References
-
[rice_1983]
-
J. R. Rice and A. L. Ruina, “Stability of Steady Frictional Slipping,”
Journal of Applied Mechanics, vol. 50, pp. 343–349, June 1983.
- [salencon83]
-
J. Salençon, Viscoélasticité.
Presse des Ponts et Chaussés, Paris, 1983.
- [doghri00]
-
I. Doghri, Mechanics of Deformable Solids.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
- [simo00]
-
J. C. Simo and T. J. R. Hughes, Computational Inelasticity.
No. 7 in Interdisciplinary Applied Mathematics Mechanics and
Materials, New York, NY: Springer, second ed., 2000.
- [simo84]
-
J. C. Simo and R. L. Taylor, “Consistent tangent operators for
rate-independent elastoplasticity,” Computer methods in applied
mechanics and engineering, vol. 48, pp. 101–118, 1985.
- [schroder03]
-
J. Schröder and P. Neff, “Invariant formulation of hyperelastic transverse
isotropy based on polyconvex free energy functions,” International
Journal of Solids and Structures, vol. 40, pp. 401–445, Jan. 2003.
- [inria_2004]
-
INRIA and http://www.sdtools.com/pdf/sdt.pdfSDTools, OpenFEM, a
Finite Element Toolbox for Matlab and Scilab,
http://www.openfem.netwww.openfem.net.
INRIA, Rocquencourt, SDTools, Paris, France, 2004.
- [R5.03.19]
-
M. Abbas, “Loi de comportement hyperélastique : matériau pres[...],”
p. 8.
- [bal2]
-
Structural Dynamics Toolbox (for Use with MATLAB).
Paris: SDTools, Sept. 1995.
- [chapelle10]
-
D. Chapelle, J.-F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel,
“A poroelastic model valid in large strains with applications to perfusion
in cardiac modeling,” Computational Mechanics, vol. 46, pp. 91–101,
June 2010.
- [marckmann06]
-
G. Marckmann and E. Verron, “Comparison of hyperelastic models for rubber-like
materials,” Rubber Chemistry and Technology, vol. 79, no. 5,
pp. 835–858, 2006.
- [dal19]
-
H. Dal, Y. Badienia, K. Açikgöz, F. A. Denlï, Y. Badienia, K. Açikgöz, and F. A. Denlï, “A comparative study on hyperelastic
constitutive models on rubber: State of the art after 2006,” in Constitutive Models for Rubber XI, June 2019.
- [carroll11]
-
M. M. Carroll, “A Strain Energy Function for Vulcanized Rubbers,”
Journal of Elasticity, vol. 103, pp. 173–187, Apr. 2011.
- [zienkiewicz_1989]
-
O. Zienkiewicz and R. Taylor, The Finite Element Method.
MacGraw-Hill, 1989.
- [R3.06.08]
-
M. Abbas, “Finite elements treating the quasi-incompressibility,” Machine Translation, p. 21.
- [zhuravlev_2017]
-
R. Zhuravlev, Contribution à l'étude du comportement mécanique de
voies ferrées, composants à caractère dissipatif non-linéaire :
semelle sous rail et sous-couche de grave bitumineuse.
PhD thesis, ENSAM, Dec. 2017.
- [vermot_2010]
-
G. Vermot Des Roches, Frequency and Time Simulation of Squeal
Instabilities. Application to the Design of Industrial Automotive
Brakes.
PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2011.
- [jaumouille11]
-
V. Jaumouillé, Dynamique Des Structures à Interfaces Non Linéaires
: Extension Des Techniques de Balance Harmonique.
PhD thesis, Ecole Centrale de Lyon, 2011.
- [nlvibkit14]
-
A. Sénéchal, B. Petitjean, and L. Zoghaib, “Development of a numerical
tool for industrial structures with local nonlinearities,” in Proceedings of ISMA 2014 - International Conference on Noise and
Vibration Engineering and USD 2014 - International Conference on
Uncertainty in Structural Dynamics, pp. 3111–3126, 2014.
- [hammami_2014a]
-
C. Hammami, Intégration de Modèles de Jonctions Dissipatives Dans La
Conception Vibratoire de Structures Amorties.
PhD thesis, Arts et Metiers ParisTech, Paris, Oct. 14.
- [ver09]
-
G. Vermot Des Roches, Frequency and time simulation of squeal
instabilities. Application to the design of industrial automotive brakes.
PhD thesis, Ecole Centrale Paris,
CIFRE SDTools, 2010.
-19.4mm21mm24.2mm
[RO][RO]10mm