jzl {%‘} {%‘} - [w}Nsz {w]NXQN = [Olnxn (2.14)

The transformation is thus done in two stages. is used to find a
minimal and reciprocal approximation of the identified residue model of the form
. then determines ¢ and 1/; such that the 1; verify the condition
and ¢t is “optimally” close to the ¢t resulting from Using the complex
modes 1; and the identified poles A, the matrices are then computed and the model
transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered
group of modes is not significantly coupled to other modes by damping [12]. Groups
of modes which can be approximated by a second order non proportionally damped
model can be easily detected using the frequency separation criterion which must
be verified between modes j in the group a2nd modes k outside the group

ST g (2.15)

WiWi

If there does not exist a normal mode model that has complex modes close to the
identification result ciy, the algorithm may not work. This will happen in particular
if e ApTcl = eM~1c” does not have NQ positive eigenvalues (estimated mass not
positive definite).

For comparisons with undamped FE models, it is essential to obtain estimates of
normal modes. The most accurate results are obtained using a non-proportionally
damped normal mode model obtained with A coarse approximation is given
by (usefull if the identification is not good enough to build the minimal and
reciprocal model used by id nor). In such cases you can also consider using
with the assumption of proportional damping which directly identifies normal modes
(see more details in section [2.4.3)).

Scaling problems are often encountered when using the reciprocity to condition to
scale the complex modes in The function allows an optimization of



collocated residues based on a comparison of the identified residues and those linked
to the normal mode model. You should be aware that only works on very
good identification results, so that trying it without spending the time to go through
the pole update phase of id_rc makes little sense.

The use of this functionality is demonstrated in the following example.

ci=demosdt(’demodemo_id’) % load data and identify
f=ci.Stack{’Test’}.w;

nor = id_nor(ci.Stack{’IdMain’});

nor2xf (nor,f,’hz iiplot "IdFrf"’); ’ Compute response

% compute residual effects and add normal model contributions

res2xf (ci.Stack{’IdMain’},f,ci.IDopt, [5 6], ’iiplot "Nor+Stat"’); residue
ci.Stack{’Nor+Stat’}.xf=ci.Stack{’Nor+Stat’}.xf+nor2xf (nor,f, hz’);
iicom(’chl’);

The normal mode input nor.pb and output nor.cp matrices correspond to those of
an analytical model with mass normalized modes. They can be compared or
combined with analytical models and the modal frequencies nor.freq and
damping matrix nor.ga can be used for predictions (see more details in section .

The[id_nor|and [res2nor|algorithms only seek approximations the modes. For FRF
predictions one will often have to add the residual terms. The figure below (taken
from demo id) shows an example where including residual terms tremendously im-
proves the prediction. Out of band modes and residual terms are here represented
by the E(s) term. Second order models are said to be complete when E(s) can be
neglected [13]. The addition of residual terms was illustrated in the example above.

Channel 1

—— data
--- normal mode model
-'—- nor+static correction

Amplitude (m/N)

1 N 1 1 1 1 1 1
80 100 120 140 160 180 200 220
Frequency (Hz)

Figure 2.14: FRF xx
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Modal testing differs from system identification in the fact that responses are mea-
sured at a number of sensors which have a spatial distribution which allows the
visualization of the measured motion. Visualization is key for a proper assessment
of the quality of an experimental result. Omne typically considers three levels of
models.

e Input/output models are defined at sensors. In the figure, one represents these
sensors as arrows corresponding to the line of sight measurements of a laser vi-
brometer. Input/output models are the direct result of the identification proce-
dure described in chapter

e Wire frame models are used to visualize test results. They are an essential verifica-
tion tool for the experimentalist. Designing a test well, includes making sure that
the wire frame representation is sufficiently detailed to give the experimentalist a
good understanding of the measured motion. With non-triaxial measurements, a
significant difficulty is to handle the perception of motion assumed to be zero.

e Finite element models are used for test/analysis correlation. In most industrial
applications, test and FEM nodes are not coincident so that special care must be
taken when predicting FEM motion at test nodes/sensors (shape observation) or
estimating test motion at FEM DOF's (shape expansion).

Figure 3.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are
detailed in section Topology correlation and sensor/shaker placement tools are
details in section A summary of general tools used to compare sets of shapes is
made in section Shape expansion, which deals with the transformations between
the wire-frame and FE models, is introduced in section[3.3] The results of correlation




can be used for hybrid models combining experimental and analytical results (see
section [3.4)) or for finite element model updating (see section [6.5).

3.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical
and sensor/shaker configurations. Most of this effort is handled by with
some use of [femesh|

Starting with SDT 6.0, FEM sensors (see section can be associated with wire
frame model, the strategy where the two models where merged is thus obsolete.

As described in the following sections the three important phases of topology corre-
lation are

e combining test and FEM model including coordinate system definition for the
test nodes if there is a coordinate system mismatch,

e building of an observation matrix allowing the prediction of measurements
based on FEM deformations,

e sensor and shaker placement.

3.1.1 Defining sensors in the FEM model

Prior steps are to declare
e a FEM model (see section [4.2)). For this simple example, the FEM model must
describe nodes, elements and DOF's.
e a test wire-frame model (stored in TEST in the demo) with sensors in the .tdof

field, as detailed in section for the geometry and section for sensors

One then declares the wire frame (with sensors) as case entry as done below
(see also the gartte demo). The objective of this declaration is to allow observation
of the FEM response at sensors (see[sensor Sens)|).

cf=demosdt(’demo gartfeplot’); 7% load FEM
TEST=demosdt (’demo garttewire’); 7 see sdtweb(’pre#presen’)
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cf.mdl=fe_case(cf.mdl, ’sensdof’,’outputs’,TEST)

% View the Case entry in the properties figure
fecom(cf,’curtabCase’, ’outputs’) ;fecom(’ProViewOn’)
fecom(’TextStack’) 7 display sensor text

% now display FEM shape on sensors

fe_case(cf.mdl, ’sensmatch’)

cf.sel(2)=’-outputs’;

cf.o(1)={’sel 2 def 1 ch 7 ty2 scc .25’,’edgecolor’,’r’};

Section gives many more details the sensor GUI, the available sensors
[trans| [sensor triax] laser, ...). Section discusses topology correlation vari-
ants in more details.

3.1.2 Test and FEM coordinate systems

In many practical applications, the coordinate systems for test and FEM differ.
supports the use of a local coordinate system for test nodes with the basis
command. A three step process is considered. Phase 1 is used get the two meshes
oriented and coarsely alligned. The guess is more precise if a list of paired nodes on
the FEM and TEST meshes can be provided. In phase 2, the values displayed by
fe_sens| in phase 1 are fine tuned to obtain the accurate alignement. In phase 3,
the local basis definition is eliminated thus giving a cf.CStack{’sensors’} entry
with both .Node and .tdof fields in FEM coordinates which makes checks easier.

In peculiar cases, the FEM and TEST mesh axes differ, and a correction in rotation
in the Phase 2 may be easier to use. An additional rotation to apply in the TEST
mesh basis can be obtained by fullfilling the field rotation in Phase 2. The rotations
are applied after other modifications so that the user can directly interpret the
current display. The rotation field corresponds to a rotate call.
The command string corresponding to a rotation of 10 degress along axis y is then
’ry=10;’. Several rotations can be combined: ’ry=10; rx=-5;’ will thus first
perform a rotation along y of 10 degreess and a rotation along x of -5 degrees.
These combinations are left to the user’s choice since rotation operations are not
symmetric (e.g. *rz=5;rx=10;’ is a different call from ’rx=10;rz=5;’).

cf=demosdt(’demo garttebasis’); % Load the demo data
cf.CStack{’sensors’} % contains a SensDof entry with sensors and wireframe

% Phase 1: initial adjustments done once
% if the sensors are well distributed over the whole structure
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fe_sens(’basis estimate’,cf,’sensors’);

% Phase 1: initial adjustments done once, when node pairs are given
% if a list of paired nodes on the TEST and FEM can be provided
% For help on 3DLinePick see sdtweb(’3DLinePick’)

cf.sel="reset’; % Use 3DLinePick to select FEM ref nodes
cf.sel=’"-sensors’; % Use 3DLinePick to select TEST ref
i1=[62 47 33 39; % Reference FEM Nodeld

2112 2012 2301 2303]’;% Reference TEST Nodeld
cf.sel=’reset’; ’ show the FEM part you seek
fe_sens(’basis estimate’,cf,’sensors’,il);

%Phase 2 save the commands in an executable form

% The ’BasisEstimate’ command displays these lines, you can

% perform slight adjustments to improve the estimate
fe_sens(’basis’,cf,’sensors’,

’x7, [010], ... % x_test in FEM coordinates
y, [0 0 1], ... % y_test in FEM coordinates
’origin’,[-1 0 -0.005],... % test origin in FEM coordinates
’scale’, [0.01],... % test/FEM length unit change

’rotation’,’’); % additional rotations

%Phase 3 : Force change of TEST.Node and TEST.tdof to FEM coordinates
fe_sens(’basisToFEM’,cf.mdl, ’sensors’)
fe_case(cf.mdl, ’sensmatch’)

Note that FEM that use local coordinates for displacement are discussed in
Eransl

3.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test,
it is good practice to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

e Wire frame representations resulting from the placement should allow a good
visualization of test results without expansion. Achieving this objective, en-
hances the ability of people doing the test to diagnose problems with the test,
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which is obviously very desirable.

e seen at sensors, it is desirable that modes look different. This is measured by
the condition number of [c@]” [c¢] (modeshape independence, see [14]) or by
the magnitude of off-diagonal terms in the auto-MAC matrix (this measures
orthogonality). Both independence and orthogonality are strongly related.

e sensitivity of measured modeshape to a particular physical parameter (param-
eter visibility)

Sensor placement capabilities are accessed using the function as illustrated
in the gartsens demo. This function supports the effective independence [14] and
maximum sequence algorithms which seek to provide good placement in terms of
modeshape independence.

It is always good practice to verify the orthogonality of FEM modes at sensors using
the auto-MAC (whose off-diagonal terms should typically be below 0.1)

cphi = fe_c(mdof,sdof)*mode; ii_mac(’cpa’,cphi,’mac auto plot’)

For shaker placement, you typically want to make sure that

e you excite a set of target modes,

e or will have a combination of simultaneous loads that excites a particular mode
and not other nearby modes.

The placement based on the first objective is easily achieved looking at the mini-
mum controllability, the second uses the Multivariate Mode Indicator function (see
. Appropriate calls are illustrated in the gartsens demo.

3.2 Test/analysis correlation

Correlation criteria seek to analyze the similarity and differences between two sets
of results. Usual applications are the correlation of test and analysis results and the
comparison of various analysis results.

Ideally, correlation criteria should quantify the ability of two models to make the
same predictions. Since, the predictions of interest for a particular model can rarely
be pinpointed precisely, one has to use general qualities and select, from a list of
possible criterion, the ones that can be computed and do a good enough job for the
intended purpose.



3.2.1

Shape based criteria

The interface implements a number of correlation criteria. You should at
least learn about the Modal Assurance Criterion (MAC) and Pseudo Orthogonality
Checks (POC). These are very popular and should be used first. Other criteria
should be used to get more insight when you don’t have the desired answer or to
make sure that your answer is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific
as to what you are trying to do with your model. Since that rarely happens, you
should know the possibilities and stick to what is good enough for the job.

The following table gives a list of criteria implemented in the interface.

MAC

pPOC

Error

Rel

COMAC

MACCO

Modal Assurance Criterion . The most popular criterion for correlating
vectors. Insensitive to vector scaling. Sensitive to sensor selection and level
of response at each sensor. Main limitation : can give very misleading
results without warning. Main advantage : can be used in all cases. A
MAC criterion applied to frequency responses is called FRAC.

Pseudo Orthogonality Checks . Required in some industries for model
validation. This criterion is only defined for modes since other shapes do
verify orthogonality conditions. Its scaled insensitive version corre-
sponds to a mass weighted MAC and is implemented as the MAC M com-
mands. Main limitation : requires the definition of a mass associated with
the known modeshape components. Main advantage : gives a much more
reliable indication of correlation than the MAC.

Modeshape pairing (based on the MAC or MAC-M) and relative frequency
error and MAC correlation.

Relative error . Insensitive to scale when using the modal scale factor.
Extremely accurate criterion but does not tell much when correlation poor.
Coordinate Modal Assurance Criteria (three variants implemented in
compare sets of vectors to analyze which sensors lead poor cor-
relation. Main limitation : does not systematically give good indications.
Main advantage : a very fast tool giving more insight into the reasons of
poor correlation.

What if analysis, where coordinates are sequentially eliminated from the
MAC. Slower but more precise than COMAC.
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3.2.2 Energy based criteria

The criteria that make the most mechanical sense are derived from the equilibrium
equations. For example, modes are defined by the eigenvalue problem (6.84)). Thus
the dynamic residual

{RJ} = [ - wjzidM} {biq5} (3.1)
should be close to zero. A similar residual (3.5)) can be defined for FRFs.
The Euclidean norm of the dynamic residual has often been considered, but it tends

to be a rather poor choice for models mixing translations and rotations or having
very different levels of response in different parts of the structure.

To go to an energy based norm, the easiest is to bu