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Abstract 
 

In the automotive industry damping has become an important and highly effective design parameter for 
reducing low-frequency vibroacoustic noise in the vehicle compartment. It is a fairly straightforward 
procedure to compute vibroacoustic frequency responses of a damped car body for a given excitation and 
to compare the resulting response levels to a prescribed specification over a frequency range. However, 
when specification levels are exceeded at particular frequencies, the engineer must be able to localize the 
relevant structural components to be damped and subsequently define the appropriate damping at the 
component level in order to satisfy the specifications at the vehicle level. 

This problem of damping specification has been under study at PSA Peugeot Citroën over the past several 
years and has recently resulted in a new methodology and corresponding software tool which are 
presented in this article. 

1 Introduction 

Vehicle comfort as perceived by the driver and passengers has become a major consideration in the design 
of cars resulting in increasingly stringent acoustic and vibration (ACV) specifications which must be 
satisfied. The degree of comfort can be quantified in terms of both mechanical vibrations and acoustic 
noise in the vehicle compartment coming from multiple sources including engine, suspension, wheels and 
aerodynamic loads. 

To satisfy design specifications, increased stiffness has often been considered to reduce response levels. 
However, this comes at the cost of increased mass which negatively impacts production costs and vehicle 
performance. As an alternative, damping is now being used as an efficient design parameter. 

As a follow-up to a study carried out by PSA Peugeot Citroën [1], a software tool has been developed to 
demonstrate the feasibility of including damping as a design parameter during the specification phase of 
the design process. Based on a substructuring approach, the tool allows the engineer to identify the critical 
vehicle components to be damped and estimate the amount of damping to be introduced in order to satisfy 
design specifications. 

The methodology relies on the computation of normal modes for the global structure (including acoustic 
cavities) as well as the modes for each of the considered substructures (components). Both unconstrained 
(free-free) and constrained boundary conditions may be used depending on the particular component (roof, 
suspension, floorboard, etc.). 

By projecting the component modes onto the basis of global modes, a transformation may be derived in 
order to establish a relationship between modal damping values at the component level and the 
corresponding modal damping (generally coupled) in the global structure. Identifying the critical 



component modes to be damped is achieved by the use of modal participation factors based on modal 
strain energies. 

The vibroacoustic frequency responses of the global structure may then be efficiently computed for any 
prescribed set of component damping values by adding the resulting modal damping matrix to the 
generalized dynamic stiffness matrix and then solving the system for a given excitation. Using this 
procedure, it is therefore possible to interactively adjust component damping values until specification 
levels are satisfied over all frequency bands. 

The methodology has been implemented in a software tool written in MATLAB and interfaced with 
MSC/NASTRAN for the computation of the global structure and component modes. Several industrial 
requirements had to be satisfied including the following needs: 

§ handling of large models (millions of DOF and thousands of modes) 

§ use of a seamless interface with MSC/NASTRAN (located on a high-performance server) 

§ interactive response computation and damping specification 

In this article the theoretical background of the underlying methods is presented. Next the architecture of 
the software is described as well as the different computational steps: importation of the global structure 
and component models, modal analysis, computation of frequency responses and modal participation 
factors, and damping specification. Finally an industrial application is provided to illustrate the interest of 
the methodology for vibroacoustic damping specification. 

2 Nomenclature 

2.1 Abbreviations 

DOF Degree-of-freedom 

FRF Frequency Response Function 

MPF Modal Participation Factor 

GS Global Structure 

S, SS Substructure(s) 

2.2 Matrix conventions 

In general, ijX designates a matrix with n rows relative to the DOF i, and m columns relative to the DOF j. 

This convention implies that the transpose of the matrix may be expressed by the relation T
ijji XX =  

which corresponds to permuting the row and column subscripts. Moreover the matrix, iiX  (which is not 
necessarily diagonal) is necessarily symmetric. These matrix properties assume that the reciprocity 
principle is respected. However in some situations such as coupled fluid-structure systems, some 
symmetries are lost, in which case special precautions are taken in the matrix notation to remove any 
possible ambiguity. 

2.3 Scalars and matrices 

A Fluid-structure coupling matrix 

E Elastic energy 

f Frequency (Hz) 



F Force 

g Structural damping for substructure(s) 

G, GFL Structural damping for global structure and fluid 

i 1−  

K, k Stiffness (force/displacement) 

M, m Mass (force/acceleration) 

p Pressure 

q Modal displacement 

u Physical displacement 

Y Left eigenvector 

Φ  Eigenvector, right eigenvector 

Ψ  Junction mode (static constraint mode) 

τ  Fraction of elastic energy 

ω  Circular frequency fπω 2=  

2.4 Subscripts 

e Element, excitation s Structure 

f Fluid t Truncated mode 

i Internal DOF S Substructure 

j Junction (fixed-interface) DOF 

k Substructure mode 

l Fluid (acoustic) mode 

m Global structure mode (without fluid) 

n Global structure mode (coupled with fluid) 

o Observation (response) DOF 

3 Theoretical Background 

3.1 Normal modes of a coupled fluid-structure system 

The equations of motion governing the harmonic response of a coupled fluid-structure system comprising 
s structural degrees of freedom (DOF) and f fluid DOF are expressed below. 
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ssM  Structure mass matrix (symmetric)  su  Vector of structural displacements  



ssK  Structure stiffness matrix (symmetric)  fp  Vector of fluid pressures 

 

ffM  Fluid "mass" matrix (symmetric)  sF  Vector off applied forces 

ffK  Fluid "stiffness" matrix (symmetric)  fQ Vector of acoustic sources ( ff i QQ ω=& ) 

fsA  Coupling matrix ( T
fssf AA = )  G, GFL   Structural damping for structure and fluid 

 

Only structural (hysteretic) is considered in Eq. (1) for the sake of simplicity. In the presence of viscous 
damping, an additional viscous damping matrix proportional to iω would be added to the equations of 
motion. 

Instead of solving Eq. (1) directly, a modal approach is used offering several important advantages such as 
numerical efficiency (reduced computation time), and physically interpretable parameters (natural 
frequency, modal energies, etc) necessary for damping specification. 

The normal modes of the coupled system may be computed from the eigenvalue problems shown below. 
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Although distinct left and right eigenvectors (Y ,F ) appear, they are related by the following expression 
due to the particular form of asymmetry introduced by the coupling matrix A. 
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Unfortunately, solving Eqs. (2-3) can be very time-consuming for large models due to the special form of 
the system. To reduce the computational effort, the system is first condensed using the uncoupled structure 
and fluid modes as defined below. 

 ( ) ssmssssm 0FKM =+− 2ω  (5)  

 ( ) fflffffl 0FKM =+− 2ω  (6)  

Eq. (5) provides m modes of the structure without fluid, whereas Eq. (6) provides l modes of the fluid 
assuming rigid cavity walls. Using the associated eigenvectors, smF  and flF , the physical system of 

Eqs. (2) and (3)  can be condensed to the modal system shown below. 
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The terms m et k are diagonal mass and stiffness matrices associated with the structure and fluid modes. 
Eqs. (7) and (8) may now be efficiently solved to obtain the eigenvalues 2

nω  and generalized eigenvectors 
of the coupled system. The physical eigenvectors are obtained by applying the following back-
transformation. 
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3.2 Residual modes 

To minimize truncation errors, the uncoupled structure and fluid normal modes smF  and flF  obtained 

from Eqs. (5) and (6) must be enriched by a set of residual modes that provide information about the 
coupling effects across the structure-fluid boundaries. 

A residual mode is similar to a normal mode in that it satisfies the same orthogonality properties and has 
an associated eigenvalue. However it does not satisfy the eigenvalue problem since each residual is in fact 
a particular linear combination of all the truncated (superior) normal modes.  

Although residual modes (sometimes known as residual vectors or pseudo-modes) have been in use for 
well over a decade, their application to coupled analysis is recent [2,3] and has been implemented in this 
study. The procedure for deriving the residual modes is summarized below. 

For the structure, a set of m static modes smX  is computed resulting from the forces exerted by the fluid 
modes across the fluid-structure boundary. 

 smsfsmss FCXK =  (10) 

Similarly for the fluid, a set of n static modes fnX  is obtained using the pressure exerted by the structure 

modes across the same boundary but in the opposite sense. 

 fnfsfnff FCXK =  (11) 

Next, the static modes smX  and fnX  are "filtered" or rendered orthogonal with respect to the normal 

modes snF  and fmF , and then orthogonalized to form an orthonormal basis of residual modes smF̂  and 

fnF̂  which are then appended to the normal modes to form the enriched modal bases shown below. 

 ]ˆ[ smsnsn FFF ←  (12) 

 ]ˆ[ fnfmfm FFF ←  (13) 

3.3 Frequency responses of the coupled system 

The n coupled modes derived above may be used to condense the equations of motion of Eq. (1). The 
resulting generalized dynamic stiffness may be written as follows. 

 fnnsnnnnnn GFLiGi ,,
2)( KKkmK +++−= ωω  (14) 

Note that the hysteretic damping in the structure and the fluid is introduced by the matrices snn,K  and 

fnn,K  which are symmetric but non-diagonal, and thus couple the system. 

 snssnssnn FKFK =,  (15) 

 fnffnfnfnn FKFK 2
,

−= ω  (16) 

External forces, )(ωeF  applied to the excitation DOF, e, are transformed to generalized forces by the 
following expression.  
 )()( ωω enen FFF =  (17) 



In the case of excitation via acoustic sources, )(ωeQ , the corresponding generalized excitation is written 

 )()/()( 2 ωωωω enenn QFF =  (18) 

The generalized responses, )(ωnq , are obtained by solving the following linear system at each excitation 
frequency, ω . 

 )()()( ωωω nnnn FqK =  (19) 

Finally, the physical responses )(ωou  are obtained by back-transformation using the eigenvectors 
partitioned on the corresponding observation DOF, o. 
 )()( ωω nono qFu =  (20) 

3.4 Projection of system modes on substructure modes 

Since damping is to be specified with respect to the components or substructures, it is necessary to express 
the global structure's response in terms of the substructure's contributions. This is done by projection of 
the system modes onto the substructure modes. 

This projection is illustrated graphically in Figure 1 by considering the first four bending modes of a 
simple beam structure plotted in Figure 1a. 

 
 

Figure 1 - Modes of the Global Structure and Substructure 

 

Consider a component of the structure designated by the substructure, S, whose modes will depend on the 
boundary conditions that we wish to impose at its interface.  

S 
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a) modes of the global structure 

b) mode of the substructure S (free interface) 

c) modes of the substructure S ( fixed-interface) 
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For a free-interface, the k modes of the substructure illustrated in Figure 1b, are obtained from the 
following eigenvalue problem. 

 ( ) k
S
ik

S
ii

S
iik 0FKM =+− 2ω  (21) 

If one or more of the interface DOF are blocked (DOF j), a set of junction modes (static constraint modes),  
S
ij?  must be computed in addition to the fixed-interface normal modes. Illustrated in Figure 1c, the 

junction modes are obtained by successively imposing a unit displacement at each of the junction DOF, j 
as defined in the following expression. 

 ij
S
ij

S
ii I?K =  (22) 

To determine the response as a function of the substructure modes, we start with the expression of the 
response on the substructure's DOF, i. 

 )()( ωω nin
S
i qFu =  (23) 

For the case of a free-interface substructure, we can express the response in terms of the substructure's 
modes comprising the k retained modes, S

ikF , and the t truncated modes, S
itF  resulting in the following 

expression. 
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Premultiplying Eq. (24) by S
ii

S
ki MF  leads to: 
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Finally, from Eq. (25) we can determine the contribution of the k substructure modes, to the n global 
modes via the modal projection matrix S

knT . 

 

 )()( ωω n
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S
k qTq =  (26) 
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Similar expressions may be derived for the case of fixed-interface substructures. 

3.5 Modal Participation Factors 

Modal Participation Factors (MPF) are used to quantify the contribution or importance of a substructure or 
its modes with respect to the response of the global structure. 

The MPF are derived from elastic modal energies in order to establish a direct link to the localization and 
specification of damping associated with the modes of substructure. 

The total elastic energy, )(ωE , of a given response may be expressed in terms of the generalized 
displacements, )(ωnq  and the associated generalized stiffnesses nk . 

S
km 0 by orthogonality 
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The MPF provide the distribution of the total energy among the modes of the substructures expressed as a 
fraction of total energy as defined below. 
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By extension, MPF providing the contribution of each substructure may be defined using the 
substructure's stiffness matrix, S

iiK , according to the following expression. 
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And finally, MPF may be defined to determine the energy distribution between the structure and fluid 
using the matrices introduced in Eq. (15) and (16).  
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3.6 Damping Specification 

For the critical substructure mode k of the substructure S, identified by the MPF, damping may then be 

specified via structural damping factors S
kg . Using the modal projection matrix, S

knT  of Eq. (26), the 

specified damping is expressed in terms of the global structure's modes by the matrix S
nnD  defined below. 

 ( ) S
kn

S
k

S
k

S
nk

S
nn TkgTD ⋅=  (35) 

This additional damping is summed over all substructures and then added to the dynamic stiffness matrix 
of Eq. (14) resulting in the following expression. 

 ∑++++−=
S

S
nnfnnsnnnnnn iGFLiGi DKKkmK ,,

2)( ωω  (36) 

Using Eq. (36) the frequency responses are computed following the procedure described in §3.3. 



4 Software Description 

4.1 Introduction 

The damping specification methodology has been integrated into an interactive software application 
named OSACA, using MATLAB as the principal development environment. OSACA was designed from 
the start to be used in an industrial context and therefore had to satisfy several functional requirements 
summarized below. 

§ Handling of large models (millions of DOF and thousands of modes) 

§ Interface with CAD tools used by PSA Peugeot Citroën 

§ Interface with MSC/NASTRAN (located on a high-performance server) 

§ Interactive damping specification and response calculations 

4.2 Architecture 

The overall architecture of OSACA includes five functional steps which are schematized below in Figure 
2 and described hereafter. 

 

 
Figure 2 - OSACA Architecture 

 

Import of GS and SS 

The first step involves importing of the global structure (GS) and corresponding substructures (SS). The 
NASTRAN input files are read, checked and adapted in preparation for the subsequent analyses performed 
in NASTRAN and by OSACA. The definition of all load cases (excitation and response points, initial 
damping, excitation frequencies, etc.) is extracted automatically from the GS input file. 

NASTRAN 

NASTRAN 

1)  Import of GS and SS 

 

2)  Modal Analysis of GS 

 

3)  Modal Analysis of SS 

 

4)  MPF and Initial Responses 

 

5)  Damping Specification 

 

OSACA 

SS 

FGS 

Server 



 

The mesh of each imported substructure must coincide with the corresponding part of the global 
structure's mesh. However, the GS and SS node and element IDs do not have to be the same since ID 
correspondence tables are computed automatically using geometrical and topological analysis.  

In practice only the substructures for which damping is to be specified need to be imported. The boundary 
conditions as well as the definition of sub-objects are extracted automatically from the SS input file. 

 

Modal Analysis of GS 

The next step involves computing the normal modes of the global structure in NASTRAN. If fluid cavities 
are present, the modal projection technique described in chapter 3 using the uncoupled structure and fluid 
modes along with residual modes is performed to reduce computation time while maintaining accuracy. 
The modal projection technique is implemented into the NASTRAN using a specially developed DMAP 
script. 

Output of the modal analysis is imported to OSACA and includes all the modal terms required to compute 
the initial frequency responses within OSACA. The global structure modes are also stored locally on the 
NASTRAN machine, and used as input for substructure analysis. 

 

Modal Analysis of SS 

The normal modes of each substructure are computed in NASTRAN and used along with the normal 
modes of the global structure to determine the modal projection matrix S

knT  defined in Eq. (26). The 

normal modes and projection matrix for each SS are imported to OSACA and used for subsequent 
computation of MPF and damping specification. 

 

MPF and Initial Responses 

At this stage, initial responses according to Eq. (14) and the associated MPF defined in chapter 3.5 may be 
calculated with OSACA. The initial responses may be compared with prescribed specification levels to 
evaluate response levels over the entire frequency band. The MPF may then be computed at the critical 
frequencies where the response levels exceed the specification in order to identify the substructure modes 
for which damping allocation would be the most effective at reducing the response levels. 

 

Damping Specification 

The last step involves allocating damping to the substructure modes identified by the MPF and computing 
the corresponding damped responses according to chapter 3.6. Since response calculation is performed 
using a modal approach, the damping specification process is performed interactively. Moreover, the 
damped responses may be computed over any portion of the frequency band - allowing the user to 
efficiently examine local effects around one or two peaks, or broadband effects over the entire frequency 
range. An unlimited number of damping specification cases may be defined for any number of 
substructure modes. 

 



4.3 Graphical User Interface 

The OSACA graphical user interface is illustrated below in Figure 3. All functions are integrated into a 
single window combining menu and icon bars, control panels and graphical displays. 

 

 
  

Figure 3 - OSACA Graphical User Interface 

 

The user interface illustrated in Figure 3 is organized into 3 panels - each panel regrouping a number of 
related functions and displays. 

The first panel (A) shown to the left in Figure 3 provides a list of the global structure and associated 
substructures along with a summary of the computed modes. Optional sub-objects representing structural 
zones of each substructure are also listed. This panel is used primary during initial model import and 
modal analysis in NASTRAN. 

The second panel (B) shown to the right in Figure 3 contains the controls and displays relative to response 
calculations, MPF and damping specification. 

A third panel (shown later on in Figure 6) is dedicated to response plots. From one to four response plots 
may be selected to display and compare responses along with specification profiles for any number of 
damping cases. Frequency bands may be selected graphically in this panel to perform response 
calculations locally around one or several peaks. An illustration of the plot panel is presented hereafter in 
the industrial application. 

 

A B 



5 Industrial Application 

5.1 Global Structure 

The methods and software developed in the framework of the study were validated using the car body 
model illustrated in Figure 4 comprising the structural mesh shown at left and an acoustic cavity shown at 
right representing together the global structure. 

 
Figure 4 - Global Structure with Acoustic Cavity 

 

For this particular industrial application OSACA was used to study and attenuate the acoustic pressure 
response levels computed at four points (fore and aft, left and right) within the passenger compartment. A 
total of 72 single point load cases located at 24 locations in the car body were used to excite the structure 
in the frequency range from 0 to 200 Hz. 

Modes of the coupled fluid-structure were calculated using the uncoupled structure and fluid cavity modes 
comprising rigid body, elastic and residual modes up to 300 Hz for the structure and 400 Hz for the fluid 
cavity to minimize modal truncation effects. These results are displayed in the upper left of Figure 3 along 
with global damping values for the structure and for the acoustic cavity. 

5.2 Substructures 

To study the effects of damping allocation, the five following substructures of the car body were 
considered: floorboard, left frame, right frame, engine cradle and roof. The corresponding meshes are 
presented in Figure 5. 

For each substructure the normal modes up to 300 Hz were calculated ranging in number from 4 elastic 
modes for the relatively stiff engine cradle to 197 elastic modes for the floorboard. The list of the 
substructures and corresponding modes is shown in Figure 3 below the global structure modes. 

 

 

 

Structure Mesh Acoustic Cavity Mesh 



 
Figure 5 - Car Body Substructures 

5.3 MPF and Mode Localization 

Consider the acoustic response for a given load case and response point plotted in Figure 6. For this 
example we wish to attenuate the response level in the 120 -160 Hz frequency range encircled in red. By 
clicking on a peak (yellow cross at 148 Hz), the corresponding MPF are displayed allowing the user to 
readily identify the substructures and modes capable of effectively attenuating the selected peak. For the 
peak at 148 Hz we see that the floorboard mode 59 at 140.80 Hz contributes significantly (MPF = 3.4 %). 

 

 
Figure 6 - Damping Localization using MPF 

Floorboard 

Engine Cradle 

Right Frame 

Left Frame 

Roof 



Following a similar examination of the MPF at the other peaks in the frequency range, we arrive at the list 
of identified substructure modes shown in Figure 7. Notice that the natural frequencies of the identified 
substructure modes are in general close to the frequency of the corresponding peaks. 

 

Peak Substructure Mode MPF 

122 Hz Left Frame 29 @ 154.61 Hz 2.1 % 

131 Hz Floorboard 58 @ 139.54 Hz 6.1 % 

148 Hz Floorboard 59 @ 140.80 Hz 3.4 % 

156 Hz Floorboard 69 @ 157.96 Hz 2.8 % 

Figure 7 - Identified Substructure Modes 
  

5.4 Damping Specification 

Damping specification consists of assigning damping values to each of the identified substructure modes 
and determining the effect on the corresponding responses. For the industrial application, a damping value 
of g = 0.1 was assigned to all 4 substructure modes of Figure 7. 

To evaluate the local influence of the specified damping, the response of Figure 6 was calculated in the 
frequency band of the selected peaks. The resulting damped response is plotted in green in Figure 8a and 
compared to the initial response plotted in red. As expected, all peaks are damped with attenuation 
consistent with the amount of prescribed damping and corresponding MPF. Notice that between peaks and 
in particular near antiresonances, the damped response amplitude may increase as illustrated below near 
140 Hz. 

Finally the response was computed over the entire frequency range in order to check the wideband effects 
of the specified damping as shown in Figure 8b. For this example, the influence of the specified damping 
remains concentrated on the selected peaks. However, in general substructure modes can have a wideband 
influence on the damped response.  

   
Figure 8 - Comparison of Initial and Damped Responses 

 



6 Conclusions 

A method for damping localization and specification in automotive structures based on modal projection 
has been developed and implemented in an industrial tool at PSA Peugeot Citroën. Using the modes of the 
global structural its substructures, the computation of responses, modal participation factors and damping 
specification may be efficiently performed in an interactive environment. Both structural and 
vibroacoustic analysis can be performed. The tool has been validated using several benchmark and 
industrial models and is now being used for the preliminary design of vehicles. 
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