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4 CHAPTER 1. THEORY AND REFERENCE

This chapter summarizes theoretical concepts associated with piezoelectricity and gives supporting
examples. Release notes are given in the next section.

1.1 Release notes

This manual gives a more detailed set of examples for the use of SDT for the modeling of piezoelectric
structures.
Major modifications for SDT 7.1 are

• Inclusion of new materials (Ferroperm, Sonox, MFCs) in the m piezo database.

• Introduction of tutorials in d piezo(’Tuto’).

• New script for Macro Fiber Composites in d piezo(’TutoPlate mfc’).

• Theory and new script for point load actuator using a shaped triangular piezoelectric trans-
ducer in d piezo(’TutoPlate triang’).

• Theory and new script for vibration damping using RL shunt and piezoelectric patches in
d piezo(’TutoPz shunt’).

• Theory and new script for piezoelectric homogenization on RVEs of piezocomposites (applica-
tion to MFCs) in d piezo(’TutoPz P1 homo’) and d piezo(’TutoPz P2 homo’) .

• Color visualization of stress and strain added to IDE patch script d piezo(’TutoPatch num IDE’).

Major modifications for SDT 6.6 were

• Writing of the present manual

• Significant generalization of p piezo(’Electrode’) commands.

• Inclusion of elastic properties in the m piezo database.

• Introduction of electrical and charge viewing illustrated in this manual.

• Specialized meshing capabilities and examples are grouped in d piezo(’Mesh’).

1.2 Basics of piezoelectricity

Polarization consists in the separation of positive and negative electric charges at different ends of
the dielectric material on the application of an external electric field (Figure 1.1).
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Spontaneous polarization is the phenomenon by which polarization appears without the application
of an external electric field. Spontaneous polarization has been observed in certain crystals in which
the centers of positive and negative charges do not coincide. Spontaneous polarization can occur
more easily in perovskite crystal structures.

The level and direction of the polarization is described by the electric displacement vector D:

D = εE + P (1.1)

where P is the permanent polarization which is retained even in the absence of an external electric
field, and εE represents the polarization induced by an applied electric field. ε is the dielectric per-
mittivity. If no spontaneous polarization exists in the material, the process through which permanent
polarization is induced in a material is known as poling.

Figure 1.1: Polarization: separation of positive and negative electric charges on the two sides of a
dielectric material

Ferroelectric materials have permanent polarization that can be altered by the application of an
external electric field, which corresponds to poling of the material. As an example, perovskite
structures are ferroelectric below the Curie temperature. In the ferroelectric phase, polarization can
therefore be induced by the application of a (large) electric field.

Piezoelectricity was discovered by Pierre and Jacques Curie in 1880. The direct piezoelectric effect
is the property of a material to display electric charge on its surface under the application of an
external mechanical stress (i.e. to change its polarization). (Figure 1.2a). The converse piezoelectric
effect is the production of a mechanical strain due to a change in polarization (Figure 1.2b).
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Figure 1.2: Direct and converse piezoelectric effect

Piezoelectricity occurs naturally in non ferroelectric single crystals such as quartz, but the effect
is not very strong, although it is very stable. The direct effect is due to a distortion of the crys-
tal lattice caused by the applied mechanical stress resulting in the appearance of electrical dipoles.
Conversely, an electric field applied to the crystal causes a distortion of the lattice resulting in an
induced mechanical strain. In other materials, piezoelectricity can be induced through poling. This
can be achieved in ferroelectric crystals, ceramics or polymers.

A piezoelectric ceramic is produced by pressing ferroelectric material grains (typically a few microm-
eters in diameter) together. During fabrication, the ceramic powder is heated (sintering process)
above Curie temperature. As it cools down, the perovskite ceramic undergoes phase transformation
from the paraelectric state to the ferroelectric state, resulting in the formation of randomly oriented
ferroelectric domains . These domains are arranged in grains, containing either 90̈ı¿1

2 or 180̈ı¿1
2

domains (Figure 1.3a). This random orientation leads to zero (or negligible) net polarization and
piezoelectric coefficients (Figure 1.3b)).
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a) b)

Figure 1.3: Piezoelectric ceramic : a) ferroelectric grains and domains, b) distribution of poling
directions

The application of a sufficiently high electric field to the ceramic causes the domains to reorient in
the direction of the applied electric field. Note however that the mobility of the domains is not such
that all domains are perfectly aligned in the poling direction, but the total net polarization increases
with the magnitude of the electric field (Figure 1.4). After removal of the applied electric field, the
ferroelectric domains do not return in their initial orientation and a permanent polarization remains
in the direction of the applied electric field (the poling direction). In this state, the application
of a moderate electric field results in domain motions which are responsible for a deformation of
the ceramic and are the source of the piezoelectric effect. The poling direction is therefore a very
important material property of piezoelectric materials and needs to be known for a proper modeling.

Figure 1.4: Orientation of the ferroelectric domains in non-polarized and polarized ceramics
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Typical examples of simple perovskites are Barium titanate (BaTiO3) and lead titanate (PbT iO3).
The most common perovskite alloy is lead zirconate titanate (PZT- PbZr TiO3). Nowadays, the
most common ceramic used in piezoelectric structures for structural dynamics applications (active
control, shape control, structural health monitoring) is PZT, which will be used extensively in the
documented examples.

In certain polymers, piezoelectricity can be obtained by orienting the molecular dipoles within the
polymer chain. Similarly to the ferroelectric domains in ceramics, in the natural state, the molecular
dipole moments usually cancel each other resulting in an almost zero macroscopic dipole. Poling of
the polymer is usually performed by stretching the polymer and applying a very high electric field,
which causes the molecular dipoles to orient with the electric field, and remain orientated in this
preferential direction after removal of the electric field (permanent polarization). This gives rise to
piezoelectricity in the polymer. The technology of piezoelectric polymers has been largely dominated
by ferroelectric polymers from the polyvinylidene fluoride (PVDF) family, discovered in 1969. The
main advantage is the good flexibility, but their piezoelectric coefficients are much lower compared
to ferroelectric ceramics.

1.2.1 Piezoelectric constitutive laws in 3D

Up to a certain level of electric field and strain, piezoelectric materials behave linearly. This tutorial
is restricted to linear piezoelectricity, but the interested reader can refer to [1] for more details on
non-linear piezoelectricity.

Assuming a linear piezoelectric material and adopting the notations of the IEEE Standards on
piezoelectricity [2], the 3D constitutive equations are given by:



T1
T2
T3
T4
T5
T6
D1

D2

D3


=



cE11 cE12 cE13 0 0 0 0 0 −e31
cE12 cE22 cE23 0 0 0 0 0 −e32
cE13 cE23 cE33 0 0 0 0 0 −e33
0 0 0 cE44 0 0 0 −e24 0
0 0 0 0 cE55 0 −e15 0 0
0 0 0 0 0 cE66 0 0 0
0 0 0 0 e15 0 εS11 0 0
0 0 0 e24 0 0 0 εS22 0
e31 e32 e33 0 0 0 0 εS33





S1

S2

S3

S4

S5

S6

E1

E2

E3


(1.2)

where Ei and Di are the components of the electric field vector and the electric displacement vector,
and Ti and Si are the components of stress and strain vectors, defined according to:
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T1

T2

T3

T4

T5

T6


=



T11

T22

T33

T23

T13

T12





S1

S2

S3

S4

S5

S6


=



S11

S22

S33

2S23

2S13

2S12


(1.3)

Matrix notations are usually adopted leading to:

{T} =
[
CE
]
{S} − [e]T {E}

{D} = [e] {S}+
[
εS
]
{E} (1.4)

A widely used alternative and equivalent representation consists in writing the constitutive equations
in the following form:

{S} =
[
sE
]
{T}+ [d]T {E}

{D} = [d] {T}+
[
εT
]
{E} (1.5)

where the following relationships hold: [
sE
]

=
[
cE
]−1

(1.6)

[e] = [d]
[
cE
]

(1.7)

[
εS
]

=
[
εT
]
− [d] [e]T (1.8)

There are also two additional possibilities to write these constitutive equations, which are less com-
monly used but are given here for completeness:

{S} =
[
sD
]
{T}+ [g]T {D}

{E} = − [g] {T}+
[
βT
]
{D} (1.9)

{T} =
[
cD
]
{S} − [h]T {D}

{E} = − [h] {S}+
[
βS
]
{D} (1.10)

The following relationships hold: [
cD
] [
sD
]

= I6 (1.11)
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[
βS
] [
εS
]

=
[
βT
] [
εT
]

= I3[
cD
]

=
[
cE
]

+ [e]T [h][
sD
]

=
[
cD
]
− [d]T [g][

βS
]

=
[
βT
]
− [g]T [h]

[d] =
[
εT
]

[g]
[g] = [h]

[
sD
]

(1.12)

[h] =
[
εS
]

[e] (1.13)

The piezoelectric coefficients are contained in the matrix [d] whose structure is specific to each type
of piezoelectric material. The typical structure for a z-polarized PZT material is

[d] =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 (1.14)

Regular PZT ceramics are isotropic in the plane perpendicular to the poling direction (d31 = d32,
d15 = d24), but piezoelectric composites can have orthotropic properties [3]. PVDF material does
not exhibit piezoelectricity in the shear mode, so that the typical structure is:

[d] =

 0 0 0 0 0 0
0 0 0 0 0 0
d31 d32 d33 0 0 0

 (1.15)

PVDF can be either isotropic or orthotropic in the plane perpendicular to the poling direction,
depending on the fabrication process (uni-axial or bi-axial). Table 1.1 gives typical piezoelectric
coefficients for PZT ceramics and PVDF films. Note that these properties can vary significantly
from the figures in the table, as there are many different material types. The permittivity is usually
given with its relative value which is the ratio of the permittivity by the permittivity of vacuum
(ε0 = 8.854 10−12F/m).
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Material properties PZT PVDF (bi-axial)

Piezoelectric properties

d33 (pC/N) 440 -25
d31 (pC/N) -185 3
d32 (pC/N) -185 3

Relative permittivity

εr 1800 12

Young’s Modulus

Y1(GPa) 54 3
Y2(GPA) 54 3
Y3(GPA) 48 10
ρ (kg/m3) 7600 1800

Table 1.1: Typical piezoelectric properties of PZT ceramics and PVDF films

1.2.2 Piezoelectric constitutive laws in plates

When thin piezoelectric transducers are used with plate structures, the common plane stress hy-
pothesis (T3 = 0) must be used together with an hypothesis for the electric field. When the ceramic
is poled through the thickness, the hypothesis commonly adopted is that the electric field is zero in
the plane of the transducer (E1 = E2 = 0). The constitutive equations then reduce to:

T1
T2
T4
T5
T6
D3


=


cE∗
11 cE∗

12 0 0 0 −e∗31
cE∗
12 cE∗

22 0 0 0 −e∗32
0 0 cE∗

44 0 0 0
0 0 0 cE∗

55 0 0
0 0 0 0 cE∗

66 0
e∗31 e∗32 0 0 0 εS∗

33





S1

S2

S4

S5

S6

E3


(1.16)

where the superscript ∗ denotes the properties under the ”piezoelectric plates” hypothesis (T3 =
E1 = E2 = 0). These properties are related to the 3D properties with the following relationships:

cE∗11 =

[
cE11 −

(cE13)2

cE33

]
(1.17)

cE∗12 =

[
cE12 −

cE13 c
E
23

cE33

]
(1.18)

cE∗22 =

[
cE22 −

(cE23)2

cE33

]
(1.19)
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e∗31 =

[
e31 −

cE13 e33

cE33

]
(1.20)

e∗32 =

[
e32 −

cE23 e33

cE33

]
(1.21)

εS∗33 =

[
εS33 +

(e33)2

cE33

]
(1.22)

The distinction is very important, as it is often not well understood and many errors can arise from
the confusion between plate and 3D properties of piezoelectric materials. Note however that the
dij , s

E
ij and εT coefficients are equal for plate and 3D constitutive equations. It is therefore prefer-

able to handle the material properties of piezoelectric materials in the form of (1.5).

Similarly to the 3D equations, the constitutive equations can be written in a matrix form, separating
the mechanical and the electrical parts:

{T} =
[
cE∗
]
{S} − [e∗]T {E}

{D} = [e∗] {S}+
[
εS∗
]
{E} (1.23)

Using (1.7) in equations ((1.20),(1.21),(1.22)), one can further show that

[e∗] = [d∗]
[
cE∗
]

(1.24)

and for the permittivity:
εS∗33 = εT33 − [d∗] [e∗]T (1.25)

with
[d∗] =

[
d31 d32 0 0 0

]
(1.26)

and
[e∗] =

[
e∗31 e∗32 0 0 0

]
(1.27)

The values of e∗31, e∗32 and εS∗33 can therefore be computed knowing the elastic matrix
[
cE∗
]

and the
values of d31 and d32 and εT33

1.2.3 Database of piezoelectric materials

m piezo Dbval includes a number of material characteristics for piezoelectric materials. The prop-
erties are obtained from the datasheet of the material, but as we will illustrate, the data is not
always sufficient to calculate all the material properties needed for the computations. Most of the
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information in the datasheet is generally related to the constitutive equations written in the form of
(1.5). For PZT, PVDF, or piezoelectric composites based on PZT and PVDF, the general form of
these matrices is:

S1

S2

S3

S4

S5

S6

D1

D2

D3


=



sE11 sE12 sE13 0 0 0 0 0 d31
sE12 sE22 sE23 0 0 0 0 0 d32
sE13 sE23 sE33 0 0 0 0 0 d33
0 0 0 sE44 0 0 0 d24 0
0 0 0 0 sE55 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 εT11 0 0
0 0 0 d24 0 0 0 εT22 0
d31 d32 d33 0 0 0 0 εT33





T1
T2
T3
T4
T5
T6
E1

E2

E3


(1.28)

For an orthotropic material, the compliance matrix
[
sE
]

can be written as a function of the engi-
neering constant Ei,νij and Gij as follows:

[
sE
]

=



1
Ex

−νyx
Ey

−νzx
Ez

0 0 0
−νxy
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz
Ex

−νyz
Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxy


(1.29)

where z is aligned with the poling direction 3, and x, y with directions 1, 2 respectively. Note that
the matrix is symmetric so that:

νyx
Ey

=
νxy
Ex

,
νzx
Ez

=
νxz
Ex

,
νzy
Ez

=
νyz
Ey

(1.30)

A bulk piezoelectric ceramic exhibits transverse isotropic properties: the properties of the material
are the same in the plane perpendicular to the poling direction. In this case, the compliance matrix
reduces to:

[
sE
]

=



1
Ep

−νp
Ep

−νzp
Ez

0 0 0
−νp
Ep

1
Ep

−νzp
Ez

0 0 0
−νpz
Ep

−νpz
Ep

1
Ez

0 0 0

0 0 0 1
Gzp

0 0

0 0 0 0 1
Gzp

0

0 0 0 0 0
2(1+νp)
Ep


(1.31)
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and due to the symmetry we have:
νzp
Ez

=
νpz
Ep

(1.32)

where the subscript p refers to the in-plane properties. The matrix of piezoelectric coefficients is:

[d] =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 (1.33)

and the matrix of dielectric permittivities:

[
εT
]

=

 εT11 0 0
0 εT11 0
0 0 εT33

 (1.34)

In order to use such a piezoelectric material in a 3D model, it is therefore necessary to have access
to the 5 elastic constants Ep,Ez,νp,νzp and Gzp, 3 piezoelectric constants d31,d33, and d15 and two
dielectric constants εT11,εT33. Unfortunately, such constants are generally not given in that form, but
can be calculated from the material properties found in the datasheet. It is important to introduce
the electromechanical coupling factors which are generally given in the datasheet and are a function
of the elastic, piezoelectric and dielectric properties of the material. They measure the effectiveness
of the conversion of mechanical energy into electrical energy (and vice-versa). There is one coupling
factor for each piezoelectric mode:

k2
31 =

d231
εT33s

E
11

k2
33 =

d233
εT33s

E
33

k2
15 =

d215
εT11s

E
55

(1.35)

In addition, coupling factors kp for radial modes of thin discs, and kt for thickness modes of arbitrary
shaped thin plates are also commonly given in datasheet. kp is related to k31 through:

k2
p =

2k2
31

1 +
sE12
s211

(1.36)

kt is always lower than k33 but there does not seem to be a simple explicit expression of kt as a
function of the material properties. The fact that kt is lower than k33 means that electrical energy
conversion in the d33-mode is less effective for a thin plate than for a rod. The definition of the
coupling factors k33 and k15 also allows to write alternative expressions:

k2
33 = 1− sD33

sE33

k2
15 = 1− sD55

sE55
= 1− εS11

εT11

(1.37)
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We illustrate the use of these different relationships to form the full set of mechanical, piezoelectric
and dielectric properties for the material SONOX P502 from Ceramtec . The properties found in
the datasheet are given in Table 1.2 (http://www.ceramtec.com/).

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V
e33 16.7 C/m2 = As/m2

g33 26.9 10−3 V m/N

Permittivity

εT33 1850 ε0 F/m
εS33 875 ε0 F/m
εT11 1950 ε0 F/m
εS11 1260 ε0 F/m

Elastic properties

sE11 18.5 10−12 m2/N
sE33 20.7 10−12 m2/N
cD33 15.7 1010 N/m2

cD55 6.5 1010 N/m2

Coupling coefficients

k33 0.72
k15 0.74
k31 0.33
kp 0.62
kt 0.48

Density

ρ 7740 kg/m3

Table 1.2: Properties of SONOX P502 from the datasheet

Ep and Ez are computed directly from the definitions of sE11 and sE33:

Ep =
1

sE11

= 54.05GPa (1.38)

Ez =
1

sE33

= 48.31GPa (1.39)
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Knowing the value of sE11, d31, εT33 and kp, s
E
12 can be computed:

sE12 = −sE11 + 2
d2

31

k2
pε
T
33

= −7.6288 10−12m2/N

allowing to compute the value of νp:

νp = −EpsE12 = 0.4124

and the value of Gp

Gp =
Ep

2(1 + νp)
= 19.17GPa

From the value cD55 and k15, we compute

sE55 =
1

cD55(1− k2
15)

= 34 10−12m2/N

from which the the value of Gzp is computed:

Gzp =
1

sE55

= 29.41GPa

The value of νzp cannot be calculated from the datasheet information. We therefore assume that,
as for most PZT ceramics:

νzp = 0.39

The value of νpz is calculated as:

νpz =
Ep
Ez
νzp = 0.44

The complete set of values is summarized in Table 1.3. These are the values used in m piezo. Note
that there is some redundancy in the data from the datasheet, which allows to check for consistency.
The two following coupling factors are computed from the data available and checked against the
tabulated values.

k31 =

√
d2

31

εT33s
E
11

= 0.3361

k33 =

√
d2

33

εT33s
E
33

= 0.7556
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The values are close to the values in Table 1.2. In addition, the value of g33 is given by:

g33 =
d33

εT33

= 0.0269V m/N

and corresponds exactly to the value tabulated. The value of e33 can be computed using Equa-
tion (1.7), leading to:

e33 = 19.06C/m2

where there is a difference of about 15% with the tabulated value of e33 = 16.7C/m2. Using (1.37)
to compute k15 with the values from the datasheet, one gets:

k15 =

√
1− εS11

εT11

= 0.5948

which shows the non-consistency of the value of εS11 in the datasheet. In fact, when computed using
(1.8), one gets:

εS11 = 908ε0

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V

Permittivity

εT33 1850 ε0 F/m
εT11 1950 ε0 F/m

Mechanical properties

Ep 54.05 GPa
Ez 48.31 GPa
Gzp 29.41 GPa
Gp 19.17 GPa
νp 0.4124
νzp 0.39
νpz 0.44
ρ 7740 kg/m3

Table 1.3: Properties of SONOX P502 to be used in 3D finite element models
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From the input values used in m piezo, it is possible to compute the mechanical, piezoelectric and
permittivity matrices used in the four different forms of the constitutive equations (1.4),(1.5),(1.9),(1.10)
using the relationships (1.6)-(1.8)) and (1.11)-(1.13). The command p piezo(’TabDD’) can be used
in order to have access to all the matrices from the input values in m piezo. This will be illustrated
in section 1.2.5.

As the mechanical properties of PZT are not strongly orthotropic, a simplification can be done
by considering that the material is isotropic (for the mechanical and dielectric properties, not the
piezoelectric properties). An isotropic version of SONOX P502 is included in m piezo under the
name of SONOX P502 iso whose properties are given in Table 1.4.

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V

Permittivity

εT 1850 ε0 F/m

Mechanical properties

E 54.05 GPa
ν 0.41
ρ 7740 kg/m3

Table 1.4: Simplified material properties for SONOX P502 considering mechanical isotropy

The second example is the PIC 255 PZT from PI ceramics. The properties found in the datasheet are
given in Table 1.5 (http://www.piceramic.com/pdf/piezo material.pdf). Note that CD33 is not given
in the datasheet, therefore we estimated it from the value of PIC 155 given in the same datasheet,
which is just slightly stiffer.
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Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V
g31 -11.3 10−3 V m/N
g33 25 10−3 V m/N

Permittivity

εT33 1750 ε0 F/m
εT11 1650 ε0 F/m

Elastic properties

sE11 16.1 10−12 m2/N
sE33 20.7 10−12 m2/N
cD33 11 1010 N/m2

Coupling coefficients

k33 0.69
k15 0.66
k31 0.35
kp 0.62
kt 0.47

Density

ρ 7800 kg/m3

Table 1.5: Properties of PIC 255 from the datasheet

Ep and Ez are computed directly from the definitions of sE11 and sE33:

Ep =
1

sE11

= 62.11GPa

Ez =
1

sE33

= 48.31GPa

Knowing the value of sE11, d31, εT33 and kp, s
E
12 can be computed:

sE12 = −sE11 + 2
d2

31

k2
pε
T
33

= −5.22 10−12m2/N

allowing to compute the value of νp:

νp = −EpsE12 = 0.3242
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and the value of Gp

Gp =
Ep

2(1 + νp)
= 23.53GPa

The value of sE55 can be computed as:

sE55 =
d2

15

εT11k
2
15

= 4.75 10−11m2/N

which leads to:

Gzp =
1

sE55

= 21.03GPa

Again, the value of νzp cannot be calculated from the datasheet information. We cannot assume a
value of 0.39 as previously, as it would lead to a non-physical value of νpz. As νp is in the range of
0.32 and νzp is typically slightly lower, we assume that :

νzp = 0.30

The value of νpz is calculated as:

νpz =
Ep
Ez
νzp = 0.39

The complete set of values is summarized in Table 1.6. These are the values used in m piezo. Note
that there is some redundancy in the data from the datasheet, which allows to check for consistency.
The two following coupling factors are computed from the data available and checked against the
tabulated values.

k31 =

√
d231

εT33s
E
11

= 0.36

k33 =

√
d233

εT33s
E
33

= 0.70

The values are very close to the values in Table 1.5. In addition, the value of g33 and g31 are given
by:

g31 = d31
εT33

= −11.6 10−3 V m/N

g33 = d33
εT33

= 25.8 10−3 V m/N

and are also very close to the values tabulated.
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Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V

Permittivity

εT33 1750 ε0 F/m
εT11 1650 ε0 F/m

Mechanical properties

Ep 62.11 GPa
Ez 48.31 GPa
Gzp 21.03 GPa
Gp 23.53 GPa
νp 0.3242
νzp 0.30
νpz 0.39
ρ 7800 kg/m3

Table 1.6: Properties of PIC 255 to be used in 3D finite element models

As shown in the derivations above, the datasheet for PZT material typically do not contain the full
information to derive all the coefficients needed for computations, and some hypothesis need to be
made. In addition, it is usual to have a variation of 10 % or more on these properties from batch to
batch, and the datasheet are not updated for each batch. Note also that the properties are given at
20 ı̈¿1

2C and are temperature dependant. The variations with temperature are rarely given in the
datasheet. This may also account for inaccuracies in the computations.

1.2.4 Illustration of piezoelectricity in statics: patch example

Consider a thin piezoelectric patch of dimensions b x h x w. The poling direction, noted 3 in the IEEE
Standards on piezoelectricity is perpendicular to the plane of the piezoelectric patch. Continuous
electrodes are present on the top and bottom surfaces (z = 0, z = h) so that the electric potential
is constant on these surfaces and denoted by V1 and V2 respectively. We assume that a difference
of potential is applied between the electrodes, resulting in an electric field parallel to the poling
direction and equal to

E3 = −dV
dz

=
−(V2 − V1)

h
=
V1 − V2

h
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Figure 1.5: A piezoelectric patch poled through the thickness with continuous electrodes on the top
and bottom surfaces

Assume that a constant difference of electric potential is applied to the two electrodes of the piezo-
electric patch, as illustrated in Figure 1.5. We adopt the following expression for the constitutive
equations:

{S} =
[
sE
]
{T}+ [d]T {E}

{D} = [d] {T}+
[
εT
]
{E} (1.40)

The patch is assumed to be unconstrained so that it can expand freely, leading to {T} = 0, so that
we have :

{S} =



S1

S2

S3

S4

S5

S6


= [d]T {E} =



d31
V1−V2
h

d32
V1−V2
h

d33
V1−V2
h

0
0
0


(1.41)

We have taken into account the fact that the electric field is in the z-direction only. This shows
that when applying a difference of potential across the thickness (in the poling direction), strains
will be induced in the directions 1,2, and 3. The magnitude of these different strains is proportional
to the d3i coefficients of the piezoelectric material. For a ceramic PZT material, d31 = d32 < 0, and
d33 > 0 and is generally between 2 and 3 times larger in magnitude than d31 and d32.

The second equation can be used in order to assess the amount of charge that is accumulated on
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both electrodes. We have :

{D} =


D1

D2

D3

 =
[
εT
]
{E} (1.42)

The only non-zero component of the D vector is D3 given by :

D3 = εT33

V1 − V2

h
(1.43)

The charge accumulated on the electrode is given by :

q = −
∫
S
{D} {n} dS

where {n} is the normal to the electrode. For the top electrode, this leads to :

q = −ε
T
33A

h
(V1 − V2)

where A is the surface of the electrode. For the bottom electrode

q =
εT33A

h
(V1 − V2)

When (V1 − V2) is positive, the electric field is in the direction of poling and the charge on the top
electrode is negative, while the charge accumulated on the bottom electrode is positive (Figure 1.5).
Note that this equation corresponds to the equation linking the charge to the difference of potential
for a capacitor (q = C∆V ). The value of the capacitance is therefore :

CT =
εT33A

h

which corresponds to the capacitance of the free piezoelectric patch ({T} = 0).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} = 0
), we have:

{T} = − [e]T {E} = − [e]T {E}
{D} =

[
εS
]
{E} (1.44)

leading to :

{T} =



T1

T2

T3

T4

T5

T6


=



−e31
V1−V2
h

−e32
V1−V2
h

−e33
V1−V2
h

0
0
0


D3 = εS33

V1−V2
h

(1.45)
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In this case, the capacitance is given by:

CS =
εS33A

h

which corresponds to the capacitance of the constrained piezoelectric patch ({S} = 0). This
illustrates the fact that the capacitance of a piezoelectric patch depends on the mechanical boundary
conditions. This is not the case for other types of dielectric materials in which the piezoelectric effect
is not present, and for which therefore the capacitance is independent on the mechanical strain or
stress.

1.2.5 Numerical illustration : rectangular patch in statics

In this very simple example, the electric field and the strains are all constant, so that the electric
potential and the displacement field are linear. It is therefore possible to obtain an exact solution
using a single volumic 8-node finite element (with linear shape functions, the nodal unknowns being
the displacements in x,y and z and the electric potential φ). Consider a piezoelectric patch whose
dimensions and material properties are given in Table 1.7. The material properties correspond to
the material SONOX P502 iso in m piezo.

Property Value

b 10 mm
w 10 mm
h 2 mm
E 54 GPa
ν 0.44

d31 = d32 -185 10−12pC/N (or m/V )
d33 440 10−12pC/N (or m/V )

d15 = d24 560 10−12pC/N (or m/V )
εT33 = εT22 = εT11 1850 ε0

ε0 8.854 10−12Fm−1

Table 1.7: Geometrical and material properties of the piezoelectric patch

We first produce the mesh, associate the material properties and define the electrodes with
d piezo(’TutoPatch-s1’) . The default material is SONOX P502 iso. The number of elements in
the x, y and z directions are given by nx,ny and nz.

% See full example as MATLAB code in d_piezo(’ScriptPatch’)

%% Step 1 Build mesh - Define electrodes
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% Meshing script can be viewed with sdtweb d_piezo(’MeshPatch’)

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=1 ny=1 nz=1’);

% Define electrodes

model=p_piezo(’ElectrodeMPC Top -ground’,model,’z==2e-3’);

model=p_piezo(’ElectrodeMPC Bottom -Input "Free patch"’,model,’z==0’);

The information about the nodes associated to each electrode can be obtained through the following
call:

p_piezo(’TabInfo’,model)

The material can be changed for example to PIC 255 with the following call, and the full set of
mechanical, piezoelectric and permittivity matrices can be obtained in order to check consistency
with the datasheet (d piezo(’TutoPatch-s2’) ):

%% Step 2 Define material properties

model.pl=m_piezo(’dbval 1 -elas 2 PIC_255’);

p_piezo(’TabDD’,model) % creates the table with full set of matrices

The next step consists in defining the boundary conditions and load case using
d piezo(’TutoPatch-s3’) . We consider here two cases, the first one where the patch is free to
expand, and the second one where it is mechanically constrained (all mechanical degrees of freedom
are equal to 0).

%% Step 3 Compute static response

% to avoid rigid body mode

model=stack_set(model,’info’,’Freq’,10);

def=fe_simul(’dfrf’,model); def.lab={’Free patch, axial’};
def.fun=[0 1]; def=feutil(’rmfield’,def,’data’,’LabFcn’);

% Append mechanically constrained structure

% can’t call fe_simul because no free DOF

% see code with sdtweb d_piezo(’scriptFullConstrain’)

def=d_piezo(’scriptFullConstrain’,model,def);

def.lab{2}=’Constrained patch, axial’;

We can look at the deformed shape, and plot the electric field for both cases.
(d piezo(’TutoPatch-s4’)

%% Step 4 Visualize deformed shape

cf=feplot(model,def);

% Electric field representation

p_piezo(’viewElec EltSel "matid1" DefLen 20e-4 reset’,cf);

fecom(’colormap’,[1 0 0]);fecom(’undef line’);iimouse(’resetview’);
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Figure 1.6: Vizualisation of the electric field and deformed shape for the free patch under unit
voltage excitation

For the free patch deformed shape, we compute the mean strains from which d31, d32 and d33 are
deduced. The values are found to be equal to the analytical values used in the model. Note that
the parameters of the constitutive equations can be recovered using (d piezo(’TutoPatch-s5’) ):

%% Step 5 : check constitutive law

% Decompose constitutive law

CC=p_piezo(’viewdd -struct’,cf); %

where the fields of CC are self-explanatory. The parameters which are not directly defined are
computed from the equations presented in Section 1.2.1.

% Display and compute mean strains

a=p_piezo(’viewstrain -curve -mean’,cf); % Strain S

fprintf(’Relation between mean strain on free structure and d_3i\n’);

E3=a.Y(9,1); disp({’E3 mean’ a.Y(9,1) 1/2e-3 ’E3 analytic’})

disp([a.X{1}(1:3) num2cell([a.Y(1:3,1)/E3 CC.d(3,1:3)’]) ...

{’d_31’;’d_32’;’d_33’}])

For the constrained patch, we compute the mean stress from which we can compute the e31, e32 and
e33 values which are found to be equal to the analytical values used in the model:
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% Display and compute mean stresses

b=p_piezo(’viewstress -curve -mean’,cf); % Stress T

fprintf(’Relation between mean stress on pure electric and e_3i\n’);

disp([b.X{1}(1:3) num2cell([b.Y(1:3,2)/-E3 CC.e(3,1:3)’]) ...

{’e_31’;’e_32’;’e_33’}])

% Mean stress/strain

disp([b.X{1} num2cell(b.Y(:,2)) num2cell(a.Y(:,1)) a.X{1}])

We can also compute the charge and the charge density (in pC/m2) accumulated on the electrodes,
and compare with the analytical values (d piezo(’TutoPatch-s6’) ):

%% Step 6 Check capacitance values

% Theoretical values of Capacitance and charge density - free patch

CT=CC.epst_r(3,3)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensT=CC.epst_r(3,3)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Theoretical values of Capacitance and charge density - constrained patch

CS=CC.epss_r(3,3)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensS=CC.epss_r(3,3)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Represent charge density (C/S) value on the electrodes

% - compare with analytical values

cut=p_piezo(’electrodeviewcharge’,cf,struct(’EltSel’,’matid 1’));

b=fe_caseg(’stressobserve’,cut,cf.def);b=reshape(b.Y,[],2);

disp([{’’,’CdensT’,’CdensS’};{’Numeric’;’Theoretical’} ...

num2cell([mean(abs(b));CdensT CdensS])])

iimouse(’zoom reset’);

% Compute the value of the total charge (from reaction at electrical dof)

% Compare with analytical values

p_piezo(’electrodeTotal’,cf) %

disp(’Theoretical values of capacitance’)

disp([{’CT’;’CS’} num2cell([CT;CS])])
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Figure 1.7: Vizualisation of the total charge on the electrodes for the unconstrained and constrained
patch under unit voltage excitation

The results clearly show the very large difference of charge density between the two cases (free patch
or constrained patch).

For this simple static example, a finer mesh can be used, but it does not lead to more accurate
results (this can be done by changing the values in the call of d piezo(′mesh′)) for example:

% Build mesh with refinement

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=5 ny=5 nz=2’);

% Now a model with quadratic elements

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 Quad’);

1.2.6 Piezoelectric shear actuation

We now consider the same patch but where the polarization is in the plane of the actuator, as
represented in Figure 1.8. As in the previous example, continuous electrodes are present on the top
and bottom surfaces (z = 0, z = h) so that the electric potential is constant on these surfaces and
denoted by V1 and V2 respectively. We assume that a difference of potential is applied between the
electrodes, resulting in an electric field perpendicular to the poling direction and equal to

E2 = −dV
dz

=
−(V2 − V1)

h
=
V1 − V2

h

The electric field is now applied in direction 2, so that it will activate the shear d24 = d15 mode of
the piezoelectric material.
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Figure 1.8: A piezoelectric patch poled in the plane with continuous electrodes on the top and
bottom surfaces

The patch is assumed to be unconstrained so that it can expand freely, leading to {T} = 0, so that
we have :

{S} =



S1

S2

S3

S4

S5

S6


= [d]T {E} =



0
0
0

d24
V1−V2
h

0
0


(1.46)

We have taken into account the fact that the electric field is in the z-direction only, corresponding
to direction 2 in the local axis of the piezoelectric material (direction 3 is the poling direction by
convention). This shows that when the patch is poled in the plane, when applying a difference of
potential across the thickness, a shear strain in the local 23 plane will be induced. The magnitude
of this strain is proportional to the d24 coefficient of the piezoelectric material.
The second equation can be used in order to assess the amount of charge that is accumulated on
both electrodes. We have :

{D} =


D1

D2

D3

 =
[
εT
]
{E} (1.47)

The only non-zero component of the D vector is D2 given by :

D2 = εT22

V1 − V2

h
(1.48)
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The charge accumulated on the electrode is given by :

q = −
∫
S
{D} {n} dS

where {n} is the normal to the electrode. For the top electrode, this leads to :

q = −ε
T
22A

h
(V1 − V2)

where A is the surface of the electrode. For the bottom electrode

q =
εT22A

h
(V1 − V2)

When (V1−V2) is positive, the charge on the top electrode is negative, while the charge accumulated
on the bottom electrode is positive (Figure 1.5). The value of the capacitance is therefore:

CT =
εT22A

h

which corresponds to the capacitance of the free piezoelectric patch ({T} = 0) and is equal to the
capacitance when the poling is out of the plane of the transducer because we have assumed εT22 = εT33

(in reality, there is typically a difference of 5% between these two values so that the capacitance will
be slightly different).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} = 0
), we have:

{T} = − [e]T {E} = − [e]T {E}
{D} =

[
εS
]
{E} (1.49)

leading to :

{T} =



T1

T2

T3

T4

T5

T6


=



0
0
0

−e24
V1−V2
h

0
0


D2 = εS22

V1−V2
h

(1.50)

In this case, the capacitance is given by:

CS =
εS22A

h

which corresponds to the capacitance of the constrained piezoelectric patch ({S} = 0). Note that
this capacitance is clearly different from CS when the poling is out of the plane, because the value
of εS22 is very different from the value of εS33, due to the different values of stiffness and piezoelectric
coefficients in shear and extensional mode.
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1.2.7 Numerical illustration : rectangular patch in statics: shear mode

The following scripts illustrates the shear actuation using a single 8-node element as in the extension
example. The patch is meshed and then the poling is aligned with the −y axis by performing a
rotation of 90o around the x-axis (d piezo(’TutoPatchShear-s1’) ).

% See full example as MATLAB code in d_piezo(’ScriptPatchShear’)

%% Step 1 Build mesh and define electrodes

%Meshing script can be viewed with sdtweb d_piezo(’MeshPatch’)

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=1 ny=1 nz=1’);

% Define electrodes

model=p_piezo(’ElectrodeMPC Top -ground’,model,’z==2e-3’);

model=p_piezo(’ElectrodeMPC Bottom -Input "Free patch"’,model,’z==0’);

% Rotate basis to align poling direction with y (-90ı̈¿1
2 around x)

model.bas=basis(’rotate’,[],’rx=-90’,1); %create local basis with id=1

model=feutil(’setpro 1 COORDM=1’,model); % assign basis with id=1 to pro=1

Then the response is computed both for the free case and the fully constrained case (Figure 1.9):
(d piezo(’TutoPatchShear-s2’) )
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Figure 1.9: Deformed shape of a piezoelectric patch poled in the plane with an electric field applied
in the out-of-plane direction

%% Step 2 Compute static response

% to avoid rigid body mode

model=stack_set(model,’info’,’Freq’,10);

def=fe_simul(’dfrf’,model); def.lab={’Free patch, shear’};
def.fun=[0 1]; def=feutil(’rmfield’,def,’data’,’LabFcn’);

% Append mechanically constrained structure

% can’t call fe_simul because no free DOF

% see code with sdtweb d_piezo(’scriptFullConstrain’)

def=d_piezo(’scriptFullConstrain’,model,def);

def.lab{2}=’Constrained patch, shear’;

(d piezo(’TutoPatchShear-s3’) )

%% Step 3 Vizualise deformed shape

cf=feplot(model,def); fecom(’undef line’);

% Electric field representation
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p_piezo(’viewElec EltSel "matid1" DefLen 20e-4 reset’,cf);

iimouse(’zoom reset’)

The mean of shear strain and stress is evaluated and compared to the d24 piezo coefficient. Note
that the mean values are computed in the global yz axis for which a negative strain corresponds
to a positive strain in the local 23 axis. Finally the capacitance is evaluated and compared to the
theoretical values, showing a perfect agreement, and demonstrating the difference with the extension
case for CS .
(d piezo(’TutoPatchShear-s4’) )

%% Step 4 : Check constitutive law

% Decompose constitutive law

CC=p_piezo(’viewdd -struct’,cf); %

% Display and compute mean strains

a=p_piezo(’viewstrain -curve -mean’,cf); % Strain S

fprintf(’Relation between mean strain on free structure and d_24\n’);

E3=a.Y(9,1); disp({’E3 mean’ a.Y(9,1) 1/2e-3 ’E3 analytic’})

disp([a.X{1}(4) num2cell([a.Y(4,1)/E3 CC.d(2,4)’]) ...

{’d_24’}])

% Display and compute mean stresses

b=p_piezo(’viewstress -curve -mean’,cf); % Stress T

fprintf(’Relation between mean stress on pure electric and e_24 \n’);

disp([b.X{1}(4) num2cell([b.Y(4,2)/-E3 CC.e(2,4)’]) ...

{’e_24’}])

% Mean stress/strain

disp([b.X{1} num2cell(b.Y(:,2)) num2cell(a.Y(:,1)) a.X{1}])

% Theoretical values of Capacitance and charge density - free patch

CT=CC.epst_r(2,2)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensT=CC.epst_r(2,2)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Theoretical values of Capacitance and charge density - constrained patch

CS=CC.epss_r(2,2)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - constrained patch

CdensS=CC.epss_r(2,2)*8.854e-12/2e-3*1e12; %% charge density - constrained patch

% Represent charge density (C/S) value on the electrodes
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% - compare with analytical values

cut=p_piezo(’electrodeviewcharge’,cf,struct(’EltSel’,’matid 1’));

b=fe_caseg(’stressobserve’,cut,cf.def);b=reshape(b.Y,[],2);

disp([{’’,’CdensT’,’CdensS’};{’Numeric’;’Theoretical’} ...

num2cell([mean(abs(b));CdensT CdensS])])

iimouse(’zoom reset’);

(d piezo(’TutoPatchShear-s5’) )

%% Step 5 Check capacitance

% Compute the value of the total charge (from reaction at electrical dof)

% Ccompare with analytical values

p_piezo(’electrodeTotal’,cf) %

disp(’Theoretical values of capacitance’)

disp([{’CT’;’CS’} num2cell([CT;CS])])
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1.3 Discrete equations of piezoelectric structures

Hamilton’s principle is used to derive the dynamic variational principle [1]:∫ t2

t1

(∫
V

[
−ρ {ü}T {δu} − {S}T

[
cE
]
{δS}+ {E}T [e] {δS}

+ {S}T [e]T {δE}+ {E}T
[
εS
]
{δE}+ {f}T {δu} − {ρe}T {δφ}

]
dV

+

∫
Ω1

{t}T {δu} dΩ−
∫

Ω2

{σ}T {δφ} dΩ

)
dt = 0

where V is the volume of the piezoelectric structure, ρ is the mass density, {u} is the displacement
field and {δu} its variation, {φ} is the elecctric pontential and {δφ} its variation. {f} is the volumic
force, {ρe} the volumic charge density, {t} the vector of applied surface forces on Ω1 and {σ} the
charge density applied on Ω2. The variational principle is the starting point for all discrete finite
element formulations. 3D and shell approximations are detailed below.

1.3.1 Piezoelectric solid finite elements

For 3D solids, the discretized strain and electric fields are linked to the discretized displacement
vector (u, v, w) and electric potential φ by:

{
S
E

}
=



εx
εy
εz
γyz
γzx
γxy
Ex
Ey
Ez


=



N, x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N, x 0
N, y N, x 0 0

0 0 0 −N, x
0 0 0 −N, y
0 0 0 −N, z




u
v
w
φ

 (1.51)

where N, x u is a short notation for ∑
i

∂Ni

∂x
ui

and Ni(x, y, z) are the finite element shape functions. Plugging (1.51) in (1.51) leads to the discrete
set of equations which are written in the matrix form:[

Mqq 0
0 0

]{
¨qmech
V̈

}
+

[
Kqq KqV

KV q KV V

]{
qmech
V

}
=

{
Fmech
Q

}
(1.52)
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where {qmech} contains the mechanical degrees of freedom (3 per node related to u, v, w), and {V }
contains the electrical degrees of freedom (1 per node, the electric potential φ). {Fmech} is the vector
of applied external mechanical forces, and {Q} is the vector of applied external charges.

1.3.2 Piezoelectric shell finite elements

Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field
components. In the piezoelectric multi-layer shell elements implemented in SDT, it is assumed that
in each piezoelectric layer i = 1...n, the electric field takes the form ~E = (0 0 Ezi). Ezi is assumed
to be constant over the thickness hi of the layer and is therefore given by Ezi = −∆φi

hi
where ∆φi is

the difference of potential between the electrodes at the top and bottom of the piezoelectric layer i.
It is also assumed that the piezoelectric principal axes are parallel to the structural orthotropy axes.

Figure 1.10: Multi-layer shell piezoelectric element

The discretized strain and electric fields of a piezoelectric shell take the form

εxx
εyy
2εxy
κxx
κyy
2κxy
γxz
γyz
−Ez1
...
−Ezn



=



N, x 0 0 0 0 0 ... 0
0 N, y 0 0 0 0 ... 0

N, y N, x 0 0 0 0 ... 0
0 0 0 0 −N, x 0 ... 0
0 0 0 N, y 0 0 ... 0
0 0 0 N, x −N, y 0 ... 0
0 0 N, x 0 N 0 ... 0
0 0 N, y −N 0 0 ... 0
0 0 0 0 0 − 1

h1
... 0

... ... ... ... ... 0 ... − 1
hn





u
v
w
ru
rv

∆φ1

...
∆φn


(1.53)
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There are thus n additional degrees of freedom ∆φi, n being the number of piezoelectric layers in
the laminate shell. The constitutive laws are obtained by using the ”piezoelectric plates” hypothesis
(2.19) and the definitions of the generalized forces N,M,Q and strains ε, κ, γ for shells:

N
M
Q
Dz1

...
Dzn


=



A B 0 GT1 ... GTn
B D 0 zm1G

T
1 ... zmnG

T
n

0 0 F 0 ... 0
G1 zm1G1 0 −ε1

S ... 0
... ... ... 0 ... 0
Gn zmnGn 0 0 ... −εnS





ε
κ
γ
−Ez1
...
−Ezn


(1.54)

Dzi is the electric displacement in piezoelectric layer , zmi is the distance between the midplane of
the shell and the midplane of piezoelectric layer i (Figure 1.10), Gi is given by

Gi =
{
e∗31 e∗32 0

}
i
[Rs]i (1.55)

where ∗ refers to the piezoelectric properties under the piezoelectric plate assumption as detailed
in section 1.2.2 and [Rs]i are rotation matrices associated to the angle θ of the principal axes 1, 2
of the piezoelectric layer given by:

[Rs] =

 cos2 θ sin2 θ sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (1.56)

Plugging (1.53) into (1.51) leads again to:[
Mqq 0

0 0

]{
¨qmech
V̈

}
+

[
Kqq KqV

KV q KV V

]{
qmech
V

}
=

{
Fmech
Q

}
(1.57)

where {qmech} contains the mechanical degrees of freedom (5 per node corresponding to the dis-
placements u, v, w and rotations rx, ry), and {V } contains the electrical degrees of freedom. The
electrical dofs are defined at the element level, and there are as many as there are active layers in
the laminate. Note that the electrical degree of freedom is the difference of the electric potential
between the top and bottom electrodes ∆φ.

1.3.3 Full order model

Piezoelectric models are described using both mechanical qmech and electric potential DOF V . As
detailed in sections section 1.3.1 and section 1.3.2 , one obtains models of the form[

ZCC(s) ZCV
ZV C ZV V

]{
qmech
V

}
=

{
Fmech
Q

}
(1.58)
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for both piezoelectric solids and shells, where ZCC(s) is the dynamic stiffness expressed as a function
of the Laplace variable s.
For piezoelectric shell elements, electric DOF correspond to the difference of potential on the elec-
trodes of one layer, while the corresponding load is the charge Q. In SDT, the electric DOFs for
shells are unique for a single shell property and are thus giving an implicit definition of electrodes
(see p piezo Shell). Note that a common error is to fix all DOF when seeking to fix mechanical
DOFs, calls of the form ’x==0 -DOF 1:6’ avoid this error.

For volume elements, each volume node is associated with an electric potential DOF and one defines
multiple point constraints to enforce equal potential on nodes linked by a single electrode and sets
one of the electrodes to zero potential (see p piezo ElectrodeMPC and section 2.5 for a tutorial
on how to set these contraints). During assembly the constraints are eliminated and the resulting
model has electrical DOFs that correspond to differences of potential and loads to charge.

Figure 1.11: Short circuit: voltage actuator, charge sensor

Short circuit (SC), charge sensors configurations correspond to cases where the potential is
forced to zero (the electrical circuit is shorted). In (1.58), this corresponds to a case where the
potential (electrical DOF) is fixed and the charge corresponds to the resulting force associated with
this boundary condition.
A voltage actuator corresponds to the same problem with V = VIn (built in SDT using fe load

DofSet entries). The closed circuit charge is associated with the contraint on the enforced voltage
and can be computed by extracting the second row of (1.58)

{Q} = [ZV C ] {qmech}+ [ZV V ] {VIn} (1.59)

p piezo ElectrodeSensQ provides utilities to build the charge sensors, including sensor combina-
tions.
SC is the only possibly boundary condition in a FEM model where voltage is the unknown. The
alternative is to leave the potential free which corresponds to not specifying any boundary condition.
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When computing modes under voltage actuation, the proper boundary condition is a short circuit.

Figure 1.12: Open circuit (voltage sensor, charge actuator)

Open circuit (OC), voltage sensor, configurations correspond to cases where the charge remains
zero and a potential is created on the electrodes due to mechanical deformations. A piezoelectric
actuator driven using a charge source also would correspond to this configuration (but the usual is
voltage driving).
The voltage DOF {V } associated to open-circuits are left free in (1.58). Since electrostatics are
normally considered, Zvv is actually frequency independent and the voltage DOFs could be condensed
exactly

{V } = [ZV V ]−1 (Qin − [ZV C ] {qmech}) (1.60)

Since voltage is an explicit DOF, it can be observed using fe case SensDOF sensor entries. Similarly
charge is dual to the voltage, so a charge input would be a simple point load on the active DOF
associated to an electrode. Note that specifying a charge distribution does not make sense since you
cannot both enforce the equipotential condition and specify a charge distribution that results from
this constraint.
It is possible to observe charge in an OC condition, but this is of little interest since this charge will
remain at 0.

1.3.4 Using the Electrode stack entry

SDT 6.6 underwent significant revisions to get rid of solver strategies that were specific to piezo ap-
plications. The info,Electrodes of earlier releases is thus no longer necessary. To avoid disruption
of user procedures, you can still use the old format with a .ver=0 field.

p piezo ElectrodeInit is used to build/verify a data structure describing master electric DOFs
associated with electrodes defined in your model. The info,Electrode stack entry is a structure
with fields
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.data rows NodeId IsOpen gives the electrode nodes and for each one 1 if the circuit is open (voltage
free), and 0 if it is closed (voltage enforced or fixed, actuator).

.ver=1 is used to specify that the more general piezoelectric strategies of SDT >= 6.6 are used. This
is the combined with the p piezo Electrode2Case command which builds piezo loads and
sensors. For SDT 6.5 strategies, use .ver=0.

.def .DOF, .lab in only needed when combining multiple electrodes into a single input. The
.lab in is a cell array of strings, you should end the string with V so that it shows Q for
associated charge sensors.

Each column gives the weighting coefficients associated with each electrode. Thus def=[1;0;1]
corresponds to a single equal input on electrodes 1 and 3. Note that it does not make sense to
combine electrical DOFs that are of mixed nature (actuator/sensor).

The .DOF field should contain NodeId+.21 since the potential corresponds to DOF .21.

The .lab in field can be used to provide labels associated with each actuator/sensor defined
as a column of def. You should end the label with V so that the collocated sensor ends with a
Q label.

.cta .lab (optional) can be used to combine electrodes into sensors / actuators. Each row of .cta
defines a sensor (with matching .lab). Each column corresponds to an electrode declared in
the .data field. You cannot combine open and closed circuit electrodes. It is possible to use
both a .cta and a .def field.

[model,data]=p piezo(’ElectrodeInit’,model); generates a default value for the electrode stack
entry. Combination of actuators and sensors (both charge and voltage) is illustrated in section 2.1.3.

1.3.5 Model reduction

When building reduced or state-space models to allow faster simulation, the validity of the reduction
is based on assumptions on bandwidth, which drive modal truncation, and considered loads which
lead to static correction vectors.
Modes of interest are associated with boundary conditions in the absence of excitation. For the
electric part, these are given by potential set to zero (grounded or shorted electrodes) and enforced
by actuators (defined as DofSet in SDT) which in the absence of excitation is the same as shorting.
Excitation can be mechanical Fmech, charge on free electric potential DOF QIn and enforced voltage
VIn. One thus seeks to solve a problem of the form[

ZCC(s) ZCV
ZV C ZV V

]{
qmech
V

}
=

{
Fmech
QIn

}
−
[
ZCVIn
ZVIn

]
{VIn} (1.61)
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Using the classical modal synthesis approach (implemented as fe2ss(’free’)), one builds a Ritz
basis combining modes with grounded electrodes (VIn = 0), static responses to mechanical and
charge loads and static response to enforced potential

qC
V
VIn

 =

 φq
φV
0

 Z(0)−1

{
Fmech
QIn

}
0

 Z(0)−1

[
ZCVIn
ZVIn

]
I


qmode
qstat
VIn

 (1.62)

In this basis, one notes that the static response associated with enforced potential VIn does not verify
the boundary condition of interest for the state-space model where VIn = 0. Since it is desirable
to retain the modes with this boundary condition as the first vectors of basis (1.62) and to include
static correction as additional vectors, the strategy used here is to rewrite reduction as

{q} =

 φq
φV
0

 Z(0)−1

[
Fm ZCVIn
QIn ZVIn

]
0

 {qR}+


0
0
VIn

 (1.63)

where the response associated with reduced DOFs qR verifies VIn = 0 and the total response is
found by adding the enforced potential on the voltage DOF only. The presence of this contribution
corresponds to a D term in state-space models. The usual SDT default is to include it as a residual
vector as shown in (1.62), but to retain the shorted boundary conditions, form (1.63) is prefered.
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SDT supports piezoelectric constitutive laws for all 3D volume elements and composite shells. The
main steps of an analysis are

• define/import mesh. This is a typical SDT process and is described in the SDT manual.

• define piezoelectric material properties, see m piezo Database.

• define electrodes through an MPC for volumes, see p piezo ElectrodeMPC, or the element
property for shells, see p piezo Shell.

• define electric boundary conditions, loading, and sensors, this has been discussed in sec-
tion 1.3.3 and will be illustrated in the examples below.

• compute the response using full order (static or direct frequency response, calling fe simul)
or reduced order models (calling fe2ss, following the theory given in section 1.3.5 ).

• visualize the response in more detail.

2.1 Composite plate with 4 piezoelectric patches

2.1.1 Benchmark description

This example deals with a multi-layer composite plate with 4 piezoceramic patches. The geometry
is represented in Figure 2.1. It corresponds to a cantilevered composite plate with 4 piezoelectric
patches modeled using the p piezo Shell formulation.
The material properties of the composite plate and the piezoceramic patches are given in Table 2.1.
The composite material is made of 6 identical layers (total thickness of 1.3mm), and the piezoelectric
material corresponds to the Sample ULB material in m piezo Database.
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Figure 2.1: Geometric details of the composite plate with 4 piezoceramic patches

Property Value

Composite layers

Ex 41.5GPa
Ey 41.5GPa
Gxy 3.35GPa
νxy 0.042
ρ 1490kg/m3

Piezoceramic patches

E 65GPa
ν 0.3
ρ 7800kg/m3

thickness 0.25mm
d31 -205 10−12pC/N (or m/V )
d32 -205 10−12pC/N (or m/V )
εT33 2600 ε0

ε0 8.854 10−12Fm−1

Table 2.1: Material properties of the plate and the piezoceramic patches

2.1.2 Sample script
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The first step consists in the creation of the model, the definition of the boundary conditions, and
the definition of the default damping coefficient. (d piezo(’TutoPlate 4pzt single-s1’) ) The
resulting mesh is shown in Figure 2.2

% See full example as MATLAB code in d_piezo(’ScriptPz_plate_4pzt_single’)

%% Step 1 - Build model and visualize

model=d_piezo(’MeshULBplate’); % creates the model

model=fe_case(model,’FixDof’,’Cantilever’,’x==0’);

% Set modal default zeta based on loss factor of material 1

model=stack_set(model,’info’,’DefaultZeta’,feutilb(’getloss’,1,model)/2);

cf=feplot(model); fecom(’colordatagroup’); set(gca,’cameraupvector’,[0 1 0])

One can have access to the piezoelectric material properties and the list of nodes associated to each
pair of electrodes. Here nodes 1682 to 1685 are associated to the four pairs of electrodes defined
in the model. The corresponding degree of freedom is the difference of potential between the elec-
trodes in each pair corresponding to a specific piezoelectric layer. In this models, layers 1 and 8 are
piezoelectric in groups 1 and 2 (the 6 internal layers correspond to the 6 layers of the supporting
composite plate). Therefore only .21 (electrical) DOF is associated to nodes 1682-1685.

p_piezo(’TabDD’,model) % List piezo constitutive laws

p_piezo(’TabInfo’,model) % List piezo related properties

Figure 2.2: Mesh of the composite plate. The different colours represent the different groups

The next step consists in the definition of the actuators and sensors in the model. Here, we consider
one actuator on Node 1682 (layer 1 of group 1), the four piezoelectric patches are used as charge
sensors, and the tip displacement of the cantilever beam is measured at node 1054. Note that in
order for Q-S1, Q-S2 and Q-S3 to measure resultant charge, the corresponding electrical difference
of potential needs to be set to zero. If this is not done, then the charge sensors will measure a
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charge close to zero (round-off errors) as there is no charge when the difference of potential across
the electrodes is free. For Q-Act, the electrical dof is already fixed due to the fact that the patch is
used as a voltage actuator.
(d piezo(’TutoPlate 4pzt single-s2’) )

%% Step 2 - Define actuators and sensors

model=fe_case(model,’SensDof’,’Tip’,1054.03); % Displ sensor

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,1682.21)); %Act

model=p_piezo(’ElectrodeSensQ 1682 Q-Act’,model); % Charge sensors

model=p_piezo(’ElectrodeSensQ 1683 Q-S1’,model);

model=p_piezo(’ElectrodeSensQ 1684 Q-S2’,model);

model=p_piezo(’ElectrodeSensQ 1685 Q-S3’,model);

% Fix dofs 1683-1685 to measure resultant (charge)

model=fe_case(model,’FixDof’,’SC*1683-1685’,[1683:1685]+.21);

sens=fe_case(model,’sens’);

In order to check the effect of the actuator, we compute the static response using the full model and
represent the deformed shape (Figure 2.3).
(d piezo(’TutoPlate 4pzt single-s3’) )

%% Step 3 Compute static and dynamic response

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf at 0Hz

cf.def=d0; fecom(’;view3;scd .1;colordatagroup;undefline’)

We can now compute the transfer function between the actuator and the four charge sensors, as well
as the tip sensor using the full model. The result is stored in the variable C1.

% Compute frequency response function (full model)

if sdtkey(’cvsnum’,’mklserv_client’)>=126;ofact(’mklserv_utils -silent’)

f=linspace(1,100,400); % in Hz

else;

f=linspace(1,100,100); % in Hz (just 100 points to make it fast)

end

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,f(:))); % direct refer frf

% Project response on sensors

C1=fe_case(’SensObserve’,sens,d1);C1.name=’DFRF’;C1.Ylab=’V-Act’;

C1.Xlab{1}={’Frequency’,’Hz’};
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Figure 2.3: Deformed shape under voltage actuation on one of the bottom piezoelectric patches
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A reduced state-space model can be built and the frequency response function calculated, and stored
in the variable C2. The two curves obtained are compared to show the accuracy of the reduced state-
space model in Figure 2.4.
(d piezo(’TutoPlate 4pzt single-s4’) )

%% Step 4 - Build state-space model

[s1,TR1]=fe2ss(’free 5 10 0’,model); %

C2=qbode(s1,f(:)*2*pi,’struct’);C2.name=’SS’;

% Compare the two curves

C2.X{2}=sens.lab; C1.X{3}=nor2ss(’lab_in’,s1);C2.X{3}=nor2ss(’lab_in’,s1);%
C2=feutil(’rmfield’,C2,’lab’); C1.Ylab=C2.Ylab;

ci=iiplot;

iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’);

Figure 2.4: Comparison of FRF due to voltage actuation with the bottom piezo: full (DFRF) and
reduced (SS) state-space models. Tip displacement and charge corresponding to electrical node 1682

2.1.3 Using combined electrodes

Combination of electrodes can be used in order to build a variety of actuators and sensors. For ex-
ample, using the four piezoelectric patches, it is possible to induce a pure bending in the cantilever
plate by using the following combination: the two actuators on one side of the plate are combined
(the same voltage is applied to both simultaneously), while the two actuators on the opposite side
are combined and driven out of phase. This allows to cancel the in-plane effect of the patches and
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to induce a pure bending. If all 4 actuators are driven in phase, then it only induces in-plane forces
causing displacements only in the plane of the plate (Figure 2.5).

Figure 2.5: Example of combination of voltage actuators to induce bending or traction

The corresponding script to combine all four patches for bending and traction is:
(d piezo(’TutoPlate 4pzt comb-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_plate_4pzt_comb’)

%% Step 1 - Build model and define actuator combinations

model=d_piezo(’MeshULBplate -cantilever’); % creates the model

% combine electrodes to generate pure bending / pure traction

data.def=[1 -1 1 -1;1 1 1 1]’; % Define combinations for actuators

data.lab={’V-bend’;’V-Tract’};
data.DOF=p_piezo(’electrodeDOF.*’,model);

model=fe_case(model,’DofSet’,’V_{In}’,data);

(d piezo(’TutoPlate 4pzt comb-s2’) )
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%% Step 2 Compute static response

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf

cf=feplot(model); cf.def=d0;

fecom(’;view3;scd .02;colordataEvalZ;undefline’)

The resulting static deflections of the plate are shown in Figure 2.6.

Figure 2.6: Static responses using a combination of actuators in order to induce pure bending or
pure in-plane motion

We can now define two displacements sensors at the tip in the z and x directions and compute the
FRFs between the bending actuator and the two displacements as well as the traction actuator and
the two displacement sensors (Figure 2.7). The bending actuator/’Tip-z’ FRF show three resonances
corresponding to the first three bending mode shapes, while the traction actuator/’Tip-x’ FRF shows
no resonance due to the fact that the traction mode shape has a frequency much higher than the
frequency band of the calculations. The FRFs show clearly the possibility to excite either bending
or traction independently on the plate. The two other FRFs are close to zero.
(d piezo(’TutoPlate 4pzt comb-s3’) )

%% Step 3 - Dynamic response and state-space model

% Add tip displacement sensor in x and z

model=fe_case(model,’SensDof’,’Tip-z’,1054.03); % Z-disp

model=fe_case(model,’SensDof’,’Tip-x’,1054.01); % X-disp

% Make SS model and display FRF

[sys,TR]=fe2ss(’free 5 30 0 -dterm’,model);

C1=qbode(sys,linspace(1,100,400)’*2*pi,’struct’);

C1.name=’Bend-tract combination’; % Force name

C1.X{2}={’Tip-z’;’Tip-x’}; % Force input labels
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C1.X{3}={’V-bend’;’V-tract’}; % Force output labels

iicom(’CurveReset’);iicom(’curveinit’,C1)

Figure 2.7: Bending actuator/’Tip-z’ FRF (left) and traction actuator/’Tip-x’ FRF (right)

Voltage and charge sensors can also be combined. Let us consider a voltage combination of nodes
1682 and 1683 for actuation, which will result in bending and a slight torsion of the plate due to the
unsymmetrical bending actuation.
(d piezo(’TutoPlate pzcomb 2-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_plate_pzcomb_2’)

%% Step 1 - Build model and define actuator combinations

model=d_piezo(’MeshULBplate cantilever’); % creates the model

model=fe_case(model,’DofSet’,’V*1683-1682’, ...

struct(’def’,[1;-1],’DOF’,[1682;1683]+.21));

(d piezo(’TutoPlate pzcomb 2-s2’) )

%% Step 2 - Compute static response

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf

cf=feplot(model); cf.def=d0;

fecom(’;view3;scd .1;colordatagroup;undefline’)

We now define two sensors, consisting in charge combination with opposite signs for nodes 1684 and
1685 and voltage combination with opposite signs for the same nodes (Figure 2.8 shows the case of
charge combination).
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Figure 2.8: Example of combination of charge sensors to measure bending or traction

(d piezo(’TutoPlate pzcomb 2-s3’) )

%% Step 3 - Define sensor combinations

% Combined charge output (SC electrodes) % difference of charge 1684-1685

r1=struct(’cta’,[1 -1],’DOF’,[1684;1685]+.21,’name’,’QS3+4’);

model=p_piezo(’ElectrodeSensQ’,model,r1);

% Combined voltage output (OC electrodes) % difference of voltage 1684-1685

r1=struct(’cta’,[1 -1],’DOF’,[1684;1685]+.21,’name’,’VS3+4’);

model=fe_case(model,’SensDof’,r1.name,r1);

By default, the electrodes are in ’open-circuit’ condition for sensors, except if the sensor is also used
as voltage actuator which corresponds to a ’short-circuit’ condition. Therefore, as the voltage is left
’free’ on nodes 1684 and 1685, the charge is zero and the combination will also be zero. If we wish
to use the patches as charge sensors, we need to short-circuit the electrodes, which will result in
a zero voltage and in a measurable charge. This is illustrated by computing the response in both
configurations (open-circuit by default, and short-circuiting the electrodes for nodes 1684 and 1685):
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(d piezo(’TutoPlate pzcomb 2-s4’) )

%% Step 4 - Compute dynamic response with state-space model

[sys,TR]=fe2ss(’free 5 10 0 -dterm’,model);

C1=qbode(sys,linspace(1,100,400)’*2*pi,’struct’); C1.name=’OC’;

% Now you need to SC 1684 and 1685 to measure charge resultant

model=fe_case(model,’FixDof’,’SC*1684-1685’,[1684;1685]+.21);

[sys2,TR2]=fe2ss(’free 5 10 0 -dterm’,model);

C2=qbode(sys2,linspace(1,100,400)’*2*pi,’struct’);C2.name=’SC’;

% invert channels and scale

C1.Y=fliplr(C1.Y); C1.X{2}= flipud(C1.X{2});
C2.Y(:,1)=C2.Y(:,1)*C1.Y(1,1)/C2.Y(1,1);

iicom(’curvereset’),iicom(’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2 });
The FRF for the combination of charge sensors is not exactly zero but has a negligible value in the
’open-circuit’ condition, while the voltage combination is equal to zero in the ’short-circuit’ condi-
tion. Charge sensing in the short-circuit condition and voltage sensing in the open-circuit condition
are compared by scaling the two FRFs to the static response (f = 0Hz) and the result is shown
on Figure 2.9. The FRFs are very similar but the eigenfrequencies are slightly lower in the case of
charge sensing. This is due to the well-known fact that open-circuit always leads to a stiffening of
the piezoelectric material. The effect on the natural frequency is however not very strong due to the
small size of the piezoelectric patches with respect to the full plate.

Figure 2.9: Comparison of FRFs (scaled to the static response) for voltage (green) and charge (blue)
sensing. Zoom on the third eigenfrequency (right)

The stiffening effect due to the presence of an electric field in the piezoelectric material when the
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electrodes are in the open-circuit condition is a consequence of the piezoelectric coupling. One can
look at the level of this piezoelectric coupling by comparing the modal frequencies with the electrodes
in open and short-circuit conditions.

(d piezo(’TutoPlate pzcomb 2-s5’) )

%% Step 5 - Compute OC and SC frequencies

model=d_piezo(’MeshULBplate -cantilever’);

% Open circuit : do nothing on electrodes

d1=fe_eig(model,[5 20 1e3]);

% Short circuit : fix all electric DOFs

DOF=p_piezo(’electrodeDOF.*’,model);

d2=fe_eig(fe_case(model,’FixDof’,’SC’,DOF),[5 20 1e3]);

r1=[d1.data(1:end)./d2.data(1:end)];

plot(r1,’*’,’linewidth’,2);axis tight

xlabel(’Mode number’);ylabel(’f_{OC}/f_{SC}’);

Figure 2.10 shows the ratio of the eigenfrequencies in the open-circuit vs short-circuited conditions.
The difference depends on the mode number but is always lower than 1%. Higher stiffening effects
occur when more of the strain energy is contained in the piezoelectric elements, and the coupling
factor is higher.

Figure 2.10: Ratio of the natural frequencies of modes 1 to 20 in open-circuit vs short-circuit
conditions illustrating the stiffening of the piezoelectric material in the open-circuit condition

2.2 Integrating thin piezocomposite transducers in plate models

2.2.1 Introduction
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PZT ceramics are commonly used due to their good actuation capability and very wide bandwidth.
The major drawbacks of these ceramics are their brittle nature, and the fact that they cannot be
easily attached to curved structures. In order to overcome these drawbacks, several packaged PZT
composites have appeared on the market. A typical piezocomposite transducer is made of an active
layer sandwiched between two soft thin encapsulating layers (Figure 2.11).

Figure 2.11: General layout of a piezoelectric composite transducer

The packaging plays two different roles : (i) applying prestress to the active layer in order to avoid
cracks, and (ii) bringing the electric field to the active layer through the use of a specific surface
electrode pattern. Due to the difficulty to ensure contact between cylindrical fibers and the elec-
trodes, rectangular fibers have been developed, leading to the ’Macro Fiber Composite’ transducers
initially developed by the NASA [4] and currently manufactured by the company Smart Material
(http://www.smart-material.com). As this type of transducer is widely used in the research commu-
nity, this section shows how to integrate MFCs in piezoelectric plate models in SDT. Note however
that all types of piezocomposites can be modeled, providing sufficient material data is available,
which is rarely the case, as highlighted in the following for the case of MFCs.

Both d31 and d33 MFCs have been developed. The d31 MFCs are based on the same concept as the
bulk ceramic patches where poling is made through the thickness (Figure 2.12a). The d33 MFCs

a) b)

Figure 2.12: Electric fields in a) d31 and b) d33 piezocomposites
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are aimed at exploiting the d33 actuation/sensing mode. This can be done by aligning the poling
direction and the electric field with the fiber direction. The solution generally adopted is to use inter-
digitated electrodes (IDE) as shown in Figure 2.12b, which results in curved electric field lines, with
the majority of the electric field aligned in the fiber direction. The general layout of both types of
MFCs is represented in Figure 2.13. In the Smart Material documentation, the d33-type is referred
to as P1-type elongator (because d33 > 0) and the d31-type is referred to as P2-type contractor
(because d31 < 0). Piezoelectric plate elements implemented in SDT are based on the hypothesis

a) b)

Figure 2.13: General layout of a) d31-type MFCs and b) d33-type MFCs

that the poling direction is through the thickness, which is suitable for the P2-type MFCs, but not
for the P1-types. It is possible however with a simple analogy to model a P1-type MFC using the
piezoelectric plate elements of SDT. The analogy is based on the equality of free in-plane strain of
the transducer due to an applied voltage and capacitance. This requires two steps. The first one is
to replace the curved electric field lines by a uniform field aligned with the poling direction, equal to
E = V/p where p is the distance between the fingers of the interdigitated electrodes (Figure 2.14).

Figure 2.14: The curved electric field can be replaced by an equivalent electric field E = V/p

The second step is to express the equivalence in terms of free strains taking into account the difference
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of local axes (this is because direction 3 is the poling direction which is different in both cases, see
Figure 2.15).

S1|P2 = d31|P2
V
h = S3|P1 = d33|P1

V
p −→ d31|P2 = d33|P1

h
p

S2|P2 = d32|P2
V
h = S2|P1 = d32|P1

V
p −→ d32|P2 = d32|P1

h
p

(2.1)

As the thickness of the patch h is generally different from the distance between the fingers of the
inter-digitated electrodes p, a h/p factor must be used. For MFCs, h = 0.180mm and p = 0.500mm
so that h/p = 0.36. The PZT material used in MFCs has properties similar to the Ceramtec P502
material described in Section section 1.2.3 . If we assume that the active layer of the MFC is made
of a bulk piezoceramic of that type, the equivalent d31 is given by :

S1|P2 = d33|P1
h

p
= 440

0.18

0.5
(pC/N) = 158.4(pC/N) (2.2)

This value is lower than the d31 coefficient of the bulk ceramic (185 pC/N). This shows that al-
though the d33 coefficient is larger, the spacing of the fingers of IDE reduces the equivalent strain per
Volt (ppm/V). This spacing cannot however be made much smaller as the part of the electric field
aligned with the plane of the actuator would be significantly reduced. These findings are confirmed
by the tabulated values of free strain per volt (ppm/V) in the fiber direction given in the datasheet of
MFCs. Note that because the limiting value for actuation is the electric field and not the voltage, the
P1-type MFCs have a much higher maximum voltage limit (1500 V) than the P2-type MFCs (360
V), leading to the possibility to achieve higher free strain, but at the cost of very high voltage values.

Similarly, the dielectric permittivity must be adapted to model P1-type MFCs using an equivalent
P2-type MFC. This is done by expressing the equality of the capacitance:

C|P2 =
εT33|P2 b p

h
= C|P1 =

εT33|P1 b h

p
−→ εT33|P2 = εT33|P1

(
h

p

)2

(2.3)

The fact that piezoelectric fibers are mixed with an epoxy matrix introduces some orthotropy both
at the mechanical and the piezoelectric levels. This means that all the parameters of the compliance
matrix of an orthotropic material (1.29) must be identified, together with all piezoelectric coeffi-
cients (1.14). As we are integrating these transducers in plate structures, and assuming that the
poling is in the direction of the thickness with electrodes on top and bottom of the piezoelectric
layers, the compliance matrix reduces to:

[
sE
]

=



1
Ex

−νyx
Ey

0 0 0
−νxy
Ex

1
Ey

0 0 0

0 0 1
Gyz

0 0

0 0 0 1
Gxz

0

0 0 0 0 1
Gxy

 (2.4)
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a) b)

Figure 2.15: Electric fields and local axes used to model a P1-type MFC (b) with an equivalent
P2-type MFC (a)

with
νyx
Ey

=
νxy
Ex

, the matrix of piezoelectric coefficients to:

[d] =
[
d31 d32 0 0 0

]
; (2.5)

and the matrix of dielectric permittivities to a scalar:

[
εT
]

=
[
εT33

]
(2.6)

In order to model such orthotropic transducers, it is therefore necessary to have access to 6 mechan-
ical properties Ex, Ey, νxy, Gxy, Gxz, Gyz, two piezoelectric coefficients d31, d32, and one dielectric
constant εT33. In the following, direction x will be replaced by L standing for ’longitudinal’ (i.e. in
the fiber direction) and y by T for ’transverse’ (i.e. perpendicular to the fiber direction).

As there are no established and standardised techniques for testing piezocomposite transducers and
identifying their full set of properties, it is common to find only a limited set of these coefficients
in the datasheet of manufacturers. In addition, when such properties are given, they are measured
on the full packaged piezocomposite transducer, which makes it difficult to translate them to the
properties of each layer without making strong assumptions. The strategy adopted in this tutorial is
to consider that an MFC is made of 5 layers (Figure 2.16). The electrode layer is slightly orthotropic
due to the presence of the copper, but this effect can be neglected as it does not influence the overall
behavior of the transducer. The 4 outer layers are therefore considered as homogeneous layers with
the properties given in Table 2.2.
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Figure 2.16: A MFC can be modeled as a 5-layer composite with an inner active layer and four
passive layers

Material property value unit

Epoxy

E 2.6 GPa
ν 0.33
ρ 1500 kg/m3

Kapton

E 2.8 GPa
ν 0.3
ρ 1580 kg/m3

Table 2.2: Mechanical properties of the passive layers of MFCs

The mechanical, piezoelectric and dielectric properties of the active layers can be computed from
their constituents using piezoelectric homogenization, assuming that the PZT material is Ceramtec
P502, the matrix is epoxy with the properties given in Table 2.2, and the volume fraction of fibers is
86%. An analytical approach validated with detailed numerical computations has been developed in
[3] and [5]. The homogenized properties found in these studies are given in Tables 2.3 and 2.4. They
correspond to the MFC P2 AL and MFC P1 AL properties in m piezo Database. For the P1-type
MFCs, the values from Table 2.4 have been corrected with the h/p factor for the piezoelectric
properties, and the (h/p)2 factor for the dielectric constant. A value of h/p = 0.36 has been used.
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P2 MFC Homogenized Properties Symbol Unit Mixing rules

Young’s modulus EL GPa 47.17
ET GPa 16.98

Shear Modulus GLT GPa 6.03
GTz GPa 6.06
GLz GPa 17.00

Poisson’s ratio νLT - 0.395
Piezoelectric charge constants d31 pC/N -183

d32 pC/N -153
Dieletric relative constant (free) εT33/ε0 - 1600

Table 2.3: Homogenized properties of the active layer of P2-MFCs calculated using the analytical
mixing rules of [5]

P1 MFC Homogenized Properties Symbol Unit Mixing rules

Young’s modulus EL GPa 42.18
ET GPa 16.97

Shear Modulus GLT GPa 6.03
GTz GPa 17
GLz GPa 6.06

Poisson’s ratio νLT - 0.380
Piezoelectric charge constants d32 pC/N -176

d33 pC/N 436
Dieletric relative constant (free) εT33/ε0 - 1593

Table 2.4: Homogenized properties of the active layer of P1-MFCs calculated using the analytical
mixing rules of [5] (correction factor not included)

2.2.2 Example of MFC transducers integrated in plate structures

This example deals with a cantilever aluminum plate with two P1-type MFCs (M8528-P1) attached
on each side of the plate. The geometry is represented in Figure 2.17. The plate is meshed with
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rectangular piezoelectric elements. The main part of the beam is made of one layer (aluminum),
and the part where the two MFCs are attached is made of 11 layers (5 layers for each MFC and the
central aluminum layer).

Figure 2.17: Geometric details of the aluminum plate with 2 P1-type MFCs

(d piezo(’TutoPlate mfc-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_plate_MFC’)

%% Step 1 - Build mesh and visualize

% Meshing script,open with sdtweb d_piezo(’MeshMFCplate’)

model=d_piezo(’MeshMFCplate -cantilever’) % creates the model

cf=feplot(model); fecom(’colordatagroup-EdgeAlpha.1’);

Using the two MFCs as actuators, we define two combinations in order to induce bending or traction
and compute and represent the static response (Figure 2.18):
(d piezo(’TutoPlate mfc-s2’) )

%% Step 2 - Define actuators and sensors

data.def=[1 -1;1 1]’; % Define combinations for actuators

data.lab={’V-bend’;’V-Tract’};
data.DOF=[1682.21; 1683.21];

model=fe_case(model,’DofSet’,’V_{In}’,data);
% Add tip displacement sensors in z

model=fe_case(model,’SensDof’,’Tipt-z’,156.03); % Z-disp

model=fe_case(model,’SensDof’,’Tip-x’,156.01); % X-disp

model=fe_case(model,’SensDof’,’Tipb-z’,2964.03); % Z-disp

(d piezo(’TutoPlate mfc-s3’) )
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%% Step 3 - Compute static response

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); %

cf=feplot(model,d0); sens=fe_case(model,’sens’);

C1=fe_case(’SensObserve’,sens,d0);

fecom(’;view3;scd .1;colordataEvalA -edgealpha.1;undefline’)

a) b)

Figure 2.18: Static deformation under combined voltage actuation in a) bending, b) traction

The deformed shape under traction actuation highlights the fact that the induced strain in the
lateral direction is of opposite sign with respect to the longitudinal direction, which is due to the
fact that we are using a P1-type MFC. F1-type MFCs are based on the same layout as P1-types
but the fibers are oriented with an angle of 45◦. Such transducers can be easily modeled by changing
the angle of the active layer in the multi-layer sequence. Assume that the bottom MFC makes an
angle of 45◦ with respect to the axis of the beam and that the top MFC makes an angle of -45◦.
Each actuator induces both bending and torsion in the plate:
(d piezo(’TutoPlate mfc-s4’) )

%% Step 4 - Rotate fibers

model.il(2,[20 44])=[45 -45];

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % static response

cf.def=d1; fecom(’scd 1e-2’); C2=fe_case(’SensObserve’,sens,d1);

The torsion can be easily seen by looking at the deformed shape resulting from the combination of
the two MFCs with opposite signs which cancels the bending effect, as shown in Figure 2.19.

2.3 Using shaped orthotropic piezoelectric transducers
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Figure 2.19: Static deformation under combined voltage with opposite sign using two F1-type MFCs

2.3.1 Introduction

Typical piezoelectric transducers found on the market are rectangular or circular. Different re-
searchers have however studied the possibility to use more complex shapes. This idea was mainly
driven by the active control applications. The first developments in this direction concern triangular
actuators which will be used in the following example after recalling the theory behind the devel-
opment of such transducers. When used as an actuator, an applied voltage on a piezoelectric patch
results in a set of balanced forces on the supporting structure. The analytical expression of these
so-called equivalent forces has been derived analytically in [6] in the general case of an orthotropic
patch poled through the thickness with an arbitrary shape and attached to a supporting plate (as-
sumed to follow Kirchhoff plate theory). The analytical expressions show that these forces are a
function of the material properties of the piezo, as well as the expression of the normal to the contour
of the patch. In the case of a triangular patch, the equivalent forces are illustrated on Figure 2.20.
They consist in point forces P and P/2, and bending moments M1 and M2 whose expressions are:

P = −(e31 − e32) bl
b2

4
+l2

zmV

M1 = −e31zmV

M2 = −
b2

4
e31+l2e32
b2

4
+l2

zmV

(2.7)



2.3. USING SHAPED ORTHOTROPIC PIEZOELECTRIC TRANSDUCERS 65

These expressions show that the point forces are only present when the material is orthotropic
(e31 6= e32). An interesting application of the triangular actuator is to design it to be a point-force
actuator. This requires (i) to clamp the base of the triangle in order to cancel the bending moment
M1 and the two point forces P/2, (ii) to cancel M2. The result is a single point-force P at the tip
of the triangle. The cancelation of M2 requires to have [7]:

M2 = −
b2

4 e31 + l2e32

b2

4 + l2
zmV = 0 −→ b

l
= 2

√
−e32

e31
(2.8)

This expression shows that the point-force actuator can only be achieved when e31 and e32 are of
opposite sign. With a PZT ceramic, this is possible using inter-digitated electrodes, which result in
a compression in the lateral direction when the transducers elongates in the longitudinal direction.
A possibility is to use a triangular transducer based on the same principle as the P1 − type MFC.
The resulting force at the tip of the triangle is given by:

P = −e31
b

l
zm V (2.9)

Figure 2.20: Equivalent loads for an orthotropic piezoelectric actuator

Given the material properties of the active layer of P1-MFCs in Table 2.4, the values of e31 and e32
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are:
e31 =

(
EL

1−νTLνLT

)
d31 +

(
νLTET

1−νTLνLT

)
d32 = 18.32C/m2

e32 =
(

νTLEL
1−νTLνLT

)
d31 +

(
ET

1−νTLνLT

)
d32 = −0.1859C/m2

(2.10)

and the b/l ratio leading to a point load actuator is

b

l
= 2

√
−e32

e31
= 0.2015 (2.11)

Another possibility is to use a full piezoceramic instead of a composite, which is illustrated below.

2.3.2 Example of a triangular point load actuator

We consider an example similar to the one treated in [7] which consists in a 414mmx314mmx1mm
aluminum plate clamped on its edges, on which a triangular piezoelectric transducer is fixed on the
top surface in order to produce a point load, as illustrated in Figure 2.21. The piezoelectric material
used is SONOX P502 whose properties are given in Table 1.2 with the exception that the value of
νp = 0.4 in order to be in accordance with the value used in [7]. With these material properties, the
b/l ratio to obtain a point load actuator is b/l = 0.336 (this will be verified in the example script).
The triangular ceramic has a thickness of 180µm and is encapsulated between two layers of epoxy
(see properties in Table 2.2) which have a thickness of 60µm. The basis of the triangle is 33.6mm in
order to obtain the point load actuator (the height has a length of 100mm). One triangle is attached
to the top surface, and one to the bottom, and the transducers are driven out of phase in order to
induce pure bending of the plate and no in-plane motion.

2.3.3 Numerical implementation of the triangular point load actuator

The mesh used for the computations is shown in Figure 2.22 and is generated with:
(d piezo(’TutoPlate triang-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_Plate_Triang’)

%% Step 1 - Build Mesh using gmsh and visualize

% Meshing script can be viewed with sdtweb d_piezo(’MeshTrianglePlate’)

% --- requires gmsh

model=d_piezo(’MeshTrianglePlate’);

cf=feplot(model); fecom(’colordatapro’); fecom(’view2’)

The static response due to an applied voltage on the piezo actuators is computed as follows:
(d piezo(’TutoPlate triang-s2’) )



2.3. USING SHAPED ORTHOTROPIC PIEZOELECTRIC TRANSDUCERS 67

Figure 2.21: Description of the numerical case study for a point load actuator

Figure 2.22: Mesh of the aluminum plate with a triangular piezoelectric actuator
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%% Step 2 - Define actuators and sensors

model=fe_case(model,’SensDof’,’Tip’,7.03); % Displ sensor

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,[-1; 1],’DOF’,[100001; 100002]+.21));

(d piezo(’TutoPlate triang-s3’) )

%% Step 3 - Compute static response to voltage actuation

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0));

cf.def=d0; fecom(’colordataz -alpha .8 -edgealpha .1’)

fecom(’scd -.03’); fecom(’view3’);

and represented on Figure 2.23.

Figure 2.23: Static displacement due to voltage actuation on the triangular piezo

We now compute and compare the dynamic response of the plate excited with the triangular piezo
and a point force whose amplitude is computed using Equation ((2.9)). The computation is per-
formed with a reduced state-space model using 20 mode shapes:
(d piezo(’TutoPlate triang-s4’) )

%% Step 4 - Compute dynamic response with state-space model

[sys,TR]=fe2ss(’free 5 20 0 -dterm’,model);

C1=qbode(sys,linspace(0,500,1000)’*2*pi,’struct’); C1.name=’.’;

%% Point load actuation
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model=fe_case(model,’Remove’,’V-Act’); % remove piezo actuator

model=fe_case(model,’FixDof’,’Piezos’,[100001;100002]); %SC piezo electrodes

% Determine scaling factor, check b/l ratio and build point force

CC=p_piezo(’viewdd -struct’,model);

a=100; b=33.58;

zm=0.650e-3; V=1; e31=CC.e(1); A=-(e31*zm*V*b)/a; A=A*2; % Two triangles

bl= 2*sqrt(-CC.e(2)/CC.e(1));

data=struct(’DOF’,[7.03],’def’,A); data.lab=fe_curve(’datatype’,13);

model=fe_case(model,’DofLoad’,’PointLoad’,data);

% Static response to point load

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0));

ind=fe_c(d1.DOF,7.03,’ind’); d1p=d1.def(ind);

% Dynamic response (reduced modal model)

[sys,TR]=fe2ss(’free 5 20 0 -dterm’,model);

C2=qbode(sys,linspace(0,500,1000)’*2*pi,’struct’); C2.name=’-’;

% Compare frequency responses

ci=iiplot;

iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’);

The amplitude and phase of the vertical displacement at the tip of the triangle are represented for
both cases in Figure 2.24, showing the excellent agreement.

2.4 Vibration damping using a tuned resonant shunt circuit

2.4.1 Introduction

The idea of damping a structure via a resonant shunt circuit is very similar to the mechanical tuned
mass damper (TMD) concept. The mechanical TMD is replaced by a ’RL’ shunt circuit which,
together with the capacitance of the piezoelectric element to which it is attached, acts as a resonant
’RLC’ circuit. By tuning the resonance frequency of this circuit to the open-circuit (OC) resonance
frequency of the structure equipped with a piezoelectric transducer, one can achieve vibration re-
duction around the resonant peak of interest. The mechanism is based on the conversion of part of
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Figure 2.24: Dynamic response at the tip of the triangle due to (i) voltage actuation on the piezo
and (ii) point force at the tip of the triangle

the mechanical energy to electrical energy which is then dissipated in the resistive component of the
circuit.
The part of mechanical energy which is converted into electrical energy is given by the generalized
electro-mechanical coupling coefficient αi of the mode i of interest. In practice, this generalized cou-
pling coefficient can be computed based on the open-circuit (OC) and short-circuit (SC) frequencies
Ωi and ωi of the piezoelectric structure. Experimentally, these frequencies are usually obtained via
the measurement of the impedance (V/I) or the capacitance (Q/V) of the piezoelectric structure,
and one has:

αi =
Ω2
i − ω2

i

Ω2
i

(2.12)

Once αi is known for the mode of interest, the values of R and L can be computed. Several rules
exist to compute the optimal values of R and L [8]. We adopt here Yamada’s tuning rules which are
equivalent to Den Hartog’s tuning rules for the mechanical TMD. The first rule aims at tuning the
resonant circuit to the OC frequency Ωi of the piezoelectric structure:

δ =
Ωi

ωe
= 1 (2.13)

with

ωe =

√
1

LCi2
(2.14)
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where Ci2 is the capacitance of the piezoelectric element attached to the structure taken after the
resonant frequency of interest. Note that this value is in practice difficult to measure with precision.
In this example, we will take the value which is at the frequency corresponding to the mean value
between the SC resonant frequencies ωi and ωi+1. This first tuning rule allows to compute the value
of L. For different values of R, one can show that when plotting the response of the structure to
which the resonant shunt has been added for different values of R, all curves cross at two points P
and Q which are at the same height (Figure 2.25). The second tuning rule is aimed at finding the
optimal value of R which minimizes the response of the structure for the range of frequencies around
the natural frequency of interest and is given by:

R =

√
3α2

i

2− α2
i

1

Ci2Ωi
(2.15)

Figure 2.25: Response of the structure with and without and RL shunt : P and Q are at the same
height when δ = 1

2.4.2 Resonant shunt circuit applied to a cantilever beam

We illustrate the use of a resonant shunt with the following example of a cantilever beam. The
beam is has a length of 350 mm, a width of 25 mm and a height of 2 mm (Figure 2.26). Two
pairs of piezoelectric PIC 255 patches of dimensions 50 mm X 25 mm X 0.5 mm are glued on each
side of the beam starting at the cantilever side . The nodes associated to the electrical dofs of the
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four patches are numbered respectively [10001 10002] for the patches next to the clamping side, and
[20001 20002] for the other pair situated next to it.

Figure 2.26: Cantilever beam with two pairs of piezoelectric patches

Figure 2.27: Mesh of the cantilever beam showing the two pairs of piezoelectric patches on the left,
next to the clamp

We start by generating the mesh (Figure 2.27) and setting the damping in the model.
(d piezo(’TutoPz shunt-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_Shunt’)

%% Step 1 - Build mesh and visualize

% Meshing script can be viewed with sdtweb d_piezo(’MeshShunt’)

model=d_piezo(’meshshunt’);

model=stack_set(model,’info’,’DefaultZeta’,1e-4)

feplot(model); cf=fecom; fecom(’colordatapro’)

In order to implement the shunt, we will compute the capacitance curve of the first set of patches
used in phase opposition (bending) and extract the OC and SC first natural frequency of the can-
tilever beam. In order to do that, we define two combinations of patches for actuation (bending
using the first pair in opposition of phase, and bending using the second pair in opposition of phase),
one combination of charge sensors in opposition of phase (to compute the capacitance of the first
pair), and one sensor for tip displacement (Figure 2.26).

(d piezo(’TutoPz shunt-s2’) )
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%% Step 2 - Define actuators and sensors

% Actuators

data.def=[1 -1 0 0; 0 0 1 -1]’; % Define combinations for actuators

data.DOF=[10001 10002 20001 20002]’;

model=fe_case(model,’DofSet’,’V_In’,data);

% Sensors

r1=struct(’cta’,[1 -1],’DOF’,[10001;10002]+.21,’name’,’QS3+4’);

model=p_piezo(’ElectrodeSensQ’,model,r1);

model=fe_case(model,’SensDof’,’Tip’,1185.03);

sens=fe_case(model,’sens’);

We can now compute the response of the structure to the two bending actuators using a reduced state-
space model with 30 modes. The response of the combination of charge sensors is the capacitance
curve (Figure 2.28) of the first pair of piezo patches used in opposition of phase from which ω1 and
Ω1 are extracted to compute α1, and C12 is computed.

Figure 2.28: Capacitance (Q/V) of the first pair of piezo patches in bending. The resonance cor-
responds to ω1 and the anti-resonance to Ω1. C12 is the capacitance in the flat part after the
anti-resonance

w=linspace(0,1e3,1e4)’*2*pi;

[sys,TR]=fe2ss(’free 5 30 0 -dterm’,model);
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C1=qbode(sys,w,’struct’); C1.name=’no shunt’;

C1.X{2}={’V1’;’V2’}; C1.X{3}={’Q1’;’Tip’}

ci=iiplot;

iicom(’CurveReset’);iicom(’curveinit’,C1)

iicom(ci,’xlim[0 30]’) %

(d piezo(’TutoPz shunt-s3’) )

%% Step 3 - Determine parameters for shunt tuning

% Extract w1 and W1 and compute alpha_1

C=C1.Y(:,1);

% Find poles and zeros of impedance (1/jwC)

if exist(’findpeaks’,’file’); % requires findpeaks

[pksPoles,locsPoles]=findpeaks(abs(1./C)); Wi=w(locsPoles);

[pksZeros,locsZeros]=findpeaks(abs(C)); wi=w(locsZeros);

% concentrate on mode of interest (mode 1)

W1=w(locsPoles(1)); w1=w(locsZeros(1));

% Compute alpha for mode of interest

a1=sqrt((W1^2-w1^2)/W1^2);

% Compute Cs2 for mode of interest

i1=1; i2=locsZeros(1); i3=locsZeros(2);

dw2=w(i3)-w(i2); wCs2=w(i2)+dw2/2;

[y,i]=min(abs(w-wCs2)); Cs2=abs(C(i));

We can now use Yamada’s tuning rules to find R and L:

%% Determine shunt parameters (R and L) and apply it to damp 1st mode

% Tuning using Yamada’s rule

d=1; r=sqrt((3*a1^2)/(2-a1^2));

L_Yam=1/d^2/Cs2/W1^2; R_Yam=r/Cs2/W1;

and represent the FRF of the tip displacement due to bending actuation on the second pair of piezos
for the initial system and the system with the shunt (Figure 2.29). The shunt is implemented using
the feedback function of the Control toolbox.
(d piezo(’TutoPz shunt-s4’) )
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%% Step 4 - Compute dynamic response with optimal shunt

w=linspace(0,40,1e3)*2*pi; sys2=ss(sys.a,sys.b,sys.c,sys.d);

C1=qbode(sys2,w,’struct’); C1.name=’no shunt’;

C1.X{2}={’V1’;’V2’}; C1.X{3}={’Q1’;’Tip’}

% Implement shunt using feeback - requires control toolbox - compute FRF

A=tf([L_Yam R_Yam 0],1); % RL shunt in tf form

sys3=feedback(sys2,A,1,1,1);

C=freqresp(sys3,w); a=C(:); C2=C1; C2.Y=reshape(a,4,1000)’;

C2.name=’RL shunt’;

% Plot and compare curves

iicom(’CurveReset’);

iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(ci,’ch 4’)

end

Figure 2.29: Tip displacement due to the bending actuator of the second pair of piezo patches with
and without shunt
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2.5 Piezo volumes and transfers: accelerometer example

This application example deals with the determination of the sensitivity of a piezoelectric sensor to
base excitation.

2.5.1 Working principle of an accelerometer

By far the most common sensor for measuring vibrations is the accelerometer. The basic working
principle of such a device is presented in Figure 2.30(a). It consists of a moving mass on a spring and
dashpot, attached to a moving solid. The acceleration of the moving solid results in a differential
movement x between the mass M and the solid. The governing equation is given by,

Mẍ+ cẋ+ kx = −Mẍ0 (2.16)

In the frequency domain x/ẍ0 is given by,

x

ẍ0
=

−1

−ω2 + ω2
n + 2jξωωn

(2.17)

with ωn =
√

k
m and ξ = b/2

√
km and for frequencies ω << ωn, one has,

x

ẍ0
' −1

ω2
n

(2.18)

showing that at low frequencies compared to the natural frequency of the mass-spring system, x is
proportional to the acceleration ẍ0. Note that since the proportionality factor is −1

ω2
n

, the sensitivity

of the sensor is increased as ω2
n is decreased. At the same time, the frequency band in which the

accelerometer response is proportional to ẍ0 is reduced.

The relative displacement x can be measured in different ways among which the use of piezoelec-
tric material, either in longitudinal or shear mode (Figure 2.31). In such configurations, the strain
applied to the piezoelectric material is proportional to the relative displacement between the mass
and the base. If no amplifier is used, the voltage generated between the electrodes of the piezoelec-
tric material is directly proportional to the strain, and therefore to the relative displacement. For
frequencies well below the natural frequency of the accelerometer, the voltage produced is therefore
proportional to the absolute acceleration of the base.

2.5.2 Determining the sensitivity of an accelerometer to base excitation

A basic design of a piezoelectric accelerometer working in the longitudinal mode is shown in Fig-
ure 2.32. In this example, the casing of the accelerometer is not taken into account, so that the
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(a) (b)

Figure 2.30: Working principle of an accelerometer

Figure 2.31: Different sensing principles for standard piezoelectric accelerometers
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device consists in a 3mm thick rigid wear plate (10mm diameter), a 1mm thick piezoelectric element
(5mm diameter), and a 10mm thick (10mm diameter) steel proof mass. The mechanical properties
of the three elements are given in Table 2.5. The piezoelectric properties of the sensing element are
given in Table 2.6 and correspond to SONOX P502 iso property in m piezo Database. The sensing
element is poled through the thickness and the two electrodes are on the top and bottom surfaces.

Figure 2.32: Basic design of a piezoelectric accelerometer working in the longitudinal mode



2.5. PIEZO VOLUMES AND TRANSFERS: ACCELEROMETER EXAMPLE 79

Part Material E (GPa) ρ (kg/m3) ν

Wear plate Al2O3 400 3965 0.22
Sensing element Piezo 54 7740 0.44

Proof mass Steel 210 7800 0.3

Table 2.5: Mechanical properties of the wear plate, sensing element and proof mass

Property Value

d31 = d32 -185 10−12pC/N (or m/V )
d33 440 10−12pC/N (or m/V )
d15 = d24 560 10−12pC/N (or m/V )
εT33 = εT22 = εT11 1850 ε0

ε0 8.854 10−12Fm−1

Table 2.6: Piezoelectric properties of the sensing element

The sensitivity curve of the accelerometer, expressed in V/m/s2 is used to assess the response of
the sensor to a base acceleration in the sensing direction (here vertical). In order to compute this
sensitivity curve, one needs therefore to apply a uniform vertical base acceleration to the sensor and
to compute the response of the sensing element as a function of the frequency.

This can be done in different ways. The following scripts compare two approaches. The first one
consists in applying a uniform pressure on the base to excite the accelerometer. In this case, the
pressure is constant, but the acceleration of the base is not strictly constant due to the flexibility of
the wear plate. The second one consists in enforcing a constant vertical acceleration of all the nodes
at the bottom of the base. In this case the acceleration is constant over the whole bottom surface
of the accelerometer. The two approaches are compared in the following illustrative scripts.
(d piezo(’TutoAccel-s1’) )
The mesh of the accelerometer is produced with the following call to d piezo . It is shown in
Figure 2.33

% See full example as MATLAB code in d_piezo(’ScriptPz_accA’)

%% Step 1 - Build Mesh and visualize

% Meshing script can be viewed with sdtweb d_piezo(’MeshBaseAccel’)

model=d_piezo(’MeshBaseAccel’);

cf=feplot(model); fecom(’colordatagroup’);

set(gca,’cameraposition’,[-0.0604 -0.0787 0.0139])
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Figure 2.33: Mesh of the piezoelectric accelerometer. The different colors represent the different
groups
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The call includes the meshing of the accelerometer, the definition of material properties, as well as
the definition of electrodes. In addition, the bottom electrode is grounded, and both a voltage and
a charge sensor are defined for the top electrode. A displacement sensor at the center of the base is
defined in order to compute the sensitivity. The different calls used are:
(d piezo(’TutoAccel-s2’) )

%% Step 2 - Define sensors and actuators

% -MatID 2 requests a charge resultant sensor

% -vout requests a voltage sensor

model=p_piezo(’ElectrodeMPC Top sensor -matid 2 -vout’,model,’z==0.004’);

% -ground generates a v=0 FixDof case entry

model=p_piezo(’ElectrodeMPC Bottom sensor -ground’,model,’z==0.003’);

% Add a displacement sensor for the basis

model=fe_case(model,’SensDof’,’Base-displ’,1.03);

The sensitivity for the sensor used in a voltage mode is then computed using the following script:

% Remove the charge sensor (not needed)

model=fe_case(model,’remove’,’Q-Top sensor’);

% Normal surface force (pressure) applied to bottom of wear plate for excitation:

data=struct(’sel’,’z==0’,’eltsel’,’groupall’,’def’,1e4,’DOF’,.19);

model=fe_case(model,’Fsurf’,’Bottom excitation’,data);

% Other parameters

model=stack_set(model,’info’,’Freq’,logspace(3,5.3,200)’); % freq. for computation

(d piezo(’TutoAccel-s3’) )

%% Step 3 - Compute dynamic response (full) and plot Bode diagram

ofact(’silent’); d1=fe_simul(’dfrf’,model);

% Project on sensor

sens=fe_case(model,’sens’);

% Build a clean "curve" for iiplot display

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);C1.name=’DFRF’;C1.Ylab=’Base-Exc’;

C1.X{2}={’Sensor output(V)’;’Base Acc(m/s^2)’;’Sensitivity (V/m/s^2)’};
C1.Y(:,2)=C1.Y(:,2).*(-(C1.X{1}(:,1)*2*pi).^2); % Base acc =disp.*-w.^2

C1.Y(:,3)=C1.Y(:,1)./C1.Y(:,2); % Sensitivity=V/acc

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlog;ylog’);

C1.name=’Free-Voltage’;
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ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1);iicom ch3; iicom(’submagpha’);

The second approach consists in imposing a uniform displacement to the base of the accelerometer.
The script is:
(d piezo(’TutoAccel-s4’) )

%% Step 4 - Response with imposed displacement

% Remove pressure

model=fe_case(model,’remove’,’Bottom excitation’)

% Link dofs of base and impose unit vertical displacement

rb=feutilb(’geomrb’,feutil(’getnode z==0’,model),[0 0 0], ...

feutil(’getdof’,model));

rb=fe_def(’subdef’,rb,3); % Keep vertical displacement

model=fe_case(model,’DofSet’,’Base’,rb);

% compute

ofact(’silent’); model.DOF=[]; d1=fe_simul(’dfrf’,model);

% Project on sensor and create output

sens=fe_case(model,’sens’);

C2=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);C2.name=’DFRF’;C2.Ylab=’Imp-displ’;

% Build a clean "curve" for iiplot display

C2.X{2}={’Sensor output(V)’;’Base Acc(m/s^2)’;’Sensitivity (V/m/s^2)’};
C2.XLab{3}={’Freq’,’[Hz]’,[]};
C2.Y(:,2)=C2.Y(:,2).*(-(C2.X{1}*2*pi).^2); % Base acc

C2=sdsetprop(C2,’PlotInfo’,’sub’,’magpha’,’scale’,’xlog;ylog’);

C2.Y(:,3)=C2.Y(:,1)./C2.Y(:,2);% Sensitivity

C2.name=’Imp-Voltage’;

C2=feutil(’rmfield’,C2,’Ylab’); C1=feutil(’rmfield’,C1,’Ylab’);

ci=iiplot; iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’);

The two curves are compared in Figure 2.34. The behavior described in Figure 2.30 is clearly repro-
duced in both cases in the frequency band of interest, showing the flat part before the resonance.
The sensitivities are comparable, but as the mechanical boundary conditions are slightly different,
the eigenfrequencies do not match exactly.



2.5. PIEZO VOLUMES AND TRANSFERS: ACCELEROMETER EXAMPLE 83

Figure 2.34: Comparison of the sensitivities computed with a uniform base acceleration, and a
uniform base pressure
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The sensor can also be used in the charge mode. The following scripts compares the sensitivity
of the sensor used in the voltage and charge modes. The sensitivities are normalized to the static
sensitivity in order to be compared on the same graph, as the orders of magnitude are very different
(Figure 2.35). The charge sensor corresponds to a short-circuit condition which results in a lower
resonant frequency than the sensor used in a voltage mode where the electric field is present in
the piezoelectric material which results in a stiffening due to the piezoelectric coupling, as already
illustrated in Section 2.1 for a plate. Here the difference of eigenfrequency is however higher (about
10%) due to the fact that there is more strain energy in the piezoelectric element, and that it is used
in the d33 mode which has a higher electromechanical coupling factor than the d31 mode.
(d piezo(’TutoAccel-s5’) )

%% Step 5 - Compare charge and voltage mode for sensing

% Meshing script,open with sdtweb d_piezo(’MeshBaseAccel’)

model=d_piezo(’MeshBaseAccel’);

model=fe_case(model,’remove’,’V-Top sensor’);

% Short-circuit electrodes of accelerometer

model=fe_case(model,’FixDof’,’V=0 on Top Sensor’, ...

p_piezo(’electrodedof Top sensor’,model));

% Other parameters

model=stack_set(model,’info’,’Freq’,logspace(3,5.3,200)’);

% Link dofs of base and impose unit vertical displacement

rb=feutilb(’geomrb’,feutil(’getnode z==0’,model),[0 0 0], ...

feutil(’getdof’,model));

rb=fe_def(’subdef’,rb,3); % Keep vertical displacement

model=fe_case(model,’DofSet’,’Base’,rb);

% compute

ofact(’silent’); model.DOF=[]; d1=fe_simul(’dfrf’,model);

% Project on sensor and create output

sens=fe_case(model,’sens’);

C4=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C4.name=’DFRF’;C4.Ylab=’Imp-displ’;

% Build a clean "curve" for iiplot display

C4.X{2}={’Sensor output(C)’;’Base Acc(m/s^2)’;’Sensitivity (C/m/s^2)’};
C4.XLab{3}=’Freq [Hz]’;
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C4.Y(:,2)=C4.Y(:,2).*(-(C4.X{1}*2*pi).^2); % Base acc

C4=sdsetprop(C4,’PlotInfo’,’sub’,’magpha’,’show’,’abs’,’scale’,’xlog;ylog’);

C4.Y(:,3)=C4.Y(:,1)./C4.Y(:,2);% Sensitivity

C4.name=’Imp-Charge’;

% Normalize the sensitivities to plot on same graph

C6=C2; % save C6 as non-normalized

C2.Y(:,3)=C2.Y(:,3)./C2.Y(1,3);C4.Y(:,3)=C4.Y(:,3)./C4.Y(1,3);

C2=feutil(’rmfield’,C2,’Ylab’); C4=feutil(’rmfield’,C4,’Ylab’);

iicom(ci,’curvereset’);

iicom(ci,’curveinit’,{’curve’,C2.name,C2;’curve’,C4.name,C4});
iicom(’ch 3’); iicom(’submagpha’);

Figure 2.35: Comparison of the normalized sensitivities of the sensor used in the charge and voltage
mode

2.5.3 Computing the sensitivity curve using a piezoelectric shaker
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Experimentally, the sensitivity curve can be measured by attaching the accelerometer to a shaker
in order to excite the base. Usually, this is done with an electromagnetic shaker, but we illustrate
in the following example the use of a piezoelectric shaker for sensor calibration. The piezoelectric
shaker consists of two steel cylindrical parts with a piezoelectric disc inserted in between. The base
of the shaker is fixed and the piezoelectric element is used as an actuator: imposing a voltage dif-
ference between the electrodes results in the motion of the top surface of the shaker to which the
accelerometer is attached (Figure 2.36).

Figure 2.36: Piezoelectric accelerometer attached to a piezoelectric shaker for sensor calibration

The piezoelectric properties for the actuating element in the piezoelectric shaker are identical to the
ones of the sensing element given in Table 2.6 and it is poled through the thickness. A voltage is
applied to the actuator and the resulting voltage on the sensing element is computed. The sensitivity
is then computed by dividing the sensor response by the acceleration at the center of the wear plate
as a function of the excitation frequency. The mesh is represented in Figure 2.37 and is obtained
with:
(d piezo(’TutoAcc shaker-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_acc_shaker’)

%% Step 1 - Build mesh and visualize

% Meshing script,open with sdtweb d_piezo(’MeshPiezoShaker’)

model=d_piezo(’MeshPiezoShaker’);
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cf=feplot(model); fecom(’colordatapro’);

set(gca,’cameraposition’,[-0.0604 -0.0787 0.0139])

In the meshing script, a voltage actuator is defined for the piezoelectric disk in the piezo shaker by
setting the bottom electrode potential to zero, and defining the top electrode potential as an input:
(d piezo(’TutoAcc shaker-s2’) )

%% Step 2 - Define actuators and sensors

% -input "In" says it will be used as a voltage actuator

model=p_piezo(’ElectrodeMPC Top Actuator -input "Vin-Shaker"’,model,’z==-0.01’);

% -ground generates a v=0 FixDof case entry

model=p_piezo(’ElectrodeMPC Bottom Actuator -ground’,model,’z==-0.012’);

and the shaker is mechanically attached at the bottom.

After meshing, the script to obtain the sensitivity is:

% Voltage sensor will be used - remove charge sensor

model=fe_case(model,’remove’,’Q-Top sensor’);

% Frequencies for computation

model=stack_set(model,’info’,’Freq’,logspace(3,5.3,200)’);

(d piezo(’TutoAcc shaker-s3’) )

%% Step 3 - Compute response, voltage input on shaker

ofact(’silent’); model.DOF=[]; d1=fe_simul(’dfrf’,model);

% Project on sensor and create output

sens=fe_case(model,’sens’);

C5=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C5.name=’DFRF’;C5.Ylab=’Shaker-Exc’;

% Build a clean "curve" for iiplot display

C5.X{2}={’Sensor output(V)’;’Base Acc(m/s^2)’;’Sensitivity (V/m/s^2)’};
C5.Xlab{1}=’Freq [Hz]’;

C5.Y(:,2)=C5.Y(:,2).*(-(C5.X{1}*2*pi).^2); % Base acc

C5=sdsetprop(C5,’PlotInfo’,’sub’,’magpha’,’show’,’abs’,’scale’,’xlog;ylog’);

C5.Y(:,3)=C5.Y(:,1)./C5.Y(:,2);% Sensitivity

C5.name=’Shaker-Voltage’; ci=iiplot;

C5=feutil(’rmfield’,C5,’Ylab’);
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Figure 2.37: Mesh of the piezoelectric accelerometer attached to a piezoelectric shaker
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ci=iiplot;

iicom(ci,’curveinit’,C5); iicom(’ch 3’); iicom(’submagpha’);

The sensitivity curve obtained is shown in Figure 2.38. It is comparable around the natural frequency
of the accelerometer, but at low frequencies, the flat part is not correctly represented and a few
spurious peaks appear at high frequencies. These differences are due to the fact that the piezoelectric
shaker does not impose a uniform acceleration of the base of the sensor.

Figure 2.38: Sensitivity curve obtained with a piezoelectric shaker

2.6 Piezo volumes and advanced views : IDE example

This second example deals with a piezoelectric patch with inter-digitated electrodes (IDE). The
principle of such electrodes is illustrated in Figure 2.39 [9]. The continuous electrodes are replaced
by thin electrodes in the form of a comb with alternating polarity. This results in a curved electric
field. Except close to the electrodes, the electric field is aligned in the plane of the actuator. In
doing so, the extension of the patch in the plane is due to both the d31-mode and d33-mode. The
d33-mode is interesting because the value of d33 is 2 to 3 times higher than the d31, d32 coefficients.
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In addition, as d33 and d31 have opposite sign, the application of a voltage across the IDE will lead
to an expansion in the longitudinal direction, and a contraction in the lateral direction, and the
amplitudes will be different.

Figure 2.39: Electric field for a) continuous electrodes b) Inter-digitated electrodes

The behavior of a piezoelectric patch with interdigitated electrodes can be studied by considering a
representative volume element as shown in Fig 2.40.

Let us consider such a piezoelectric patch whose geometrical properties are given in Table 2.7. The
default material considered is again SONOX P502 iso (Table 2.6).

Property Value

lx 0.4 mm
ly 0.3 mm
p 0.7 mm
e 0.05 mm

Table 2.7: Geometrical properties of the piezoelectric patch

We compute the static response due to a unit voltage applied across the electrodes, and represent
the curved electric field:
(d piezo(’TutoPatch num IDE-s1’) )
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Figure 2.40: Definition of a representative volume element to study the behavior of a piezoelectric
patch with IDEs

% See full example as MATLAB code in d_piezo(’ScriptPz_Patch_Num_IDE’)

%% Step 1 - Build mesh

% Meshing script can be viewed with sdtweb d_piezo(’MeshIDEPatch’)

% Build mesh, electrodes and actuation

model=d_piezo([’MeshIDEPatch nx=10 ny=5 nz=14 lx=2000e-6’ ...

’ly=1500e-6 p0=3500e-6 e0=250e-6’]);

(d piezo(’TutoPatch num IDE-s2’) )

%% Step 2 - Compute response due to V and visualize

% low freq response to avoid rigid body modes

model=stack_set(model,’info’,’Freq’,10);

def=fe_simul(’dfrf’,model);

% Plot deformed shape

cf=feplot(model,def); fecom(’view3’); fecom(’viewy-90’); fecom(’viewz+90’)

fecom(’undef line’); fecom(’triax’) ; iimouse(’zoom reset’)

(d piezo(’TutoPatch num IDE-s3’) )

%% Step 3 - visualize electric field

cf.sel(1)={’groupall’,’colorface none -facealpha0 -edgealpha.1’};
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p_piezo(’viewElec EltSel "matid1" DefLen 250e-6 reset’,cf);

fecom(’scd 1e-10’)

p_piezo(’electrodeview -fw’,cf); % to see the electrodes on the mesh

iimouse(’zoom reset’)

The resulting deformation and electric field are represented in Fig 2.41. The mean strains S1, S2 and
S3 and the mean electric field in direction 3 (poling direction) are then computed. In this example,
the electric field is aligned with the poling direction, but is of opposite direction, resulting in a
negative value of the mean strain S3 (d33 is positive). Because d31 and d32 are negative, the mean
values of S1 and S2 are positive: when the patch contracts in direction 3, it is elongated in directions
1 and 2. By dividing the mean strains by the mean electric field in the poling direction, one should
recover the d31, d32 and d33 coefficients of the material. The mean value of E3 is however different
from the value which would be obtained if the electric field was uniform (continuous electrodes on
the sides of the patch). This value is considered here as the reference analytical value given by
E3 = V

p .
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a) b)

c)

Figure 2.41: a) Free deformation of the IDE patch under unit voltage actuation b) 3D Electric field
distribution and c) 2D Electric field

(d piezo(’TutoPatch num IDE-s4’) )

%% Step 4 - Compare efective values of constitutive law

% Decompose constitutive law

CC=p_piezo(’viewdd -struct’,cf); %

% Compute mean value of fields and deduce equivalent d_ij

% Uniform field is assumed for analytical values
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a=p_piezo(’viewstrain -curve -mean’,cf); % mean value of S1-6 and E1-3

fprintf(’Relation between mean strain on free structure and d_3i\n’);

E3=a.Y(9,1); disp({’E3 mean’ a.Y(9,1) -1/3500e-6 ’E3 analytic’})
disp([a.X{1}(1:3) num2cell([a.Y(1:3,1)/E3 CC.d(3,1:3)’]) ...

{’d_31’;’d_32’;’d_33’}])

The ratio between the mean of E3 and the analytical value is about 0.80, which means that the free
strain of an IDE patch with the geometrical properties considered in this example will be about 20 %
lower than if the electric field was uniform. In fact, the spacing of the electrodes in an IDE patch is
a compromise between the loss of performance due to the part of the piezoelectric material in which
the electric field is not aligned with the poling direction, and the distance between the electrodes
which, when increased, decreases the effective electric field for a given applied voltage. The total
charge on the electrodes and the charge density are then computed.
(d piezo(’TutoPatch num IDE-s5’) )

%% Step 5 - Charge visualisation and total on electrodes

p_piezo(’electrodeTotal’,cf)

% charge density on the electrodes

feplot(model,def);

cut=p_piezo(’electrodeviewcharge’,cf,struct(’EltSel’,’matid 1’));

fecom(’view3’); fecom(’viewy-90’); fecom(’viewz+90’); iimouse(’zoom reset’);

iimouse(’trans2d 0 0 0 1.6 1.6 1.6’)

Figure 2.42 shows the distribution of the charge density on the electrodes.

The capacitance of the patch can be computed and compared to the analytical value (for a uniform

field) given by CT =
εT (lx ly)

p :
(d piezo(’TutoPatch num IDE-s6’) )

%% Step 6 - Theoretical capacitance for uniform field

Ct=CC.epst_r(3,3)*8.854e-12*2000e-6*1500e-6/3500e-6;

% total charge on the electrodes = capacitance (unit voltage)

C=p_piezo(’electrodeTotal’,cf);

% Differences are due to non-uniform field, this is to be expected

disp({’C_{IDE}’ cell2mat(C(2,2)) Ct ’C analytic’})

The capacitance of the IDE patch is about 10% lower than the analytical value.
It is also interesting to plot color maps of strain and stress components in the patch , which can be
done using fe stress .

(d piezo(’TutoPatch num IDE-s7’) )
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Figure 2.42: Charge density on the electrodes resulting from a static unit voltage applied to the
IDEs

%% Step 7 - Stress and strain visualisation

% Stress field using fe_stress

c1=fe_stress(’stressAtInteg -gstate’,model,def);

cf.sel=’reset’;cf.def=fe_stress(’expand’,model,c1);

cf.def.lab={’T11’;’T22’;’T33’;’T23’;’T13’;’T12’;’D1’;’D2’;’D3’}; %

fecom(’colordata 99 -edgealpha.1’);

fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’Stress/V [MPa/V]’));

iimouse(’trans2d 0 0 0 1.6 1.6 1.6’)

Figure 2.43 shows the colormap of T1, T2 and T3. It is clear that the curved electrical field induces
important stress concentrations in the area close to the electrodes

The strains and electrical displacement can also be computed with fe stress , but this requires
to replace the piezoelectric material with a ’PiezoStrain’ material:

% Replace with ’PiezoStrain’ material

mo2=model; mo2.pl=m_piezo(’dbval 1 PiezoStrain’)

% Now represent strain fields using fe_stress

c1=fe_stress(’stressAtInteg -gstate’,mo2,def);

cf.sel=’reset’;cf.def=fe_stress(’expand’,mo2,c1);

cf.def.lab={’S11’;’S22’;’S33’;’S23’;’S13’;’S12’;’E1’;’E2’;’E3’};
fecom(’colordata 99 -edgealpha.1’);

fecom(’colorbar’,d_imw(’get’,’CbTR’,’String’,’Strain/V [m/mV]’));



96 CHAPTER 2. TUTORIAL

Figure 2.43: Colormap of stresses T1, T2 and T3 due to applied voltage on the patch with IDE



2.6. PIEZO VOLUMES AND ADVANCED VIEWS : IDE EXAMPLE 97

iimouse(’trans2d 0 0 0 1.6 1.6 1.6’)

Figure 2.44 shows the colormap of S1, S2 and S3. The strain is uniform in the central regio, but
there are strong variations in the areas under the electrodes

Figure 2.44: Colormap of strains S1, S2 and S3 due to applied voltage on the patch with IDE

Note that in this example, the poling direction has been considered to be aligned with the z-axis. In
practice, as the IDE patch is usually poled using the IDE electrodes, the poling direction is aligned
with the curved electric field lines. This difference of poling only concerns a few elements in the
mesh, and from a global point of view, it does not have an important impact on the assessment of
the performance of the patch, but it may have an important impact on the prediction of strains and
stresses around the electrode areas. Aligning the poling direction with the curved electric field lines
is possible but requires the handling of local basis which are oriented based on the computed electric
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field lines.

2.7 Periodic homogenization of piezocomposite transducers

In this example, we will show how to compute the homogeneous equivalent mechanical, piezoelectric
and dielectric properties of both P1 and P2-type MFCs. The methodology is general and can be
extended to other types of piezocomposites.

2.7.1 Constitutive equations

For d31 patches, the poling direction (conventionally direction 3) is normal to the plane of the patches
(Figure 2.45a) and according to the plane stress assumption T3 = 0. The electric field is assumed to
be aligned with the polarization vector (E2 = E1 = 0). The constitutive equations reduce to:

T1
T2
T4
T5
T6
D3


=


cE∗
11 cE∗

12 0 0 0 −e∗31
cE∗
12 cE∗

22 0 0 0 −e∗32
0 0 cE∗

44 0 0 0
0 0 0 cE∗

55 0 0
0 0 0 0 cE∗

66 0
e∗31 e∗32 0 0 0 εS∗

33





S1

S2

S4

S5

S6

E3


(2.19)

where the superscript ∗ denotes the properties under the plane stress assumption (which are not
equal to the properties in 3D).

Figure 2.45: Homogeneous models of the piezoelectric layers with electrodes : d31 and d33 piezoelec-
tric layers

For d33 patches, although the electric field lines do not have a constant direction, when replacing
the active layer by an equivalent homogeneous layer, we consider that the poling direction is that
of the fibers (direction 3, Figure 2.45b), and that the electric field is in the same direction. With
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this reference frame, the plane stress hypothesis implies that T1 = 0. The constitutive equations are
given by 

T2
T3
T4
T5
T6
D3


=


cE∗
22 cE∗

23 0 0 0 −e∗32
cE∗
32 cE∗

33 0 0 0 −e∗33
0 0 cE∗

44 0 0 0
0 0 0 cE∗

55 0 0
0 0 0 0 cE∗

66 0
e∗32 e∗33 0 0 0 εS∗

33





S2

S3

S4

S5

S6

E3


(2.20)

2.7.2 Homogenization of piezocomposites

Homogenization techniques are widely used in composite materials. They consist in computing the
homogeneous, equivalent properties of multi-phase heterogeneous materials. The homogenization
is performed on a so-called representative volume element (RVE) which is a small portion of the
composite which, when repeated in 1, 2 or 3 directions forms the full composite. In the case of flat
transducers considered here, the composite is periodic in 2 directions (the directions of the plane of
the composite) Equivalent properties are obtained by writing the constitutive equations (Equation
((2.19)) or ((2.20)) in this case) in terms of the average values of Ti, Si, Di, Ei on the RVE:

Ti = 1
V

∫
V TidV Di = 1

V

∫
V DidV

Si = 1
V

∫
V SidV Ei = 1

V

∫
V EidV

where denotes the average value.

For both types of piezocomposites, matrix
[
cE∗
]

is a function of the longitudinal (in the direction of
the fibers) and transverse in-plane Young’s moduli (EL and ET ), the in plane Poisson’s ratio νLT ,
the in-plane shear modulus GLT , and the two out-of-plane shear moduli GLz and GTz. Matrix [e∗]
is given by

[e∗] = [d]
[
cE∗
]

where
[d] =

[
d31 d32 0 0 0

]
in the case of d31 piezocomposites and

[d] =
[
d32 d33 0 0 0

]
in the case of d33 piezocomposites. Note that the coefficients dij are unchanged under the plane

stress hypothesis.
When used as sensors or actuators, piezocomposite transducers are typically equipped with two
electrodes. These electrodes impose an equipotential voltage on their surfaces, and the electrical
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variables are the voltage difference V across the electrodes, and the electrical charge Q. These two
variables are representative of the electrical macro variables which will be used in the numerical
models of structures equipped with such transducers : transducers are used either in open-circuit
conditions (Q = 0 or imposed) or short-circuit conditions (V = 0 or imposed). Instead of the average
values of Di and Ei, the macro variables Q and V are therefore used in the homogenization process.
For a homogeneous d33 transducer (Figure 2.46), the constitutive equations can be rewritten in terms
of these macro variables:



T2

T3

T4

T5

T6

Q


=



c
(SC∗)
22 c

(SC∗)
23 0 0 0 −e∗32/p

c
(SC∗)
32 c

(SC∗)
33 0 0 0 −e∗33/p

0 0 c
(SC∗)
44 0 0 0

0 0 0 c
(SC∗)
55 0 0

0 0 0 0 c
(SC)∗
66 0

e∗32A e∗33A 0 0 0 εs∗33A/p





S2

S3

S4

S5

S6

−V


(2.21)

where SC stands for ’short-circuit’ (V = 0), p is the length of the transducer, A is the surface of the
electrodes of the equivalent homogeneous transducer and Q is the charge collected on the electrodes.

Figure 2.46: Homogeneous model of the d33 piezocomposite and definition of the macro variables

For d31-piezocomposites, the approach is identical.

2.7.3 Definition of local problems

The RVE is made of two different materials. In order to find the homogeneous constitutive equations,
Equation ((2.21)) is written in terms of the average values of the mechanical quantities Si and Ti in
the RVE and the electrical variables Q and V defined on the electrodes:
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T2

T3

T4

T5

T6

Q


=



c22
(SC∗) c23

(SC∗) 0 0 0 −e32
∗/p

c32
(SC∗) c33

(SC∗) 0 0 0 −e33
∗/p

0 0 c44
(SC∗) 0 0 0

0 0 0 c55
(SC∗) 0 0

0 0 0 0 c66
(SC∗) 0

e32
∗A e33

∗A 0 0 0 ε33
S∗A/p





S2

S3

S4

S5

S6

−V


(2.22)

The different terms in Equation ((2.22)) can be identified by defining local problems on the RVE. The
technique consists in imposing conditions on the different strain components and V and computing
the average values of the stress and the charge in order to find the different coefficients. For the
electric potential, two different conditions (V = 0, 1) are used. For the mechanical part, we assume
that the displacement field is periodic in the plane of the transducer: on the boundary of the RVE,
the displacement can be written :

ui = Sij xj + vi (2.23)

where ui is the ith component of displacement, Sij is the average strain in the RVE (tensorial
notations are used), xj is the jth spatial coordinate of the point considered on the boundary, and vi
is the periodic fluctuation on the RVE. The fluctuation v is periodic in the plane of the transducer
so that between two opposite faces (noted A−/A+, B−/B+ and C−/C+, Figure 2.47), one can write
(v(xK+

j ) = v(xK−j ), K = A,B,C) :

uK+
i − uK−i = Sij (xK

+

j − xK−j ) K = A,B,C (2.24)

Because we consider a plate with the plane stress hypothesis T1 = 0, equation (2.24) should not be
satisfied for K = A and j = 1 (no constraint on the normal displacement on faces A+ and A−). For
a given value of the average strain tensor (Sij), equation ((2.24)) defines constraints between the
points on each pair of opposite faces. This is illustrated in Figure 2.48, where an average strain S2

is imposed on the RVE and the constraints are represented for u2 on faces B− and B+.
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Figure 2.47: Definition of pairs of opposite faces on the RVE

Note that these constraints do not impose that the faces of the RVE remain plane, which is important
for the evaluation of the shear stiffness coefficients.

Figure 2.48: Example of an average strain S2 imposed on the RVE and associated periodic conditions

In total, six local problems are needed to identify all the coefficients in ((2.22)) (Figure 2.49). The
first problem consists in applying a difference of potential V to the electrodes of the RVE and
imposing zero displacement on all the faces (except the top and bottom). In the next five local
problems, the difference of potential is set to 0 (short-circuited condition), and five deformation
mechanisms are induced. Each of the deformation mechanisms consists in a unitary strain in one of
the directions (with zero strain in all the other directions). For each case, the average values of Ti
and Si, and the charge accumulated on the electrodes Q, are computed, and used to determine all
the coefficients in ((2.22)), from which the engineering constants are determined.
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Figure 2.49: The six local problems solved by the finite element method in order to compute the
homogenized properties of d31-MFCs

2.7.4 Application of periodic piezoelectric homogenization to P2-MFCs

We are going to compute the homogeneous properties of a P2-type MFC with varying volume frac-
tion of piezoelectric fibers. We first define the range of volume fractions to compute the homogeneous
properties and the dimensions of the RVE.

(d piezo(’TutoPz P2 homo-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_P2_homo’)

%% Step 1 - Meshing of RVE

% Meshing script can be viewed with sdtweb d_piezo(’MeshHomoMFCP2’)

Range=fe_range(’grid’,struct(’rho’,[0.001 linspace(0.1,0.9,9) .999], ...

’lx’,.300,’ly’,.300,’lz’,.180,’dd’,0.04));

Then for each value of the volume fraction of piezoelectric fibers ρ, we compute the solution of the
six local problems, the average value of stress, strain and charge. From these values we extract the
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engineering mechanical properties, the piezoelectric and dielectric properties.

(d piezo(’TutoPz P2 homo-s2’) )

%% Step 2 - Loop on volume fraction and compute homogenize properties

for jPar=1:size(Range.val,1)

RO=fe_range(’valCell’,Range,jPar,struct(’Table’,2));% Current experiment

% Create mesh

model= ...

d_piezo(sprintf([’meshhomomfcp2 rho=%0.5g lx=%0.5g ly=%0.5g’ ...

’lz=%0.5g dd=%0.5g’],[RO.rho RO.lx RO.ly RO.lz RO.dd]));

% Define the six local problems

RB=struct(’CellDir’,[max(model.dx) max(model.dy) max(model.dz)],’Load’, ...

{{’e11’,’e22’,’e12’,’e23’,’e13’,’vIn’}});
% Periodicity on u,v,w on x and y face

% periodicity on u,v only on the z face

RB.DirDofInd={[1:3 0],[1:3 0],[1 2 0 0]};
% Voltage DOFs are always eliminated from periodic conditions

% Compute the deformation for the six local problems

def=fe_homo(’RveSimpleLoad’,model,RB);

% Represent the deformation of the RVE

cf=comgui(’guifeplot-reset’,2);cf=feplot(model,def); fecom(’colordatamat’)

% Compute stresses, strains and electric field

a1=p_piezo(’viewstrain -curve -mean -EltSel MatId1 reset’,cf); % Strain epoxy

a2=p_piezo(’viewstrain -curve -mean -EltSel MatId2 reset’,cf); % Strain piezo

b1=p_piezo(’viewstress -curve -mean- EltSel MatId1 reset’,cf); % Stress epoxy

b2=p_piezo(’viewstress -curve -mean- EltSel MatId2 reset’,cf); % Stress piezo

% Compute charge on electrodes

mo1=cf.mdl.GetData;

i1=fe_case(mo1,’getdata’,’Top Actuator’);i1=fix(i1.InputDOF);

mo1=p_piezo(’electrodesensq TopQ2’,mo1,struct(’MatId’,2,’InNode’,i1));

mo1=p_piezo(’electrodesensq TopQ1’,mo1,struct(’MatId’,1,’InNode’,i1));
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c1=fe_case(’sensobserve’,mo1,’TopQ1’,cf.def); q1=c1.Y;

c2=fe_case(’sensobserve’,mo1,’TopQ2’,cf.def); q2=c2.Y;

% Compute average values:

a0=a1.Y(1:6,:)*(1-RO.rho)+a2.Y(1:6,:)*RO.rho;

b0=b1.Y(1:6,:)*(1-RO.rho)+b2.Y(1:6,:)*RO.rho;

q0=q1+q2; % Total charge is the sum of charges on both parts of electrode

% Compute C matrix

C11=b0(1,1)/a0(1,1); C12=b0(1,2)/a0(2,2); C22=b0(2,2)/a0(2,2);

C44=b0(4,4)/a0(4,4); C55=b0(5,5)/a0(5,5); C66=b0(6,3)/a0(6,3);

sE=inv([C11 C12; C12 C22]);

% Extract mechanical engineering constants

E1(jPar)=1/sE(1,1); E2(jPar)=1/sE(2,2); nu12(jPar)=-sE(1,2)*E1(jPar);

nu21(jPar)=-sE(1,2)*E2(jPar);G12(jPar)=C66; G23(jPar)=C44; G13(jPar)=C55;

% Extract piezoelectric properties

e31(jPar)=b0(1,6)*RO.lz; e32(jPar)=b0(2,6)*RO.lz;

d=[e31(jPar) e32(jPar)]*sE; d31(jPar)=d(1); d32(jPar)=d(2);

% Extract dielectric properties

eps33(jPar)=-q0(6)*RO.lz/(RO.lx*RO.ly);

eps33t(jPar)=eps33(jPar)+ [d31(jPar) d32(jPar)]*[e31(jPar); e32(jPar)];

end % Loop on rho0 values

Figure 2.50 represents the solution of the six local problems for ρ = 0.6.
We can now plot the evolution of the homogeneous properties of the P2-type MFC as a function of
the volume fraction ρ:
(d piezo(’TutoPz P2 homo-s3’) )

%% Step 3 - Homogeneous properties as a function of volume fraction

rho0=Range.val(:,strcmpi(Range.lab,’rho’));

out=struct(’X’,{{rho0,{’E_T’,’E_L’,’nu_{LT}’,’G_{LT}’,’G_{Tz}’,’G_{Lz}’, ...

’e_{31}’,’e_{32}’,’d_{31}’,’d_{32}’,’epsilon_{33}^T’}’}},’Xlab’,...
{{’\rho’,’Component’}},’Y’,[E1’ E2’ nu21’ G12’ G13’ G23’ e32’ e31’ ...
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Figure 2.50: Solutions of the six local problems on the RVE for ρ = 0.6 for a P2-type MFC
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d32’ d31’ eps33t’/8.854e-12]);

ci=iiplot; iicom(’CurveReset’);

iicom(ci,’CurveInit’,’P2-MFC homogenization’,out);

Figure 2.51 represents the evolution of the mechanical properties and Figure 2.52 represents the
evolution of the piezoelectric and dielectric properties as a function of ρ. The properties of MFC
transducers correspond to the value of ρ = 0.86.

Figure 2.51: Evolution of the homogeneous mechanical properties of a P2-type piezocomposite as a
function of ρ

2.7.5 Application of periodic piezoelectric homogenization to P1-MFCs

We are now going to compute the homogeneous properties of a P1-type MFC with varying volume
fraction of piezoelectric fibers. We first define the range of volume fractions to compute the homo-
geneous properties and the dimensions of the RVE.

(d piezo(’TutoPz P1 homo-s1’) )

% See full example as MATLAB code in d_piezo(’ScriptPz_P1_homo’)

%% Step 1 - Meshing or RVE and definition of volume fractions

% Meshing script can be viewed with sdtweb d_piezo(’MeshHomoMFCP1’)
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Figure 2.52: Evolution of the homogeneous piezoelectric and dielectric properties of a P2-type
piezocomposite as a function of ρ

Range=fe_range(’grid’,struct(’rho’,[0.001 linspace(0.1,0.9,9) .999], ...

’lx’,.18,’ly’,.18,’lz’,1.080,’e’,0.09,’dd’,0.04));

Then for each value of the volume fraction of piezoelectric fibers ρ, we compute the solution of the
six local problems, the average value of stress, strain and charge. From these values we extract the
engineering mechanical properties, the piezoelectric and dielectric properties.

(d piezo(’TutoPz P1 homo-s2’) )

%% Step 2 - Loop on volume fractions and computation of homogenized properties

for jPar=1:size(Range.val,1)

RO=fe_range(’valCell’,Range,jPar,struct(’Table’,2));% Current experiment

% Create mesh

model=...

d_piezo(sprintf([’meshhomomfcp1 rho=%0.5g lx=%0.5g ly=%0.5g lz=%0.5g’ ...

’ e=%0.5g dd=%0.5g’],[RO.rho RO.lx RO.ly RO.lz RO.e RO.dd]));

%%

RB=struct(’CellDir’,[max(model.dx) max(model.dy) max(model.dz)],’Load’, ...
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{{’e33’,’e11’,’e23’,’e12’,’e13’,’vIn’}});
% It seems fe_homo reorders the strains

% Periodicity on u,v,w on x and z face

% periodicity on u,w only on the y face

% Voltage DOFs are always eliminated from periodic conditions

RB.DirDofInd={[1:3 0],[1 0 3 0],[1:3 0]};
def=fe_homo(’RveSimpleLoad’,model,RB);

cf=comgui(’guifeplot-reset’,2);

cf=feplot(model,def); fecom(’colordatamat’); fecom(’triax’)

% Electric field for Vin

p_piezo(’electrodeview -fw’,cf); % to see the electrodes on the mesh

cf.sel(1)={’groupall’,’colorface none -facealpha0 -edgealpha.1’};
p_piezo(’viewElec EltSel "matid1:2" DefLen 0.07 reset’,cf);

fecom(’scd 1e-10’)

% Compute stresses, strains and electric field

a1=p_piezo(’viewstrain -curve -mean -EltSel MatId1 reset’,cf); % Strain S epoxy

a2=p_piezo(’viewstrain -curve -mean -EltSel MatId2 reset’,cf); % Strain S piezo

b1=p_piezo(’viewstress -curve -mean- EltSel MatId1 reset’,cf); % Stress T

b2=p_piezo(’viewstress -curve -mean- EltSel MatId2 reset’,cf); % Stress T

% Compute charge

mo1=cf.mdl.GetData;

i1=fe_case(mo1,’getdata’,’Top Actuator’);i1=fix(i1.InputDOF);

mo1=p_piezo(’electrodesensq TopQ2’,mo1,struct(’MatId’,2,’InNode’,i1));

mo1=p_piezo(’electrodesensq TopQ1’,mo1,struct(’MatId’,1,’InNode’,i1));

c1=fe_case(’sensobserve’,mo1,’TopQ1’,cf.def); q1=c1.Y;

c2=fe_case(’sensobserve’,mo1,’TopQ2’,cf.def); q2=c2.Y;

% Compute average values:

a0=a1.Y(1:6,:)*(1-RO.rho)+a2.Y(1:6,:)*RO.rho;

b0=b1.Y(1:6,:)*(1-RO.rho)+b2.Y(1:6,:)*RO.rho;

q0=q1+q2; %total charge is the sum of charges

% Compute C matrix

C11=b0(3,2)/a0(3,2); C12=b0(3,1)/a0(1,1); C22=b0(1,1)/a0(1,1);

C44=b0(5,5)/a0(5,5); C55=b0(4,4)/a0(4,4); C66=b0(6,3)/a0(6,3);
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sE=inv([C11 C12; C12 C22]);

E1(jPar)=1/sE(1,1); E2(jPar)=1/sE(2,2); nu12(jPar)=-sE(1,2)*E1(jPar);

nu21(jPar)=-sE(1,2)*E2(jPar);

e33(jPar)=b0(3,6)*RO.lz;

e31(jPar)=b0(1,6)*RO.lz;

eps33(jPar)=-q0(6)*RO.lz/(RO.ly*RO.lx);

d=[e33(jPar) e31(jPar)]*sE; d33(jPar)=d(1); d31(jPar)=d(2);

eps33t(jPar)=eps33(jPar)+ [d33(jPar) d31(jPar)]*[e33(jPar); e31(jPar)];

G12(jPar)=C44;

G23(jPar)=C66;

G13(jPar)=C55;

end % loop on Rho values

Figure 2.53 represents the solution of the six local problems for ρ = 0.6.

Figure 2.53: Solutions of the six local problems on the RVE for ρ = 0.6

Figure 2.54 represents the inhomogeneous electric field for the sixth local problem (applied voltage)
and ρ = 0.6.
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Figure 2.54: Electric field for the sixth local problem (applied voltage) on the RVE of a P1-type
MFC for ρ = 0.6
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We can now plot the evolution of the homogeneous properties of the P1-type MFC as a function of
the volume fraction ρ

(d piezo(’TutoPz P1 homo-s3’) )

%% Step 3 - Plot homogeneous properties as a function of volume fraction

rho0=Range.val(:,strcmpi(Range.lab,’rho’));

out=struct(’X’,{{rho0,{’E_L’,’E_T’,’nu_{LT}’,’G_{LT}’,’G_{Lz}’,’G_{Tz}’, ...

’e_{31}’,’e_{33}’,’d_{31}’,’d_{33}’,’epsilon_{33}^T’}’}},’Xlab’,...
{{’\rho’,’Component’}},’Y’,[E1’ E2’ nu12’ G12’ G13’ G23’ e31’ e33’ ...

d31’ d33’ eps33t’/8.854e-12]);

ci=iiplot;

iicom(’CurveReset’);

iicom(ci,’CurveInit’,’P1-MFC homogenization’,out);

Figure 2.55 represents the evolution of the mechanical properties and Figure 2.56 represents the
evolution of the piezoelectric and dielectric properties as a function of ρ. The properties of MFC
transducers correspond to the value of ρ = 0.86.

Figure 2.55: Evolution of the homogeneous mechanical properties of a P1-type piezocomposite as a
function of ρ

All the properties match well the results presented in [3]
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Figure 2.56: Evolution of the homogeneous piezoelectric and dielectric properties of a P1-type
piezocomposite as a function of ρ

2.8 External links

References to external documents. In SDT use sdtweb(’ref’) to open the page.

• hexa8 element function in SDT see hexa8.

• feplot SDT function of mesh display, see feplot.

• FindNode SDT help on node selection, see findnode.

• fe2ss building of state space models fe2ss.

• DofSet SDT entry for enforced displacement. See fe case#DofSet.

• SensDOF SDT entry sensors See fe case#SensDOF.

• 2 documentation of composite shell, see p shell#2.

• p solid element property function for volumes, p solid

• m elastic material property function , m elastic

• resultant sensor#resultant

http://www.sdtools.com/help/hexa8.html
http://www.sdtools.com/help/feplot.html
http://www.sdtools.com/help/findnode.html
http://www.sdtools.com/help/fe2ss.html
http://www.sdtools.com/help/fe_case.html#DofSet
http://www.sdtools.com/help/fe_case.html#SensDOF
http://www.sdtools.com/help/p_shell.html#2
http://www.sdtools.com/help/p_solid.html
http://www.sdtools.com/help/m_elastic.html
http://www.sdtools.com/help/sensor.html#resultant
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• fe simul access to base solvers fe simul

• end

http://www.sdtools.com/help/fe_simul.html
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Piezo related functions

d piezo support for demonstration of piezo capabilities
p piezo piezoelectric volume and shell property handling
m piezo piezoelectric material property handling



d piezo

Purpose
Support function for piezoelectric demos

Syntax

sdtweb(’_taglist’,’d_piezo’) % display contents

Accepted commands are

Script

These commands group sample scripts. Use d piezo to display tag list and see available contents.

MeshPlate

Meshing utilities for the placement of piezoelectric patches on a supporting structure (flat plate for
now).
The options are specified in a structure with fields

• .list : defines a list of features to be introduced with columns giving name,LamSpec,Geo,
name laminate specification and shape options.

• .unit : gives the model unit (needed since patch dimensions are always given in mm).

The laminate specification string is composed of the following

• BaseIdi gives the ProId of the base laminate which is then used to figure out the position of
patches.

• +Patch or -Patch to place a patch above or below the base laminate.

• Patch itself is a specification of a patch material and geometry. The list of implemented patch
can be obtained using m piezo Patch

• .In to specify that the patch has an enforced voltage.

The geometry/position specification string Geo can be

• a specification of the patch corner and orientation such as xc=.03 yc=.05 ang=30 if the patch
geometry is specified using the laminate specification.

• rect shapes [xc lx nx yc ly ny alpha MatId ProId] where MatId and ProId are filled
automatically if not provided.
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• circ shapes [xc yc rc lc (MatId ProId)]

• global lx=.4 ly=.3 lc=.02 -Sens. The option -Sens generates a sensor entry correspond-
ing to normal displacement of the initial mesh. Alternatively you can add a sensor configuration
SensDOF entry see sdtweb(’sensor#scell’) or sdtweb(’sensor#sstruct’).

% Start by defining properties of the underlying laminate

mdl=struct(’Node’,[],’Elt’,[], ... % empty model

’pl’, ... % composite layer property

[1 fe_mat(’m_elastic’,’SI’,1) 42.5e9 .042 1490 3.35e9 .01], ...

’il’, ... % laminate definition (6 layers at 0,90,0,90,0,90)

p_shell([’dbval 1 laminate 1 2.167e-4 0 1 2.167e-4 90 ’ ...

’1 2.167e-4 0 1 2.167e-4 90 1 2.167e-4 0 1 2.167e-4 90’]), ...

’unit’,’SI’);

RG=struct;

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, mdl,’global lx=.4 ly=.3 lc=.02’

’Act1’,’BaseId1 +SmartM.MFC-P1.2814 -SmartM.MFC-P1.2814.in’,’xc=.35 yc=.25 ang=30’

’Sen2’,’BaseId1 +SmartM.MFC-P1.2814’,’xc=.03 yc=.05 ang=30’

’Sen3’,’BaseId1 +Noliac.NCE51.OD25TH1’,’xc=.05 yc=.25’

};
cf=feplot;d_piezo(’MeshPlate’,RG);cf.mdl.name=’Plate with piezo’;

p_piezo(’electrodeinfo’,cf.mdl.GetData)

matgui(’jil’,cf);matgui(’jpl’,cf); % Display properties

The following illustrates transient simulation to a load on a specific piezo

model=cf.mdl.GetData; model=p_piezo(’electrode2case’,model);

opt=fe_time(’TimeOpt Newmark .25 .5 0 .3e-6 200’);

opt.AssembleCall=’assemble -fetime Load’;

%opt.FinalCleanupFcn=’out.DOF=model.DOF;

%out.def=[Case.T*out.def+Case.TIn*[0 ft(1:end-1)’’]];’;

model=stack_set(model,’info’,’Rayleigh’,[0 2*.0025/200e3]);

def=fe_time(opt,cf.mdl);def.name=model.name;

cf.def=def; fecom(’colordataevalRadZ-edgealpha0’);fecom(’scc1e-10’);

Mesh

Patch Simple volume patch.
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Plate Generic script for arbitrary placement of patches on a flat plate. A list of shapes can be given
as a cell array. This is considered as a demo since it currently only supports a rectangular base
plate.
GammaS build a weighting for surface control.
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m piezo

Purpose
Material function for piezoelectric solids

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 2 for tutorial calls. Accepted commands are

[ Database, Dbval] [-unit TY] [,MatiD]] Name

m piezo contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.
Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric
properties and contains a reference ElasMatId to an elastic material used for the elastic properties
of the material (see m elastic for input formats).

m_piezo(’info’) % List of materials in data base

% database piezo and elastic properties

pl=m_piezo(’dbval 3 -elas 12 Sample_ULB’)

Theoretical details on piezoelectric materials are given in chapter 1. The m piezo Const and
BuildConstit commands support integration constant building for piezo electric volumes integrated
in the standard volume elements. Element properties are given by p solid entries, while materials
formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option
structure with fields

• .name of the form ProIdval+patchName. For example ProId1+SmartM.MFC-P1.2814.

• MatId value for the initial MatId.

m piezo(’patch’) lists currently implemented geometries. In particular

• Noliac.Material.Geometry is used for circular patches by Noliac. Fields for the geometry
are

– OD outer diameter (mm).
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– TH Thickness (mm). To specify a milimiter fraction replace the . by and . For example
TH0 7 is used for TH=0.7 mm.

– ID inner diameter (mm) (optional for piezo rings).

• SmartM.Material.Geometry is used for circular patches by Noliac. The geometry is coded
assuming a rectangle in mm. Thus 2814 corresponds to an 28 x 14 mm active rectangle.

The piezoelectric constants can be declared using the following sub-types

1 : Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 eps1T eps2T eps3T EDType]

These simplified piezoelectric properties (1.54) can be used for PVDF, but also for PZT if shear
mode actuation/sensing is not considered (d24 = d15 = 0). For EDType==0 on assumes d is given.
For EDType==1, e is given. Note that the values of εT (permitivity at zero stress) should be given
(and not εS).

2 : General 3D piezo

[ProId Type ElasMatId d 1:18 epsT 1:9]

d 1:18 are the 18 constants of the [d] matrix (see section 1.2.1 ), and epsT 1:9 are the 9 constants
of the

[
εT
]

matrix. One reminds that strains are stored in order xx, yy, zz, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e 1:18 epsT 1:9]

e 1:18 are the 18 constants of the [d] matrix, and epsT 1:9 are the 9 constants of the
[
εT
]

matrix
in the constitutive law (see section 1.2.1 ).

See also
p piezo.
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p piezo

Purpose
Property function for piezoelectric shells and utilities associated with piezoelectric models.

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section 2 for tutorial calls. Accepted commands are

ElectrodeMPC

[model,InputDOF(end+1,1)]=p piezo(’ElectrodeMPC Name’,model,’z==5e-5’); defines the isopo-
tential constraint as a case entry Name associated with FindNode command z==5e-5. An illustration
is given in section 2.5 .
Accepted command options are

• -Ground defines a fixed voltage constraint FixDof,V=0 on Name.

• -Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.

• MatIdi is used to define a resultant sensor to measure the charge associated with the electrode.
Note that the electrode surface must not be inside the volume with MatIdi. If that is the case,
you must arbitrarily decompose your mesh in two parts with different MatId. You can also
generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the
MatIdi based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSensQ 1682 Q-Base’,model); adds a charge sensor (resultant) called
Q-Base on node 1682. (See (1.59) for theory).
For shells, the node number is used to identify the p piezo shell property and thus the associated
elements. It is reminded that p piezo entries must be duplicated when multiple patches are used.
For volumes, the p piezo ElectrodeMPC should be first defined, so that it can be used to obtain
the electrode surface information.
Note that the command calls fe case(’SensMatch’) so that changes done to material properties
after this call will not be reflected in the observation matrix of this sensor.
To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify
a data structure with observation .cta at multiple .DOF as illustrated below.
For a voltage sensor, you can simply use a DOF sensor
model=fe case(model,’SensDof’,’V-Base’,1682.21).
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model=d_piezo(’meshULBPlate cantilever’); % creates the model

% If you don’t remember the electrode node numbers

p_piezo(’ElectrodeDOF’,model)

% Combined charge

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’QS2+3’);

model=p_piezo(’ElectrodeSensQ’,model,r1);

sens=fe_case(model,’sens’);

% Combined voltage

r1=struct(’cta’,[1 1],’DOF’,[1684;1685]+.21,’name’,’VS2+3’);

model=fe_case(model,’SensDof’,r1.name,r1);

sens=fe_case(model,’sens’);sens.lab

ElectrodeDOF

p piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode. With no name
for selection p piezo(’ElectrodeDof’,model) the command returns the list of electrode DOFs
based on MPC defined using the ElectrodeMPC command or p piezo shell entries. Use ElectrodeDof.*
to get all DOFs.

ElectrodeView ...

p piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a clear text summary
of electrode information. To only get the summary, pass a model model rather than a pointer cf to
a feplot figure.
p piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the visualization of
charge density. You should be aware that only resultant charges at nodes are known. For proper
visualization a transformation from charge resultant to charge density is performed, this is known
to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to gener-
ate appropriate case entries : V In for enforced voltage actuators, V Out for voltage measurements,
Q Out for charge sensors.

ElectrodeInit

ElectrodeInit analyses the model to find electric master DOFs in piezo-electric shell properties or
in MPC associated with volume models.

Tab
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Tab commands are used to generate tabulated information about model contents. The calling format
is p piezo(’TabDD’,model). With no input argument, the current feplot figure is used. Currently
generated tabs are

• TabDD constitutive laws

• TabPro material and element parameters shown as java tables.

View

p piezo(’ViewDD’,model) displays information about piezoelectric constitutive laws in the current
model.
p piezo(’ViewElec ...’,model) is used to visualize the electrical field. An example is given
in section 2.6 . Command options are DefLenval to specify the arrow length, EltSelval for the
selection of elements to be viewed, Reset to force reinit of selection.
ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a
layered composite, see p shell 2, and an electrode definition with element property rows of the
form
[ProId Type MecaProId ElNodeId1 LayerId1 UNU1 ElNodeId2...]

• Type typically fe mat(’p piezo’,’SI’,1)

• MecaProId : ProId for mechanical properties of element p shell 2 composite entry. The
MatIdi for piezo layers must be associated with piezo electric material properties.

• ElNodId1 : NodeId for electrode 1. This needs to be a node declared in the model but its
position is not used since only the value of the electric potential (DOF 21) is used. You may
use a node of the shell but this is not necessary.

• LayerId : layer number as declared in the composite entry.

• UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section 1.3.2 . The following gives a
sample declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110

% MatId 1 : steel, MatId 12 : PZT elastic prop
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model.pl=m_elastic(’dbval 1 Steel’);

% Sample ULB piezo material, sdtweb m_piezo(’sample_ULB’)

model.pl=m_piezo(model.pl,’dbval 3 -elas 12 Sample_ULB’);

% ProId 111 : 3 layer composite (mechanical properties)

model.il=p_shell(model.il,[’dbval 111 laminate ’ ...

’3 1e-3 0 ’ ... % MatID 3 (PZT), 1 mm piezo, 0

’1 2e-3 0 ’ ... % MatID 1 (Steel), 2 mm

’3 1e-3 0’]); % MatID 3 (PZT), 1 mm piezo, 0

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683

model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’,model) % Details about the constitutive law

p_piezo(’ElectrodeInfo’,model) % Details about the layers
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