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1.1 Kinematics of non-linear systems

1.1.1 Observation of strains, stresses, application of forces

One is interested in solving equations of the general form

[M ] {q̈}+ [C] {q̇}+ [K] {q(t)} = FNL(q, q̇, qNL, ω, t) + Fext(ω, t) (1.1)

with q the finite element DOFs, M,C,K the mass, viscous damping, and stiffness matrices respec-
tively, Fext the external forces and FNL the non-linear forces internal to the system which may
depend on the FEM motion described by its DOFs q and their velocities q̇ as well as possibly inter-
nal states of the non-linear elements qNL. When internal states are necessary (friction, plasticity,
...), additional equations are provided to model their evolution.
Estimation of the non-linear forces can,, in a very general fashion, be decomposed in three steps:
observation of strains, evaluation of constitutive law at a material point to compute stresses, appli-
cation of stresses on the model as detailed below.

• Observation of non-linear strains is the first step

{ε(t)} = [c] {q(t)} (1.2)

where strains may represent quantities dependent on the model displacement (relative motion,
mechanical strain, ...), but also possibly internal states of the non-linearity if those are included
in the definition of q. For HBM solutions qNL will be assumed to be part of q but for transient
simulations this may not be optimal.

Strategies for the construction of the observation matrix c will be discussed for point to point
connection in section 1.1.3 , surfaces in section 1.1.4 , volumes in section 1.1.5 .

In the time domain, generalized strains ε (noted .unl in the code) are obtained by computing

unl = [c] {q}+ unl0 (1.3)

In the implementation, the strain vector may have NE components ei, and strains at NG ma-
terial points (Gauss or physical points) may be stored as a single vector to allow vectorization
of non-linearities of a given kind, thus leading to ei,gk components.

For HBM computations NT times will be evaluated and stored as columns. The internal storage
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in field NL.unl is thus of the form

{unl}(NE×NG)×NT
= {ε}gauss repeat×time =



e1,g1(t1) e1,g1(t2) . . .
e2,g1(t1) . . .

...
e1,g2(t1) . . .

...


(1.4)

In a similar fashion strain rates are obtained using

vnl = [c]
{
q′
}

+ vnl0 (1.5)

and stored in field NL.vnl.

• From the observed strains, a constitutive law is used to estimate stresses (or generalized
forces), as will be discussed in section 1.2 from data present in the NL.Fu field,

{snl(t)} = F ({ε(t)} , {ε̇(t)}) (1.6)

The generic representation of non-linearities should verify classical assumptions on objectivity
and on the validity of constitutive relations, which is compatible with the idea that generalized
strains are defined at a material point.

The definition of a non-linear constitutive relation giving a definition of generalized stresses
snl which has the same (NE ×NC) ×NT size as unl and is thus stored NL.unl field to allow
overwrite. This allows memory optimization even though the output result is a force and not
a strain). When internal states are present, the strain field NL.unl may not be efficiently used
to store stresses, it is then possible to store stresses in field NL.snl of size (NS ×NG) ×NT )
with NS the number of stress components.

• Finally stresses can be applied on the model to obtain the model forces in the discretized
model associated with DOFs q. That is

{−Fnl} = [b] {snl} (1.7)

where the field NL.snl may be defined or, in cases with no internal states, it is possible to
optimize memory by storing snl in NL.unl.

In the proposed framework,
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• internal states of a non-linearity are expected be included within the generalized strains. For
a time computation unl will thus be of size (NE + Nint) × Ng (×NT in the case of HBM
computations). See section 1.2.5 for more details.

• It is generally useful to store current unl(tn), initial unl0and previous unl(tn−1) values as con-
secutive blocks in NL.unl(:,:,1),NL.unl(:,:,2),NL.unl(:,:,3).

• In many instances the observation c and command b matrices can be considered constant, but
for contacts with large relative displacements they may need to be considered as operators
depending on the model state and thus modified dynamically using C code.

When performing a residual call, it is optimal from a performance point of view to perform updating
of steps. xxx

1.1.2 Manual definition of input and output

While the general approach is to associate non-linearities with strains in elements as described in
the following sections, it is possible to define a pro.NLdata structure giving

• .b,.c : manual command and observation definition. If the NLdata.DOF field is defined,
placement of the observation matrix in done during the model assembly phase assuming .DOF

correspond to mdof (projection with the Case.T matrix, c ∗ T ,is done). If one want to define
NL on active DOF, one will provide .adof field (rather than .DOF field): then c is assumed to
be defined on active dof, and a simple placeindof is done. If there is no NLdata.DOF field, .c
and .b matrices are assumed to be on mdof, and projected using Case.T. For storage during
solves, see .b.

• .Sens,.Load Alternate form for .b, .c giving command and observation matrices as .Sens

cell array of the form {SensType,SensData} where SensType is a string defining the sensor
type and SensData a matrix with the sensor data (see sdtweb sensor). .Load data structure
defining the command as a load (with .DOF and .def fields).

1.1.3 Generalized non-linear springs

The simplest example is the observation of unaxial springs oriented along vector {d} where the
generalized strain is the relative displacement



10 CHAPTER 1. THEORY AND REFERENCE

dq =
[
−{d}T {d}T

]


u1

v1

w1

u2

v2

w2


(1.8)

The non-linear implementation of the OpenFEM cbush element provides 6 generalized strains at
a given location corresponding to relative translations and rotations with respect to a local basis
B = [xe ye ze]



du
dv
dw
ru
rv
rw


NE×1

=

[
−BT 0 BT 0

0 −BT 0 BT

]



u1

v1

w1

ru1

rv1

rw1

u2

v2

w2

ru2

rv2

rw2



(1.9)

Initialisation of non-linear behavior in a cbush element group is performed when the NLdata property
contains fields

• type=’nl inout’ to let hbm solve InitHBM build the needed observation matrix

• Fu=’@UserFun’ references a user function computing the non-linear force with the prototype
call described in section 1.2.3
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• .isens can be used to apply non-linearity in some directions only.

A sample problem with cbush can be found in section 2.3.3 .

1.1.4 Generalized non-linear surfaces

Zero thickness elements which provide 3 generalized strains which correspond at each gauss point
to the relative motion of two surfaces in the normal and two tangential directions a
xxx Need document
Contact elements have an objective similar to that of zero thickness element but allow the handling
of non-conform meshes.
xxx Need document

1.1.5 Non-linear volumes

SDT implements observation of strains in configurations where no geometry updating is needed
using StressCut calls. This strategy is compatible with all physics (acoustics, piezo-electricity, ...)
and can also be used for shells (to observe membrane strains and curvature) and beams (to observe
axial elongation, shear, torsion and curvature).
.ctype=’stresscut’ builds the observation matrix for xxx
The generic implementation of multi-physic non-linear volumes provides a generalized strain giving
the displacement and its gradient for each field. For a field with 3 components at N nodes

{eMP }12 =



u1

u1,j

u2

u2,j
...


12

=



N 0 0
N, x 0 0
N, y 0 0
N, z 0 0

0 N 0
0 N, x 0
0 N, y 0
0 N, z 0
0 0 N
0 0 N, x
0 0 N, y
0 0 N, z




u1(n1)
u2(n1)
u3(n1)

...


(3N

= [BMP (r, s, t)]12×3N {uin}(3N)

(1.10)
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As a an example, the standard linearized mechanical strain

εx
εy
εz
γyz
γzx
γxy


=



N, x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N, x
N, y N, x 0




u
v
w

 = [BEp]6×3N {uin}3N (1.11)

can be related to the generic multi-physic strain using a transformation matrix TEp

[BEp]6×3N =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 0 0


[BMP ]12×3N = [TEp] [BMP ] (1.12)

The usual mechanical stiffness can thus be reformulated using BMP

Ke =

∫
Ω

[BEp]
T [D] [BEp] dΩ =

∫
Ω

[BMP ]T
[
T TEpDTEp

]
[BMP ] dΩ (1.13)

Similarly for right hand side evaluations
xxx
A generic non-linear multiphysic constitutive law is a function that will receive a NL structure with
fields

• .unl a series of generic strain emp at each gauss points thus a matrix with 4*Nf*Ng rows
(4 components per field, repeated for each gauss point), and possibly multiple columns for
different times.

• .vnl a series of strain velocities (time derivative of strain)

• .nodeG matrix of size Nfield * Ng containing interpolated fields (typically positions x, y, z, un1
but possibly also v1x,v1y,v1z for first orientation axis), .nodeEt is an int32 vector coding
the name of each field.

• .MatType list of matrix types for which the tangent consitutive law is given.

• .constit contains the constant parameters read from model.pl.

From this information the function should return a structure with field
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• .unl generic stresses a matrix with 4*Nf*Ng rows and Nt columns. The name should really be
.fnl but the same field name .unl is used to allow memory reuse.

• .MatType propagated version of input field.

• .DD a matrix of size ones(4*Nf,4*Nf,Ng,length(NL.MatType)) giving the tangent constitu-
tive law for each Gauss point and each desired matrix type. This corresponds to the T TEpDTEp
in (??).

1.2 Non-linear constitutive laws

While implementation of non-linear kinematics is fairly generic, users typically want to implement
their own constitutive laws relating stresses to strains and possibly their history.

1.2.1 Laws with no internal states, principles

Constitutive laws where the stress only depends on strain and strain rate are the simplest. These
laws exploit the framework provided by nl inout for various element types.
The only thing that needs to be implemented is a .Fu function

{snl(t)} = F (unl, vnl) (1.14)

During time/frequency evaluations it is essential that such evaluations be very fast, this has an
impact on implementation and different strategies are implemented

• tabular section 1.2.2 .

• dedicated user function section 1.2.3 .

• anonymous function defined with parameters section 1.2.4 .

1.2.2 Tabular interpolation

sdtweb(’_eval’,’d_fetime.m#BumpStop’)

opt=d_fetime(’timeopt dt=1e-4 tend=.1’);opt.Method=’Back’;

model=fe_time(opt,mdl)

Multiple forms are supported. Currently a cell array of

• tabulated Fu, ie 1st column is the observed strain (relative displacement), 2nd column is the
corresponding stress (load). A third column is interpreted as a coefficient applied to computed
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non linear load associated to velocity (Fv) (it is used for example in bumpstops to take in
account a damping with offset on the displacement).

When storing constitutive laws in tabular form, it is desirable to follow the SDT curve format
giving the the variable names on which the function depends in the .Xlab fields, abcissa in
the .X and values in the .Y field.

• numeric curve ID for a curve in the stack.

• string defining a predefined law, listed using nl spring(’guilist’).

Supported laws are

• BumpStop dp dp kp kp cp cp dm dm km km cm cm (a bumpstop example can be found in
sdtweb t nlspring(’BumpStop’). dp is the upper gap of the bumpstop, kp the upper stiffness,
and cp the upper damping, then dm km and cm the same for the lower gap. This bump stop law
(as friction law) is built in nl spring Tab which is the historical implementation : there is a
known approximation, the stiffness is applied from du = dp∗1.001 to du = 1 (so that the slope
is not exactly kp), and damping from du=dp. The same for lower gap. (XXXJP : we should
rewrite the nl spring Tab command directly in nl inout, without this approximation. This
approximation was done because of interpolation in third column, that was wanted to be 0 or
1, so that we cannot begin the damping and the stiffness from the same value... we should use
a lower du interval than 0.001 ∗ dp... xxxjp).

• Friction f f c0 c0, where f is the friction load, and c0 is a damping coefficient applied on
the transition around 0 velocity (c0 is typically important). Dry frictions are known to be
responsible for convergence problems.

• gapCylI inner cylinder within an external sleeve.

• ctcFric xxx penalized contact and friction implementation

1.2.3 Dedicated user function

The easiest conceptual way to define a non-linearity is to use your own function. For example, if
you have defined the function

function NL=resCubic(NL,fc,model,u,v,a,opt,Case,RO)

NL.unl=-.01*NL.unl.^3 ... % Cubic stiffness on relative motion

+ -.02*NL.vnl; % Linear viscous damping on relative velocity

You can specify that this function should be used to compute a law with no internal states using
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model=d_fetime(’TestbeamNL’);

model=nl_spring(’SetPro proid100 Fu="@resCubic"’,model);

% verify that Fu was defined in NLdata

NL=stack_get(model,’’,’NL’,’get’);NL.NLdata.Fu

% The same with a subfunction in d_hbm

model=nl_spring(’SetPro proid100 Fu="d_hbm(’’@resCubic’’)"’,model);

NL=stack_get(model,’’,’NL’,’get’);NL.NLdata.Fu

Note that in instances of deployed MATLAB generated with the MATLAB compiler, all custom
functions must be defined a priori. And only anonymous functions may be created.
The NLdata entry is kept as the one defined by the nl inout db call. Entry NLdata.Fu must then
be replaced by the handle to the dedicated function in the non-linear property

1.2.4 .anonymous field for definition

To allow parameter edition, the base mechanism to automatically create an .Fu as MATLAB anony-
mous function handle is to use the following NLdata fields

• .anonymous a string which upon model initialization in nl spring(’Init’) will be trans-
formed to an anonymous function of the form

Fu=@(NL,~,~,~,~,~,opt,~)AnonymousString

The @(...) part can be included in the string if it differs from the default.

Parameters are fields of the NL non-linear structure (in the example below NL.par1 will be
defined). The initialization of these parameters is performed using the NLdata.Param field
described below.

In frequency domain solvers, the current frequency (rad/s) is accessible in opt.w.

• .csv a string to define parameters in the anonymous function. This strign declares parameters
using cingui ParamEdit format. This declares the parameters to be used, with a default
value, their type and a possible brief explanation, as illustrated below.

• .Param The current parameters. .Param can be

– a string defining the parameters declared in the .csv by par1=val1 par2=val2 ...

– a structure with fields corresponding exactly to the declared parameters struct(’par1’,
val1, ’par2’, val2).

Any omitted parameter will be set to its default declared in .csv. Lack of default values would
then results in an error at the function execution.

• .tex a string providing a tex format of the formula used in .anonymous.
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Use of inline functions. One can directly use the existing framework with a customized call
based on the concept of anonymous function handles in MATLAB. The inline function used in
NLdata.anonymous has access to xxx

d_hbm(’TestDuffing2Dof-an’)

% completes the defintion

NLdata=struct(’csv’,’par1(1#%g#"value of parameter 1")’,...

’Param’,’par1=val’,...

’tex’,’p_1 u_{NL}’
’anonymous’,’-NL.par1*NL.unl’);

model=feutil(’setpro 2001’,model,’NLdata’,NLdata);

1.2.5 Laws with internal states

Classical rheologic model exploit internal states to account for hysteresis phenomena. E.g. The
elasto-visco-plastic behavior is shown in figure 1.1 In this case one internal state is required to

Figure 1.1: Elastic-visco-plastic model

represent the relative force between both extremities, to keep track of the relative displacement
between the middle spring and middle dashpot.
Very complex models can be associated to this kind of representation, where one will implement
internal dynamics associated to a strain history. The general formulation of such system is given as

fNL = F ({q} , {q̇} , {z} , {ż} , t) (1.15)

and the internal states evolution equation functional

{ż} = G ({q} , {q̇} , {z} , t) (1.16)

where {z} is a vector of internal states, {q} the displacement vector and ẋ represent the time
derivatives.
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Equations (1.15) and (1.2.5) represent the class of so-called state space models (for example in the
80’s for geophysics applications, in particular by Rice and Ruina [?]).
Internal state representation can be based on the need for an efficient implementation and on the
fact that the first order dynamics laws defined by equations (1.15) and (1.2.5) do not comply with
a second order based resolution framework (the internal states acceleration is seldom defined).
Equation (1.2.5) can thus be resolved separately, possibly with a sub-integration scheme and an
adequate interpolation of the external states.
In the non-linearity framework internal states are stored in the continuity of the generalized strains
per Gauss points in field .unl. A single non-linearity only handles a single topology and a single
internal model, so that each Gauss point has the same number of strain observations and internal
states. The field .unl is then of size ((NE +NI)×NG)×NT . The internal storage in field NL.unl

is thus of the form

{unl}((NE+NI)×NG)×NT
= {ε}gauss repeat×time =



e1,g1(t1) e1,g1(t2) . . .
e2,g1(t1) . . .

...
e1,g2(t1) . . .

...
e1,i1(t1)

...


(1.17)

This formalism keeps vectorization capability per instant. The internal rate states are stored in the
same manner.
Strain history is stored in the �third dimension .unl(:,:,jh). In general for time integration, one
will use

• .unl(:,:,1) to store the current strains of the form

• .unl(:,:,2) for the initial strains unl0

• .unl(:,:,3) to store unl,t−1 the strains at the previous step

When performing a residual call, it is efficient to combine time stepping and state update. The
StoreType parameters controls what the StoreState C function does.

• StoreType=01 single step computation of residual and update of internal states in unl. The
memory buffer of .unl(:,:,1) is first filled using but assuming that internal states have not
changed. The residual function computes a step replacing the data in .unl(:,:,1). If a xxx

• StoreType=02 not yet used.

• StoreType=1.. if the hundreds digits is set to 1, .vnl is assumed not used and thus the
associated buffer is emptied.
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When .iopt(1) is positive, states assumed to be consecutively stored in model.FNL assuming the
field exists. When .iopt(2) is positive, internal states are copied consecutively to the displacement
vector u. This is done for Ng=.iopt(5) gauss points while skipping Nstrain=.iopt(3) components
and copying Nistate=.iopt(4).
only the previous state is needed to integrate internal state evolutions, as offset unl0 is already stored
in the third dimension, unl,t−1 is found in the third index.
DOF representation of internal states

The number of internal states depends on the model and thus must be declared in the non-linearity.
One must then declare in NLdata the fields .adofi and field .MatTyp to obtain a proper initialization
of .unl field and associated observations in nl inout.

• Internal states are defined independently for each observation line used in the non-linearity.
e.g. for a cbush six directions are available relative to the 3 translations and 3 rotations that
can be observed. .adofi is then a line cell array of length the number of observations (6 here).
Each cell defines a number of internal states associated to the corresponding observation in-
dex by providing a column vector with as many lines as internal states used each containing
the DOF extension .99. The cell is left empty if no internal state is declared for a particular
direction.

Thus NLdata.adofi={[];[];[];[];[];.99} will add an internal state to the 6th observation
of the non-linearity.

• Field .adofi must be either a one column vector/cell (Gauss point wise replication is sup-
ported) or should feature as many columns as expected Gauss points for the non-linearity.

• For a volume element in large tranformation, 9 components of stress gradient are observed.
.adofi=zeros(18,1)+.99 will interlace 18 internal states with the observation at each gauss
point. xxx store internal states as DOF or within NL xxx

By default, one should let intialization procedures allocate DOF identifiers to each internal states
by only providing a DOF extention in .adofi. If internal states have a physically defined nodal
support, it is also possible to provide the corresponding DOF instead of just an extention. Beware
that these DOF should not be coupled to the elastic model, as external resolution would interfere
with the internal dynamics. Internal DOF replication for each Gauss point is automatically carried
out if a single column is provided.
To allow clean representation and access to internal states, the global model DOF are automatically
augmented with DOF associated to internal states. One can then decide whether to keep them
or not during the resolution phase by setting positive (kept) or negative (eliminated) signs to the
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non-empty values in .adofi. To simplify for a given non-linearity all internal states are either kept
or not, any negative value will then switch to elimination. In the case where internal states are kept
during the resolution displacement and velocity states are automatically updated in the model.
HBM solvers specificity

HBM formulations have a resolution approach that is different from usual transient simulations that
usually require to write separate dedicated functions for both resolution strategies.
In transient simulations, strain history is available, so that one first integrates internal states defined
by equation (1.2.5), and then computes the non-linear forces with equation (1.15).
In HBM based formulations the steady state response state is assumed in the prediction/correction
scheme, including strain history. Internal states coefficients are thus predicted, so that the cor-
responding non-linear force defined inequation (1.15) is directly obtained. One then updates the
internal states evolution equation (1.2.5) for convergence iterations. Internal states DOF must thus
be kept in the resolution phase.
Two internal states are needed to represent the relative xxx Laws with internal states xxx
xxx LS Local slider oscar fun.tex

1.2.6 Maxwell cells model as an example

The Maxwell cells model belongs to a category of so-called rheology based models. the force at each
Gauss point is calculated based on an internal rheology identified as a spring-mass based model.
Figure 1.2 illustratesxxx

k0

c1k1

u u1

k0

e0

c1k1

e1

. . .

cnkn

en

Figure 1.2: Standard viscoelastic model (single cell Maxwell or Zener). Generalized multi-cell model.

Since each branch is decoupled, one can write a series of scalar internal state evolution equations

ėn =
Kn

Cn
(en − eb) (1.18)
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and recompose the total non-linear stress using

snlb = K0eb +
∑
n

Kn(eb − en) (1.19)

To allow more general superlement representation of the constitutive law, the external force snlb can
be defined defined by a first order equation involving the system strain state at a given Gauss point
eb and ėb, and a series of internal states ei and ėi. In the following bold letters refer to non-scalar
values for a given Gauss point.[

Kbb Kbi

Kib Kii

]{
eb
ei

}
+

[
Cbb Cbi

Cib Cii

]{
ėb
ėi

}
=

{
snlb
0

}
(1.20)

No external forces being applied on the internal rheology, one is able to use a Schur complement to
obtain the internal states evolution equation

ėi = −C−1
ii Kibeb −C−1

ii Cibėb −C−1
ii Kiiei (1.21)

Once the internal state is resolved, the external force can be deduced

snlb =
[
Kbb Kbi

]{ eb
ei

}
+
[
Cbb Cbi

]{ ėb
ėi

}
(1.22)

Resolution of equation (1.21) can be obtained with different strategies. In transient simulations a
local integration is performed using the Euler scheme. From intstant tn the internal state at instant
tn+1 has to be integrated over h = tn+1 − tn

en+1
i = eni + h(1− θ)ėni + hθėn+1

i (1.23)

Implemented strategies can involve either single or multiple steps integrations in implicit or explicit
form. Implicit resolution involes Newton-Raphson resolution, the usual initial prediction assuming
constant velocity over the time step.
In the harmonic balance method, the global resolution scheme iterates on the internal states, so that
one directly computes equations (1.21) and (1.22) from the current solution and the be used in the
residue equation. The harmonic balance scheme then checks non-linear forces equilibrium and the
stability of internal velocities.

1.2.7 Iwan

Now let us consider a more non-linear constitutive law : the standard triboelastic solid.
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k0

e0
k1

e1

F1

kn

Fn

en

. . .
kn+1

Figure 1.3: STS model

The evolution equation is defined in a piecewise manner

ẋk = 1
Kk+Kk+1

(Kk ẋk−1 + Fk) if |Fk| > Ff

ẋk = 0 otherwise
(1.24)

with Fk = kk(ek − ek−1) + kk+1(ek − ek+1).
When integrating, the algorithm is stopped as soon as a ẋk condition is reached.

1.3 Transient solution of non-linear equations

1.3.1 Principles

To allow the use SDT transients with external FEM packages, it is assumed that a superelement
representation of the model is imported

[MR] {q̈R(t)}+ [CR] {q̇R(t)}+ [KR] {qR(s)} = [bR] {u(t)} (1.25)

In general, the reduction is performed so that the DOFs retained {qR} are related to the orignal
DOFs of a larger model by a Rayleigh Ritz reduction basis T using

{q}N = [T ]N×NR {qR(s)}NR (1.26)

This representation is fairly standard. The data structure representation within SDT is described in
section 1.6.1 . SDT/FEMLink supports import from various FEM codes and more details are given
in section 2.4 for NASTRAN, section 2.5 for Abaqus, and section 2.6 for ANSYS.
For transient resolution a real representation of damping must be used. Rayleigh and viscous damp-
ing are thus the only solutions supported. It is noted that for sine sweeps, it is possible to consider
a time varying Rayleigh damping which has been found to be appropriate in some cases.
nl solve fe timeModalNewmark implements an optimized fixed time step version of the Newmark
scheme (see [?] section 4.1.4) assuming a modal basis associated with the underlying linear system
(discussed in section 1.3.2 ).
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The non-linear resolution of the mechanical equation is usually performed by an iterative predic-
tor/corrector scheme. Given the solution at time step n, the prediction is initialized by assuming a
null acceleration at time step n+ 1, so that the predictors q0

n+1 and q̇0
n+1 are expressed as

q0
n+1 = qn + hq̇n + h2(1

2 − β)q̈n

q̇0
n+1 = q̇n + h(1− γ)q̈n

(1.27)

One considers the displacement correction ∆qn+1 as the only unknown and velocity and acceleration
at time step n+ 1 are given by 

∆qn+1 = qn+1 − q0
n+1

q̇n+1 = q̇0
n+1 + γ

hβ∆qn+1

q̈n+1 = 1
βh2

∆qn+1

(1.28)

Provided solution qkn+1, the residue is defined as

rk+1
n+1 = [M ] q̈kn+1 + [C] q̇kn+1 + [K] qkn+1 − fcn+1 − fNLn+1(qkn+1, q̇

k
n+1, tn+1) (1.29)

and the correction is found by solving J∆qk+1
n+1 = rk+1

n+1 using the diagonal fixed Jacobian

J =

[
\ 1
βh2

+
γ2ζjωj

βh + ω2
j \

]
(1.30)

For one step formulation see [1] formula (4.53).
For a given system, a one-step Newmark is the combination of a linear evolution matrix depending
on the linear system properties and time step h , and external forces. One thus writes the discrete
state evolution equation as {

qn+1

q̇n+1

}
= [E(h)]

{
qn
q̇n

}
+ {fch} (1.31)

The evolution equation combines the quadrature rules and the mechanical equilibrium at states n
and n+ 1: 

qn+1 = qn + hq̇n + h2βq̈n+1 + h2
(

1
2 − β

)
q̈n

q̇n+1 = q̇n + hγq̈n+1 + h (1− γ) q̈n
Mq̈n+1 + Cq̇n+1 +Kqn+1 = fcn+1

Mq̈n + Cq̇n +Kqn = fcn

(1.32)
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Multiplying the quadrature equations by M and replacing acceleration terms by their mechanical
equation resolution provides the evolution equation that can be matricially written

[
M + h2βK h2βC

hγK M + hγC

]{
qn+1

q̇n+1

}
=

[
M − h2

(
1
2 − β

)
K hM − h2

(
1
2 − β

)
C

−h (1− γ)K M − h (1− γ)C

]{
qn
q̇n

}
+ · · ·{

h2βfcn+1 + h2
(

1
2 − β

)
fcn

hγfcn+1 + h (1− γ) fcn

}
(1.33)

The evolution matrix is then

[E(h)] =

[
M + h2βK h2βC

hγK M + hγC

]−1 [
M − h2

(
1
2 − β

)
K hM − h2

(
1
2 − β

)
C

−h (1− γ)K M − h (1− γ)C

]
(1.34)

and the interpolated external force is then

{fch} =

[
M + h2βK h2βC

hγK M + hγC

]−1{
h2βfcn+1 + h2

(
1
2 − β

)
fcn

hγfcn+1 + h (1− γ) fcn

}
(1.35)

The acceleration can then be resolved with one of the quadrature rules, the simplest being the
velocity quadrature providing the relation

q̈n+1 =
1

hγ
(q̇n+1 − q̇n)− 1− γ

γ
q̈n (1.36)

1.3.2 Definition of an underlying linear system

When defining a non-linear constitutive law, it is always possible and often desirable to define an
underlying linear system. Taking the simple case of a cubic spring where snl = e3

nl. Figure 1.4
clearly illustrates the difference between the tangent stiffness, slope of force at current point 3e2

nl,
and the secant stiffness, ratio of force divided by deformation e2

nl.
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Figure 1.4: Left : Tangent and secant stiffness. Right : possible underlying linear systems for the
xxx example.

When defining a non-linear constitutive law, it useful and SDT-HBM requires that an underlying lin-
ear system be defined. For a general Fnl(e(t), ė(t)) law, the non-linear stress used in time integration
should thus be of the form

{snl(t)} = {Fnl(e(t), ė(t))} − [kJ ] {enl(t)} − {F0} (1.37)

with [kJ ] {enl(t)} the chosen linear representation of the non-linearity and F0 the value of the
non-linear stress at the system state around which the response is computed.
When considering assembly in SDT, elements with a non-linearity defined through the NLdata field
are ignored in linear assembly if NLdata.keepLin=0. For example, for a Maxwell model, reduction
is best peformed using the high frequency modulus. Thus a non-linear spring should be coupled
with a linear spring using that high stiffness.

1.4 Data structures for non-linearities in time

1.4.1 NLdata non-linearity definition

A non linearity has the following input form when stored as NLdata of an element group property.

• .type a MATLAB function handle which is used for initialization phases. The most commonly
used non-linearity is nl inout. For transient simulations observation matrices are built in
nl spring(’init’) while for HBM solutions this is done in hbm solve InitHBM.

• .Fu can be done through generic anonymous functions see section 1.2.4 , user defined anony-
mous functions see section 1.2.3 , tabular definitions section 1.2.2 .

• .adof optional definition of DOF specific to the non linearity that will be propagated to
model.FNLDOF, see below.
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• .isens optional : may be used to select a partial list of strains normally computed. For
example to only keep translations of a cbush use .isens=[1 2 3].

• .adofi to declare internal states, in coherence with field .MatTyp below. This field can be
omitted of left empty if no such feature is used. More details are given under DOF representation

of internal states.

• .MatTyp : declares the time derivative of the signal associated to each internal DOF. When
using explicit definitions of internal DOF, as in HBM or time integration with explicit internal
states, this is used to specify how to compute the Jacobian. Thus MatType=1 stiffness core-
sponds to a displacement DOF, 2 mass an acceleration DOF, 3 viscous damping a velocity
DOF.

• .obs Optional command to fill in out.FNL.NL, see below. This can either be a logical, evalu-
ating nl fun(’obs’), or a cell-array giving non linear data fields to propagate to the output
from model.NL, or a string which will be evaluated.

• .snl as a empty field will force the initialization of a NL.snl buffer during time integration.

• .StoreType can be used to specify the StoreType strategy.

1.4.2 Additional fields in model

Base on model stack entries of the pro type where as NLdata field is present as described in the
previous section, nl spring support additional model fields.

• .NL This is a stack containing all non linearity data built using nl spring NL. The stack has
as many lines as existing non-linearities and three columns, the first being the non linearity
type (the non linear function name most of the time), the second the non linearity name, and
the non linearity data described in section 1.4.3 .

• .FNL This is a transfer vector containing non linear data to output. Each non-linearity can
store output data based on .Find.

• .FNLDOF This is a DOF vector corresponding to vector FNL. These FNLDOF are defined freely
and not critical for base functionality. They are however convenient to keep track of internal
states or non-linearity output, so that its building should be taken care of.

• .FNLlab This is a cell array of labels corresponding to non linear data to output. This is used
by iiplot when non-linear responses are displayed during cleanup operations.

Output from simulations with non-linearities, from nl solve, or fe timehave additional data stored
in a .FNL field. This is a deformation structure with fields
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• .def Stored content of model.FNL at saving times.

• .DOF Stored content of model.FNLDOF.

• .data Copied data of out.data (saved times)

• .lab Stored content of model.FNLlab.

• .NL This is a cell array of the same format than model.NL. The third column contains structures
containing non linear data relevant for result display. By default it contains field .iNL, the
index vector of the current non linearity in the full FNLDOF. This field can be modified using
the .obs callback of the non linearities. This field is based on NL.FInd, if .FInd is missing,
iNL will be empty. iNL is then generated using the length of NL.adof, or by default using the
length of NL.unl.

1.4.3 NL structure : non-linearity representation during time integration

During time integration, non-linearities are stored in the model.NL cell array. Each non-linearity is
a data structure with the following standard fields for optimized computation (see mkl utils

• .type a MATLAB function handle which is then called through
NL.type(NL,fc,model,u,v,q,opt,Case). Some older NL use a string giving the type name.

• .c observation matrix (1.2.5) for non linear displacements and velocities. During solves this
is stored in row format obtained with NL.c=v handle(’mklst’,sparse(NL.c)) to optimize
product speed.

• .unl pre-allocated memory for the result of NL.c*u. Must be consistent with the number of
rows in NL.c. The computation is handled by mkl utils. New implementations support a
third dimension to store .unl0 in .unl(:,:,2) and .unlj1, the value at the previous time
step, in .unl(:,:,3).

• .vnl if exists pre-allocated memory for the result of NL.c*v. Must be consistent with the
number of rows in NL.c. The computation is handled by mkl utils.

• .snl preallocated buffer of length size(b,2) to store the non-linear stresses (1.6).

• .b command matrix for non linear loads. At the end of the NL.type call it is expected that
NL.snl (which may point xxx) contains the non linear component loads such that the residual
becomes r=r+NL.b*NL.snl.

During solves, sparse matrix operations must be optimized. This the product bsnl is com-
puted, it is interesting to store the transpose of the b matrix. The matrix is expected to be in



1.5. HARMONIC BALANCE SOLUTIONS AND SOLVER 27

transposed form NL.b=v handle(’mklst’,b);. This conventions allow reuse of a .c matrix
for command.

Note that the sign conventions when using unl to return a non linear force are opposite to
what is done when the result is added to fc, see sdtweb nl fun to compare conventions.

• .FInd C++ start index in model.FNL to store the current non linearity data.

• .adof FNLDOF specific to the non linearity.

• .obs Optional command to fill in out.FNL.NL, see below. This can either be a logical, evalu-
ating nl fun(’obs’), or a cell-array giving non linear data fields to propagate to the output
from model.NL, or a string which will be evaluated.

• .opt data vector containing double values to be used in C++ implementation of non-linearities.
Default values would be FuCode(1) tc(2) dt0(3) val1 val2.

• .iopt int32 data vector containing non-linearity specific integers. (1)FInd start of model.FNL,
(2)iu C staring position of internal states in global displacement vector, (3)Nstrain num-
ber of observed strains for each gauss point. (4)Nistate number of internal states per gauss
point. (5)Ngauss number of gauss points in a vectorized non-linearity. (6)StoreType update
strategy in residual call.

Optional for tabular (6)tStart,curStart C style start of table and cur in .opt. (8)size(Y,1),(9)size(y,2)
dimensions of table with unl as first column and values in second.

• in the C implementations the N field gives [0]numel(unl(:,:,1)) [1]size(c,1) size(c,2)

isTrans(c) [4]size(b,1) size(b,2) [6]isTrans(b) [8]length(opt) length(iopt) [10]size(unl,3)

• obsolete

• .extDOF obsolete see iopt, double vector containing Matlab indices xxxGVxxx, [iu,Nstrain,Nistate]

• Obsolete .unl0 offset to apply to .unl, so that the content of .unl becomes NL.c*u+unl0.
Current implementations should store in .unl(:,:,2).

• Obsolete .vnl0 offset to apply to .vnl, so that the content of .vnl becomes NL.c*v+vnl0.
Current implementations should store in .vnl(:,:,2).

1.5 Harmonic balance solutions and solver
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1.5.1 Elastic representation as superelements

For interfacing with external finite element software the well documented superelement formalism
is used. This formalism is largely used by Multibody Dynamic Software (Simpack, Adams, Excite,
...) and thus widely documented.
A superelement representation of the model is of the form[

MRs
2 + CRs+KR + iDR

]
{qR(s)} = [bR] {u(s)} (1.38)

In general, the reduction is performed so that the DOFs retained {qR} are related to the orignal
DOFs of a larger model by a Rayleigh Ritz reduction basis T using

{q}N = [T ]N×NR {qR(s)}NR (1.39)

This representation is fairly standard. The data structure representation within SDT is described in
section 1.6.1 . SDT/FEMLink supports import from various FEM codes and more details are given
in section 2.4 for NASTRAN and section 2.5 for Abaqus.
To allow the definition of elements within SDT, it is necessary to use superelements with physical
DOF, typically known as MASTER degree of freedom. These are stored in SDT as a DofSet entry.
Other columns of T may correspond to generalized or internal DOFs.
To use equivalent spring representations of volumes or surfaces, a first common approach is to
connect a set of nodes two a single reference node. This kinematic link can be done as

• ridid assuming that the 3D motion of all nodes in the set depend rigidly on the center node
motion. This tends to overstiffen the area of connected nodes.

• rbe3 assuming that the center node moves as the mean motion of the set of nodes. An
appropriate weighting is generated as described xxx

These links exist in Abaqus ??, NASTRAN ??, ANSYS ??.
Damping representation : G global or Rayleigh xxx link to proper SDT reference.

1.5.2 Time/frequency representation of solutions/loads

The solver is meant to support a generic representation of time dependence. The generalized degrees
of freedom considered here are components of a vector noted Z and correspond to amplitudes
multiplying functions of both space and time. For a scalar function of space (single spatial DOF),
multiple harmonic DOF fk and time varying shape functions hk(t) fully describe the time dependence

{f(t)} =
∑
k∈H

fkhk(t) = {fk}Tnk
[Hkt]nk×nt

(1.40)
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In the specific case of harmonic balance [2], the time dependence of a given DOF is written as

q(t) = zcq0 +
∑
n∈H

(zsqn sin (nωt) +Bcqn cos (nωt)) =
∑
k∈H

Zqkhk(t) (1.41)

where spatial DOFs are indexed by q and temporal DOFs are indexed by k but need also a repre-
sentation of the harmonic n. Thus the ordering of generalized space/time DOFs is

{Zqk} =


zcq0
zsq1
zcq1

...


nq .nh×1

(1.42)

with a spatial dependence q (degree of freedom in the time domain equation(1.1)) and a temporal
dependence k. Note that in the notation above, the individual components are assumed real, but
the problem can also be written in complex form (1.54). As always in SDT, it is expected that
the ordering of Z could be changed. Thus a list of DOFs is needed to specify the meaning of each
component of the vector. This list is given in the form

hdof={ % List of active DOFs

1.01 ’c0’ % Node1.DOF1(x), constant(B0)

10.02 ’s1’ % Node10.DOF2(y), first harmonic (A1)

10.02 ’c1’ % Node10.DOF2(y), first harmonic (B1)

};

where the first column specifies the spatial DOF and the label in the second column the tempo-
ral component. hbm solve harm commands provide utilities to manipulate spatio-temporal DOF
definitions.
The definition of a solution is thus made using a data structure with fields

• .def matrix with columns being Zqk values in given configuration (frequency dependence will
be obtained with multiple columns).

• .hdof cell array giving the meaning of spatio-temporal amplitudes in .def rows (see equation
(1.41))

• TR since, in general harmonic balance is performed using a reduced model, restitution of the
full DOFs is based on with the reduction basis stored in def.TR.

Building of the time response of a given DOF q(t) should, using the convention of summed indices,
actually be written as

q(tj) = ZqlHlj (1.43)
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with Hlj = Hl(tj) the lth harmonic function at time tj . Times are assumed to be sampled into the
regular time interval [t1 : tN ], so that H can be written in this case as a matrix

Hlj =



11(t1) . . . 11(tN )
sin(ωt1) . . . sin(ωtN )
cos(ωt1) . . . cos(ωtN )

... . . .
...

sin(kωt1) . . . sin(kωtN )
cos(kωt1) . . . cos(kωtN )

... . . .
...


(1.44)

In further equations and in the code, the notation Hkt(Hkt) is used even though there are two l lines
for each harmonic k (except for harmonic 0). xxx j
An advantage of the retained definition is that it is not necessary to define all harmonics. Furthermore
problems with sub-harmonics of the excitation frequency can also be considered and only require
development of appropriate label handling methods to define sub-harmonic functions hk(t).
The inverse transform is the way to obtain the harmonic amplitudes from a time vector and is
associated witht the Htk linear operator

Zql = {q(tj)}Nq×Nt [Htk]Nt×Nt = {q(tj)}
2

N


1
2 sin(ωt1) cos(ωt1) . . .
...

...
... . . .

1
2 sin(ωtN ) cos(ωtN ) . . .

 (1.45)

It is thus verified that HktHtk = [I]Nk×Nk.
Some of the literature considers linear DOFs (including modal DOFs and some physical DOFs),
non-linear DOFs (internal or physical). SDT-HBM does not ask the user for the nature of DOFs
since non-linear DOFs can actually be deduced from the consideration of DOFs present in non-linear
observation matrices and the notion was not found to be needed.
The spatial DOF nature (physical, modal, internal) is also not necessary. It is however useful to
have automated procedures to assign an identifier for every spatial DOF. It is thus expected that
generalized (modal) DOFs be assigned a node number at the time of superelement creation. To
avoid viewing mistakes DOF associated with modes or internal states are affected to DOF 99 (of
the form NodeId.99).
Finally, some non-linearities use internal states. As the HBM solver needs explicit access to these
states, the hbm solve InitHBM command performs a pre-processing step that affects a node number
for each internal state so that they are present in q.

1.5.3 Harmonic balance equation (real DOF)
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The base iterations are associated with a non-linear least squares minimization problem of the form

min
Z
‖{R(Z, ω, u)}‖ = min

Z
‖[A(ω)] {Z} − [b] {uext} − [bnl] {snl(Z, ω)}‖ (1.46)

The contents of matrices [A(ω)], [b], and [bnl] depend on the choice of time functions in (1.43).
With the states described in (1.41) using (1.44), the rows of the residue matrix correspond to the
work equilibrium equation (1.1) integrated over a period. Thus the harmonic 0 (constant term) is
given by

R0 =
N∑
i=1

(Mq̈ + Cq̇ +Kq − Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) (1.47)

The harmonic k leads to a sine (respectively cosine) contribution corresponding to an integral over
the N time points of a period

Rsk =
N∑
i=1

sin(kωti)(Mq̈(ti) + Cq̇(ti) +Kq(ti)− Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) (1.48)

Assuming states ordered with sine contributions first followed by cosine, the generalized Jacobian
matrix ∂R

∂Z is composed of a linear part

AH =



K

K − (ω)2M −ωD
ωD K − (ω)2M

. . .

K − (kω)2M −kωD
kωD K − (kω)2M

. . .


(1.49)

and a series of non-linear contributions

JH = [bH]
∂ {sH(Z, ω)}

∂Z
= [bH]

∂ {sH(εH, ω)}
∂εH

∂ {ε}
∂Z

= [bH]
∂ {sH}
∂εH

[cH] (1.50)

The linear part of AH in (1.6.5) is skew-symmetric. The negative sign is applied to the lines
corresponding to the sine contrutions. Using the notation (1.41), the negative sign is then located
on the upper triangular part.
In the implementations derived from [?], the non-linear contributions are computed by finite differ-
ences (or possibly analytically although this is not yet implemented). And the inner loop iterations
of the non-linear solver seeking the solution of (1.46) are of the form ∆Z = [J ]−1R.
In direct frequency solvers by SDTools, one seeks to obtain the ideal single step convergence, where
a sequant inter-harmonic stiffness [KεH] is found such that

{sH} = [KεH] {εH} (1.51)
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The two have the notable major difference that in general [KεH] 6= ∂σ
∂ε . In other words sequant and

tangent stiffness are different matrices.
In the case of a scalar strain ε and a linear complex stiffness of the form k(1+iη). The interharmonic
coupling is block diagonal and of the form

KεH =



k
k −kη
kη k

. . .

k −kη
kη k

. . .


(1.52)

since −iσs + σc = k(1 + iη)(iεs + εc) = ik(εs + ηεc) + k(εc − ηεs).
Anoter form considers an extended Z with frequency stored as an additional component (this is
acheived using opt.Opt.fvar=1)

min
Ze

‖[Ae(ω)] {Ze} − be‖ (1.53)

In this case a last column ∂R/∂ω is added to the Jacobian. For the last row, the ideal would be to
compute ∂ω

∂Z but the evaluation of this quantity is quite difficult, so that arc length techniques are
used for continuation.

1.5.4 Complex formulation and equivalent stiffness

To clarify the notion of equivalent stiffness found at the harmonic balance solution, the real harmonic
balance states (1.41) can be written in complex form expressing the time response as

q(t) = <

∑
k∈H

zqke
ikωt

 (1.54)

where spatial DOFs are indexed by q and temporal DOFs are indexed by k. Thus the ordering of
generalized space/time complex DOFs

{Zqk} =


zq0
zq1
zq2
...


nq .nh×1

(1.55)

The harmonic function is then complex,

Hlj = eilωtj (1.56)
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The usual harmonic balance using fourier coefficients, one has the equivalence

zqk = zcqk − izsqk (1.57)

as eikωt = cos(kωt) + isin(kωt), the equivalence between (1.54) and (1.41) is indeed

<(zqk)cos(kωt)−=(zqk)sin(kωt) = zcqkcos(kωt) + zsqksin(kωt) (1.58)

For each harmonic k the mean equilibrium over a period (1.48) leads to an equation of the form(
−(kω)2M + ikωC +K

)
{zqk}+ (Fnl(q, q̇, qnl, ω, ti)− Fext(ω, ti)) [Htk] = 0 (1.59)

where xxx

Fnl(Z, ω) = − [b] snl (1.60)

Since b is a constant matrix, the harmonic contribution of a non-linear stress can be computed at
the gauss point level using complex notation

sk = sck − issk = F−1
k (snl(Z, ω, ti)) =

N∑
i=1

(cos(kωti) + i sin(kωti)) (snl(Z, ω, ti)) (1.61)

For a linear spring with a loss factor and harmonic strains uk

sk = F−1
k (K(1 + iη)u(Z, ω, t)) = K(1 + iη)uk (1.62)

Assuming a scalar stress relation, the non-linear harmonic problem (1.59) is thus equivalent to a
linear harmonic problem(

−ω2M + iωC +K + [b]Keq,k [c]
)
{Zk} − Fext(ω) = 0 (1.63)

with the equivalent complex stiffness given for each gauss point by

Keq =
F−1
k (snl(Z, ω, ti))

uk
(1.64)

This expression of the problem is the basis for fixed point solvers, where a starting Keq,k is introduced
xxx
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1.5.5 Inter-harmonic coupling discussion

Harmonic balance Jacobian estimation based on local non-linear physics is never discussed in the
literature. xxx
Possible for a given harmonic to estimate an equivalent local linear constitutive law. This notion
comes close to quasi-Newtom methods in transient simulations, that estimate Jacobians with fixed
operators based on the non-linear constitutive laws.
The harmonic balance framework adds some complexity as the transient response is decomposed
in the time domain. It seems however possible to assess Jacobian relevant topologies using Taylor
series expansion when the non-linear forces can be expressed in a functionnal way (coherent with
the existence of a constitutive law).

[Jnl] =
∂fnlj
∂zhqk

(1.65)

fnlj ' k1ε+ k2ε
2 + k3ε

3 + · · · (1.66)

ε ' εcq0 + εcq1 cos(ωt) + εsq1 sin(ωt) + εcq2 cos(2ωt) + εsq2 sin(2ωt) + εcq3 cos(3ωt) + εsq3 sin(3ωt) + · · ·
(1.67)

First order terms induced by the linear and cubic constraint term respectively induced by ε =
ε+ δcq1 cos(ωt) and ε = ε+ δsq1 sin(ωt)

(
k1 − 9ε3cq1k3

)
δcq1 cos(ωt) + 3

4ε
2
cq1k3δcq1 cos(3ωt)(

k1 + 9ε3sq1k3

)
δsq1 sin(ωt)− 3

4ε
2
sq1k3δsq1 sin(3ωt)

(1.68)

First order terms induced by the linear and cubic constraint term respectively induced by ε =
ε+ δcq3 cos(3ωt) and ε = ε+ δsq3 sin(3ωt)

(
k1 − 9

4ε
2
cq3k3

)
δcq3 cos(3ωt) + 3

4ε
2
cq3k3δcq3 cos(9ωt)(

k1 + 9
4ε

2
sq3k3

)
δsq3 sin(3ωt)− 3

4ε
2
sq3k3δsq3 sin(9ωt)

(1.69)

First order terms induced by the linear and quadratic constraint term respectively induced by ε =
ε+ δcq1 cos(ωt) and ε = ε+ δsq1 sin(ωt){

εcq1k2δcq1 + k1δcq1 cos(ωt) + εcq1k2δcq1 cos(2ωt)
εsq1k2δsq1 + k1δsq1 sin(ωt)− εsq1k2δsq1 cos(2ωt)

(1.70)
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First order terms induced by the linear and quadratic constraint term respectively induced by ε =
ε+ δcq3 cos(2ωt) and ε = ε+ δsq2 sin(2ωt){

εcq2k2δcq2 + k1δcq2 cos(2ωt) + εcq2k2δcq2 cos(4ωt)
εsq2k2δsq2 + k1δsq2 sin(2ωt)− εsq2k2δsq2 cos(4ωt)

(1.71)

1.5.6 Load definition

The SDT definition of loads DofLoad or enforced displacement DofSet use the formalism of input
shape matrices. Thus the time dependence of the load is given by

{F (t)} = [b] {u(t)} (1.72)

where [b]N×NS describes the spatial content and the harmonic content is fully contained in {u(t)}.
u is often scalar but can be a vector if multiple loads are combined. For each u component j, a two
dimensional curve is defined giving

{uj(t)} = uc0j(ω) +
∑
k∈H

uskj(ω)sin(kωt) + uckj(ω)cos(kωt) (1.73)

The harmonic load frequency dependence is then defined for each load vector bj by scalar coefficients
associated to each harmonic

{uj(ω)} =


uc0j(ω)
us1j(ω)
uc1j(ω)

...

 (1.74)

These terms are declared by the field .curve defined in the Load structure.

• The field can be omitted or left empty. It then assumed that the force is a constant value
associated to the c1 harmonic.

• The field can be a single curve, producing a scalar amplitude value per harmonic. The same
amplitude is then applied to all loads.

• The field can be a cell array of curves, each curve being associated to a column of Load.def.
The result of each curve is then coherent with the harmonics declared in the curve.

A given curve entry will provide the frequency dependency of a given Load vector for a specified set
of harmonic shapes.
It can be defined using a Tabular form, or a Functional form by a structure coherent with sdtweb

curve formats, with fields
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• .X A 1x2 cell-array.

– .X{1}The first cell array provides the base pulsation vector that will provide the linear
interpolation coefficients. This can be left empty for functional definitions.

– .X{2} The second cell is a column cell-array providing the harmonic shape labels to whom
the load is applied.

• .Y the field providing the amplitude

– Tabular form: a matrix with as many lines a in field .X{1} and as many columns a the
number of harmonics provided in field .X{2}.

– Functional form using MATLAB anonymous function handles. A structure with fields

∗ .anonymous Provides the inline function. The anonymous function header is set by
default if omitted, @(Zf,w). The inline can access the curve structure Zf whose fields
will contain the fields declared in curve.Param, and the current pulsation w.

∗ .csv A parameter declaration string under cingui ParamEdit format. This declares
the parameters to be used, with a default value, their type and a possible brief
explaination.

∗ .Param The current parameters. .Param can be

· a string defining the parameters declared in the .csv by par1=val1 par2=val2

...

· a structure with fields corresponding exactly to the declared parameters struct(’par1’,
val1, ’par2’, val2).

Any omitted parameter will be set to its default declared in the csv. Lack of default
values would then results in an error at the function execution.

∗ .tex a string providing a tex format of the formula used in .anonymous. Lazy
declaration can be done by providing a string using w instead of the structure format.

% tabular formulation

C1=struct(’X’,{{1, ... % Frequencies can be a column vector if varying

{’c0’;’c1’}}}, ... % harmonic labels, see hdof

’Xlab’,{{’Frequency’,’harm’}}, ... % Frequency Hz or Pulsation rad/s

’Y’,[.1 50]); %

% Functional formulation

C2=struct(’X’,{{[],{’s1’}}},...
’Y’,{{struct(’anonymous’,’Zf.k1*w^2’,...
’Param’,’k1=1e-2’,....

’csv’,’k1(1#%g#"")’,...

’tex’,’k_1 \omega^2’)}});
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% Lazy anonymous

C3=struct(’X’,{{[],{’c0’;’c2’}}},’Y’,{{’10*sqrt(w)’,’w^2’}});

Internally this definition is transformed to use a command matrix [b]Nhdof×Nhload, with Nhdof the
number of harmonic DOF defined in field .hdof and Nhload the number of harmonic loadings. One
physical load is replicated by the number of harmonics specified in the curve field .X input to allow
distinct amplitudes per harmonic.
At a given pulsation, a vector u(ω)Nhload×1 is generated by parsing the curve inputs,

{u(ω)} =


...

{uj(ω)}
...

 (1.75)

so that the total external harmonic load vector is expressed as

{Zf}Nhdof×1 = [b] {u(ω)} (1.76)

xxx Ease of use define c1a and c1phi xxx ?

1.6 Data structures for HBM solvers

1.6.1 Model, superelement

The model structure containing in particular

• model.K list of matrices involved in the computation

• model.Klab list of labels describing each matrix

• model.Opt(2,:) list of labels describing each matrix

• model.NL stack of non-linearities.

This section describes a subset of superelement specifications described in more details in sdtweb(’secms’).
The structure is a standard OpenFEM model structure with additional fields described below.
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Opt

Options characterizing the type of superelement as follows:
Opt(1,1) 1 classical superelements.
Opt(2,:) matrix types for the superelement matrices. Each non zero value on the

second row of Opt specifies a matrix stored in the field K{i} (where i is
the column number). The value of Opt(2,i) indicates the matrix type of
K{i}. 1 stiffness, 2 mass, 3 viscous damping, 4 hysteretic damping.

Node

Nominal node matrix. Contains the nodes used by the unique superelement. The only restriction in
comparison to a standard model Node matrix is that it must be sorted by NodeId so that the last
node has the largest NodeId.

K{i},Klab{i},DOF
Superelement matrices. The presence and type of these matrices is declared in the Opt field (see
above) and should be associated with a label giving the meaning of each matrix.
All matrices must be consistent with the .DOF field which is given in internal node numbering.

Elt, Node, il, pl

Initial model retrieval for unique superelements. Elt field contains the initial model description
matrix which allows the construction of a detailed visualization as well as post-processing operations.
.Node contains the nodes used by this model. The .pl and .il fields store material and element
properties for the initial model.
Once the matrices built, SE.Elt may be replaced by a display mesh if appropriate.

TR

TR field contains the definition of a possible projection on a reduction basis. This information is
stored in a structure array with fields

• .DOF is the model active DOF vector.

• .def is the projection matrix. There is as many columns as DOFs in the reduced basis (stored
in the DOF field of the superelement structure array), and as many row as active DOFs (stored
in TR.DOF).

• .hdof, when appropriate, gives a list of DOF labels associated with columns of TR.def

• .data, when appropriate, gives a list frequencies associated with columns of TR.def
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• .KeptDOF can be used to specify master DOFs not included TR.def but that should still be
used for display of the superelement.

1.6.2 Non-linearity definition NLdata

Initialisation of non-linear behavior in a cbush element group is performed with the following NLdata

formats xxx
Definition with custom functions. The NLdata property must contains the following fields

• type=’nl inout’ to let hbm solve InitHBM build the needed observation matrix

• Fu=’@UserFun’ references a user function computing the non-linear force with the prototype
call described in section ?? . Note that in instances of deployed MATLAB generated with
the MATLAB compiler, all custom functions must be defined a priori. And only anonymous
functions may be created.

• adofi to declare internal states, in coherence with field .MatTyp below. This field can be
omitted of left empty if no such feature is used. Internal states are defined independently for
each observation line used in the non-linearity. e.g. For a cbush six directions are available
relative to the 3 translations and 3 rotations that can be observed. .adofi is then a line
cell array of length the number of observations. Each cell defines a number of internal states
associated to the corresponding observation index by providing a column vector with as many
lines as internal states used each containing the DOF extension .99. The cell is left empty if
no internal state is declared for a particular direction. NLdata.adofi={[];[];[];[];[];.99}
will add an internal state to the 6th observation of the non-linearity.

• .MatTyp : declares the time derivative of the signal associated to each internal DOF. This
corresponds to matrix definitions in the Jacobian. Thus MatType=1 stiffness coresponds to a
displacement DOF, 2 mass an acceleration DOF, 3 viscous damping a velocity DOF.

• .isens may be used to select a partial list of strains normally computed. For example to only
keep translations of a cbush use .isens=[1 2 3].

1.6.3 NL structure non-linearity representation during HBM solve

NL structures describing each non-linearity

• NL.c standard observation matrix for the observed motion used to express load. Initially in
physical coordinates and transformed to harmonic observation in Build c unl k.

• NL.b command matrix to reapply harmonic loads on the proper DOFs.

• NL.Fu cell array of in-line functions.
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• NL.type string containing the non-linearity type

• NL.c0,NL.b0 observation/command of non-linear strain in physical space only.

1.6.4 Solver options definition

xxx

out=struct(’Method’,’hbm_solve’,...

’Opt’,[0 9 1 .01 .4 0 1],... [adapt Nhmax nu fmin fmax UNU fvar]

’SaveFreq’,[0 .01 1e3 ],... [stra (full/block) fstep nFpoints]

’RelTol’,1e-9,’MaxIter’,12,...

’Rayleigh’,[0 0],...

’NeedUNL’,[0 0],...

’AssembleCall’,hbm_solve(’AssembleCall’),...

’JacobianUpdate’,pmat(zeros(1)),...

’iterHBM’,’@iterHBM’,...

’initHBM’,’@initHBM’,...

’resHBM’,’@resHBM’,...

’abscHBM’,’@abscHBM’,...

’FinalCleanupFcn’,’hbm_solve(’’fe_timeCleanup-cf-1’’);’,...

...’dSOpt’,[ 2 1 0 .01 .01 .1 7 .3 1.5 6 12 ]); % [ Ldeg absc step dsfix dsmin dsmax iopt bmin bmax method maxite]

’dSOpt’,[1 .01 .01 .1 7 .3 1.5 2 ]); %step(lin/lagrange) dsfix dsmin dsmax iopt bmin bmax Ldeg

• opt.Method (’hbm solve’) Provides the method used by the solver. The default is hbm solve

for a frequency scan.

• opt.AssembleCall (= hbm solve(’AssembleCall’’) Provides the call to perform an assem-
bly performing initialization specific to the HBM module. This field is usually left by default,
using the output of command hbm solveAssembleCall.

• opt.Jacobian (= ’’) Provides a callback to compute the Jacobian used for the solver resolu-
tions. The default procedures peforms Jacobian computations during residue computation so
that this field is empty by default.

• opt.JacobianUpdate (= pmat(ones(1))) A pmat indicator controlling the Jacobian updating
procedure. This can be set to 0 to ask not to update the current Jacobian, or to 1 to trigger
an update. This value can be modified by the solver if automated Jacobian update schemes
are used (see opt.juit).

• opt.initHBM (=’@initHBM’) Provides a function handle called for data initialization before
solve. The internal method initHBM is used by default, this field is thus initialized with the
internal handle name of the hbm solve methods.
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• opt.abscHBM (=’@abscHBM’) Provides a callback to perform curvilinear frequency predictions
based on a buffer of response. The internal method abscHBM is used by default (provides linear
or Lagrange polynom interpolation), this field is thus initialized with the internal handle name
of the hbm solve methods.

• opt.iterHBM (=’@iterHBM’) Provides a callback to perform equilibrium iteration loops at a
given point. The internal method iterHBM is used by default, this field is thus initialized with
the internal handle name of the hbm solve methods.

• opt.resHBM (=’@resHBM’) Provides a callback to compute the equilibrium residue of a given
HBM state. The internal method resHBM is used by default (also provides Jacobian computa-
tion), this field is thus initialized with the internal handle name of the hbm solve methods.

• opt.Opt (= [adapt Nhmax nu fmin fmax UNU fvar])

– adapt (= 0) Unused, must be left to 0.

– Nhmax (= 9) Defines the maximum number of harmonics considered, drives the transient
buffer size. xxx Should directly be tBufSize, as convergence will depend on NL rather
than Nh xxx

– nu (= 1) Defines the harmonic factor ω = k/ν xxx.

– fstart (= .01) Defines the starting frequency for scanning.

– fend (= .4) Defines the end frequency for scanning.

– UNU (= 0) Unused value left to zero for OpenFEM retro-compatibility.

– fvar (= 1) Declares the frequency representation, either fixed (fvar = 0) or unknown
(fvar = 1). If set to 1 the harmonics vector Z is augmented with the pulsation, corre-
sponding to harmonic DOF 1.99,’freq’.

• opt.Rayleigh (= [alpha beta]) Provides Rayleigh damping values applied to system matri-
ces, defining C = αM + βK.

• opt.juit (= -Inf) Defines an automated Jacobian update strategy used in resHBM, the Ja-
cobian is then updated only after juit iterations. The default value set to -Inf asks for an
update at each step.

• opt.dSOpt (= [stra dsfix dsmin dsmax iopt bmin bmax Ldeg]) Defines the curvilinear
frequency prediction for continuation techniques, used by abscHBM.

– stra (= 1) defines the increment strategy, either fixed (0) or with Lagrange polynoms
(1).

– fix (= .01 ) defines the fixed pulsation step , used for fixed strategy and to initialize
other ones.
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– min (= .01) defines the minimum authorized pulsation step.

– max (= .1) defines the maximum authorized pulsation step.

– iopt (= 7) defines an optimal iteration number indicator. Pulsation frequency continua-
tions will be modulated to target iopt iteration for convergence.

– bmin (= .3) defines the minimal modulation factor applied to reach iopt iterations for
convergence.

– bmax (= 1.5) defines the maximal modulation factor applied to reach iopt iterations for
convergence.

– Ldeg (= 2) defines the degree of the Lagrange polynomial extrapolation.

• opt.RelTol (= 1e-9) defines the tolerance to consider the HBM equilibrium is attained.

• opt.MaxIter (= 12) defines the maximum number of iterations allowed before stopping the
loop.

• opt.SaveFreq (= [stra fstep nFpoints]) defines the output storage strategy.

– stra (= 0) defines the storage strategy. 0 defines a direct output saving, saving as much
as nFpoints results everytime the module frequency change is greater than fstep since
the last save.

– fstep (= .01) defines the frequency module evolution step triggering a save.

– nFpoints (= 1e3) defines the total number of results saved in the output.

• opt.NeedUNL (= [0 0]) asks to save unl (if opt.NeedUNL(1)==1) and/or vnl (if NL.NeedUNL(2)==1)
observations.

• opt.FinalCleanupFcn Provides the call to perform output cleanup after resolution. This field
is usually left by default, calling hbm solve(’fe timeCleanup’’. Token -cf-1 directly stores
the result in the GUI.

1.6.5 Option structure during HBM solve

Inside the solver loop, developpers may want to access a number of parameters described below.
The internal structure during time solves is described in sdtweb(’nldata#nlformtime’);

• opt.N number of samples for time signal

• opt.A A matrix (this matrix gets overwritten during iterations).

• opt.Hkt unit evolution of a given harmonic.(1.44)

• opt.dHkt time derivative of unit evolution of a given harmonic.
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• opt.hdof two column matrix giving for each DOF the physical DOF and the time variation
index. Transform to labels using xxx.

• opt.harm internal field of retained harmonics. opt.ihdof, opt.idof xxx

1.6.6 Harmonic result structure

is the data structure used to store SDT-HBM results. It is a variation of the curve format. With
the first dimension containing harmonic DOFs, the second frequencies and the last amplitudes. xxx
needs update xxx

sdtweb hbm_solve(’outputinithbm’)

out=struct(’Y’,zeros(r1),...

’X’,{[{hdof}, freq,amp]},...
’Xlab’,{’Hdof’,’Freq’,’Amp’},...
’hdof’,{opt.hdof},’DOF’,Case.DOF,...
’harm’,opt.harm,’idof’,opt.idof,’ihdof’,opt.ihdof,’cur’,zeros(1,max(3,length(r1)+1)));



44 CHAPTER 1. THEORY AND REFERENCE



2

Tutorial

Contents

2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Frequency domain test cases . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Example lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Spring mass examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3 Beam problem with local non-linearity . . . . . . . . . . . . . . . . . . . . . 48

2.2.4 Lap joint problem with contact . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.5 Hyperelastic bushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Time domain test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.1 Single mass test of various non-linearities . . . . . . . . . . . . . . . . . . . 50

2.3.2 Single mass stepped sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 CBush with orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Beam with non-linear rotation spring . . . . . . . . . . . . . . . . . . . . . 52

2.3.5 Lap joint with non-linear springs . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 NASTRAN interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Non-linear springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Superelement generation (Craig-Bampton type) . . . . . . . . . . . . . . . . 53

2.4.3 Superelement generation (Free mode variants) . . . . . . . . . . . . . . . . 55

2.4.4 Storing SDT-HBM options in bulk format . . . . . . . . . . . . . . . . . . . 55

2.4.5 Data export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 ABAQUS interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.1 Non-linear springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.2 Superelement generation (Craig-Bampton type) . . . . . . . . . . . . . . . . 57

2.6 ANSYS interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 Non-linear springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.2 Superelement generation (Craig-Bampton type) . . . . . . . . . . . . . . . . 58

2.7 Avanced usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.1 DOE & general organisation in steps . . . . . . . . . . . . . . . . . . . . . . 59

2.7.2 Obsolete NLVibKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



46 CHAPTER 2. TUTORIAL

2.1 Installation

Steps of an installation are

• Install SDT.

– The current starting point is SDT 6.8 beta which can be dowloaded from http://www.

sdtools.com/distrib/beta/sdtcur_dis.p. To obtain a SDT license key, you should
then use the procedure at http://www.sdtools.com/faq/Release.html.

– To save multiple SDT installations, see http://www.sdtools.com/faq/Release.html#

multi

– You must have write permission in the SDT directory so that it can be patched by yourself.
If this is not the case you should install SDT somewhere in your own directories. For exam-
ple use target=’c:/sdtdata/hbm/sdt.cur’ to avoid install to the traditionnal directory
matlabroot/toolbox/sdt, see http://www.sdtools.com/faq/Release.html#multi.

– For multi-boot systems (windows, linux), use a single SDT (see item above). This will
avoid the need to install patches on both installations.

• For the target SDT a patch is always needed. Patches to SDT are files named hbm patch disp.p.
They can be obtained using a call of the form

hbm_utils(’DistribGetPatch’) % Install the patch

hbm_utils(’DistribCheck’) % Run basic check of versions

– The command only downloads the patch, you are then supposed to click on the link
cd(’d:/del/scratch’);hbm patch dis;rehash toolboxreset % do so that the patch
is installed. The two step procedure is needed to give you a chance that the location of
the patch install is correct.

– You must have write permission in the SDT directory, see first item of install.

• a copy of the SDT-HBM code. Two cases are possible

– a deployement version obtained from SDTools as a crypted 7z file, this requires the exis-
tence of a license.txt file in your base SDT directory.

– a SVN version obtained by a checkout on URL http://support.sdtools.com/svn/hbm/

trunk. For details on SVN clients to do a checkout, contact SDTools. It is expected that
your rename your local copy of the trunk directory HBM. This will then be the base of
your SDT-HBM directory structure.

The SDT-HBM directory structure is

http://www.sdtools.com/distrib/beta/sdtcur_dis.p
http://www.sdtools.com/distrib/beta/sdtcur_dis.p
http://www.sdtools.com/faq/Release.html
http://www.sdtools.com/faq/Release.html#multi
http://www.sdtools.com/faq/Release.html#multi
http://www.sdtools.com/faq/Release.html#multi
http://support.sdtools.com/svn/hbm/trunk
http://support.sdtools.com/svn/hbm/trunk
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• hbm/m contains all the Matlab files needed to run SDT-HBM.

• hbm/help contains the documentation, see hbm utils Help to update.

• sdt.cur classical location for SDT installation associated with SDT HBM.

• hbm/test contains the files needed for testing. This is used for t hbm log.

• hbm/tex the root file is hbm.tex. It contains all the includes for other documentation files.
Figures are stored as .pdf or .png in directory plots subdirectory, see hbm utils Latex to
recompile. Documention contributions are welcome.

2.2 Frequency domain test cases

2.2.1 Example lists

• d hbm(’TestDuffing2dof’) spring mass duffing example detailed in section 2.3.1

• model=d hbm(’TestDofSet1’) provides a test case with enforced displacement.

• d hbm(’TestBeamNL’) is a simple beam with a rotation spring. This was analyzed in detail
in [3].

• d hbm(’TestBeamVNL’) is similar but implements the rotation spring as a single volume el-
ement. This is used to validate the implementation of volume non-linearities described sec-
tion 1.1.5 .

• d hbm(’TestSPlate’) illustrates a plate on non-linear supports.

• t hbm TestLapJoint Bj2 xxx provided by AGI

2.2.2 Spring mass examples

The 2DOF duffing model provided by AGI is implementedin d hbm(’TestDuffing2dof’).
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Figure 2.1: Two DOF duffing oscillator with cubic non-linearity

sdtweb d_hbm(’TestDuffing2Dof’); % Open source code of example

[mo1,opt,Z,XF]=d_hbm(’TestDuffing2dof’); % Run and display

2.2.3 Beam problem with local non-linearity

sdtweb t_hbm beamnl

As a first example clima16(’BeamNLKrange’), one seeks to demonstrate the sensitivity to a variable
stiffness. The non-linear stress strain relation is defined by

Fu=@(NL,fc,model,u,v,a,opt,Case,RO)kcur.*(NL.unl-loss*NL.vnl/opt.w);

which combines a constant stiffness kcur and a loss factor defined in the time domain using a fre-
quency dependent velocity contribution. Taking q = cos(ωt), one assumes the equality of the com-
plex stiffness and viscous damping forms in the stress/strain relationship s = Re

(
k(1 + iη)eiωt

)
=

Re
(
(k + iωceiωt)

)
which leads to c = −η/ω. In the resulting frequency responses below, one clearly

sees a frequency response having a transition from a lower frequency at 4 Hz for kcur = 10e6 (in
model units) and an upper frequency at 15 Hz for kcur = 1e8. The figure also clearly shows that
damping decreases close to the limits as expected (see [3] for details).
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As a second example clima16(’BeamNARange’), one seeks to illustrate the amplitude dependence
obtained for a stiffening spring. xxxDocument convergence issues.

2.2.4 Lap joint problem with contact

Current simple test is found in t contact(’LapJzt’). Variants include one or 3 bolts. Different
strategies to generate the response.
The current test clima16(’LJEB’).
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Figure 2.2: Lap joint with contact surface

2.2.5 Hyperelastic bushing

This example is a functional demonstration of capabilities associated with hyperviscoelastic behavior.
It is based on the RotDamper example.

[mo1,hopt]=d_hbm(’TestBeamVNL’);

2.3 Time domain test cases

• sdtweb(’ eval’,’d fetime.m#BumpStop’) simple mass on spring with bumpstop non-linearity.

2.3.1 Single mass test of various non-linearities

Single mass test of various non-linearities sdtweb t nlspring ModalNewmark. Supported exam-
ples are

• Maxwell viscoelastic spring,

• tabular stiffness,

• Dahl model with constant normal force.

% Sample example with tabular stiffness and output spectrogram

sdtweb(’_eval’,’d_fetime.m#Maxwell’)

mdl=stack_set(mdl,’info’,’DefaultZeta’,@(f)zeros(size(f)));
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x=[-100 -1e-4 1e-4 100]’;Fu=struct(’X’,{{x}},’Y’,x.*[10 0 0 10]’);

NLdata=struct(’type’,’nl_inout’,’lab’,’TabK’,’keepLin’,0,...

’isens’,3,’MatTyp’,{{[3]}},’Fu’,{{Fu}});
mdl=feutil(’setpro 1000’,mdl,’NLdata’,NLdata);

mo2=nl_solve(’ReducFree 2 10 0 -float2 -SE’,mdl);% With internal DOF

opt=nl_spring(’TimeOpt dt=1e-4 tend=100 ModalNewmark’);

RB=struct(’spec’,’BufTime 20 Overlap .75 fmin0 fmax60 -window hanning’,’ci’,3);

opt=stack_set(opt,’ExitFcn’,’Tip’, ...

struct(’FinalCleanup’,{{’nl_solve’,’PostCdof’}},’DOF’,2.03,’DoFreq’,RB));
opt=stack_set(opt,’info’,’RangeTime’,fe_range(’grid’,struct(’A’,logspace(-3,0,5))));

d2=fe_time(opt,mo2);d2=fe_def(’subdef’,d2,d2.data>d2.data(2));

2.3.2 Single mass stepped sine

The d hbm TestSteppedSine example illustrates the stepped sine procedure implemented with the
ModalNewmark solver.
In such computations, it is assumed that the excitation frequency is fixed during the transient, so
that the following parameters can be used the the run options

• .Nper number of periods for each computation

• .NperPer number of points per period. Alternatively time step .dt=1/freq/NperPer can be
defined and used to set the initial value of .NperPer).

• .freq vector of frequencies for a series of stepped sine simulations.

• .A vector of amplitudes applied globally on the load case.

After the time computation of the target number of periods the ExitFcn entries in RT.Stack are
processed by order. Typical entries would be

• PostFirstStab performs .ite time simulations without trying to check for stabilization to
allow the transient to stabilize before any

• PostConstit extract non-linear stress/strains and possibly performs harmonic extraction with
doFreq callback.

2.3.3 CBush with orientation

The example is detailed in

d_fetime(’tutoCbushOrient’)
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2.3.4 Beam with non-linear rotation spring

First do a sweep

sdtweb(’_eval’,’d_fetime.m#TestBeamNLRed’)

%xxx

Now a drop from initial velocity

2.3.5 Lap joint with non-linear springs

This test case is discussed with Marco Rosatello. See t bjoint(’TestTime’).
The axial behavior of the C2 connector is given by a non-linear law in tabular Fz(e3) form. This force
is output as the generalized stress during time computations, while for equations actually solved one
uses

s3(t) = Fz(e3(t))− kJze3(t)− F0 (2.1)

For two directions x and y, the tangential behavior is incremented using a Dahl integration scheme

Fx(t+ dt) = Fx(t) + σ(e3(t))dt ėx

(
1− Fx(t)

µFz(e3(t))
sign (ėx)

)α
(2.2)

Since this integration does not guarantee |Fx(t)| <= |µFz(t)|, the condition is enforced at each time
step. Again there is the need to distinguish Fx(t) and the tangential load which needs to account for
adherence stiffness in the nominal model used to generate the modal basis serving to define DOFs
for time integration. Thus

s1(t) = Fx(t)− kJxe1(t) (2.3)

Iwan model with Dahl cells. Data is sigma slope at no load, α shape parameter, µFz normal load.

Fx(t+ dt) = Fx(t) + σdt ėx

(
1− Fx(t)

µFz
sign (ėx)

)α
(2.4)

2.4 NASTRAN interfacing

For generalities about superelements see section 1.5.1 . This section discusses the specifics of su-
perelement generation using NASTRAN.
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2.4.1 Non-linear springs

For spring representations of volumes or surfaces, a first common approach is to use so called rigid
elements. NASTRAN supports

• RBE2 : rigid connections where the spring is connected to a master node with 6 DOF which
enforce motion of a number of slave DOFs. xxx Example

• RBE3 : flexible connection where the spring is is connected to a slave node with 3 or DOF
which depend from a set of master nodes. Note that in RBE3, the normal operation is to
define a single slave node. UM cards in the RBE3 element can be used to change this behavior
by selecting which DOF get eliminated.

Laws without internal states are similar to PGAP and import will be implemented in the future.

2.4.2 Superelement generation (Craig-Bampton type)

The superelement generation by NASTRAN is saved to an .op2 file that is automatically transformed
to the SDT superelement format by FEMLink. A sample file is given in ubeamse.dat.

ASSIGN OUTPUT2=’./ubeam_se.op2’,UNIT=30

$

ID DFR

SOL 101

GEOMCHECK NONE

TIME 100

$

CEND

TITLE=Generic computation of mode shapes

METHOD=1

DISP(PLOT) = ALL

SPCFORCES(PLOT)=ALL

MPCFORCES(PLOT)=ALL

$ Now extract stresses on base

SET 101=1 THRU 16

STRESS(SORT)=101

$

MPC=1

SPC=1

$ RESVEC(NOINRL)= YES

EXTSEOUT(ASMBULK,EXTBULK,EXTID=100,DMIGOP2=30)

PARAM,POST,-2
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PARAM,BAILOUT,-1

$

BEGIN BULK

$EIGRL,SID,V1,V2,ND,MSGLV,MAXSET,SHFSCL,NORM

EIGRL,1,,,20

$ DOF and nodes to support modal DOF

QSET1,0,1000001,THRU,1000050

SPOINT,1000001,THRU,1000050

$ Master DOF 4 base corners

BSET1,123,1,5,8,12

$

$ Residual on 3 DOF of input node 104

USET,U6,104,123

$

$ Residual associated with CAMP1 vector

CDAMP1 161 2 114 1 244 1

PDAMP* 2 1.

$

include ’ubeam_include.bdf’

ENDDATA

The resulting basis has the following form

[T ] =

[
I 0 0

−K−1
CCKCI [φC ]1:NM

[
K−1
CC [bres]

]
⊥

]
(2.5)

The op2 file contains nodes and superelement definition. It is advised to read the bulk file to obtain
a model containing elements and material properties

• The interface DOF are defined in NASTRAN usingBset cards. These are stored in SDT as a
DofSet entry to the model.

• QSET correspond to modal/generalized DOFs. These require the definition of a QSET card (to
declare existing DOFs), SPOINT grids (to have node numbers to support these QSET DOFs).
Note also that the SPOINT numbers should be distinct from other NodeId. The number of
modes defined in the EIRGL card should be lower than the the number of SPOINT and the
QSET card.

• Fixed interface modes φc are computed by specifying the EIRGL card.

• Residual loads bres are defined as follows and lead to additional shapes using the residual
vector procedures of NASTRAN
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– point loads simply declared using the USET,U6 card

– relative loads simply obtained by declaring a CDAMP element that generates a relative
viscous load between its two nodes.

[b] is defined by an DAREA real loading and possibly DPHASE definition. It should be noted that in
SDT, it is strongly advised to define the phase using the input, since a complex input shape matrix
has no sense in the time domain. The input is defined using a RLOAD2 B(f)eiφ(f)+θ−2πfτ or RLOAD1
(C(f) + iD(f))eiθ−2πfτ

2.4.3 Superelement generation (Free mode variants)

When using a free mode computation, NASTRAN provides mechanisms to compute residual vectors,
you should just insert the RESVEC=YES card. An example is given in the ubeamfr.dat file. The
resulting basis has the following form

[T ] =
[

[φ]1:NM

[
K−1
Flex [bres]

]
⊥

]
(2.6)

The main mechanisms to generate residual vectors are

• Free interface modes φc are computed by specifying the EIRGL card.

• Residual loads bres are defined as follows and lead to additional shapes using the residual
vector procedures of NASTRAN

– point loads simply declared using the USET,U6,NodeId,DofList card. Alternatively
RVDOF (MSC but possibly not NX-NASTRAN) can given a list of up to four NodeId,Dof
per card.

– relative loads simply obtained by declaring a CDAMP element that generates a relative
viscous load between its two nodes.

2.4.4 Storing SDT-HBM options in bulk format

SDT-HBM provides an harmonic definition mechanism (see hdof). Storage in NASTRAN bulk
format is as follows

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

$ All DOFs with sin(omega t) and cos(omega t)

DTI HDOF 1 ALL 123456 CS1 ENDREC

$ Gradual building of full list of DOFs

DTI HDOF 1 N1 THRU N2 123 S1 N3

THRU N4 1 C1 N5 123456 S1 ENDREC
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Node numbers are first specified using ALL all (independent) nodes, N1 THRU N2 a list of consecutive
node numbers, N5 a single node number. Associated DOFs are then written using the CM field
of RBE2 (Component numbers of the dependent degrees-of-freedom integers 1 through 6 with no
embedded blanks). A third field then specifies the harmonics. cs1 is a short cut for both cos(1ωt)
and sin(1ωt).
The specification of target frequencies follows the normal NASTRAN format using FREQ or FREQ1
cards. Provision for a single call generating responses at mutliple amplitudes (hbm solve AFMap

.Freq and .Amp fields) is specified as a DTI HBMAmp entry with all target amplitudes given.

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

EIGRL,10,,,1

$FREQ,SID,F2,F2,F3

$FREQ1,SID,F1,DF,NDF

FREQ 10 0.318 1. 3.0 4.0

RLOAD1 10 1 1

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

DTI HBMAmp 1 1.0 2.0 3.0 ENDREC

To specify loads, a number of formats are defined.

$ 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6 $$ 7 $$ 8 $$ 9 $

DTI Name 1 SID 101 FORM Amp UN1 UN2

Harmi ACi ASi ENDREC

• Name is an arbitrary string (at most 8 characters) but should be unique and differ from internal
nastran tables. By default it is proposed to use strings of the form P101 where 101 is the
property number. But a more meaningful name might be relevant xxx. xxx future database
xxx

• IREC (field 3 of the DTI) is only used when considering multiple entries with the same name
and should be set to 1.

• SID : first the string SID in field 4 then, in field 5, the property identifier (integer) which
should correspond to the set identification number SID for which this amplitude dependence
is defined.

• Form (selected with the string on field 7) is the form name with the following formats defined

Form

Amp amplitudes {u(t)} = C0 +
∑
k∈H Sksin(kωt) + Ckcos(kωt)

AmpT Amp table {u(t)} = C0(ω) +
∑
k∈H Sk(ω)sin(kωt) + Ck(ω)cos(kωt)
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• Harmi number of retained harmonic. 1 for cos(1ωt) and sin(1ωt).

• ACi, ASi amplitudes associated with the cosine and sine harmonic contributions. In the AmpT

form integer numbers refering to table entries in the bulk.

2.4.5 Data export

nas2up supports writing of field at DOF results op2 format.

2.5 ABAQUS interfacing

For generalities about superelements see section 1.5.1 . This section discusses the specifics of su-
perelement generation using ABAQUS.

2.5.1 Non-linear springs

For spring representations of volumes or surfaces, a first common approach is to use so called rigid
elements.
Abaqus supports several types

• *KINEMATIC COUPLING : rigid connections where the spring is connected to a master node with
6 DOF which enforce motion of a number of slave DOFs. xxx Example

• *DISTRIBUTING COUPLING (RBE3) : flexible connection where the spring is is connected to a
slave node with 3 or DOF which depend from a set of master nodes.

• *COUPLING : specific surface based definition, followed by either a *KINEMATIC card for rigid
or *DISTRIBUTING card for RBE3 formulations.

• *MPC : node based definition with type BEAM to constraint 6 DOF per node or type PIN to
constraint the 3 translations only.

• *CONNECTOR : connectors provide advanced structural kinematics, type BEAM without elasticity
definition provides a rigid connection (linearized in SDT).

• *EQUATION : generalized MPC definition with a direct constraint matrix declaration.

2.5.2 Superelement generation (Craig-Bampton type)

Superelement generation in Abaqus is divided in three steps.

• *STEP, PERTURBATION//*STATIC used to define residual vectors. Note that export of residual
loads associated with non-linearities is not yet implemented in SDT.
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• *FREQUENCY, EIGEN=LANC to compute internal modes with possibly a Craig-Bampton interface
declared by a *BOUNDARY card.

• *SUBSTRUCTURE GENERATE to generate and export the superelement, use *RETAINED NODAL

DOF associated to fixed DOF in the frequency step for a Craig Bampton reduction.

See SeGenResidual.inp

2.6 ANSYS interfacing

2.6.1 Non-linear springs

For spring representations of volumes or surfaces, a first common approach is to use so called rigid
elements. ANSYS supports

• CE, CERIG, MPC184, RBE 2 : rigid connections where the spring is connected to a master
node with 6 DOF which enforce motion of a number of slave DOFs.

• TARGE 170+CONTA 173, TARGE 170+CONTA 174

2.6.2 Superelement generation (Craig-Bampton type)

The cards typically used for superelement generation in ANSYS are

• antype,substr specify FE substructure generation in after /SOLU

• cmsopt,fix,Nshapes,,,,,tcms card generates .sub (import with ans2sdt(’read’,’file.sub’))
and .tcms files.

• resvec,on to use residual vectors in the basis

• seopt,name,MatType,1 with MatType=2 for mass and stiffness, and 3 for stiffness, mass, vis-
cous damping, name must be defined with card /FILENAME before the analysis.

• m,NodeId,all master DOF definition repeat card for the various interface nodes. You will
have to replace all with UX,,UY,UZ,ROTX,ROTY,ROTZ if the DOF is used by an element that
supports multi-physics.
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/FILENAME,ubeam_se ! name must be the one used in SeOpt command

/PREP7

!...

! Use command F to apply loads that will define the residual vector

/SOLU

antype,substr ! substructure analysis

CmsOpt,Fix,20,,,,,TCMS

RESVEC, ON

SeOpt,ubeamse_ans,3,1,0,, ! 3(all matrices,2 for m and k), 1 to print

! Define list of master DOF, you cannot use ALL if the elements support multi-physics

M,1,UX,,,UY,UZ,ROTX,ROTY,ROTZ

M,5,UX,,,UY,UZ,ROTX,ROTY,ROTZ

M,8,UX,,,UY,UZ,ROTX,ROTY,ROTZ

M,12,UX,,,UY,UZ,ROTX,ROTY,ROTZ

SAVE ! save .db file

SOLVE ! generate the matrices

FINISH

2.7 Avanced usage

2.7.1 DOE & general organisation in steps

The SDT fe range architecture supports the generic definition of numerical experiments.

• 10 Import linear model (SDT/OpenFEM format)

• 20 Define non-linear properties NLdata for a group of elements (non-linear springs CBUSH,
contact surfaces, zero thickness element, StressCut)

• 30 Define computational range and options

• 40 Solve and save results

• 50 Post-process automatically
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model = % SDT/OpenFEM format

Node: [2x7 double]

Elt: [6x9 double]

Stack: {2x3 cell}
model.Stack = % List of properties

% Case : Store boundary conditions and load

’case’ ’Case 1’ [1x1 struct]

% Pro : properties of a group of non-linear elements

’pro’ ’nl_pro2001’ [1x1 struct]

NL=stack_get(model,’’,’nl_pro2001’,’get’)

type: ’p_spring’

il: [2001 2.2503e-02] % Usual elastic properties

NLdata: [1x1 struct]

NL.NLdata= % Input format for non linearity data (CLIMA-HBM)

type: ’nl_inout’

Fu: ’@(x)-.01*x.^3’

Sens: ’cubicSpring’

keepLin: 0

2.7.2 Obsolete NLVibKit

In NL VibKit, the information stored in adof can be used to build the data in ZDEF, HARMDEF,
VALDEF, BLDEF.
Method 1 : amplitudes

{u(t)} = C0 +
∑
k∈H

Sksin(kωt) + Ckcos(kωt) (2.7)

C0,S1,C1, ...
Method 2 amplitude and phase

{u(t)} = C0 +
∑
k∈H

Sksin(
k

v
ωt+ φsk) + Ckcos(

k

v
ωt+ φCk ) (2.8)

C0,S1,phis1,C1,phic1, ...
Method 3 frequency dependent amplitude (associates a table to each)

{u(t)} = C0(ω) +
∑
k∈H

Sk(ω)sin(kωt) + Ck(ω)cos(kωt) (2.9)

C0,S1Id,C1Id, ...
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Method 4 : constant power (frequency dependendt loads like unbalanced loads)

{u(t)} = C0 + ωn
∑
k∈H

Sksin(
k

v
ωt) + Ckcos(

k

v
ωt) (2.10)

n,C0,S1,C1,S2,C2,
BLDEF, ACCDEF, VELDEF, DISPDEF

{ẍ23} = T1001(ω)sin(ωt) (2.11)

ZDEF, 23, p, lin, 784, 3, 66

HARMDEF, 66, 166, 1

VALDEF, 166, 0 0

ACCDEF, 3, 23, 1001 0

TABLEDEF,1001,10 1e-5 100 200

A1 : Tabledef,1001,10,1e-5,100,200

{ẋ36} = 0.1sin(ωt) + 0.74sin(5ωt) (2.12)

ZDEF, 36, p, lin, 159, 1, 10

HARMDEF, 10, 100, 1, 3, 5

VALDEF, 100, 0 0, 0 0, 0 0

VELODEF, 1, 36, 0.1 0, 0 0, 0.74 0

{ẋ15} = 1.47sin(ωt+
pi

4
) + 0.5sin(ωt+

pi

4
) (2.13)

ZDEF, 15, p, nl, 83, 4, 3

HARMDEF, 3, 30, 1, 2

VALDEF, 30, 0 0, 0 0

DISPDEF, 2, 15, 1.47 0.7874 0.5 0.7874, 0 0 0 0

{ẍ12} = 5.8ω2cos(2ωt) (2.14)

ZDEF, 12, p, nl, 6, 1, 1

HARMDEF, 1, 1, 1, 2

VALDEF, 1, 0 0, 0 0

ACCDEF, 4, 12, 5.8, 2, 0 0, 0 1
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List of the SDT-HBM module functions

Function Description

d hbm Open source examples
hbm solve Solving tools
hbm post Post process tools
hbmui User interface
hbm utils Maintainance



d hbm

Purpose
Open source examples for HBM

Syntax

d_hbm

TestBeamNL

Simple bending beam with localized non-linearity.

model=d_hbm(’testBoltedJoint’)



hbmui

Purpose
Graphical user interface for the HBM solver (requires SDT)

Syntax

hbmui

Description
hbmui operates the GUI for HBM simulation procedures including pre, post treatment and simulation
runs.

Commands

Hide

Not do display the GUI while running the HBM module.
hbmui(’hide’);

By default the GUI gets opened when the module is first loaded. Use this as the first call to the
module to prevent the GUI from appearing. The GUI will remain hidden until an explicit call to
hbmui is performed.

Init[,Project,Post,...]

Initializes the GUI and specific tabs. If the tab already exists, the display will be switched to the
existing data.

hbmui init

hbmui initProject

The following command options are supported

• -Reset To reset the full GUI before the asked initialization.

• -resetCurTab To reset the tab specified for initialization.

• -noTab To initialize tab data without actually displaying it.

PARAM[.Tab,UI]

Access to GUI parameter values.
RO=hbmui(’PARAM.’Tab’)’

The output is a struct RO with fields correponding to the parameter names in the tab Tab, and
values interpreted from the current GUI state. By default an error will be issued if the mentionned
tab has not been initialized. The following command options are supported
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• -safe Not to generate an error if the tab has not been initialized, but rather return the default
values.

• -r1j To recover the parameter underlying java object.

• .Par To recover parameter named Par only.

Command PARAMUI returns the complete application UI structure.

Set[Project,Post,...]

Script version of GUI parameters sets.
hbmui(’setTab’, struct(’Par’ ,’Val,...));.
Tab is the tab name containing the parameter to set, Par is the parameter name, Val is the value
assigned to the parameter. To recover parameters names, see hbmui PARAM.
To trigger an action linked to a push button, the value do must be assigned, e.g.
hbmui(’setPost’,struct(’refresh’,’do’));

Tabs
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Project

Figure 3.1: Project tab in initial state

Post

The Post tab handles post-treatment procedures allowing data export and display. In display mode
it is linked to an HBM result object whose state can be altered through the GUI. To be used results
must have been stored in the application.
The initial Post tab is presented figure 3.2,
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Figure 3.2: Post tab in initial state

It features three sections

• PostEnv Handles the post-treatment environment, namely the selected job, with the possibility
to load one, the iiplot figure number to host display. xxx Layout unsure

• PostSens Handles the observation stack, PostSensList. The first two lines allow handling
the following ones that correspond to the actual observations. The first line proposes an
interactive defintion of a new post-treatment, see hbmui PostDlgSensPick. The second one
is header to the list, with the possibility to apply changes to all following list entries regarding
harmonic selection Set harm for all, selection toggle or full observation list deletion. The
table features 5 columns

– Sens Provides the observation set label.

– Type Provides the type of signal, either disp, vel or acc for respectively a displacement,
velocity, or acceleration signal.
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– Harm Provides the harmonics retained for the post-treatment. The input will be treated
as a subset of the job output harmonics. It can set either as a comma separated integer
list, or a token (all, even, odd being supported).

– Out To toggle enabling of the current observation. If unchecked the observation list will
be ignored in the post-treatments.

– In To select the current line as an entry for transfer displays. A maximum of one obser-
vation line can be selected as an input.

– R To suppress the corresponding observation line.

• Post Commands Drives the display options and commands. The following parameters can be
set (presented in the format Tab.Par)

– Post.RespSyn The type of synthesis to be performed, either Synthetized to sythetize the
response on observation with all retained harmonics, byHarm to generate an observation
response per harmonic, or byShape to generate an observation response per time shape.

– Post.nTSamp Provides the number of time samples for transient displays.

– Post.FreqPlot To select a maximum amplitude response as function of the frequency
plot.

– Post.TimePlot To select a transient response plot at a given frequency.

– Post.FreqPoint To provide a frequency point associated to the transient response plot.

– Post.HarmPlot To select a harmonic contribution bar graph at a given frequency xxx.

– Post.TransferPlot To generate a transfer response between two observations.

The following commands can be launched

– Post.PlotReset To reset the iiplot figure with the current setup.

– Post.PlotRefresh To resfresh the display with the current setup.

– Post.PlotPrint To print the the display into a plot, support for automatic reporting is
provided throught the Porject tab setup.

– Post.PlotSaveFig To save a figure containing the current display.

– Post.THDPlot xxx

– Post.TimeAnim To animate the transient response associated to the current setup.
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PostDlgSensPick

The SensPick dialog box provides tools for an interactive definition of observations based on jobs
stored in the application. When clicking on the PickObs button in the PostSens section of the hbmui
Post tab, the dialog box presented in figure 3.3 opens.

Figure 3.3: Observation selection/generation dialog

One then gets the possibility to define an observation with the following options

• SensName A string defining the observation name that will be used as label in displays.

• BaseJob The job result with which the observation will be generated, used as context in the
dialog following options.

• The type of observation, to be checked in the list presented below. The choice is exclusive and
will expand the adequate options.

– Sensor set To use a SensDof entry (see sdtweb sensors) that is present in the job
model. Use the PickSensDof button to access the list of available entries and pick one.

– Model set To use an integrated model based element selection. The automated selection
is based on usual model accessible information. On can use a feature (as type of infor-
mation) between EltSet, Mat, Pro, or groupall. Use the Pick a feature button to
access respectively the EltId set list, the MatId list or the ProId list declared on the
model. The groupall feature directly selects all elements in the model and thus do not
need further selection.

71



hbmui

– DOF list To use a model DOF. The Pick DOF button then provides the complete list of
available DOF for the user to pick one.

– Relative A-B To generate an observation based on a relative movement between two
model DOFs, y = q1 − q2. Use the Pick +DOF to access the list of available DOF and
select q1. Use the Pick -DOF to access the list of availabel DOF and select q2.

• Measure Type To provide the type of signal to generate, either disp for displacement, vel for
velocity, or acc for acceleration.

• Harmonics To provide a sub-selection of harmonics retained for the post-treatment synthesis.
Click on the button defaulted to all to access the list of available choices. Besides the list of
harmonics present in the job result, one can choose all to retain all harmonics, odd to retain
all odd harmonics only, or even to retain all even harmonics only.

• OK To validate the input and proceed to the observation generation.

• Cancel To cancel the current input and close the dialog.
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Purpose
Commands for result post-processing. This functions provides post-treatment commands and han-
dles the HBM result object.

Description

ZTraj[,Get,GetBnl,Set,SetDef]

Trajectory generation as harmonic result structures Zcurve from synthesis of given shapes.

• Command ZTraj generates a harmonic response associated to a given trajectory.
Z=hbm post(’ZTraj’,model,def);

model is a standard SDT-NL model, def is a def curve expressed on the model DOF, typ-
ically a modeshape. The output is a HBM output Z. The model is HBM-assembled and
data are initialized based on model.Stack{info,HBMOpt} or using the default options output
by hbm solve Opt. If the def curve is real, the output will be initialized with the shape on
the c1 harmonic, the pulsation is initialized by def.data(:,1). If complex, the c1 harmonic
is set to the real part and s1 to the opposite of the imaginary part, the pulsation is initialized
by def.data(:,1)xxx.

The output of hbm post ZTraj cannot directly be exploited by other ZTraj commands as
an observation (see hbm solve AddPost) must be declared prior to generating the the HBM
results object allowing response synthesis. The following command options are supported

– -res to output the result in .Res format.

– -reAss to force reassembly of the model.

– -TKT to perform model projection on def.TR.

– -harm to specify harmonics to be used for the results format (by default the first harmonic
is used).

– -useq0 in conjunction with -TKT to use the static state model.Stack{curve,q0} in the
trajectory, the static state will increase def.TR prior to projection.

– -q0inTR to detect the zero harmonic in def.TR (as with def.data(:,1)<1), thus ini-
tializing different generalized harmonic DOF for the zero harmonic and the others. This
option is handled internally if useq0 is used.

• Command ZTrajSet updates the HBM results object Z with different harmonics.
XF=hbm post(’ZTrajSet’,XF,RA);
XF is the HBM results object, RA is a structure with field .harm defining the new set of
harmonics.
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• Command ZTrajSetDef only updates the HBM curve Z with a new trajectory based on the
same harmonic DOF than the initial one.
XF=hbm post(’ZTrajSetDef’,XF,struct,opt,struct,d1);, with XF the HBM results object,
opt the opt structure, d1 the new shape.

• Command ZTrajGet synthetizes and outputs a transient NL trajectory (in the standard
fe timeNL format) based on one of the state of the provided HBM results object.
def=hbm post(’ZTrajGet’,XF,RO);. The following command options are supported

– nTSampval to set the number of time samples to val in the output.

– NoT to generate a trajectory based on the model DOF.

– iModeind to select the state index ind in the HBM results object.

– coefval to apply an amplitude coefficient val to the state.

– NeelUNLval to output the non-linearity observations. Set val to a two digit number [unl
vnl] set to 1 if needed, 0 otherwise to obtain def.FNL.unl and/or def.FNL.vnl.

– initnl to perform and keep initializations necessary to optimized trajectory update by
linear state coefficient application with hbm solve @defUpCoef.

– NoStat to ignore unl0 and vnl0 in the observation and evalutation of non-linear forces.

• Command ZTrajGetBnl outputs the non-linear harmonic forces based on the provided HBM
results object.
bnl=hbm post(’ZTrajGetBnl’,XF,RO);.
XF is a HBM results object, RO is an option structure with optional field .nTSamp to specify
the time sampling number used to evaluate the harmonic non-linear forces.

AddPost

Handles observations declarations for post-treatments from the HBM curve output to the HBM re-
sults object.

hbm post(’AddPost’,job,data); is used to handle outputs stored in the application. job is the
name on which the observation will be applied (entry in PA.Stack). data provides the observation,
it can be of the following types

• A DOF list in numeric format

• An observation struct, with fields .cta an observation matrix and .DOF the associated DOF
vector. struct(’cta’,1,’DOF’,21.03,’name’,’tip’). Appends the SensDof entry in the
model PA.Stack{job}.
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• A model. If field .DOF is present, it is directly used, otherwise DOF are obtained from the
.Node field.

For all cases, a Sens data structure is generated and a SensDof entry is added to the model
PA.Stack{job}2. The GUI then adds the observation to the available observation list.
Manual handling outside the GUI requires the use of a results structure RE as a third argument.
The same operations are performed, the observation list stored in RE.PostSensList being updated
RE=hbm post(’AddPost’,lab,data,RE);.

Init

Initializes the HBM result object.
XF=hbm post(’Init’,UI,ci);.
UI is a variable pointing to the HBM solver output data. It can be left empty, in such case it is initial-
ized by UI=hbmui(’PARAMUI’), or it is a results structure with mandatory fields .Res (see hbm post

ZTraj-Res) and .PostSensList (see hbm postAddPost). ci is a iiplot object that will host the
results display. It can be left empty not to display results.
If results are stored in the application, the HBM result object associated to the current applcation
state can be recovered using XF=hbm post(’init’).
xxx need for an integrated call Manual initialization with no display can be performed from an
assembled harmonic model mo1 and a HBM curve output structure Z using

RE=struct(’Res’,{{Z.name,{Z,mo1}}});
RE=hbm_post(’addPost’,Z.name,mo1.DOF,RE);

XF=hbm_post(’init’,RE,[]);

HBM results object

The HBM results object provides methods to synthetize transfers or transient trajectories based on
a HBM result, it is based on the curvemodel object that is a SDT curve wrapper. The result object
is initialized using hbm post Init.

XF.[GetData,X,Y,Xlab]

Provides access to the resolved content of the HBM result object XF in its current state.
X=XF.X;

Warning: depending on the current object state, recovering the full output can be a very intensive
task and may generate a very large volume of data !
The .GetData method returns the full curve structure synthetized for the current object state. The
other methods only return the field corresponding to their name.
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XF.set

HBM results object options handling.
XF.set(’nTSamp’,100);

For an app linked object, the options are available in the GUI Post tab. This programmatic way
can be used in scripts interacting with the GUI, or with results objects not linked with the GUI.

XF.Stack

Provides access to HBM results context data. The object mode can be programmatically altered
through this way.
XF.Stack’type’=val;
Accepted types for val are

• Freq To handle maximum amplitude frequency responses.

• Time To handle transient responses.

• Harm To handle Harmonic contribution responses.

• FFT-1 To handle FFT of the first harmonic transient response.
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Purpose
HBM Solver and base utilities commands.

Description

Variables used during the resolution are the opt structure xxx

AFMap

Performs amplitude/frequency response MAPS, possibly in a given subspace.
Z=hbm solve(’AFMap’,model,RO);

model is a standard SDT-HBM model. xxx By default the study is performed on the first harmonic
of the model active DOF. It is possible to provide a customized harmhdof vector or even a reduced
subspace by using a third argument def as a structure with fields

• .TR a structure providing a physical reduction basis, with mandatory fields .TR.DOF the full
DOF vector and .TR.def the Rayleigh-Ritz vectors stored in column.

• .hdof a harmhdof vector based on the generalized DOF defined by .TR.

RO is a structure with fields xxx (that can also be provided in a preemptive way in the RO structure)

• .Freq frequency vector in Hz.

• .Amp amplitude (scaling coefficient applied to the loads). Default equal to 1.

• -bnl to store and output the NL force vector

• -iter to perform resolution iterations. By default the response is based on the response
prediction induced by the non-linear forces generated by the linear response trajectory.

• -z0 to store and output the linear response.

• -itInitstra to alter the initialization strategy, set stra to either 0 to initialize at a given
amplitude by the scaled linear initial state a the first amplidute, or 1 to keep the current
response of the previous state.

• -fscan to perform a direct frequency scan for a given amplitude and interpolate the result on
the .Freq input.

• RO.pList field can be provided, defines the parameters order in a cell array, to be used in the
multiple loop from external to internal. By default set to {Amp, Freq}.

• RO.harm defines the harmonic vector to be used, by default set to 1.
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• model.Stack{’info’,’HBMOpt’} Provides a custom opt structure. Beware that many fields
are redefined to perform this resolution.

Output Z is a standard SDT-HBM Zcurve with multiple dimensions corresponding to Hdof, Freq
and Amp.

Assemble[call,init,exit]

Provides and performs SDT-HBM specific pre-post assembly operations. The assembly call to be
passed to fe case is provided by

st=hbm_solve(’AssembleCall’);

AssembleInit and AssembleExit are internal calls handling non-linearity initializations and proper
load definitions.

fe time[,cleanup]

Command fe time is called back by fe timeas the base HBM solver, defined by field opt.Method

in the opt structure.

Command fe timeCleanup performs base post-treatments to the raw solver output and handles
direct storage in interaction with hbmui. By default the output will be stored in the application,
and base results can directly be displayed in iiplot.
This command is usually performed as an internal command at solver exit based on the field
opt.FinalCleanupFcn in the opt structure. The command then expects that the caller uses vari-
ables out, opt and model to respectively store the solver output as a HBM curve output, the solver
running options (opt) and the assembled model used by the solver. An external call is also possible,
using out=hbm solve(’fe timeCleanup’,out,opt,model).
The following command options are supported

• reset to reset iiplot before display.

• NoPlot not to disply the results in iiplot.

• NoUI not to store the results in the application.

• ExitFcncbk to perform additional custom operations at the end of the cleanup procedure, the
string cbk will directly be called by the eval function.

• -rethrow to output the result data structure.

• -cfval to provide a specific iiplot figure. If val is not strictly positive the default iiplot

figure (or last active one) will be used, otherwise the figure with given positive handle will be
used. xxx hbmui(’PARAM.cf’) xxx
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harm[lab,hdof,place,c]

Harmonic handling utilities. This series of functions provide tools for HDOF definition handling and
matching.

• harmHdof defines a harmonic DOF (HDOF) vector.
hdof=hbm solve(’harmHdof’,model,harm);. model is a standard SDT model from which the
active DOF will be recovered, using model.DOF if present, or fe casegetTDof. It is possible to
provide a DOF vector instead of a model. harm provides the harmonics numbers to be used, set
to 1 if omitted. To select only specific time functions, it is possible to use a regular expression
token as a third argument.

• harmC performs HDOF localization utilities.
c=hbm solve(’harmC’,hdof,sdof) provides an observation matrix c to observe harmonic DOf
subset sdof in hdof.
sdof=hbm solve(’harmC’,hdof,sdof,typ,in) respectively provides

– typ=’dof’, in=1 the intersection of hdof and sdof .

– typ=’ind’, in=1 the indices in hdof interecting with sdof.

– typ=’dof’, in=2 the harmonic DOF of hdof not present in sdof.

– typ=’ind’, in=2 the indices in hdof no present in sdof.

Command option hID performs the match on the time function label only.

• harmPlace Places a harmonic def (defined on a set of harmonic DOF) on the set of harmonic
DOF hdof.
d1=hbm solve(’harmPlace’,hdof,def);.

• harmLab A rather internal subfunction generating time dimension labels.
lab=hbm solve(’harmLab’,1:3).

model=demosdt(’demoUBeam’);

hdof=hbm_solve(’harmHdof’,model,0:3); % adof, {c0,c1,s1,c2,s2,c3,s3}
hdof1=hbm_solve(’harmHdof’,model,1,’s’); % adof, s1

i1=hbm_solve(’harmC’,hdof,hdof1,’ind’,1);

sdof=hbm_solve(’harmChID’,hdof,’c1’,’dof’,1);

isequal(hdof1,sdof)
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Opt

Solver options handling. Reference to data fields is provided in opt for initialization and opt for
values used during the solve.

opt=hbm_solve(’opt’);

opt=hbm_solve(’opt fstart=.1 fend=100’,opt);

RA=struct(’fstart’,.5,’fend’,100,’dsmin’,.001);

opt=hbm_solve(’opt’,[],RA);

opt=hbm_solve(’opt’,opt,RA);

Reduce

Performs model reduction with proper handling of non-linearities.
[model,Case,Load]=hbm solve(’Reduce’,model,TR);

model is a SDT-HBM model, TR is a def structure defining the reduction basis.
The model will be fully assembled then reduced, it is possible to provide a pre-assembled model. To
do so, it is necessary to define the associated case by providing it in a third argument. The output
is an assembled reduced model complying with initialization of SDT-HBM resolution procedures.

@abscHBM

Performs a state prediction based on an interpolated curvilinear frequency step.
[Z,opt]=abscHBM(Z0,opt,j1);

Z0 is the initial state provided to the solver, opt is the internal solver structure, j1 is an interation
indicator.
The outputs are Z a predicted state, and opt with updated curvilinear frequency step opt.dS.
For the first iteration j1==1, the initial state Z0 is output.
For the fixed strategy opt.dsOpt.step==0, the curvilinear frequency step is set to 0.5*opt.dsOpt.dsfix,
and the predicited state is the initial state Z0 with the new frequency.
For the Lagrange interpolation strategy opt.dsOpt.step==1, the curvilinear frequency step is de-
fined as being between opt.dsOpt.dsmin and opt.dsOpt.dsmax and updated to optimize the num-
ber of iterations towards the target opt.dsOpt.iopt. The update is performed by applying a
multiplicative coefficient to the current frequency step opt.dS as the ratio between the optimal
iteration number opt.dsOpt.iopt and the last number of iterations opt.ite. The multiplicative
coefficient is bounded between opt.dsOpt.bmin and opt.dsOpt.bmax. The predicted state is the
result of the Lagrange interpolation of degree opt.dsOpt.Ldeg of the last states at the incremented
frequency.
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@ATimesZ

Computes the linear dynamic harmonic forces o1=A*z0 in an implicit manner (i.e. without actually
building the dynamic harmonic stiffness matrix).
o1=ATimesZ(model,Case,opt,z0)

The output o1 is the linear dynamic harmonic forces.

@buildA

Initialization and/or generation of the harmonic dynamic stiffness.
opt=buildA(model,Case,opt,Z,i1).
model is a SDT-HBM assembled model, Case is the associated case, opt is the internal solver
running option structure, Z is the current harmonic state; these variables must have been initialized
by hbm solve InitHBM. i1 is the output option:

• i1=0 will output opt with field opt.A initialized as the dynamic harmonic stiffness matrix.

• i1=1 will output opt=A as the dynamic harmonic stiffness matrix.

• i1=2 performs optimized initialization of the dynamic stiffness matrix as a cell array of com-
ponent matrices, so that the frequency dependency can be represented as a weighted sum of
the component matrices. If opt.A is empty an initialization at unit frequency is performed, if
opt.A is a cell array the actual dynamic stiffness matrix is directly output (opt=A).

The frequency is recovered from context, either opt.Opt.fvar==1 and the pulsation is taken as the
last value of the harmonic state (w=Z(end)), or opt.Opt.fvar==0 and the pulsation is directly taken
as w=opt.w.
The output opt is either the running option structure with filled opt.A or directly the harmonic
stiffness matrix.

@buildCHarm

Generation of interlaced harmonic observation or command matrices.
[c,harm]=buildCHarm(c,opt,typ).
c is an observation or command matrix, opt is the internal solver running options that must have
been initialized by hbm solve InitHBM, typ provides the type of matrix c. Either typ=’c’ to declare
an observation matrix, or typ=’b’ to declare a command matrix.
The output is the interlaced observation or command matrix c. Line ordering is interlaced (i.e.)
the sequence is first the harmonics, then the initial line order. harm is the retained harmonics. For
command matrices, Fourier coefficients are applied to the matrix terms.
It is possible to define a field opt.subH with a sub-set of harmonics to be used for the observation
generation, independently from the initial opt.harm field that is used by default.
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@buildHkt

Generation of time function space.
opt=buildHkt(opt);

opt is the internal solver running option initialized by hbm solve InitHBM.
The output is the internal solver running option opt with updated fields opt.Hkt, opt.dHkt and
opt.Htk = opt.Hkt’, that are the time harmonic components.

@buildLoad

Prepares the external load structure for the HBM solver, based on the usual transient Load repre-
sentation of fe time.
Load=buildLoad(Load);

The output has a resolved field .adof providing the harmonic DOF used to described the external
load, a command matrix .b, a field .curve providing the optional variations of external loads with
the frequency.
Load is a load structure complying to time simulations. See fe load, fe load buildu.

@ctaSubH

Integrated generation of a subharmonic observation matrix based on a HBM output curve.
opt=ctaSubH(cta,d0,subH);

cta is an observation matrix, d0 is an HBM output data structure, subH is a sub-harmonic selection.
subH is either directly a vector of harmonics, or a string token set to

• all to retain all harmonics of d0.harm.

• odd to retain only the odd harmonics of d0.harm.

• even to retain only the even harmonics of d0.harm.

The output is the opt data structure with added or updated fields .cta, opt.iadof, opt.idof,
opt.harm, opt.hVect, opt.hId to comply with the subharmonic selection.

@defUpCoef

Optimized trajectory linear amplitude change.
d2=defUpCoef(d2,Amp);

d2 is a trajectory initialized the hbm post ZTrajGet-initnl, Amp is a scalar amplitude coefficient.
The output is d2 the trajectory linearly set to amplitude Amp, relative to d2.coef, the initial am-
plitude.
The trajectory and non-linearity observations are updated using Amp/d2.coef, non-linear forces are
re-evaluted to provide a linearly updated trajectory.
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InitHBM

The subfunction @intHBM performs HBM solver specific initializations based on a SDT model with
non-linearities. [model,Case,opt,Z0,Zf]=initHBM(model,Case,opt,u,fext);
model is a standard fully assembled SDT-NL model, Case is the corresponding resolved Case struc-
ture, opt is the solver running option structure opt, u is a system state expressed on Case.DOF,
usually a static state, fext is the external Load structure expressed on Case.DOF.
model, Case and fext should be compliant to the SDT-HBM data structures, and can be typically ob-
tained from usual models with the provided hbm solve AssembleCall: [model,Case,fext]=fe case(hbm solve(’AssembleCall’),model);.
The outputs are data ready to be used in HBM solvers, opt is completed, Z0 is the initial state, Zf
is the current harmonic load vector.
The initialization procedure

• prepares the internal solver running parameters,

• prepares system matrices and initializes the harmonic dynamic stiffness structures,

• initializes the initial harmonic state and state buffers for prediction and interpolation,

• builds external forces harmonic vectors,

• builds the harmonic interlaced observation and command matrices of each non-linearity.

@iterHBM

Performs an interative resolution for a given initial state.
[Z,ki,opt]=iterHBM(ki,Zf,Z,model,Case,opt,j1);

ki is for the moment reset internally and can be provided empty. Zf is the harmonic load vector, Z is
the initial harmonic state, model is the assembled model, Case the correspoding case structure, opt
the solver running options. All these variables must have been initialized with hbm solveInitHBM.
j1 is a step indicator, also used in the base solver to know whether the state buffer has been fully
filled.
The outputs are Z the resolved HBM state, ki the current Jacobian, and opt the internal solver
option structure.

@getZf

Generates the harmonic external forces vector from the Load context. This is used by hbm solve

@resHBM.
Zf=getZf(Zf,opt);.
Zf is the current load data structure, or a resolved harmonic vector. Nothing is performed in the
latter case. opt is the internal solver running option. In particular the current pulsation is found in
opt.w.
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@outputInitHBM

Initializes the solver output structure, to be filled by hbm solve outputHBMFcn.
[out,opt]=outputInitHBM(model,Case,opt);

model is unused at the moment, Case is the case corresponding to the harmonic model, opt is the
internal solver running option. These variables must have been initialized by hbm solve InitHBM.

@outputHBMFcn

Output data structure (pointer addressed) filling.
outputHBMFcn(out,Z,opt);

out is an output data structure initialized by hbm solve @outputInitHBM, Z is the current state to
be possibly stored, opt is the internal running option solver.
There is not output associated to this command as input structure out fields are handled by pointer.
The current state is stored if its associated frequency has changed in absolute value by more than
opt.SaveFreq.fStep from the last saved frequency point (out.X2(out.cur(2))). The frequency is
recovered from context, either opt.Opt.fvar==1 and the pulsation is taken as the last value of the
harmonic state (w=Z(end)), or opt.Opt.fvar==0 and the pulsation is directly taken as w=opt.j1.
In this case, opt.j1 is differenciated from opt.w to allow cutomized handling of the saving strategy.

@resHBM

Computation of the harmonic balance residue and associated finite differences Jacobian.
[r,ki]=resHBM(Zf,Z,model,Case,opt,ki,jite);

Zf is the harmonic load vector, Z is the current harmonic state, model is the harmonic model, Case
is the corresponding case, opt is the internal solver running option, ki is the current Jacobian, jite
is a current iteration indicator.
The outputs are r the harmonic residue, and ki the associated Jacobian.
The Jacobian is computed by finite differences using a dZ amplitude defined by opt.epsi and
initialized at 1e-9. It is computed if ki is empty, or if opt.JacobianUpdate is not null.
It is possible to obtaind the external harmonic forces of the current model by setting Z to empty.
In such case, the non-linear forces will be obtained from model.FNL and summed with -Zf in the
output r.

84



hbm utils

Purpose
Utilities used for HBM development and administration.

Syntax

hbm_utils CommandString

hbm_utils(’CommandString’)

Description
hbm utils deals with the paths handling (Path command), the generation of the documentation
(Latex command) and other utilies.

Path

hbm utils(’Path’) fixes MATLAB path and sdtweb(’ path’) to include DYNAVOIE based on
the result of which(’hbm utils’). The expected directory structure is detailed in section 2.1 .
Note that you should

Help

You can automatically update, your documentation files using hbm utils(’HelpGet’) which will
get a zip file from the server and decompress it into DynRootDir/help. The help contains both the
PDF and HTML files which can be opened with the sdtweb function, for example:

sdtweb(’hbm_utils’) % requires sdtweb >1.50

Note that you possibly have to configure your proxy adress in your Matlab preferences (File/Preferences/Web).

Latex,Hevea

The following commands are used by SDTools for the maintenance

• Latex compiles the documentation using pdflatex.

• pdf opens the manual in a browser window.

• hbm util(’HelpPut’) updates the zip file containing the documentation

Verbose Mode

Verbose mode mecanism. Now one can different levels of warning:

hbm_utils(’Verbose_Mode’,-1) % SILENT

hbm_utils(’Verbose_Mode’,0) % NORMAL

hbm_utils(’Verbose_Mode’,1) % VERBOSE
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Distrib

DistribGen is used by SDTools to generate a protected copy of DYNAVOIE, which can be sent as
a zip file. DistribPatch is used by SDTools to generate a SDT patch relative to the last reference
version of SDT.

86



nl spring

Purpose
Non linear links/force modeling for time simulation

Syntax

model=nl_spring(’tab’,model);

...= nl_spring(’command’, ...)

Opt=nl_spring(’TimeOpt’);

Description
nl spring supports non-linear connections and loads for transient analysis. Non linear springs
between 2 DOF (see nlspring). loads which depend on DOF values (see DofKuva, DofV), springs
between 2 nodes in different bases (see RotCenter), etc. ...). A full list of non-linearities is given in
nllist

Standard non-linear simulations are handled by nl solve. Below is a description of the inner
mechanisms of a non-linear simulation with the non-linear toolbox.
After the non linearity definition, a proper TimeOpt is required to set the good fe time calls to
perform a non linear Newmark time integration. A default TimeOpt can be set using nl spring

TimeOpt. It is possible to save transient results on the fly using a properFinalCleanup call,
see nl spring fe timeCleanupCall , and to reload the same results using fe simul fe timeLoad.
The following steps are required for a time simulation

• Definition of non-linear properties. These are stored as pro entries of the model stack. The
associated property function must handle non-linearities which is currently only the case for
p spring and p contact.

A non-linearity is always associated with elements or superelements (typically a celas element.
A given group of elements can only be associated with a single non-linearity type.

The information needed to describe the non linearity is stored in a .NLdata field.

• Model initialization using the an fe case(’assemble’) call in fe time, is followed by the
building of a model.NL stack that describes all non-linearities of the model in a format that is
suitable for efficient time domain integration. This translation is performed by the nl spring

NL command.

• Jacobian computation, see nl spring NLJacobianUpdate.

• Residual computations are performed through mkl utils. The nominal residual call is r=-fc;
mkl utils(’residual’, r,model,u,v,a,opt,Case);.

Supported non linearities

See nllist for supported non linearities, and nl fun to add your own non-linearities.
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ConnectionBuild

One can define a set of non linear links between 2 parts of a model using a call of the form
[model,idof]=nl spring(’ConnectionBuild’,model,data);

idof is a second optional out argument. It returns the list of DOF concerned by links (it can be
useful in order to reduce super elements keeping idof as interfaces DOF for instance). data contains
all the information needed to define links. It is a 3 column stack like cell array. First column contains
the string ’connection’, the second the name of the non linear link described in the third column
that contains a data structure with following fields:

• .Ci define nodes to connect in first (.C1) and second component (.C2). It can be a vector
of NodeId or a screw data structure (slave nodes of the model nodes via RBE3 links, see see
sdtweb(’fe case#connectionscrew’).

• .link defines how to link component 1 to component 2. It is a 1x2 cell array. First cell defines
the type of link (’EqualDof’ or ’Celas’) and the second gives information about the link. For
celas link it is a standard element matrix row with 0 replacing NodeId :[0 0 DofId1 DofId2

ProId EltId Kv Mv Cv Bv].

• .NLdata (optional) defines non linearity associated to celas link. See the list in list of supported
NL. If this field is not present or empty, only linear link is considered.

• .PID (optional) is a 1x2 line vector that defines PID (second column of .Node matrix, see
sdtweb(’node’) of connected node (1rst column for 1rst component).

• .DID (optional) is the same as above, defining DID (third column of .Node matrix, see
sdtweb(’node’) of connected nodes.

Following example defines a model with a cylinder and a hole in a block. The cylinder is linked to
the block by 3 celas preserving the pivot link.

mo1=demosdt(’demoConnection-vol’); % meshes models

mo1=fe_case(mo1,’fixdof’,’base’,’z==-1’); % clamps the cylinder base

r1=struct(’Origin’,[0.5 0.5 0.5],’axis’,[0 0 1],...

’radius’,.1,’rtol’,.01,’length’,1,’Npt’,-3,...

’ProId’,111,’planes’,[]); % Cylinder-side

r1=nl_spring(’ConnectionCyl’,r1); % defines planes

r3=r1; r3.ProId=1; % Block-side

link={’connection’,’link1’,struct(’C1’,r3,’C2’,r1,...
’link’,{{’celas’,[0 0 12345 12345 1000 0 1e9]}})}; % Defines connection

[model,idof]=nl_spring(’ConnectionBuild’,mo1,link); % builds connection

cf=feplot(model); % displays in feplot

fecom promodelviewon; fecom(’curtab Cases’,’link1_2’);
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def=fe_eig(model,[5 20 1e3]); % computes the first 20 modes

if length(find(def.data<1e-3))>1; sdtw(’_err’,’connection failed’); end

cf.def=def; fecom ColorDataAll % displays modes

See also t nlspring(’2beam’) example.

ConnectionCyl

Utility to fill the .planes field of a cylinder connection in the standard connection screw data
structure format (see fe caseg ConnectionScrew).
dataOut=nl spring(’ConnectionCyl’,dataIn);

The dataIn uses fields:

• .Origin origin of the cylinder axis, .axis orientation of the cylinder

• .rtol radius tolerance for cylinder selection.

• .length length of the cylinder.

• .Npt number of planes (equally distributed on the whole length). If Npt<0, ends of the cylinder
are included in the connection points.

• .ProId ProId of the elements containing nodes to connect.

Figure 3.4: ConnectionCyl
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InitV

q0=nl spring(’InitV’,model,d0,RO);

InitV computes the initial static displacement and velocity associated to a DOF initial position and
velocity. d0 is a data structure with field .DOF containing the DofId where initial value is applied
and .def containing initial displacement and velocity at this DOF. RO is a optional input argument
data structure with following fields that define:

• .dt time step for time integration.

• .dq increment for initial vel computation.

• .Nv] number of time steps to reach d0.def(1) (displacement is imposed as a 0.5(1− cos) time
function on these time steps).

• .Np number of steps to stabilize at d0.def(1) and d0.def(1)+dq.

If input argument RO omitted, options are get from ’info’ ’initvopt’ Stack entry. If there is no
such entry, InitV parameters are computed using -optim process (see below).
Displacement at q0 and q0+dq is obtained meaning the last Np/10 steps of each stabilization period,
and initial velocity is computed from those 2 displacements to match d0.def(2) at d0.DOF.

[q0,RO]=nl spring(’InitV-optim’,model,d0); can be used to find input parameters RO. Opti-
mization of dt and Np is performed from given or default values. Parameters dq and Nv are kept at
given or default value. First dt is optimized. dt is increased (multiplied by 4) until time integration
of the InitV process diverge and last dt that leads to convergence is kept. Then Np is increased by
100 steps until the deformation is converged on the stabilization periods, that is to say that a criteria
taking in account standard deviation/mean of the deformation and the ratio of the last Np/10 steps
upon previous Np/10 steps on each Np period is less than a tolerance (2.0).

See 2beam example XXX.

NL

model=nl spring(’NL’,model)

This command is used to build .NL field data for time integration from NLdata field in NL p spring

property entries in the input model Stack. The command option -storefnl can be used to specify
the way of computing and storing a non linear effort associated to NL (for those which support it).

NLJacobianUpdate

opt.Jacobian=nl spring(’JacobianCall’) returns the callback used to update or initialize the
Jacobian ki used in iterative methods. The said jacobian must take non-linearities into account.
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For the case of a non-linear spring, the most important gradient of the tabulated law Fu is added as
stiffness between the 2 DOF to the stiffness matrix and the most important gradient of Fv to the
damping matrix.
For non-linear iterations in a Newmark scheme, the Jacobian is given by

ki=(model.K{3}+kj)+ (opt(2)/opt(1))/dt*(model.K{2}+cj) + 1/opt(1)/dt^2*model.K{1};

Accepted command options, associated to variants of the call are

• There are three outputs accessible, being [ki,mo1,C1]=nl spring(’NLJacobian’...).

• -noFact not to factorize the output Jacobian. This is useful if further actions are performed
on the Jacobian after the standard call.

• -TangentMdl to return tangent model. It is assumed that model.K(1:3) correspond to M, C,
and K (in this order). u and v variables of caller workspace can be needed.

• -TangentMdl-back to return a superelement containing the tangent matrices.

• -TangentMdl-back-sepKj to return a superelement containing the tangent matrices split by
non linearities.

• -ener to compute for each def stored in model.d1 def structure (that is typically computed
modes), some associated energies:

– freq frequency in Hz.

– damping damping ratio: (φTj [C]φj)/(2ωj).

– enerK total strain energy: φTj [K]φj .

– enerC φTj [K]φj .

– NLlink-enerK strain energy for each NL link: φTj [KNLlink]φj .

– NLlink-enerK for each NL link: φTj [CNLlink]φj .

SetPro

model=nl spring(’SetPro ProId i ParamName1 Value1 ...’,model)

This command is used to change some nl spring properties parameters. i is the ProId of corre-
sponding p spring property, ParamName the name of parameter to change (k for il(3), c for il(5) or
the field name in NLdata) and Value the value to assign.
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It is possible to define a new property by specifying an NLdata structure in third argument: model=nl spring(’SetPro

ProId i’,model,NLdata). If the property already exists, the NLdata is interpreted as a string of
parameters and parsed to define the fields specified in the given NLdata to the existing one. Com-
mand option Edit allows directly merging the existing NLdata to the provided NLdata with priority
given to the new fields.

model=nl_spring(’Demo1DOF’);

% define a non linearity with partial definition of parameters and other by default

NLdata=nl_fun(’db data 4’) % standard NLdata defintion

% NLdata has fields data, Jacobian (by default) and type

% set in model

model=nl_spring(’setpro proid201’,model,NLdata);

% edit the nl_fun nl by string keyword

model=nl_spring(’setpro proid201 data2’,model);

% edit the nl_fun with struct input

% property will be parsed using nl_fun(’paramedit’)

model=nl_spring(’setpro proid201’,model,struct(’Jacobian’,2));

% field Jacobian has been edited, other fields are kept unchanged

model.Stack{end,3}.NLdata

model=nl_spring(’setpro proid201’,model,struct(’NewField’,’test’));

% you can see that in this case NewField was not set

% as it is not referenced in the nl_fun parameters

model.Stack{end,3}.NLdata

% Force the with struct input with no check

model=nl_spring(’setproedit proid201’,model,struct(’data’,10,’NewField’,’test’));

% in this mode the NewField is propagated regardless of the

% standard nl_fun input

model.Stack{end,3}.NLdata

Standard NLdata structures depend on the non-linear function, see nllist for more details. They
can be obtained through the nl function command db, see nl fun for more details.
In the case where

GetPro

pro=nl spring(’GetPro’,model)

This command is used to get non linear properties in the model stack.
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• Command option ID allows getting a specific non linear property by specifying its ProId.

• Command option type‘‘nl fun’’ allows getting the non linear properties of a specific type.
See nllist for more details on types of non-linearities.

Follow

The Follow mechanism can be used to observe some variable evolution during the time integration.
opt=nl spring(’Followi’,opt);

1st Follow consists in monitoring the number of iteration, the residual norm and displacement
increment norm at each time step.

model=nl_spring(’Demo1DOF’)

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

opt=nl_solve(’TimeFollow1’,opt); % niter norm(r) norm(dq)

def=fe_time(opt,model);

2nd Follow consists in monitoring the def.FNL in iiplot. For the moment the mechanism is differ-
ent (so note that you can’t both tracker niter and FNL), and you only have to specify the field
.FnlIiplot equal to 1 in the ’info’,’OutputOptions’ stack entry of the input model, as in fol-
lowing example :

model=nl_spring(’Demo1DOF’);

r1=stack_get(model,’info’,’OutputOptions’,’GetData’);

r1.FnlIiplot=1; % define FNL tracker

model=stack_set(model,’info’,’OutputOptions’,r1);

opt=stack_get(model,’info’,’TimeOpt’,’GetData’);

def=fe_time(opt,model);

See sdtweb t nlspring(’Follow’) for list of wanted cases.

TimeOpt

This command returns usual default TimeOpt for non-linear simulations. By default the output is
the same as the TimeOptNLNewmark presented below. See also fe time for TimeOpt definition details.
Supported TimeOpt commands are

• TimeOptNLNewmark, or TimeOpt to obtain the TimeOpt for NLNewmark simulations. Use TimeOpt-gamma
.51 to introduce numerical damping by directly giving gamma.

• TimeOptStat to perform static simulations (see also fe time nl solve).
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• TimeOptTheta to perform time simulations with the θ-method (see fe time ). Numerical
damping can be introduced using TimeOptTheta-alpha .05, the specified α value will be
added to θ, so that the coefficient used in the simulations will be θ1 = θ + α.

• TimeOptExplicit to perform time simulations with the explicit Newmark scheme.

The following command options allows setting other TimeOpt fields to their desired value.

• dtval time step.

• tsN number of time steps.

• tendval optional end time

• tInitval initial time.

• AlphaRval a global Rayleigh damping mass coefficient (applied to the model total mass).

• BetaRval a global Rayleigh damping stiffness coefficient (applied to the model total stiffness).

• maxNoutN requests an output subsampling strategy such that only N times equally spread over
the simulation time span are output.

• RelTolval requests a specific relative tolerance for the convergence of iterative schemes.

• -gammaval requests a specific γ coefficient (default to .5) of the Newmark scheme. For the
non explicit versions, β is adapted to ensure unconditional stability of the scheme.

• -thetaval requests a specific θ coefficient (default to .5) of the Theta method.

• -acallstr provides a series of command options applied to the AssembleCall generation.

• -fcleanstr provides a series of command options applied to the FinalCleanupFcn generation.

• -jcallmodel edits the jacobian call to allow late model modification.

Alternatively to providing all these command options in the command string, one can provide a
MATLAB struct with equivalent fields as an additional argument.
By adding an SDT model as third argument, the generated TimeOpt will be directly integrated in
the model, that will be output.
Sample calls :
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% basic call

opt = nl_spring(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’);

% call with struct input

RO=struct(’dt’,1e-6,’ts’,3e5,’maxNout’,1e4,...

’acall’,’lumpedMass’);

opt = nl_spring(’TimeOptExplicit’,RO);

% basic call with model input

model = nl_spring(’TimeOpt dt1e-6 ts3e5 maxNout1e4 -acall"lumpedMass"’,[],model);

% call with struct and model input

model = nl_spring(’TimeOptExplicit’,RO,model);

Convergence tests depend on the iteration algorithm and several behaviors can be obtained by mod-
ifying RelTol. In any case the absolute value of RelTol is used for the convergence test application;
its sign is used to determine the convergence test to be used as described in the following.

• For algorithms using iterNewton as IterFcn, as is the case for methods newmark (explicit or
not), NLNewmark, and staticNewton.

– using RelTol > 0 tests the convergence of the mechanical residue, relative to value
opt.nf. If opt.nf is not provided, the scheme takes in input the norm of the exter-
nal forces fc at the first time step, or if zero the norm of the first residue of the first time
step. If still zero, opt.nf is set to 1. This convergence test is the most widespread as it
ensures mechanical stabilization. It is strongly recommended for static computations, or
when using large time steps.

– using RelTol < 0 tests the convergence of the displacement correction, relative to the
current displacement norm. The idea of this mode is to stop iterating if the correction
becomes negligible, this is very useful to limit iterations with little impact on the results
in transient simulations with small enough time steps. This must be used with care as
this criterion does not imply that the mechanical residue is converged at the end of the
time step, it is thus strongly advised to check results convergence.

iterNewton does not support the use of opt.cvg yet.

• For algorithms using itertheta nl as IterFcn, as is the case for method theta,

– using RelTol > 0 tests the convergence of the velocity field, its correction relative to the
previous iteration velocity norm.

– using RelTol < 0 tests the convergence of the velocity field, and the model.FNL vector,
their correction relative to the previous iteration norm. Stabilization of the model.FNL

field may be difficult to attain and very sensitive as this vector can contain heterogeneous
data, this mode is then not recommended by default, and use of opt.cvg should be
preferred.
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iterthetal nl supports the use of opt.cvg, that forces iteration if set to 1. It is reset
to zero at the start of each iteration, but any non-linearity can alter its value by using
sp util(’setinput’,opt.cvg,ones(1),zeros(1));. Each non-linearity can thus internally
test the convergence of its fields of interest and apply a convergence veto if its convergence is
not satisfied.

From standard fe time simulations, the following TimeOpt fields are added or modified

• Jacobian field is modified to take into account non linearities, see NLJacobianUpdate.

• Residual field is modified to take into account non linearities, and to use mkl utils to improve
computation times, see sdtweb mkl utils. This should be initialized by nl spring(’ResidualCall’).

• AssembleCall field is modified, to perform non-linearities initialization after assembly. AssembleCall
is the string passed to fe case, generated by nl spring(’AssembleCall’).

• OutputInit field is modified to also check non linearities and initialize non-linearities related
outputs, this is a callback generated by nl spring(’OutputInitCall’).

• FinalCleanUpFcn field is modified to perform cleanup on non linearities as well, this is realized
through the ExitFcn command option of fe simulfe timeCleanUp (see fe timeTimeOpt), us-
ing ’-ExitFcn"nl spring(’’fe timeCleanUp’’)"’. This should be initialized by nl spring(’fe timeCleanupCall’.

• OutputFcn The output function should be generated by the OutputInit command, since it
handles proper interpolation of output as function of the time step, and requires fine tuning
in the case of non linear simulations. If nl spring handles the OutputInit call, OutputFcn
is thus reset during initializations. Handling of output time steps using a time vector in
OutputFcn is supported.

AssembleCall

The TimeOptAssembleCall must use the -InitFcn callback of fe caseg Assemble to perform ini-
tialization of the non linearities.
Command options are available to tweak the assemble call with minimal user input

• MVR To adapt the assemble call for preassembled reduced models. This typically removes the
-load command option of the call as this has to be recovered in the MVR itself.

• skipMKL No to transform the model matrices into mkls objects.

• lumpedMass To adapt the mass matrix mattype to 20 and get a lumped mass matrix.

• compose For more complex calls one can redefine from scratch the assemble call line to which
the ad hoc initFcn will be added.
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ResidualCall

The TimeOptResidual callback should be a call to mkl utils, that performs optimized matrix vector
products, and the computation of non linear forces handled by nl functions. Command options
allows choosing a call adapted to the type of simulations

• by default a call adapted to the nlnewmark scheme.

• ResidualCallStatic provides a residual adapted to the newton-Raphson schem.

• ResidualCallExplicit provides a residual adapted to the newmark explicit scheme.

fe timeCleanupCall

The TimeOptFinalCleanupFcn callback must use the -ExitFcn of fe simulto perform post treat-
ments of non linearities. Custom options classical to the fe simulFinalCleanup call can be added
either in the command string or as a string in second argument.

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall -cf-1-fullDOF’);

% equivalent call with second argument

opt.FinalCleanupFcn=nl_spring(’fe_timeCleanupCall’,’-cf-1-fullDOF’);

In addition to the standard fe simulFinalCleanup, the following command options are available
(to be specified outside the ExitFcn callback.

• -HDFSave To save the output in a temporary file, and output a v handle pointer to the saved
data. This is useful for RAM optimization matters.

• -HDFfnamefname In combination to -HDFSave, to specify the file in which the output will be
saved.

• -Save To save the output in a temporary file, but keep the results.

• -fnamefname In combination to -Save, to specify the file in which the output will be saved.

OutputInitCall

The OutputInit callback is locked for internal nl spring use. Several command options are available
that will be forwarded to the OutputInit procedure

• -BlockSaveN To initialize a bufferization of the output of size N. Results will be saved as blocks
containing each N saved time steps.

• -exit To force exit after initialization. This can be used to check the output format without
performing the simulation.

• -postFcn To provide a callback that can tweak the output at the end of the OutputInit

procedure. This can be used for example to initialize out.Post post treatments.
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TimeOutputOptions

Fine tuning of fe time output can be achieved by specifying an ’info’,’OutputOptions’ case
entry.
Accepted fields for the OutputOptions structure are

• .FnlAllT if defined and equal to 1, non-linear loads are saved at all time steps.

• .FnlIiplot if defined and equal to 1, non linear loads are displayed in an iiplot figure as curve
FNL. If the display timer associated with this figure does not stop automatically, you can stop
it with cingui(’TimerStop’).

mkl utils

Non linearities are treated by mkl utils mex file. Details are provided in mkl utils.

rheo2NL

OBSOLETE. Use now nl spring NL.
NL=nl spring(’rheo2NL’,model,DOF,offset);

This command is used to convert rheological data into a structure of data understandable for NLforce
command. DOF is the list of the DOF coherent with u and v arguments of NLforce command. Offset
is optional. It is a structure of data with fields .DOF and .def that defined 0 reference for Fu and
Fv tab laws.

tab

model=nl spring(’tab’,model);

This command is used to convert formal rheological description data stored in model.Stack to
a tabulated law description. The format is likely to change due to optimization of the compiled
functionality in mkl utils (see mkl utils).

BlockSave,BlockLoad

Undocumented intermediate save of a time block for long simulations that do not fit in memory.
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Purpose
For detailed callback information see sdtweb(’nlspring timeopt’).

Residual

Residual command is used to compute standard residue.
mkl utils(’residual’,r,model,u,v,a,opt,Case); call modifies variable r in memory according
to following standard residue computation (implicit Newmark).

r = model.K{1}*a + model.K{2}*v + model.K{3}*u - fnl -fc;

Typically in fe time computations one has
opt.Residual=’r=-full(fc);mkl utils(’’residual’’,r,model,u,v,a,opt,Case);’;

with fc the time load (resulting from DofLoad entries in model Case) and fnl is the sum of the
non linear efforts (if any) computed directly by mkl utils (rotcenter, mocirc2), in the non linear
functions (see sdtweb nl fun) or in nl spring. mkl utils then calls the adequate nl fun function
(nl spring by default) automatically.

Such call stored in opt.Residual is filled by nl spring(’TimeOpt’) for default simulations.
Model information specifically supported by the residual command are

• opt.Rayleigh if the field exists defines a global Rayleigh damping and opt.Rayleigh(1)*model.K{1}*v+opt.Rayleigh(2)*model.K{3}*v
is added to the residual.

• model.K{2} can be a data structure describing modal damping with following fields:

– .def : MΦ vectors as columns.

– .data : cj modal damping coefficients as a vector. cj = 2ωjζj . A second column has to
be set to zero for transient applications.

– .type : @nl modaldmp handling function for callbacks. The following callbacks must be
handled

∗ matrix projection tkt = T TKT : tkt=feval(K.type,’getTKT’,K,T,Tt,typ)
with K the implicit matrix, T the right projection matrix, Tt the left projection matrix
(can be empty or skipped if Tt = T T , typ the output type, either imp to keep the
implicit format (by default), or full to recover a full numeric matrix (to be reserved
for small output sizes).

∗ vector application f = Kq : f=feval(K.type,’getForce’,K,q)
with K the implicit matrix, q a deformation vector.
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– .UseDiag : to be set to one if one wants the output of getTKT to be diagonal (as for a
standard dtkt call).

– .K : optional additional damping matrix. This matrix must be in a mkl transposed
v handle format (use v handle(’mklst’,K) to convert a matlab matrix to this format).
Note that model.K{2}.K is taken in account for the Jacobian computation whereas modal
damping is not.

– .defT : the resitution matrix (left side MΦ), that can occur mainly in the case where
a non-symmetric projection has been carried out. E.g., the implicit representation of

T Tl MΦ
[
\2ζjωj\

]
ΦTMTR will use field .def to store T TRMΦ and .defT to store TlMΦ.

Corresponding additional residue term is∑
j [M ]φj ∗ cj ∗ φTj [M ]T ∗ v.

• model.NL can be a stack of non linearities. Column 3 provides a structure with the following
standard fields, see nldata.

Typically, fnl is computed by non linearity functions, see nl fun for details on these functions.
The non linear functions are called by mkl utils to provide the value of fnl at a given state. Two
implementations are supported

• An optimized input-output formulation, using observation and command matrices c and b doc-
umented in nldata. The computation of the observation is possible either on the displacement,
the velocity or both, and the command is added to the residual using r = r + b*unl. With
unl a vector depending on the observation (c*u, c v v).

• A used defined addition (older format, that should be only used when the generic b,c format
fails to be relevant. In this mode the non linear function must add fnl by itself, choosing the
sign convention, using a call of type of time(-1,fc,fc-fnl);. One will note that the residue
vector is named fc in the non linear functions.

Install

The mkl utils function is distributed using xxx
In order to make proper distribution of mkl utils please send us result of:

ver

cd(fullfile(matlabroot,’bin’,getenv(’MATLAB_ARCH’)))

!ls -lt *mkl*
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chandle

chandle objects are used to streamline communication between mex and MATLAB in iterative
processes.

• –

– BlockStrain xxx

– nl inout xxx
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Purpose
chandle objects are used to streamline communication between mex and MATLAB in iterative
processes.
Creation generates a C copy of the matlab array and returns a chandle object containing the ID.
Register the chandle object for mexAtExit.

• chandle.numType lists currently implemented chandle subtypes.

DiagNewmark

DiagNewmark is an implementation of the Newmark scheme when assuming a fixed diagonal full
Jacobian as occurs in modal domain transients (explict or implicit) and explicit dynamics.

BlockStrain

xxx

nl inout

xxx support for observation performed in C. .iopt for standard integer options.
.N field : Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[8],Niopt[9],size(unl,3)[10]

.opt field ? tc[1] dt0[2] K[3] Fmax[4] Fu functions currently implemented in C are

• FuPower uses .opt=[k n] and snl = k unnl.

• FuTable xxx

• FuExpon xxx snl = a bunl .

• Maxw reimplementation of nl maxwell.m file

• FuDahlC Dahl model with constant force

• STS PSA scalar STS

• CLIMA2 xxx Rosatello

• FuFric basic friction model with Fk=K*u bounded by +-Fmax

The header of the associated class is
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// nl_inout non linearity 1003

class chandleNl_inout: public chandle {
public:

int *irc, *jcc,*irb, *jcb,*iopt;

double *prc,*pic,*prb,*pib,*unl,*vnl,*snl,*opt;

int N[11]; // Nunl, (c,1),(c,2),cTrans, (b,2),(b,1),bTrans, Nopt[7],Niopt[8],size(unl,3)[9]

__Fu Fu;// (*Fu)(chandleNl_inout*,struct _ROr);

mxArray* MexData[2];

chandleNl_inout();

~chandleNl_inout();

void Residual(struct _ROr ROr, double* fc);

void initCpt(); // Initialize pointers

void EndStep(); // propagate internal states using StoreType strategy

};
// Residual structure --------------------------------------------------------

struct _ROr {
int Nk,Nnl;

double RayleighM,RayleighK,tc;

double *u,*v,*a,*FNL;

};
// Default function handle

typedef void(*__Fu)(chandle* ph, struct _ROr ROr);

xxx Dynamic loading of user Non-linearity written in C. Each of this
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Purpose
List of supported non linearities. It is possible to create new ones (sdtweb nl fun)

nl inout

nl inout is the more general non linearity, using observation and command matrix.
fNL = b× f(C.u,C.v)

The pro.NLdata structure has fields
.type ’nl inout’

.lab Label of the non linearity.

.Fu defines strains based on strains in .unl and strain rates in .vnl. Accepted forms are
described in section 1.2 .

.Fv The same as .Fu excepted for string predefined laws that define also .Fv.

.unl0 Optional. Define an offset in observation (before applying Fu) as unl = c∗u+unl0. It
can be a vector giving direct offset (as many lines as c). It can also be a string defining
what offset to apply : the only strategy implemented at this time is unl0=’q0’ to
remove observation of the static from observation at each time step. It can also be
the name of a curve stored in model stack.

The non-linear kinematics can be defined using observation/sensor command/loads as detailed in
section ?? or elements section 1.1.3 and following.
By default, no jacobian is computed for this non-linearity. Experimental jacobian are computed
according 3 methods according to the NL.Jacobian value:

• 0 : no jacobian. (default).

• 1 : tangent matrices.

• 2 : fixed jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for jacobian stiffness, and
NL.alphaJD factor for jacobian damping.

nl maxwell

nl maxwell describes rheological models using stiffness and damping.
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.type ’nl maxwell’

.lab Label of the non linearity.

.Sens Observation definition. Cell array of the form {SensType,SensData} where SensType
is a string defining the sensor type and SensData a matrix with the sensor data (see
sdtweb sensor).

.Load data structure defining the command as a load (with .DOF and .def fields).

.SE superelement that defines the rheological model. Only matrices are used (.K field).
Mass matrix is ignored. The .DOF field is unused and first DOF are assumed to be
the observations defined, and following correspond to internal states.

.NLsteps Number of sub steps for the integration.

.StoreFNL strategy to store FNL output.
Ncell number of cells.
Jacobian is computed using a Guyan condensation keeping only the observation (internal states are
condensed) to obtain tangent damping and stiffness.
Internal states are integrated using an independent finite differences explicit scheme, with the same
step of time as the main scheme, or a subsampling NL.NLsteps times.
At the first residue computation, the initial internal states are computed according to initial con-
dition in terms of displacements and velocities through a time integration until variation of speed
between the 2 last computed steps is lower than opt.RelTol.
Force on the observation DOF (F), displacement (Qc) and velocity (dQc) of the internal DOF, dis-
placement and velocity observations are stored in the NL output.

The command nl spring db Fu"type" is a database of generalized maxwell rheological models.
type can be:

• zener standard viscoelastic model. Parameter k0, k1 and c1 can be given as a string of the
form db Fu"zener k0 k0 k1 k1 c1 c1" in the command.

The example of the standard viscoelastic model is detailed here as an illustration. The standard
viscoelastic model, also known as Zener model, is composed by a spring (K0) in parallel with another
spring (K1) and a serial dashpot (C1) as displayed figure 3.5.
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Figure 3.5: Standard viscoelastic model.

In the Laplace domain, the relation between the relative load and the relative displacement is given
by

F (s) = K(s)X(s) =
K0K1 + (K0 +K1))C1s

K1 + C1s
= K0

1 + s/z

1 + s/p
(3.1)

where p and z are respectively the pole and the zero of the model

p =
K1

C1
(3.2)

z =
K0K1

(K0 +K1)C1
(3.3)

The maximum loss factor is

ηm =
p− z
2
√
pz

=
1

2

K1√
K0 (K0 +K1)

(3.4)

and obtained for pulsation

ωm =
√
pz =

K1

C1

√
K0

K0 +K1
(3.5)

K0 is the static stiffness of the model. Typically K1 = K0
2 and C1 is defined so that the damping is

maximal for the frequency of interest.
Following example considers K0 = 1000N/m, K1 = 500N/m and C1 = 1.4Ns/m. These parameters
lead to a maximum loss factor of 20.14% for a frequency of 46.41Hz. The module and the loss factor
are represented in figure 3.6.
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Figure 3.6: Module and loss factor.

Following example consists in a mass of 1e-2kg linked to the ground by the zener model. Initial
displacement corresponding to a 1N load on the mass is imposed and then a time simulation is
performed.

% parameters

param.m=1e-2; param.dt=1e-4; param.N=1e3;

param.k0=1e3; param.k1=param.k0/2; param.c1=1.4; % zener parameters

% define model

model=struct(’Node’,[1 0 0 0 0 0 0],...

’Elt’,[Inf abs(’mass1’) 0; 1 0 0 param.m 0 0 0]);

% define nl_maxwell data

data=nl_maxwell(sprintf(’db Fu"zener k0 %.15g k1 %.15g c1 %.15g"’,....

param.k0,param.k1,param.c1));

data.Sens{2}=1.03; % translation sensor defining nl_maxwell inputs

% define associated property

r1=p_spring(’default’); r1=feutil(’rmfield’,r1,’name’);
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r1.NLdata=data; r1.il(3)=param.k0;

r1.il(1)=100; model=stack_set(model,’pro’,’zener’,r1);

% define option for time integration

opt=d_fetime(’TimeOpt’);

opt.NeedUVA=[1 1 1];

opt.Follow=1; opt.RelTol=-1e-5;

opt.Opt(7)=-1; % factor type sparse

opt.Opt(4)=param.dt; opt.Opt(5)=param.N; % NSteps

%opt.IterEnd=’eval(opt.Residual)’; % to compute real FNL for current state

% Initial state

r1=data.SE.K{3}\[1;0]; r1=r1(1); % initial displacement for 1N load

model=stack_set(model,’curve’,’q0’,struct(’def’,r1,’DOF’,1.03));

% Time computation

def0=fe_time(opt,model); ci=iiplot; % compute

% The same but NL as a model

SE2=data.SE;

SE2.Elt(end+1:end+2,1:6)=[Inf abs(’mass1’); 1 0 0 param.m 0 0];

SE2=fe_caseg(’assemble -secdof -matdes 2 3 1 -reset’,SE2);

r1=SE2.K{3}\[1;0]; %r1=r1(1);

SE2=stack_set(SE2,’curve’,’q0’,struct(’def’,r1,’DOF’,SE2.DOF));

def20=fe_time(opt,SE2); % compute

F20=SE2.K{2}*def20.v+SE2.K{3}*def20.def; F20=F20(1,:);

% zener labs: {’zener-F1’,’zener-q1’,’zener-q1-1’,’zener-dq1’,’zener-dq1-1’}
NL20=struct(’X’,{{def20.data {’LIN-F1’;’LIN-Qc1’;’LIN-dQc1’;’LIN-unl1’;’LIN-vnl1’;’ft’}}},...
’Xlab’,{fe_curve(’datatypecell’,’time’)},...
’Y’,[F20’ (fe_c(def20.DOF,1.03)*def20.def)’...

(fe_c(def20.DOF,3.03)*def20.def)’...

(fe_c(def20.DOF,1.03)*def20.v)’...

(fe_c(def20.DOF,3.03)*def20.v)’ zeros(size(def20.def,2),1) ]);

NL20.name=’NLfromLIN’;

iicom(’curveinit’,{’curve’,’NL(1)’,ci.Stack{’NL(1)’};
’curve’,NL20.name,NL20});

A=ci.Stack{’NL(1)’}.Y(2:end,:);B=NL20.Y(2:end,:);t=NL20.X{1}(2:end);i2=any(A);
if norm(A(:,i2)-B(:,i2),’inf’)/norm(B,’inf’)>0.01

figure(1);plot(t,A,’--o’,t,B,’-’)

sdtw(’_err’,’something has changed’)

end
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DofKuva

DofKuva defines a non linear load of the form
aveDof [K] {V } with a scalar coefficient a, a scalar vDof extracted from displacement, velocity or
acceleration, and V a field specified as follows
.type ’DofKuva’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.MatTyp Type of the matrix K (see MatType). Desired matrix is automatically assembled
before time computation.

.factor Scalar factor a.

.exponent Exponent of the DOF.

.uva Type of vector V : [1 0 0] for displacement, [0 1 0] for velocity and [0 0 1] for
acceleration.

For example one can take in account gyroscopic effect in a time computation with a NL of the form

model=stack_set(model,’pro’,’DofKuva1005’, ... % gyroscopic effects

struct(’il’,[1005 fe_mat(’p_spring’,’SI’,1) 0 0 0 0 0],...

’type’,’p_spring’,’NLdata’,struct(...

’type’,’DofKuva’,’lab’,’gyroscopic effect’, ...

’Dof’,1.06,’Dofuva’,[0 1 0],’MatTyp’,7,...

’factor’,-1,’exponent’,1,’uva’,[0 1 0])));

DofV

DofV defines a non linear effort of the following form (product of a fixed vector and a dof)
Dofexponent.V

NDdata fields:

.type ’DofV’

.lab Label of the non linearity.

.Dof Dof of Case.DOF.

.Dofuva [1 0 0] for displacement Dof, [0 1 0] for velocity and [0 0 1] for acceleration.

.exponent Exponent of the DOF.

.def data structure with fields .def which defines vector V and .DOF which defines corre-
sponding DOF.

nlspring

nlspring defines a non linear effort from rheological information (stop, tabulated damping or stiff-
ness laws etc.) between 2 DOF.
To define a non linear spring, one has to add a classic celas element, linear spring between only
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2 DOF. The non linear aspect is described by associated properties as a ’pro’ entry in the model
Stack.
For the moment, the 2 DOF of the non linear spring have to be given in the .dof1 and .dof2 fields
of this entry.
One can describe non linearity by a formal rheological description using one or more of following
fields in the pro Stack entry:

• .But : [dumax k0 c0 dumin k1 c1]. For du from dumin to dumax, f=0. For du>dumax,
k0 stiffness is applied to du-dumax, and for du<dumin, k1 stiffness is applied to du-dumin.
Damping is not taken in account at this time (due to tabulated law strategy).

• .Fsec : [fsec,cpenal]. For dv<-fsec/cpenal or for dv>fsec/cpenal, f=fsec is applied.
For -fsec/cpenal<dv<fsec/cpenal, f=cpenal*dv is applied. If omitted, cpenal=1e5.

• .K

• .C

This information will be converted in tabulated laws Fu and Fv using nl spring tab (low level call
that should be automatically called at the beginning of time computation).
One can also describe non linearity with a tabulated effort / relative displacement and effort / relative
velocity law between the DOF (dof2-dof1), respectively in the Fu and Fv fields of the pro Stack entry.
First column of Fu (resp. Fv) gives the relative displacements (resp. velocities) and second column
gives the efforts. One can give a coefficient av factor of Fv depending on relative displacement as a
third column of Fu. It can be useful to describe a non linearity depending on relative displacement
and relative velocity. Force applied is F=av(du).Fv(dv). It is used in particular to describe damping
in a stop (.But NL).
Following example performs a non linear time computation on a simple 2-node model:

sdtweb(’_eval’,’d_fetime.m#Mesh2Dof’) % Simple mesh

pro={’pro’,’celas1’,...
struct(’il’,[100 fe_mat(’p_spring’,’SI’,1) 1e3 1 0 0 0],...

’type’,’p_spring’,...

’NLdata’,struct(’type’,’nlspring’,...

’dof1’,1.03,’dof2’,2.03,...

’but’,[1e-3 1e3 0 -4e-4 1e3 0]))};
model=stack_set(model,pro);

% perform an implicit NLNewmark simulation

% generate fe_time opt structure
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opt=d_fetime(’TimeOptNLNewmark ts 1e4 dt 1e-3 needUVA 110’);

def=fe_time(opt,model);

% perform a variant Newmark explicit simulation

opt=d_fetime(’TimeOptExplicit dt 1e-3 ts 1e4 needUVA 110 -fclean"-cf-1"’);

d2=fe_time(opt,model);

% plot some comparison between results

figure(10);

subplot(211);plot(def.data,def.def’);xlabel(’Time [s]’);title(’displacement’)

subplot(212);plot(def.data,def.v’);xlabel(’Time [s]’);title(’velocity’)

subplot(211);hold on;

plot(d2.data,d2.def’,’r--’);xlabel(’Time [s]’);title(’displacement’)

hold off;

subplot(212);hold on;

plot(d2.data,d2.v’,’r--’);xlabel(’Time [s]’);title(’velocity’)

legend(’Implicit’,’Explicit’);

hold off

Following example deals with a clamped-free beam, with a bilateral bump stop at the free end.
XXX: image

% define model:

L=1; b=1e-2; h=2e-2; e=1e-3; % dimensions

model=[];

model.Node=[1 0 0 0 0 0 0; 2 0 0 0 L 0 0];

model.Elt=[Inf abs(’celas’) 0 0;

2 0 2 0 100 1 110 0; % linear celas

Inf abs(’beam1’) 0 0;

1 2 1 1 0 1 0 0

];

model=feutil(sprintf(’RefineBeam %.15g’,L/20),model);

model=fe_case(model,’FixDof’,’base’,1); % clamps 1st end

model=fe_case(model,’FixDof’,’2D’,[0.03;0.04;0.05]); % 2D motion

% model properties:

model.pl=m_elastic(’dbval 1 steel’);

model.il=p_beam(sprintf(’dbval 1 BOX %.15g %.15g %.15g %.15g’,b,h,e,e));

% Bump stop NL:

model=stack_set(model,’pro’,’celas1’,...

struct(’il’,[100 fe_mat(’p_spring’,’SI’,1) 1e-9 0 0 0 0],...
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’type’,’p_spring’,...

’NLdata’,struct(’type’,’nlspring’,...

’dof1’,2.02,’dof2’,0,...

’but’,[0.02 5e2 0 -0.02 5e2 0],... % gap knl cnl...

’umin’,3)));

if 1==1

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,50));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

else

f=linspace(12,18,3);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.02,’def’,1));

model=fe_curve(model,’set’,’input’,sprintf(’Testeval cos(%.15g*t)’,f(1)*2*pi));

end

model=fe_case(model,’setcurve’,’in’,’input’);

% Time computation:

opt=d_fetime(’TimeOpt dt=1e-3 tend=10’); opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);

RotCenter

The Rotcenter joint is used to introduce a penalized translation link between two nodes A and
B (rotation DOFs of NL entry are ignored), where the motion of A is defined in a rotating frame
associated with angle θA and large angle rotation RLG(θA). The indices G and L are used to indicate
vectors in global and local coordinates respectively.
The positions of nodes are given by

{xA}G = [RGL] ({pA}+ {uA}L)
{xB}G = ({pB}+ {uB}G)

(3.6)

which leads to expressions of the loads as

{FA}L = [RLG] (K ({xB}G − {xA}G))
{FB}G = K ({xA}G − {xB}G)

(3.7)

To account for viscous damping loads in the joints, one must also compute velocities. Using (??),
one obtains

{ẋA}G = [RGL] ({u̇A}L + {ω(t)} ∧ {pA + uA}L)
{ẋB}G = {u̇B}G

(3.8)

Velocity computations are currently incorrect with uA ignored in the rotation effect. So that viscous damp-
ing loads can be added

{FCA}L = [RLG] (K ({ẋB}G − {ẋA}G))
{FCB}G = K ({ẋA}G − {ẋB}G)

(3.9)
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For a linearization around a given state (needed for frequency domain computations or building a
sensor observation matrix), {

qAG
qBG

}
=

[
RGL 0

0 I

]{
qAL
qBG

}
(3.10)

In global basis, stiffness matrix of a celas link is given by

k

[
I −I
−I I

]
(3.11)

which leads to the following stiffness matrix[
RTGL 0

0 I

]
k

[
I −I
−I I

] [
RGL 0

0 I

]
= k

[
I −RTGL

−RGL I

]
(3.12)

where qA DOFs are in the local basis (motion relative to the shaft in its initial position) and qB are
in the global frame.
data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)).
NDdata fields:

• .type string ’RotCenter’.

• .sel a FindElt command to find celas of RotCenter type.

• .k this field should not be used. .JCoef field should be used instead and has priority. Stiffness
used for Jacobian computation. Damping is not taken in account in Jacobian in this case.

• .JCoef coefficient of celas stiffness and damping for jacobian computation. Default is 1.

• .drot the rotation DOF.

• .lab label.

nl rotCenter

This non linearity can be used to connect 2 points A and B, where the motion of A is defined in a
rotating frame associated with angle θA and large angle rotation RLG(θA). More generally A and B
are no real nodes but defined implicitly as observation matrices. nl rotcenter is an extension of
RotCenter documented above, using observation matrices which is more general.

• .type string ’nl rotcenter’.
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• .sel a FindElt command to find elements associated to the NL link (XXX really used ?).

• .JCoef coefficient of celas stiffness and damping for jacobian computation. Default is 1.

• .drot the rotation DOF.

• .lab label.

• .Weights (optional) Weight of the stiffness in a pivot link (in fact computed force is multiplied
by the weight factors before being applied so that the sum of weight coef divided by number
of points by pivot should be equal to 1).

• .Stack Stack of cta coupling. Of the form {’cta’, ’name’,{r1,r2}}, where ’cta’ is a con-
stant string defining the type of the link, ’name’ a string containing the name of corresponding
links. r1 is the observation in the first (rotating) part. It is a data structure with fields .Node
defining the nodes involved, .cta defining the observation matrix, .DOF defining corresponding
DOF (as many columns as in .cta) and .SeName defining as a string the name of the superele-
ment where cta is defined (XXX if omitted, it is assumed that DOF and cta are defined on
the model.DOF - no superelement -). r2 is the same for the non rotating part.

An example can be found in t nlspring 2beam (XXX this must be generalized to make it separated
from psa08).
Temporary strategy was to define prior a RotCenter link, then convert it to the nl rotcenter link
using model=psa08(’nl rotcenterFix’,cf.mdl,RO); command. This should no longer be used
XXX.
Default uses the damping and stiffness defined in the il field of the p spring pro entry to model a
linear spring/damper between the 2 parts (stiffness il(3) and damping il(5)).

Defining a xb parameter, the Excite NONL law will be applied instead of the spring/damper. Pa-
rameter that are to be defined are

• .xb Radial clearance.

• .kb Stiffness at radial clearance.

• .cb Damping at radial clearance.

Stiffness and damping at initial position are given in corresponding p spring properties il(3) and
il(5). For example:
cf.mdl=nl spring(’setpro ProId 103 k 371 c 2000e-3 xb 0.03 kb 37100 cb 5’,cf.mdl);

One can also use a squeeze-film type law defining a .muRL3 field, with following parameters (XXX
this need to be reactivated and updated) :

• .muRL3 oil viscosity*bearing radius*bearing length3.
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• .boundary Boundary condition (0=Sommerfeld,1=Gumbel(p¿0)).

• .N theta Number of integration point.

Defining a .RelF field, one can define a sub call to another non linearity to compute the force
resulting from the eccentricity computed by nl rotcenter. In that case, the .RelF field contains
the NLdata field of the sub NL to be called. Following example (XXX need to generalize psa08
ShaftRebuild and ShaftTime XXX) define a zener link in the bearing of simple 2beam example:

cf=feplot(2);beam1(’beam1In’,1); t_nlspring(’2beam-build’);%old inertia

psa08(’ShaftRebuild’,cf) % define large rotation DOF

psa08(’ShaftTime 2000 1 1e-5 0’,cf) % Omega(rpm), N_rot, dt, theta0

if beam1(’beam1In’)~=1;error(’clear problem’);end

mo1.il(2,6)=0; % No gyroscopic because of shaft beam1

opt.RotFollow=1;% Follow velocity and not iterations

r1=stack_get(mo1,’pro’,’celas103’,’GetData’);

% define zener

NLdata=nl_maxwell(’db Fu"zener k0 125e3 k1 50e3 c1 0.4"’);

r1.NLdata.RelF.type=’nl_maxwell’; r1.NLdata.RelF.NLdata=NLdata;

mo1=stack_set(mo1,’pro’,’celas103’,r1);

def=fe_time(opt,mo1);

rod1

XXXEB : following needs to be checked The rod1 non-linear connection is a simple penalized rigid
link. One considers two nodes A and B (see figure 3.7).

Figure 3.7: Large rotation rod functional representation.

Currently, one can introduce masses at points A and B. mass2 elements should be used to account
for the actual position of the center of gravity.
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The global non linear load associated with the rod is thus

Frod = kr (‖{xB − xA}‖ − L0) {xB−xA}
‖{xB−xA}‖ (3.13)

which accounts for a load proportional to the length fluctuation around L0 (penalized rod model).
When linearizing, one considers a strain energy given by kr‖qB − qA′‖2 with the motion at node A′

being related to the 6 DOFs at node A by

{qA′} =

[
I
[
~AB∧

]
0 I

]
{qA} (3.14)

Node A node is free to rotate. The linearized stiffness thus corresponds to an axial stiffness in the
direction of the rod. The computation of the stiffness is however based on the current position of
the extremity nodes, a difficulty in model manipulations is thus to translate these nodes.
data describing this link is stored in model stack as a p spring pro entry. Stiffness and damping
are stored respectively as 3rd and 5th column of the data.il field (standard linear spring, see
sdtweb(’p spring’)). NL information is stored in the data.NLdata field which has itself following
fields :

• type : string ’rod1’.

• sel : a FindElt command to find associated celas of rod1 type ((’proid100’).

• ulim : build tabulated law from -ulim to ulim. Default is 1e3.

• lab : label.

nl gapcyl

XIR, XOR

Reference

XI

XO

Updated Lagrangian (mesh)

xO

Current

uo

ui

eθ

e
r

This non-linearity implements non-linear contact between two cylinders of radius RO for the outer
cylinder and RI for the inner cylinder with motion defined on the cylinder center line. Assuming
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the mesh to be defined in an updated Lagrangian configuration where the center lines XI and XO

at not coincident, the positions in a deformed states are given by xI = XI + uI and xO = XO + uO.
Contact may only occur when the cylinders are not centered. When the two cylinders are not
centered the non-linear observation is given by

uNL = xO − xI = uO − uI + (XO −XI) = [c] {q}+ uNL0

From this distance between the center lines, a cylindrical basis is defined with er(q) along the
direction from xI to xO and eθ forming a direct basis with the cylinder axis (kept constant from the
initial value of the updated lagrangian position).
The functional definition of the contact force uses the gap in the er direction defined by

g = {er}T {uNL} − (RO −RI)

where RO − RI = d is stored as parameter NLdata.d and the contact leads to two opposite forces
on the cylinder center lines

{fI} = {−fO} = f(g) {er}

xxx account for initial contact pressure in the updated configuration xxx
The current implementation assumes rotations to be small enough to ignore the difference between
er and the corresponding vector Er in the upated Lagrangian configuration.
xxx if update of mesh leads to lateral slip, then uI may account for longitudinal position of the
contact point along the beam using shapes functions.
When linearizing the contact around a given point, the stiffness ∂f∂g only occurs in the er direction.

nl modaldmp

Implementation of modal damping. Although modal damping is not a non-linear feature in itself,
its implementation requires it to be declared as a non-linearity.
The concept is to provide shapes defined on a part of a model with associated damping ratios.
nl modaldmp handles the kinematic projection on the model which can contain superelements. In
the case where superelements are used and concerned with modal damping, the shapes provided
must be written on the physical DOF of the superelements.
The set of shapes must be stacked in model with a valid ID field. It is a common deformation SDT
data structure (see sdtweb def), with an additional .ID field. The .data field is equivalent to the
ones of complex modes (see fe ceig). It is a matrix of two columns respectively giving the frequency
and the target damping ratio for each mode.
Since modal damping implies a modal sensor, the features performs both by default. It is however
possible to simplify it as a pure modal sensor. The theory around modal sensing/damping can be
found in [4].
The pro.NLdata structure has fields

• type: string ’nl modaldmp’.
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• CurveId: the curve ID stacked in model which provides the shapes and their damping ratios.

• SensorOnly: to use the feature only as a modal sensor in a def data structure.

The NLdata structure generation can be integrated using an nl modaldmp(’db’) call. See sdtweb

nl spring#setpro for this integration. This is used in transient simulations, and in complex mode
computations, see nl solve.

nl contact

See p contact, ctc utils.
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Purpose
The structure of nl spring allows creating any new non-linearity through the use of a dedicated
function, named nl fun.m. This function which non-linearity name will be fun, will be automatically
called by nl spring for classical operations.
The function structure has been designed to comply with specific needs. Standard calls have been
defined, which are detailed below:

• Residue computation, called by mkl utils (sdtweb mkl utils), must output the entry
force minus the non linear force computed. The call performed is

nl_fun(r2,fc,model,u,v,a,opt,Case)

This call is low level and must modify fc using sp util(’setinput’) as fc-fnl where fnl

is the non linear force computed. Note that this is the only possible call for nargin==8. Note
that mkl utils allows a formalism with precomputed observations, using fields unl.

• Jacobian computation, must output the tangent stiffness and tangent damping matrices
associated to the non linearity. The call performed is

[kj2,cj2]=nl_fun(NL,[],model,u,v,[],opt,Case,RunOpt);

This call must output either empty matrices if no tangent nor Jacobian matrix is associated
to the non linearity, or matrices expressed on the DOF vector of Case.DOF. The first matrix
is the tangent stiffness matrix, the second one is the tangent damping matrix. Typically there
are 3 normalized methods to be defined (but not all of them must be defined, and more can
be defined) according to the NL.Jacobian value:

– 0 : no jacobian. (default).

– 1 : tangent matrices.

– 2 : fixed jacobian (can be max stiffness / damping or mean, ...).

Then computed matrices are then multiplied by NL.alphaJK factor for jacobian stiffness, and
NL.alphaJD factor for jacobian damping.

• Initializations for fe time, must initialize the model non-linearity for non linear forces com-
putation

The call must generate the non linearity stored in model.NL, it can optionally generate non
linear DOF and labels. The call performed is of the type.

NL=nl_fun(’init’,data,mo1);
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NL is a struct containing at least the field type with the nl fun handle (e.g. NL.type=@nl fun).
data contains the Stack,pro entry, and mo1 is the model, named mo1 where the call is performed.

• ParamEdit returns the ParamEdit string allowing integrated parameters interpretation (for
internal SDT use).

The call performed is of the type.

st=nl_fun(’ParamEdit’);

• db returns default NLdata fields for a non linearity. This allows integrated building of non-
linearities in a model. This function can call ParamEdit to allow interactive setup.

This call must return a NLdata field and is of the type

NLdata=nl_fun(’db data 0’);

• Energy post treatments capability, should return the elastic energy stored in the non-
linearity as a vector with as many lines as time steps in the output.

The call performed by nl solvePost is of the form

r2 = nl_fun(’PostEnerNL’);

The non linearity function can access in caller fields RO, out, model, NL, i1 with

– RO a structure with fields EnerP and EnerK respectively containing the potential and
kinetic energy.

– out the fe timeoutput.

– model the model used in the simulation.

– NL the NL containing the data of the non-linearity called.

– i1 the row index of out.Post that is currently generated.

• Renumbering capability, must return the non-linearity written for the new renumbered
nodes, elements, dof, . . .

The call performed (by feutilbfor example) is of the type

NL=nl_fun(’renumber’,NL,nind);

nind is the renumbering vector.

The designed nl fun template is given in the non-linear toolbox, sdtweb nl fun.m#1. It is a func-
tional non linear function, computing a zero non linear force. The definition of a non linearity using
nl fun in a standard SDT model is given in the following.
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% A standard SDT model

model=struct(’Node’,[1 0 0 0 0 0 0; 2 0 0 0 0 0 1],...

’Elt’,[Inf abs(’celas’) 0 0;

1 2 3 -3 0 1 0 10; % linear celas

]);

% Define a non linearity of type nl_fun

model=nl_spring(’SetPro ProId 100’,model,nl_fun(’db data0’));

%Equivalent to

% model=stack_set(model,’pro’,’nl_fun’,...

% struct(’il’,[100 fe_mat(’p_spring’,’SI’,1)],...

% ’type’,’p_spring’,...

% ’NLdata’,struct(’type’,’nl_fun’,’data’,[])));

% Define the case

model=fe_case(model,’FixDof’,’base’,1);

model=fe_case(model,’DofLoad’,’in’,struct(’DOF’,2.03,’def’,1));

model=fe_curve(model,’set’,’input’,’TestStep t1=0.02’);

model=fe_case(model,’setcurve’,’in’,’input’);

% Define the TimeOpt and compute the solution

opt=nl_solve(’TimeOpt’); opt.Opt([4 5])=[1e-3 1e4];opt.NeedUVA=[1 1 0];

def=fe_time(opt,model);
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Purpose
Integrated non linear simulations

Description
The simulation of non linearities require special handling in SDT, which is packaged in the non linear
toolbox. This function aims at performing classical studies, such as done by fe simulfor classical
SDT models with this special handling.
See nllist for the list of supported non linearities.

TimeOpt

nl solve(’TimeOptMethod’,RO) used to initialize fe time options for later simulation. Currently
implemented methods

• Explicit Newmark scheme

• Stat non-linear static Newton

• Theta method time integration.

• ModalNewmark uses an optimized fully C based integration for the case where DOF correspond
to modal degree of freedom. The stepped sine strategy is discussed in section 2.3.2 .

• NLNewmark default implicit Newmark scheme.

Associated options provided in RO or in the command are

• .tend end time of simulation. Used to initialize .ts=ceil(tend/dt).

Static

To compute the static state of a model with non-linearities.

q0=nl_solve(’static’,model);

It is possible to use custom fe time simulation properties using the model stack entry info,TimeOptStat.
See nl spring TimeOpt for fields and defaults.
It is possible to use as command option any field from the usual static simulation option, see sdtweb

nl spring#TimeOpt to have more details. E.g. To redefine on the fly the maximum number of
iteration, one can enter [q0,opt]=nl solve(’static maxiter 100’,model);.
By default, the staticNewton algorithm implemented in fe time is called.
An Uzawa algorithm is also implemented in nl solve, under the method static nl solve uzawa.
This algorithm is very different from the staticNewton one since here the solution is not incremented
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but fully re-computed at each iteration. This is useful when some non-linear forces do not derive from
potentials. Command StaticUzawa can be used in nl solve – to access it: q0=nl solve(’static

Uzawa’,model);.

Mode

The definition of modes for non-linear models is not straight forward. This command aims at
computing tangent modes as function of a non-linear model current state. The resolution thus
concerns a linear model with tangent stiffness, damping matrices corresponding to the model current
displacement, velocity, acceleration state. The eigenvalue solvers used are then fe eigfor real modes
and fe ceigfor complex modes.
By default, modes tangent to a static state are computed. A static simulation is performed to
produce a model state from which tangent matrices are computed. It is also possible to compute
tangent modes at specific instants during a transient simulation, at SaveTimes instant, and to store
frequency/damping data and deformations.
A set of command options allows precizing the mode computation wanted and the output.
Accepted command options to control the model computation itself are

• -allmatdes to ask for an assembly with all matrix types assembled, the default assembly
command used is -matdes 2 3 1. This command can be used to keep specific matrix types
defined in pre-assembled superelements.

• cpx for complex mode computation (default is real mode computation).

• -evalFNL (in combination with command traj) asks to recompute the FNL field on the fly
based on displacements prior to mode computation. This command is useful when solutions
used for the tangent state have been imported from an external solver.

• skip skips fe timesimulations and performs the complex mode computation based on the zero
deformation and with initialized values of non linearities. The behavior will thus depend on
the non linearity initialization strategy. E.g. for contact see (p contact), the -skip option
will consider a full contact state.

• stat for mode computation based on a static state (typically after a fe time staticNewton

simulation). Uses model stack entry info,TimeOptStat.

• time for mode computations during a transient simulation (exclusive with the default -stat

option). Uses model stack entry info,TimeOpt.

• traj for mode computations based on states provided as an additional argument.

The -stat and -time options are mutually exclusive and define the base solver options to be used by
fe timefor the preliminary state computation. With -stat option (default) the stack entry info,
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TimeOptStat will be seeked and used if found. With -time option, the stack entry info,TimeOpt

will be used if found.
The -traj option is complementary and is used to force the complex mode computation on provided
states. On can either provide the state in deformation curve format, see sdtweb def as a last
argument, or use predefined stack entries. In -stat mode (default), the model stack entry curve,q0

will be seeked and used if found, if not the result will use the -skip mode. In -time mode, the
model stack entry curve,TSIM will be seeked and used. If not found an error will occur.
Accepted command options to control the output format are

• -addedOnly (in combination with backTgtMdl) only outputs the tangent matrices as a su-
perelement that would have been added to the base matrices for the mode computation.

• -alpha (requires -cpx) to also output the real mode participation to the complex modes. This
is in fact the projection of the complex modes on the real mode basis.

• -backTgtMdl outputs the tangent model that would have been used for mode computation.

• -dataOnly to save only the frequency, damping data (does not store the deformation field).
The output is then under a frequency tracking curve in the iiplotformat.

• -fullDOF to output the deformation fields restituted on the unconstrained DOF.

• -keepTval (requires -cpx) to allow keeping the underlying real mode basis when computing
complex modes. With val set to 1, the initial real mode basis will be kept under field def.T,
as an additional independent output, coherent with the -alpha command option. With val

set to 2, the complex modes will not be restituted but expressed on the subspace used for
their computation, the subspace basis will be output in def.Mode.TR, allowing a complete
compatibility with feploton-the-fly restitution strategy for display. This latter option is the
most complete and efficient strategy. Complete subspace information is kept and can be used
for further exploitation, complex mode projection on real mode (-alpha) is naturally obtained,
and memory footprint is optimized as the storage size of the subspace is commonly lower by a
factor 1.5 to 2 than the complex mode basis;

• -noPost is used to skip any solution post treatment, and outputs the raw mode structure
straight from the solver.

• -PostFcn’’cam’’ is used to perform specific post-treatments on the mode output after com-
putation.

• -real "ModeBas" (requires -cpx) to specify a particular real mode basis on which the complex
modes will be computed. The real mode basis is supposed to be stored in the model stack
entry curve, ModeBas.
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Internally, the solver defines and uses the model stack entry info,SolveOpt structure to handle
the options documented above. One can define it as a structure with the fields documented (case
sensitive) and provide it instead of the EigOpt input. Additional advanced field are then accessible

• EigOpt a vector providing eigenvalue computation options following the fe eigformat.

• cpx’’command’’ to externalize the mode computation. This command is by default a boolean
telling the solver whether to perform a complex mode computation (set to 1) or a real mode
computation (set to 0). If a string is provided, the solver will evaluate it as an external
command instead of performing mode computation. One then gets access to the nl solve

mode computation framework for ones’ own solver.

• ind provides a vector of indices that will be used to restrict the output to the indexed modes.

• SubDef provides a command that will be evaluated to perform a dynamic user defined re-
striction to the output modes, it is thus more general than the ind option. The result of the
command has to be a vector of indices.

• AssembleCall to force a specific AssembleCall strategy.

The various input and output strategies allow for the support of several input syntaxes. The following
calls are thus accepted, with model a standard SDT model, Case a standard SDT case structure,
eigopt either a vector providing options for fe eigor a structure with optional fields defined above,
def a standard SDT deformation field structure used by -traj when necessary.

nl_solve(’mode’,model);

nl_solve(’mode’,model,eigopt);

nl_solve(’mode’,model,Case,eigopt);

nl_solve(’mode’,model,def);

nl_solve(’mode’,model,Case,def);

nl_solve(’mode’,model,eigopt,def);

nl_solve(’mode’,model,Case,eigopt,def);

Sample calls using command options to extract tangent modes are given below.

def0=nl_solve(’Mode’,model)

def0=nl_solve(’Mode’,model,[5 20 1e3]) % with eigopt

def0=nl_solve(’Mode-stat-fullDOF’,model);

defT=nl_solve(’Mode-time’,model);

hist=nl_solve(’Mode-time-dataOnly’,model);

histC=nl_solve(’Mode-cpx-time-dataOnly’,model);

defC=nl_solve(’Mode-cpx-time-alpha-real’’MyBas’’-fullDOF’,model);

def1=nl_solve(’Mode-skip-fullDOF’,model);
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Post

The Post command allows performing energy and potential further post treatments of a non-linear
simulation. The output is integrated in the standard fe timesimulation outputs in field out.Post

that is a three columns cell array directly compatible with the iiplot format.
To obtain the post treatments, one must define them prior to starting the simulation. Direct com-
putation of the post-treatments a posteriori is also possible.

• Command PostDefine adapts the TimeOpt structure to initialize fields in the output and
trigger post treatments in the final cleanup phase. The PostDefine call must thus be performed
after the TimeOpt call. Using this command itself prior to a time simulation is enough to obtain
the post treatments.

opt=nl_solve(’PostDefine keys’,opt); % adapts the opt structure.

model=nl_solve(’PostDefine keys’,model); % adapts the opt structure contained in model.

• Command PostLab provides the list of available post treatment keywords. The input is a
structure with fields the post treatment keywords and a logical.

• Command PostHist provides an iiplot curve structure adapted to the post treatments.
On can provide a PostLab structure with fields assigned to 1 for desired posts to obtain the
corresponding curve.

• Command PostCompute computes the post treatments and store them in out.Post. This
command is internally called if the PostDefine command was used prior to the time simulation.
For a posteriori computations, the user must provide the out as a standard fe time format
initialized with Post field and the assembled model. The model must feature a stack entry
info, OutputOptions with field Post containing the PostLab structure.

% Generate a TimeOpt

opt=nl_spring(’TimeOpt’);

Perform the time simulation

def=fe_time(opt,model);

% Initialize for post treatments

[def,RO]=nl_solve(’PostInit EnerM’,def);

model=stack_set(model,’info’,’OutputOptions’,...

struct(’Post’,RO));

% Assemble model with non linearities

model=fe_case(opt.AssembleCall,model);

% Compute post treatments

def=nl_solve(’PostCompute’,def,model);

% display in iiplot

iiplot(def.Post);
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• Command PostInit is an internal function that initializes the output Post field at the start
of the simulation. Early initialization is useful if the post treatments are performed on the fly
by the OutputFcn.

The following post treatments are available

• EnerP The linear potential, or strain energy.

• EnerK The kinetic energy.

• EnerNL The elastic or strain energy stored in the non linearities.

• EnerM The mechanical energy, defined as EnerP + EnerK + EnerNL.

• PDiss The instant dissipated power.

• EnerDiss The cumulated dissipated energy over time.

Command PostEstimate allows analyzing the energy curves to compute

• Fest an estimation of the vibration frequency (based on quasi-sinusoidal oscillations)

• DmpR an estimation of the damping ratio based on the estimated frequency by computing the

dissipated mechanical energy. ζ = 1
4π log Em(t0)

Em(t1)

• Emax the maximum mechanical energy identified on the cycle analyzed.

• EDiss the dissipated mechanical energy over the cycle analyzed.

The following command options allow altering the estimation

• -cfi to specify the iiplot figure with handle i.

• -bandpassfmax to perform a bandpass from 0 to fmax Hz filtering prior to the analysis.

• -curveName’’name’’ to provide the iiplot stacked curve name to exploit.

• -baseOn’’name’’ to specify on which post treated curve the frequency estimation is made.

• -globalMaxTolval to provide a relative tolerance over which a point is detected as close to
the global maximum. This is exploited to detect the peaks over the energy signal analyzed.

• -localMax to estimate the frequency by detecting the zeros of the signal derivative (less ro-
bust).

• -unit’’II’’ to provide an output unit system.
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• XFcn’’str’’ to provide a function call to be evaluated that can perform further post treat-
ments( e.g. model specific posts). The called function can access out, outLab, st, j1 with
out a matrix containing the output with as many lines as provided curves and as many columns
as outputs data, outLab a cell array containing the labels of each column, st the curve list
(either names or the curves themselves), j1 the curve currently treated.

r1 = nl_solve(’PostEstimate’,def);

r1 = nl_solve(’PostEstimate’,def.Post{1,3});
r1 = nl_solve(’PostEstimate’,{’disp(1)’});
r1 = nl_solve(’PostEstimate’,{’Post_NLsolve(1)’});

SineSweep

xxx

TgtMdlBuild,Assemble

Integrated command to generate linearized models around a specific working point. This command
packages the tangent model generation procedures of nl solve Mode-backTgtMdl

• TgtMdlAssemble command outputs a fully linearized assembled model, based on the static
state provided.

• TgtMdlBuild command generates a linearized model with superelement coupling containing
the tangent stiffness and damping contributions of all non-linearities. The following command
options are supported

– -keepName allows naming the superelements with the non-linearity name.

– -evalFNL forces recomputation of non-linearities states before generation.

– -staticInterp generates a tangent model allowing tangent matrix interpolation between
different static states. The procedure requires the definition of parameters and a method
to compute static states. Static states for MinMax configurations of each parameters is
then performed. Matrices showing differences as function of parameters are kept and an
interpolation rule is defined using the linear finite element functions of a 2npar vertices
hypercube. The output model has stack fields curve,q0 the series of static states with
q0.data providing the parameter points, and info,sCoef providing interpolation rules
for each matrix.

RA=struct(’par’,Ra,’q0cbk’,{{@my_fun,’ComputeStatic’}});
mo1=nl_solve(’TgtMdlBuild-staticInterp’,model,RA);
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Ra is either a Range structure or the content of Range.param (see sdtweb fe range),
q0cbk is a callback in cell-array format.

% Linearized model generation

% sample model with cubes in contact

model=d_contact(’cubes cbuild’);

% resolve static state

q0=nl_solve(’static’,model);

% linearized model

mo1=nl_solve(’TgtMdlBuild’,stack_set(model,’curve’,’q0’,q0));

% check the result

feutil(’info’,mo1)

SE=stack_get(mo1,’SE’); SE{1,3}
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Purpose
Integrated mesh modifications and case handling for non-linear applications

Description
Integrated case handling for constraint penalization and coupling component splitting hare imple-
mented in this function.
Some non-linearities require surface/volume remeshing (e.g. definition of conforming interfaces for
contact) or adaptations (generation of thin interface layers). This function regroups such function-
alities. Mesh generation are performed by fe gmsh(interface to gmsh) and fe tetgen (interface to
tetgen, see help fe tetgen).

Conform

The Conform call is an integrated call to generate conforming meshes between two facing interfaces.
The command generates a conforming surface mesh of the face to replace, merges it with the conform
mesh of the second interface, replaces the model face mesh and remeshes the model volume to yield
a new equivalent volume with a conform face mesh.

mo1=nl_mesh(’conform eltsel"FindElt"’,model,sel);

% sel={eltSelToReplace eltSelForReplacement;...}

model is a standard SDT model. sel is a cell array containing in each line two FindElt com-
mands specifying the element selection face to remesh and the element selection face to use for the
conforming interface for replacement.

• Command option eltsel allows specifying in a string a FindElt command restraining the
working area in the original model.

• Command option smartSize allows generating a conforming mesh with a coherent mesh char-
acteristic length.

• Command option gmsh allows using gmsh to mesh the final volume.

• Command option tetgen allows using tetgen to mesh the final volume (by default).

• Command option output asks to output the generated mesh in a .mat file.

• Command option OrigContour asks to keep original positions of mid-nodes of the quadratic
faces delimiting the volume to remesh. This may however yield mesh wrapping problems when
the face to remesh is much coarser than the mesh trace to place for conformity.
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• Command option mergeTo allows specifying a FindElt selection command in a string to replace
the mesh on another model selection than the one used to generate the conforming interface
(which uses eltsel.

• It is also possible to provide additional arguments, which will be passed the the nl meshcover

call performed in the procedure.

Limitations: The Conform call only supports generation of conforming interfaces when one interface
contour fully contains the other interface contour. Handling of more complex contour configurations
has not been implemented. Besides, this function has been designed to handle planar surfaces.
Additional operation to work on non planar surfaces are left to the user (e.g. pre/post projections
of the surfaces on a plane).

Contour

Call ContourFrom generates SDT beam1or beam3 contour models for CAD definitions. All formats
readable by gmsh can theoretically be used. Only the .geo, .stp and .igs are tested.
Since .geo files can contain geometric yet undiscretized objects, a 1D meshing pass is performed
with gmsh to provide an SDT contour model. This is not supported for other file types.

model=nl_mesh(’contourFrom’,’file.stp’); % not specifying the type

Call Contour generates an SDT face mesh from an SDT beam1or beam3 contour.

model=nl_mesh(’contour’,model);

model is an SDT beam model defining a closed contour.

• Command option lcval allows specifying a characteristic length for gmsh.

• Command option lcminval allows specifying a minimal characteristic length for gmsh.

• Command option quad allows generating quadratic meshes.

• Command option keepNode asks to keep the original contour NodeId for the contour com-
mand.

• Command option diag asks to output the gmsh log file for diagnostic problems.

• Command option single tells nl mesh that a single contour is defined. This is useful when
several closed contours are defined since it is impossible to automatically decide whether each
contour is independent or if they define a single complex contour.

131



nl mesh

• Command option groupval is used in combination to the single command option. This allows
specifying which contour group will be meshed, while other possible contours will define holes.

• Command option algo’’val’’ allows specifying which algorithm gmsh must use (this depends
on the gmsh version, report to the gmsh documentation for more details).

• Command option AllowContourMod allows gmsh adding nodes on the contour provided. By
default gmsh is forced not to add nodes to the lines defining the contour to mesh.

Cover

The Cover call is designed to mesh the interstice between two closed planar contours, when one fully
contains the other. The call is performed as

[newModel,opt,largeContour]=nl_mesh(’cover’,model,{eltsel_large,eltsel_small});

model is a standard SDT model. Variables eltsel large and eltsel small are FindElt calls
defining the element selection of the respectively large surface and small surface (the small being
contained in the large).
The output newModel is the mesh generated from the surface contours.
opt outputs additional information about the mesh generation, it is a struct containing fields
.NodeAdd specifying the potential nodes added in the interstice space meshed,.nodeEdgeSel1 spec-
ifying the NodeId of the nodes located on the eltsel large contour, .nodeEdgeSel2 specifying the
NodeId of the nodes located on the eltsel small contour, and .tname the name of the temporary
file containing the generated mesh.
largeContour provides the original contour in beam elements of the eltsel large selection.
The following command options are available

• merge allows merging the interstice mesh with the inner mesh of the eltsel small selection.

• quad allows generating proper quadratic meshes.

• smartSize allows generating an interstice mesh with a characteristic length in coherence with
the contour mesh length.

• lcval allows setting the characteristic length to Val to the interstice mesher.

• algo‘‘name’’ allows specifying the meshing algorithm name to the gmsh mesher. See the gmsh
documentation for more information.
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Hole[,Groups,Diff,Drill,Gen]

The Hole command series aims at handling hole detection on surfaces and bore drilling generation.
The following functionalities are avaiable
Command HoleGroups detects holes on a closed surface and outputs a contour model with element
groups relative to each isolated contour. A second output provides the GroupId corresponding to
detected holes.
Command HoleDiff provides surface elements that are inside the holes of a given contour. You
should better exploit lsutilto get a robust result.
Command HoleGen generates a planar surface with a ruled mesh featuring a hole and controlled
radial positions.

• .len length of plate

• .wid width of plate

• .rAnulus radii for base positions

• .ND angular refinement

• .NRext external to bolt radius refinement

• .MatId assign mat/pro id to meshed part

• .noExt remove exterior side

• .Center

• .normal

Command HoleDrill generates cylindrical drills in a model with the possibility to integrate a ruled
bolt mesh.

Replace

The call Replace is designed to replace parts of a model mesh with new given meshes, mesh parts
conformity is assumed. It is performed as

model=nl_mesh(’replace’,model,nodesToReplace,NewModel,nodeIDtoKeep)

model is a standard SDT model. nodesToReplace is a cell array containing vectors of NodeId

specifying the areas to be replaced. NewModel is a cell array containing the new models which will
be merged to the mesh in coherence with the removed elements (specified by nodesToReplace).
nodeIDtoKeep is an optional argument specifying NodeId of the original model for nodes whose
NodeId must not change in the transformation.
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Control of nodeIDtoKeep per NewModel part is possible by providing a cell array of NodeId list of
the same size than NewModel.
The following command options are available

• setMat allows defining a specific MatId to the output mesh.

• setPro allows defining a specific ProId to the output mesh.

• eltsetFindEltString can be provided to provide an element selection for MatId and ProId

assignment.

• keepNoCheck in combination with the use of a third argument nodeIDtoKeep assumes the
nodes numbering is correct and forces the nodes original numbering without check.

• -jAll asks to join all elements per type, then separated by MatId

• -inSet asks to maintain coherence with EltId sets. EltId sets for which the totality of a
given removed part belonged to will be updated to contain the EltId of the replacement mesh.

Rivet

This command generates rivet drills in a specified contour. A model containing a beam contour can
be provided, or an EltSel string generating a surface selection (see section and the selface option)
on a bigger model. A data structure providing the origins, and rivet radiuses and washer (or rivet
head radiuses). The mesh generated between both radiuses is structured.
The data structure must contain fields

• Orig providing the rivet centers in an [x y z;...] matrix.

• radHole providing the rivet hole radius, either a scalar if all rivets have the same radius, or a
line vector providing each rivet radius separately.

• radWash providing the rivet washer (or head) radius, either a scalar if all rivets have the same
washer radius, or a line vector providing each rivet washer radius separately.

and can optionally contain fields

• plane To directly provide the contour plane normal to define the drilling, in an [nx ny nz;

...] matrix.

• Ns To define the number of mesh segments in the rivet to washer radius area (default 10),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.
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• Nr To define the number of mesh radial nodes in the rivet to washer radius area (default 2),
either a scalar if all rivet heads have the same properties, or a line vector defining the property
for each rivet separately.

• Command option MatIdval allows setting the modified mesh MatId to val.

• Command option ProIdval allows setting the modified mesh ProId to val.

• Command option -fill outputs in second argument a compatible mesh of the rivet bores.

• Command option -allQuad outputs the remeshed model with elements only.

Following example meshes a rectangular contour with a few rivet drilling inside.

% Generate a global contour

model=struct(’Node’,[...

1 0 0 0 0 0 0;

2 0 0 0 10 0 0;

3 0 0 0 10 2 0

4 0 0 0 0 2 0], ’Elt’,[]);

model.Elt=feutil(’ObjectBeamLine 1 2 0 2 3 0 3 4 0 4 1’,model);

model=feutil(’refinebeam .2’,model);

%feplot(model)

% define rivet positions, eventually planes

RO=struct(’Orig’,[ 3 1 0;6 1 0;9 1 0],...

’radHole’,[.2;.2;.2],...

’radWash’,[.8;.8;.8]);

model=nl_mesh(’Rivet’,model,RO);

cf=feplot(model);

GmshVol

This call integrates the generation of a volume mesh from a face mesh with gmsh.

model=nl_mesh(’GMSHvol’,model);

model is a standard SDT face mesh model.

• Command option setmat allows specifying a specific MatId to the output mesh.

135



nl mesh

• Command option setpro allows specifying a specific ProId to the output mesh.

• Command option keepFaces asks to keep original NodeId of the nodes located on the face
mesh.

• Command option lc specifies a characteristic length for gmsh.

• Command option clmin specifies a minimal mesh length for gmsh.

• Command option clmax specifies a maximal mesh length for gmsh.

ExtrudeLayer

This command generates a non trivial extrusion of a face mesh following the face normal at each
node, to generate a volume layer.

model=nl_mesh(’ExtrudeLayer thick Val’,model);

model is an SDT model with shell elements (a surface definition).
Command option thick specifies the extrusion thickness. Command option setmat allows specifying
a specific MatId to the output. Command option setpro allows specifying a specific ProId to the
output.

StackClean

This call cleans up a model stack when mesh modifications have been performed. It cleans up stack
entries definition that became incoherent with some mesh modifications.

model=nl_mesh(’StackClean’,model);

Command option rmuns removes stack entries that could not be sorted out. Command option rmmod

removes stack entries affected by the model modifications.
See also celas, p spring, fe gmsh
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Purpose

OfactOptim

This command can be used to set spfmex parameters in order to optimize computation speed for
factorization and / or solving.
spfmex utils(’OfactOptim’,ki,RO,ofact(1,’lu’));

ki is the matrix that is used for the optimization. RO is a data structure defining options with
following fields:

• .nCompt Number of computation for result averaging.

• .maxDomain Max size of blocks of the elimination tree (fraction of matrix size).

• .maxZeros Max number of zeros in the blocks of the resolution tree (fraction of matrix size).

• .refineStep Number of step to refine the optimal parameter pair found in the first step.
Command option -refine must be added to perform the refine step.

The last argument ofact(1,’lu’) is needed in order to call directly spfmex utils.
Available command options are

• -setopt use default RO.

• -refine performs refine step for optimal search.

• fact to benchmark factorization step.

• solve to benchmark resolution step.

• -plot to plot history in iiplot (xxx this need to be generalized, call to gvdr utils plot xxx).

Following example optimize only solving:

ki=rand(20);

RO=struct(’nCompt’,100,... number of computation for result averaging

’maxDomain’,2.^[4:7],... parameter 1

’maxZeros’,logspace(-3,1,5),... parameter 2

’refineStep’,3); % refine results to most relevant parameters

spfmex_utils(’ofactoptim solve-refine’,ki,RO,ofact(1,’lu’)); % method,solve,fact,-setopt,refine,



spfmex utils
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